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Chapter 1

Introduccion y conclusiones

El objetivo de esta tesis es estudiar los puntos fijos de ciertas acciones de grupos finitos
sobre el espacio de moduli de G-fibrados de Higgs en una superficie de Riemann compacta
X. En la mayor parte de esta tesis G es un grupo de Lie conexo reductivo complejo arbi-
trario, pero algunos de nuestros resultados solo se cumplen cuando GG es semisimple. Un
G-fibrado de Higgs es un par (E, ¢) que consta de un G-fibrado principal sobre X y una
seccion global ¢ de F(g) ® Kx, donde E(g) es el fibrado asociado a £ mediante la rep-
resentacion adjunta de G en g y Kx es el fibrado canénico de X —Ia seccién ¢ se llama
campo de Higgs. Existe un espacio de méduli M (X, G) que clasifica clases de isomor-
fismo de G-fibrados de Higgs poliestables, véase el Capitulo 2| Cuando G es clésico, los
G-fibrados de Higgs corresponden a fibrados vectoriales equipados con un endomorfismo
tensorizado por Ky y cierta estructura adicional.

Desde su introduccién por Hitchin hace mas de 35 afios [48149], los espacios de méduli
de fibrados de Higgs han demostrado ser de gran interés en geometria, topologia y fisica
tedrica. Tienen una geometria extremadamente rica debido al hecho de que son hiperkéhler,
definen sistemas completamente integrables y, por la correspondencia de Hodge no abeliana,
se identifican con las variedades de caracteres del grupo fundamental de la superficie. As-
pectos importantes de la geometria de M (X, G) se reflejan naturalmente en el grupo de
sus automorfismos holomorfos y, en particular, en la accién de subgrupos finitos del grupo
de automorfismos.

Consideramos varias acciones naturales de grupos finitos sobre M (X, G). Primero,
el grupo C* actia en M(X, &) reescalando el campo de Higgs. Los puntos fijos de
esta accion, llamados fibrados de Hodge, juegan un papel esencial en el estudio de la
topologia del espacio de méduli mediante localizacién. Esto se ha considerado cuando
G = GL(n,C) para rango y grado coprimos, primero para rango 2 y determinante fijo
por Hitchin [48], después para rango 3 por Gothen [42] y finalmente para rango arbitrario
por Garcia-Prada—Heinloth—Schmitt [35] y Garcia-Prada—Heinloth [34]]. Los fibrados de
Hodge también estdn involucrados en el estudio de variaciones de estructuras de Hodge
por Simpson [73] y Biquard—Collier—Garcia-Prada—Toledo [13]. Un contexto mas amplio
donde aparecen estos objetos es la teoria de fibrados de Higgs para formas reales y las cor-
respondientes componentes de Teichmiiller superiores, véase por ejemplo Bradlow—Garcia-
Prada—Gothen [22], Aparicio—Bradlow—Collier—Garcia-Prada—Gothen—Oliveira [5], Garcia-
Prada—Oliveira [36,37], etc. —para mads referencias, consultese el articulo de Garcia-Prada
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[31].

En esta tesis hemos restringido nuestra atencion a subgrupos finitos de C*. El ejemplo
mads simple es la involucién ¢ de M(X,G) que envia (F,p) a (E, —¢p), la cual ya fue
considerada por Hitchin [48] para G = GL(2,C) y por Garcia-Prada—Ramanan [39] en
general. Los puntos fijos de ¢ corresponden a pares de Higgs con grupo de estructura G?,
donde 6 es una involucién interna de G. Aqui, G? es el subgrupo de puntos fijos de 6 y
el campo de Higgs toma valores en el autoespacio —1 del automorfismo de g inducido por
6. Estos puntos fijos corresponden a representaciones del grupo fundamental de X en la
forma real G, donde o es una involucién antiholomorfa de G de tipo Hodge, es decir, la
composicién de una involucién compacta con un automorfismo interno.

En segundo lugar, el grupo de automorfismos Aut(G) de G actda sobre M (X, G) por
extension de grupo de estructura. Mads precisamente, dado un automorfismo holomorfo
0 de G y un G-fibrado de Higgs (F, ) sobre X, podemos torcer la accién de G en el
espacio total de £ por §~! para obtener un nuevo G-fibrado, que llamamos 0(E), y el
isomorfismo de fibrados vectoriales F(g) =~ 0(E)(g) inducido por 6 produce un campo de
Higgs 0(yp) para §(E). La accién del grupo de automorfismos internos Int(G) respeta las
clases de isomorfismo: para cada g € G, la aplicacion £ — E dada por multiplicacién
por g induce un isomorfismo de (E, ¢) a 0(E, ¢). Por lo tanto, obtenemos una accién de
Out(G) := Aut(G)/Int(G) por la izquierda.

Por ejemplo, si a es un elemento no trivial de Out(G) tal que a® = 1, los puntos fijos
corresponden a G-fibrados de Higgs, donde € es una involucién exterior de G elevando
a. Dado que las acciones de Out(G) y C* conmutan, también podemos considerar la
involucién que combina tanto a como —1, enviando (E, ¢) a (A(E), —0(¢p)), en cuyo caso
los puntos fijos corresponden a representaciones de 7 (X) en ciertas formas reales de G
que ya no son de tipo Hodge. De hecho, al variar a, aparecen todas las posibles formas
reales de GG (véase [39]).

Otro grupo importante que actda en el espacio de méduli de G-fibrados de Higgs es
H 1(X ,Z), el grupo de clases de isomorfismo de Z-fibrados, donde Z es el centro de G.
Dado un G-fibrado de Higgs (E, ¢) y un Z-fibrado L, podemos definir la tensorizacién
E ® L como el G-fibrado obtenido a partir del G x Z-fibrado £ x L mediante extensién
de grupo de estructura por el homomorfismo multiplicacién. Dado que la accién adjunta
de Z en g es trivial, el campo de Higgs ¢ también puede ser considerado como un campo
de Higgs de £ ® L.

Se puede observar que las acciones de Out(G) y H'(X, Z) no conmutan, sino que la
primera tuerce la segunda por extension de grupo de estructura. Asi, obtenemos una accidén
combinada de H'(X, Z) x Out(G) x C* sobre M(X, G) por la derecha, donde el producto
semidirecto se define utilizando la accién antes mencionada de Out(G) en H'(X, Z), tal
que un elemento (a, a, i) envia un G-fibrado de Higgs (E, ) a 0~ (F ® a, ), donde
0 es cualquier automorfismo de G elevando a. Una descripcion de los puntos fijos de la
accion de un subgrupo ciclico finito general de H*(X, Z) x Out(G) x C* que generaliza
los casos anteriores se proporciona en [39].

Un importante resultado relacionado con la accién de H'(X, Z) en el contexto de fi-
brados vectoriales, que nosotros hemos generalizado a fibrados de Higgs, es la famosa de-
scripcion de Narasimhan—Ramanan de los puntos fijos de la accién de un subgrupo ciclico
finito de la Jacobiana. Un fibrado de linea L. — X de orden finito r determina un au-
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tomorfismo del espacio de méduli de fibrados vectoriales de rango n y grado d mediante
tensorizacion. Narasimhan y Ramanan [58]] muestran que el subconjunto de puntos fijos es-
tables estd contenido en el pushforward del espacio de mdduli de fibrados vectoriales sobre
X1, de rango n/r y grado d, donde X, es la cubierta étale de X determinada por L. Nasser
[60] mejora este resultado mostrando que el conjunto de puntos fijos poliestables es igual
al pushforward de este espacio de mdduli. En particular, si 7 = n, entonces la variedad
de puntos fijos es isomorfa al pushforward de la Jacobiana de X, y su interseccién con
la subvariedad de fibrados vectoriales con un determinante fijo es isomorfa al pushforward
de la variedad de Prym.

La dltima accién que consideramos es la del grupo Aut(X) de automorfismos holo-
morfos de X mediante pullback. Esta tuerce la accién de H' (X, Z) mediante pullback y,
por tanto, obtenemos una accion del grupo

HY(X, Z) x (Aut(X) x Out(G)) x C* (1.0.1)

por la derecha, donde el producto semidirecto esta definido por las acciones de Aut(X) y
Out(G) en H'(X, Z) dadas por pullback y extensién de grupo de estructura, respectiva-
mente. Mds explicitamente,

(E,¢) (a,n,a,p) == ("0 (E® ), u* 0~ (¢))

para cada (o, 1, a, i) en y cualquier automorfismo 6 de G que eleve a.

Los puntos fijos para la accion de un subgrupo finito de Aut(X) han sido estudiados
por varios autores, incluyendo Andersen—Grove [4], Andersen [3], Garcia-Prada—Wilkin
[40] y Heller—Schaposnik [46]. Garcia-Prada—Basu [12] describen los puntos fijos de un
subgrupo finito arbitrario de Aut(X) x Out(G) x C* en términos de fibrados de Higgs
equivariantes torcidos, los cuales definimos en el Capitulo

El objetivo de esta tesis es la descripcion de los puntos fijos de la accion de un subgrupo
finito arbitrario I" de (1.0.1)) sobre M (X, G). En particular, generalizamos [39] a cualquier
subgrupo finito y unificamos sus resultados con los de [S8], obteniendo una construccién
general de Prym—Narasimhan—Ramanan. También generalizamos [12] agregando la accién
de H'(X, Z) y mejoramos sus resultados a la luz de la construccién de Prym—Narasimhan—
Ramanan. Damos una respuesta a este problema general en el Teorema Sin em-
bargo, para que el lector comprenda mejor cémo funciona, hemos aislado sus ingredientes
principales en casos especiales. El caso particular de la accién de grupos finitos de Z-
fibrados sobre el espacio de méduli de G-fibrados holomorfos se desarrolla en un articulo
conjunto con Garcia-Prada [9]]. La teoria de fibrados principales torcidos equivariantes, que
desempefia un papel central en esta tesis, ha sido desarrollada en un articulo conjunto con
Garcia-Prada, Gothen y Mundet i Riera [10].

Puntos fijos cuando la acciéon no implica tensorizacion

Sea I" un subgrupo finito de Aut(X') x Out(G) x C*. En esta situacion, la variedad de pun-
tos fijos M(X, G)' se describe en términos de fibrados de Higgs I'-equivariantes torcidos
sobre X, los cuales estudiamos en el Capitulod] Presentamos los resultados correspondi-
entes en el Capitulo[9] Sea 7, ay ylos homomorfismos naturales de I en Aut(X), Out(G)
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y C*, respectivamente, y sea f : I' — Aut(G) un homomorfismo que eleva a. Fijemos
una aplicacién ¢ : I' x I' — Z. Una accién (por la derecha) (6, ¢)-torcida I'-equivariante
sobre un G-fibrado E, que denotamos con ‘-’, es una elevacion de la accién n~tdel en
X aun homomorfismo de ' al grupo de automorfismos holomorfos del espacio total de £/,
que tuerce la accién de G por 0~ y tal que la composicién de las acciones de v, y 7, € I’
es igual a la composicion de las acciones de ¢(y1,72) y 7172 El par (F,-) se llama un
G-fibrado I'-equivariante (6, c¢)-torcido.

Mis generalmente, podemos definir acciones (por la izquierda o por la derecha) (6, ¢)-
torcidas ['-equivariantes en un conjunto M equipado con una accién del grupo G. Tales
acciones torcidas son asociativas si y solo si ¢ es un 2-cociclo de I' con valores en Z, en el
sentido de cohomologia de Galois [69], y asumimos esto de ahora en adelante. Llamamos
Z%(T, Z) al grupo de 2-cociclos. También podemos definir el segundo grupo de coho-
mologia H3(T', Z) como el cociente de Z2(T", Z) por una accién del grupo de aplicaciones
I' — Z. La teoria de las acciones torcidas equivariantes se desarrolla en un articulo con-
junto con Garcia-Prada, Gothen y Mundet i Riera [10], incluyendo una interpretacion del
conjunto de clases de isomorfismo de estos objetos en términos de cohomologia de Cech.
Revisamos algunos de los resultados en el Capitulo[3]

Dado una representacion p : G — GL(V'), una accién (6, ¢)-torcida pr de I" sobre
V' por la izquierda y un G-fibrado I'-equivariante (6, c)-torcido £, hay una accién I'-
equivariante en el fibrado asociado F(V'). Un triplete (£, -, ¢) que consta de un G-fibrado
[-equivariante torcido (E,-) y un campo de Higgs T-invariante p € H°(E(V) ® Kx) se
llama un (G, V)-par de Higgs I'-equivariante (6, ¢, pr)-torcido. Si I' es trivial entonces
(E, ¢) se llama un (G, V')-par de Higgs. Existen nociones de (semi)estabilidad para pares
de Higgs equivariantes torcidos y un espacio de méduli M (X, G, T, 0, ¢, V, pr) que clasi-
fica clases de isomorfismo de objetos polyestables, véase el Capitulo @ Este formalismo
se puede aplicar al caso en que V' = g, p es la representacién adjunta y pr = ;i 16. En esta
situacién omitimos g en la notacién, y escribimos M (X, G, T, 0, c, 1~'0) para referirnos
al espacio de méduli. Tenemos un morfismo natural de olvido M(X, G, T, 0, ¢, u=10) —
M (X, G) omitiendo la accién de T, cuya imagen llamamos M (X, G, T, 0, ¢, = 16).

Teorema A (Teorema (9.2.2). La union U[C] ./W(X, G,T,0,c, u='0) estd contenida en
M(X, G)Y, donde [c] toma valores en H2(T', Z), y el locus simple y estable de puntos fijos
M(X, G)' estd contenido en U[C] M(X,G,T,0,c, u10).

Notese que en el enunciado del Teorema se descompone cada componente de esta
unidn seguin la accion de I' en los puntos de isotropia.

Puntos fijos cuando la accion sobre X es trivial

En el capitulo |5/ consideramos la accién de un subgrupo finito arbitrario I de H' (X, Z) x
Out(G) x C* sobre X . Las proyecciones sobre Out(G) y C* proporcionan homomorfismos
a'y u,y la proyeccién sobre H'(X, Z) produce una aplicaciéon « : I' — H'(X, Z) que
satisface ay = ava;’, para cada v y 7 en I', donde el superindice denota la acciéon de I’
en H'(X,7) inducida por a. Las aplicaciones a que satisfacen esta ecuacion se llaman
1-cociclos, y escribimos Z!(T', H' (X, Z)) para el grupo de 1-cociclos. En general, dada
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una accién b : I' — Aut(A) en un grupo A, tenemos una nocién de 1-cociclo y denotamos
el conjunto de 1-cociclos por Z} (T, A).

Segin de Siebenthal [70] (véase también [10]), existe un homomorfismo 6 : ' —
Aut(G) que eleva a. Sea Gy el subgrupo de G donde el automorfismo 6., es equiva-
lente a multiplicar por algin elemento del centro Z, para cada v en I'. Por definicidn,
tenemos un homomorfismo Gy — Z!(T', Z) cuyo nicleo es el subgrupo de puntos fi-
jos GY < (. Esto, a su vez, induce una aplicacién del conjunto de clases de isomor-
fismo de Gy-fibrados H'(X,Gy) en H' (X, Z,(T', Z)). Dado que G es semisimple, Z es
finito y, por lo tanto, X y I' pueden intercambiarse, proporcionando asi una aplicacioén
¢o : H'(X,Gy) — Z1(I', H(X, Z)) que puede considerarse una "aplicacién de clase car-
acteristica”. Llamamos gﬁ al subespacio de g donde # actia con peso p. La restriccion
de la accién adjunta a GGy preserva gﬁ y, por lo tanto, tenemos un espacio de moéduli
Ma(X, G, g") de (G, ¢))-pares de Higgs (F, v)) tales que é5(F) = ov.

También tenemos un morfismo de extension de grupo de estructura M, (X, Gy, gﬁ) —
M(X,G), cuya imagen denotamos MQ(X , Gy, 9"). Esta imagen es independiente de la
clase [#] de 6 en Hom(T", Aut(G))/ ~, donde ~ es la relacién de equivalencia definida por
6 ~ ' siy solo si existe g en G tal que 6 ~ Int, ¢’ Int;l.

Teorema B (Teorema 5.6.4). La union | Mo (X, Gy, %), donde 0] es la clase de

una elevacion 0 de a, estd contenida en M(X, G, y el locus de puntos fijos simples y
estables M (X, G)' estd contenido en esta union.

El enunciado exacto del Teorema es ligeramente diferente, ya que utiliza una
biyeccion entre elevaciones 360 de a 'y 1-cociclos 8 € Z; (T, Int(G)) en el sentido de coho-
mologia de Galois [69], que induce una biyeccion entre el conjunto de clases de elevaciones
en Hom(T', Aut(G))/ ~ y el primer grupo de cohomologia H; (', Int(GF)). Aqui 0 es una
elevacion fija de a.

La construccion de Prym-Narasimhan—-Ramanan

El Teorema|[5.7.2 va un paso mds alld, describiendo cada componente de la descomposicién
/WQ(X , GO, gﬂ) como una unién de cocientes finitos de espacios de mdduli de pares de
Higgs Gal(Y'/X)-equivariantes (Gf, gf,)-torcidos sobre ciertas cubiertas étale Y de X,
donde G es la componente conexa de GY y, por tanto, de Gy. Esto se basa en una
equivalencia de categorias entre pares de Higgs sobre X con grupo de estructura reduc-
tivo posiblemente no conexo GGy y pares de Higgs Gal(Y /X )-equivariantes torcidos sobre
una cubierta étale Y — X con grupo de estructura igual a la componente conexa de la
identidad G < Gy (véase el Capitulo ).

Mis precisamente, sea L'y := Gy /G%. Por la Proposicién podemos encontrar un
aplicacion ¢ : fg — Gy que elige un elemento de GGy en cada componente conexa y que
es un homomorfismo salvo multiplicacién por elementos del centro Z(GY) de G§. Por un
lado, la composicion Int |ge © ¢, donde Int[ge = Gy — Aut(GY) es la accion de Gy en
G?Y por conjugacion, es un homomorfismo 7 : I' — Aut(GY) que eleva el homomorfismo
caracteristico de la extension Gy de GY por fg. Por otro lado, podemos medir la obstruccion
para que ¢ sea un homomorfismo por la aplicacién ¢ : I' x I' — Z(GY) que envia un par
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(7,7') a la diferencia entre ¢,t, y t,.,. Decimos que ¢ es un homomorfismo torcido por
c. La asociatividad de la multiplicacion de grupo en G, implica que ¢ es un 2-cociclo en
Z2(Tp, Z(GY)). Ademds, la aplicacién ¢ induce un isomorfismo de extensiones de grupo
Gy =~ Gg Xre f‘g, donde Gg Xre f‘g es el conjunto Gg X fg equipado con una multiplicacién
de grupo que involucra a 7 y ¢ —por ejemplo, si ¢ = 1 entonces esto es un producto
semidirecto, véase (3.2.13).

Dado un Gy-fibrado E sobre X, la proyeccion E' — X puede factorizarse a través de
E/G$, que es un T'y-fibrado sobre X. Sea Y una componente conexa de E/G§ con grupo
de estructura I'y < fg. Como (4 es reductivo fg es finito, por lo que Y es una cubierta
étale de X con grupo de Galois I'y. Utilizando la aplicacion ¢ podemos equipar £ con una
accion ['p-equivariante (7, c)-torcida. Esto proporciona una biyeccion entre el conjunto de
clases de isomorfismo de Gy-fibrados sobre X y un cociente finito del conjunto de clases
de isomorfismo de GY-fibrados I'y-equivariantes (7, ¢)-torcidos sobre Y (Teorema .
El grupo finito por el que se cocienta es el centralizador de 'y en f@. Este resultado
aparece por primera vez en un articulo conjunto con Garcia-Prada, Gothen y Mundet i
Riera [10]. En el Teorema 4.4.8| establecemos el resultado andlogo para pares de Higgs.
Combinando con extensién de grupo de estructura obtenemos un morfismo del espacio
de méduli de (G, gﬂ)—pares de Higgs torcidos equivariantes sobre Y en M(X, G), cuya

imagen denotamos ‘M (...).

Teorema C (Teorema |[5.7.2). Sea qo : H'(X,Ty) — ZX(T', H\(X, Z)) la composicion

de ¢y con la extension de grupo de estructura por 'y — T'g := Gy/ GY. La union

| MY, G4, Ty, 7,¢,80)/ %, (Ty)
[01,Y

estd contenida en M(X,G)Y, y el locus de puntos fijos suaves M,(X,G)" estd con-
tenido en esta union. Aqui, 0] recorre las clases de equivalencia de elevaciones de a en
Hom(T', Aut(G))/ ~, e Y recorre las cubiertas étale de X con grupo de Galois Ty < Ty
tales que qo(Y') = cu.

En la Seccién [6.1{ mostramos como el Teorema C generaliza la construccion de Prym—
Narasimhan—Ramanan en [58]]: sea G = GL(n,C) y I' < J(X) generado por un fibrado de
linea L de orden finito r. En esta situacion, el homomorfismo a : I' — Out(GL(n,C)) es
trivial, y se puede ver que solo hay una clase [¢] € Int(GL(n,C))/ ~ en la descomposicion
del locus de puntos fijos del Teorema B, a saber, la clase de la conjugacion por la matriz
diagonal M cuya diagonal contiene cada raiz r-ésima de la unidad con multiplicidad m =
n/r. En particular, r debe dividir a n. En este contexto, GL(n,C)? =~ GL(m,C)*"y
GL(n,C)y = GL(n,C)?x,(Z/rZ), donde la accién 7 de Z/rZ sobre GL(m, C)*" permuta
las copias de GL(m, C).

Seap; : X — X lacubierta étale determinada por L, que tiene grupo de Galois Z/rZ.
El Teorema C implica que M (X, GL(n, C))* es isomorfo a una subvariedad abierta en
M(Xp,GL(m,C)*", Z/rZ,1,1)/(Z/rZ). Traduzcamos esto al lenguaje de los fibrados
vectoriales, sin tener en cuenta el campo de Higgs: sea £ un GL(m, C)*"-fibrado Z/rZ-
equivariante (7, 1)-torcido sobre X;. El fibrado vectorial asociado es una suma directa
Ey®---@® E,, donde E; es un fibrado vectorial de rango m. Hay una accién Z/rZ-
equivariante inducida que permuta los sumandos, por lo tanto F; =~ (* £, donde ¢ es un
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generador de Gal(X/X) =~ Z/r7Z. El cociente de E por esta accién es el pushforward
pr«E1. Por tanto, hemos identificado M ,(X, GL(n, C))* con una subvariedad abierta del
pushforward del espacio de moduli de fibrados de Higgs de rango m sobre X, lo cual es
el resultado de Narasimhan—Ramanan.

En el capitulo[/| se presenta una generalizacion de este resultado a cualquier subgrupo
finito I" de la Jacobiana J(X ). Un homomorfismo [ : I' — I'* := Hom(I", C*) se llama
antisimétrico si el emparejamiento de cualquier elemento de I' consigo mismo es igual a 1.
Para cada emparejamiento antisimétrico fijamos un subgrupo maximal A < I" donde el em-
parejamiento es trivial, al que llamamos isotrépico. El grupo A esta equipado naturalmente
con un embebimiento en Hom (A, H*(X, C*)) que, intercambiando A y X, proporciona
una A*-cubierta pp : Xao — X. Supongamos que |A| divide a n. Dado un fibrado de
Higgs (E, ¢) de rango n/|A| sobre X5 y un elemento v en I', podemos construir un nuevo
fibrado de Higgs (I(7)|A(E®pi~Y),(7)|A¥), donde hemos identificado I(7)|a € A* como
un elemento de Gal(X /X ). Esto define una accién de [(I") sobre M(Xa, GL(n/|Al,C)).

En el teorema establecemos que la unién | J; pa.M (X, GL(n/|A[,C))" D) estd
contenida en M (X, GL(n,C))", y el locus M (X, GL(n,C))" de puntos fijos simples y
estables esta contenido en la unidon. Aqui [ recorre los emparejamientos antisimétricos de
I', y declaramos que una componente es vacia si |A| no divide a n. Nétese que, si |T'| divide
an, la componente correspondiente a [ trivial es igual a pr, M (X, GL(n/|T'|)), lo cual deja
claro que esto generaliza el resultado para I" ciclico.

También aplicamos el Teorema C al caso en el que G = Sp(2n,C) y I" es un subgrupo
finito de H'(X, Z). En esta situacion, el centro Z es isomorfo a Z/2Z, por lo tanto podemos
identificar elementos de H' (X, Z) con fibrados de linea de orden 2 sobre X. Mantenemos
la notacion del parrafo anterior. Dado un elemento ¢ en A*, consideremos el conjunto
de clases de isomorfismo de tripletes (£, ¢, 1), donde (E, ) es un fibrado de Higgs de
rango 2n/|A| sobre X y ¢ es un isomorfismo (£, p) — ¢*(E*, ¢*) que satisface ¢*1)* =
—1). Existen nociones de (poli,semi)estabilidad para estos objetos y se puede construir un
espacio de moduli M(Xa, GL(2n/|A|,C), q) que parametriza tripletes poliestables. En
particular, M (X, GL(2n/|Al,C), 1) es isomorfo a M(Xa, Sp(2n/|A[, C)).

Tenemos un morfismo pushforward

Pas : M(Xa, GL(2n/|Al,C), q¢) - M(X,Sp(2n,C)),

que envia cada triplete (E, o, 1)) al fibrado de Higgs (pa«E, pasp) equipado con la forma
simpléctica pas¥ : pasE — pasq*E* = pa.E*. Recordemos que esto produce un
Sp(2n, C)-fibrado de Higgs tomando el fibrado de referencias de pa.E y luego la re-
duccién de grupo de estructura a Sp(2n,C) dada por la forma simpléctica. También se
puede definir una accién de [(I") como en el parrafo anterior. En el Teorema 8.5.6|estable-
cemos que | J, , paxM(Xa, GL(2n/]A],C), )" estd contenido en M (X, Sp(2n, C))", y
el locus simple y estable M, (X, Sp(2n,C))" estd contenido en la unién. Aqui, [ recorre
los emparejamientos antisimétricos y ¢ recorre los elementos de A*. Consiltese la Seccién
6.3|para un andlisis detallado del caso en el que I' is ciclico.

Estudiamos algunos ejemplos adicionales de acciones de grupos finitos ciclicos en el
Capitulo [l En la Seccién [6.2] consideramos la involucién de M (X, SL(n, C)) que envia
(E,¢)a(E*®L,y*),donde L es un fibrado de linea de orden finito. Las componentes de
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puntos fijos descritas por el Teorema C son imagenes de espacios de méduli de fibrados de
Higgs ortogonales y simplécticos equivariantes torcidos sobre X, donde los simplécticos
solo aparecen si n es par. Cuando L es trivial, estos son simplemente fibrados de Higgs
ortogonales y simplécticos, respectivamente.

En la Seccién consideramos la accién del grupo generado por un Z-fibrado L en
M(X,Spin(n,C)), donde Z =~ Z/27 x 7,/27 es el centro de Spin(n,C). Aplicando
el Teorema C obtenemos la Proposicién [6.4.1] que identifica las componentes de puntos
fijos relevantes como imégenes de Spin(p, C) x Spin(gq, C)-fibrados de Higgs equivariantes
torcidos sobre X ;. Aqui p y ¢ toman diferentes valores que satisfacen p+¢q = n y dependen
del grupo de monodromia de L y el residuo de n médulo 4.

En la Seccion [6.5] encontramos que el locus de puntos fijos de la accién del grupo
generado por un fibrado de linea de orden 2 en M (X, E;), donde E; es el grupo excep-
cional simplemente conexo correspondiente, contiene la imagen de un espacio de méduli
de (Es x C*)/(Z/37Z)-fibrados de Higgs equivariantes torcidos. Aqui Z/3Z < C* actda
sobre Fg x C* por multiplicacién en los dos factores.

Puntos fijos para acciones generales

Estudiamos el locus M (X, G)'' de puntos fijos para un subgrupo arbitrario I" de
en el capitulo Las proyecciones sobre Aut(X), Out(G) y C* proporcionan homo-
morfismos 7,a y yu, mientras que la proyeccion sobre H'(X,Z) es un 1-cociclo a €
Zy (I, H'(X, Z)), donde T actda sobre H'(X, Z) enviando L a *~'a(L). Para enten-
der la descripcion de los puntos fijos en el contexto mds general, primero establecemos un
resultado para el caso de « trivial “combinando” los teoremas A y B. Mdas concretamente,
mejoramos el Teorema A teniendo en cuenta que 7 puede no ser inyectivo, de tal forma
que primero obtenemos una reduccién de grupo de estructura aplicando el Teorema B a
la accién de kern y después conseguimos una accién equivariante torcida del grupo del
automorfismos de una cubierta étale de X que eleva n(T).

Supongamos que « es trivial. Fijemos un homomorfismo 6 : kern — Aut(G) elevando
afern y sea I := GY/GY el grupo de componentes conexas de GY. Tomemos una cubierta
¢tale conexa p : Y — X con grupo de Galois e y llamemos fy al grupo de automorfismos
de Y que elevan elementos de 7(I"). Sea I';, el conjunto de pares (7,7) enI" x I'y tales que
n, = p(7), donde p(7) es el automorfismo inducido en X. Nétese que las proyecciones de
fn en el primer y segundo factor tienen kernel I y ker n respectivamente. Tomemos un
homomorfismo 7 : 'y — Aut(GY%) y un 2-cociclo ¢ € Z2(T'y, Z(G?)) cuyas restricciones
a I satisfacen un isomorfismo R

G %, .17 = G° (1.0.2)

de extensiones. Entonces podemos construir un homomorfismo c-torcido e, : I'y —
Aut(Gg), dado por la composicion de la aplicacion obvia ['y — Gg X r.cI'y conlaaccion de
GY % . I'y sobre si mismo por conjugacién. Llamamos Homy , .(I,, Aut(G)) al conjunto
de homomorfismos c-torcidos I';, — Aut(G) cuya restriccién a kern es igual a 6 y que
preservan G e inducen e, ..

Cualquier elemento 7 € Homgmc(ﬁ], Aut(G)) determina un homomorfismo c-torcido
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ptd7 fn — Hom(gz, g), que a su vez induce un homomorfismo c-torcido pz , Iy —
Hom(gz, g) porque la accién de d7 ke, sobre gﬁ es igual a p. Por tanto tenemos una nocion
de (G{, gf)-par de Higgs I'y-equivariante (7, ¢, pz,)-torcido.

El formalismo de los anteriores dos pérrafos se puede generalizar al caso en el que el
grupo de Galois de Y es un subgrupo arbitrario de I'’. Considérese la unién

U= |J MG Ty, 7cglps).
(01,7 fel7

Esta estd parametrizada por las cubiertas étale conexas p : Y — X con grupo de Galois
igual a un subgrupo de I'?, las clases [#] € Hom(T', Aut(G))/ ~ de elevaciones de a|xer s,
las clases de cohomologia [7] y [¢] que cumplen y homomorfismos c-torcidos 7 en
Homgmc(fn, Aut(G)). La notacién M (...) se refiere a la imagen del morfismo dado por
la Proposicion El Teorema afirma que U estd contenido en M(X,G)" y
M,(X, G)! esta contenido en U.

El caso general, cuando « es no trivial, requiere reemplazar GY por Gy y e por Ty =
Go/ Gg. Dado un ['y-fibrado p : Y — X, el pullback p*« determina una cubierta étale Y,
de Y cuya proyeccion sobre X via p es una cubierta €tale de X. Reemplacemos Y por Y,
en los parrafos anteriores, de tal forma que I'y es la elevacion de n(I") a Y, etc. Podemos
definir U como en el parrafo anterior, pero ahora imponemos una condicion que relaciona
7, ¢y a (véase (10.3.15)). Nuestro resultado general es el siguiente.

Teorema D (Teorema(10.3.1)). La union U estd contenida en M(X, G)*, y M,(X, G)F
estd contenido en U.

Puntos fijos en variedades de caracteres.

La correspondencia de Hodge no abeliana proporciona un homeomorfismo entre M (X, G)
y la variedad de caracteres R (X, G) que parametriza clases de equivalencia de representa-
ciones reductivas 71 (X) — G. Existe una version de esta teoria para fibrados de Higgs
equivariantes torcidos, véase Basu—Garcia-Prada [12]: fijemos una accion de un grupo
finito T’ sobre X, un homomorfismo 6 : T' — Aut(G) y un 2-cociclo ¢ € Z3(T', Z).
Sea R(X,G,T,0,c) el espacio de méduli de clases de equivalencia —por la accion por
conjugaciéon de G— de representaciones reductivas del grupo fundamental equivariante
m (X, T, x)de X en GxyI'. Entonces, R(X, G, T, 6, c) eshomeomorfoa M(X,G,T,0,c).
Por lo tanto, podemos traducir nuestros resultados para dar una descripcion del locus fijo
de ciertas acciones de grupos finitos en las variedades de caracteres.

Maés concretamente, un elemento («, 7, a) de H(X,Z) x (Aut(X) x Out(G)) envia
una representacion p : m(X,z) — G a0 o (n(p® «a)). Aqui, § € Aut(G) es una
elevacion de a, 1, es inducido por el homomorfismo 7, : m(X,z) — m(X,n(x)), y
llamamos « a su holonomia 71 (X, ) — Z por abuso de notacién. Nétese que, aunque
la accién de C* sobre M (X, G) no induce una acciéon manejable sobre R (X, G), su re-
striccion a 7Z/27 < C* induce una accién antiholomorfa sobre R(X, G) que ha sido es-
tudiada en [39], pero nosotros no consideramos. Con la notacién anterior, en el Teorema
establecemos que la variedad de representaciones irreducibles y simples R, (X, G)"
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que son fijas por I" estd contenida en una unién de imégenes de espacios de méduli
)
R(Y7 G07 FY? T, C),

y esta unién estd contenida en R(X,G)". Casos particulares de este teorema se pueden

encontrar en las Secciones[5.8]y

Puntos fijos en espacios de moduli de pares de Higgs

En el Capitulo final |1 1| consideramos acciones de grupos finitos sobre espacios de méduli
de pares de Higgs (G, V'), donde fijamos una representacién p : G — GL(V). En esta
situacion, las acciones de Aut(X) y C* adn tienen sentido, y la accién de H'(X, Z) esta
bien definida siempre y cuando Z esté en el nicleo de p —en caso contrario podemos con-
siderar H*(X, Z n ker p) en su lugar. Sin embargo, debemos reemplazar Out(G) por el
grupo Out(G, V'), que definimos a continuacién. Sea GL¢(V) el subgrupo de GL(V') x
Aut(G) que consiste en pares (k, 0) tales que x induce un isomorfismo entre py po6. Ten-
emos un homomorfismo p;; : G — GL¢ (V') que envia g a (p(g), Int,), cuya imagen pe(G)
es un subgrupo normal de GL¢ (V). Definimos Out(G, V') := GLg(V)/pi(G). Entonces
la accion de GLg (V') sobre M(X, G, V), tal que (k, 0) envia (E, ¢) a ((E), k(p)), donde
k(p) € HY(X,E X0, V® Kx) =~ H'(X,0(FE) x, V® Kx) es el campo de Higgs in-
ducido por 71, es una accién por la izquierda cuya restriccién a pe(G) preserva la clase
de isomorfismo de (F, ¢). Combinando todo, obtenemos una accién por la derecha

M(X,G, V) HYX,Z) x (Aut(X) x Out(G,V)) x C*. (1.0.3)

Sea I" un subgrupo finito de (I.0.3). Las proyecciones en el segundo, tercer y cuarto
factor proporcionan homomorfismos 7,a y pu, y la proyeccion en el primer factor propor-
cionaun 1-cocicloa € Z, , (I, H'(X, Z)), donde I actiia sobre H' (X, Z) atravésden y la
proyeccion de a en Out(G). Los teoremas de puntos fijos para espacios de méduli de pares
Higgs son similares a los de fibrados Higgs, pero tenemos que reemplazar las elevaciones
0 : T' - Aut(G) por homomorfismos (k,0) : I' — GLg (V') que elevan a, la relacion de
equivalencia ~ por conjugacién por elementos de pg(G), y los subespacios gz por V7. Los
andlogos de los Teoremas A, B, C y D son los Teoremas [11.3.4] [11.2.7] [11.2.8] y [11.4.5]
respectivamente.

Motivaciones y aplicaciones

Planeamos aplicar nuestros resultados a varios escenarios en trabajos futuros. Por ejemplo,
estos podrian combinarse con el Teorema de Atiyah—Bott de punto fijo para estudiar la
topologia del espacio de méduli. En esta direccién, Narasimhan—Ramanan [38]] calculan
el y-género del espacio de mdduli de fibrados vectoriales de rango y determinante fijos,
demostrando en particular que la caracteristica de Euler y la signatura se anulan. Andersen
[3]] describe el locus simple de puntos fijos de un automorfismo de orden finito 77 de X en
el espacio de méduli de G-fibrados utilizando G-fibrados equivariantes torcidos, y aplica
esto al célculo de invariantes de Witten-Reshetikhin-Turaev del mapping torus de 7. La
principal limitacién para aplicar nuestro formalismo a los espacios de méduli de fibrados

23



de Higgs es que no son compactos ni lisos. Esto se puede sortear si restringimos nuestra
atencion a la cohomologia de subvariedades de fibrados de Hodge, que son compactas.
Por localizacion, esto puede llevar a resultados sobre la cohomologia C*-equivariante del
espacio de moduli.

La descripcion de puntos fijos en términos de fibrados de Higgs parabdlicos ya ha sido
estudiada por Andersen—Grove [4] para fibrados vectoriales de rango 2 y por Garcia-Prada-
Wilkin [40] para G arbitrario. Estas se basan en la correspondencia entre GG-fibrados equiv-
ariantes y fibrados parabdlicos. La extension de esta correspondencia a pares de Higgs
equivariantes torcidos permitiria generalizar sus resultados en nuestro marco de trabajo.

Una motivacién importante para esta tesis es la identificacion de subvariedades hiper-
kihler o lagrangianas de M(X, GG), que son el soporte de branas en el contexto de simetria
especular tal y como la introducen Kapustin y Witten [52]]. Por ejemplo, si la proyeccién
de un subgrupo finito I' de sobre C* es trivial, el locus de puntos fijos suave es
hiperkéhler y, por tanto, es el soporte de branas de tipo BBB. Sin embargo, si I' tiene orden
dos y la proyeccion correspondiente en C* no es trivial, el locus de puntos fijos suave es el
soporte de BAA-branas. Esperamos que la construccién de Prym—Narasimhan—Ramanan
proporcione ejemplos de branas completamente equipadas: esto ya ha sido logrado por
Franco-Gothen-Oliveira-Peon-Nieto [28] en el caso de la accion de un subgrupo ciclico
finito de la Jacobiana.

Hitchin [50] considera ejemplos de branas de tipo BAA correspondientes a U(n,n)-
fibrados de Higgs dentro del espacio de mdduli de fibrados vectoriales de rango 2n, los
cuales son puntos fijos obtenidos al multiplicar el campo de Higgs por —1. Las supuestas
BBB-branas duales tienen soporte en la subvariedad de Sp(2n, C)-fibrados. Seria intere-
sante considerar una extension finita de Sp(2n, C) en su lugar, cuyos objetos corresponden,
segun nuestra teoria, a Sp(2n, C)-fibrados de Higgs equivariantes torcidos sobre ciertas
cubiertas étale de X. Entonces podriamos estudiar lo que sucede en el lado de U(n,n)
y la compatibilidad de la simetria especular con la construccién de Prym—Narasimhan—
Ramanan.

No hay ejemplos de soportes para branas de tipo ABA y AAB en esta tesis. Al-
gunos de estos provienen de acciones que involucran involuciones antiholomorfas de GG
y X, que planeamos considerar en el futuro. Biswas—Calvo—Garcia-Prada [15] estudian
G®-fibrados de Higgs reales, que son la versién real de los fibrados de Higgs equivari-
antes torcidos. Otras referencias son Baraglia—Schaposnik [8]], Biswas—Garcia-Prada [[16]
y Biswas—Garcia-Prada—Hurtubise [17, 18, 19].

La descripcion de M (X, G)) como la fibracion de Hitchin [49] sobre un espacio vecto-
rial es crucial en el estudio de su geometria. Creemos que nuestras descripciones de puntos
fijos serdn utiles para el estudio de las fibras de Hitchin de diferentes subvariedades de pun-
tos fijos. Algunas referencias en esta direccion son Heller—Schaposnik [46], Schaffhauser
[66] y Schaposnik [67]].

También planeamos extender nuestra descripcion de puntos fijos a espacios de moduli
de fibrados de Higgs parabdlicos en trabajos futuros. Estos corresponden a representa-
ciones del grupo fundamental de superficies punteadas a través de la teoria de Hodge no
abeliana [[72,14]. El contexto de fibrados parabdlicos es geométricamente mds rico y quizas
mads natural desde el punto de vista fisico de la simetria especular [44, |52]].

Finalmente, nuestra descripcion de puntos fijos en espacios de méduli de pares de Higgs
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se puede aplicar al estudio de subvariedades de puntos fijos para fibrados de Higgs asocia-
dos a formas reales, lo que puede conducir a resultados sobre la topologia de los espacios
de Teichmiiller [31]].
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Introduction

Background and statement of the problem

The aim of this thesis is to study fixed points of finite group actions on moduli spaces
of G-Higgs bundles over a compact Riemann surface X. Most of the time we take G to
be an arbitrary connected reductive complex Lie group, but some of our results require G
to be semisimple. A GG-Higgs bundle is a pair (E, ¢) consisting of a principal G-bundle
E over X and a global section ¢ of E(g) ® Kx, where F(g) is the bundle associated
to E' via the adjoint representation of G in g and Kx is the canonical bundle of X —
the section ¢ is called the Higgs field. There is a moduli space M(X, ) classifying
isomorphism classes of polystable G-Higgs bundles, see Chapter 2l When G is classical,
(G-Higgs bundles correspond to vector bundles equipped with some extra structure and a
compatible endomorphism tensored by K'x.

Since their introduction by Hitchin more than 35 years ago [48, 49]], moduli spaces
of Higgs bundles have been of tremendous interest in geometry, topology and theoreti-
cal physics. They have an extremely rich geometry coming from the fact that they are
hyperKihler, they define completely integrable systems and, by the non-abelian Hodge
correspondence, they are identified with character varieties of the fundamental group of
the surface. Important aspects of the geometry of M (X, G) are naturally reflected by the
group of its holomorphic automorphisms, and in particular by the action of finite subgroups
of the group of automorphisms.

We consider several natural group actions on M(X, G). First, the group C* acts on
M(X, G) by rescaling the Higgs field. Fixed points of this action, called Hodge bundles,
play an essential role in the study of the topology of the moduli space via localization. This
has been considered when G = GL(n, C) for rank and degree coprime, first for rank 2 and
fixed determinant by Hitchin [48]], second for rank 3 by Gothen [42] and finally for arbitrary
rank by Garcia-Prada—Heinloth—Schmitt [35]] and Garcia-Prada—Heinloth [34]]. Hodge bun-
dles are also involved in the study of variations of Hodge structures by Simpson [/3]] and
Biquard—Collier—Garcia-Prada—Toledo [13]. A broader context where these objects ap-
pear is the theory of Higgs bundles for real forms and Higher Teichmiiller components,
see for example Bradlow—Garcia-Prada—Gothen [22], Aparicio—Bradlow—Collier—Garcia-
Prada—Gothen—Oliveira [5)], Garcia-Prada—Oliveira [36, 37]], etc. —for more references,
see the survey paper by Garcia-Prada [31]].

In this thesis we are only concerned with actions of finite subgroups of C*. The sim-
plest example is the involution ¢ of M (X, G) sending (E, ¢) to (E, —¢), which is already
considered by Hitchin [48] for G = GL(2, C) and Garcia-Prada—Ramanan [39] in general.
The fixed points of ¢ correspond to Higgs pairs with structure group G?, where 6 runs over
the inner involutions of G. Here G is the subgroup of fixed points of ¢ and the Higgs field
takes values in the —1-eigenspace of the automorphism of g induced by 6. These fixed
points correspond to representations of the fundamental group of X in the real form G°,
where ¢ is an antiholomorphic involution of GG of Hodge type, that is, inner equivalent to a
compact involution.
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Secondly, the group of automorphisms Aut(G) of G acts on M (X, G) by extension
of structure group. More precisely, given a holomorphic automorphism 6 of G and a G-
Higgs bundle (E, ) over X, we may twist the G-action on the total space of £ by 6!
to obtain a new G-bundle, which we call §(E), and the isomorphism of vector bundles
E(g) = 6(F)(g) induced by 6 produces a Higgs field §(¢) for O(E). The action of the
group of inner automorphisms Int(G) respects isomorphism classes: for each g € G, the
map £ — E given by multiplication by ¢ induces an isomorphism from (E, @) to 0(E, ).
Hence, we get a left action of Out(G) := Aut(G)/Int(G).

For example, if a is a non-trivial element of Out(G) such that a* = 1, the fixed points
correspond to G?-Higgs bundles, where 6 is an outer involution of G lifting a. Since the
actions of Out(G) and C* commute, we may also consider the involution combining both
a and —1 sending (F, ) to (6(E), —0(y)), in which case fixed points correspond to repre-
sentations of 71 (X) in certain real forms of G which are no longer of Hodge type. In fact,
varying a, all the possible real forms of GG appear (see [39]).

Another important group acting on the moduli space of G-Higg bundles is H'(X, Z),
the group of isomorphism classes of Z-bundles, where Z is the centre of G. Given a G-
Higgs bundle (F, ) and a Z-bundle L, we may define the tensorization £ ® L to be the
(G-bundle obtained from the G x Z-bundle £ x L via extension of structure group by the
multiplication homomorphism. Since the adjoint action of Z on g is trivial, the Higgs field
 may also be regarded as a Higgs field of £ ® L.

It can be seen that the actions of Out(G) and H'(X, Z) do not commute, but rather
the former twists the latter by extension of structure group. Thus we get a combined right
action of H'(X, Z) x Out(G) x C* on M(X, G), where the semidirect product is defined
using the aforementioned action of Out(G) on H'(X, Z), such that an element («, a, ;1)
sends a G-Higgs bundle (F, ¢) to 7 (E ® a, pp), where 6 is any automorphism of G
lifting a. Garcia-Prada—Ramanan [39] give a description of the fixed points of the action of
a general finite cyclic subgroup of H'(X, Z) x Out(G) x C* generalizing the above cases.

An important construction related to the action of H'(X, Z) in the context of vector
bundles, which we generalize to Higgs bundles, is the famous Narasimhan—Ramanan de-
scription of fixed points of the action of a finite cyclic subgroup of the Jacobian. A line
bundle L. — X of finite order  determines an automorphism of the moduli space of vector
bundles of rank n and degree d via tensorization. Narasimhan and Ramanan [58]] find that
the stable fixed point locus is contained in the pushforward of the moduli space of vector
bundles over X, of rank n/r and degree d, where X is the étale cover of X determined
by L. Nasser [60] improves this result by showing that the whole polystable fixed point
locus is equal to the pushforward of this moduli space. In particular, if » = n then the fixed
point subvariety is isomorphic to the pushforward of the Jacobian of X, and its intersec-
tion with the subvariety of vector bundles having a fixed determinant is isomorphic to the
pushforward of the Prym variety.

The last group action on M (X, ) that we consider is that of holomorphic automor-
phisms Aut(X) of X via pullback. This twists the action of H'(X, Z) via pullback and so
at the end we get a right action of the group

HY (X, Z) % (Aut(X) x Out(G)) x C*, (1.0.4)
where the semidirect product is defined by the actions of Aut(X) and Out(G) on H' (X, Z)
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given by pullback and extension of structure group, respectively. This is given explicitly
by
(E,¢) - (,m,a, 1) := (n* 0" (E® ), jm* 07 (),

for each (a, 7, a, i) in (1.0.4)) and any automorphism 6 of G lifting a.

Fixed points for the action of a finite subgroup of Aut(.X) have been studied by sev-
eral authors including Andersen—Grove [4], Andersen [3]], Garcia-Prada—Wilkin [40] and
Heller—Schaposnik [46]. Fixed points of general finite subgroups of Aut(X) x Out(G) x C*
are described by Garcia-Prada—Basu [12] in terms of twisted equivariant Higgs bundles,
which we cover in Chapter 4]

This thesis undertakes the task of describing the fixed points of the action of an arbitrary
finite subgroup I' of on M(X,G). In particular, we generalize [39] to any finite
subgroup and unify their results with [58]], getting a general Prym—Narasimhan—Ramanan
construction. We also generalize [12]] by adding the H'(X, Z)-action to their work, and we
improve their results in light of the Prym—Narasimhan—Ramanan construction. Our answer
to this general problem is given in Theorem [10.3.1] However, in order to give the reader a
good grasp of it, we have isolated its main ingredients into more special cases where their
role can be understood best. The particular case of finite group actions of Z-bundles on
the moduli space of holomorphic G-bundles is treated in a joint paper with Garcia-Prada
[9], and the answer to the general problem will appear in [11]. The formalism of twisted
equivariant principal bundles, which plays a central role in this study, is developed in a
joint paper with Garcia-Prada, Gothen and Mundet i Riera [10].

Fixed points when the action does not involve tensorizarion

Let I" be a finite subgroup of Aut(X) x Out(G) x C*. In this situation, the fixed point
variety M (X, G)" is given in terms of twisted equivariant Higgs bundles over X, which are
introduced in Chapter[d] The corresponding results are explained in Chapter[9} Let ), a and
w be the natural projection homomorphisms from I' to Aut(X'), Out(G) and C*, and take
a homomorphism 0 : I' — Aut(G) lifting a. Takeamap ¢ : I' x I' — Z. A (right) (0, ¢)-
twisted ["-equivariant action on a G-bundle F over X, which we denote ‘-’, is a lift of the
right action ! of I" on X to a map from I" to the group of holomorphic automorphisms of
the total space of E, which twists the bundle G-action by #~! and such that the composition
of the actions of 7, and -, € I' is equal to the composition of the actions of ¢(1,2) and
7172. The pair (E, -) is called a (6, ¢)-twisted I'-equivariant G-bundle.

More generally, we may define (left or right) (6, ¢)-twisted ['-actions on a set M which
is equipped with a group G-action. Such twisted actions are associative if and only if ¢ is
a 2-cocycle of I' with values in Z, in the sense of Galois cohomology [69], and we assume
so hereafter. We call Z2(T', Z) to the group of 2-cocycles. We may also define the second
cohomoly group H2(T', Z) as the quotient of Z2(T', Z) by an action of the group of maps
I' — Z. The theory of twisted equivariant actions is developed in a joint paper with Garcia-
Prada, Gothen and Mundet i Riera [[10], including a Cech cohomology interpretation of the
set of isomorphism classes of these objects. We review some of the results in Chapter 3]

Given a representation p : G — GL(V), a (0, ¢)-twisted left T'-action pr on V' and
a (0, c)-twisted I'-equivariant G-bundle F, there is a right I'-equivariant action on the as-
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sociated bundle E(V'). A triple (E, -, ) consisting of a twisted I"-equivariant GG-bundle
(E,-) over X and a I-invariant Higgs field ¢ € H°(E(V) ® Ky) is called a (0, c, pr)-
twisted '-equivariant (G, V')-Higgs pair. When T is trivial this is just called a (G, V)-
Higgs pair. There are notions of (poly,semi)stability for twisted equivariant Higgs pairs
and a moduli space M(X,G,T',0,c,V, pr) classifying isomorphism classes of polystable
objects, see Chapter ] This setting may be applied to the case where V' = g, p is the
adjoint representation and pr = p~'6. In this situation we omit g in the notation, de-
noting by M(X,G,T,0,c, n'0) the moduli space. We have a natural forgetful mor-
phism M(X,G,T,0,c,p~0) — M(X,G) omitting the T'-action, whose image we call
M(X,G,T,0,c, 1=10).

Theorem A (Theorem (9.2.2). The union | M(X,G,T,0,c,u=0) is contained in

M(X, G, where [c] runs over H, 2(F Z), and the simple and stable fixed point locus
M(X, G)' is contained in U (X G,T,0,c,u™'0).

Actually, in Theorem we decompose each piece M (X, G, T, 0, ¢, p~'6) according
to the action of I at isotropy points.

Fixed points for trivial action on X

In Chapter [5| we consider the action of an arbitrary finite subgroup I' of H'(X,Z) x
Out(G) x C*. Projections on Out(G) and C* provide homomorphisms a and pu, and
projection on H'(X, Z) yields amap o : T' — H'(X, Z) which satisfies o, = a,a, for
each y and 7/ in ', where the superscript denotes the left action of I on H'(X, Z) induced
by a. Maps « satisfying this equation are called 1-cocycles, and we write Z} (T, H* (X, 7))
for the group of 1-cocycles. In general, given a left action b : I' — Aut(A) on a group A,
we have a notion of 1-cocycle and we denote the set of 1-cocycles by Z} (T, A).

By de Siebenthal [70] (see also [10]), there exists a homomomorphism 6 : I' — Aut(G)
lifting a. Let G be the subgroup of G' where the automorphism 6, is equivalent to multi-
plying by some element of the centre Z, for each v in I'. By definition we have a homo-
morphism Gy — Z}(T', Z) whose kernel is the subgroup of fixed points G’ < G. This,
in turn, induces a map from the set of isomorphism classes of Gy-bundles H'(X, Gy) to
HY (X, ZNT, Z)). Since G is semisimple, Z is finite and so X and I may be exchanged,
thus providing a map ¢, : H'(X,Gy) — Z1(I', H'(X, Z)) which may be thought of as a

characteristic class” map. We may also introduce the p-weight space g ., of the automor-
phism 6 of g The restriction of the adjoint action to GGy preserves g and so we have a
moduli space ./\/l o(X, Gy, ) of (G, g',)-Higgs pairs (F,v) such that ce(F) a.

We also have an extension of structure group morphism M, (X, Gy, gf,) — M(X, G),
whose image we denote with a tilde. This image is independent of the class [6] of 6 in
Hom(T', Aut(G))/ ~, where ~ is the equivalence relation such that 6 ~ @ if and only
there exists ¢ in G satisfying 6 ~ Int, ¢’ Int_l.

Theorem B (Theorem|5.6.4). The union | g, Mo (X, Gy, g %), where [0] runs over the

class of 6 in Hom(I', Aut(G))/ ~, is contamed in M(X,G)Y, and the simple and stable
fixed point locus M,(X,G)" is contained in this union.
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The actual statement of Theorem [5.6.4] is slightly different, since it uses a bijection
between lifts 30 of a and 1-cocycles 5 € Z; (T, Int(G)) in the sense of Galois cohomology
[69], inducing a bijection between the set of classes of lifts in Hom(I', Aut(G))/ ~ and the
first group cohomology set H; (T, Int(G)). Here 6 is any fixed lift.

The Prym-Narasimhan-Ramanan construction

Theorem [5.7.2]takes the results of Theorem B one step further, describing each component
of the decomposition /\7a (X, Gy, gﬁ) as a union of finite group-quotients of moduli spaces
of twisted Gal(Y /X)-equivariant (G, g%,)-Higgs pairs over certain étale covers Y of X,
where G is the connected component of G and hence of Gy. This is an application of
an equivalence of categories between Higgs pairs over X with possibly non-connected
reductive structure group Gy and twisted equivariant Higgs pairs over an étale cover Y —
X with structure group equal to the connected component of the identity GY < Gy (see
Chapter [). R

More precisely, let Fg = Gy/GY. By Proposmon we may findamapt : 'y — Gy
which chooses an element of GGy in each connected component and which is a homomor-
phism up to multiplication by elements of the centre Z(G%) of GGj. On the one hand, the
composition Int [ o ¢, where Int | o : G — Aut(GY) is the action of G on G by conju-
gation, is a homomorphism 7 : I' — Aut(GY) lifting the characteristic homomorphism of
the extension Gy of Gg by fg. On the other hand, we can measure the failure of ¢ to be a
homomorphism by the map ¢ : I' x I' — Z(GY) which sends a pair (7, v') to the difference
between ¢t and t.,,. We say that ¢ is a c-twisted homomorphism Associativity of the
group multlphcatlon on Gy implies that ¢ is a 2-cocycle in Z 2(1“9, (GY)). Moreover, the
map t induces an isomorphism of group extensions Gy = G Xrc F@, where G Xrc F.g 18
the set GY x Fg equipped with a group multiplication involving 7 and ¢ —e.g., if ¢ = 1 then
this is a semidirect product, see (3.2.13).

Now, given a Gy-bundle &2 — X, the bundle projection morphism can be factored
through E/GY, which is a F@ bundle over X. Let Y be a connected component of E/GY
with structure group I'y < I‘g The reductiveness of GGy implies that Fg is finite, hence Y
may be regarded as an étale cover of X with Galois group I'y. Via the map ¢ we can further
equip E with a ['y-action which is (7, ¢)-twisted. This provides a bijection between the
set of isomorphism classes of GGg-bundles over X and a finite group-quotient of the set of
isomorphism classes of (7, ¢)-twisted I'y-equivariant G§-bundles over Y (Theorem .
The finite group is equal to the centralizer of I'y in fg, which is equal to the centre of I'y if
E/GY is connected. All this theory was first developed in a joint paper with Garcia-Prada,
Gothen and Mundet i Riera [10]. An analogous result for Higgs pairs is given by Theorem
4.4.8] Extension of structure group provides a morphism from the moduli space of twisted
equivariant (G, gfL)—Higgs pairs over Y to M (X, G), whose image we denote with a tilde.

Theorem C (Theorem [5.7.2). Let qo : H'(X,Ty) — ZM(T', H\(X, Z)) be the com-
position of ¢o with extension of structure group by I'y — Ty := Gy/G®. The union
Uy M(Y. Go, Ty, 7,¢,8%)/Zp,(Ty) is contained in M(X,G)", and M (X,G)"

contained in the union. Here (0] runs over classes of lifts of a in Hom(T', Aut(G))/ ~
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and Y runs over étale covers of X with Galois group I'y < f‘g such that ¢p(Y') = a.

In Section [6.1] we show how Theorem C generalizes the Prym—Narasimhan—Ramanan
construction in [58]]. Let G = GL(n,C) and I" < J(X) be generated by a line bundle L
of finite order r. In this situation, the homomorphism a : I' — Out(GL(n, C)) is trivial,
and it can be seen that there is only one class [#] € Int(GL(n,C))/ ~ in the decomposition
of the fixed point locus of Theorem B, namely the class of the conjugation by the diagonal
matrix M whose diagonal contains every r-th root of unity with multiplicity m := n/r.
In particular,  must divide n. In this setting GL(n, C)? ~ GL(m,C)*" and GL(n,C)y =~
GL(n,C)? x, (Z/rZ), where the action 7 of Z/rZ on GL(m, C)*" permutes the different
copies of GL(m, C).

Let p;, : X; — X be the étale cover determined by L, which has Galois group
Z/rZ. Theorem C implies that M, (X, GL(n,C))” is isomorphic to an open subvari-
ety in M(X,GL(m,C)*",Z/rZ,7,1)/(Z/rZ). Let us translate this into the language of
vector bundles with no consideration of the Higgs field: let E be a (7, 1)-twisted Z/rZ-
equivariant GL(m, C)*"-bundle over X . The associated vector bundle is a direct sum
E,® - @ E,, where E; is a vector bundle of rank m. There is an induced Z/rZ-
equivariant action which permutes the summands, hence E; =~ (* E,, where ( is a gen-
erator of Gal(X/X) = Z/r7Z. The quotient of F by this action is the pushforward py. F .
Thus we have identified M (X, GL(n, C))* with an open subvariety of the pushforward
of the moduli space of Higgs bundles of rank m over X, as required.

A generalization of this result to any finite subgroup I" of the Jacobian J(X) is given
in Chapter A homomorphism [ : ' — I'* := Hom(I", C*) is called antisymmetric if the
pairing of any element of I' with itself is equal to 1. For each such antisymmetric pairing
choose a maximal subgroup A < I' where the pairing is trivial, which we call isotropic.
This is of course equipped with an embedding in Hom (A, H*(X, C*)), which by swapping
A and X provides a A*-bundle pa : Xo — X. Assume that |A| divides n. Given a Higgs
bundle (E, ) of rank n/|A| over XA and an element ~ in I', we may construct a new
Higgs bundle (I(7)|A (E®pi7y), (7)|[i¢), where [(7)|a € A* is regarded as an element of
Gal(Xa/X). This defines a I(I')-action on M (X, GL(n/|Al,C)).

In Theorem|7.5.5|we state that the union | J; pa«M (Xa, GL(n/|Al,C))"" is contained
in M(X,GL(n,C))', and the simple and stable fixed point locus M, (X, GL(n,C))' is
contained in the union. Here [ runs over antisymmetric pairings of I', and we declare a
component to be empty if |A| does not divide n. Note that, if |I"| divides n, the component
corresponding to trivial [ is equal to pr.M (X, GL(n/|I'|)), which makes it clear that this
generalizes the result for cyclic I'.

We also apply Theorem C to the case when G = Sp(2n,C) and I is a finite subgroup
of HY(X, Z). In this situation the centre Z is isomorphic to Z/27Z, hence we may identify
elements of H'(X,Z) with line bundles of order 2 over X. Let us keep the notation of
the previous paragraph. Given an element g in A*, consider the set of isomorphism classes
of triples (F, ¢, ), where (E, ¢) is a Higgs bundle of rank 2n/|A| over XA and ¢ is an
isomorphism (F, p) — ¢*(E*, p*) satisfying ¢*1)* = —1). There are (poly,semi)stability
notions for these objects, and a moduli space M(Xa, GL(2n/|A|,C),q) parametrizing
polystable triples may be constructed. In particular, M(Xa, GL(2n/|A|,C), 1) is isomor-
phic to M(Xa, Sp(2n/|Al,C)).
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We have a pushforward morphism
Pas : M(Xa, GL(2n/|A|,C), q) - M(X,Sp(2n,C)),

sending each triple (E, ¢, ) to the Higgs bundle (pa.F, pa«p) equipped with the sym-
plectic form pas¥) : pasE — paxq*E* =~ paE*. Recall that this yields an Sp(2n, C)-
Higgs bundle by taking the bundle of frames of pa.FE and then the reduction of structure
group given by the symplectic form. An action of [(I') may also be defined as in the pre-
vious paragraph. Our result is that | J; , pa«M(Xa, GL(2n/|Al,C), q)'™) is contained in
M(X,Sp(2n,C)), and the simple and stable locus M (X, Sp(2n,C))! is contained in
the union (see Theorem [8.5.6). Here [ runs over antisymmetric pairings, and ¢ runs over
elements of A*. See Section [6.3|for a detailed analysis of the case when I' is cyclic.

We analyse a few more examples of finite cyclic group actions in Chapter[6] In Section
we consider the involution of M (X, SL(n,C)) sending (E, ¢) to (E* ® L, p*), where
L 1s a line bundle of finite order. Then the fixed point components described in Theorem C
are images of moduli spaces of twisted equivariant SO(n, C) and Sp(2m, C)-Higgs bundles
over X, where the last ones only appear if n = 2m is even. When L is trivial, these are
just SO(n, C) and Sp(2m, C)-Higgs bundles.

In Section [6.4] we consider the action of the group generated by a Z-bundle L on
M(X, Spin(n, C)), where Z =~ 7 /27, x 7/27. is the centre of Spin(n, C). The application
of Theorem C yields Proposition which identifies the relevant fixed point compo-
nents as images of twisted equivariant Spin(p, C) x Spin(g, C)-Higgs bundles over X7.
Here p and ¢ take a set of values satisfying p + ¢ = n, which depend on the monodromy
group of L and the divisibility of n by 4.

In Section [6.5 we find that the fixed point locus of tensoring by a line bundle of order
2 on M (X, E7), where F; is the corresponding simply connected exceptional group, con-
tains the image of a moduli space of twisted equivariant (Eg x C*)/(Z/3Z)-Higgs bundles.
Here Z/37Z < C* acts on Eg x C* by multiplication on both factors.

Fixed points for a general action

The fixed point locus M(X, G)' when T is any finite subgroup of (1.0.4) is studied in
Chapter 10} Projections on Aut(X), Out(G) and C* provide homomorphlsms n,a and i,
whereas projection on H'(X, Z) yields a 1-cocycle a € Z,  (I', H'(X, Z)), where I acts
on H'(X, Z) by sending L to *'a(L). To understand the ﬁxed point description in this
general context, we first find a result in the case of trivial & “combining” Theorems A and
B. More precisely, we push Theorem A to account for the potential non-injectivity of 7, so
that we first perform a reduction of structure group applying Theorem B to the action of
ker n and then we get a twisted equivariant action of the finite group of automorphisms of
an étale cover of X lifting n(T").

Assume that « is trivial. Fix a homomorphism 6 : kern — Aut(G) lifting a|ie,,, and
let T := GY /G be the group of connected components of G?. Take a connected étale

cover p : Y — X with Galois group I and denote by Fy the group of automorphisms of
Y lifting elements of n(I"). Let F be the set of pairs (7,7) in [ x Ty such that Ty = p(7),

where p(7) is the induced automorphism of X. Note that the projections of F on the
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first and second factors have kernels I and ker 7 respectively. Consider a homomorphism
7: Ty — Aut(GY) and a 2-cocycle ¢ € Z%(T'y, Z(GY)) whose restrictions to I'? fit in an
isomorphism of extensions R

G %, T =G’ (1.0.5)

as above. Then we have a c-twisted homomorphism e, . : fy — Aut(Gg), given by
composing the obvious map f‘y — Gg X e fy with the conjugation action of Gg Xr.e IA“Y on
itself. We call Hom9777c(fn, Aut(@)) to the set of c-twisted homomorphisms fn — Aut(G)
whose restriction to ker 7 is 6 and which preserve GY and induce e, ..

Note that an element 7 € Homgvm(f‘n, Aut(G)) provides a c-twisted homomorphism
ptd7 fn — Hom(gz, g), which in turn induces a c-twisted homomorphism ps , : Ty —
Hom(gz, 9) becausE the action of d7 ke, On gfL is equal to p. Thus we have a notion of
(7, ¢, pr.u)-twisted I'y-equivariant (G§, g,)-Higgs pair.

The formalism of the above two paragraphs may be generalized to the case when the
Galois group of Y is any subgroup of I'. Consider the union

U:= U M(Y:Gg,f‘y,ﬂagz;piu)'
[6],Y:[7],[c],7

This runs over connected étale covers p : ¥ — X with Galois group equal to a subgroup
of I'?, classes [0] € Hom(T', Aut(G))/ ~ of lifts of a|xer,;, cohomology classes [7] and [c]
such that holds and elements 7 € Homg,T,c(fn, Aut(G)). The tilde over M denotes
the image of the morphism given by Proposition Then U is contained in M (X, G)T,
and M (X, G)" is contained in U —this is Theorem

The general case, where « is not trivial, requires replacing G with Gy and [ with
fg = Gy/GY. Given a fg—bundle p : Y — X, the pullback p*«a defines an étale cover
Y, of Y which, composed with p, provides an étale cover of X. Replace Y with Y,, in the
previous paragraphs, so that fy is the lift of n(T") to Y,,, etc. We may then define U as in
the previous paragraph, but now we impose a further condition which relates 7, ¢ and «
(see (10.3.15)). The general theorem is the following.

Theorem D (Theorem|10.3.1). The union U is contained in M (X, G)Y, and the smooth
fixed point locus My,(X,G)" is contained in U.

Fixed points in character varieties

The non-abelian Hodge correspondence provides a homeomorphism between M (X, G)
and the character variety R (X, G) parametrizing G-conjugacy classes of reductive repre-
sentations m1(X) — G. The theory has an analogue for twisted equivariant Higgs bun-
dles which we explain next, following Basu—Garcia-Prada [12]. Fix an action of a finite
group I' on X, a homomorphism 6 : T' — Aut(G) and a 2-cocycle ¢ € Z3(T, Z). Let
R(X,G,T,0,c) be the moduli space of G-conjugacy classes of reductive representations
of the equivariant fundamental group 71 (X, ', z) of X in G x¢.I'. Then R(X, G, T, 6, c) is
homeomorphic to M (X, G, T, 6, ¢). Thus we may translate our results to give a description
of the fixed point loci of certain finite group actions on character varieties.
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More precisely, an element («, 7, a) in H(X, Z) x (Aut(X) x Out(G)) sends a rep-
resentation p : (X, z) = G to 071 o (n.(p ® ). Here § € Aut(G) is a lift of a, n, is
induced by the homomomorphism 7, : 7 (X, z) — 71 (X, n(x)) and we are calling « to its
holonomy representation 71 (X, z) — Z by abuse of notation. Note that, even though the
C*-action on M(X, G) does not induce a manageable action on R (X, 7), its restriction to
7,/27. < C* induces an antiholomorphic action on R (X, G) which is studied in [39]], but
we do not consider. In Theorem we state that the variety of irreducible and simple
representations R, (X, )" which are fixed by I is contained in a union of images of mod-
uli spaces R(Y, G9, fy, 7, ¢), and this union is contained in R (X, G)'. Particular cases of
this theorem can be found in Sections 5.8 and

Fixed points in moduli spaces of Higgs pairs

In the final Chapter we consider finite group actions on moduli spaces of (G, V')-Higgs
pairs, where now we are given an arbitrary representation p : G — GL(V). In this situ-
ation the actions of Aut(X) and C* still make sense, and the action of H' (X, 7) is well
defined as long as Z is in the kernel of p —otherwise we may consider H' (X, Z n ker p)
instead. However, we must replace Out(G) with the group Out(G, V'), which we de-
fine next. Let GLg(V') be the subgroup of GL(V') x Aut(G) consisting of pairs (k, 0)
such that x induces an isomorphism between p and p o . We have a homomorphism
pc + G — GLg(V) mapping g to (p(g),Int,), whose image pe(G) is a normal sub-
group of GLg (V). Set Out(G,V) := GLg(V)/pc(G). Then the action of GLg (V') on
M(X, G, V) such that (k,0) sends (E, ) to (0(E), k(p)), where £(p) € H(X, E X0,
V®Kyx) =~ H(X,0(E) x, V® Kx) is the Higgs field induced by ™', is a left ac-
tion whose restriction to pg(G) preserves the isomorphism class of (£, ). Combining
everything, we get a right action

M(X,G, V) D HY (X, Z) x (Aut(X) x Out(G,V)) x C*. (1.0.6)

Let I be a finite subgroup of (1.0.6). Projections on the second, third and fourth factors
provide homomorphisms 7, @ and p, and projection on the first factor provides a 1-cocycle
ae Z, (I, H'(X, Z)), where I" acts on H'(X, Z) via 7 and the projection of a to Out(G).
The fixed point Theorems for moduli spaces of Higgs pairs are similar to those for Higgs
bundles, but we have to replace lifts 6 : I' — Aut(G) with homomorphisms (x,6) : I' —
GLg(V) lifting a, the equivalence relation ~ by conjugation by elements of pg(G), and
the weight spaces gz with V7. The analogues of Theorems A, B, C and D are Theorems

11.34[11.2.7}[11.2.8|and [11.4.5] respectively.

Motivations and further developments

We intend to apply our results to several settings in future work. For example, Atiyah—Bott-
like fixed point theorems may be applied to study the topology of the moduli space. In this
direction, Narasimhan—Ramanan [58] calculate the y-genus of the moduli space of vector
bundles with rank and degree coprime and fixed determinant, showing in particular that
the Euler characteristic and the signature vanish. Andersen [3] describes the simple fixed
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point locus of a finite order automorphism 7 of X in the moduli space of G-bundles using
twisted equivariant G-bundles, and applies this to the calculation of Witten—Reshetikhin—
Turaev invariants of the mapping torus of 7. The main obstruction to apply our formalism
to moduli spaces of Higgs bundles is their non-compactness and non-smoothness. This
may be overcome by restricting our attention to the cohomology of Hodge bundle subvari-
eties, which are compact. Via localization, this may lead to results on the C*-equivariant
cohomology of the moduli space.

Fixed point descriptions in terms of parabolic Higgs pairs have been achieved by Ander-
sen—Grove [4] for vector bundles of rank 2 and Garcia-Prada—Wilkin [40] for arbitrary
G. These rely on the correspondence between equivariant G-Higgs bundles and parabolic
bundles. Extending this to twisted equivariant pairs would allow for generalizations of their
results in our setting.

An important motivation for this thesis is the identification of hyperkéhler or Lagrangian
subvarieties of M (X, G), which are the support of branes in the context of mirror symme-
try and Langlands duality as introduced by Kapustin and Witten [52]. For example, if the
projection of a finite subgroup I' of on C* is trivial, the smooth fixed point locus is
hyperkéhler and so it is the potential support of BBB-branes. However, if [" has order 2 and
the corresponding projection on C* is non-trivial, the smooth fixed point locus is the po-
tential support of BAA-branes. We expect the Prym—Narasimhan—Ramanan construction
to provide examples of fully equipped branes: this has been achieved by Franco—Gothen—
Oliveira—Pedn-Nieto [28]] in the case of the action of finite cyclic subgroup of the Jacobian.

Examples of BAA-branes corresponding to U(n, n)-Higgs bundles inside the moduli
space of vector bundles of rank 2n, which are fixed points of multiplying the Higgs field
by —1, have been considered by Hitchin [S0]. The conjectural mirrors have support over
the subvariety of Sp(2n,C)-bundles. It would be interesting to consider a finite exten-
sion of Sp(2n, C) instead, whose objects correspond by our theory to twisted equivariant
Sp(2n, C)-Higgs bundles over certain étale covers of X. We could then study what happens
on the U(n,n) side, and the compatibility mirror symmetry with the Prym—Narasimhan—
Ramanan construction.

There are no instances of supports for branes of type ABA and AAB in this thesis. Some
of these arise from antiholomorphic involutions of GG and X, which we plan to study in the
future. Biswas—Calvo—Garcia-Prada [[13] study real G®-Higgs bundles, which are the real
version of twisted equivariant Higgs bundles. Other references are Baraglia—Schaposnik
[8]], Biswas—Garcia-Prada [[16] and Biswas—Garcia-Prada—Hurtubise [[17, (18, 19].

The realization of M (X, G) as the Hitchin fibration [49] over a vector space is crucial
in the study of its geometry. We expect our fixed point descriptions to be useful for the
study of the Hitchin fibres of different fixed point subvarieties. Some references in this
direction are Heller—Schaposnik [46], Schafthauser [66] and Schaposnik [67]].

We also plan to extend our fixed point description to parabolic Higgs bundles in future
work. These correspond to representations of the fundamental group of punctured surfaces
via non-abelian Hodge theory [72, [14]. The parabolic setup is geometrically richer and
perhaps more natural from the physics point of view of mirror symmetry [44, 52].

Finally, our description of fixed points in moduli spaces of Higgs pairs may be applied
to the study of fixed point subvarieties for Higgs bundles associated to real forms, which
may lead to results on the topology of higher Teichmiiller spaces [31]].
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Chapter 2

Higgs bundles on compact Riemann
surfaces

Higgs bundles are the main characters of our story. To introduce them we will need two
ingredients: a compact Riemann surface X with canonical bundle Kx and a reductive
complex Lie group G with centre Z and Lie algebra g. For now we assume that G is
connected, but we will study the case when G is non-connected in Section {.4]

2.1 Higgs pairs

Let V' be a complex vector space equipped with a holomorphic representation
p:G— GL(V).

Given a G-bundle over X, there is an associated vector bundle E(V') := E x, V.

Definition 2.1.1. A (G, V')-Higgs pair over X is a pair (£, ¢), where E is a holomorphic
principal G-bundle and ¢ is a section of F(V') ® K, called the Higgs field. Two (G, V)-
Higgs pairs (E, ¢) and (E’, ¢') are isomorphic if there is an isomorphism f : £ — E’ of
G-bundles such that the induced isomorphism E(g) ® Kx — E’'(g) ® Kx sends ¢ to ¢'.

Remark 2.1.2. We may generalize the notion of (G, V')-Higgs pair by allowing tensoriza-
tion by any line bundle . — X (or even vector bundles, see [29]). The result is L-twisted
Higgs pairs, which also appear naturally in the literature (see [21]], for example).

We recall the stability notions for (G, V')-Higgs pairs using the approach in [33]. Fix a
maximal compact subgroup K of GG with Lie algebra €. Choose a non-degenerate pairing
{-,-) on g extending the Killing form of a Levi subgroup. Every element s € it determines
a parabolic subgroup P; with Lie algebra p; of G, namely

P, := {g € G | e"®ge " remains bounded as t — c0}. (2.1.1)

If L is its Levi subgroup then K; := K n L, is a maximal compact subgroup of L and its
inclusion in P, is a homotopy equivalence. Now let £ be a GG-bundle with a holomorphic
reduction 7 € H°(X, E(G/P,)), where E(G/P,) is the G/P,-bundle associated to £ via
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the natural left action of G on G/ P;. We call E to the corresponding Ps-bundle. Then there
is a smooth reduction 7’ € Q°(X, E,/K,), and we may equip the corresponding K,-bundle
with a connection A with curvature 4. We define

deg E(,5) = o~ | xa(F), (2.1.2)
21 Jx
where Y is the image of s under the isomorphism g =~ g* induced by the non-degenerate
pairing.
For each s € i¢ we may also define

V, := {v e V| p(e")vremains bounded as t — oo} and (2.1.3)
V0={veV| lim p(e”)v = v}.
—00

Given a reduction 7 € H(X, E(G/F;)), we may define a sub-bundle E(V),, := E, X p,
V, € E(V). Given a further reduction 7' € H°(X, E.(P,/L,)), we also have a sub-bundle
E(V)Y, = FEy xp VIS E(V),s.

T'.8

Definition 2.1.3. Let { € i3, where 3 is the centre of €. A (G, V')-Higgs pair (E, ) over
X is:

* (-semistable if deg E(7,s) > (z,s) for any s € ¢ and any reduction of structure
group 7 € H*(X, F(G/P,) ® Kx) such that p € H*(X, E(V),, ® Kx).

o (-stable if deg E(,s) > (z, s) for any s € ¢ and any reduction of structure group
7€ H(X, E(G/Py)) such that p € H*(X, E(V),,® Kx).

o (-polystable if it is (-semistable and, if deg E(7,s) = (z, s) for some s € it and
a reduction 7 € H°(X, E(G/P;)) such that ¢ € H°(X,E(V),, ® Kx), there is
a further holomorphic reduction of structure group 7" € H°(X, E,(P,/L,)) with
pe H'(X, E(V)3,,® Kx)

There is a moduli space M¢(X, G, V) classifying isomorphism classes of (-polystable
(G, V)-Higgs pairs [68]]. Whenever ¢ = 0 we omit it from the notation.

2.2 Moduli space of G-Higgs bundles

When V' = g, the Lie algebra of G, and p = Ad : G — GL(g) is the adjoint repre-
sentation, Definition yields the notion of a G-Higgs bundle. We will sometimes
denote the adjoint bundle F(g) by ad(F). A G-Higgs bundle (E, ¢) is said to be simple if
Aut(E, ¢) = Z where Aut(E, ¢) is the group of Higgs bundle automorphisms of (£, ¢)
and Z < G is the centre of G.

Remark 2.2.1. When G is classical we may regard a G-bundle as a vector bundle equipped
with some extra structure. This is realized via extension of structure group by an embed-
ding of GG in GL(n, C), followed by taking the associated vector bundle. Similarly, in this
context a G-Higgs bundle may be regarded as a pair (F, @), where E is a vector bundle
with some extra structure and ¢ is a section of End(E) ® Kx.
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Definition[2.1.3]yields (-(poly,semi)stability notions for G-Higgs bundles. Recall that ¢
1s a parameter in 73¢, where 3 is the centre of a maximal compact subalgebra of g, and so it
is trivial when G is semisimple. However, given a (-polystable G-Higgs bundle (E, @), the
parameter ( is completely determined by the topology of £, according to [36]. Indeed, fix a
volume form w on X such that vol(X') = 1. For each K -invariant degree one homogeneous
polynomial p : £ — C and any smooth reduction i € Q°(X, E/K) with Chern connection
Ay, and curvature Fj,, we have a topological invariant SX p(Fy) of E. The space of K-
invariant linear homogeneous polynomials coincides with the space of R-linear maps € —
C factoring through /[¢, €] = 3¢, hence it is isomorphic to 3;. We define u(E) to be the
element of 73, satisfying ‘

puE)) = o | plF).
T Jx
The Hitchin equation implies that u(E) = ¢.

According to the previous paragraph, we may say that a G-Higgs bundle is (poly,semi)-
stable if it is so for the parameter ¢ determined by its topology. We denote by M¢ (X, G)
the moduli space of polystable G-Higgs bundles with topological class ¢, and by M (X, G)
the whole moduli space of G-Higgs bundles. This is a complex quasi-projective algebraic
variety. It is not smooth in general, and its smooth locus is usually the open subvariety
consisting of stable and simple points, which we call M (X, G). We will simply call this
the smooth locus by abuse of notation.

Remark 2.2.2. Let E be a GG-bundle. Given a maximal compact subalgebra £ — g, s € it
and 7 € H°(X, E(G/P,)), we have E(V),s = E.(ps), the adjoint bundle of the P;-
bundle £, determined by 7. Moreover, given a further reduction of structure group 7’ €
H°(X,E-(P,/Ly)), we have E(V)?2, ; = E.(l,), the adjoint bundle of the L,-bundle E .
determined by 7. These are all ingredients involved in the definition of (poly,semi)stability.

A very important tool to study M (X, GG) is the Hitchin fibration. This is a realization
of M(X,G) as a fibration over a vector space B((G) whose generic fibres are abelian
varieties, making M (X, G7) an algebraic completely integrable system. For example, when
G = GL(n,C) the vector space B(G) is equal to ®)_, H°(X, K¢") and the projection
M(X,G) — B(G) is given by taking “characteristic polynomials” of the Higgs field,
thought of locally as an endomorphism of a vector bundle.

Another crucial feature of M (X, G) is its hyperkdhler structure. In other words, it has
a natural symplectic structure w and two anticommuting complex structures / and J such
that both w(-, I-) and w(-, J-) are Kéhler metrics. The complex structure [ is induced by
the complex structure of the Riemann surface X, whereas J is induced by the complex
structure of G.

2.3 Non-abelian Hodge theory

The moduli space of GG-Higgs bundles is closedly related to the character variety of m; (X)
with values in G. The proof of this result involves two intermediate steps: the Hitchin—
Kobayashi correspondence and the Donaldson—Corlette theorem.

Let K G be a maximal compact subgroup of G. Let (F, ) be a G-Higgs bundle on
X. Let h be areduction of structure group of F from G to K, and F}, be the curvature of the
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Chern connection — the unique connection on £ compatible with A and the holomorphic
structure of E. Let o, : QY9(X, E(g)) — Q%'(X, E(g)) be the C-antilinear map defined
by the reduction A and the conjugation between (1,0)- and (0, 1)-forms on X. Consider
the Hitchin equation

Fh + [QD, O'h(gD)] = —i27TCUJ, (234)

where ¢ € i3, and w € Q*(X) is a Kiihler form on X with total volume one. One has the
following (see [48, 71} 133]]).

Theorem 2.3.1. Let (E, @) be a G-Higgs bundle on X and let ( € i3. Then (E,p) is
(-polystable if and only if the G-bundle E admits a metric h satisfying .

Remark 2.3.2. Let (E, ) be a GL(n, C)-Higgs bundle, or the associated Higgs bundle of
rank n. Equation 1| implies that i § « tr Fj = nz. The left hand side is the degree of

E, atopological invariant, which means that z is completely determined by the topology of
E.

By a representation we mean a homomorphism p : 7 (X) — G. The set of all such
homomorphisms, Hom(7; (X), G), is an affine variety (this follows from the fact that G is
linear algebraic, see [41]]). The group G acts on Hom(m(X), G) by conjugation

g-p(7) =g "p(7)g.

for g € G, p € Hom(m(X),G) and v € 7(X). The GIT quotient Hom(m (X),G) J G
is defined by restricting to the subspace Hom™ (7;(X), G) of reductive representations:
otherwise the quotient is not Hausdorff. A representation p € Hom(7(X), G) is called
irreducible if its stabilizer in G is equal to Z. It is reductive if its composition with the
adjoint representation of GG in g is a direct sum of irreducible representations, i.e. repre-
sentations which are the compositions of irreducible representations 71 (X) — G with the
adjoint representation. We define the character variety to be the orbit space

R(X,G) := Hom™ (m,(X), G)/G = Hom(m(X),G) /| G.

This is an affine algebraic variety, since Hom(m(X), G) is affine (see [61] or [63]).

Let (E, ¢) be a G-Higgs bundle. By Theorem[2.3.1]the polystability of (E, ¢) is equiv-
alent to a reduction h satisfying the Hitchin equation with z = 0. A simple computation
shows that if V}, is the Chern connection of A,

D =V, + ¢ —on(p)

is a flat connection on the G-bundle E. Moreover, its holonomy defines a reductive repre-
sentation of 71(X) in G. By a theorem of Donaldson [26] and Corlette [24], all reductive
representations p : w1 (X) — G arise in this way. More concretely one has the non-abelian
Hodge correspondence given by the following.

Theorem 2.3.3 (Non-abelian Hodge correspondence). Let G' be a reductive complex Lie
group. There is a real analytic isomorphism M°(X,G) =~ R(X,G) between the moduli
space of topologically trivial polystable G-Higgs bundles and the character variety of G.
Under this isomorphism, the irreducible representations are in correspondence with the
stable and simple G-Higgs bundles.
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Remark 2.3.4. When the underlying topological GG-bundle is not trivial, there is also a
version of Theorem [2.3.3] involving representations of the universal central extension of
m1(X) (see [59] for a version with zero Higgs field).

2.4 Group actions on the moduli space of G-Higgs bundles

Let (F,p) be a G-Higgs bundle. An automorphism 6 of G provides another G-Higgs
bundle (6(E),6(y)), as follows: the bundle #(E) is the holomorphic principal G-bundle
with total space £ and G-action

ExG— E; (e, 9) — et (g),

where we have written the action of G on E by adjoining elements of G on the right.
Alternatively, this is just the G-bundle obtained from £ by the extension of structure group
induced by 6. If ¢ is locally equal to (e, v) ® k for some v € g and local sections e and k of
E and Ky respectively, 6(y) is locally equal to (e,0(v)) ® k. This is well defined, since

(eg,0(Ady-1v)) = (e@’l(ﬁ(g)),Adg(g_l) 0(v))
= (6 : 0(9)7 Ad@(gfl) ‘9(’0))
= (e,0(v))

for each g € GG, where the presence or absence of the dot denotes the G-action on 0(E) or
E respectively.

Note that this defines a left action of Aut(G) on the set of G-Higgs bundles. We some-
times write §(F, o) instead of (0(E), 6(y)).

Recall that Int(() is the group of inner automorphisms of GG. There is a surjection

Int : G — Int(G); g — Int,,

with kernel equal to Z, the centre of G. The quotient Out(G) := Aut(G)/Int(G) is the
group of outer automorphisms of . The natural left action of Aut(G) induces a right
action of Out(G) on the set of isomorphism classes of G-Higgs bundles as follows: given
aclass a € Out(G) = Aut(G)/Int(G), we may choose a representative § in Aut(G) and
consider the automorphism of the set of G-Higgs bundles sending (E, ) to 671 (E, ¢).
The isomorphism class of ~!(E, ) is independent of the choice of 6, since (E, ) is
isomorphic to Int,(E, o) for every s € G: an isomorphism is multiplication by s, since

egs = esInt; *(g)

foreachee F and g € G.

We also have an action of the group of Z-bundles H'(X,Z) over X on the set of
isomorphism classes of G-Higgs bundles: let o € H'(X, Z) and a G-Higgs bundle (E, ).
Construct the fibre product £/ x x v with respect to X, which is associated to the pullback
diagramme

EXXCY—>E

—

a — X
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There is a Z-action on E Xy a, such that z € Z sends (e,a) € E x a to (ez,az™1),
sowe set E® « := (F xx «)/Z. When equipped with the right G-action given on the
left factor E, this is a G-bundle over X whose isomorphism class only depends on the
isomorphism classes of £/ and «. Since the adjoint action of Z on g is trivial we have
(E® a) xaq g = E xaq g, so that ¢ may also be regarded as a section of E(g) ® Kx.
This defines an action of H*(X, Z) on the set of isomorphism classes of G-bundles which
is both right and left, since H'(X, Z) is abelian.

Finally, there is an action of the group of complex automorphisms Aut(X) of X given
by pullback and an action of C* given by multiplying the Higgs field. The first one is a
right action and the second one is right and left, since C* is abelian.

Given elements o and o in H'(X, Z), a and o’ in Out(G), n and € Aut(X) and p
and ¢/ in C*, together with a G-Higgs bundle (E, ¢) over X, we have

™0 (" 0 (E@a)@a), i)'pt 07 (¢)) =
((m)*(00") " (E@a@n* a(a)), 1/ 1n(09) " (¢)),

where 0 and ¢’ are elements of Aut(G) lifting a and o’ respectively. Therefore, the three
actions fit together to provide a right action of the group H'(X, Z) x (Out(G) x Aut(X)) x
C* on the set of isomorphism classes of (G-Higgs bundles on X, where the left action of
Out(G) x Aut(X) on H'(X, Z) which defines the semidirect product is given by

(Out(G) x Aut(X)) x HY(X,Z) - HY(X, Z); ((a,n), @) — n* ta(a).

Here we are directly writing a(«), which is well defined even at the level of Z-bundles
themselves because Int(G) acts trivially on Z. Explicitly, (a,a,n,u) € HY(X,Z) x
(Out(G@) x Aut(X)) x C* sends (E, ¢) to (n*071(E ® ), up), where 6 € Aut(G) lifts
a. Since this action preserves ((-)(poly)stability and simplicity it induces an action on
M(X, G) which restricts to the locus of simple and stable points M (X, G).

Remark 2.4.1. The restriction of the action of H!(X, Z) x (Out(G) x Aut(X)) x C* to
H' (X, Z) x Out(G) x C* does not coincide with the action considered in [39]]. Indeed,
we have defined a right action such that («, a, 1) € H'(X, Z) x Out(G) x C* sends each
Higgs bundle (E, @) to (71 (E ® a), ud~(y)) for any lift € Aut(G) of a, whereas the
action in [39] is on the left and sends (F, ) to (A(E) ® a, uf(p)). The reason is that we
want all the group actions to be on the right, including the action of G on G-bundles.

Remark 2.4.2. It is important to notice that, given an isomorphism of GG-Higgs bundles

fi(E 0) = (F9)

and an element (o, 0,7, 1) € HY(X, Z) x (Aut(G) x Aut(X)) x C*, we may define an
induced isomorphism

n*fRId:n* 0 (E®a, up) = n* 0~ (F @ a, i)

via the natural biholomorphisms between E and ' (E), and F and 01 (F).
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Chapter 3

Twisted equivariant bundles

To present the Prym—Narasimhan—Ramanan construction in its full generality we need to
go one step further and consider G-Higgs bundles equipped with a certain type of twisted
action of a group of automorphisms of the curve. The theory of twisted equivariant bundles
is developed in a joint paper with Garcia-Prada, Gothen and Mundet 1 Riera [10].

3.1 Twisted equivariant actions

Let GG be a connected reductive complex Lie group. Fix a finite group I' and a homomor-
phisma : I' — Out(G).

Definition 3.1.1. A 2-cochain c € C?(T', Z) is a map
c:I'xI'—>Z2

which satisfies ¢(7y,1) = ¢(1,7) = 1 for all v € I'. The set of 2-cochains inherits a group
multiplication from Z. The subgroup Z2(T, Z) of 2-cocycles consists of those ¢ which
satisfy the cocycle condition

ay(c(v',7")e(r,7"Y") = e(v, 7)) (v, ") (3.1.1)
forv,~',v" €T.

By [70] there exists a lift Out(G) — Aut(G) of the natural quotient, hence in particular
we have a homomorphism # : I' — Aut(G) fitting in the commutative diagramme

Aut(G) —— Out(G)
o g (3.12)

., L

We will sometimes write Z2(T", Z) instead of Z2(T', Z).
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Definition 3.1.2. Let M be a smooth (complex) manifold equipped with a smooth (holo-
morphic) right G-action. A (0, ¢)-twisted right action of I on M is a choice of a smooth
(complex) automorphism of M for each v € I', which we denote o - ~, satisfying:

!/

(mg) -y = (m-7)0;'(g) and (m-7) 7" = (me(y,7)) - (vY) (3.1.3)

for every m € M, g € G and v and 7/ € I'. We are sometimes interested in looking at
the pair consisting of the G-action and the twisted I"-action, which we call a (6, ¢)-twisted
right (G, I')-action on M.

Now fix a right holomorphic action of I' on a complex manifold X.

Definition 3.1.3. Let F be a holomorphic principal G-bundle over X. A (6, ¢)-twisted
I'-equivariant right structure/action on £ is a (6, ¢)-twisted right action of I" on E de-
scending to the action of I on X, i.e. fitting in the commutative diagramme

—

]

X T. X

for each v € I'. The pair (F,-) is called a (6, c)-twisted I'-equivariant G-bundle. When
it is clear from the context we will omit - from the notation.

A morphism between (6, ¢)-twisted I'-equivariant G-bundles over X is a I"-equivariant
homomorphism of G-bundles. Sometimes we call this a (6, ¢)-twisted I'-equivariant mor-
phism, or just a ['-equivariant morphism.

Given a (0, ¢)-twisted I'-equivariant G-bundle £ over X and an element ~y in the centre
Z(I), there is an induced (0, ¢)-twisted I'-equivariant structure on 7*F so that each v’ € T’
sends y*e € v*E to v*(e-7'). This descends to the action of I" on X, since v commutes with
7. We define a Z(I")-isomorphism between two twisted equivariant bundles F and £’ to
be a I'-equivariant isomorphism of GG bundles F — ~v*E’ for some y € Z(T"). Equivalently,
thisisamap f : F — E’ of complex manifolds fitting in the commutative diagramme

E 1, g

]

X 2, X

for some 7 € Z(I'). To distinguish between isomorphisms as defined earlier and Z(I')-
isomorphisms we sometimes call the former ones fibre-preserving isomorphisms.

The rest of this section is a discussion on how the choice of the lift # of @ : ' —
Out(G) affects the category of (6, c)-twisted I'-equivariant G-bundles. First we follow
[39] to describe the different equivalence classes of lifts of a : I' — Out(G) to Aut(G) in
terms of non-abelian cohomology.
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Definition 3.1.4. Let I" be a group and A another group acted upon by I" via a homomor-
phism 0 : I' — Aut(A), that is, every v € " defines an automorphism of A that we denote
by 6.,. We define a 1-cocycle of I' in A as a map y — a,, of I" to A such that

Uy = a0 (ay) for v,7" €T (3.1.4)

The set of cocycles is denoted by Z; (T, A). Two cocycles a,a’ € Z} (T, A) are said to be
cohomologous if there is b € A such that

al, = b~ a,0,(b). (3.1.5)
This is an equivalence relation in Z; (T, A) and the quotient is denoted by Hj (T, A). This
is the first cohomology set of I" in A.

Coming back to our problem, let S, be the set of lifts § : ' — Aut(G) of a : I' —
Out(G). By [70] this is non-empty. If we fix one element in € S, then every other lift 6’
is equal to 46 for some map [ : I' — Int(G). For every v and 7’ € I" we have

By Oy = 9/7«/ = 9;9’7’ = By058y8y = B0 (By )0y -

Comparing the first and last terms we conclude that 5 € Z; (T, Int(G)), where by abuse of
notation we regard ¢ as an automorphism of Int(G). Conversely, such a 1-cocycle provides
a lift.

Since Int(G) is a normal subgroup of Aut(G), its conjugation action on Aut(G) pre-
serves the set of lifts of a. It is straightforward to check that this action induces the action
of Int(G) on Z} (T, Int(G)) given by Definition Thus we conclude:

Lemma 3.1.5. Given a lift 0 of a, there is a Int(G)-equivariant bijection
{Lifts of a} < Z;(T,Int(QG)); BE — 3, (3.1.6)

where the action on the left hand side is given by conjugation and the action on the right
hand side is given by . In particular, it induces a bijection

{Lifts of a}/ Int(G) < Hy (T, Int(Q)). (3.1.7)

Thus, given another homomorphism ¢ : I' — Aut(G) lifting a, there exists a map
s : ' — G such that Int, € Z (T, Int(G)) and 6" = Int, 6. Here Int, is the homomorphism
of I to Int(G) defined by (Int,), = Int, . We may assume that s(1) = 1. Since Int(G)
acts trivially on Z, there is a natural identification Z3(T', Z) =~ Z3 (T, Z) and so we talk
about 2-cocycles as elements in any of these sets indistinctly. We may define a map

¢s : T xT = Z; (7,7) = 8,05 (57)s - (3.1.8)
This is in fact a 2-cocycle, since

05 (cs (7,7 )es(1, 1Y) = O0y(50(540) 5750 ) 840 (8479) ST 31 (3.1.9)
6 (540 (547) s;,fw )0 (Syry) s;,}, s

0(5y)0yy (sy7) 3;71'7" Sy

= 540(84/) 873890y (597)S

= Cs (’)/7 7,)03 (77,7 7”)7

|
»
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and
c(1.1) = 5,0, (s(1))s;* = 1 = s(1)0h(s,)s7" = eu(L,7).
Thus the product cc; is also a 2-cocycle.

Remark 3.1.6. In (3.1.9) we have used that, given two elements a,b € GG such that ab € Z,
we have ab = ba, since b~'ab = ab~'b = a. This fact is applied in the second and fourth
equations.

We have the following:

Proposition 3.1.7 (Proposition 2.15 in [10]). Let s : I' — Int(G) be a map such that
Ints € Z3 (T, Int(QG)). Let C(0, ¢) be the category of (0, c)-twisted U'-equivariant G-bundles.
Then the categories C(0, c) and C(Int, 0, cc,) are equivalent.

Proof. Set 0 := Int, 0 as above. Let (E, ) be a (0, ¢)-twisted I"-equivariant G-bundle. We
have a natural choice of (¢, cc,)-twisted I'-equivariant action on £, namely

ExI'— E; (e,y) — ex7y :=eSy-7. (3.1.10)
This satisfies Definition [3.1.2

(cg) *7 = (57571 95,) -7 = (es,) 165" (57" 95,) = e 76, (9)

and

foreachge G,v,7 el"ande € E.
A (0, ¢)-twisted I'-equivariant morphism of G-bundles f : F — E’ is also (¢, ccy)-
twisted ['-equivariant. Indeed, we have

flexry) = flesy-v) = fle-7)0;"(sy) = f(e) - 705" (sy) = f(e)sy -7 = f(e) =~

foreachee EFand y eI
Finally it is clear that the functor is invertible, namely we get the action - by composing
the action * with multiplication by s(e)™!. O

We may focus our attention on the ambigiiity concerning the 2-cocycle c: two 2-
cocycles ¢ and ¢ € Z2(T', Z) are cohomologous if there exists a map s : I' — Z such
that

d(v,v) = c(y,y')s;vl,svev(svf) (3.1.11)
for each v and 7/ € I'. We define the second Galois cohomology group H?(T', Z) to be
the set of equivalence classes, equipped with the group structure inherited from Z.
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Corollary 3.1.8. If c and ¢ are cohomologous, there is an equivalence of categories be-
tween C(0,c) and C(0,¢).

Proof. Note that cc; = ¢’ and Int, = 1, so that Int, # = 6. Hence we may use Proposition

O

3.2 Non-connected groups and twisted equivariant struc-
tures

There is a very explicit relation between principal bundles with non-connected structure
group and twisted equivariant bundles which is crucial in our Prym—Narasimhan—-Ramanan
construction and we explain next, following [10, Section 4]. Let GGy be the connected
component of a (not necessarily connected) reductive complex Lie group GG, Z the centre
of Gy and I' := G/G(. We have a short exact sequence

15Gy—>G—>T 1, (3.2.12)

making GG an extension of Gy by I'. Let a : I' — Out(G)) be the characteristic homomor-
phism of (3.2.12)) and take a lift 6 : I' — Aut(G)).

Proposition 3.2.1. The multiplication

(Go x I') x (Go x I') = Go x I'; [(9:7) (¢, 7)] = (965 (9")e(r, 7)), v)  (3.2.13)

is associative if and only if c € Z2(T', Z). Consequently, if c is a 2-cocycle then (3.2.13
defines a group multiplication.

Proof. We have

[(g,7)(d",Y)](g",7") = (c(v,7")g0,(9"), ) (g" ")
(c(v,Y) ey, 7")90+(9") 0+ (9")s 77 Y")

and

(9: ", )G" 2] = (g, M)y, 7")g'0+(9"),7"7")
= (c(1:YY")0 (v 7")) 90 (9 )0 (g") s 77"Y").
Thus the product is associative if and only if (3.1.1) holds, as required.
Now assume that c is a 2-cocycle. It is easy to see that (1, 1) is a neutral element for the
multiplication, so in order to end the proof of the proposition it is left to show existence of

inverses. We check that the inverse of (g,7v) is (c(y~',7) "0, (9)~",7~") foreach g € Gy
andye I

(™70 9) Ay g, 7) = (v )10 (9) M0 (9)e(v ) ) = (1,1)
and

-1

(g: )y )0 (9) ) = (99 (v )by (c(v ) Tt = (1L, 1),
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where the last equation follows from

0,(c(r™,7)) = 65ty 1))e(r, 1) B2 e(y, 7y e(1,y) = ey, 7).

]

Definition 3.2.2. Given a 2-cocycle ¢, we define the (6, c)-twisted product of G by T,
written G X (g,¢) I, to be the group which is equal to Gy x I" as a set and has multiplication

(3.2.13).

Recall that there is an equivalence relation on the set of extensions of GGy by I' making
another extension GG’ equivalent to G if and only if there is an isomorphism G =~ G’ fitting
in a commutative diagramme

1 > G y G > I > 1
Il 1 Il
1 > Go > G > > 1.

Proposition 3.2.3. There exists a 2-cocycle ¢ € Z2(T', Z) such that the extensions of Gy
given by G and G x ) I" are equivalent.

Proof. Take a sectiont : I' — G of whose composition with the natural homo-
morphism G — Int(G) restricts to 6. Every g € G can be uniquely written in the form
got, where v is the connected component where g lies and gy € Gy. This determines a
map G — G x I'. Letc : I' x I' — Z be the map satisfying t,t,, = c(v,7)t . Itis
straightforward to check that the group multiplication of GG induces the product
on GGy x I', which is therefore a group multiplication, and we have an isomorphism of
extensions G = G X g, I'. In particular associativity of the group multiplication of G
implies the associativity of (3.2.13), which in turn implies that c € Z2(T", Z) by Proposition
B21 O

Choose a 2-cocycle ¢ as in Proposition Slightly abusing notation, we consider
the groups G and G x (g,¢) I to be equal.

Proposition 3.2.4 (Proposition 2.7 in [10]). There is a bijective correspondence between
holomorphic right G-actions on a complex manifold M and (0, c)-twisted right (Gy,T)-
actions on M (Definition[3.1.2)), given as follows:

* Given an action of G on M, the action of the subgroup Gy < G on M is defined by
restriction, and the automorphism determined by vy € I" on M is defined to be the one
given by (1,7) € G.

* Given a (0, c)-twisted (G,T')-action on M, we define the G-action on M by

m-(g,7) = (m-g)-7.
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Proof. Suppose we have an action of G on M. We check the conditions of Definition [3.1.2]
with the given actions of Gy and I'. Let g € G and ~,7’,+” € I'. Then we have identities

in G,
(9, 1)(1,7) = (9,7) = (1,7)(65"(9),1) and
(1,9)(1,7") = (e(+',7"):7"7") = (e(v',7"), D(A,4"),
which show that (3.1.3)) is satisfied.
Conversely, suppose we have a (G, I')-twisted action on M, and define the action of G
as in the statement of the proposition (it is worth noting that this definition is forced upon

us by the identity (g,v) = (g,1)(1,7)). We must check that this in fact defines an honest
G-action. In the case of a left action we have, for g, ¢’ € G and 7,7 € I':

(m-(g,7) - (¢s7) = ((m-g)-7)-(d7)
=(((m-9)-7)-9)
= ((m-g0,(g") - 7) -
= ((m - g0,(g")c(v,7) - (v)

(7:7) -
m - (g0,(g")e(v, 7))
m - (( g,7 )( /7 ))7

as required. [

Let E be a G-bundle over X and set py : Y := E/Gy — X, which is a principal
I'-bundle over X. Assume that the total space of Y is connected or, equivalently, that £ is
connected. Then Y is an étale cover of X with Galois group I'. The pullback F' := pj E
has a reduction of structure group F' to Gy given by the tautological section of F'/Gy =~
Py (E/Gy). Regarded as a Gy-bundle over Y, F'is isomorphic to £ — E/G, = Y. Since the
total spaces of F' and F are equal, we have a holomorphic GG-action on F'. By Proposition
this provides a right (Gy-action (making it a holomorphic Gy-bundle over Y) and a
(0, c)-twisted I'-action. The action of I" is given by the restriction of the action of G to
the subset {(1,7)},er = G, which descends to the natural I' = Gal(Y' /X )-action on Y.
Hence F inherits a (6, ¢)-twisted '-equivariant structure. Conversely, given a (6, ¢)-twisted
['-equivariant Gy-bundle F" on Y, the GG-action on the total space of F’ given by Proposition
[3.2.4] provides a holomorphic G-bundle E over X.

Definition 3.2.5. We denote by C; the category whose

* objects are (0, c)-twisted I'-equivariant principal Gy-bundles £ — Y such that the
twisted ['-action descends to the action of ' as covering transformations of the fixed
[-covering £/Gy =~ Y — X, and whose

* morphisms are Z(I")-isomorphisms of twisted equivariant bundles, i.e. holomorphic
maps f: ' — E’ both GG and I'-equivariant such that the diagramme

E 1, p

|
y L.y
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commutes and the induced map f: Y — Y is a covering transformation which be-
longs to Z(T).

We denote by C, the category whose

* objects are principal G-bundles on X such that there is an isomorphism F /G, =~ Y
covering the identity on X and whose

* morphisms are morphisms of principal GG-bundles.
Summing up, we get the following.
Proposition 3.2.6 (Proposition 4.5 in [10]). The categories C, and Cy are equivalent.

Proof. 1t is left to define the corresponding functor on morphisms. An isomorphism of G-
bundles £ =~ E’ over X induces an isomorphism of I-bundles £/Gy =~ E’/G. This is just
an automorphism of Y over the identity on X that commutes with the action of the Galois
group, i.e. an element of Z(I"). This shows that the induced map of twisted equivariant
Gy-bundles over Y, which is Gy-equivariant (since it is (G-equivariant) covers an element
of Z(I"). Conversely, a morphism of twisted equivariant Gy-bundles over Y which covers
an element of Z(I) is both G and I"-equivariant as a map of G-bundles, thus it induces an
isomorphism of GG-bundles over X as required. [

Remark 3.2.7. Note that the equivalence of categories is not true if we replace the cat-
egory of twisted equivariant bundles with Z(I')-isomorphisms with the subcategory of
twisted equivariant bundles with fibre-preserving morphisms, since an automorphism of
a G-bundle E on X may not induce the identity on E/G.

3.3 Twisted equivariant bundles and monodromy

Proposition [3.2.6] assumes the G-bundle E to be connected, which may be too restrictive.
We would like to consider the interaction between general GG-bundles and twisted equivari-
ant GGo-bundles.

Let £ — X be a principal G-bundle (we do not assume that F is connected this time).
We obtain a principal I'-bundle

Y = E/Gy — X,

where the I' = G/Gg-action is induced by the G-action. Since I' is discrete, Y is a (possibly
non-connected) étale cover of X with covering group I' which we call p: ¥ — X. Notice
that I" acts on Y on the right. Write

p: E—Y =E/G, (3.3.14)
for the quotient map. Since G is connected, j induces an isomorphism 7o E — mY’.

Choose compatible base points in X and Y. Fundamental groups will be taken with
respect to these base points and can be identified with the corresponding covering groups
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of the (common) universal covering of X and Y. Let Y’ be the connected component of Y’
containing the base point. The ['-action on Y induces a I"-action on myY . Let IV < T be the
kernel of the corresponding homomorphism I' — Aut(mY"). Then Y’ — X is a connected
[-covering. Moreover, we have the exact sequence

1l ->mY »m(X) 5T — 1.

Identifying 71 (X') with the covering group of the universal covering X — X, the mon-
odromy w: 7,(X) — T" takes a covering transformation of X — X to the induced cov-
ering transformation of Y’ — X. Equivalently, if [a] € 7 (X), then w([a]) € I is the
unique element relating the endpoints of the lift of the loop « starting at the base point of
Y’. We shall sometimes refer to w: 71 (X) — I < T" as the monodromy of the GG-bundle
E — X and to I'" as the monodromy group of F.

Proposition 3.3.1. Let E — X be a principal G-bundle with monodromy w: m(X) —
I < I'. Then E admits a reduction of structure group to G' < G, where G' := Gy x9. 1"
is defined by restricting 0 and c to 1. Moreover, the total space of the corresponding G'-
bundle E' < FE is connected, and Y' = E'/Gy — X is a connected I"'-covering with
surjective monodromy w: 7 (X) — I".

Proof. Let E' = p~'(Y'), where p was defined in (3:3.14). Then E’ is connected and, by
construction, the G-action on I restricts to a G’-action on £’ which makes £’ — X into a
principal G’-bundle. O]

We have the following immediate corollary.

Corollary 3.3.2. Let ' — X be a principal G-bundle. Then E admits a reduction to the
connected component of the identity Gy < G if and only if its monodromy is trivial. 0

Let H'(X,G) and H'(Y', Gy, T",0, ¢) denote the sets of isomorphism classes of G-
bundles over X and (0, c)-twisted I”-equivariant Gy-bundles over Y, respectively.

Proposition 3.3.3. Let Zr(I") be the centralizer of I in T. There is a natural action
of Zr(I") on H'(Y',Gy,1",0,¢) on the left given as follows: take a (0, c)-twisted T"-
equivariant Gy-bundle (E,-) over Y’ and an element z € Zp(I").

* We have another Gy-bundle 0,(E) given by extension of structure group (see Section

* There is a natural (0, c)-twisted I"-action on 0,,(E) given by
exryi=[ec(z7h 2) te(z7h y)el(z 7y, 2)] - v (3.3.15)
This induces an action of Zr(I") on the set of isomorphism classes H'(X,G')y of G'-

bundles E' such that E' /Gy = Y" via Proposition[3.2.6] which is just extension of structure
group by Int . for each z € Zp(1").

50



Proof. Probably the best way to think of the seemingly random formula (3.3.19) is to take
the G’ := Gy xg,. I"-bundle E¢ over X associated to E according to Proposition [3.2.6]
and then define an alternative G’-action by

Eg x G' — Egr; (e,(9:7)) = e* (g,7) == e(1,2) " (g:7)(L, 2), (3.3.16)

i.e. consider the extension of structure group Int(; .)(F¢ ). Recall that the total space of
E¢ and E are the same. The restriction of the action to GG is then given by

“lg(12) = 0 (g)

for each e € FEg and g € Gy, which is precisely the G-action on the total space of the
underlying Go-bundle E defining the action of G on 6,(F). Definition (3.3.15) for the
action of I'" on 0, (F) is equivalent to the I"-action given by restriction of (3.3.16), since

exg=e(l,z)

(L,2) 7 (L )(L,2) = (c(z7,2) 7, 27 ) (L,7)(1, 2)
= (e(z712) le(z ™), 21 )(1, 2)
= (c(z7, 2) ez y)e(z 1ﬂy,z) 2 1v2)
= (c(z7"2) e(a T ez, 2), ),

where the last equation follows from the fact that z commutes with every element of I".
Thus the pair consisting of the Gy-action and the I''-action (3.3.15)) on F is equivalent to
the natural G’-action on Int; .)(E¢ ) by the construction of Proposition The same
proposition implies that defines a (6, c)-twisted action. O

Theorem 3.3.4. Let Y € H'(X,T) with monodromy group I" and corresponding con-
nected component Y', and denote by H'(X,G)y the set of isomorphism classes of G-
bundles E over X such that E/Gy =Y. We have a bijection

H'(Y',Go,I",0,¢)/Zr(I") = H'(X,GQ)y, (3.3.17)

where Zp(I") is the centralizer of I in ', which acts on H'(Y,Go,1",0, ¢) as in Propo-
sition [3.3.3] The bijection is given by Proposition [3.2.6] and extension of structure group
from G' to G.

Proof. Given a G-bundle E¢ over X such that F; /Gy = Y, take a connected component
E < E¢ such that E/Gy =~ Y. Then E is a reduction of structure group to G’, and so
surjectivity follows by Proposition [3.2.6]

To show that the morphism is well-defined, consider a G’-bundle £ and z € Zp(I").
The element s := (1, z) € G determines an automorphism 5 := Int,-: of G’ which defines
an extension of structure group S(E). Let E¢ be the extension of structure group of E by
the embedding G’ < G. Then the stabilizer of £ under the G-bundle action is equal to G,
which implies that the stabilizer of Es = Eg is equal to s 'G’s = G’. In other words, E's
determines a reduction of structure group of Eg to G'. Moreover, the map

E — Es;e—es
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induces an isomorphism of G’-bundles S(F) =~ E's. Indeed, recall from Section that
B(E) may be regarded as the G’-bundle which has the same total space as F and G-action
determined by

E x G — Ej (e,g) = ¢S (g).

But we have
e (g)s = esgs™'s = esg,

which shows that the induced map S(E) — E's is G'-equivariant. This implies that E’s,
which is a reduction of structure group of Eg to G/, is isomorphic to 5(F). In other words,
E¢ is the extension of structure group of 3(F) by the embedding G’ — G.

It is left to show injectivity. Let F' and F’ be two (0, ¢)-twisted I"-equivariant G-
bundles over Y’ and let E and £’ be the corresponding GG'-bundles over X. Since GGy and
Y are connected, both E and E’ are connected. Assume that they have the same extension
of structure group F to G. Note that £ has an explicit decomposition into connected
components, namely

ATV /T

where each coset in I'/T” has one and only one representative component in the union. Thus
E’ must be equal to one of these components, say F(1,~) for some v € I'. If s := (1,7)
then the stabilizer of £’ = FEs in G is G’, hence the stabilizer of Es/Gy is I, which
is identified with the Galois group of E's over X. We may identify Y’ with the quotient
E/Gy ¢ Eg/G, thus fixing a copy of Y inside E£/G = Y. The first observation is that,
on the one hand, Fs/Gy = E'/Gy = Y’ and, on the other, E's/Gy = (E/Gp)y = Y'y Y.
Thus we have an isomorphism of ['-bundles Y’ =~ Y”~. This is the composition of the map
sending y € Y’ to yy € Y’ and an automorphism of Y~ over the identity on X, i.e. an
element of the Galois group of Y’ over X, which is equal to I'". At the end of the day
the isomorphism Y’ =~ Y’ is given by an element z € I'. Since it is an isomorphism of
[-bundles it must commute with the action of I”, i.e. it must lie in the centralizer Zr(I").
Therefore £’ = E(1, z) for some element z € Z-(I"), which means that £’ =~ Int(’l}z)(E)
as required. 0

3.4 Associated bundles

This Section follows Section 3.2 in [10]. Fix a (smooth, complex) Lie group G. Let E
be a principal G-bundle over X and M be a smooth or complex manifold equipped with
a (0, o)-twisted right (G, I')-action (see Definition . We denote by E(M) the orbit
space (E x M)/G. In the case of a left action of G on M, we thus have the twisted product
E(M) = E xg M, which can be viewed as the quotient of £ x M by the equivalence
relation

(eg,m) ~ (e,g-m) (3.4.18)

foranyee F,ge Gand me M.
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Remark 3.4.1. The smooth (holomorphic) sections s of F(M) are in natural bijection with
the smooth (holomorphic) maps s : £ — M satisfying the G-equivariance condition

5(eg) = 5(e) - g forany ee E and g€ G. (3.4.19)

To see this, let § : £ — M satisfy (3.4.19). Then (Id,s): £ — E x M is G-equivariant
and, therefore, descends to the quotient so that we have a commutative diagramme

g 9 poum

| l

E/G —— (Ex M)/G,

and s: F/G = X — E(M) = (E x M)/G is the section corresponding to 3. Conversely,
given a section s, we can recover § by setting 5(e) = m, where s([e]) = [(e,m)]. This is
well-defined because the fibres of £ — X are G-torsors.
We view E' as the G-frame bundle of E(M) in the usual way: an element e € E with
m(e) = x defines the frame
M = E(M),,

m— [e,m].

(3.4.20)

Proposition 3.4.2. Let M be a manifold equipped with (0, c)-twisted right (G, T")-action
andlet m: E — X be a (0, c)-twisted I"-equivariant principal G-bundle. Then the associ-
ated fibre bundle with typical fibre M,

E(M) :=E xg M — X; [e,m] — 7(e),
defined by the above construction is a I'-equivariant fibre bundle.

Proof. Consider the ['-action on £ x M.

[e,m] -y =[e-y,m-7]

The G-equivariance of the ['-actions on E and M implies that this action is G-equivariant,
hence it induces an action on the quotient F'(M) = (E x M)/G. Moreover, we have

1

((e;m)-7v) -~ = (ec(v,7), plc(v,7) " m) - (7)) = (e,m) - (v7'),

where (e, m) is the class of [e,m] in E(M), so this is a genuine group action. O

Remark 3.4.3. An important situation where Proposition [3.4.2] may be applied is the case
when an embedding of G x .I' in GL(n, C) is provided, where the twisted product G x ¢ .I'
is given by Definition In this case the right action of I" on C" given for each v € I'
by multiplying on the left by the image of (1,v)~! in GL(n, C) satisfies Hence a
twisted ['-equivariant G-bundle F provides a I'-equivariant vector bundle £(C") of rank n
, and conversely an equivariant vector bundle whose bundle of frames has a reduction of
structure group to GG which is preserved by the I'-action provides a twisted ['-equivariant
G-bundle .
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Remark 3.4.4. Note that the map (3.4.20)) has no equivariance properties with respect to I'.

Let C*(E, M)ST (Hol(E, M)%T) be the space of smooth (holomorphic) maps from
F to M which are both G and I'-equivariant, and let C*(X, E(M))" (H°(X, E(M))") be
the space of I'-equivariant smooth (holomorphic) sections of E(M) — X.

Proposition 3.4.5. With the above notation, there is a bijection

CP(E, M)%" 5 C°(X,E(M))"  (Hol(E, M)%T 5 HO(X, E(M))")

sending 5: E — M to s: X — E(M) defined by

for any e € E with w(e) = x € X. The inverse takes a section s: X — E(M) to
5: E — M defined by

S(e) =m, wheres(m(e)) = [e,m].

Proof. The correspondence between G-equivariant maps 2 — M and sections of E(M) —
X 1s given by Remark and the I'-equivariance statement follows from the definition
of the I'-action on E(M). N
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Chapter 4

Twisted equivariant structures and
Higgs pairs

We now apply the formalism of Chapter [3|to Higgs pairs. Throughout this chapter X will
be a compact Riemann surface with canonical bundle K'x.

4.1 Twisted equivariant Higgs pairs

This Section follows [[10, Section 3.2]. Let GG be a connected reductive complex Lie group
with centre Z. Let V' be a complex vector space equipped with a holomorphic representa-
tion

p:G— GL(V).

This defines a left action of GG on V/, thus a right action:
VxG—V;(v,9)— plg) v

Recall that we have a notion of (G, V')-Higgs pair, see Deﬁnitionm

Consider a finite group ' equipped with a homomorphism 7 : I' — Aut(X) to the
group of holomorphic automorphisms of X. We have a right action of I' on X such that
v €T sends € X ton;"(z). Take a homomorphism

6:I — Aut(G); v~ 6,

and a 2-cocycle ¢ € Z3(T', Z) (see Definition 3.1.1). Fix amap pr : I' — GL(V'). We will
sometimes write v - pr(7y) := pr(y)'v. Assume that pr determines a (6, ¢)-twisted right
[-action on V' (Definition [3.1.2), i.e. it satisfies

(p(g)v)-pr(v) = p(64-1(g))(v-pr(v)) and (v-pr(v))-pr(v’)=(p(C(%v’))1@)-/)(2(171’))

foreachveV,ge Gand~,y €.

Let F be a (6, ¢)-twisted T'-equivariant G-bundle over X. By Proposition the
vector bundle F(V') inherits a right ['-action descending to the action of I on X, hence
E(V)® Kx is also I'-equivariant with v € I" sending (e,v) ® k € E(V)® Kx to (e, v -
pr(7) ® (v*F).
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Definition 4.1.1. A (0, ¢, pr)-twisted ['-equivariant (G, V')-Higgs pair over X isa (G, V)-
Higgs pair (E, ¢) over X equipped with a holomorphic (6, ¢)-twisted I'-equivariant action
“> on E —i.e. satisfying (3.1.3)— such that ¢ is a I'-invariant section. To emphasize the
action of I" we sometimes denote the object by (E, -, ). When 6, ¢, pr or I are clear from
the context we may omit them from the notation. If V' = g, p = Ad and the action of I" on
g is given by 071, we call (E, ¢) a (6, ¢)-twisted I'-equivariant G-Higgs bundle.

A homomorphism between (6, ¢, pr)-twisted I'-equivariant (G, V')-Higgs pairs over
X is a I'-equivariant morphism of Higgs pairs. There is a notion of Z(I") isomorphism as
in Section namely a Z(I')-isomorphism of twisted equivariant bundles preserving the
Higgs field.

Remark 4.1.2. Let (E, ) be a (G,V)-Higgs pair. Let Aut(E, ) be the group of auto-
morphisms of (£, ¢) covering the identity of X, and let Autr, 4(E, ) be the group of
biholomorphic maps f : £ — E preserving ¢ (according to the chosen action pr of I' on
V), so that f covers the automorphism 7.’ 1+ X — X for some v € I' and satisfies that
fleg) = f(e)8;'(g) for each e € E. Given f, f' € Autp,q(FE), their group product is
ff' = f"o f. There is an exact sequence

1 — Aut(E, p) — Autp,¢(E, ) — T, (4.1.2)

where the group multiplication on I' is transposed, i.e. the product of v and ~' € T"is 7.
A (0, ¢, pr)-twisted I'-equivariant structure on F is simply a c-twisted lift of (4.1.2)), i.e. a
map I' — Autr,¢(E, ¢) satisfying the second equation of (3.1.3).

We have analogous results to Propositions [3.1.7| and [3.1.8| in this context. Let ' =
Int, 0, where Int, € Z}(T',Int(G)), and define ¢, € ZZ(T, Z) as in (3.1.8). By Lemma
3.1.5|¢" is a homomorphism. Define a map pf. := p(s)pr : I' — GL(V/), so that we have a
right action of I on V:

VxT =V (v,7) = v pp(7) = (p(s5)"'0) - pr(7) = (p(sy)pr(y)) "o, (4.13)

This is a (¢, ccy)-twisted right action:

(p(g)v) - p2(v) = (p(sy) ' p(g)v) - pr(7)
(P(Int H9))p(sy) o) - pr(v)

and

(v-p2(7) - P2 () = (p(sy) " ((p(sy)""0) - pr())) - pr(¥)
= ((p(0,(sy))~ 1,0( W) 7H) - pr(v) - pr(y)
= (p(c(1,7) " o505 (51)) " '0) - pr(v7')
(p(s37) " p(c(7,7) 840 (5y)875) " v) -
(plccs(v,7) ) - Pr(’Y’Y)

foreveryv e V,v,7 € ' and g € G, so that p}. satisfies (4 as required.

pr(vY)
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Proposition 4.1.3. Let s : T' — Int(G) be a map such that Inty € Z}(T,Int(G)). Let
C(0,c, pr) be the category of (0, ¢, pr)-twisted I'-equivariant (G, V')-Higgs pairs. Then the
categories C(0, ¢, pr) and C(Int, 0, ccs, p) are equivalent.

Proof. Let (E,-, ) be a (0, c, pr)-twisted I-equivariant (G, V')-Higgs pair. By the proof
of Proposition we may define a new I'-action = on E making (F, =) a (¢, cc,)-twisted

I'-equivariant G-bundle. It is left to show that ¢ is ['-invariant with respect to = and pf.. If
@ is locally equal to (e,v) ® k € E(V) ® Kx, we have

(ex7,0- pr(7) @7k = ((esy) -7, (p(s5)"'0) - pr(7)) @ vk
((e- )05 (), p(@f(sv)) Yo pr(7))) @7k
= (e-v,v-pr(7)) @'k,

which, since ¢ is invariant with respect to - and pr, is also equal to ¢, as required. 0

Corollary 4.1.4. If c and ¢ are cohomologous, i.e. there is amap s : I' — Z such that
d(v,7) = ey, 7’)5;71,3797(8,Y/), there is an equivalence of categories between C(0, c, pr)
and C(0, ¢, p}.).

Proof. Follows directly from Proposition 4.1.3|and (3.1.8). O

By Proposition we may assume that the lift € is chosen so that it preserves a
maximal compact subgroup K of GG;. We may define notions of (poly, semi)stability by
changing slightly Definition : first note that if s is in the ['-invariant part 7€" of i€ then
P; is I'-invariant and so is its Levi subgroup L, since

={ged| tli_)rg) ege™ = g}. (4.1.4)

Hence 6 induces I'-actions on G/P; and P,/L,. If (E,-) is a (0, ¢)-twisted I'-equivariant
bundle then combining the actions - and ¢ makes the fibre bundle F(G/P;) into a I'-
equivariant bundle by Proposition as Z is contained in F;. This lets us introduce
the corresponding space of I'-invariant reductions H°(X, E(G/P,))". Given such a reduc-
tion o, the corresponding Ps-bundle FE, is (6, ¢)-twisted I'-equivariant. Moreover, since
Z is contained in L, we also have a ['-equivariant associated bundle E(P;/L;) with a
corresponding space of ['-invariant reductions H°(X, E,(P,/L,))".
For each s € i£ we may define

V; := {v e V| p(e"*)vremains bounded as t — o0}
and
Vi={veV| lim p(e®)v = v}.
—00

Given a reduction o € H(X, E(G/P,)), we may define a sub-bundle F(V),, := E, xp,
V, € E(V). Given a further reduction ¢’ € H°(X, E,(P,/Ls)), we also have a sub-bundle
E(V)Y, i=Ey x,, VIS E(V)ys

ol,s

Definition 4.1.5. Let € i3, where 3; is the centre of €. A (6, ¢, pr)-twisted '-equivariant
(G, V)-Higgs pair (E, ¢) over X is:
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o (-semistable if deg F(0,s) > z for any s € ' and any ['-invariant reduction of
structure group o € H°(X, E(G/P;))" such that p € H(X, E(V ), ® Kx).

o (-stable if deg F(0,s) > z for any s € €' and any reduction of structure group
o€ H'(X,E(G/P;))" such that p € H*(X, E(V),, ® Kx).

e (-polystable if it is (-semistable and, if deg E(0,s) = z for some s € it and a
reduction o € H°(X, E(G/P;))" such that p € H*(X, E(V),,® Kx), there is a fur-
ther I'-invariant holomorphic reduction of structure group o’ € H°(X, E,(P,/L,))"
with p € HO(X, E(V)% | ® Kx).

If z = 0 we omit it.

Remark 4.1.6. When V' = g, p is the adjoint representation of G on g and pr = 6, we
have E(V),,s = E(ps) and E(V)Y, , = E(p,) in Deﬁnition As for G-Higgs bundles,
in this case the parameter ¢ is completely determined by the topology of the underlying
G-bundle, hence we mostly omit it from the notation.

There is a moduli space M¢(X,G,T',0, ¢, V, pr) which classifies isomorphism classes
of (-polystable (0, ¢, pr)-twisted I-equivariant (G, V')-Higgs pairs. To our knowledge this
has not been constructed in the literature, but we plan to address this in an upcoming paper.
When ¢ = 0, we omit it from the notation.

If T is trivial we obtain the moduli space of (G, V')-Higgs pairs over X, which we
denote by M(X,G,V). If V = g, p is the adjoint representation of G on g and pr = 0,
we obtain the moduli space of (6, c¢)-twisted I'-equivariant G-Higgs bundles, which we
write M(X, G, T, 0, c). Given a character

p:T'—C% oy,

of I, there is an alternative (6, c¢)-twisted action of I on g given by p, := u;le. It is clear
that the following categories are equivalent:

1. The category of (6, c, p,)-twisted I'-equivariant G-Higgs bundles.

2. The category of (0, ¢, uu)-twisted I'-equivariant G-Higgs bundles, whose objects are
pairs (E, ) consisting of a G-bundle E equipped with a (6, ¢)-twisted ['-equivariant
action - and a Higgs field p € H°(X, F(g)® K x) fitting in the following diagramme:

(.05 on*

Eg®Kx — " FEg) Ky
o s
X e X

and whose morphisms are ['-equivariant homomorphisms of G-bundles. By abuse of
notation (-, 6, ") denotes the group action of I" on E(g) induced by the corresponding
(0, c)-twisted action on E x g.
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Via this equivalence of categories, we may construct a moduli space M (X, G, T, 0, ¢, ) of
(0, ¢, p)-twisted T'-equivariant Higgs bundles.

The notions of (poly,semi)stability for (6, ¢, pr)-twisted I'-equivariant (G,V')-Higgs
pairs also restrict to notions for (6, ¢)-twisted ['-equivariant G-bundles. There is a moduli
space classifying isomorphism classes of polystable (¢, ¢)-twisted ['-equivariant G-bundles
over X, which we denote by M (X, G, T, 0, c).

4.2 Non-abelian Hodge correspondence for twisted equiv-
ariant Higgs bundles

With notation as in Section d.1let X' < G be a I'-invariant maximal compact subgroup
of G, where I' acts on G via 6. Let (E, ) be a (0, ¢, pr)-twisted I'-equivariant (G, V)-
Higgs bundle on X. Let h € Q°(X, E(G/K))" be a I'-invariant reduction of structure
group of F from G to K, where I acts equivariantly on E(G/K) by Propositionm Let
F}, be the curvature of the corresponding Chern connection. Let o3, : QM(X, E(V)) —
0%(X, E(V)) be the C-antilinear map defined by the reduction h and the conjugation
between (1, 0)- and (0, 1)-forms on X. Consider the Hitchin equation

Fr+ [p,on(p)] = —2mizw, 4.2.5)

where ( € i3 and w is a Kihler form of X with total volume 1. One has the following (see
(48,171, 133]).

Theorem 4.2.1. Let (E, @) be a (0,c, pr)-twisted T'-equivariant (G,V')-Higgs pair on
X. Then (E, ) is (-polystable if and only if the (G,V')-Higgs pair (E, ) admits a T-
equivariant metric h satisfying .

An equivariant base point is a ['-equivariant map z : I' — X, where [ acts on itself by
multiplication, and on X via 7. Suppose that (X, x) has a universal I"-equivariant covering
()A( ,x) — (X, x). By the universal property of such covering, the group of automorphisms
of the equivariant covering X over X is uniquely determined by X, up to unique isomor-
phism. This group is called the equivariant fundamental group of X with respect to the
action of I and is denoted by m; (X, I", z) or simply 71 (X, I") (see [51, Definition 3.1]).

Let 1 € T" be the identity, set x; := (1) and let 71 (X, 1) be the fundamental group of
X with base point z;. By [S1} Proposition 3.2], m; (X, I, z) fits into an exact sequence

1> m(X, ) »>m(X,T,2) > T - 1. (4.2.6)

Note that if I" acts trivially on X (i.e., 7 is trivial) then 71 (X, ", z) = m(X,z) and if T’
acts freely on X then 71 (X, I, z) = m(X/T", Z) where Z is the composite map of = and
the quotient X — X /I (see [S1, Proposition 3.4]).

Suppose that 7 is non-trivial. Choose z € X so that it is not fixed by any v € I' with
v # 1. By the description of the equivariant fundamental group in terms of equivariant
loops (see [31, Section 6]) we can identify the set with the set of all homotopy classes
of maps o : [0,1] — X such that 0(0) = =z and o(1) € {n,(x) | v € I'}. Under this
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identification the surjective map p : m;(X,[',z) — T can be identified with p(c) = ~ if
o(1) = 1, (a).

Following [12]], let G xg . I' be the twisted product given by Definition A repre-
sentation p of 7 (X, [',z) on G x4 I is said to be (6, ¢)-twisted I'-equivariant if it is an
extension of a representation p : 7 (X, ;) — G fitting in a commutative diagramme
of homomorphisms

0—m (X, 21) —m (X, 2) —T ——0 4.2.7)
ST
0 G G xgeI'——=T—=0.

Denote by Hom(m (X, I, z), G x4 I') the set of (6, ¢)-twisted I'-equivariant represen-
tations p : m (X, I',z) — G x4 I

Let M(X,G,T, 0, c) be the moduli space of (6, c)-twisted I'-equivariant G-Higgs bun-
dles considered in Section[4.1l Let

R(X,G,T',0,¢) := Hom(m (X, I',2),G x¢.T") J G

be the moduli space of G-conjugacy classes of representations of 71 (X, I",x) in G x4 .’
whose restriction to m; (X, 2) is reductive, where G x4, I is given by Definition [3.2.2]
We then have the following Theorem (this is Theorem 6.3 in [[12]]).

Theorem 4.2.2 (Non-abelian Hodge correspondence). There is a homeomorphism between
M°(X,G,T,0,c) and R(X,G,T,0,c), where M°(X,G,T,0,c) is the moduli space of
topologically trivial polystable (0, c)-twisted I"-equivariant G-Higgs bundles.

4.3 Local structure at isotropy points

This Section is based on [40, Section 3.2]. Let x € X, and

Iy i={yel'|n(z) =z}

be the corresponding isotropy subgroup. Let & := {x € X | [, # {1}}.

It is well-known that, when I" acts on X faithfuly and properly discontinuously, &2 con-
sists of a finite number of points {z1,--- ,z,} and for each x; € & the isotropy subgroup
I';, < I'is cyclic (see [57] for example). Each x; € & is called an isotropy point of X.

Let (E,-,¢) be a (0, c, pr)-twisted I'-equivariant (G, V')-Higgs pair with bundle pro-
jection  : £ — X. The underlying (6, c)-twisted I'-equivariant structure on £ determines
the following. For each x € &2 and e € FE such that 7(e) = z, there is a map

o.: 'y - G

defined by
e-y =l (oe(v) 7

One has the following.
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Proposition 4.3.1. 1. o.(vY) = c(v,7)oe(7)0,(0e(v)), 7,7 € I.
2. 0oy(7) = g to.(7)0,(g) forall y €T and g € G.

Proof. For each e € E we have e - (vy') = ef(0.(yy')) ", and
(e-7) -7 = (e (oe(7)) -
= (e-7)051(07 (oe(7)) ™
= 03 (o)) 0 ()
= 60;3'(06<'7)97(06<7/>>>_1

Since, by (B.13). (¢ - (17/))1(c(3,7')) = (e -7) -7/, we have
69;71/(0'6(’)/’)/’))_19;/1/(C(’)/, v)) = 60;71,(0@(7)07(06(7’)))_1 forevery e € FE.

Thus, o.(7Y') = c(7,7)0e(7)0;(0e (7).
To check (2) note that

g0, (0eg(7)) " = €6, (0e(7)) 7105 (9),

and so 0., (7) = g "oe(7)8,(9). N

For each isotropy point z € X , let us denote by Z', (T, G) the setof all 5 : T, — G
satisfying 5(vY') = c.(v,7)B(7)0,(5(7")) where ¢, is the 2-cocycle given by the restric-
tion of cto I',. We call sucha 8 : I' — G a twisted 1-cocycle for the action of I' on G
given by . Two twisted 1-cocycles 3 and 3’ are related if there exists a g € G such that
B = g '50,(g9). We denote the set of all twisted 1-cocycles modulo the above defined
relation by H', (T, G).

Let (E, ) be a (0, ¢, pr)-twisted I'-equivariant (G, V')-Higgs pair. From Proposition
we have that, for each z € &, there is a unique equivalence class o, of a twisted
1-cocycle, which only depends on the ['-equivariant isomorphism class of £.

We fix a 0,, € H',, (Ty,,G) for each z; € &. We say that a (6, ¢, pr)-twisted I'-
equivariant (G,V)-Higgs pair (E, ¢) has local type o,, at a fixed point x; € X if the
twisted 1-cocycle induced by the (6, ¢)-twisted I'-equivariant structure on E is o,.

We define M(X,G,T,0,¢c,V, pr,o) as the subvariety of the moduli space of twisted
equivariant Higgs pairs M(X, G, T',0,¢,V, pr) with fixed local types o,,, i = 1,--- 7.
When V' = g, p is the adjoint representation and pr = 6 (i.e., when we consider twisted
equivariant Higgs bundles) we omit V' and pr. If we are considering the moduli space of
(0, ¢, p)-twisted I'-equivariant G-Higgs bundles we write M (X, G, T, 0, ¢, u, o). Similarly,
we define M (X,G,T',0,c, o) as the subvariety of the moduli space of twisted equivariant
G-bundles M (X, G, T, 6, c) with fixed local types o,,,i = 1,--- 1.

Let ¢, € Z3(T, Z) be two cohomologous 2-cocycles, that is, there exists a map s :
I' — Z such that

(Y ") = (v, A" sy 0y (syr)sSmm 77" €T (4.3.8)
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Let 0,, € H'., (I';,,G). We have 1-cocycles 0% := s~ 'o,, € H'y; (I'y,, G) induced by

i i

o.,;, where we are calling s to its restriction to I';, by abuse of notation. Indeed,

s 002, (7Y) = 8,05 (sy)s0¢(7,7) 5 0e(7)0,(54) 10 (e (7))
= (v,7)ai(7)0,(:(7))-

One has the following.

Proposition 4.3.2. If c and ¢ are cohomologous cocycles in Z3 (T, Z) with c'(v,7') =

(7,7 )57h5,0,(5,), pb := p(s)pr and o* = 5”10,

~ ~

M(X, G, T,0,c,V,pr,0) ~ M(X,G,T,0,d,V,pi, 0%).

Proof. Let (E,-,¢) € M(X, G,T',0,¢,V, pr,o). We can show that (E, ¢) admits a (0, ¢/, p3.)-
twisted I'-equivariant structure with local types {o7} } namely define

exy = (esy) 7y
as in the proof of Corollary By Corollary this provides a (0, ¢/, pi.)-twisted

["-equivariant action on (F, ). Moreover, we have

exy = (e-7)0;"(sy) = 0, (s oe(7) " = el (03(7)) 7,

hence the local type of (E, +, ¢) is {0} }. Similarly we can construct an inverse. O

4.4 Non-connected groups and twisted equivariant Higgs
pairs

Let G be a (non-connected) reductive complex Lie group with connected component G
and group of connected components I' := G/G,. Let Z be the centre of Gy. We have a
short exact sequence (3.2.12) with characteristic homomorphism a : I' — Out(Gy). Let
0 : T — Aut(Gy) be alift of a and ¢ € Z2(T', Z) the 2-cocycle given by Proposition [3.2.3]
so that G = Gy x4, I' as extensions of G. Recall that this isomorphism is given by a
section I' — G. Let pr : I' - GL(V) be the pullback of p by this section. The right action
of G on V given by
VxG—=V;(v,9)~ plg)~'v

yields by Proposition a right Gy-action given by the restriction to G and a (6, ¢)-
twisted ['-action

VxT = V; (0,9) = v pr(y) = pr(y) v = p(1,7) .
Take a connected I'-bundle Y — X with canonical bundle Ky .

Definition 4.4.1. We denote by C, the category whose
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* objects are (0, ¢, pr)-twisted I'-equivariant (G, V')-Higgs pairs (£, ¢) over Y such
that the twisted I'-action descends to the action of I' as covering transformations of
the fixed I'-covering F/Gy = Y — X, and whose

 morphisms are Z(I")-isomorphisms of twisted equivariant Higgs pairs, i.e. holomor-
phic maps f: F — E’ both G and I'-equivariant such that the diagramme

E 1., p

o

y L.y
commutes and the induced map f: Y — Y is a covering transformation which be-
longs to Z(I).

We denote by C, the category whose

* objects are (G, V')-Higgs pairs on X such that there is an isomorphism of I"-bundles
E/Gy = Y and whose

* morphisms are morphisms of principal G-bundles.
Proposition 4.4.2 (Proposition 4.5 in [10]). The categories él and ég are equivalent.

Proof. We have forgetful functors C; — C; and C, — C to the category of (0, ¢)-twisted I'-
equivariant G-bundles over Y and the category of G-bundles F over X such that £/G =~
Y respectively, see Definition By Proposition we have an equivalence of cat-
egories between C; and C,. We show that it lifts to an equivalence of categories between
C, and Co: given a G-bundle F over X, the corresponding twisted equivariant (Gp-bundle
F — Y is given by the factorization £ — E/Gy =~ Y — X. Letp: F — Y be the middle
map. Now take a Higgs field p € H°(X, E(V)® K ). We define a '-invariant Higgs field
v e HY Y, F(V)® Ky) as follows: for each y € Y let z := py(y), choose e € p~1(y),
let o, = (e,v) ®k € E(V)® Kx|, and set ¢ := (e,v) @ pyk € E(V) ® py Kx|, =
F(V)® Ky/|,. This is independent of the choice of e since, given g € G, the Higgs field
¢ at x is also represented by (e - g, p(g)'v) ® k, and (e - g, p(g) *v) = (e, v) as elements
of F'(V). Moreover, we have

(e-7,v-pr(7) @k = (e(1,7),p(L,7) ') @k = (e,v) ® k

for every v € I' as elements of F(V) ® K, so that ¢ is I'-invariant. Conversely, a ['-
invariant section ¢ € H°(Y, F(V) ® Ky) provides a section ¢ € HY(X,E(V) ® Kx)
defined by ¢, := (e,v) ® K, where (e,v) ® py (k) € F(V) ® Ky, is a local expression
of 9 for some y € py* () and py (k) denotes the image of k by the natural homomorphism
Ky = py Kx — Kx. The I'-invariance of ¢/ implies that this is independent of the choice
of representative.

The definition of the functor at the level of morphisms is the same as in Section
which is well defined because a morphism of (G, V')-Higgs pairs over X preserves the
Higgs fields and so does the corresponding map between twisted equivariant (G, V')-Higgs
pairs over Y. [
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Proposition 4.4.2] and Definition 4.1.5]induce notions of (semi,poly)stability for Higgs
pairs with non-connected structure group, which we introduce next. Choose the lift 6 of
the characteristic homomorphism of so that f(T") preserves a maximal compact sub-
group K of Gy. In particular we have an action of I" on ¢, the Lie algebra of K.

Definition 4.4.3. Let ¢ € i3;. A (G, V)-Higgs pair (E, ¢) over X is:

e (-semistable if deg F(7,s) > (z, s) for any s € i€ and any reduction of structure
group 7 € H(X, F(G/Ps)) such that p € H(X, E(V),, ® Kx).

o (-stable if deg E(7,s) > (z, s) for any s € 7¢" and any reduction of structure group
e HY(X, B(G/P,)) such that p € HO(X, E(V),,® Kx).

« (-polystable if it is (-semistable and, if deg E (1, s) = {z, s) for some s € it and
a reduction 7 € H°(X, E(G/P,)) such that ¢ € HY(X,E(V),, ® Kx), there is
a further holomorphic reduction of structure group 7 € H°(X, E,(P,/L,)) with
pe H(X, E(V)2,7S ® Kx).

A moduli space M (X, G, V) classifying isomorphism classes of (-polystable (G, V)-
Higgs pairs over X for every ( € 13; may be constructed using GIT, see [68, Section 2.6].
Theorem [2.3.1]also holds when G is non-connected, which will be proved in [33]].

Definition 4.4.4. Consider a complex representation p : G — GL(V) as above, a reductive
subgroup H < G and a subspace W < V preserved by the restriction of p to H. Given
a (H,W)-Higgs pair (E, @) over X, its extension of structure group to G is the (G, V)-
Higgs pair (Eg, pg) over X given by:

* The extension of structure group E¢ of E to G.

o If ¢ is locally equal to (e,v) ® k € E(W) ® Kx, then ¢¢ is also locally equal to
(6, U) ® ke Eg(V) ® Kx.

Conversely, (E, ¢) is a reduction of structure group of (Eq, pc) to (H,W). If W =V,
we omit it from the notation.

Lemma 4.4.5. Let H < G be a reductive subgroup. Given a (G,V')-Higgs pair (Eq, ¢¢)
and a reduction of structure group E of E¢ to H, there exists a Higgs field p € H°(X, E(V)®
Kx) making (E, ) a reduction of structure group of (Eg, pc).

Proof. If ¢ is locally of the form (e,v) ® k for some e € Eg, v € V and k € Ky, by
transitivity of the action of G on Fg we may always find g € G such that eg € E. Thus
(eg,p(g) ') ® k € E(V)® Kx is also a local representation of ¢, so we may define ¢
to have this same local form. 0

Now let Y — X be a (not necessarily connected) ['-bundle with monodromy group
I'" < T and connected component pys : Y' — X (see Section[3.3). Let G’ = G xg. I" be
the preimage of I under the natural surjection G — I
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Proposition 4.4.6. Fix ( € i3;. Let (E,p) be a (G',V)-Higgs pair over X with ex-
tension of structure group (Eq,pq) to G. Then (E, ) is (-polystable if and only if
(Eq, pa) is C-polystable. In particular there exists an extension of structure group mor-

phism M(X,G") - M(X, Q).

Proof. Assume that (E, @) is (-polystable. First we prove that (Eg, ¢¢) is (-semistable:
consider a reduction of structure group 7¢ € HY(X, Eg(G/P;)) such that g lies in
HY(X,Eg(V)ses ® Kx), where s € €. Since s is T-invariant the parabolic subgroup
P, < G intersects every connected component in (G, hence the fibre of the total space of
the reduction (E¢)., over z € X intersects every connected component of E¢|,. Thus,
since F|, is a union of connected components of Eg|,, its intersection with P, must be
isomorphic to G’ n P, = P!, where P! := {g € G’ | ¢"*ge™"* remains bounded as ¢ — o0}
is the parabolic subgroup of GG’ defined by . Thus the intersection of (E¢), with F
is a reduction of structure group of E to P! < Py, which we call 7 € H*(X, E(G'/P.)). If
the Higgs field ¢ can be locally expressed in the form (e, v) ® k, where e € E,, v € Vj
and k € Ky, and so ¢, which has the same form, is in H°(X, (E; x,, Vi) ® Kx) =
HY(X,E(V),s ® Kx). We also have

deg Eq(1q, s) = deg E(T,s) = {(z,s),

where the second equation follows from (-semistability of £ and the first equation follows
from definition (2.1.2)) and the fact that the connection of Ej is induced by a connection of
E (so that the corresponding curvatures are equal).

Now assume that deg F(7¢, s) = deg E(T,s) = {z,s). By (-polystability of (£, ¢)
there is a further holomorphic reduction of structure group 7 € H°(X, E.(P!/L.)) with
¢ € H(X,E(V)? ), where L, is the Levi subgroup of P,. Thus the extension of struc-
ture group of E,. to L, yields a reduction 7, € H°(X, (Eg),.(Ps/Ls)) such that ¢g €
H°(X, EG(V)E&S), as required.

The converse can be shown using similar arguments: assume that the (G,V')-Higgs
pair (Eg, pq) is (-polystable. For (-semistability consider a reduction of structure group
7€ H(X, E(G'/P.)) such that p € H*(X, E(V),,®Kx), where s € ¢'. Then, extending
structure group, we get a reduction 7 € H°(X, Eq(G/P,)) and so we conclude that

deg E(7,s) = deg Eg(1g,s) = {z, s).

If equality holds, we may find a further reduction 7, € H°(X,(Eg),.(P:/Ls)) with
vq € H'(X, EG(V)?&,S)’ and the intersection of (F¢),., with F yields a reduction 7/ €

HO(X, E,(Pl/LL) with ¢ € H(X, E(V)0, ). 0

Proposition 4.4.7. Let Zr(1") be the centralizer of 1" in I. There is a natural action of
Zr(I") on M(Y',Go,T",0,¢,V, pr) on the left given as follows: take a (0, c, pr)-twisted
I"-equivariant (Gy,V')-Higgs pair (E,-, @) over Y' and an element z € Zy(I"). Then
z sends E 1o (0,(E),*, pr(z)g), where  is defined as in Proposition [3.3.3) 0.(E) is the
extension of structure group by 0, and pr(z)p is defined using the action pr on V. This
induces an action of Zr(I') on the moduli space M(X,G',V )y of (G',V)-Higgs pairs
(E',¢') such that E'/Gy = Y’ via Proposition[4.4.2| where z € Zr(I") sends (E', ') to
(Int(1,2)(E), p(1, 2)¢").
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Proof. The fact that this is a left group action follows directly from its definition. It is
left to show that ¢* := pr(z)p is well defined and T-invariant. Assume that ¢ is locally
equal to (e,v) ® k € H'(Y', E(V) ® Ky-). Then ¢ is locally equal to (e, pr(2)v) ® k €
(05(E) x, V) ® Kx. Another representative is of the form (e - g, p(g)~*v) ® k for some
g € G, which yields

(e g,pr(2)p(g)'v) @k = (e 0:(9), p(0:(9)) ' pr(2)v) ® k = (e, pr(2)v) @ k

where + also denotes the G-action on 0, (E), so that pp(z)p € (0.(E) x, V) ® Kx is well
defined.

In what follows we denote by - the G’ =~ Gy x¢ . ['-action on E given by Proposition
3.2.4] or equivalently the GG’-action making the total space of F a G’-bundle over X as in
Proposition Let W be an open subset of X where Ky is trivial, and let U := py.} (W).
The open set U is I'-invariant and trivializes Ky =~ p}, Kx. Hence the local sections ¢|;s
and ¢*|y may be regarded as Gp-equivariant maps ¢y : Ey — V and ¢f, : 0.(E)y — V
respectively, and moreover by Proposition [3.4.5| ¢y is I'-equivariant. They are related by
©*(e) = pr(z)p(e) for each e € Ey or, using the I'-equivariance of ¢/, by ¢*(e-z) = ¢(e).
We have

(e 2)x7) =9 (e-(1,2) - (1,2) 7" - (1,7) - (1,2))
=¢*((e-7)2)
= (e 7)
= p(e) - pr(7)
= (e~ z) - pr(7)

for each e € Ey and v € I'. This implies that ¢}, is I'-equivariant as a map and so,
by Proposition the corresponding section of (6,(E) x, V) ® Ky|y is I'-invariant.
Since U is arbitrary, the global section p* € H°(Y”, (0,(E) x, V) ® Ky-) is I-invariant as
required. [

Theorem 4.4.8. Let Y € H'Y(X,T') with monodromy group T and corresponding con-

nected component Y', and denote by My (X, G, V') the moduli space of (G,V)-Higgs
pairs E over X such that E/Gy =~ Y. We have a bijection

MY Gy, T",0,¢,V, pr)/Zr(T") = My(X,G,V), (4.4.9)

where Zy (") is the centralizer of T in T', which acts on M(Y',Gy,1",0,¢,V, pr) as in
Proposition The bijection is given by Proposition and extension of structure
group from G’ to G.

Proof. Given a (G,V)-Higgs pair (Eg, ¢g) over X such that E;/G, = Y, take a con-
nected component £ < Fg such that £/Gy =~ Y'. By Lemma there exists ¢ €
H°(X, E(V)® Kx) such that (E, ¢) is a reduction of structure group of (Eg, ¢¢) to G',
and so surjectivity follows by Proposition4.4.2]

To show that the morphism is well-defined, consider a (G’, V')-Higgs pair (E, ¢) with
extension of structure group (Eg, pg) to G. Let z € Zp(IV), s := (1,2) € G and § :=
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Int,—1 € Aut(G’). In the proof of Theorem we saw that Es — FE is a reduction of
structure group to G’ isomorphic to (E). If ¢ is locally equal to (e,v) ® k€ E(V) ® Kx
then the Higgs field of E's given by Lemma[4.4.5)is locally equal to (es, p(s)"'v) ® k =
(es, pr(z)~'v) ® k. Recall that the isomorphism Fs =~ 3(E) is multiplication by s™!, so
that the induced Higgs field is locally equal to (ess™, pr(z) 'v) ® k = (e, pr(z) 'v) ® k,
which is a local representation of pr(z)~'y. Hence the extension of structure group of
(Int; *(E), pr(2)~ty) is also (Eq, ¢q), as required.

It is left to show injectivity. Let (F, ) and (F’, ') be (0, ¢, pr)-twisted I"-equivariant
(Go, V)-Higgs pairs over Y’ and let (E,¢) and (E’,¢') be the corresponding (G',V)-
Higgs pairs over X given by Proposition[4.4.2] Assume that they have the same extension
of structure group (Eg, @) to G. By the proof of Theorem[3.3.4 B = Es < Eg, where
s = (1,z) for some z € Zp(I"'), thus B’ = Int,'(E). By the previous paragraph the
Higgs field on Int; '(E) induced by the Higgs field on Es given by Lemma is equal
to pr(z)e. Thus (£, ¢') = (Int; ' (E), pr(z1)¢p), as required. O

Corollary 4.4.9. Let Y € HY(X,T') with monodromy group I" and corresponding con-
nected component Y, and denote by My (X, G) the moduli space of G-bundles E over X
such that E/Gy = Y. We have a bijection

M(YlaG()aF,aeac)/ZF(F/) — MY(Xv G)a (4410)

where Zp(I") is the centralizer of I in T, which acts on M(Y', Gy, 1", 60, ¢) as in Propo-
sition The bijection is given by Proposition [3.2.6| and extension of structure group
from G’ to G.
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Chapter 5

The Prym—Narasimhan—Ramanan
construction

Let X be a compact Riemann surface with canonical bundle Ky and G a connected re-
ductive complex Lie group with centre Z. We consider the problem of finding the fixed
points of the action of a finite subgroup T' of H'(X,Z) x Out(G) x C* on the moduli
space M (X, G) of G-Higgs bundles over X (see Section [2.4). Projections on the second,
third and first factors provide homomorphisms @ : I' — Out(G), p : I' — C* and a
l1-cocycle o € ZNT', HY(X, Z)) respectively (see Definition . Note the absence of
n: I' = Aut(X), which is trivial in this Chapter.

An answer to this problem is given by [39, Theorem 6.10] when I is cyclic, in terms of
Higgs pairs with smaller structure group over X. We have generalized this to account for
any finite subgroup I" of H'(X, Z) x Out(G) x C* in Theorem Moreover, we use this
and Theorem to obtain Theorem which describes the fixed points in terms of
twisted equivariant Higgs pairs over certain étale covers of X. This in turn generalizes the
result of Narasimhan—Ramanan [58]], who restrict themselves to vector bundles (i.e. G =
GL(n, C) and trivial Higgs field) and I" equal to a finite cyclic subgroup of the Jacobian.

5.1 Automorphisms of a reductive complex Lie group

Take a homomorphism
6:I — Aut(G); v— 0,

lifting . We study the fixed points the action of ' on GG. We assume that Z!(T', Z) is
finite. This is true, for example, if Z is finite (i.e. G is semisimple), since in this case the
set of maps Fun(T', H(X, Z)) from I to H'(X, Z) is finite, or if a is trivial, since then
ZNT, Z) = Hom(T', Z).
We define
G’ :={geG|0,(g) =gforeveryyel'} <G

and
Go:={9eG|0,(9) =2(7,9)9, 2(7,9) € Z forevery ye I'} < G.

68



The group I" acts (trivially) on (Y and, since it acts on Z, it also acts on G (note that Z is
a subgroup of Gy). The group G? is a normal subgroup of Gy: for every v € I, g € GY and

s € Gy, we have

1 1

0,(sgs™) = z(v,9)sgs " 2(v,9) " = sgs™".

To understand better how G lies inside Gy we use 1-cocycles —see Definition [3.1.4]
Note that the set of 1-cocycles Z!(T', Z) has a group structure induced by Z. There is an

exact sequence of groups
1 -G -Gy % ZNT, 2), (5.1.1)

where the last homomorphism sends g € Gy to the map

I'—Z; v g'0,(9) =0,(9)97" = 2(v,9) € Z.

To see why ¢ is well defined note that, if v and ' are elements of I' and g € Gy, we have:

co(7Y)g = by (g) = 05 (0y(9)) = 0,(co(v')g) = 0,(ca(7'))0,(g) = O(ca(?'))ca(7)g
= cp(7)0,(co(7"))g,

where ¢y is evaluated at g. The exactness of (5.1.1) implies that ¢, factors through the
quotient
Fg = G@ / Ga

via a group embedding 'y — Z!(T', Z). In particular, the finiteness of Z!(T", Z) implies
that Gy is a finite extension of GY, and the reductiveness of G? (see Proposition 3.6 in
chapter 3 of [63]]) is inherited by Gy.

On the other hand, if Fun(A, B) denotes the set of maps from a set A to a set B, we
have a natural group homomorphism

HY(X,Fun(T, 2)) — Fun(T, H'(X, 2)), (5.1.2)

where the group structures on both sides are induced by Z —this is an isomorphism if 7 is
finite (i.e. G is semisimple). To define it we use the homomorphism

Hom (71 (X), A) — H(X, A); p— X x, (A),

that exists for any abelian group A, where X is the universal cover of X. This has an

inverse
HI(X,A) ;Hom(m(X),A) (5.1.3)

if A is also finite. Then (5.1.2) is the composition

HY(X,Fun(T', Z)) = Hom (7 (X), Fun(T, Z)) = Fun(T', Hom (7, (X), Z))
— Fun(T', H'(X, 2)).

One can see that (5.1.2)) restricts to a homomorphism
HY(X, Z,(T,2)) = Z,(T, H'(X, Z)), (5.1.4)

which is an isomorphism if 7 is finite.
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Recall that, given a complex Lie group H, the set of equivalence classes of Cech 1-
cocycles on X with values on the sheaf A of holomorphic functions to H is in natural bijec-
tion with the set of isomorphism classes of holomorphic H-bundles. We call it H' (X, H).
It has a distinguished element (representing the trivial bundle), which gives H' (X, H) the
structure of a pointed set. Using this notation, the homomorphism ¢y induces a morphism
of pointed sets

H'(X,Gy) — H'(X. Z)(T, 2))

by extension of structure group. Composing with (5.1.4), we get a morphism of pointed
sets
HY(X,Gy) — Z} (T, H' (X, 2)).

Note that the factorization of ¢y through the cohomology of the quotient
HI(X7 FG) - Z;(Fa HI(X7 Z))

is injective, since it is a composition of an isomorphism and a homomorphism induced by
an embedding in an abelian group. The last one is injective because of (5.1.3).

The group G? is connected when G is simply connected and the image of the homo-
morphism 6 is cyclic (see chapter 8 in [78]). However, it is not connected in general even
when G is simply connected. For this reason, we will need to “refine” (5.1.1)) using the
connected component G of G?. Due to the fact that Gy is an extension of GY by a finite
group, GY is also the connected component of Gy. Thus we have an extension

15 G — Gy 2Ty — 1, (5.1.5)

where Fg is a finite group because Gy is reductive. Of course there is a natural surjective
homomorphism I'y — T'y, which induces a morphism H' (X, Fg) — H'(X,Ty). We call
Qe to the composition

qo - H'(X, fe) — HY(X,Ty) — H (X, Z\(T, 2)) —» ZX(T', H'(X, Z)). (5.1.6)

5.2 Restrictions of the adjoint representation

Let g be the Lie algebra of G. We consider the restriction of the adjoint representation
Ad: G — GL(g)
to the subgroups G? and Gy, defined in Section Given a character
p:T—C% oy py,
we may consider the p-weight subspace of g, given by
= {veglb,(v) = p,v forevery vy e I'}.

One can see that it is preserved by the adjoint action of Gy: for every g € Gy, v € I' and
v € gf), we have

0 Adg(”> = Ad@w(g)(ew(v)) = AdZ(%g)g(/ﬁvv) = Hy Adg(“)‘
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Abusing notation, we call Ad : Gy — GL(gZ) to the restriction of the adjoint representa-
tion.
The following lemma is a crucial ingredient to prove Proposition

Lemma 5.2.1. Given a homomorphism 0 : I' — Aut(QG), there exists a compact involution
o of G preserving Gy such that, for every character p : I' — C¥,

dO'(gZ) = gz—l .

Proof. Letgp := 3, cpiomr cx) 8. This is a subalgebra of g, since [gf,, g/,] = g, for every
pair of homomorphisms z and ¢/ € Hom(T", C*). In fact gy is the subalgebra g of fixed
points of g under the action of the commutator C' := [0(T), ()] = {0y -1-1} yrer:
note that, for each triple v, and 4" € I" and an element v € g, we have

977/7—17/—197//(1}) = eﬂ///e,y,y/,y_Ly/_l(U) = 67//<’U),

so that §(I") acts on g©. The automorphisms of this subalgebra induced by the elements of
6(T") can be simultaneously diagonalizable (note that they are semisimple, since they have
finite order), thus giving a decomposition as in the definition of gy. This shows g < gy,
and the reverse inclusion is clear.

The subalgebra of fixed points under a family of semisimple automorphisms is reductive
(see [63]]). The restriction of #(I") to g¢ is now an abelian group of automorphisms of a
reductive Lie algebra, in particular it has a decomposition {1} =Ty c Ty < --- c 'y, <
Iy, = 0(I')|,c by subgroups such that I';1/I'; is cyclic (just take a set of generators for
0(T"), order them and let I'; be the subgroup generated by the first i of them). Hence, by
[20, Theorem 7.6], there exists a Cartan subalgebra t of g© that is preserved by the action
of #(T"). Since the proof is inductive on the dimension of the Lie algebra, we may assume
that t = t n g’ is a Cartan subalgebra of g’.

Let A be the set of roots of g, given by the adjoint action of t, and choose a system of
positive roots A*. Consider the root space decomposition

g“=td @ of g, (5.2.7)
AEAT

Since g? is a reductive subalgebra of g, its Cartan subalgebra t has a root space decom-
position too, say

¢ =te P dad, (5.2.8)

AeAd

where A, is the set of roots of g’. Since root spaces are one-dimensional, appears
as a summand in . In particular the space of roots of g© “contains” the space of roots
of g% and we may assume that A* “contains” a system of positive roots of g’, in the sense
that they are represented by elements of ¢/.

Let G¢ be the connected reductive subgroup of G with Lie algebra g¢. Recall that
there is a family of compact involutions o of G¢ associated with t. We may first define
a holomorphic involution as follows: the reductive Lie algebra g can be described using
sly-triples (zy, ty, 2_), where X is a positive root, ¢, € t and = € g5. The pair (zy,z_))
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is well defined up to the action of C* such that ¢ € C* sends it to (czy, ¢ 'z_). Then the
involution sends (xy, ¢y, x_)) to (—x_y, —tx, —z,). Composing with the antiholomorphic
involution which fixes x and ¢, for every root A we get a compact involution, which we
call 0. We now claim that, for every v € I" and every eigenspace g, of 6.,, we may choose
the elements x) so that we have do(g,) = g,-1.

Fix v € I' with order n. Since 0., preserves t, it must commute the roots. Thus, the
eigenvectors of 6, in t with eigenvalue v € C* (an n-th root of unity) are linear combina-
tions of elements of the form ¢y + Uty (n) + -+ + ﬁ”_ltezfl( NE where A is a root. Each of
these elements satisfies

which is a v~ !-eigenvector. On the other hand, given a root )\, the automorphism 6, sends
the element ) to cxxg, (r), Where ¢y € C*. If 6,(\) = A then ¢, must be an n-th root of
unity. Thus, by choosing a representative root A in each orbit of the action of I' on the set
of roots and then choosing a representative in the intersection of the orbit of =, with the
6,/ (X)-root space for every 7' € I', we may assume that ¢, is a root of unity. Moreover,

to.on) = Oy([zx, 222]) = coxealo, (0), 76, 0] = coxeata (),

so we must have c_, = 0;1 = ¢C). A v-eigenvector in the sum of root spaces is a linear
. . — —n—1
comblnatlon of elements of the form xx + Dexzg, () + -+ + V" ¢gn2(3)Tgn-1(y). These
satisfy
— —n—1
do(zx + Teazo, o) + - + 7" 09272(/\)1:9271(/\)) =

_ N

Ty +veT_g )t V" Con—2(0)T_gn—1(5) =
n—1

Ty +VCA\T_pg,(\)+ - +V C_gn=2(0)T_gr—1(x)»

which is a v~ !-eigenvector. This proves that do(g,) < g,-1, but reversing »~! and v shows
that do(g,-1) < g,, which implies that g,-1 < do(g,) too.

To finish the argument pick a lift 7 : Ty — Aut(GY) of the characteristic homomor-
phism of that leaves ¢’ invariant. We may further assume that dr, (z)) = T, (x) for
each A\ € Ag and v € fg, where 7.,()\) denotes the image of A under the automorphism
induced by 7., on the space of roots of g’. Then do|, commutes with dr, for each v € fg.
Thus o|ge commutes with 7(I'y), i.e. the maximal compact subgroup Ko := (G9)7 is
7(I'y)-invariant.

By Proposition 1i there exists a 2-cocycle ¢ € Zf(fg, Kz) with values in K :=
KoynZz (GS) such that the extensions Gy and Gg Xre fg of G? are isomorphic. Conjugation

by (1,7) € G§ x.. f@ on (Y is equal to 7, which implies that we have a maximal compact
subgroup

K= ] Ko(1,7)
Vefe
of Gy. Extending this to a maximal compact subgroup of GG provides the required compact
form o on G, which restricts to the original o on G°. U
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5.3 Galois cohomology and GIT

Let GG be a connected reductive complex Lie group, I a finite group and 0 : ' — Aut(G)
a homomorphism. Consider the action of GG on the set of 1-cocycles given by

G x Zy(T,G) — Z3(T,G); (g, 8) = gBo(9) ™",

where g is regarded as a constant map. The quotient of Z}(T', G) by this action is precisely
the first non-abelian cohomology set H} (T, G).
There is a closed embedding

Z4(T,G) — Hom(T',G g T); B = (v — (B(7),7)),

where the semidirect product is defined using 6. This is (G-equivariant for the conjugation
action of G on Hom(I', G x4 I"), since

9B, Mg~ = (98()0,(9)"",7)

foreachge G,yeTand € Z}(T,G).

Recall that a homomorphism Hom(I', G x4 I') is reductive if its composition with the
adjoint representation is completely reducible. On the other hand, G' xy I" is a reductive
group (it is a finite extension of a reductive group) and so reductive representations have
closed orbits [S6]]. But I' is finite, hence all its representations are reductive. We have
shown:

Proposition 5.3.1. All the elements of Z} (T, G) have closed orbits under the action of G.

5.4 Simple G-bundles and Galois cohomology

Let X be a compact Riemann surface, and GG a connected reductive complex Lie group. Let
[ be a finite subgroup of H'(X, Z) x Out(G) x C*. Projections on the second, third and
first factors provide homomorphisms a : I' — Out(G,V), p : I' — C* and a 1-cocycle
ae ZNT, H'(X, Z)) respectively. Recall that this is amap o : I' — H'(X, Z) satisfying

Qyy = Oy (Cty)

for each vy and ' € T.

Fix a lift # : I' — Aut(G) of a. Abusing notation we also call § to the induced
homomorphism I' — Aut(G/Z). The first step to describe the fixed points is to construct
a map R

JiH (X, G)F — HAT,G/2)

here H'(X,G)! is the set of isomorphism classes of simple G-bundles which are fixed
under the action of I and H}(T', G/Z) is the first Galois cohomology set of " with values
in G/Z, consisting of equivalence classes of 1-cocycles as given in Definition
Recall from Section [2.2] that a G-Higgs bundle is simple if its group of automorphisms
is equal to Z. This implies, in particular, a notion of simple G-bundle. Let ' be a simple
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G-bundle over X such that £ = 67'(E ® a,) for every v in I. In other words, for each
v € I' we have an isomorphism

hy:E= 0 (EQa).
This in turn induces an isomorphism
hy:E/Z -0 (E®a,)/Z.

Note that the simplicity of £ implies that this is independent of the choice of /.. Since
0,(Z) = Z, there are natural isomorphisms

0, (E®ay)/Z =0, (E)/Z =0, (E/Z).

According to Section the total spaces of 6 YWE/Z) aEd E/Z are naturally biholomor-
phic. After composing we may regard the isomorphisms /., as biholomorphisms

hy,:E/Z - E/Z

satisfying

hv(eg) = Ev(e)6v<g)-

Define a holomorphic map
f:E—Fu(l',G/Z)

in such a way that h(e) = ef, (e) for each e € E/Z. A straightforward calculation shows
that

fleg) =g ' fe)b(g) (5.4.9)

for every g € G/Z and e € E/Z, where we are identifying elements in G/Z with constant
functions.

Lemma 5.4.1. Foreverye€ E, f(e) € Z}(T',G/Z).

Proof. By Remark if v and 7/ are elements of I', the isomorphism %, induces an
isomorphism

(B, 0)y — (B, )7
which we also call h.,. Since hyhyh;wl/ is in the gauge group of (F, ), which is Z, we
have h.h, = h., and so

efory(€) = hyy(e) = hyhy(e) = hylefy(e)) = hy(e)by(fy(e)) = efy(e)b,(fy(e))
for each e € E/Z, as required. [l

Note that the fact that G/Z is an affine algebraic variety implies that Fun(I', G/Z) is
affine. Since Z; (I', G/Z) is a closed subvariety of Fun(T", G/Z), it is itself affine. Consider
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the action of G/Z on Z}(T',G/Z), such that g € G/Z sends 3 € Z}(T', G/ Z) to g36(g)~".
Because of Lemma[5.4.1and (5.4.9) we have a morphism

X—7,(1.G/Z) | G/Z.

where the right hand side is the corresponding GIT quotient [27]. Since Z;(I',G/Z) is
affine, so is Z;(I',G/Z) /| G/Z. Since this is an algebraic morphism from a projective
variety to an affine variety, it must be constant. Using Proposition [5.3.1] we conclude that,
for each e € E, the orbit of f(e) under the action of G/Z is closed. Since the closures of
all these orbits intersect (because their images in the GIT quotient are equal), all the orbits
must coincide. Thus, we get a map

fH'(X,G)! — H)(.G/Z)

sending E to the class of f(e) for any e € E. Moreover, we have:

~

Lemma 5.4.2. An element 3 € Z}(U',G/Z) is in the class f(E, ) if and only if, for every
(or for some) x € X, there exists e in the fibre of E over x such that f(e) = f3.

Proof. The if direction follows immediately from the definition of f For the only if direc-

~

tion, fix x € X andlet 5 € f(F, ¢). From the previous paragraphs we know that there exist
¢’ in the fibre of z and g € G/Z such that f(€/) = g7'56(g). By (5.4.9) we get

fleg™h) = gf(b(g™") = B,
sowe sete := €/'g 1. O

Remark 5.4.3. Using the natural isomorphism G/Z = Int(G), we will sometimes identify
the image of f with H} (T, Int(G)), where the action of I" on Int((G) is conjugation by 6.
Now let S be the set of isomorphism classes of simple GG-Higgs bundles, and let S*

be the subset of fixed points. Using the same arguments above we may define a map
f:SY - ZIT,G/Z) ~ Z}(T,Int(G)). Moreover, we have

Lemma 5.4.4. Let (E, ¢) be a simple G-Higgs bundle preserved by the action of I'. An

~

element B € Z}(T,G/Z) is in the class f(E, ) if and only if, for every (or for some)
x € X, there exists e in the fibre of E over x such that f(e) = .

5.5 Simple G-Higgs bundles and fixed points

We are now ready to describe the fixed points in the set of isomorphism classes of G-
bundles under the ['-action.

Proposition 5.5.1. Let E be a G-bundle and 0 € Hom(T", Aut(G)) a lift of a. With notation
as in Section[5.1] assume that there is a Gy-bundle F which is a reduction of structure group
of E such that

éo(F) = a. (5.5.10)

Then E is isomorphic to Ey = 0" (E ® ) for every y € T.
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Proof. It is enough to get an isomorphism
hy: F =0 (FQa,).

This in turn would induce an isomorphism from E to ' (E ® a).
Fix v € I" and choose an open cover {U;};c; of X which trivializes both F and . Let
e; and z; define local sections of /' and a, resp. on U;. We get transition functions

gz‘jIUiﬁUjHG,ZijiUiﬁUjHZ

satisfying e; = e;g;; and z; = zz;. A set of local trivializations for 67" (F ® o) is
then {U;, e; ® 2} (with the e; ® z;’s regarded as local sections of 0 Y(F ® a,)), and the
corresponding transition functions are 6 Y(gij2i5) : Ui 0 U; — G. But, using , we
may assume that z;; = g;;'0,(g;;) and so 05 (gi2:5) = 05" (9:;9;;'0+(9i)) = gi;- Hence,
we may set h,(e;) 1= e; ® z; and extend the isomorphism to the whole F' imposing that it
respects the Gp-actions. [l

Proposition 5.5.2. Let (E, @) be a G-Higgs bundle and 0 € Hom(I', Aut(G)) a lift of a.
With notation as in Section assume that there is a (G, gZ)—Higgs pair (F, 1) which is
a reduction of structure group of (E, o) satisfying (5.5.10). Then (E, p) is isomorphic to
(E, @)y = (‘9;1(E ® ay), H79;1(¢))f07 every y € I'.

Proof. Mimicking the proof of Proposition|5.5.1|we get an isomorphism i, : E' — 6 YE®
a.,) which is induced by the identity on F'. It is left to check that

ha () = 11,057 ().

Note that, if ¢ is locally of the form (e;, 7) ® k, where e; is the local section defined above,
then the local form of h,(¢) is also (e;,7) ® k with e; considered as a local section of

0,1 (E). But p1,0, (1) is locally equal to

o (0, 071 (1) @ k = 11 (e1,7) @ k = (e1,7) @ F,
as required. [

Proposition 5.5.3. Let E be a simple G-bundle over X which is isomorphic to Ev~ for
every v inT. Then a 1-cocycle 3 € Zj(T,G/Z) isin f(E) € Hy(X,G/Z) (definitions as
in Section if and only if there exists a G gp-bundle F' which is a reduction of structure
group of E and satisfies

Zso(F) = a, (5.5.11)

where we are identifying G/Z with Int(G). For each 3 € Z}(T',G/Z) such a reduction is
unique.

~

Proof. Choose an element 5 € f(E) and let s : [' — G be a map such that § = Int,. For
each y € T' take an isomorphism h., : E — 6. (E ® ). By Lemma |5.4.2, if we define f
as in Section f71(B) has non-empty intersection with every fibre of F over X. Define

F:={ee E:hy(e) =es,®z(e), z,(e) € Z(G)}. (5.5.12)
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This is the preimage of f~1(/3) under the natural projection £ — E/Z. Then, given e € F
and g € G, the element eg is also in F' if and only if

€gSy ®Z'y(e) = (637 ®Zw(e))6_1(g) = hw(e)ﬂ_l(g) = hw(e‘gy—lﬂ_l(g))
= 6(597)_1<g)3'y ® Z’y(eg)

for every v € T, or equivalently 36, (¢g)g~" € Z. This shows that F’ provides a reduction of
structure group to G g9. Moreover, the isomorphisms

hy 5t _
E=S50 (E®a)) =00, (EQa,y) = (B,6,) (EQay),
where the second map is multiplication by s ! on the right, restricts to isomorphisms

F— (5797)_1([7@()47); e — e® 2,(e)

for every y € I'. To see why (5.5.11)) is true we fix v € I" and use an open cover {U, };c; of
X trivializing F" equipped with local sections e; on each Uj, so that z; := z,(e;) is a set of
local sections for . Setting z; = 2;2;; and e; = e;¢;;, we have

(€isy ® Zi)ﬁy_l(gij)zij = (€i9ij8y ® i) zij = €j5, ® z; = hy(e;) = hy(eigij)
= (€i8y ® 2i)0,(9i5)-

Hence z;; = f3,(zi;) = B404(gi;)g;;'» which implies that cv;, = ¢z (E). The uniqueness
of the reduction follows from Proposition the simplicity of £ and the fact that the
resulting isomorphisms completely determine the reduction by (5.5.12).

Now let ' € Z!(T', G/Z) be another 1-cocycle and assume that there is a reduction of
structure group F” of E to G g satisfying (5.5.11) with 3’ instead of 3. Let s’ : I' — G be
a map such that 3’ = Inty. By Proposition [5.5.1 we have isomorphisms

W, B (80,)"(E)®@y = 0;1(E) @7,
where the second morphism is multiplication by s/, € G, and these induce isomorphisms

h,:E/Z = 6]Y(E)/Z.

Note from the proof of Proposition [5.5.1|that there exists e € F/Z such that h ;,
where we regard 3 as the image of s” in Fun(I',G/Z). Thus, by Lemmah

f(B).

Proposition 5.5.4. Let (E, @) be a simple G-Higgs bundle over X which is isomorphic to
(E, @)y for every v inT. Thena I-cocycle § € ZHT,G/Z) isin f(E, ) € HE(X, Int(G))
(definitions as in Section[5.4) if and only if there exists a G gg-bundle I’ which is a reduction
of structure group of E/ and satisfies . For each 8 € Z}(T',G/Z) such a reduction
is unique.
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Proof. Take isomorphisms h. : (E,¢) — 07'(E ® a.,, j1,) for each v € I' and assume
that a 1-cocycle 3 € ZAX(T',G/Z) is in f(E, ) € HY(X,Int(G)). Mimicking the proof of
Proposition and replacing Proposition with Proposition we get a reduction
of structure group of £ to a G gp-bundle " given by (5.5.12). Let 6’ := 36 and let 1/, be the
composition
hlv (B, 9) o _1(E®O‘7’M790) - 9’_1(E®047,,u7g0),

where s : I' — G is any map such that § = Int,.

The Higgs field is in H°(X, F(gZ’) ® Kx): if ¢ is locally of the form (e, v) ® k, we
may assume by Lemma [4.4.5]that ¢ € F, hence h,(e) = es, ® z,(e) by and so
h.(e) = e ® z,(e). Therefore, we have

0 (E)(g) ®k 3 (e,v) @k = (h(e),v) @k = py(e, 0, (v) @ k (5.5.13)
for every v € I' (here we are using the identification between 9;_1(E ® a.) xaq g and
0.7 (E) xaqa ). That is to say, = 057! (v) whenever k does not vanish, and so ¢

1s induced by a section of F( " ® K X as required. Thus, we have a reduction to a

(G s, gu %)-Higgs pair (F,1)).
The uniqueness of the reduction and the converse statement (i.e. the if statement) follow
as in the proof of Proposition [5.5.3]after replacing Proposition[5.5.1] with Proposition[5.5.2]
o

5.6 Fixed points in the moduli space of G-Higgs bundles

We use the results of Section [5.5]to give a description of the fixed points in the moduli
space of GG-Higgs bundles. As in Section we assume that Z!(T, Z) is finite. We start
with:

Proposition 5.6.1. Let § € Hom (I', Aut(G)) be a lift of a. Take a lift T'y — Aut(G?) of the
characteristic homomorphism of preserving a maximal compact subgroup K < G}

and extend K° to a maximal compact subgroup K of G. Fix ¢ € i(3%)'°, where 3! is the
centre of ¥. Then:

1. If a (Gy, gﬁ)—Higgs pair (F, 1) is (-polystable, the G-Higgs bundle (F, @) obtained
by extension of structure group is also C-polystable.

2. If (E, ) is a (-(semi,poly)stable G-Higgs bundle with a reduction of structure group
to a (G, gi)-pair (F, 1)), then (F, 1) is (-(semi,poly)stable.

3. Giveng e Gand® := Int, 0 Int,, there is an isomorphism between M (X, Gy, g!))
and M*(X, Gy, gz/) making the following diagramme commute:

MA(X, Gy, g)) —— M(X,G)

l / , (5.6.14)

MC(Xa G9/7gu)
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where the morphisms to M(X,G) are given by extension of structure group. For
each o € ZX(T', HY(X, 7)), it restricts to a diagramme

MS(X, Gg,gu — M(X,G)

I

Mg(X7 GQ” g,u)

Here MS,(X, Gy, gZ) is the moduli space of (-polystable (Gy, gZ)—Higgs pairs (F, )
such that ¢y(F) =~ a.

(1), (2) and (5.6.14)) are also true after replacing Gy and Gy by G° and G respectively.

Proof. The proof of (2) is exactly the same as the proof of Proposition 5.7 (2) in [39]:
suppose that (F, 1)) is not (-semistable. Following Definition there is an s € i(€%)"
defining a parabolic subgroup P; € Gy, and a reduction 7 of F' to a P;s-bundle such that
deg F(s,7) < {(z,syand ¢ € H*(X, F(g'),, ® Kx). But s also defines a parabolic sub-
group P, of G, and the reduction T defines a reduction 7 of E to P, such that deg E(s,7) =
deg F'(s, 7). Moreover, it is straightforward to check that (gZ)S = P, n gﬁ and so ¢ €
H°(X, Ex(p;) ® Kx). This contradicts the (-semistability of (F, ¢). The same argument
applies to stability and polystability.

Now we prove (1), which also follows [39]: fix a maximal compact subgroup Ky of Gy
and consider a maximal compact subgroup K of GG containing it, so that Ky = K n Gy.
By Lemma we may assume that K is defined by an antiholomorphic involution ¢ of
G satisfying

do(g)) = gi (5.6.15)
for every homomorphism . : I' — C*. Then, given a (-polystable (G, gz)—Higgs pair
(F, 1)), by Theorem and Proposition there exists a fg-invariant reduction hy €
O°(F/Ky) satisfying the Hitchin equation (2.3.4). Let (£, o) be the extension of structure
group of (F,v) to G. Using the inclusion F//Ky ¢ E/K, we get a reduction of structure
group h € Q°(E/K).

On the other hand, is an equation setting a moment map equal to —:27(: if we
consider the topological bundle underlying £ and the space A of pairs (A, ), where A is
a hermitian G-connection on E and ¢ € Q'(E(g)), there is an action of the gauge group
preserving the metric i and this provides a moment map m : X — Ej(£)*, where E}, is
the reduction of £ to K given by h and € is the Lie algebra of K. Using the Killing form,
m may be regarded as a map X — Fj(¥). The space B of (Gy, g ) -Higgs pairs (B, 1)),
where B is a hermitian G-connection and ) € Q'(F(g!)) (here F is the reduction of
structure group to Gy determined by the Gy-connection) is then embedded in .4, and the
corresponding moment map my is the restriction of

X 2 Ey(E) — B, ()

to BB, where the second homomorphism is given by orthogonal projection and we use the
obvious notations. Given a (-polystable (G, gz)—Higgs pair (F), 1) as in the previous para-
graph, the moment map at (F, 1)) is given by:

m(E, ) = AMFy + [¢,0n(¥)]),
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where A is the adjoint operator of wedging by the Kihler form w on X. But F}) =
F, (the curvature of the Chern connection for the metric /), and implies that
[v,0(v)] € [gf“gfrl] c g for each v € gf, hence [, 0,(¥)] € Q°(X, F, (8 N g%)) =
O°(X, F},(€%)). This means that the moment map m; is just the restriction of m and so
m(E, ) = mg(F, ) as required. Thus, (E, ) satisfies and so, by Theorem [2.3.1]
it is ¢-polystable.

The isomorphism in (3) is given as follows: consider a G-Higgs bundle (E, ¢), a ho-
momorphism # € Hom (I', Aut(G)) and a reduction of structure group F' to Gy such that ¢
is induced by a section v of F(gZ) ® Kx. Letge G and ¢ := Inty 0 Int,—:. We show that

there is also a reduction I to Gy such that ¢ is induced by a section v’ of F” (gZ’) ® Kx.
We set
F':=Fg !,

So that 1s a reduction to Int 9). But u € (G 1s contained in Int p) 1T and only 1
hat F" i ducti Int,(Gy). B Gi ined in Int,(Gy) if and only if
Inty 0 Int 1 (u) = 2(7v, w)u

for each v € T, which yields Int,(Gy) = Gy. Similarly Int,(G?) = G?, therefore g~
induces an isomorphism from F/G? to F'/G? and so é4(F) = é(F"). On the other hand,
if ¢ is locally equal to (e, v)®k for some e € F, v € gu and k € K, we may define ¢’ locally

as (eg~', Ad, v) ® k. It is straightforward to see that this is a section of F'(g M) ® Kx.
The proof for G is precisely the same. [

Corollary 5.6.2. Let 0 € Hom (I', Aut(G)) be a lift of a and fix { € z’(g?)fg. Then:

1. If a Gy-bundle F is (-polystable, the G-bundle obtained by extension of structure
group is also (-polystable.

2. If E is a (-(semi,poly)stable G-bundle with a reduction of structure group to a Ggy-
bundle F, then F is (-(semi,poly)stable.

3. Given g € G and 0' := Int,0Int,1, there is a canonical isomorphism between
M(X,Gy) and M (X, Gy') making the following diagramme commute:

M(X,Gg) — M(X,G)

|

M(X,Gy)

where the morphisms to M(X,G) are given by extension of structure group. For
each o € ZN(T', H'(X, Z)), it restricts to a diagramme

(X, Gy) —— M(X,G)

l —

X Gg/
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where M, (X, Gy) is the moduli space of Gy-bundles F such that ¢o(F') = o

Let MQ(X, Gy, g%,) be the union of the images of the moduli spaces M, (X, Go, g7,)
in M(X,G) as ¢ runs through elements of i(37)"?, and similarly replacing Gy with GY.
Let M, (X,Gy) be the image of M, (X,Gy) in M(X,G) respectively, and so on. By
Proposition [5.6.1] if ¢ = Inty 6 Int,—1 for some g € G, we have M, (X, Gg,gZ) -
MCY(X7 G9'7 gf:)

Let M(X,G)" and M (X, G)" be the fixed point locus of M(X,G) and M (X, G) re-
spectively under the action of T, and let M (X, G)" and M, (X, G)" be the intersections

with the stable and simple loci. Given a 1-cocycle 3, € Z;(I', G/Z), we call [3] to its co-
homology class in H}(I',G/Z) (see Definition 3.1.4). Combining Propositions and

[5.5.3| we get:

Theorem 5.6.3. Fix a homomorphism 0 : T' — Aut(G) lifting a. We have the inclusions

) Ma(X,Gu) = M(X,G)'
[BleH} (T, Int(G))

and N
My (X,G)" < U Ma(X,Gp).
[BleH} (T, Int(G))

Moreover, the intersections
M(X,G) n Mo(X, Ggg) = Myy(X, G)" ~ M (X, Gp)
are disjoint for different [3] € Hy (T, Int(Q)).

We also have the corresponding result for Higgs bundles, which follows from Proposi-

tions [3.53.2] and 5.5.4¢

Theorem 5.6.4. Fix a homomorphism 6 : I' — Aut(G) lifting a. We have the following
relations between moduli spaces:

1.
U Ma(Xa GB@; 959) < M<X7 G)F

[BleH} (T Int(G))
Mo(X.G) < ) Ma(X, Geo ).
[BleH} (T, Int(G))

As [B] runs over Hy (T, Int(G)), B30 runs over all the conjugacy classes (under conju-
gation by Int(QG)) of elements of Hom (I', Aut(Q)) lifting a. Moreover; the intersections

M(X,G) A Mo(X, Go, 67) = My(X, G)T 0 Mo(X, Gpo, g7)

are disjoint for different [3] € Hj (T, Int(G)).
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Corollary 5.6.5. If the character i : I' — C* is trivial, we have the following inclusions:

1.
U Ma(Xa GﬁH) < M<X7 G)F

[Ble H} (T, Int(G))

Mo(X,G) e ) Ma(X,Ga).

[BleH (T ,Int(G))
Moreover, the intersections
Mo(X,G) 0 M(X,Gp) = Mo(X,G) 0 M(X, Gg)
are disjoint for different [3] € Hy (T, Int(Q)).

Corollary 5.6.6. If M (X, GY) is the image of the extension of structure group morphism
M(X,G% — M(X, Q) and a is trivial, we have the following inclusions:

1.
) MX.G? g c M(X.G).

[BleH} (T, Int(G))
Mo(X.G)F e ) MG g
[BleH (T, Int(G))
Moreover, the intersections
M (X, G) 0 Ma(X, G g7%) = Mo(X,G)" n Mo (X, G, g%)

are disjoint for different [3] € Hy (T, Int(Q)).

Proof. Follows from Theorem|5.6.4/using M (X, Gao, 9))) = M(X,G?, g.%), where we
denote the trivial 1-cocycle in ZX(T', H' (X, Z)) by 1. O

5.7 The Prym-Narasimhan-Ramanan construction of fixed
points

The Prym—Narasimhan—Ramanan construction can be now given as a corollary of Theorem
4.4.8| which, combined with Theorem provides a characterization of the subvariety
of fixed points.

Let X be a compact Riemann surface and let GG be a connected reductive complex Lie
group with centre Z. Let I be a finite subgroup of H'(X, Z) x Out(G) x C* and consider
a lift 0 of a. In this section we assume that the order of « € Z}(T', H'(X, Z)) and Z}(T', Z)
are both finite.
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Remark 5.7.1. The second assumption is not necessary, since the fact that the structure
group of « is a finite subgroup I'y < Z!(T', Z) implies that any Gy-bundle F such that
9(F) =~ a has a reduction of structure group to ¢, (I'y). Thus in what follows we could
replace Gy by ¢, (T'y) and eliminate the finiteness assumption on Z}(T, Z). However, for
simplicity we keep this assumption.

We keep the notation of Sectionm Let Z(G?) be the centre of G and Y € H' (X, IA“Q),
a ﬁg-bundle over X. The connected component Y of Y may be regarded as a connected
étale cover of X with Galois group I'y < fg. Consider the subgroup Gy < Gy which
is the preimage of I'y under the quotient Gy — f‘g Choose a lift 77 fg — Aut(GY)
of the characteristic homomorphlsrn of the extension ( - By Prop0s1t10n [3.2.3] there
exists a 2-cocycle ¢ € Z2, (Fg, (GY)) such that Gy = G§ X (;0 .0 T'. On the other hand,
a Gy-bundle F over X satisfies éy(F) =~ « if and only if E/GY ~ Y for some element
Y e H(X, f‘g) such that go(Y") = «, where by abuse of notation ¢y is given by applying
extension of structure group from I'y to fg and then using the homomorphism f‘g — Iy
defined in Section The application of Theorem yields:

Theorem 5.7.2. Let ( € i(gf)f". For each homomorphism 6 : T' — Aut(G) lifting a we
have an isomorphism

| | MY, GO Ty 7%, & g0)/ Zs, (Ty) = MS(X, Gy, gh), (5.7.16)

qo(Y)=a

where Zg, (T'y) is the centralizer of T'y in fg, which acts on by Proposition4.4.7)

Fix such a lift . Let /W(Y GY, 779 Ty, ", gﬁe, 1)/ Zp,(L'y) be the union of the images
of the moduli spaces M*(Y, G, 77 Ty, ¢, gu o 1) in M(X,G) via the composition of
the isomorphism given in Theorem 4.4.8 and extension of structure group from Gy to G.

Here ( runs through all the elements of i(gf)re. Then we have the following inclusions:
1.

U M(Y, Gg,Fy,Tﬁe,cﬂ",gﬁ")/Zm(Fy) c M(X,G)".

[BleH} (DInt(G)).q5 (Y) =0

M,s(X,G)F < U M(Y, G, Ty, 7%, g2/ Zs (Ty).

[BleH (T,Int(G)),q0 (Y )=a

As [B] runs over H} (T, Int(G)), B30 runs over all the conjugacy classes (under conju-
gation by Int(Q)) of elements of Hom (I', Aut(G)) lifting a. Moreover, the intersections

M(X,G) 0 M(Y, G0, Ty, %, c” o)/ 7z (Ty)

are disjoint for different [3] € H} (T, Int(G)) and Y.

83



Theorem 5.7.3. For each homomorphism 0 : T' — Aut(G) lifting a we have an isomor-
phism
| | M, G Ty, 77, 7)) Z; (Ty) = Mu(X, Gy), (5.7.17)

70 (Y) =

where Zg, (T'y) is the centralizer of 'y in fg, which acts on by Proposition 4.4.7]

Fix such a lift 0. Let ]\7(Y, GY, Ty, %, 059)/Zf9 (T'y) be the image of the moduli space
M(Y,GY Ty, 7%, cﬁe)/Zfe (Cy) in M (X, G) via the composition of the isomorphism given
in Theorem{d.4.8 and extension of structure group from Gy to G. Then we have the follow-
ing inclusions:

1.
U M(Y,G),Ty, 7,7/ Z: (Ty) = M(X,G)".
[BleH} (I, Int(G)) g0 (V) =ax

M, (X,G)F U M(Y,G),Ty, 7,7/ Z: (Ty).

[BleH} (T, Int(G)),q0 (V)=

As [B] runs over Hy (T, Int(G)), B30 runs over all the conjugacy classes (under conju-
gation by Int(QG)) of elements of Hom (I', Aut(QG)) lifting a. Moreover; the intersections

]\455()(7 G) M M(Y7 G87 FY; 7—697 Cﬁe)/Zf‘g (FY)

are disjoint for different [3] € H} (T, Int(G)) and Y.

5.8 The Prym-Narasimhan—-Ramanan construction for char-
acter varieties

Keep the assumptions of Section namely that the order of o € Z}(T', H (X, Z)) and
ZNT, Z) are both finite. If we suppose that y is trivial, Theorem yields a description
of the fixed points of a I-action on the character variety R(X, G). We keep the definitions
of Section4.2] The action of I on R (X, G) induced by its action on M (X, G) via Theorem
is given as follows: for each v € I, the corresponding Z-bundle « is flat —it has
finite order by assumption— and so it is given by a representation p., : (X ) — Z. Given
a representation p : m(X) — G, we may multiply it by p, to get a new representation
p ® p~. Now, given the automorphism 6., of G and p € Hom(m (X, ), G), there is another
representation of 71(X,z) in G given by 6, o p. This defines a left action of Aut(G)
on R(X,G) that clearly descends to an action of Out(G). So for every v € I" and p €
Hom(m(X), G) we have p - v € Hom(7(X), G) given by

p.yzev_lo(p@)ozw).

It is straightforward to show (see [15, 139, 40] for a similar computation) that the right
action of I" on R(X, G) given by this coincides with the action of I" on M (X, G) defined
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in Section [2.4] via the non-abelian Hodge correspondence (recall that here we are taking the
character ;o : I' — C* to be trivial). R

For each lift 6 of a, let 7% and ¢’ satisfy Gy =~ G %0 0 I'g. Let Y be the connected
component of a fg—bundle, with Galois group I'y < fg. Then, by Proposition and
Theorem (4.4.8 and the non-abelian Hodge correspondence 4.2.2, we have a morphism
R(Y,G Ty, 79 69)/Zf9(ry) — R(X,G). Let R(Y,GY, Ty, 77, 09)/Zf9(ry) be its im-
age. By Theorem we have the following result:

Theorem 5.8.1. Let o be trivial and fix 6 € Hom (I', Aut(QG)) lifting a. We have the
following relations between character varieties:

1.
g R(Y, Gy’ Ty, 7%, ¢")/Z; (Ty) = R(X,G)".
[8leH (T,Int(G)),qp0 (Y)=cx

Rine(X,G)F < U R(Y, Gy’ Ty, 7 ¢") ) Zz, (Ty).
[BleHg (T, Int(G)),qp0 (Y)=cx
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Chapter 6

Prym-Narasimhan—-Ramanan
construction for a finite cyclic group
action

6.1 Action of a finite cyclic subgroup of the Jacobian on
the moduli space of GL(n, C)-Higgs bundles

In this section we apply Theorem to the case where G = GL(n,C) and a is trivial.
In particular this shows that the construction in [38] follows from Theorem when
applied to GL(n, C)-bundles, or vector bundles of rank n.

Let L be a line bundle over X with order r, which may be seen as an element of
HY(X,Z/rZ), and assume that n = rm is divisible by r (otherwise there would be no
fixed points). Let I' < H'(X,Z/rZ) be the subgroup generated by L and consider a
homomorphism

po L —C% oy p,.
We want to calculate the fixed points of the action of I" on M (X, GL(n, C)).

Every element in Hom(Z/rZ, Int(GL(n, C))) is determined by the image of the gen-
erator of Z/rZ. Moreover, every element in GL(n,C) with finite order is diagonalizable
and so every class in H*(Z/rZ,Int(GL(n,C))), which is equal to the character variety
X(Z/rZ,Int(GL(n,C))) := Hom(Z/rZ,Int(GL(n,C)))/Int(GL(n, C)), is represented
by an automorphism of the form 6 := Int,;, where

I, 0 ... 0
0 ¢, ... 0

M := . C.p . . ;
0 0 ... ¢,

( is a primitive r-th root of unity and p; +. . . +p, = n. The group of fixed points GL(n, C)?
under this automorphism is equal to GL(p;, C) x GL(p2,C) x ... x GL(p,,C).

In order to define the group GL(n,C)y, as defined in Section note that the group
multiplication Z/rZ x 7Z/r7Z — 7Z/rZ induces an inclusion of Z/rZ in the group of per-
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mutations of the eigenvalues of M. Let A be a matrix permuting the eigenspaces of M, in
the sense that it sends each eigenspace to its permutation. We denote by p(A) the corre-
sponding permutation of the eigenvalues of M. We then call A a permutation matrix if
p(A) € Z/rZ. The group GL(n,C), is generated by GL(n, C)? and a set of permutation
matrices, one for each element & in Z/rZ such that the eigenspaces corresponding to the
same orbit of eigenvalues under the action of (k) have the same dimension. On the other
hand, we know from Theorem [5.6.4] that the moduli of fixed points M (X, GL(n,C)) is
empty unless the homomorphism

cg: GL(n,C)g — Z/rZ

is surjective. This happens if and only if all the eigenspaces have the same dimension, i.e.
p1 = -+ = p, = m. We will assume this from now on.

Thus, GL(n,C)g is a Z/rZ-extension of GL(n,C)? generated by GL(n,C)? and the
permutation matrix
I, 0 ... O

0 In

0 0 I, ... O
Si=1: R

o 0 0 ... I,

I, 0 0 ... 0

Since S = 1, the 2-cocycle involved is the trivial map
Z/r7 x 7)rZ, — Z(GL(n,C)%) = (C*)".
This provides an isomorphism
GL(n,C)y = GL(n, C)? X (tig1) Z/rZ = GL(n,C)? 1wy Z/r7Z,

where by abuse of notation we are writing the image Intg of the generator instead of the
whole homomorphism
7,/27 — Aut(GL(n,C)?).
Let
pr: Xp—> X

be the Galois r-cover of X defined by L and let A\ be a generator of its Galois group
"1, which is isomorphic to Z/rZ. According to Theorem simple fixed points come
from (Intg, c)-twisted Z/rZ-equivariant GL(n, C)?-bundles over X ;. The associated vec-
tor bundles are direct sums of vector bundles of rank m with a I'-equivariant action. Take
one of them, and callit V = F® Fy, @ ... ® F;_;. The automorphism induced by A
via Remark [3.4.3|and the natural embedding of GL(n, C), in GL(n, C) exchanges the ac-
tion of the copies of GL(m, C) (as does the conjugation by .5), therefore its effect on V' is
permuting the summands. This provides an isomorphism

V= \'V
permuting the summands or, in other words,

VeFOMFONF®.. @\ F
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The action of the Galois group is the permutation action on V.

To see what happens to the Higgs field, we first note that g[z is the vector space of
permutation matrices A such that p(A) = pu(L)~'. The homomorphism m;(X) — C*
determined by L induces a natural isomorphism 'y =~ I'* := Hom([', C*). Regarding
4 as an element of ', and using the I';-equivariance, we find that the Higgs field on V'
must be induced by homomorphisms \** ' — ;,~1* \¥* ' ® K obtained by pulling back a
homomorphism

Vv F - "FQ K,
under the elements of Gal(X/X) where K is the canonical bundle of X7
In summary,

Proposition 6.1.1. A simple GL(n, C)-Higgs bundle (E, @) over X is isomorphic to (E ®
L, (L)) if and only if it is the pushforward of a vector bundle F' of rank m over X, and
@ is induced by a homomorphism

Vi F - "FQKy.

Corollary 6.1.2. Let L be a line bundle of order 2 over X with corresponding Etale cover
X1 — X. Consider the involution of M(X,GL(2m,C)) sending each Higgs bundle
(E,¢) to (E® L,—p). Then a smooth point is fixed under this action if and only if it is
the pushforward of a vector bundle F' of rank m on X equipped with a homomorphism
Y F — NF ® Ki, where X is the generator of Gal(X/X) =~ 7Z/27 and K, is the
canonical bundle of X,

Remark 6.1.3. With data (F, ) as in Corollary[6.1.2] the higgs bundle (F' @ \*F, ¢y ®\*¢))
—whose quotient by the permutation action of Gal(X,/X) is the pushforward of F'— is a
U(m, m)-Higgs bundle on X7

6.2 Dualization of Higgs bundles

Throughout this section, attaching an “N” to the left of a subgroup of SL(n,C) denotes
its normalizer in SL(n,C). If n > 3, the group of outer automorphisms of SL(n, C) is
isomorphic to Z/27. A lift of its generator a is given by the automorphism 6 sending A to
A*=!, Given a line bundle L,

LO(L) = LL* ~ O,

the trivial bundle. Thus we have a homomorphism
7.)27 — H*(X,C*) x Out(SL(n, C))
sending the generator —1 € Z/27 to (L, a). If E is a simple fixed point,
O >~ det(F) = det(E*)® L™ = L",

so that necessarily L has finite order r dividing n and so L reduces to a Z/nZ-bundle. From
[45] we also know that every class of Hj(Z/27Z,Int(SL(n,C))) is represented either by ¢
or, in case that n = 2m is even, v := Int; 0, where

0 I,
J = (_[m o)‘ (6.2.1)



We need to calculate the extensions NSO(n,C) = SL(n,C)s and NSp(2m,C) =
SL(n,C), (see [39]) of SO(n,C) and Sp(2m, C), respectively. To do so, we first cal-
culate cy(NSO(n,C)) and ¢, (NSp(2m,C)). Recall that ¢y is the homomorphism which
sends g € NSO(n,C) to 6(g)g~", which is an element of the centre of SO(n,C), and we
may define ¢, similarly. For the symplectic group consider the group of invertible matrices

I, 0
M, = <o c‘%)’ (6.2.2)

where ¢ € C*. They satisfy
c,(M,) = cl,,

so that ¢, is an isomorphism from the group to C*. Since C* coincides with the centre of
GL(2m, C), every coset of the normalizer of Sp(2m, C) in GL(2m, C) must be represented
by a matrix M,. Classes in the quotient NSp(2m, C)/Sp(2m, C) must be in bijection with
elements of the group with determinant 1, which are exactly the elements M, such that c is
an m-th root of unity. Choose a primitive m-th root of unity ¢ and set

Intys : Z/mZ — Int(Sp(2m, C)); k — Inty,, -
Then we get an isomorphism
NSp(2m,C) = Sp(2m, C) X (ing,, 1) Z/MZ, (6.2.3)

i.e. NSp(2m, C) is a semidirect product of Sp(2m, C) by Z/mZ.
For the orthogonal group, given ¢ € C*,

co(cly) = ¢ 21,

and varying ¢ we get the whole centre of SL(n, C). Again, classes in NSO(n, C)/SO(n, C)
are represented by scalar matrices with determinant 1, which are just n-th roots of unity.
When 7 is odd, taking a power —2 is an automorphism of the group of n-th roots Z/nZ,
so that NSO(n, C) is a semidirect product of SO(n, C) with Z/nZ given by conjugation by
an element of the centre. In other words, a direct product. However, when n = 2m is even
the restriction of ¢4 to Z/nZ is not an isomorphism and so a 2-cocycle appears. In this case
we may restrict to n-th roots of unity with argument less than 7 to give a bijection between
NSO(2m, C) and SO(2m,C) x Z/mZ. Since conjugation by elements in the centre is
trivial, so is the characteristic homomorphism. The cocycle c is defined as follows: define
a map
o:7/nl — 727

which assigns an n-th root to 1 if its argument is less than 7 and —1 otherwise. Then set
c: Z/nZ x Z/nZ — L/2Z; (6,8') — o(528'2), (6.2.4)

where §72 is the unique square root of § with argument less than 7.
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Remark 6.2.1. We may explicitly check that this is a 2-cocycle since, if §, 9" and 6" are n-th
roots of unity,
(8',6")c(5,8'8") = 0(528'2)0(528'26"2)0(5'26"2) = (88, 8")e(6, ),
where we have used that
(56")2 = o(626'2)526'2.
Applying the proof of Proposition [3.2.3| we have isomorphisms

SO(n,C) x Z/nZ if n is odd

6.2.5
SO(n,C) xq ¢ Z/mZ if n = 2m. ( )

NSO(n,C) = {

Remark 6.2.2. Note that the same reasoning that gives the even case in (6.2.5)) also provides
an isomorphism
NSp(2m, C) = Sp(2m, C) x ¢y Z/mZ.

Thus we have two descriptions of NSp(2m, C), one with trivial 2-cocycle and one with a
trivial lift of the characteristic homomorphism.

We are now ready to describe the simple fixed points. Let r be the order of L. Using
Theorem we first conclude that there are no simple fixed points if  does not divide
n, or if it does not divide m when n = 2m. Let X be the étale cover of X associated to
L, which has degree equal to r. If  divides n [or m], we have:

Proposition 6.2.3. Let I =~ 7Z./27 equipped with the homomorphism
' - J(X) x Aut(SL(n, C))

which assigns —1 to (L, 0), where 0 is taking transpose and inverse and L is a line bundle
over X of order r dividing n, if n is odd, or m = n/2 if n is even. Let X;, — X be the
étale cover of degree r determined by L. Then we have:

1. Ifnis odd:

M(X1,80(n,C),Z/rZ,1,1) = M(X,SL(n,C))" and
Mo(X,SL(n,C))" © M(X1,80(n,C),Z/rZ,1,1).

2. If n = 2m is even:

~

M(X1,S0(n,C),Z/rZ, 1, c)u
M(X 1, Sp(2m, C), Z/rZ, Inty, 1) cM(X,SL(n,C))"  and
M,(X,SL(n,C))" cM(X,,S0(n,C),Z/rZ,1,c)u

~

M(Xp,Sp(2m,C),Z/rZ,Inty, 1).

>

where c and M are given by ((6.2.4) and ((6.2.2)) respectively.
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6.3 Tensorization of Sp(2n, C)-Higgs bundles by line bun-
dles of order 2

Let L € H'(X,7Z/2Z) be a line bundle of order 2 and let X, be the corresponding étale
cover of degree two over X. Consider the involution of the moduli space of Sp(2n, C)-
Higgs bundles which sends (E, ¢) to (E®L, +). In other words, the generator of I is sent
to (L,1,+1) € H'(X,Z/27Z) x Out(Sp(2n, C)) x C* —general actions of finite subgroups
of H'(X,Z/27) are considered in Chapter[8] We note on passing that Out(Sp(2n, C)) is
trivial and the centre of Sp(2n, C) is Z/27Z, so that this covers all the possible subgroups of
order 2 of H'(X,7Z/27) x Out(Sp(2n,C)) x C*.

Consider the embedding of Sp(2n, C) in GL(2n, C) associated to the symplectic form
J defined by (6.2.1). According to [45] the conjugacy classes of involutions in the quotient
Aut(Sp(2n, C))/ Int(Sp(2n, C)) are represented by Int ; and Intg, ,, where

-, 0 0 O
(0 I .10 4L, 0 O
J = <_In 0) and K, ,:=1 0 0 -1, 0]

0 0 0 1

and p + ¢ = n. The matrix J is conjugate to

Set 0 := Int s and 7, , := Inty, . By Theorem[5.6.4 we have

M (X,Sp(2n,C))" =
M.s(X,Sp(2n,C)) (%(X,Sp(zn,@e,giau U ML<X,Sp<2n,c>Tp,q,gff>),
p+g=n

where the subscript L indicates that the quotient by the action of the fixed-point subgroups
Sp(2n, C)? and Sp(2n, C)™« respectively, is a Z/2Z-bundle isomorphic to L. Since

Sp(2n,C),,, = Sp(2n,C)™
unless p = ¢, we actually have
M (X, Sp(2n,C))' = (6.3.6)
M.y(X,Sp(2n,C)) A (ML(X, Sp(2n, C)g, °.,) U My (X, Sp(2n, )., g;)) ,

where 7 := 7,5 ,/2 and the second component is only present if n is even. From now on,
whenever n/2 appears it will be implicit that n is even.
We find that Sp(2n, C)? =~ GL(n, C) is the subgroup of matrices of the form

A 0
0 At—l )
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and Sp(2n, C)y is the subgroup of Sp(2n, C) generated by Sp(2n, C)? and S. Since S? =
—1I, we get an isomorphism

Sp(2n,C)y = Sp(2n,@)9 Xnt, —1 Z/27Z,

where we call —1 to the 2-cocycle ¢ € Zt, (Z/2Z, Z(Sp(2n, C)?)) such that ¢(—1,—1) =
—1Is,.

On the other hand, Sp(2n,C)™ = Sp(n/2, C) x Sp(n/2, C) is the subgroup of matrices
of the form

o Qo
o O o
oo
T o Te

where
A B O P

(@ 0) = (3%
are in Sp(n/2,C). The group Sp(2n,C), is generated by Sp(2n,C)" = Sp(n/2,C) x
Sp(n/2,C) and
0 Lp 0 0
L, 0 0 0
0 0 0 ILpl
0 0 ILp 0

which has order 2. Thus, Sp(2n, C), = Sp(2n,C)™ X, 1 Z/27Z.

Let X, be the étale cover of X associated to L. Consider the action of I' on C?" such
that the generator of I' multiplies vectors by .S on the left. This is the action provided by
Remark and the embedding of Sp(2n, C)y in GL(2n,C). By Proposition we
may describe (Int;, —1)-twisted Z/27Z-equivariant Sp(2n, C)-bundles over X, in terms of
vector bundles of rank 2n over X; which have the form £ ® E*, where F is a vector bundle
of rank n over X and the automorphism corresponding to the generator A of the Galois
group exchanges the two summands. Let f : £ — A*E* and f' : E* — A*E be the
restrictions of the homomorphism induced by the action of Gal(X/X) on E@® E*. On
the one hand the equivariance of the I"-action implies that A*(f)f’ = 1. On the other, the
fact that the action preserves the symplectic form implies

(e,€%) = wle, ") = w(f(e), f'(e") = =(f'(€"), f(e)) = =(f" f(e), )

for each e € F and e* € E*, where (e, o) denotes the natural pairing between F and E*
and w is the corresponding symplectic form. Thus f' = —f*"!, and we conclude that
A*(f*) = —f. The action of the Galois group on F @ E* given by f @ — f* is induced
by the natural permutation action on £ @ A\* F using the isomorphism \*( f) between \*
and £*.

Similarly, when n is even, by Remark we know that (Inty, 1)-twisted Z/27Z-
equivariant Sp(n/2, C) x Sp(n/2,C)-bundles over X, have associated vector bundles of
the form £ @ FE’, where both E and E’ are symplectic vector bundles. The action of the

T :=
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Galois group exchanges E and E’, so that £’ ~ A\* FE and the symplectic form on £’ is just
the pullback of the symplectic form on E.

Thus the relevant twisted equivariant principal bundles are in correspondence with the
following objects:

1. For ML(X, Sp(2n, C)y): vector bundles F of rank n on X, equipped with an iso-
morphism f : E — \*E* satisfying \* f* = —f, where A\ € I'* = Gal(X/X) is
the generator. The corresponding vector bundle on X is the pushforward of £, and
the symplectic form is given by the standard one on £ ® E* and f.

2. For M (X, Sp(2n,C),), assuming n is even: symplectic vector bundles £ of rank
n on X . Again, the corresponding vector bundles on X are the pushforwards.

Let K, is the canonical bundle of X;. The Higgs field has values in the +1-weight space
of the corresponding involution. In the +1 case this means that it preserves I, in the sense
that it is given by a homomorphism £ — E x K, whereas in the —1 case it is determined
by a A*-invariant homomorphism £ — \*E ® K, i.e. the Higgs field exchanges F and
A*E. Summing up and plugging in the stability conditions, which for symplectic bundles
mean that no isotropic sub-bundle has non-negative degree, yields:

Proposition 6.3.1. Let L be a line bundle of order 2 over X with corresponding Etale cover
pr : Xp — X and Galois group generated by A\ € Aut(Xp). Let Ky, be the canonical
bundle of Xy. Consider the automorphism of M(X,Sp(2n,C)) sending (E,¢) to (E ®
L, ). Then the smooth fixed points in M(X,Sp(2n,C)) are pushforwards (under pr,) of
the following two types of Higgs bundles with extra structure:

1. A stable Higgs bundle (F,1) of rank n on Xy, equipped with an isomorphism f :
(F, ) 5> X\*(F*,0*) such that \* f* = — f.

2. Only if n is even: a stable symplectic Higgs bundle of rank n/2 over X.

Conversely, such pushforwards are fixed points.

Now consider the automorphism of M(X,Sp(2n,C)) sending (E, ) to (E® L, —y).
Then the smooth fixed points in M(X, Sp(2n, C)) are pushforwards (under py,) of the fol-
lowing two types of vector bundles with extra structure:

1. A vector bundle bundle F' of rank n on X}, equipped with a homomomorphism 1 :
F — MF ® Ky, and an isomorphism f : (F, 1) — \*(F* 4*) such that \* f* =
—f.

2. Only if n is even: a symplectic vector bundle of rank n/2 over X with a homomor-
phism . F' — \*F ® K|, which preserves the symplectic form.

Conversely, such pushforwards are fixed points.

Remark 6.3.2. Let 1) be the compact involution of Sp(2n, C) yielding the maximal compact
subgroup Sp(2n) = Sp(2n,C) n U(n). Under the given embedding in GL(2n, C) this is
just conjugating, transposing and inverting, and it can be seen with a simple computation
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that it commutes with 6 and 7. Then 76 € Aut(Sp(2n,C)) is a conjugate of nInt; (see
which, since Int is just taking transpose and inverse on Sp(2n, C), is the antiholo-
morphic involution given by conjugation of matrices. Thus the fixed point real subgroup
Sp(2n, C)" is isomorphic to Sp(2n, R). We may also see that Sp(2n, C)"" is isomorphic
to Sp(n/2,n/2). Let NSp(2n,R) and NSp(n/2,n/2) denote the respective normalizers
in Sp(2n, C). Their quotients by their connected components, which are Sp(2n,R) and
Sp(n/2,n/2) respectively, are isomorphic to Z/2Z. According to Section 8.2 in [39] the
non-abelian Hodge correspondence provides isomorphisms

M(XL7 Sp<2n7 (C)g) 949_1) = R(XLa Sp(2n7 R))u
M(XL,Sp(2n, )7, g7,) = R(XL, Sp(n/2,n/2)),

where R (X, o) denotes the character variety of 7 (X ) with values in o . Thus our state-
ments may be regarded as a correspondence between fixed points in M (X, Sp(2n, C)) and
twisted equivariant Sp(2n, R) and Sp(n/2.n/2)-Higgs bundles on X, respectively.

6.4 Tensorization of Spin(n, C)-Higgs bundles by elements
of order 2

First we briefly recall the construction of the group Spin(n, C)). For more details see [55].
Consider a complex vector space V' of dimension n equipped with an orthogonal form w.
The tensor algebra T'(V) := P, V® has an ideal I(V,w) generated by elements of the
form v®v+w(v), where v € V and w(v) := w(v, v), and the quotient is the Clifford algebra
Cl(V,w) :=T(V)/I(V,w). We define Pin(n, C) = Cl(V, w) to be the multiplicative group
generated by elements v € V' such that w(v) = +1, and Spin(n, C) < Pin(n, C) to be the
subgroup of elements of even length. We have a degree two covering

f : Spin(n,C) — SO(n,C)

given by associating an element of Spin(n, C) to its adjoint action on V. The fibre of the
automorphism Ad i1s £v; ... vy, We assume that w is the standard orthogonal form
onV =C".

According to [45], the involutions of SO(n, C) are given, up to conjugation by Int(G),
by Int;,  (for any p, g such that p + ¢ = n) and, when n is even, Int ;, where

L 0 In/2 L —[p 0
J = (—In/z o) and 1, '_(o Iq). (6.4.7)

The only inner automorphisms of order 2 up to conjugation are Int;,  for one of p or g
even (and p + ¢ = n) and Int; for n = 4m. This is of course also true for Spin(n, C), since
Int(SO(n, C)) = Int(Spin(n, C)). If we assume without loss that p is even, we find

V1...V2k

SO(n, C)™wa = S(O(p, C)xO(g, C)) = (SO(p, C)xSO(g, C)) (O~ (p,C)x O~ (¢, C)),

where O~ (p, C) is the non-trivial coset of SO(p, C) in O(p, C).
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We split our analysis for Int;, , in two cases: first consider that p # ¢. Then the
group SO(n, C)ny,  is equal to SO(n, C)™r.a. Therefore Spin(n, Cin,,, is equal to
f71(SO(n, €)™ w.a), which is an extension of Spin(n, C)™®. by either Z/27Z or 1. But
Spin(n, C)™r. is connected, since Spin(n, C) is simply connected [63]], so that necessar-

ily
Spin(n, C)™a = f~1(SO(p, C) x SO(q,C)) = Spin(p, C) x Spin(q, C).

An element in f~1(O~(p,C) x O (q,C)) with order 2 is s, := ivv,,1, where v; € C?
and v,;1 € C? have norm 1. The adjoint action on Spin(p, C) x Spin(gq, C) is determined
by reflections on v; and v, ;, and
312, = —U1Vp4+1U1Vp41 = V1V1VUp41VUpy1 = (*1)(*1) =1,
so that the 2-cocycle c given by Proposition is trivial. Thus we get an isomorphism
Spin(n, C)u,, , = (Spin(p, C) x Spin(g, C)) x,, 1 Z/2Z,

a semidirect product, where by abuse of notation we are writing the image of the generator
instead of the whole homomorphism

Z/27 — Aut(Spin(p, C) x Spin(q, C)).

When n = 4m we have the remaining case p = ¢ = 2m, where SO(n, C)Intfgm,zm is
generated by SO(2m, C) xSO(2m, C) and J. In this case Spin(4m, C)py 1o an, 18 geNCTated
by Spin(2m, C) x Spin(2m, C), one of the elements J' € f~!(J) and ss,,. Since J? =
J? = —1, we have an isomorphism

Spin(4m, C) ~ (Spin(2m, C) x Spin(2m, C)) x,.. (Z/27)*.

IntIQm,Qm

If the generators of (Z/27Z)?* are a and b then 7, = Int ;/, which exchanges the two factors,
and 7, = Int,, . The 2-cocycle c is trivial except for the pairs (b,a), (a,a), (ba,b) and
(b, ab), which are mapped to —1.

Finally, when n = 4m we have that SO(4m,C)’ =~ GL(2m,C) is the subgroup of

matrices of the form
A B
(_ B A) ) (6.4.8)

where the isomorphism sends this matrix to A + ¢B. The extension SO(4m, C), is gener-
ated by SO(4m, C)” and I3, 2m, so that

SO(4m, C); =~ GL(2m,C) x4 Z,/27,

where 0 € Aut(GL(2m, C)) consists of taking transpose and inverse. Indeed, note that the
Lie algebra of SO(4m, C)” consists of matrices of the form (6.4.8)) with A antisymmetric
and B symmetric. The automorphism Ady,, ,,, sends this matrix to

(5 )
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which is mapped to A—iB € gl(2m, C), thus the induced automorphism of gl(2m, C) sends
M to —M?*. Since this coincides with the differential of ¢, the automorphism Int,,  ,  must
induce 6.

The preimage of each component in Spin(n, C) is connected: we may define a path
from 1 € Spin(n,C) to —1 in f~1(SO(4m, C)”) by choosing a vector v of norm —1, so
that vv = 1, and rotating one of the factors inside a two-dimensional subspace of V' until it
gets to —v. Since f is a degree two covering given by quotienting by {+1}, this proves that
S71(SO(4m, C)”) is connected. Since this is the preimage of the connected component
of SO(4m,C),, the preimage of the remaining component is also connected. Note that
f~Y(SO(4m,C)’) is a 2-cover of GL(2m, C), hence it is isomorphic to GL(2m, C) itself.

Summing up, we have:

Proposition 6.4.1. Let L be a Z(Spin(n, C))-bundle of order 2 over X, and let X, be the
(connected) étale cover associated to it. Let f : Spin(n,C) — SO(n,C) be the natural
2-cover, J the matrix given in (6.4.7) and .J' € Spin(n, C) one of the elements in f~*(J).

1. If n # 4m then, with definitions as in Section5.7)
U /W(XL, Spin(p, C) x Spin(q, C), Z/2Z, Int,,, 1) =« M(X, Spin(n, C))*
p even,p+q=n

and

M (X, Spin(n, C))* U M(XL, Spin(p, C) xSpin(q, C), Z/2Z, Int,,, 1),

p even, p+q=n

where s, = 1v1Vp41, 1 is the trivial 2-cocycle and we are calling Int, to the homo-
morphism 7./27 — Aut(Spin(p, C) x Spin(q, C)) whose image of —1 is Int,, by
abuse of notation.

2. When n = 4m there are several possibilities depending on the image of the mon-
odromy representation of L: if the monodromy group is 7./27. x 7./27. then

M (X, Spin(2m, C) x Spin(2m, C), Z/27Z x 7./2Z., 7, ¢) = M(X, Spin(n, C))*
and
Ms(X,Spin(n, C))* = M(X, Spin(2m, C) x Spin(2m, C), Z/2Z x Z/2Z, 7,c).

If the generators of (Z/27.)? are a and b then 7, = Int; and 7, = Int,,, . Moreover,
c is the 2-cocycle in Z*(Z/2Z x Z/2Z, Z(Spin(2m, C) x Spin(2m, C))) which is
equal to —1 at (b, a), (a,a), (ba,b) and (b, ab) and trivial at every other pair.

3. If n = 4m and the monodromy group of L is a subgroup of order 2 in /27, x 7/27
whose image under f is £1 € SO(n, C) then:

~

M(Xp,Spin(2m, C) x Spin(2m, C), Z/27Z, Inty;, —1)u
U M(Xr,GL(2m,C),Z/2Z,0,1) = M(X, Spin(n, C))~
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and

M (X, Spin(n, C))* < M(Xp, Spin(2m, C) x Spin(2m, C), Z/2Z, Inty;, —1)u
U M(X1,GL(2m,C),Z/2Z,0,1),

where M = J' or J'ss,, depending on the actual monodromy group and 0 consists
of taking transpose and inverse.

4. If n = 4m and the image of the monodromy is f~'(1) = +1 € Spin(4m, C) then:

U /W(XL, Spin(p, C) x Spin(q, C), Z/2Z, Int, , 1) = M(X, Spin(n, C))*

p even, p+q=n

and

M (X, Spin(n, C))* U M(XL, Spin(p, C) xSpin(q, C), Z/27Z, Int,, 1).

p even, p+q=n

6.5 Action of a line bundle of order 2 on F;

Let E7 be the simply connected group with exceptional Lie algebra e;. We briefly review
the construction of E; —for more details see [80]. Recall that the Cayley algebra € is
the R-algebra generated by the group of octonions, which is equipped with a conjugation.
The exceptional Jordan algebra J consists of 3 x 3 hermitian matrices over €, and we may
construct its complexification 3C and define the Freudenthal vector space

B =3p3°@pCcaC.

Given two elements v and v in *BC, we may define a C-linear mapping u x v : B¢ — BC.
We define E; as the group of C-linear automorphisms f : B — B¢ such that

fluxv)f= = fu) x f(v).
This has centre {+1} =~ Z/2Z. Two elements in F; are ¢ and s, defined by
LB - B (u,v,a,b) — (—iu, iv, —ia, i)

and

s:BC - B (u,v,a,b) — (v, —u,b, —a).
They anticommute and their squares are both —1, so that the corresponding inner auto-
morphisms have order 2. According to [80], if Ejg is the simply connected group with
Lie algebra ¢g then EI™ =~ (Fg x C*)/(Z/37), where Z/3Z < C* acts by simultaneous
multiplication on both factors. The action of 7 := Int, on (Eg x C*)/(Z/37Z) is given by
transposing and inverting the factor E and inverting the factor C*, and we have

(Br)ms, = (Eg x C*)/(Z/3Z) x,_1 /2.
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Now let L be a line bundle of order 2 on X, which may be regarded as Z/27Z-bundle,
and let " be the subgroup of H'(X,Z/27) generated by L. Let X be associated étale
cover. According to the previous paragraph and Theorem[5.7.2] the image of

M(X 1, (Es x C)/(Z/3Z),Z/2Z, T, ~1)

is contained in M (X, E;)" and its intersection with the smooth locus is a union of con-
nected components of M, (X, E;)'.
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Chapter 7

Action of a finite subgroup of the

Jacobian on the moduli space of
GL(n, C)-Higgs bundles

Let X be a compact Riemann surface and consider the moduli space M(X, GL(n,C)),
isomorphic to the moduli space of Higgs bundles of rank n. Applying Theorem [5.7.2]
we find a description for the locus of fixed points in M (X, GL(n,C)) under the action
of a finite subgroup T in the Jacobian J(X) =~ H'(X,C*). In other words, we give a
description of M (X, GL(n,C))". For simplicity we make our arguments in the moduli
space M (X, GL(n, C)) of vector bundles of rank n, which are also valid for Higgs bundles.
We write ['* := Hom(I", C*). This will be our I'y, the Galois group of the étale cover
constructed in Section[5.71

7.1 Antisymmetric pairings and character varieties

The first step is to achieve a better understanding of the character variety
X(I', Int(GL(n,C))) := Hom(T", Int(GL(n, C)))/ Int(GL(n, C)),

where Int(GL(n, C)) acts by conjugation.
Let/ : ' — I'* be an antisymmetric pairing, i.e. a homomorphism whose associated
pairing satisfies (y,y) = 1 for each 7y € I. In particular note that

L=y, =300 (7.1.1)

for every v and 4’ € I'. Consider a maximal subgroup ¢ : A < I satisfying that the
induced homomorphism A — A* is trivial, which we call a maximal isotropic subgroup.
In particular, the kernel of I' — I'* — A* is equal to A. Indeed, if it were bigger than A
then there would be an element v € I" such that (-, ) = 1 for each § € A, hence because
of the antisymmetry of [ the subgroup of I" generated by v and A would pair trivially with
itself, contradicting the maximality of A. Hence we get an injection

FiT/A — A%,
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Consider a homomorphism
s: A — C™ < GL(n,C)

landing in the subgroup of diagonal matrices of GL(n, C). The set of weights for the action
of A on C"is a subset A s(A)* < A*. We call Wy to the weight space in C™ with weight
0 € A*. A matrix whose only non-zero entries are contained in blocks corresponding to
each weight space of s(A) is called a A-matrix. Given a A-matrix M, we call Mj to the
block which is the restriction to the weight space W; for each ¢ € A. A matrix M which is
given by a set of linear isomorphisms M;; 5 going from a weight space Wy to the weight
space Wy, where § and ¢’ € A is called a permutation matrix. The element 6 € A* is
denoted p(M). In particular, A-matrices are permutation matrices with trivial p-image.

Definition 7.1.1. A representative triple for I is a triple (I, A, s), where [ : I' — I'* is an
antisymmetric pairing, A < I' is a maximal isotropic subgroup and s : I' — GL(n,C) is a
map satisfying that:

1. Tt restricts to a homomorphism s|a : A — C** < GL(n,C).
2. The map Int, is a homomorphism.
3. The antisymmetric pairing

[ —T% 7= (Y = sy8p8, ")),
which is well defined because of (2) and the fact that I' is abelian, is equal to [. In
particular, for every v € I' the matrix s., is a permutation matrix such that p(s.,) =
t*I()~!. Note that this condition only depends on the class of Int, in X(T", GL(n, C)

4. The image of s consists of permutation matrices whose blocks are multiples of the
identity.

Lemma 7.1.2. For every class in the character variety X(I', Int(GL(n, C))) there exists a
representative triple (I, A, s) such that Int; is in the class.

Proof. Let
0 : T — Int(GL(n,C)); v — Int,,

be a homomorphism. Since I' is abelian, we get an antisymmetric pairing

LT >T%y—(y— SWS,YISJIS,;/I)
Choose a maximal isotropic subgroup ¢ : A < I and call the corresponding injection
f:T/A — A*. Since the elements in s(A) are semisimple (a finite power of each of them
is in C*) and commute with each other, they can be simultaneously diagonalised and so
we may assume (after conjugating 6 if necessary) that they are all diagonal. Moreover, we
may assume after rescaling that the map s| is a homomorphism and every element of s(A)
has some diagonal entries equal to one. The set of weights is a subset A c s(A)* < A*
containing 1. A matrix M whose conjugation by the elements in s(A) induces an element
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d € A* must be a permutation matrix with p(M) = ¢§. Therefore, the homomorphism
I'/A 2 A* induced by p is precisely equal to the multiplicative inverse of f. Given a
weight § € A « A* there is a coset of weights § f(I'/A), and the dimensions of all the
weight spaces in a given coset must be equal. The subgroup f(I'/A) of A* preserves A,
since the corresponding cosets are the orbits of the conjugation action of s(I').

We show that there exists a A-matrix S such that Intg 6 Intg' (") consists of conjuga-
tions by permutation matrices whose blocks are multiples of the identity. Since conjugating
by a A-matrix does not change the elements of s(A), it is enough to choose representatives
v € T of each coset YA € T'/A and find a A-matrix S so that Ss(v)S™! is a permutation
matrix with blocks in C* for each yA € I'/A. Choose a representative § € A of each
orbit 6 f(T'/A) € A/f(I'/A). Consider the A-matrix S determined by S5y = 3(75/)551,7 5
where vy € I is any element in f~!(6') and 6 € A is the representative of 4 f(I'/A). Here
s(7s)ser s 1s just the square matrix representing the restriction of s(vs) to the J-weight
space, whose image is the 9’-weight space. We show that S satisfies the claim.

Indeed, let YA € I'/A be represented by v € I". We want to show that

S5 13)5(Var£(v8),655 " = SV )5 500 65(Vesa),55(7 )5
is a multiple of the identity for each § € ﬁ/ f(T/A) and ¢’ € 0, where f(7'A) =
671 f(vA) and f(7/A) := 671§, But, since 6 is a homomorphism, s(7") = s(v)s(v')d
for some A-matrix d such that ds € C* for each § € A hence

s(Y")5 )55 Msra),55(V)srs = ds ' 5(V)5 55V 5 b0y 05 (Vo pirayers(V )ors = di

as required. [

7.2 The homomorphism cy

Let 0 : I' — Int(GL(n, C)) be a homomorphism. When studying fixed points we only care
about the class of § in X(T", Int(GL(n, C))) by Theorem hence by Lemma [7.1.2] we
may assume that § = Int, for some representative triple (I, A, s). The group GL(n, C)?
defined in Section consists of all the invertible A- matrlces M such that My = Mg
whenever 0 and ¢’ are elements of A in the same coset of A /f(T'/A). From Sectlonﬂwe
have a homomorphism

cg : GL(n,C)y — I'™.
Recall that the objects My (X, GL(n, C)y) in the statement of Theorem|[5.6.3|are defined as
the subvariety of M (X, GL(n, C)y) consisting of GL(n, C)g-bundles £ such that ¢y(E) =
[. Thus the second step in the description of M (X, GL(n,C))" is to understand c,.

Lemma 7.2.1. The image of cy is equal to
={yel™| 'Y‘AA ~ A and dim W.s = dim W; for every ¢ € A},

where W is the §-weight space. Moreover, there is a subgroup T3 < GL(n,C)y con-
taining the centreZ (GL(n,C)?) of GL(n,C)? such that the restriction Colrz induces an
isomorphism

I'7/7Z(GL(n,C)?) =~
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Proof. For each element v € I'y we define a permutation matrix M7 such that p(M7) = v|a
and
Ity (M7) = y(y) M7 (7.2.2)

for each v € I'. First choose a representative § € A of each coset 0f(C/A) e A/f(F/A).
Then, for each &' € § f(I'/A), choose ~y € T such that f(yA) = §’5~! and define

Mg, 5 = 5(7)6’%573(7)5}57(7) -

This is independent of the choice of v since, for every 6y € A = ker f, we have

5(700)579.595(700) 5757 (¥00) ™ = d5(7)sr.65(30)srd " 5(7)5755(d0)5 (7)1 (80) =

57,573V 3571 1 (00)7(00) ™ = $(V)ery.av8 (V357 (7)

where d € C* depends on 7 and J,. Moreover, for each element 7’ € I, we have

5(’7/)]0(7%)5'%5'7MaT/%(s/S(”Y/);(lyA)a/,a/ =

S ('Y/)f(V’A)zS'y,é'fyS('Y)é'fy,MS (7)5,153 ('Y/)f(lfy/A)(s/,a/’Y('Y) -

which, since s(7)s(7') and s(~~') differ by a constant, is equal to

5(VVI)f(A/’A)M,MS(“W/)}(17%)5/,57(7)71 = M}(W’A)é"y,f('y’A)&V(V/)'

This shows that M7 satisfies Int, (M7) = ()M forevery y € I'.

Note that, if v € I'* did not restrict to an element of A* preserving A, there would
be no matrix M satisfying Ints M = ~(0)M for each 6 € A, since this implies that M
is a permutation matrix such that p(M) = v|a. The automorphism M would then send
some non-zero weight space to a trivial weight space via an isomorphism, which is absurd.
Something similar happens when W and W, ; have different dimension for some ¢ € A.
Therefore, the map

{M}er, <> T

is a bijection. A

Now we prove that, if Z(GL(n,C)?) = (C*)IA//(/A)l i5 the centre of GL(n, C)?, the
set ' := Z(GL(n,C)?){M"}.cr, is actually a subgroup of GL(n, C), so that cy induces
an isomorphism I'Z /Z(GL(n, C)?) =~ T'y. Indeed, it is enough to see that whenever - and
~' € T'* preserve A and the corresponding weight spaces have the same dimension, the
matrix M7M™ is equal to M ™™ multiplied by an element of Z(GL(n,C)?), which is a A-
matrix whose restriction to each orbit of A /f(L/A) is constant. Given ¢’ € A*, the chosen
representatives d € ¢'f(I'/A) and §y € 0’7/ f(I'/A) and elements v and -y, € I satisfying
f(yA) = 8671 and f(1A) = 66,7/, we have

Mg—"\/'y’,é"y’M(;r"y’,(S’ = S(770)5’77’,5073(,Y’YU)(;}Y/,(SO,Y(’V’VO)_13(7)5’7/,57’8(7)(;}57, (7)_17

which is equal to

$(7) 547,577 8(70)5v17.5075 (10) 57505 (V) 7o 55 (N iy S (V5577 (1) 1 (0) ™ =

$(V)svr.5v S (5577 (1)~ [8(10) 57,5075 (70) 7.5,V (0) ] =
Mg,f/%é, [5(70) 577,505 (70)5_;/,50 7(70) _1] .
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The expression in brackets only depends on 4, dp, v and 7/, so that My, . 5., Mg/l,y/’a/ and
M g,Ty/v,’é, differ by an element of Z(GL(n,C)?) as required. O

Corollary 7.2.2. The homomorphism cy : GL(n,C)y — I'* is surjective if and only if
the set of weights is the whole A* and the weight spaces have all the same dimension. In
particular, under this assumption s|a is injective, A is identified with A* via s* and the
order of A must divide n.

We call (I, A, s) an admissible triple if any of the two equivalent conditions in the
statement of Corollary are met. In particular this implies, by injectivity of s|» and
f = ps, that § = Int, is injective.

7.3 Admissible triples and components of the fixed point
variety

With definitions as in Section we show that MF(X ,GL(n,C)y) is empty unless the
triple ({, A, s) is admissible. Moreover, we parametrize the components of the fixed point
locus using solely antisymmetric pairings.

Corollary 7.3.1. If M (X, GL(n,C))' is the stable fixed point locus, the intersection
M(X,GL(n,C)" A M(X,GL(n,C),)
is empty unless (I, A, s) is an admissible triple.

Proof. The whole point here is that the monodromy of I' when considered as an element of
H'(X,Hom(T,C*)) =~ Hom(T', H'(X, C*)) is precisely I'* by Proposition [7.3.2] There-
fore, according to Theorem|[5.6.3} in order for the smooth fixed point locus M (X, GL(n, C))"
to be non-empty we need Iy to be isomorphic to I'* via the homomorphism ¢, : GL(n,C)g —
['*. Equivalently, cy must be surjective. 0

Let p : Xr — X be the étale cover which underlies the I'*-bundle I'.

Proposition 7.3.2. The cover Xr is connected. In other words, the monodromy of I is
equal to T'*.

Proof. We prove this by induction on the minimal number of generators of I'. Let I' =
{"1,...,7 be a choice of generators identifying I" with a product of cyclic groups. Let
I :={y,...,7%-1) < I (this may be trivial). Let p’ : X1» — X be the connected étale
cover determined by I'. By induction hypothesis p’ : X1v — X is connected and has Galois
group ['*, so it is enough to show that the monodromy of I" contains an element of I'*
which is trivial on I'” and has order equal to the order of ;.

First note that the kernel of the pullback p™* : J(X) — J(Xr) is equal to I': indeed,
there is an equivalence of categories between line bundles on X and I'"*-equivariant bun-
dles on Xy. The only possible actions on the trivial bundle are elements of (I"*)* ~ I
multiplied by the trivial action (holomorphic functions are trivial on X+, and the compo-
sition of any action with the inverse of the trivial action is just a group of holomorphic
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functions), and each of those actions determines an element of I and vice versa. Thus,
since no power of p'*~v; is in I'” by assumption, its order is equal to the order of ~y,. Hence
the monodromy of p"*7; must contain an element of C* with order equal to the order of ~;,
in other words there is an element of 7 (Xt) < (X ) whose image v € I'* via holonomy
satisfies that y(7) has this order. On the other hand, the fact that p*I" is trivial implies
that +y is trivial on I". O

Remark 7.3.3. In fact the proof of Proposition [7.3.2| provides an inductive construction of
Xr in terms of étale covers associated to line bundles with finite order. It also shows that
we may characterize Xr by the condition that ker(pf: : J(X) — J(X1)) =T.

Lemma 7.3.4. Given an antisymmetric pairing | : I' — I'* such that the order of a maximal
isotropic subgroup A < T divides n, there exists amap s : I' — GL(n, C) making (I, A, s)
an admissible triple. Moreover, the class of 0 := Int, in X(I", Inty) is unique, i.e. it only
depends on .

Remark 7.3.5. The assumption is independent of the choice of A, since |A| only depends
on n and [: given two maximal isotropic groups A and A’ in T', the pairing [ induces an
injection A’/A n A" — (A/A n A’)*. Indeed, the kernel of A’ — A* is A n A’ because
otherwise the group generated by the kernel and A would be isotropic and would strictly
contain A, and A n A’ is in the kernel of ¢*I(A’), where ¢ : A — [ is the inclusion. This
implies that |A’| < |A[, and by symmetry we get |A'| = |A|.

Proof of Lemma Let (-, -) be the pairing associated to [. We define the restriction of
s to A to be an isomorphism to a subgroup of diagonal matrices of GL(n, C) whose set of
weights is A* and whose weight spaces have the same dimension (this is possible because
|A| = |A*| divides n). It is easy to see that any such choice of s|a is in the same class of
X(A, GL(n,C)).

Let 7,,...7,, be a minimal set of generators for I'/A (this gives an isomorphism be-
tween I'/A and a product of finite cyclic groups). Consider the quotient x : I' — I'/A
and assume that s has been defined for a subgroup ~~'(H), where H < I'/A is generated
by the first £ — 1 generators. Set 7 := 7 with representative v € I" and let H' < I'/A
be the subgroup generated by H and . We extend s over the subgroup x~1(H’) of I as
follows: first consider a permutation matrix M7 defined as in the proof of Lemma [/.2.1
where v := [(y) € H*. The matrix M7 satisfies

s(h)YMT7s(h)™" = (h,y)M" (7.3.3)

for each h € x1(H) and, in particular, p(M7) = ~|a. Note that multiplying M" by a
A-matrix d whose restriction to

Wipan == @ Wa
5'esf(H)

is a multiple of the identity for each 6 € A* preserves (7.3.3), where f : H — A* is the
homomorphism induced by I. We may choose d such that (M7d)/7! is a multiple of s(v/7).
Set s(v) := M7d and define s(hy") := s(h)s(v)" for each h € x~'(H) and natural number
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r. Note that the elements of s(x~!(H)) commute up to multiplication by C*. Moreover,
given an element h € H, the fact that s(hy")*("")l is a multiple of the the correct diagonal
matrix (namely s((hy")*(71), where (hy")*"7")l e A) follows from the corresponding
properties of the generators and the fact that s/ is a homomorphism. The minimality of
the generators chosen in I'/A implies that the new definitions are compatible with the old
ones. The fact that the map s induces the pairing [ follows from (7.1.1) and (7.3.3).

Finally note that, given 5|H_1 )» the choice of s(7y) (or rather Ints(v)) is determined by
1(y)|s-1(zr) up to conjugation by a A matrix which is constant on each set of blocks de-
fined by a coset of A*/f(H). Of course, conjugating s by such a matrix does not change
8|.—1(m)- Moreover, by induction Int, .1 (g is unique up to conjugation by an element
Int, € Int(GL(n,C)), and it can be seen that gs(y)g " satisfies if s|.-1(p) is re-
placed by gs|.-1(z)9~*. Thus the class of § = Int, in X(I", GL(n, C)) only depends on [
and A. To see that it does not depend on A notice that, given another maximal isotropic
subgroup A’ < I', by Lemma there exists a homomorphism ¢ = Inty in the class
of 0 such that (I, A’, ¢") is admissible, and by the previous argument this only depends on [
and A’. Thus the class of 6 is the same for A and A’, as required. O

7.4 Fixed points as twisted equivariant bundles

Let (I, A, s) be an admissible triple. In order to apply Theorem we need to describe
the homomorphism 7 fitting in the commutative diagramme

7 2, Aut(GL(n,C)?)

C l / . (7.4.4)

This map lifts the characteristic homomorphism I'y — Out(GL(n, C)?) of the extension
GL(n,C)y. Recall that I'j consists of permutation matrices with constant blocks and
the conjugation of a A-matrix M by an element a € I'Z is described by the equation
(aMa™t)s = Mxcy(a)s for every § € A*. Hence, for each v € T, 7(v) permutes the
blocks of an element in Aut(GL(n, C)?) according to the multiplication by ¢*(v)~!in A*.
Since an element M € GL(n,C) satisfies M; = Mg for each ¢ and §’ in the same coset
of A*/f(I'/A), the automorphism 7() is actually determined by the coset of t*(v)~! in
A*/f(T'/A). Choosing a map ¢ : ['* — I'Z such that cpp = 1 gives an isomorphism
GL(n,C)? x, . I'* for a suitable 2-cocycle ¢ € Z2(I'*, Z(GL(n,C)?)) as in Proposition
.23

Let X be the (connected by Proposition|/.3.2)) étale cover determined by the I'*-bundle
I". We may simplify the description of polystable (7, ¢)-twisted I'*-equivariant GL(n, C)?-
bundles over the étale cover X — X determined by the I'*-bundle I" as follows:
Definition 7.4.1. The antisymmetric homomorphism [ induces a pairing on .* ' (f(T'/A)) =
[(I") = I'/ ker [, which we will also denote {-,-). Let E be a vector bundle of rank n/|A|
over X equipped with an action x of {(I") descending to the inverse of the action on Xt
and satisfying

XXy = (Y, 7V )Xy X~ for every yand~' € I(T). (7.4.5)
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We also assume that Xbl is a fixed multiple of the identity for each v € I(I"). We call the

pair (E, x) stable if every x-invariant sub-bundle has smaller slope (which is the degree
divided by the rank), and we call it polystable if it is a direct sum of stable y-invariant
sub-bundles with the same slope. We denote the moduli space parametrizing isomorphism
classes of such polystable pairs M (X, [, n).

Lemma 7.4.2. There is a surjective morphism M (Xr,l,n) — M(Xr, GL(n,C)?,T* 7, ¢),
where the moduli spaces are given in Definition and the end of Section resp. The
preimage of the stable locus of M (Xr,T,c, GL(n,C)?, T'*) is the subvariety U of stable
pairs (E,x) € M(Xr,l,n) such that E is not x|ir)-equivariantly isomorphic to v*E for
any v € I'*/I(T"). The restriction of the surjection induces an isomorphism

U/(T*/I(T)) = My(Xr, 7, ¢, GL(n,C)’,T*),
where T'* /I(T") acts via pullback.

Proof. First let E’ be a (7, ¢)-twisted ['*-equivariant GL(n, C)’-bundle with *-action X.
The associated vector bundle £ is equal to a direct sum of |[A*| = |A| vector bundles of
rank m := n/|A| such that any two summands corresponding to elements ¢ and ¢’ in the
same coset of A*/f(I'/A) are isomorphic. Set £ = @ ;_,« s, where Ey =~ Ej for every
§ and &' € A* such that 710" € f(T'/A). The (7, c)-twisted ['*-equivariant action on F’
induces, by Remark[3.4.3] an action x : {(T) = «*~!(f(I'/A)) — Aut(E) on the summand
E,. Note that, for each v € [(I"), the element () € P is a permutation matrix with blocks
equal to multiples of the identity and satisfying the commutativity relations (7.3.3), which
implies that it is equal to sy D for any v € [~!(v) and some D € Z(GL(n, C)?) (depending
on ). But, for any pair of elements v and 7' € I', we have s,s,, = (7,7 )s,s,, and
this does not change if we introduce elements of Z(GL(n,C)?) because such elements
commute with s, and s.,. This implies (7.4.5).

Conversely, let (E7,x) be a vector bundle of rank m with an [(I')-action x satis-
fying (7.4.5). In particular we have isomorphisms v*F; =~ ~*F) for each v and +/
in the same coset of I'*/I(T"), so that we write 7*E; instead of +*F;, where 7 is the
coset of v € I'*. Let F := el /I(T) 7*E;. We define an action Y on F as fol-
lows: first we define the action of [(I') on Ejy so that X.|g, Xv|e = c(v,7)1Xyv B
for every v and 1/ € [(T"), which is done rescaling the action x. For example, we may
choose a minimal set of generators ~i,...,7,, of I'* defining an isomorphism with a

product of cyclic groups. We define X(7i)|g, = zxx(7x), where z;, € C* is such that
x|

2 = (m) X () 1. Then define X(3i .. y5) = AX(31)"™ - X(m)"", where
v =le(1)™ . o(Ym) ™ et ...y )1 is completely determined by c. Then the com-

plex number Y¥(7)X(7)X(77')~* depends solely on the commutators of x(I'*), which are
the ones of ¢(I'*), and so it is equal to ¢(,7');. We then extend X|g, arbitrarily (but
independently of the choice of (F1, x)) to get a [*-action on F; (note that the images
of elements in ['* . [(I") are not in E; though) and, for each v and 7/ € I'*, we set

X(Y)ls#e, = [o(7)e(Me(y7) 71, X(77")X (7). Note that this is compatible with the
existing definitions because of the definition of X (I(I'))|x,, and moreover it is independent
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of the choice of y in 7 € I'*/I(T"). Then we have

X(y ”)|<w s X (V)5 =
[e(V)e (Y )e(ry'Y") e (V) (e () T X ('YX () T R ()X (v

I/

X )

(V) e( )N Y") Ny X (Y Y")X ()~ =

[o(Y")e(Y ) (YY) T [o (YY) (e (YY) ™ iy X (YY) X (1) 7
(7 77) (’7 /)| F*Eq -

This shows that, if £ is a direct sum of |/(I")/('/A)*| copies of F' and £’ is the GL(n, C)°-
bundle whose extension of structure group to GL(n, C) is the bundle of frames of F, then
X induces a (7, ¢)-twisted I'*-equivariant action on £'.

To see the compatibility between the stability notions suppose that £ is polystable.
The decomposition of FE; into stable [(I')-sub-bundles with the same slope induces a de-
composition of F' into [(I")-invariant sub-bundles with the same slope, so we may further
assume that £ is stable. Note that polystability of £’ is equivalent to the fact that /' is a di-
rect sum of ['*-invariant sub-bundles, each of which has no proper I'*-invariant sub-bundle
with larger or equal slope. First let I' < I'*/I(I") be the subgroup of elements y such that
there are isomorphisms 1., : £y = v*E; compatible with the respective restrictions of the
[(I")-action. For each homomorphism x : I' — C* set

= {2 pythy(e) = ee€ El} c F.

vyel

This has no proper ['-invariant proper sub-bundles with slope bigger than or equal to the
slope of E; (which is equal to the slope of F'): any sub-bundle with bigger or equal slope
has non-trivial projection on v* F; for some v € I and so the only possibility is that it has
the same slope and the projection is an isomorphism, which implies that it is the whole F),.
Moreover @ y*E; =~ C‘D#er* F,, is a decomposition into I'-invariant sub-bundles which are
isomorphic to F; via projection, thus having the same slope as F'.

We claim that F, : Z Suryers iry X+(Fl) S F'is stable as a I'*-invariant sub-bundle
of F. Since I' = (—B #er* this will be enough. Let F be a ['*-invariant sub-bundle of F/fL
with slope equal or greater. The projection on some summand of F/L must be non-trivial,
and the image must have slope smaller or equal to the summand because it is I'-invariant.
Thus the kernel must have slope greater than or equal to the slope of F),. Repeating the
same argument with the kernel we arrive at a situation where the projection on a summand
has trivial kernel. At this point we conclude that the slope of £, must be equal to the slope
of F}, and the projection is an isomorphism, let’s say to F}, without loss. If the projection
to every other summand is zero then we get a sub-bundle of F, contained in F), and, by I'*-
equivariance, Iy must be the whole F},. Otherwise we get a second summand, say X (F},)
with v € I'* (T, such that the corresponding projection is also an isomorphism. Since
projections are [(I")-equivariant this yields an [(I")-equivariant isomorphism F), = X, (F},),
which contradicts the definition of I'.

Finally, given two pairs (Fy, x) and (E}, x') in U < M(Xr,,n) such that the corre-
sponding bundles I := Pcps oy T Er and F' = @seps ) 7 E] are I'*-equivariantly
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isomorphic. Because of the definition of U this implies that F; is isomorphic to ¥* E] for
some 7y € I'*/I(T"), which proves the last statement.
0

7.5 Fixed points as pushforwards

Let pa : Xa — X be the étale cover of X determined by the A*-bundle A < J(X). Note
that there is a natural isomorphism A* =~ I'*/I(A) given by the short exact sequence of
abelian groups

1—- (T/A) >T* > A* > 1
and the fact that the homomorphism A — (I'/A)* induced by [ is surjective (this follows
from injectivity of f). The pairing [ determines an isomorphism I'/A =~ [(T") /I(A) (this is
injective because [ induces the injection f : I'/A — A*).

Definition 7.5.1. Consider the moduli space M (X, GL(n/|A|,C)) of vector bundles of
rank n/|A| over XA. We define a subvariety M (X, GL(n/|A|, C))"") consisting of iso-
morphism classes of polystable vector bundles £ such that £ =~ [(v)*E ® pi~y for every
~ € I'. There is a natural pushforward morphism

Pax s M(Xa, GL(n/|A]l,C)N'D — M(X,GL(n,C)).

On the other hand, by the equivalence of categories between [(A)-equivariant bundles
over Xt and bundles over X 5, we have a morphism

pr: M(Xp,1,n) — M(Xa, GL(n/|A],C))!®.

Indeed, given a twisted equivariant bundle F € M (Xt,1,n), the [(A)-action on E is equiv-
ariant and so E//I(A) is a vector bundle over X 5. Moreover, the [(T")-action satisfies
and so, for each v € I', F =~ [()*E and the induced [(A)-action on [(~y)*E is defined, for
each § € A, as the pullback of the /(§)-action on E multiplied by {7, ) = (1(§)(v))"L. In
other words, F is equivariantly isomorphic to [(+)* E tensored by the trivial line bundle on
Xt equipped with the [(A)-action determined by ~!. But this is the natural /(A)-action
on pi(y), so we get [(A)-equivariant isomorphisms E/I(A) =~ I(v)*(E/I(A)) ® piy as
required. A stable bundle F € M (Xr,[,n) contains no proper [(A)-invariant sub-bundles
with greater or equal slope and so the corresponding image in M (X, GL(n/|A|, C))!™)
contains no proper sub-bundles with greater or equal slope, so the stability notions are
compatible.

Lemma 7.5.2. The composition
M(Xp,l,n) — M(Xp,T,c,GL(n,C)?, T*) - M(X,GL(n,C)y) — M(X,GL(n,C)),

where the last morphism is defined in Proposition and the second one is defined in
Theorem[d.4.8) factors as

M(Xp,1,n) — M(Xa, GL(n/|A[,C))"™ 225 M(X, GL(n,C)).
In particular, by Lemma and Proposition the image of the pushforward is inde-

pendent of the choice of maximal isotropic subgroup A.
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The morphism p; is not surjective. Indeed, implies that, for every polystable
vector bundle E € p;(M(Xr,1,n)), the corresponding isomorphisms f, : E — I(7)*E ®
pA7y satisfy

U ) fy @1dpg ) o frr = A DU fy @1dyz,) © fy
for every v and 7’ € I, so that [ fixes the ”commutators” of the isomorphisms. On the other
hand, any polystable bundle E € M(Xa,GL(n/|A|,C))"!) has isomorphisms f, : E =
[(7)*E ® piy such that
fv'y’ = C(l(7>*fv’ X Idpz'y) © f'y

for some ¢ € C* depending on v and +' € I'. This is trivial if F is stable because F is
simple, and in general this follows by redefining the original isomorphisms so that both the
left and right hand sides send each stable summand of F to the same stable summand in
I(vY)*E ® pi(77') (and maybe rescaling the restriction to each summand). Thus either
way we may choose the isomorphisms f., so that the “commutators” are multiples of the
identity, which defines an antisymmetric pairing [’ : ' — I'*. Note that this pairing is
trivial on A, so that F is actually in the image of M (Xr, ', A). We conclude that

M(Xa,GL(n/|Al,C)) Upl Xr,1,n), (7.5.6)

where [ runs over all antisymmetric pairings of I' having A as a maximal isotropic sub-

group.
We conclude:

Theorem 7.5.3. We have the inclusions

|JpasM(Xa, GL(n/|A[, )™ = M(X,GL(n,C))"
l

and
M,,(X,GL(n,C)) UPA* (Xa, GL(n/|A[,C))")

where M (X, GL(n/|A|, C))"") is defined in Definition The parameter | runs over
all antisymmetric pairings on I' such that the order of a maximal isotropic subgroup A
divides n. The choice of A is fixed for each .

Similar arguments (replacing Theorems [5.6.3] and [5.7.3| by Theorems [5.6.4] and [5.7.2
respectively) give the result for Higgs bundles, which we introduce next.

Definition 7.5.4. Consider the moduli space M (X, GL(n/|A|,C)) of Higgs bundles of
rank n/|A| over XA. We define a subvariety M (X, GL(n/|A|,C))"") consisting of
isomorphism classes of polystable Higgs bundles (F, ) such that (F, ) = (I(7)*E ®
PR, L(7v)*p) for every v € T'. There is a natural pushforward morphism

pas - M(Xa, GL(n/|A\,C))l(F) — M(X,GL(n,C)).
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Theorem 7.5.5. We have the inclusions

(JpasM(Xa, GL(n/|A], €)@ = M(X, GL(n, C))"

and

M,(X,CGL(n,C)) UpA* (Xa, GL(n/|A[,C))")

where M(Xa, GL(n/|A|, C))"") is defined in Definition[7.5.4) The parameter | runs over
all antisymmetric pairings on I" such that the order of a maximal isotropic subgroup A
divides n. The choice of A is fixed for each .

7.6 Thecasel =~ 7/2 x Z/2

We apply Proposition to the case when I" has order 4 with two generators a and b. We
consider its action on the moduli space of Higgs bundles of rank n and degree d. There are
two possible antisymmetric pairings, the trivial one and the non-degenerate one /. Maximal
isotropic subgroups have order 4 and 2 resp. Thus the smooth fixed point locus is empty
unless n = 4m or 4m + 2 for some natural number m.

1. If n = 4m + 2 then 4 does not divide n and so the only relevant pairing in the decom-
position of Theorem [/ is [. Let p, : X, — X be the étale cover of X associated
to a. Call M(X,, m+ 1, d) to the variety of polystable Higgs bundles (E, ¢) of rank
m + 1 and degree d on Xt equipped with an isomorphism (E, ¢) =~ v*(E ® pib, ),
where + is the generator of the Galois group of X,. Then p M (X,,m + 1,d)" is
contained in the fixed point locus and contains its intersection with the smooth locus
of M(X,n,d).

2. If n = 4m then we have a second component corresponding to the trivial pairing,
namely the pushforward of the moduli space of Higgs bundles of rank m and degree
d over Xr. In this case the smooth fixed point locus is contained in the union of
prs(M(Xr,m, d)) and pas (M (X,,2m, d)®), and this union is contained in the fixed
point locus.
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Chapter 8

Action of a finite group generated by line
bundles of order 2 on the moduli space
of Sp(2n, C)-Higgs bundles

Let Sp(2n, C) be the symplectic group. Its centre is {1, —1} >~ Z/2. Let I' ¢ H'(X,Z/2)
be a finite subgroup. Note that, via the Abel-Jacobi Theorem, we may identify H'(X, Z/2)
with the subgroup of J(X) consisting of elements of order at most 2. Since J(X) is an
abelian variety of dimension equal to the genus g of X, this is isomorphic to (Z/27)%9. We
adapt the definitions and arguments of Section [7| to describe M (X, Sp(2n,C))", and we
divide it into analogous sections to emphasize the parallelism. The same arguments give
the result for M (X, Sp(2n, C))", which we just state for simplicity.

Throughout this chapter we regard Sp(2n, C) as the subgroup of GL(2n, C) preserving
the standard symplectic form on C*2",

8.1 Antisymmetric pairings and character varieties

Definition 8.1.1. Recall that an antisymmetric pairing on [" is a homomorphism [ : I —
I'* := Hom(I",Z/2Z) =~ Hom(I',C*) such that every element of I' pairs trivially with
itself. We may choose a maximal isotropic subgroup ¢ : A — I'" where the pairing is
trivial, and we have an induced injection f : ['/A — A*.

A representative quadruple for I is a quadruple (I, A, g, s), where [ : I' — '* is an
antisymmetric pairing, A is a maximal isotropic subgroup, ¢ € A* and s : ' — Sp(2n, C)
is a map satisfying that:

1. It induces a homomorphism Int, : I' — Int(Sp(2n, C)).
2. Tt restricts to a map A — C**" < GL(2n, C).

3. The antisymmetric pairing

*, / 1 -1
[>T% = (Y = sy80878)

is equal to [. In particular, for every v € I' the element s, is a permutation matrix
such that p(s,) = ¢*I(7).
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4. The image of s consists of permutation matrices whose blocks are multiples of the
identity.

5. Foreach § € A, the eigenspaces of C*" of the automorphism s() are either isotropic
(i.e. the restriction of the symplectic form is trivial) or symplectic (i.e., the restriction
of the symplectic form is non-degenerate). This provides a homomorphism A —
7,/27 which maps v to —1 if the eigenspaces are isotropic and to 1 otherwise, which
must be equal to q.

We call q the characteristic homomorphism of s.

The only statement in (5) which is not tautological is the fact that the characteristic
homomorphism is equal to ¢: note that (1) imposes that the eigenvalues of s(d) be either
+1 or +i, thus there are only two eigenspaces. The fact that s(J) preserves the symplec-
tic form implies that the eigenspaces are isotropic if and only if the eigenvalues are +1
(with each isotropic subspace having opposite eigenvalue), and they are +1 if and only
if the eigenspaces are symplectic. It follows from (2) that the characteristic homomor-
phism is an actual homomorphism: given 6 and §' € A, the eigenspaces of s(dd’) are
isotropic/symplectic if and only if the eigenspaces of s(d)s(¢d’) are isotropic/symplectic (by
(1) they differ by a constant), if and only if the eigenvalues of s(d)s(d’) are +i/41. These
are the product of the eigenvalues of s(J) and s(¢’), hence the result reduces to checking
the possibilities.

Lemma 8.1.2. For every class in the character variety X(I", Int(Sp(2n, C))) there exists a
representative quadruple (1, A, q, s) such that Int, is in the class.

Proof. Let
0 : T — Int(Sp(2n,C)); v — Int,,

be a homomorphism. Since I' is abelian, we get an antisymmetric pairing

[T ->T%y— (¢ svsvzs;ls;l).
Choose a maximal isotropic subgroup ¢ : A < I and consider the corresponding injection
f : T/A — A*. Since the elements in s(A) are semisimple (the square of each of them
is in Z/27Z < C*) and commute with each other, they can be simultaneously diagonalised
by symplectic matrices (this follows, for example, from the fact that every two maximal
tori in Sp(2n, C) are conjugate to each other). Thus we may assume, after conjugating 6 if
necessary, that they are all diagonal.

Let ¢ € A* be the characteristic homomorphism of s. It follows from the fact that every
element of A has order 2 that, for each § € A, the diagonal matrix s(d) has eigenvalues
+1if ¢(0) = 1 and +i otherwise. Thus we may further assume after rescaling by +1 that
the first vector of the standard basis of C?" has eigenvalue 1 or —i. For convenience we
redefine the eigenvalues of s(9) so that they are always +1 by multiplying them by i if
q(9) = —1. Note that, under this convention, the first vector of the standard basis always
has eigenvalue 1. We call a simultaneous eigenspace for the action of s(A) a weight space,
whose corresponding weight is an element of s(A)* < A* which associates its eigenvalue
(in this new sense, so that it takes values +1) to each 6 € A. The fact that each weight is a
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homomorphism A — C* follows from the first vector of the standard basis having weight
1, since s(00") = +s(d)s(d”) for every 6 and ¢’ € A. Note that, since the only possible
eigenvalues are 1 and —1, the eigenspaces of each element in s(A) determine that element.
This implies that the set of weights is precisely equal to s(A)* < A*.

As in the proof of Lemma the homomorphism I'/A 2 A* induced by p is
equal to the multiplicative inverse of f, which in this case is equal to f. Given a weight
J € s(A)* < A* we get an orbit of weights 0 f(I'/A), and the dimensions of all the weight
spaces in a given orbit must be equal. In particular the subgroup f(I'/A) of A* must be
contained in s(A)*. For each § € s(A)* we call W to the corresponding weight space.

As in the proof of Lemma [/.1.2] we choose representatives v € I' of each coset
vA € T'/A and show that there exists a symplectic A-matrix S such that Ss(y)S~! is a per-
mutation matrix with blocks in C* for each yA € I'/A. Choose a representative 6 € s(A)*
of each coset 6 f(I'/A) € s(A)*/f(I'/A). We split the argument into three cases: first as-
sume that the characteristic homomorphism ¢ € A* is non-trivial and ¢ € f(I'/A). Choose
an element d, € ¢~ '(—1) and consider the subgroup ker §, < f(I'/A), which has degree 2
(because o, € f(I'/A)* has order at most two and ¢(d,) = —1). Consider the A-matrix S
determined by Sss = 5(75 )55 5 and S(gsys = 5(Vsr) a5 450 Where &' € ker 0y, 75 € T is any
element whose coset 75 A € T'/A is equal to f~1(¢") and § € s(A)* is the representative of
df(T'/A). Note that there is a decomposition into symplectic subspaces

(CZTL: @ W6®Wq67

oeker 04

where W; is isotropic. This follows from the fact that W, is contained in the same
eigenspaces as W for elements in ker ¢, which have symplectic eigenspaces, and in dif-
ferent eigenspaces for elements in ¢~'(—1), which decompose C*" into maximal isotropic
subspaces. Thus s(7s) 55 s®5(V5) 155 45 May be regarded as an automorphism of C4™Ws @
C4mWs preserving the standard symplectic form, which shows that S € Sp(2n,C). The
same calculation as in the proof of Lemma(7.1.2)shows that Ss(v)S~! has constant blocks
for every 7y € I" such that [(7y) € ker §,. We take this for granted hereafter.

Now choose v, € I such that f(v,A) = ¢. Since 7, has order 2 we know that, for
each 0 € kerd, < s(A)*, s(74)g0.65(74)s40 i equal to 1 or —1. Since s(,) preserves the
symplectic form, we have s(7,)455 = _3(7q)g,_(1z1$ (recall that the restriction of the standard
symplectic form to W @ W, is the standard one in lower dimension). Thus s(7,)s,4s 1S
either symmetric or skew-symmetric and so it is diagonalizable, which implies that it has

a square root s(vq);ﬁ; in GL(dim W3, C). Now let S” € GL(2n, C) be the A-matrix such

that S§ = s(yq)g;f and S; = s(yq);/;; for every 0 € kerd, < s(A)*. The matrix S’ is a

multiple of a symplectic matrix because, for every (skew-)symmetric matrix A,

A2 0 0 1) [(AV?)! 0 0 AYR\ [£AYV2 0
0 AY2)\-1 0 0 (A2t ) T \—a2 g 0 A2

(0 +1
~\F1 o0 )"

Moreover, since Intg is a homomorphism, s(-y) has constant blocks for every v € I such
that [(y) € kerd, and f(I'/A) = kerd, u g ker d,, we know that s(7,)ss 45 is @ multiple

113



of s(74)4ss for every & € f(I'/A). This implies that the restrictions of S’ to Wy and
Ws differ by a constant and so a permutation matrix M with p(M) € f(I'/A) satisfies
(S’MS"~1)s = cMj for some ¢ € C*. Therefore, S’s(v)S"! still has constant blocks for
every v € I' such that [(y) € kerd,. Hence, since Int, is a homomorphism, in order to
prove that the image of S"sS'~! consists of permutation matrices with constant blocks it is
enough to show that S’s(v,)S"~! has constant blocks:

— — —1/2 —1/2
(S/S('Vq)sl 1)5,q6 = S:SS(Vq)d,qJS;gl = S(Vq)é,qé S(Vq)é,q63(7q>6,qé =1

and

_ _ 1/2 1/2
(5'5(70)S Mg = Stss(1)ass S5 = 5(%)5 55 (V) a5.65 (V) sy =
1/2 _ 1/2
iS(’Yq)a,/an(’Yq)5,;53(%)5,/(15 = *1

for each 0 € ker ¢,.

It remains to consider the cases when either g is trivial or ¢ ¢ f(I'/A). If ¢ is trivial
then the weight spaces are all symplectic vector spaces with the standard symplectic form.
The elements of s(I") are permutation matrices whose blocks preserve this form, hence the
matrix S defined in the proof of Lemma [7.1.2] which is a A-matrix built up from these
blocks, must be symplectic. If ¢ is not trivial and ¢ ¢ f(I'/A), choose ¢, € ¢~*(—1) as
before. In this situation the kernel of ¢, in f(I'/A) is equal to the whole f(I'/A), so the
matrix S which we defined when addressing the first case (with non-trivial ¢ € f(I'/A))
does the trick. [l

8.2 The homomorphism cy

Let § = Int, be the homomorphism corresponding to a representative quadruple (I, A, g, s).
The group Sp(2n, C)? consists of all the symplectic A-matrices M such that M; = My
whenever § and ¢’ are elements of s(A)* in the same orbit of s(A)*/f(I"/A). From Section
we have a homomorphism

cg : Sp(2n,C)y — I'*.
Lemma 8.2.1. The image of cy is equal to
Lo:={yel™ |ylaes(A)* and dimW,; = dimW; for every § € s(A)*}.

Moreover; there is a subgroup T'Z < Sp(2n,C)y containing the centreZ(Sp(2n,C)?) of
Sp(2n, C)? such that the restriction cy| rz induces an isomorphism

I'7/Z(Sp(2n,C)?) = T.

Proof. Choose representatives § € s(A)* for each coset § f(I'/A) € s(A)*/f(T'/A) and
define

M5 o= (V5573 (V7N = 515595V 57(7)
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as in the proof of Lemma where ¢’ € §f(I'/A) and v € T is such that p(s(y)) =
8’071 = ¢’5. Recall that this definition is independent of the choice of . We start by
showing that, for each v € I'y, the matrix M” is equal to a symplectic matrix multiplied
by an element of the centreZ(GL(2n, C)™) of the fixed point subgroup GL(2n, C)™" of
GL(2n, C). Note that this symplectic matrix still satisfies (7.2.2).

First suppose that the characteristic homomorphism ¢ is trivial. In this situation every
weight space for the action of s(A) is symplectic with standard symplectic form. Thus
5(7)e,6v and s(7y)s s are both symplectic. Moreover () = +1, which also preserves the
symplectic form, so M7 € Sp(2n, C).

Now let ¢ be non-trivial. If ¢ ¢ f(I'/A) then we may assume that, if J is the chosen
representative for ¢ f(I'/A), the element ¢ € ¢o f (I'/A) also represents its class and so, on
the one hand, for every ¢’ € § f(I'/A),

M; 5 = 5(7)5.6v5(7) 5 57(7)

and, on the other,
Mg’q'yﬁ’q = S(7)5'617,5(1"/‘?(7)(;;,6(17(7)'

If v # ¢ then, since $(7)sy.50 D S(V)57gy.54y and $(7)sr.5 D $(7)s4,64 pPreserve the standard
symplectic form, the restriction of M7 to Wy @ W5 is symplectic for every ¢’ € s(A)*.

If ¢ = ~ then My, 5 and My, 5, are inverses of each other, in other words M7 ex-
changes W and W,s with the restrictions being inverses of each other. By antisymmetry
of the symplectic form the restriction to Wy @ W,s multiplies the symplectic form by —1.
If we choose representatives ¢’ of each coset §’{1, ¢} = A* in such a way that the action of
f(I'/A) preserves representatives (recall that g ¢ f(I'/A)) then we may define a A-matrix
D which is equal to 1 when restricted to W and —1 when restricted to W ,,. Itis clear that
D is constant on

Wipwny = @B We
§'es f(T/A)

forevery § € s(A)*, hence itis in Z(GL(2n, C)™). Moreover D multiplies the symplectic
matrix by —1, so DM7 is symplectic as required.

Now assume that ¢ € f(I'/A) and choose v, € I" such that f(,) = ¢. Letd = +1 such
that s(vyv,) = ds(v)s(v,). Then

M g.50 = 5(170)54.v5(170) 36,57 (Va)
= dS(”Y)é/q'MqvS('Yq)&nﬁvd_l3(7);;,&&(%)(&_(11,57(7%)
= [3(7g)sgv,6v5 (7(1)(;(]1,(57(’7(])] S (7)6’q7,5q75(7>§;,6q7(7> )

where the expression in square brackets only depends on ¢, y and the coset 0 f (I'/A). Since
S(V)or.5v D@ 5(V)srgr.00y a0d S(7)s.6 D S(7)sq5, are symplectic, this shows that the re-
striction of M7 to Py sr/a) Wo © W multiplies the symplectic form by a constant,
which implies that multiplying this restriction by a suitable complex number (namely
[5(Yq)sq7.6v5 (V) 5467 (7g)] /%) yields a symplectic transformation. In other words, M~
is equal to a symplectic matrix multiplied by a diagonal matrix which is constant on
Wisgr/a) for every 6 € s(A)* yields a symplectic matrix. But such diagonal matrix is
in Z(GL(2n, C)™™*), as required.
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Hereafter we rename the matrices M7 so that they are symplectic.

Note that, if v € I'* did not restrict to an element of s(A)*, there would be no matrix
M satisfying Ints M = ~()M for each ¢ € A, since this implies that M is a permutation
matrix such that p(M) = v|a. The automorphism A would then send some non-zero
weight space to a trivial weight space via an isomorphism, which is absurd. Similarly,
given § and v € s(A)*, the weight spaces W;s and W, must have the same dimension if
there is a permutation invertible matrix M with p(M) = ~, since the image of W after
applying the linear transformation M is W;,. Therefore, the map

{M"}er, <> T

is a bijection.

In the proof of Lemmawe showed that, for every v and v’ € T'y, MTM" = M
for some z € Z(GL(2n, C)™). The new definition of M7 only differs from the old one
by an element of Z(GL(2n, C)™t), so this still holds. Moreover, since M™ is symplectic
for every «y € Ty, it follows that z € Z(GL(2n, C)™) ~ Sp(2n, C). But, on the one hand,
Z(GL(2n,C)) A Sp(2n, C) = GL(2n, C)™= ~ Sp(2n, C) = Sp(2n, C)?. On the other,
the adjoint action of Z(GL(2n,C)™) on Sp(2n,C)? < GL(2n,C)™: is trivial. Thus
z € Z(Sp(2n,C)?) and so we may define I'Z := Z(Sp(2n, C)*){M" } cr,. O

Corollary 8.2.2. The homomorphism ¢y : Sp(2n,C)y — T'* is surjective if and only if
s(A)* is identified with A* via s* and all the weight spaces have the same dimension. In
particular, under this assumption s|a is injective and the order of ker ¢ < A must divide n.

Proof. The first statement follows from Lemma To show that the order of ker g
divides n we distinguish two cases: if ¢ is trivial then the restriction of the symplectic form
to every weight space is the standard one, which implies that the intersection of each weight
space with a copy of C™ in C?" has half its dimension. Dividing n by this dimension (which
is equal for every weight space) gives the number of weights, which is equal to the order of
A = ker q. If ¢ is non-trivial then ker ¢ is a subgroup of A of degree 2. Since the quotient
of 2n by the dimension of any weight space gives the number of weights, which is equal to
|A| = 2| ker g|, the order of ker ¢ must divide n as required. O

We call (I, A, g, s) an admissible quadruple if any of the two equivalent conditions in
the statement of Corollary are met. In particular this implies, by injectivity of s| and
f = ps, that § = Int, is injective.

8.3 Admissible quadruples as components of the fixed point

variety
Consider the image M (X, Sp(2n,C)y)" of the extension of structure group morphism
M(X,Sp(2n,C)y) — M(X,Sp(2n,C))

given in Proposition [5.6.1]
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Corollary 8.3.1. If M,,(X,Sp(2n,C))" is the moduli space of stable fixed points, the in-
tersection M,,(X,Sp(2n,C))Y' n M(X,Sp(2n,C)y) is empty unless (I, A, q, s) is an ad-
missible quadruple.

Proof. The monodromy of I' when considered as an element of
HY(X,T*) = Hom(T', H*(X,Z/2)) =~ Hom(T, H'(X,C*)),

where the last isomorphism follows from the Abel-Jacobi Theorem, is equal to I'* by
Proposition Therefore, according to Theorem in order for the smooth fixed
point locus M,,(X,Sp(2n,C))! to be non-empty we need I'y to be isomorphic to I'* via
the homomorphism ¢y : Sp(2n, C)y — I'*. Equivalently, ¢, must be surjective. O

Lemma 8.3.2. Given an antisymmetric pairing | : I' — I'*, a maximal isotropic subgroup
A < T and an element ¢ € A* such that the order of ker q divides n, there exists a map
s: ' — Sp(2n, C) making (1, A, q, s) an admissible quadruple.

Proof. Let {-,-) be the pairing associated to [. Choose an injective map s’ : kerq —
GL(n,C) whose image consists of diagonal matrices with eigenvalues +1 and weight
spaces of dimension n/ ker g. Take the composition

S|kerq : kel"q ﬂ) GL(H,C) &) GL(H, C) — GL(QH, C)

If ¢ is non-trivial we then choose 0, € ¢~*(—1), set

w5 %)

and define s|a so that s preserves the group multiplication up to factors of +1 (note that
A = ker q L 6, ker g).

Since every element of I' has order 2, we may find a set of generators 7y, . . ., 7,, iden-
tifying I’ with a product of Z/27Z’s and such that A is generated by the first k& of them. We
prove the statement by induction on the number of generators of I'/A, so assume that we
have amap s : IV := {y1,...,%m-1) — Sp(2n,C) making (I|r/, A, ¢, s) an admissible
quadruple for some m > k. Let v := (V)| and M™ € Sp(2n,C) as defined in the
proof of Lemma We claim that (M7)? = £1. Note that y cannot be in ("), since
f: /A — A*is an injection. Hence we may choose the representative of each coset in
A*/f(I'/A) so that, if 0 represents § f(I''/A), so does 7§ in vd f(I''/A). Recall that if ¢ is
trivial or ¢ ¢ f(I"/A) then

Mg 5 = 3(V)amavs(Mss1(7) 0or 8(V)s,8v5(1) 567 (V) Do,

where D is defined in the proof of Lemma [8.2.1| depending on whether ¢ # vy or ¢ = ~
resp. On the other hand, if ¢ is non-trivial and ¢ € f(I"/A),

MJT'WS’ = [5(%)5(1%575(Vq)gql,é’Y(’Yq)]71/25(7)5’%575(7)5}67(7)a
where f(v) = 0’0 and f(y,A) = ¢. In the first case, if ¢ # 7 then

(M55 = Mg 5, M3 50 = 8(7)5.65(V) 5 507 (7) 8 (V) 513,648 (V) 557 (7) = 1.
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If ¢ = ~ then, since M7 and D anticommute (the restrictions of D to W5 and W s differ by
—1 for every 0 € A* and M7 = M permutes them), we have, by the previous calculation,

= (MTD)* = —(M")’D* = —(M")*.
In the second case, i.e. if ¢ € f(I'/A) is non-trivial,

(M7)5 5 = [5(7g)50.65
[3(%,)5,1%573(%,

1/25(7)5/,58(7)%,5{7(7)

$(Voivs(Vylsr(7) = 1,

Vo) sar.507 V)]
s (v s (

(
).
assuming that we have chosen the square roots in a compatible way.

Now it can be seen that the map s : I' — Sp(2n, C) which sends y7*, to s(v)(M™)*
for each v € I induces a homomorphism Int,: indeed, (s(7)M7)? is equal to +1 because
the square of each factor is £1 and they commute up to multiplication by +1. Moreover, s
yields an admissible quadruple: for example, the antisymmetry of / and the construction of
s imply that [ is induced by s. ]

Remark 8.3.3. Unlike the case of GL(n, C) (see Lemma(7.3.4), given the data [, A and ¢,
the class of § = Int, in X(I", Int(Sp(2n, C))) is not unique. Indeed, on each inductive step
in the proof of Lemmawe have a choice: having already defined s|,, and letting  :=
1(7m)|r» let us think about the possible choices for a permutation matrix in Sp(2n, C) with
constant blocks satisfying and having square +1 (any such a matrix would extend s
to I by setting s(7,,) := M7, in such a way that (I, A, ¢, s) is an admissible quadruple). We
know by Lemma that this matrix exists, namely the matrix M ™ defined in the proof
of Lemma [8.2.1] Another symplectic matrix satisfying the requirements is equal to M"C,
where C' is a symplectic A-matrix which is equal to a constant in C* when restricted to
Wirr/a)y = @Dgres rr/a) We for every 0 € A*. We split the argument into three different
cases.

If g € f(T'/A) then, according to the proof of Lemma|[8.3.2)we may choose M7 to have
order 2. Moreover, C' is symplectic if and only if its restriction to W r/a) is equal to +1
for every § € A*, since W a) is symplectic. The condition (CM™)? = +1 implies that
the restriction of C' to W ¢r/a) is equal to +1 multiplied by its restriction to W.5¢r/a). A
representative of the +1 case is just C' = 1, whereas we call a representative for the —1
case C'~. Each sign yields a different class in X(I", Int(Sp(2n, C))): the matrices M ™ and
MT™C~ have different order (2 and 4 resp.), since (M7C~)?> = —(M7)?>(C~)? = —1. Now,
if Int ;- and Inty;-o- where conjugate in Int(Sp(2n, C)) then M7™ would be conjugate to
+M7C~, which has different order, so this is impossible. Hence we have two different
choices for the class of Int, completely determined by the order of s(7,,).

If ¢ ¢ f(I"/A) and ¢ # ~ then, for every 0 € A*, the subspaces Wsr/a and Wiygr/a
are different. The automorphism C' |Ww/ ,» may differ from Clw,p ,» by a factor, say k,
but then the fact that C' is symplectic implies that C' |WMF, = k-iC |W5qr, - However,
conjugation by the matrix

1 0 0 0
0 kY2 0 0

o o 1 0|
0 0 0 kY2
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which is defined on Wi /a @ Wiyrr/a @ Wsgr/a @ Wiygrr/a (note that this preserves the
standard symplectic form), reduces the possible cases to & = 1. Then C' is of the form
c®c@c ' @ct on Wirya @ Wiyra @ Wagrr/a @ Wiygrr/a, and so M7C' is conjugate
to M7 via the matrix

V2 0 0
0 2 0 0
0 0 Y2 o |

0 0 0 Y2

so there is only one possible choice for the class of Int in this case.
Finally, if ¢ = -, the matrix C'is symplectic if and only if its restriction to Wsr/a @
Wiqr/a is equal to ¢ @ ¢~ for some ¢ € C*. Then M7C' is conjugate to M7 via the matrix

120
0 Cl/2 )

so again there is only one possible choice for the class of Int,.

8.4 Fixed points as twisted equivariant bundles

Let (I, A, g, s) be an admissible quadruple. As we saw in Section the group GL(2n, C)”
consists of A-matrices M such that M; = Mgy whenever 8’ € f(I'/A). We have a similar
description for Sp(2n, C)? = GL(2n, C)?nSp(2n, C). LetT'Z := Z(Sp(2n, C)?){M "} r, <

Sp(2n, C)y as in the proof of Lemma According to Lemma(8.2.1|the group Sp(2n, C),

is generated by Sp(2n, C)? and I'Z and the commutative diagramme (7.4.4) restricts to

7 5 Aut(Sp(2n,C)?)
(e 7 |

where ¢ is a section of cy. Let X be the (connected by Proposition [/ étale cover
determined by the I'*-bundle I. According to Lemma (7.4.2] - T,C) tW1sted F* -equivariant
GL(n, C)?-bundles over Xt are in correspondence with twisted /(I")-equivariant vector
bundles of rank 2n/|A| over Xr, where the action satisfies (7.4.5). Hence (7, ¢)-twisted
[*-equivariant Sp(2n, C)’-bundles may be described in terms of twisted /(I")-equivariant
vector bundles equipped with some “symplectic form”. There are two main possibilities
depending on ¢:

1. If g is trivial then we get symplectic vector bundles of rank 2n/|A| equipped with
an [(T")-action satisfying which respects the symplectic form. Note that a
symplectic form on a vector bundle £ may be regarded as an isomorphism ¢ : F/ =~
E* such that, for every e and €’ € F,

T ——
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2. If ¢ is not trivial then, because of the description of Sp(2n, C)?, we get a symplectic
form on £ @ ¢*F, where by abuse of notation ¢ € I'* is an extension of ¢ and F
is a vector bundle of rank 2n/|A| with a symplectic [(I")-action satisfying (7.4.5).
The symplectic form w is codified by an isomorphism ¢) : £ — ¢*E* which is
equivariant with respect to the [(A)-action on £ and the dual of the pullback of this
action on ¢* E*. The restriction of w to E is equal to i), whereas the restriction to
q* F is equal to ¢*v. The antisymmetry of w is equivalent to ¢*¢* = —1 since, for
everye€ Fand e € ¢*F,

¢ (e)(€') = q*(e')(e) = —v(e)(€).

Remark 8.4.1. A subtle point of contrast with the case of GL(2n, C) is the ambigiiity in the
choice of 6 for each triple (I, A, ¢), see Remark This implies that we have different
choices for the orders of the different elements of the /(I")-action. We have not made
explicit mention of this so far, but see Remark[8.5.2]for a more clear interpretation in terms
of pushforwards.

For each antisymmetric pairing [, choose a maximal isotropic subgroup A < I" and let
M(Xr,l, A, 2n, q) be the moduli space of triples (E, 1, x), where F is a vector bundle of
rank 2n/|Al, ¢ : E = ¢*E* is an isomorphism such that ¢*¢)* = — and x is an [(T')-
action on E respecting 1 and satisfying (7.4.5). Cases (1) and (2) form a partition of these
moduli spaces. We have morphisms M (X1, [, A,2n,q) — M(Xr,7,c,Sp(2n,C)? T*)
which follow as in Lemma [7.4.2]

8.5 Fixed points as pushforwards

As in the case of GL(n, C) we have an interpretation of the moduli spaces M (Xt, [, A, 2n, q)
in terms of pushforwards.

Definition 8.5.1. Let M (X, GL(2n/|A|,C), ¢) be the moduli space of pairs (F, ) con-
sisting of a vector bundle E of rank 2n/|A| and an isomorphism ) : E = ¢*E such that
q*Y* = —1) (this may be constructed using the techniques in [68]). We define

M<XA> GL(QTL/|A|, C)a Q)Z(F)

to be the subvariety parametrizing pairs (E, 1)) such that [(v)*(E ® pivy,¥) = (E,v) for
each 7 € I' (we define the pullback [(vy)*% as it is usual for homomorphisms of vector
bundles). The pushforward of vector bundles induces a morphism

pax : M(Xa,GL(2n/|A|, C), )" — M(X,Sp(2n,C)).

Note that we are calling /(7) to its coset in I'*/I(A) by abuse of notation, see the
discussion before the statement of Lemma([7.5.2] As in such discussion the correspondence
between [(A)-equivariant vector bundles on X1 and vector bundles over X implies the
existence of a morphism p;, : M(Xr,l, A, 2n,q) — M(Xa, GL(2n/|Al,C), ¢)"™. Asin
the case of GL(n, C), this determines a decomposition

M(Xa, GL(2n/|A],C), )" = | JpaaM(Xr,1, A, 2n, ), (8.5.1)

l,q
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where [ runs over all antisymmetric pairings of I" with maximal isotropic subgroup A and
g runs over A*.

Remark 8.5.2. This decomposition of M (X, GL(2n/|Al,C), ¢)"") manifests the differ-
ent choices that we have for the commutators between the different isomorphisms f, :
(E, ) = 1(7)*(E ® pi~, ), where fy € " and (F, 1)) represents an element of the mod-
uli space M (X, GL(2n/|A[,C),¢)'™, as it is the case with (7.5.6). However, the moduli
space M (Xt,1, A, 2n, q) itself has dlfferent components corresponding to different choices
for the orders of this isomorphisms because of the considerations of Remark[8.3.3] In other
words, for each non-trivial v we have the possibilities ({(7)* f, ® Id,x,) o f, = +1 and in
general only one of them is possible (note that multiplying ¢ f, does not preserve v, which
is something that we do not need to worry about for GL(n, C)).

Lemma 8.5.3. The morphism
M(Xr,l,n,q) = M(Xr,T,c, Sp(2n,(C)9,F*) — M(X,Sp(2n,C)y) — M(X,Sp(n,C)),

where the last morphism is defined in Proposition and the second one is defined in
Theorem{d.4.8| factors as

M(Xr,l,n,q) — M(Xa,GL(2n/|A|,C), ¢)'™ 225 M (X, Sp(n, C)).

In particular, by Lemma and Proposition[5.6.1] the image of the pushforward is inde-
pendent of the choice of maximal isotropic subgroup A.

‘We conclude:

Theorem 8.5.4. We have the inclusions

| JpasM(Xa, GL(20/|ALC), )™  M(X, Sp(2n, ©)F

and
Moo(X,Sp(2n,C)) UpA* (Xa,GL(2n/|A[,©),q)'™

where M(Xa, GL(2n/|A|, C), q)!™ is defined in Definition The parameter | runs
over all antisymmetric pairings on ' such that the order of a maximal isotropic subgroup

A divides n. The choice of A is fixed for each l. The parameter q runs over elements of
A¥*,

Proof. Follows from Lemmas [8.1.2] [8.3.2] and [8.5.3] Theorem [5.6.3] Corollary [8.3.1] and
@.5.1). O
Definition 8.5.5. Let M (X, GL(2n/|A|, C), ¢) be the moduli space of triples (E, ¢, 1) )
consisting of a Higgs bundle (F, ) of rank 2n/|A| and an isomorphism ¢ : (E,p) —
q*(E, ) such that g*1)* = —1) (this may be constructed using the techniques in [68]). We
define M(Xa, GL(2n/|Al,C), q)'™ to be the subvariety parametrizing triples (E, ¢, )
such that [(7)*(F, ¢ ® piv,¢,¥) = (E,¢,1) for each v € T' (we define the pullback
[(y)* as it is usual for homomorphisms of vector bundles). The pushforward of vector
bundles induces a morphism

par : M(Xa,GL(2n/|A|,C), )™ — M(X,Sp(2n,C)).
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Theorem 8.5.6. We have the inclusions

| JpasM(Xa, GL(20/|A], €), )™ = M(X,Sp(2n,C))"
lq

and
M (X, Sp(2n, C))F c UpA*M(XA, GL(2n/|Al,C), q)l(r),
l,q

where M(Xa, GL(2n/|A|,C), ¢)'") is defined in Definition The parameter | runs
over all antisymmetric pairings on I' such that the order of a maximal isotropic subgroup
A divides n. The choice of A is fixed for each . The parameter q runs over elements of

A*,

8.6 An abelianization phenomenon

In particular, if 2n = 2™ is some power of 2 and the genus of X is greater than m/2,
there are subgroups I' < H'(X,Z/27Z) of order 2™. If [ is the trivial pairing then the
pushforward pa, M (X, C*, q)l(F) is a component of the fixed point locus, where ¢ is any
non-trivial element of I'*. In this situation M (Xa,C*, q)"") is just the moduli space of
isomorphism classes of pairs (L, 1)), where L is line bundle over Xt and ¢ : ¢*L — L*
is an isomorphism satisfying ¢*¢» = —*, and the image pa.(L, 1) is just the pushforward
of L equipped with the induced symplectic form. This “abelianization” phenomenon is
a manifestation, with the extra structure of the symplectic form, of the corresponding de-
scription of a component in the fixed point locus of M (X, GL(2n, C)) under the action of
a subgroup of order 2n in J(X).
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Chapter 9

Fixed points in the absence of
tensorization

Throughout this Section G is a connected semisimple complex Lie group with centre Z and
Lie algebra g, X is a compact Riemann surface and I is a subgroup of Aut(X) x Out(G) x
C*. From Section we have an action of I' on M (X, G) given by homomorphisms
n: I — Aut(X),a : I’ - Out(G) and i : I' — C*. We also fix a lift 6 of a. Note the
absence of o € Z}(T', H'(X, Z)), which is taken to be trivial in this Chapter.

Let us denote the fixed-point subvariety of M (X, G) under the above defined action
of I' by M(X,G)". This section gives a description of M (X, G)" which is a particular
case of the answer in Chapter [I0] when 7 is injective. When 7 is not injective it gives a
description which is refined in Chapter[10]

9.1 The forgetful morphism

Let ¢ a 2-cocycle in Z2(T', Z) and 1 a character of T".

Proposition 9.1.1. Let (E, -, ) be a (0, c, p)-twisted T-equivariant G-Higgs bundle as
defined in Section

1. If (E, ) is (semi)stable then (E, -, @) is (semi)stable.
2. If (E,-, @) is semistable then (E, ) is semistable.

3. If (E,-, @) is polystable then (E, p) is polystable.

Proof. The statement (1) is obvious. For the statement (3) let (F, -, ¢) be a polystable
twisted equivariant G-Higgs bundle. Then by Theorems [4.2.1] and [2.3.1] the underlying
(G-Higgs bundle is polystable.

Now we prove (2). Suppose (E, -, ) is semistable but (£, ¢) is not semistable. Note
that, in char 0, (F, ¢) is semistable if and only if (ad(F), ad(y)) is semistable ( see [2,
Lemma 2.10]). Thus (ad(E), ad(yp)) is not semistable. Then there is a unique filtration of
(ad(FE),ad(¢)) by ad(¢p) invariant sub-bundles

O=FycFc - F,1cF,=ad(F)
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such that each (F;/F;_1,ad(y)|r,/r,_,) is semistable and p(F;/F;—1) < p(Fi—1/Fi—2), for
alli = 1,2,--- ,n. Then n is odd and F, ., is a parabolic subalgebra bundle of ad(£)
(see proof of [17, Lemma 2.5] and [2, Lemma 2.11]). Moreover, as (ad(F),ad(p)) is
not semistable we have deg(F,+12) > 0. Let Ad(E) := E x“ G be the group scheme
associated to E for the action of G on itself. By [1, Lemma 4] there exists a parabolic
sub group scheme P — Ad(F) such that the associated Lie algebra bundle is F},;1/,. By
uniqueness of Harder Narashimahn filtration we get Fj,y1/2 -7 = Fj41/2 forall v € I'. Now
we can show that there exists a parabolic subgroup P < G and a reduction of structure
group E, c FE to P such that Ad(E,) = P (see the proof [2, Lemma 2.11]. Therefore,
F.i1/2 = E,(p). But this would contradict our assumption that (£, -, ¢) is semistable.
Therefore, (ad(E), ad(y)) is semistable.

[

Leto,, € Z gx (I's,, G) for each isotropy point z; € X (notation as in Section . By
Proposition here exists a forgetful morphism

M(X,G,T,0,c,p,0) > M(X, Q). (9.1.1)

We denote the image of the forgetful map inside M (X, G) by M(X, G,I,0,c,u,0).

The image of the forgetful map consists of those isomorphism classes of polystable
(G-Higgs bundles which admit a (0, ¢, u)-twisted ['-equivariant structure. Now if a G-
Higgs bundle (E, ) admits a (6, ¢, u)-twisted I"-equivariant structure then, by definition
of twisted equivariant structures, we have

(B, p) = (3651 (B), w(v)n305 (),

where =~ denotes isomorphism of G-Higgs bundles. As points of M(X,G) consist of
isomorphism classes of polystable G-bundles we immediately have the following.

Proposition 9.1.2. M(X,G,T,0,c, 1,0) = M(X,G) .

9.2 Fixed points and simplicity

Recall that a G-Higgs bundle (E, ¢) is said to be simple if Aut(E, ¢) = Z.

Proposition 9.2.1. Let 0 : I' - Aut(G) be alift of a : I' — Out(G), and let (E, ) be a
simple G-Higgs bundle over X such that (E, @) = (030, (E), uni0;" () for each -y €
L. Then (E, ) admits a (0, c, p)-twisted T-equivariant structure for some c € Z2(T', Z).

Proof. Let (E, ) be a G-Higgs bundle over X such that
(B,) = (1305 (E), 607" () 9.2.2)

forall v € T'. Let Aut(E, ¢) be the group of automorphisms covering the identity of X, and
Autr,0,.(E, ¢) be the group defined in Remark The simplicity of (F, ) implies
that Aut(E, ¢) = Z, and hence (4.1.2) gives an extension

1—>27— Autpm,g#(E,go) —I'— 1.
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This extension defines a cocycle ¢ € Z2(T', Z), and a c-twisted homomorphism
I'— Autl‘,n,@,u<E7 QO)

with cocycle ¢, that is, a (6, ¢, u)-twisted I'-equivariant structure on (E, ¢). O
We have the following.

Theorem 9.2.2 (Proposition 5.1 and Theorem 5.7 in [12]]). Let M (X,G) €« M(X,G)
be the subvariety of M(X, G) consisting of those G-Higgs bundles which are stable and
simple. Fix a homomorphism 0 : I' — Aut(G) lifting a : I' — Out(QG). Then

M (X, G = U M(X,G,T,0,c,p,0)

[cleHZ (T, 2),[0]e{He,, (Tz;, )}

and N
U M(X,G,T,0,c,pu,0) c M(X,G).

[(JeH3 (T, 2) [oJe{ Y, (T2y,C))

Proof. Let (E,p) € M. (G)'. Then, by Proposition [9.2.1, (E, ) admits a (6, c, u)-
twisted I'-equivariant structure, where ¢ € Zg(l“, Z), the set of all 2-cocycles where I'

acts on Z via §. Thus (E, ) € ./\7(X, G,TI,0,c,p,0). It follows from Proposition m
that the union should run over [c] € H2(T, Z) and [c] € {H} (T',,,G)}. O

2

Theorem 9.2.3. Let M, (X,G) ¢ M(X, Q) be the subvariety of M (X, G) consisting of
those G-bundles which are stable and simple. Fix a homomorphism 0 : T' — Aut(G) lifting
a: ' — Out(G). Then

M, (X, G < U M(X,G,T,0,c,0)
[JeH2(1,2). [o]e{ HY, (Ta,.C)}

and N
U M(X,G.T,0,¢,0) c M(X,G)".
[eleHZ(1,2),[o]e{HY, (Ta; G}

9.3 Fixed points in the character variety

We study now the action of I on the character variety R (X, G) and describe the fixed points
in terms of twisted equivariant representations. Recall that we are given homomorphisms
n:I' - Aut(X),a:I' > Out(G) and 6 : I' — Aut(G), where 0 is a lift of a.

Fix a point x € X. The automorphism 7, of X produces a homomorphism

Ny, @ T(X,2) = m (X, n,(2)).

This induces an automorphism of R (X, G) since the quotient Hom(m, (X, z), G)/G is in-
dependent of the base point of X. Combining this with the action of Aut(G) given in
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Section for every v € ' and p € Hom(m(X), &) we have p - v € Hom(m (X), G)
given by
p-y=0"0poi,.
Combining Theorem with Theorems 4.2.2] and [9.2.2| and Proposition [9.1.2 we
have the following.

Theorem 9.3.1. Let Ri (X, G) < R(X,G) be the subvariety of R(X,G) consisting of
isomorphism classes of irreducible representations, and let 75,(X ,G,T',0,c) be the image
of R(X,G,T,0,c) in R(X,G) under the natural map defined by diagramme (4.2.7). Let
R(X, G)' be the fixed-point subvariety for the action of T defined by the homomorphism
(n,a) : T'— Aut(X) x Out(G). Then

U R(X,G,T,0,c) = R(X,G)
[cleHE (D, 2)

and

Ri(X,G) = | ) R(X,G.T,6,0)

[c]eHZ (T, Z)

Here 0 : I' — Aut(G) is any lift of a : I' — Out(G).

Remark 9.3.2. We could have considered also a non-trivial character px : I' — C* with
image the subgroup of C* given by {+1} =~ 7Z/2Z. With a minor modification in the
definition of the group G xg . I" one would obtain similar results (see [[15, 139, |40] for an
analogous situation).

9.4 Example 1

Let G = SL(2,C) and (X, o) be a hyperelliptic curve together with the hyperelliptic invo-
lution o. In this case let ' = Z /27 and consider the homomorphism 7 : Z /27 — Aut(X)
defined by sending —1 — o. In this case Out(G) = 1 and Z = 7Z/27Z, hence Aut(G) =
Int(G), and therefore Aut(G) acts trivially on the centre Z. So, in this case, we have
H?*(Z)27,7) = 7./27. Also, there are only two characters p*, defined by u*(—1) = +1.
We can then define actions on the moduli space of SL(2, C)-Higgs bundles defined by 7
and p*. The case in which 7 is the trivial homomorphism from I" to Aut(X) and 1 = u~
is studied in [48 30, 38, 39]].

9.5 Example 2

Let G = SL(n,C), with n > 2 and X a hyperelliptic curve together with the hyperelliptic
involution o, as above. Let I' = Z/2Z and n : Z/27Z — Aut(X) be the homomorphism
defined by sending —1 — o. In this case Out(G) =~ Z/2Z and Z =~ Z/nZ. Let us denote
the trivial homomorphism from I' — Out(G) by a™ and the homomorphism which sends
—1 to b, where Out(G) = (b), by a~. In the first case we have the trivial action of I on
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the centre Z via a™. To compute the second group cohomology of Z /27 with coefficients
in Z/nZ we will use the following fact: Let C be a cyclic group of order r generated by ¢
and A be a finite abelian group with a C-action. Let N = 1 + ¢ + --- + t"~! € Z[I'] then
obviously Na, a € A, is fixed by all « € C'. With these notations we have H?(C, A) = 1‘3—;,
p = 2,4,6.... Thus we have , in this case, H*(T', Z) = 0 when n is odd and H*(T', Z) =
(Z/27)" when n is even, where r is the minimal number of generators of the 2-Sylow
subgroups of Z/nZ. On the other hand the action of the generator of Z/2Z on Z induced
by a~ sends x € Z to 2~ '. In this case we have H2 (T, Z) = Z%/*Z. Thus the action is
trivial when n is odd and hence H2 (T, Z) = 0, and if n is even then H2 (T, Z) consists
of all order 2 elements of Z/nZ. As in the previous example, we have u* as possible
characters.

The cases in which 7 is the trivial homomorphism from T" to Aut(X) and p = p™ is
studied in [30, 39] (see also [46, 66| for related work).

9.6 Example 3

Let G = Spin(8,C). Then Z = Z/27 x Z /27, Out(G) = Ss. In [39] the authors consider
various actions of cyclic subgroups I' of Out(G), with I acting trivially on X, and identify
the fixed-point subvarieties.

Now in our situation the following three cases are relevant.

Case (I): Let X be a compact Riemann surface of genus g > 2and ' := S3. Letn : ' —
Aut(X) be an injective homomorphism in other words the action of I" on X is faithful. Let
o and 7 generate the group Out(Spin(8,C)) = Ss. Leta : I' — Out(Spin(8, C)) be the
isomorphism defined by sending an order 2 generator to o and an order 3 generator to 7.
Let 41 : I' — C* be a character of S3. We know that S5 has three non-equivalent conjugacy
classes. Let u;, ¢ = 1,2, 3, be the corresponding characters. We define homomorphisms
F; = (n,a,p;) : T' — Aut(X) x Out(G) x C*, i = 1,2,3. Then each F; determines an
action on the moduli space of G-Higgs bundles. Let H = {7) be the normal subgroup of
G generated by 7. Then by ([64, Lemma 2.2.4]) H*(I', Z) = H*(I'/H,Z"). As 7 is an
element of order 3 either Z = (e) or Z# = Z. So, we have either H*(T', Z) = 0 or
H2*(T,Z) = 7/27Z.

Case (II): Let X be a hyperelliptic curve and I' := S;5. We define a homomorphism
n : Sz — Aut(X) by sending o to Id and 7 to an order 2 hyperelliptic involution. Let
b; € Out(G) be the class of an order 2 automorphism of G and ¢; : I' — Out(G) be
the homomorphism defined by 7 — 1 and 0 — b;. We define F; := (1,0, ;) : I' —
Aut(X) x Out(G), ¢ = 1,2,3. Then the respective actions of I" on the moduli space of
G-Higgs bundles are determined by F;. In this case the subgroup H acts on Z trivially,
therefore Z# = Z, and hence H?(T", Z) = Z /2.

Case (III): X is a cyclic trigonal curve. In other words we assume that the subgroup
< 7 > acts trivially on X and f is an order 3 automorphism such that X/ < f >= P!, This
case is related to the work of Oxbury and Ramanan [64]], and to what they refer as Galois
Spin(8, C)-bundles. We define a homomorphism 7 : S3 — Aut(X) by sending o to Id and
7 to the order 3 automorphism f. Let b be the class of unique order 3 automorphism of X
and 6 : S3 — Out(G) be defined by sending o to [ and 7 to b. As in the previous case we
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define F; := (n,0;,11;) : T' — Aut(X) x Out(G), ¢ = 1,2, 3. Then the action of I" on the
moduli space of G-Higgs bundles is determined by F;. Since Z/3Z and Z = 7,/27. x 7./27.
have coprime order, by [64, Lemma 2.2.4] H*(Z/3Z, Z) = 0.

9.7 Example 4

Let G be a group of type Es. In this case Out(G)) = Z/2Z. Let X be a hyperelliptic
curve together with a hyperelliptic involution o and I' = 7Z/27. We define a homomor-
phism 7 : I' — Aut(X) by sending —1 — 0. As in the case of example 1 we have two
homomorphisms a® : T' — Out(G) and two characters ;.

128



Chapter 10

Fixed points for a general action

Throughout this chapter we fix a finite group I', a compact Riemann surface X and a
connected semisimple complex Lie group G with centre Z and Lie algebra g.

10.1 KEtale covers and lifts of a

Letn : I' - Aut(X) and a : [' - Out(G) be homomorphisms. By [70], there exists a
homomorphism
0 : kern — Aut(G)

lifting a]kern. With definitions as in Section we have an extension
1G>G 10 -1, (10.1.1)

restricting li where G is the connected component of the identity and I is a (finite)

subgroup of I'y. Let 7 be the characteristic homomorphism of (10.1.1). By [10] there exists
alift 7: T — Aut(GY) of the characteristic homomorphism of (10.1.1)), and consequently
by Proposition we can find ¢ € Z%(Ty, Z(GY)) such that we have an isomorphism

G? ~ GY x,.T? as extensions of GY, i.e. we have a commutative diagramme

~

1 > GY > GY y 9 > 1

| b

1 > GY y GO x, . T? y 19 > 1

Now let A < I' be a subgroup, G4 :=p,'(A) andlet p : Y — X be a connected étale
cover associated to a A-bundle over X and consider the subgroup I'y < Aut(Y) lifting
n(I"). This contains A, the Galois group of Y over X, as a normal subgroup (A is the kernel

of the projection Ty — n(I")). Let

Fn = {(/%7}\/) el x FY | Ny = p@)}
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This contains the subgroup kern x 1, which is a copy of kern. Let pr : IA“,, — [ be the
projection on the first factor. We have the following commutative diagramme:

1 1
A A
1 — k y T y T > 1
e n v , (10.1.2)
pr p
1 —— kern s T —L— p(I) —— 1
1 1

whose rows and columns are exact.
We say that amap 7 : I';, — Aut(G) is a c-twisted homomorphism if it satisfies

T%,Ay%wxﬁl = Intc(%,y/) %VW/ﬁV (1013)

forevery (v,7) and (v/,7) € fn’ where c € Z2(Ty, Z(GY)); of course we are assuming that
%(fy) preserves Z(GY). Equivalently, the associated (left) action of fn on G is c-twisted.
We have a similar notion of a c-twisted homomorphism I'y — G. Denote by Hom.(A, B)
the set of c-twisted homomorphisms from A to B and let Homc(fn, Aut(G))% be the
set of c-twisted homomorphisms whose associated c-twisted f‘n—action on (G preserves
G4%. We have a restriction map rye,, Homc(fn, Aut(G)) — Hom(kern, Aut(G)). The
image consists of homomorphisms because c is trivial on kern € fn /kern = f‘y. Let
Homgp(fn, Aut(G)) := Homc(fn, Aut(@) r;;n(e). We also have a restriction map
reo Homg,c(lqn, Aut(G)) — Hom,(Ty, Aut(GY%)): indeed, given 7 € Homgﬁ(fn, Aut(Q)),
(v,7) € fn’ 7' € kern and g € G4, we have

T a)(9) = Itz 1) T3 T (9) = T2y (9) = 7105 (9),

hence the induced map 7 : f‘n — Aut(G%) factors through T'y..
Note that any automorphism of G preserves the connected component G of G4, hence

we have a map rge : Hom(I'y, Aut(G})) — Hom(Ty, Aut(GY)), where the fact that
Z(GY) acts trivially on G by conjugation implies that the image consists of (honest) ho-
momorphisms. Conversely, given a homomorphism 7 : fy — Aut(GY) and a 2-cocycle
ce Zf(f‘y, Z(GY)) such that G4 x., . A and G are isomorphic as extensions of G (see
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Proposition , there is a c-twisted extension e, . : I'y — Aut(GY) given as follows:

Ty —— GO %o Ty —— Int(GY x,0Ty) —— Aut(GY x,.A) =  Aut(GY),

€r,c

where the first map sends v € ' to (1,7) € G x,. I'y and the existence of the sec-

ond map follows from the fact that A is normal in IA“y. The map e, is c-twisted, since

Int(y ) Int(; /) = Int,, ) Inty ., by definition of the group multiplication on Gg Xre f‘y.
In summary, we have the following diagramme:

T‘G9

Hom(T,), Out(G)) «—— Homg.(T';, Aut(G)) — Hom,(T'y, Aut(G))

"0
pFT l GO )

Hom(T', Out(G)) Hom(Ty, Aut(GY9))
(10.1.4)
where ¢, is the pushforward of the natural projection Aut(G) — Out(G) and p} is the
pullback of pr : fn — I'. For each homomorphism 7 : fy — Aut(GY) and each 2-cocycle
ce 72Ty, Z(GY)) as above we set

Homgmc(f‘n,Aut(G)) =14 (ere) C Hom97c(fn,Aut(G)) and

0
GA
A~

Homy ,.o(T,, Out(G)) := g, (Homg., (T, Aut(G))).

Now let 7 : fn — Aut(G) be a c-twisted homomorphism in Homg’m(fn, Aut(GQ))
preserving QZ' There exists an associated left (7, ¢)-twisted action (with respect to the

adjoint action of G} on gf)) of I, on g/, namely

pry = pE( )7 Ty = GL(gh): (1,9) = (v 15" 7,5(0)). (10.1.5)

Moreover, since by definition of gﬁ and the fact that rkem(%) = 6 the action is trivial on

ker 17, and ¢ only depends on the coset in I'y, this factors through a (7, ¢)-twisted action of
Ty on g, which we also call ps ..

Remark 10.1.1. In Sections and we will encounter c-twisted homomorphisms 7
living in the set Homy , .(I';, Aut(G)) which do not necessarily preserve gf,. However, we
still have a well defined linear homomorphism

prp: Ty — Hom(g),. g).
Given a Gj-bundle F" over Y, this induces a map H(Y, F(g},)®Ky) — H°(Y, F(g)®Ky).
Hence we have a notion of (7, ¢, pz ,)-twisted I'y-equivariant (GY, g )-Higgs pair over
Y, which is given precisely as in Definition 4. T.T|by regarding the images of the Higgs field
under the action of I'y as sections of F'(g) ® Ky and imposing that they actually live in
F(gfL) ® Ky and are equal to the Higgs field.
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10.2 Fixed points for trivial o
Fix a homomorphism

I' > Aut(X) x Out(G) x C*; v — (fy, ay, f1y).
Keep the notation of Section [I0.1] We refine the results of Chapter [9}

Proposition 10.2.1. Consider a lift 0 : kern — Aut(G) of alyerr, and a subgroup A <
. Take a connected étale cover p : Y — X associated to a A-bundle over X and the
group Ty < Aut(Y') fitting in . Lett: Ty — Aut(GY) be a homomorphism and
ce 7? (fy, Z(GY)) a 2-cocycle such that there is an isomorphism of extensions G :=
Py (N) = GE % . \. Assume that pia € Homy TC(F Out(Q@)) (see Sectionm

Let F be a (1, c)-twisted Ty- -equivariant G-bundle over Y. Then F can be regarded
as a GY-bundle over X via Theorem and its extension of structure group E to G is
isomorphic to Ey for each y € T.

Proof Throughout the proof we call 7 : fy — Aut(GY) to the extension e, . of the given
Fy — Aut(Ge) by abuse of notation. We have to show that ¥ =~ [E'y for every

v e I. Pick 5 € 'y such that () = p(3) (in other words, (7,3) € »)- Consider the
automorphism of F' given by 7. We want to know how it interacts with the G4-action on

F. Consider the twisted product G x, . T'y. Foreach e € F and (g,\) € GY x,. A = GY,

(e(g: M) -7 = ((eg) - A) -7 = ((((eg) - 7) - A7) - A) -7 = ((eg) -7) - (LN N)(1,7) =
(e v)al(g) ML) = (e-A)7 (g, M),

thus 7 induces an isomorphism
hy s B = iyl (F); e oy le - A

where F is regarded as a G -bundle over X.

Now let 7 € ¢; ' (pfa) Homgmc(fn, Aut(G)). Using the extension 7, 5 € Aut(G) of
7 we may extend the above isomorphism to F, thus getting £ = 137, 5(F). Since 7,5 is a
lift of a.,, we are done. O]

Proposition 10.2.2. Let A < 'Y be a subgroup. Consider a lift 0 : kern — Aut(G)
of a|xer o 4 connected étale cover p : Y — X associated to a A-bundle over X and the
group Ty < Aut(Y) fitting in . Lett: Iy — Aut(GY) be a homomorphism and
ce 7? (fy, Z(GY)) a 2-cocycle such that there is an isomorphism of extensions G =
Py H(A) = G %, \. Assume that pia € Homgmc(fn, Out(@)) (see Section and pick
TE HomgTC(A Aut(QG)) such that q*( ) = p}a.

Let (F,v) be a (7, c, pz,,)-twisted Ty -equivariant (Gg,g#) Higgs pair over Y. Then
(F, %) can be regarded as a (G 79u) -Higgs pair over X via Proposition - and its
extension of structure group (E | @) to G is isomorphic to (E, p)y for each v € T.
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Proof. Tt is left to show that the isomorphism h., : E = Ev defined in the proof of Propo-
sition|10.2.1|for each 7y € T respects the higgs field. Let (e, v) ® k be a local expression for
Y, whereee F,v e gz and k£ € Ky. By I'y-invariance of ¢ we have

b= = (e 7,1y diy50) @0k = py i AT 5(hy (1)),
thus we conclude that h, (¢) = p,n; 7. %(1/1) and so h., sends ¢ to ¢ - 7 as required. O

Proposition 10.2.3. Let E be a simple G-bundle over X which is isomorphic to E~ for
every v € I'. Then there exist a lift 0 of a|ver,, and a reduction of structure group F' of E
to G := p;l(A) satisfying the following: lAet p Y — X be the connected étale cover
associated to the A-bundle F/G% — X and Ty the subgroup of Aut(Y') lifting n(T'). Then
there is a homomorphism 7 : T'y — Out(GY) such that, for every lift T : Ty — Aut(GY)
(which exists by [[70]), we can find a 2-cocycle c € ZZ(fy, Z(GY)) such that:

1. We have an isomorphism G4 ~ G x.. A as extensions of GY.

2. pfae Homgmc(fn, Out(Q)) (see Section .

3. The tautological reduction of p* F to GY is a (7, ¢)-twisted fy-equivariant GY-bundle.

Proof. Let E be a simple G-bundle which is isomorphic to E+y for each v € I". According
to Proposition there is a lift

6 : kern — Aut(G)

of afyer, and a reduction F' with structure group G?. Another lift of aye, gives such a
reduction if and only if it is in the orbit of § under the conjugation action of Int(G). On the
other hand, according to [70] there exists a homomorphism

~

0:T — Aut(G)
lifting a. For each v € ker n we set 0, = Int,, 57, where
Int, : kern — Int(G); v — Int,_

is an element of Zel(ker n, Int(G)) by Lemmam Fix an element $ € I". We claim that
551(639) = G”, where

~

0" kern — Aut(G); v — 0, := Int§§1 0, (10.2.6)

(555-1)

Indeed, for every v € kern and g € G?,

~ ~

)87 El(g) = Inty-

Intg; 5 (3py5-1)

n—1g _ -1 o _
9[31(5,37,8*1 05 657571 = 05 Intsﬁwfl QB’Y571 (g) =

05 05,5-1(9) = 05'(9),
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so the inclusion HNB’I(GQ) < G follows. Note that the same reasoning applied to 3 instead
of 4! and ¢ instead of 6 gives 05(G?) = G, s0 G¥ < gﬁ_l(Ge) also follows. Moreover,
we can see that 0’ is a homomorphism, or equivalently (see Lemma [3.1.5)) that the map
Intggl(sﬁ.ﬁfl) : kern — Int(G) is an element of Z} (kern, Int(G)): for every v and 7' €
ker n we have

Intgf?l(sﬁwfl)‘;“/(‘;El(saw'ﬁ*l)) - Inthl(Saflwagﬁflvﬁ(swﬁfl)) - Inthl(sﬂwafl)’
where the last equality follows from the fact that Int € Zg(ker n, Int(G)).
For each € I" there is an isomorphism (unique up to multiplication by an element of
Z) R
hy: E — n:_lﬁq,E.

Consider the sub-bundle F” := nj3hs(F) of E. For every e € E'and g € G we have

nshs(eg) = nihs(e)ds ' (g),

and so by the previous paragraph F” is a reduction of E with structure group ggl(Ge) =
G?.

Thus, we have shown that F” is a reduction of structure group of F to G?. Since ¢’ is a
lift of a|ker, it must be a conjugate of # by an element of Int(G). Moreover, F'tz = F' for
some element ¢z € G by Proposition and so 55 Int;, preserves G?. Note that, given
another element ¢j; € G such that F't; = F', we must have t5 = t};g for some g € G,

Now letp : Y — X be the étale cover of X defined by F'/G. For simplicity we assume
that it is connected, so that A = % and G4 = GY. The general case follows using the same
argument after taking a connected component of Y and the corresponding monodromy
group A. The map ¢ determines a map from I to the group of automorphisms Aut(Y) of Y
which is a homomorphism if we equip Aut(Y') with its trasposed multiplication, defined as
follows: for each 7 € I take an element of Y = F'/GY%, choose a representative in F, apply
1%h.(e)t, and take the image in F'/Gf. Different choices of ¢ provide different choices of
the map ' — Aut(Y") differing by elements of ['%, which is the Galois group of Y over X.
Consider the subgroup ['y < Aut(Y') consisting of the lifts of 7(I") to Y. By the previous
discussion this is the subgroup generated by I and the image of I" under any of the maps
[' — Aut(Y) that we have defined. Recall that we are assuming that I'y acts on Y on the
right (in fact I acts naturally on the right, since it comes from a principal bundle action).
The rest of the proof is committed to defining a suitable action of fy on the tautological
reduction of p* F' to GG, which we also call F' (they have the same total space).

Let fn < T x I'y be the subset of pairs (7,%) such that n(I") = p(¥). First note that
for each pair (v,7) € fn we can define an automorphism 7%h., (e)t, 5 of F' lifting 7, where
t,5 € G is chosen suitably. This is an automorphism of the total space of I as a complex
variety, and in general it does not preserve the G9-action. Note that another such choice
t’w is equal to ¢., 5 for some g € GY. We claim that the map

O 1nt, : fn — Aut(G); (v,7) — 57 Int;_ .,
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induces a homomorphism I'y — Out(G?). Indeed, for every (v,4) € I, e € Fand g € GY
we have

n;khv(eg)iw = U:hv((f)twﬁ(lnt;; 97_1(9)) = n:hv<e>t'yﬁ((ev Intt%a)_l(g))

and so, since both n>h. (e)t, 5 and nZh,(eg)t, 5 lie in F’, the automorphism 57 Int; . of G
must preserve G. Moreover, the image of the restriction 6., Int, . |ge in Out(GY) does not

depend on v: given another v € T such that n(v’) = p(¥), the element v '’ must lie in
ker 7. By simplicity of (E, ¢), the morphism

hy-1y(®)sy-1y 1 (B, @) — n;kjll»yfew‘lv’(Ev/‘flv’Sp) = Oy-1(E, piy-10)

must be equal to the isomorphism induced by the identity on (F, ) up to an element of Z.
Thus the restrictions of n%h., (e)t, 5 and 0% h./(e)t, 5 to I differ by an element of G' and,
since they both preserve F and lift 7, this element must actually be in GY. The compatibility
of the GY-actions then implies that 57 Int; . and 57/ Int; , . must differ by an element of
Int(GY), as required.

Therefore, we get a map f‘y — Out(GY). Itis left to show that it is a homomorphism.
For every (v,7) and (7/,7') € fn we have

(Wl (F)) oy = F = i (F)E s = b~ e (F)E )
= (niy'hw’(F))H;I(twﬁ)tw’ﬁ’z

for some element z € Z. Hence there exists g € G such that

~

97/(25%@)157/,3/2 =ty 379,

and so

~

57 Int;_ . 57/ Inttv,ﬁ, = 0 Int = 577/ Inttwm’ Int,,

n—1
9’y, (t%:/)t,ylﬁl
as required.

Thus we have obtained a homomorphism

7: Ty — Out(GY).

By [[70] 7 lifts to a homomorphism Ty — Aut(GY). In other words, we may rechoose the
map ¢ : I';, — G to impose
7= 01Int; |go. (10.2.7)

More precisely, for each cosetd € ['y = fn / ker n we may choose a representative (y,7) €
I'; and define ¢, 5 so that 7., := 0, Int,__
1 5 that fits into the equation

a and then, for each +' € ~y ker 1, take the unique

n:h7(°)t7ﬁ F = n;k/h,y/(.>t,y/’:/|p (1028)
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(this exists because of simplicity of E and because ker 7 acts trivially on GY via 6). Let
c: Ty x I'y — Z(GY) be the (unique) map satisfying

Myl (3R (@)t 3)ty 3o = By (0(3, 7))ty 33 |1 (10.2.9)

foreach 7,4’ € 'y and any ~, 7/ € I satisfying n(v) = p(7) and n(v’) = p(¥’). Note that ¢
is well defined: both sides of are independent of the choice of y and 7' by (10.2.8)),
and they are both G{-equivariant with respect to the G action given by 6., Int; , 0y Int, , =
577/ Int, ,, hence they defer by an element of GY commuting with GY (in other words, an
element in Z(GY)). Because of associativity of the composition of homomorphisms of G
bundles, c € Z2(T'y, Z(GY)) is a 2-cocycle.

~

Define a right action of I'y on F' as follows:
FxTy — F; (e,3) = e-7 = 12" hy ()t 5, n(7) = p(A). (10.2.10)

This is independent of the choice of v by (10.2.8)), it descends to the action of fy by the
construction of ¢ and it is (7, ¢)-twisted by (10.2.7) and (10.2.9). Thus it is a right (7, ¢)-
twisted ['y-equivariant action on F'.

This finishes the proof of (3). Statements (1) and (2) follow by construction, so we are
done. [

Proposition 10.2.4. Let (E, ) be a simple G-Higgs bundle over X which is isomorphic
to (E, )y for every v € I'. Then there exist a lift 0 of a|xer, and a reduction of structure
group (F, ) of (E,p) to G4 := p,*(A) satisfying the following: let p : Y — X be
the étale cover associated to the A-bundle F /Gy — X and Ty the subgroup of Aut(Y)
lifting n(I"). Then there is a homomorphism T : Ty — Out(GY) such that, for every lift
Ty — Aut(GY) (which exists by [[70]), we can find a 2-cocycle ¢ € Zf(fy, Z(GY))
such that:

1. We have an isomorphism G4 ~ G x.. A as extensions of GY.
2. pfae Homgmc(fn, Out(G)) (see Section .

3. There exists T € Homgmc(f‘n, Aut(Q)) such that q.(7) = pfa and the tautological
reduction of p*(F, ) to GY is a (1, ¢, pz,,,)-twisted U'y-equivariant (G, gz)—Higgs
pair.

Proof. The argument is the same as the proof of Proposition [10.2.3] after replacing Propo-
sition with Proposition However, we need to check several things related to the
Higgs field.

First recall that at the beginning of the proof we used Proposition [5.5.1] to get a lift
0 : kern — Aut(Q) of a|yer,, and a reduction of structure group F of E to GY. In this case
we use Proposition so that we obtain a reduction of structure group (F, ) of (E, ¢)
to (G’ g). On the other hand take any lift f: T — Aut(G) of a. By Lemma [3.1.5there

is a 1-cocycle Int, € Z(%(ker n,Int(G)) such that § = Int, §. By assumption we have an
isomorphism

hV : (E7 90) - 77:_1§W(E7 M;lgo)
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for every v € I'. In the proof of Proposition 10.2.3| we showed that F’ := nXh.(F) is a re-
10.2.6

duction of E to G¥', where ¢ is given by ( ). It is left to show that there exists a section
e HY(X, F'( gﬁ')@K x ) such that the Higgs pair (F”, ¢) is a reduction of structure group
of (FE, ¢) —in other words, that the Higgs field ¢ actually lies in H°(X, F’ (gz/) ® Kx).

Using the equation hg(yp) = ,uglnggg(gp) we know that

@ = uﬁgglnéhﬁ(w) e H'(X, E(g) ® K).

Givenz € X, e € n,, k € K, and an element v € gz such that ¢, = (e,v) ® k, we have

Ps(e) = [(M5hs(e), 1pdfz" (V) @ MKy

hence it is enough to show that dgﬁ_l(gz) c gz/ (in fact they are equal). But, for every
vekernandv e gfL, we have

d@;dﬁgl(v) = Adéﬁ—l(sﬁ _1) dewdﬁgl(v) = d@gl Adsﬁvﬁ*1 d@/g%g—l(?» = d@gleﬁmg—l(iﬁ =

ppyg-1d05" (v) = p1,d05" (v),

where the last equality follows from the fact that C* is abelian and p is a homomorphism.

Next we defined an étale cover Y := F/GY, which we assume for simplicity that is
connected, and a (0, ¢)-twisted I'y-action on F, which is thought of as a G%-bundle over
Y. According to Section in order to define the action of I'y on H OY,F(¢f) ® Kx)
we need 7 to be the restriction of a c-twisted homomorphism 7 : fn — Aut(G) such that
g+7T = pr=a (which is statement (2)). We claim that 7 := O 1nt, : fn — Aut(G) is a
c-twisted homomorphism: we have an action

VB

ExTy— E;(e,(7,7) = e (7,7) := njhy(e)ly 5.
By simplicity of £ we have

g, - (1) - (VA = e (v, A7)

foreache € F, (v,7) and (7/,7) € fn and some ¢( 5) (v 4) € G (depending on (v,7%) and
(7/,7") but not on e). But this action restricts to (10.2.10)) on F', hence in fact g(, ), (v 5 =
c(7,7"). The claim follows by considering the G-action on £ and noting that ¢, (7) = pia
is implied by the fact that 6 lifts a. ~

Thus we have constructed a c-twisted homomorphism 7 € Homg . .(I';,, Aut(G)) such
that ¢.(7) = pfa. Moreover, F is a (7, c)-twisted I'y-equivariant GY%-bundle. To finish
the proof of (3) we have to show that the Higgs field ) such that (F, 1)) is a reduction of
structure group of (E,p) is fy-invariant with respect to the twisted equivariant action of

I'y on F and pz, (see Section [10.1). Let (e,v) ® k be a local expression for ), where
ee F,ve gﬁ and k£ € Ky. Keeping the notation of the proof of Proposition |10.2.3| we
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have

| iy d T (0) @ ke

(-7, pzp(v) @k

(-5

= (02D (€)ty 5, 11 Ady ! dB, (v) @
(nZh
(

0l (e), 11,0, (0) @ 2k

for every (v,7) € fn’ where the last equation follows from the definition of A.
This finishes the proof of (3). Statements (1) and (2) follow by construction, so we are
done. ]

Proposition 10.2.5. Consider a lift 0 : kern — Aut(G) of a|kery, a subgroup A < I a
connected étale cover p : Y — X with Galois group A and the group T'y < Aut(Y) fitting
in (10.1.2). Let T be a homomorphism 7 : T'y — Aut(GY) and c € Z*(Ty, Z(GY)) a 2-

cocycle such that there is an isomorphism of extensions G4 = Dy Y(A) = G %, .\ Assume
that pja € Homgmc(f‘n, Out(@)) (see Section and pick T € Homg,m(f’n, Aut(@))
such that q.(T) = pfa.

We have a morphism

MY, Gy, Ty, 7,¢,0%, ps) — M(X,G), (10.2.11)

given by Theorem and extension of structure group. Here ( is any element of i(30)',
where K is any 0-invariant maximal compact subgroup of G.

Proof. Let (E, -, ) be a polystable (7, ¢, pz ,)-twisted fy—equivariant (G8, gﬁ)—Higgs pair

over Y. By Theorem there exists a I'y-invariant metric satisf ing the Hitchin Equa-

tion (2.3.4). In particular it is [-invariant, hence by Theorem the underlying twisted
A-equivariant Higgs pair is polystable and, by Proposition and Theorem (4.4.8| the
(G?, gﬁ)—Higgs pair over X given by Propositions and extension of structure group is
polystable. By Proposition [5.6.1|the extension of structure group to G, which is a G-Higgs
bundle, is polystable as required. [

Corollary 10.2.6. Consider a lift 0 : kernn — Aut(G) of a|err, a subgroup A < I a
connected étale cover p : Y — X with Galois group A and the group fy < Aut(Y)
fitting in . Let 7 be a homomorphism 7 : Ty — Aut(GY) and c € 72Ty, Z(GY))
a 2-cocycle such that there is an isomorphism of extensions G4 = p, ' (A) = G§ x,. A.

Assume that p}a € Homg,m(fm Out(@)) (see Section :
We have a morphism

M(Y,G0. Ty, 7,¢) > M(X,G), (10.2.12)

given by Theoremd.4.9 and extension of structure group.
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http:��,��(10.2.11

Let M (Y, G, fy, T,C, gz, p.,,) be the union of the images of the moduli spaces
MY, G0 Ty, 7. 8%, p7u) in M(X, G) as ¢ varies and let M(Y,G8 Ty, T, c) be the im-
age of M (Y, G4, Ty, 7,¢) in M (X, G), and similarly when the isotropy data is fixed.

Theorem 10.2.7. Fix 6 € Hom(ker n, Aut(QG)) lifting a. We have the following relations
between moduli spaces:

1.
U M(Y7 G€97FY7T6976B079507p?,,tuo-) - M(X7 G)F
[B1.Y,[7P9],[cP?],7 [o]

M(X, G = U MY, G5 Ty, 7 ¢ g2 p: ., 0).
[B1.Y,[759],[cA9],7,[0]

Here [[3] runs through H} (T, Int(G)), Y runs over étale covers of X with Galois group
A < T%, [75%] e Hom(Ty, Out(GS%)) and [¢*°] € Hf_ﬁe(fy, Z(G3%)) are such that
pia € (Homﬁgﬁﬁe’cm(f‘n, Out(@Q))), their restrictions to A\ satisfy G(B)e X 00 50 N = GY
as extensions and o] € Hclﬁg(f’xxi, G). Moreover, for each choice of [3], [7%°] and [c°],

A~

the element T € Homgy s .00 (I'y, Aut(G)) satisfies .7 = pia.

Proof. Follows from Propositions[10.2.2} [10.2.4 and [10.2.3] U

Theorem 10.2.8. Fix § € Hom(kern, Aut(Q)) lifting a|xerr. We have the following rela-
tions between moduli spaces:

1.
U M(Y,G2 Ty, 77 P o)« M(X,G)".
[8],Y,[779],[c#?],[]

M (X, ) < U M(Y, G Ty, 7% " ).
[B1,Y,[759],[cP9],[o]

Here [[3] runs through H} (T, Int(G)), Y runs over étale covers of X with Galois group
A < T%, [75%] e Hom(Ty, Out(GS")) and [¢*°] e Hfﬁg(fy, Z(G3%)) are such that
pra € (Homﬁgﬂ.ﬁe’cﬁe(f‘n, Out(Q))), their restrictions to A satisfy G5° X o0 50 N = GY
as extensions and [o] € Higg(f‘y%, Q).

Proof. Follows from Propositions [I0.2.1)and [10.2.3]and Corollary [10.2.6] O
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10.3 The general theorem

Now we tackle the general case. Let X be a compact Riemann surface, G' a connected
semisimple complex Lie group with centre Z and T' a finite subgroup of H'(X,Z) x
(Aut(X) x Out(G)) x C*. By Section 2.4 we have a right action of I' on M(X, G). The
projections on each factor provide homomorphisms 7 : I' — Aut(X), a : I' — Out(G)
and i : T' — C*, together with a 1-cocycle o € Z,  (I', H'(X, Z)), where the action of T’
on H'(X, Z) is determined by a (via extension of structure group) and 7 (via pullback). In
other words, this is amap o : I' - H'(X, Z) satisfying
yyr = gt ay (o) (10.3.13)

for each v and 7' € T'. The restriction a/kery is 1-cocycle in Z!(kern, H'(X, Z))
HY(X, Z}(kern, Z)), thus any of its connected components provides an étale cover X, ,,
X with Galois group I', ,, < Z.(kern, Z).

Now pick a lift 6 : kern — Aut(G) of afkery. Let p Y — X,, — X be acon-
nected component of a I'g-bundle in 5 " (] kery) (see ) and set A := Gal(Y/X) <
Fg. Consider the subgroup & < H'(X, Z) generated by the image of «, which is fi-
nite because both I' and Z are finite (thus any element of H'(X, Z) has finite order).
Its image p*a < H'(Y,Z) via pullback is also a finite subgroup determining a con-
nected étale cover py, : Y, 2% Y — X. Like any pullback, this also has a projec-
tion Y, — & € H'(X,Hom(&, Z)), where & is regarded as an étale cover of X. Let
A = Gal(Y,/X), call Ty to the group of automorphisms of Y, lifting n(I") < Aut(X
and let ﬁ7 .= {(7,9) e T x Iy | n(7) = p(3)}. The commutative diagramme
still holds and it has exact rows and columns. We also have a diagramme (10.1.4), with the
same notation. We may also define HOIIlg’T’C(f‘n, Aut(Q)).

Given 77 : Ty — Aut(GY9) and ¢ € 22Ty, Z(GY)) whose restrictions to A factor
through A and satisfy GY% = G x -0\, together with an element 7 € Homg,m(lqm Aut(@)),
there is a (77, ¢?)-twisted T'y-right action on QZ defined by (10.1.5), which we call p; , :

Lo

I'y — Hom(g). ). A
As in Proposition |10.2.5} for each ¢ € i(3¢)' we have a morphism

MC(Yaa Gg, fYa 7—97 69’ gz: P71 U)' - M(Xa G)

Here o € {Z,(T,,, G%)}, where z; are the isotropy points of Y, with isotropy groups I';,.

Let M(Ya, Gg, fy, 70,0, gz, p7 ., 0) be the union of the images of these morphisms as ¢
varies. We define N R
M(Y,,Go Ty, 7 % o) « M(X,G)

similarly.

Theorem 10.3.1. Fix § € Hom(ker n, Aut(QG)) lifting a. We have the following relations
between moduli spaces:

1.
U M(Yaa Goﬁe> FY? 7—/897 CB9> 7~_7 gﬁea pf',;u 0) = M<X7 G)F
[8],Y[75],[cP9],7,[o]
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M(X,G)F U M(Ya, G Ty, 7765 7,65 ps v 0).
[6],Y,[759],[c59],7,[o]

Here [(3] runs through H}(T',Int(G)), Y runs over étale covers of X, ,, which are con-
nected components of T'g-bundles in q; * (at|xery), [77°] € Hom(Ty, Out(G5%)) and [¢*] e
H?, (T, Z (GP%)) are such that their restrictions to A factor through N and satisfy

Gy’ Xm0 00 A = GE, (10.3.14)

and o] € Hiﬁg(fy@i, G). Moreover, for each choice of [(], [77°] and [P, the twisted

homomorphism 7 € Homgg ,s0 .se (fn, Aut(Q)) is chosen so that it preserves g°° and q,7 =

pra (if such a choice exists) and, if t : A — G% is the map realizing ({10.3.14) as in the
proof of Proposition[3.2.3] we have

A'ELA) T ETL NG T = (ay, V), (10.3.15)
for every v € I" and X\ € A, where (,7) € f‘n and {cwy, \) is the evaluation of py o X €
Hom(&, Z) at a,.

Sketch of the proof. (1) follows by an argument analogous to the proof of Proposition[10.2.4]
except for (10.3.15)). To prove (2) let (E, o) be a simple G-bundle which is fixed by the I'-
action. Using Proposition@lwe get a reduction of structure group (F, ¢) to a (G g, gﬁe)—
Higgs pair for some lift 56 of aier,,. Let Y be the étale cover of X given by a connected

component of the f‘g—bundle F(Gy/GY). Using the equivalence between Higgs bundles on
X and A-equivariant Higgs bundles on Y,,, together with the fact that pj. & is trivial on

Y., we may get a twisted equivariant fy-action on p3. (F, 1)) as in the proof of Proposition

[10.2.3
We get (10.3.15) by considering each py; ., as the trivial bundle with action twisted by
the pairing of o, with the elements of the Galois group A. 0

Theorem 10.3.2. Fix 0 € Hom(ker n, Aut(Q)) lifting a. We have the following relations
between moduli spaces:

1.
U MG Ty, ¢ 0) c M(X,G).
[8],Ya,[TP9],[cP],[0]

MSS(X, G)F < U M(Ya GgeafY7Tﬁeacﬁaao—)'
[B]vYa1[Tﬁ0]a[CBQ]7[U]

Here [[3] runs through H}(T,Int(G)), Y runs over étale covers of X with Galois group
equal to a subgroup A < T [79] € Hom(T'y, Out(G2?%)) and [¢?] e H?, (Ty, Z(G2%)
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are such that pia € (Homgy -s0 .50 (f,,, Out(Q))), their restrictions to \ factor through A,

satisfy

0 A~ 0
Gg X 780 86 A~ GK’

and [o] € Hclﬂ_g(f‘xxi, G). Moreover; ift : A — GY is the map realizing (10.3.14) as in the
proof of Proposition[3.2.3) we have ([0.3.13).

If p is trivial, we may use the notation of Sections [4.2]and [0.3]to get a generalization of
Theorems and5.8.1k

Theorem 10.3.3. Let 1 : I' — C* be trivial. Fix 6 € Hom(kern, Aut(G)) lifting a. We
have the following relations between character varieties:

1.
U  ROVGY Ty, 7 ") e R(X, G
[8].¥:[r¢],[c5°]

R (X, G)F c U ﬁ(Y, Gge,f’y,T’Ba,cﬁg).
[81Y,[789],[cA9]

Here [(] runs through Hy (T, Int(G)), Y runs over étale covers of X, which are con-
nected components of Lo-bundles in @ (kery), and [7P9] € Hom(Ty, Out(G5%)) and
[cP9] e Hf_ﬁg(f‘y, Z(G5%)) are such that pta € (Homgy -s6 60 (fn, Out(Q))) and their re-
strictions to A\ factor through A\ and satisfy (10.3.14). Moreover; ift : A — G% is the map

realizing as in the proof of Proposition3.2.3) we have ([[0.3.15) for every v € T
and \ € A, where (v,7) € I,

Proof. Use Theorems [4.2.2]and [10.3.1} ]
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Chapter 11

Fixed points on moduli spaces of
arbitrary Higgs pairs

Even though we are particularly interested in the study of fixed points in moduli spaces of
Higgs bundles, the same arguments may be performed for more general moduli spaces of
Higgs pairs. Throughout this chapter X will be a compact Riemann surface, G a connected
semisimple complex Lie group with centre Z and Lie algebra g and p : G — GL(V) a
representation in a complex vector space V. Our aim is to describe the fixed points of
certain finite group actions on the moduli space of (G, V')-Higgs pairs, which are defined
in[2.1.1] This generalizes the previous results for G-Higgs bundles.

We assume that Z < ker p, i.e. the action of Z on V is trivial —this is of course true in
the case of the adjoint representation. It implies, for example, that for each z € Z and each
(G, V)-Higgs pair (E, ¢), we have an automorphism sending e € E to ez which preserves
the Higgs field. As usual, we call the Higgs pairs with automorphism group equal to 2
simple.

Remark 11.0.1. The previous assumption is mostly a matter of notation, since it can be
omitted by replacing Z with Z n ker p. With this minor change, all the results of this
section hold.

11.1 Group actions on moduli spaces of Higgs pairs

Definition 11.1.1. We denote by GLq (V') < GL(V') x Aut(G) the set of pairs (k, §), where
6 € Aut(G) is a group automorphism and x € GL(V') is a f-twisted linear automorphism,
i.e. a linear automorphism satisfying

rkp(g)v = p(6(g))kv (11.1.1)

foreachv e V and g € G.
This has a group structure given by the restriction of the product multiplication on
GL(V) x Aut(G), since for every two pairs (k, ) and (+/,0") € GLg(V') we have

kk'p(g)v = kp(0(9))K" = p(00'(g)) kK v.
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Note that, setting V' = g and p equal to the adjoint representation, we find the group
GLAd(g> = Aut(G)

We have a homomorphism
pc 1 G — GLg(V); s — (p(s), Inty),
since, for every v € V' and every two elements s, g € GG, we have

p(s)p(g)v = p(sgs™)p(s)v.

The subgroup pe(G) < GLg(V) is normal:

(15, 0)pc(s)(k,0) " = (5,0)(p(s), Int) (571, 071) = (p(0(s)), Inte(s)) = pc(6(s))

for every (k,0) € GLg(V) and s € G.

The group GLg (V') acts on the set of (G, V')-Higgs pairs on the left: each (k, 6) sends
a Higgs pair (E, ¢) to ((E), k()), where §(E) is given in Section 2.4]and () is defined
using the action of x on V. We check that (i) is well defined: if a local expression for
pe H(X,E(V)® Kx) is (e,v) ® k for some v € V and local sections e and k of £ and
K x respectively, we have

(eg, k(p(g~")v)) = (e07'(0(9)), p(B(g "))k (v))
= (e-0(g), p(0(g))"'(v))
= (e, k(v)),

where the presence or absence of the dot denotes the G-action on 6(E) or E respectively.
Moreover, the isomorphism class of (E, ¢) is preserved by ps(G): for each g € G, the
morphism
E — Inty(E); e — eg

induces the Higgs field p(g)(¢). Thus, we get a left action of
Out(G, V) := GLa(V)/pa(G) (11.1.2)

on the set of isomorphism classes of (G, V')-Higgs pairs.

We also have a (right and left) action of H!(X, Z), such that « € H'(X, Z) sends
(E,p) to (E® a, ). This is due to the fact that Z acts trivially on V, so that £ x, V' =
(E® «) x, V. Finally, Aut(X) and C* act on the right by pullback and rescaling of the
Higgs field as in Section[2.4]

Altogether, we get a right group action of H'(X, Z) x (Out(G,V) x Aut(X)) x C*
on the set of isomorphism classes on (G, V')-Higgs pairs, so that («, a, n, 1) sends the class
of (E, ) to the class of

(07 (E® ), ur~(#)),

where (k,0) € GLg(V) is any element in the coset a € Out(G,V). Here Out(G,V)
acts on H'(X, Z) via its projection on Out(G). We check that this is a well defined right
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group action: for every two elements («, (x,6),n, 1) and (o, (x',0"), 7, ') in HY (X, Z) x
(GLg(V) x Aut(X)) x C*, we have

#) - (e, (5, 0),m,1)) - (o, (,07),0, 1)

[ (0 H(E®a), us ()] - (o, (', 9),77,u)

(00T E@a) @), 1/ur" K (¢)

= (m)"((00") " (E® ab(a)), py (1)~ ()

= (B, ¢) - (af(d), (5K, 00"), 1, ')

= (E,¢) - (o, (5,0),m, p) (', (5, 0'), 1, 1))

This action preserves polystability, hence we have a right group action of H'(X, Z) x

(Out(G,V) x Aut(X)) x C* on the moduli space M (X,G,V) of (G, V)-Higgs pairs
over X.

((E,

11.2 Fixed points for trivial action on the curve

Let T be a finite subgroup of H'(X,Z) x Out(G,V) x C*. Projections on the second,
third and first factors provide homomorphisms a : I' — Out(G,V), p : I' - C* and a
l-cocycle a € ZM(T', HY (X, Z)) respectively —here T acts on Z via the projection of a on
Out(G). Assume that there is a homomorphism I' — GLg(V) lifting @ and fix one, say
(k,0), where 6 : I' — Aut(G) is a homomorphism and s : I' — GL(V) is a f-twisted
representation.

We denote by Vi the u-weight space of the action of I' on V, i.e. the subspace of V'
consisting of vectors v € V' such that s, (v) = p,v. Note that the action of Gy on V' via p
preserves V", since

kyp(g)v = p(g)p(2)kav = pyp(g)v

forevery y € I', g € Gy and v € V and some z € Z. Here we are using that p(7) is trivial.

Proposition 11.2.1. Let (E, ) be a (G,V')-Higgs pair. With notation as in Section
assume that there is a (Gg, V/¥')-Higgs pair (F, 1)) which is a reduction of structure group

of (E, ) satisfying (5.5.10):
E@(F) = O,

Then (E, @) is isomorphic to (E, p)y = (05 (E®7), uyk; (@) for every v € T.

Proof. Follows from the proof of Proposition as the proof of Proposition after
replacing the action 6 of I" on g with the action x on V. U

Let ST be the set of isomorphism classes of (G, V)-Higgs pairs which are fixed by T".
As in Section [5.4] we may construct a map

f: ST — HNT,G/2Z).

Proposition 11.2.2. Let (E, p) be a simple (G,V)-Higgs pair over X which is isomor-
phic to (E, )y for every v in T. Then a I-cocycle B € Zy(T',G/Z) is in f(E,p) €
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H} (X, Int(Q)) if and only if there exists a G gg-bundle F which is a reduction of structure

group of F/ and satisfies (5.5.11)):
659(F> = o

For each 3 € Z}(T',G/Z) such a reduction is unique.

Proof. Follows from the proof of Proposition [5.5.3] as the proof of Proposition [5.5.4] after
replacing the action ' of I" on g with the action p(s)x on V, where § = Int;. O

Fix a non-degenerate (G-invariant pairing on g. Choose a maximal compact subgroup K
of G satisfying Lemma[5.2.1]and a hermitian metric 2y on V' such that p(K) is contained in
the group U (V') of unitary automorphisms of V. Given a (G, V')-Higgs pair (F, ), choose
a metric h € Q°(X, E(G/K)) on E. We define

1
(i) = dp" (=5 @ ™), (11.2.3)

where p*"" e QX E(V)* ® K%) is defined using the metric on £ and the hermitian
metric on V. Here we identify —%¢ ® ¢*""v as a skew symmetric section of End(E(V) ®
K)* = End(E(V))*, hence a section of Ej,(u(V))*, where u(V') is the Lie algebra of
U(V). The map dp* : E,(u(V))* — E,(8)* is induced by the dual of the infinitesimal
actiondp of ton V.

Theorem 11.2.3. Let (E, ) be a (G,V)-Higgs pair on X and ( € i3, where 3 is the
center of a maximal compact subalgebra of g. Then (E, ) is (-polystable if and only if the
G-bundle E and the vector space V' admit compatible metrics h satisfying the Hermite—
Yang—-Mills—Higgs equation

AFy, + pn(p) = —i2n¢, (11.2.4)

where Fy, € Q*(X, Ey(€)) is the Chern curvature and A : Q*(X) — Q°%(X) is the adjoint
of wedging with the volume form on X. The left hand side of ([ 1.2.4) may be regarded as
a moment map.

Proof. Will appear in [33]]. [

Lemma 11.2.4. Given a homomorphism (k,0) : I' — GLg(V') and a 0(T")-invariant max-
imal compact subgroup K of Gy, there exists a K-invariant hermitian metric on 'V which
is also k(T')-invariant.

Proof. Take any hermitian metric iy on V' and define a new metric i by
o,0') = 3 | ol k)0, k)0 )k
~yell K
This is both K and I'-invariant, as required. O
Proposition 11.2.5. Let (k,0) € Hom (', Aut(G)) be a lift of a. Then:

1. If a (G, V\)-Higgs pair (F,v) is polystable, the (G,V)-Higgs pair obtained by
extension of structure group is also polystable.
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2. If (E, p) is a (semi,poly)stable (G, V')-Higgs pair with a reduction of structure group
toa (G(;, )-pair (F,v)), then (F,) is (semi,poly)stable.

3. Given g € G and (v',0") := pa(9)(k,0)pg(g)~", there is a canonical isomorphism
between M(X, Gy, V,¥) and M(X, Gy, V') making the following diagramme com-
mute:

M(X, Gy, VE) —— M(X,G,V)

l ///” , (11.2.5)

M(X, Gy, V)

where the morphisms to M(X, G, V') are given by extension of structure group. For
each o € ZN(T', HY(X, 7)), it restricts to a diagramme

Mo (X, Gy, Vi) —— M(X,G,V)

| ’

Ma(X> GQ’a ‘gli )

where M, (X, Gy, V\) is the moduli space of (Gy, V,i')-Higgs pairs (F, 1) such that
59(F) = o

(1), (2) and are also true after replacing Gy and Gy by G® and G respectively.

Proof. The proofs of (2) and (3) are analogous to the proofs of the respective statements in
Proposition [5.6.1] In order to prove (1) fix a maximal I'-invariant compact subgroup Ky of
Gy and consider a maximal compact subgroup K of G containing it, so that Ky = K n Gl.
Note that Ky exists because GGy x4 I is reductive, hence it must have a maximal compact
subgroup. Its intersection with Gy, which is a maximal compact subgroup of Gy, must
then be I'-invariant. By Lemma there is a I-invariant metric hy on V' such that
p(K) = UV).

Given a polystable (G, V,7)-Higgs pair (F) 1), by Theorem[4.2.1|and Proposition[3.2.6]
there exists a ['g-invariant reduction hy € Q°(F/Ky) satisfying the Hermite—Yang—Mills—
Higgs Equation (11.2.4). Let (E, ) be the extension of structure group of (F,¢) to G.
Using the inclusion /K, = E/K, we get a reduction of structure group hp € Q°(E/K).

On the other hand, 1s an equation setting a moment map equal to 0: if we
consider the topological bundle underlying F and the space of GG-connections A on it, there
is an action of the gauge group preserving the metric 4 and this provides a moment map
m: X — E,(€)*, where Fj, is the reduction of E to K given by & and £ is the Lie algebra
of K. Using the Killing form, m may be regarded as a map X — E}(£). The space B of
(G, V,r)-Higgs pairs (B, 1)), where B is a hermitian Gig-connection and ¢ € Q' (F(VF))
(here F' is the reduction of structure group to Gy determined by the GGy-connection) is then
embedded in A, and the corresponding moment map my is the restriction of

X5 Ey(8) - F, (8
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to B, where the second homomorphism is given by orthogonal projection and we use the
obvious notations. Given a polystable (G, V,r')-Higgs pair (/) as in the previous para-
graph, the moment map at (F’, ¢) is given by:

m(E, ) = Fy + ().

But [}, = F},, (the curvature of the Chern connection for the metric hy), so if we can prove
that py,(1) € Q°(X, F,, (€%)) then the moment map my would just be the restriction of m
and so m(E, ) = my(F,1)). Thus, (E, ) would satisfy and so, by Theorem
[I1.2.3] it would be polystable.

Consider the C-antilinear isomorphism hy : V' — V* given by hy,. For each v € Vi
and each v € I we have

Rl (0) = hy (i (0)) = by (y0) = 5 By (v),

where we are using that v has finite order and so ., is a root of unity, which satisfies
Ty = p; . Thus hy (VF) = (V*)Z:, where * : I' — GL(V*) is the dual representation.
This implies that ¢ @ ¢*"" e Q°(X, F,,(VrF ® V#*_"l*)) < QYX, Fy,, (End(V)")), where
End (V)" is the fixed point subspace of the action of I" on End(V') induced by its action
on V. Since dp is I'-equivariant by (I1.1.1), we conclude using that 1, (p) €

QX F,(eng?) = QYX, F, (€9)), as required. O
We call MQ(X, G, V,7) to the image of M, (X, Gy, Vy) in M(X, G, V). By Propo-
sition [5.6.1] if (1, 0) == pc:(g)(k, 0)pc(g)~" for some g € G, we have Mo (X, Gy, Vi) =
Ma(X, Gy, V).
Using the notation of Sections and[11.1] we have the following:

Lemma 11.2.6. Fix a lift (k,0) ofa : T' — Out(G, V). Let S, be the set of lifts of a. There
is a G-equivariant bijection

{Lifts of a} <> Z}0) (T pa(G)); (Int 5, p()0) = (Int, p(5)). (112.6)

where the action on the left hand side is given by conjugation using pq and the action on
the right hand side is given by . In particular, this induces a bijection

{Lifts of a}/G < H,. (T, pa(@G)). (11.2.7)

Proof. This is analogous to the proof of Lemma|[3.1. [

Let M(X, G, V)! be the fixed point locus of M (X, G, V') under the action of ', and
let M (X, G, V)" be the intersection with the stable and simple locus.

Theorem 11.2.7. Fix a homomorphism (k,0) : I' — GLg(V) lifting a. We have the
following relations between moduli spaces:

1
U MalX,Gap, Vi™) « M(X, G, V).

[6,8]eH (T,p6 (G))
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Mss(Xa G7 V>F < U MQ(X7 G597ij)‘

[6,6]eH(T,pc (G))

Moreover, the intersections

M(X,G, V) A ) Ma(X, G, V")

[6,8]eHg (T,p6 (G))

are disjoint for different |9, ] € Hy (T, pc(Q)).

Proof. Follows from Propositions|11.2.1|and|[11.2.2] O

With notation as in Section for every lift (k,0) of a and a section ¢ : IA“g — Gy
of (5.1.5) inducing the isomorphism Gy =~ GY x (79,0 fg as in Proposition we have
a (79, ¢Y)-twisted action p(t) of Ty on V. Let Y be a I'y-bundle over X, where I'y <
I'y. We denote by M(Y, GY, Ty, 779, P V%) the moduli space of (777, ¢™, p(t))-twisted
I'y-equivariant (G, gZ)—Higgs pairs over Y given by p(t). We have the following Prym-—
Narasimhan—Ramanan construction:

Theorem 11.2.8. For each homomorphism (k,0) : I' — GLg(V) lifting a we have an
isomorphism

|| MG Ty, Vi) Z:, (Ty) = Mo(X,Go, Vi), (11.2.8)

q0(Y) =

where Zg, (T'y) is the centralizer of T'y in fg, which acts on by Proposition4.4.7)

Fix such a lift 6. Let M(Y, GO Ty, 799 P Vir)/Zz,(Ly) be the image of the moduli
space M(Y, G4, Ty, 779, P, Vir) in M(X, G, V) via the composition of the isomorphism
given in Theorem H.4.8| and extension of structure group from Gy to G. Then we have the
following inclusions:

1.

g M(Y,G8, Ty, %, V%)) Z: (Ty) € M(X,G, V)"

[675]6}[91 (vaG(G))qu (Y);O‘

M (X, G, V) U M(Y,GY, Ty, 7% ¢ V%)) Zs (Ty).
[675]61—191 (szG(G))7QB (Y)EO(

The intersections
Mo(X, G, V) 0 M(Y, GG, Ty, 7, ¢ V%)) 2, (Ty)
are disjoint for different [0, 3] € H; (T, pc(G)) and Y.
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11.3 Fixed points in the absence of tensorization

Let I" be a finite subgroup of Aut(X) x Out(G, V) x C*. Projections on the second and
third and first factors provide homomorphisms 1 : I' — Aut(X), a : I' —» Out(G, V) and
w: I' — C*, respectively. Assume that there is a homomorphism I' — GLg (V) lifting a
and fix one, say (k,6), where 6 : I' — Aut(G) is a homomorphism and « : I' — GL(V) is
a f-twisted representation.

Proposition 11.3.1. If (E, -, ) is a polystable (0, c, u='r)-twisted T-equivariant (G,V)-
Higgs pair, so is the underlying (G, V')-Higgs pair (E, ¢). Thus we have a forgetful map

M(X,G,T,0,¢c,V,u k) - M(X,G,V). (11.3.9)
Proof. Analogous to Proposition9.1.1 [
We denote the image of with a tilde as usual.
Proposition 11.3.2. M(X,G,T,0,¢,V, 1 'k, 0) = M(X,G, VL.
Proof. Straightforward from definitions. [

Proposition 11.3.3. Let (E, ¢) be a simple (G,V')-Higgs pair over X such that (E, ) =
(201 (E), ik () for each v € T. Then (E, @) admits a (0,c, u~"'k)-twisted T-
equivariant structure for some c € Z2(T', 7).

Proof. Analogous to Proposition9.2.1 [

Theorem 11.3.4. Ler M (X, G, V) € M(X,G,V) be the subvariety of M(X,G,V)
consisting of those (G, V')-Higgs pairs which are stable and simple. Fix a homomorphism
(k,0) : T' > GLg(V) lifting a : T' — Out(G, V). Then

M (X, G V) < U M(X,G.T,0,c,V, i 'k, 0)
[cleHE(T,2),[ole{H?, (Te;,G)}
and N
M(X,G,T,0,¢,V,u " 'k,0) « M(X,G, V).
[cleHZ(T,2),[ole{H, (Tzy,G)}
Proof. Follows from propositions[11.3.2land [11.3.3] 0

11.4 Fixed points for general actions

We keep the notation of Section for now. We keep the assumption that there is a
homomorphism 6 : I' — GLg(V) lifting a, which we fix.

Let A < I be a subgroup, G4 := p,'(A) and let p : ¥ — X be a connected étale
cover associated to a A-bundle over X and consider the subgroup fy < Aut(Y) lifting
n(I"). This contains A, the Galois group of Y over X, as a normal subgroup. Let

L, :={(7.9) e x Ty |1, = p()}.
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Recall the commutative diagramme (10.1.2).

A~

We say that a map (¢,7) : ', - GLg(V) is a c-twisted homomorphism for some
ce Z: Ty, Z(GY)) if 7 is c-twisted —i.e. if it satisfies (10.1.3)— and

& 56y 5 = pe(7,7)Eyy 55 (11.4.10)

for every (v,7) and (v/,7’) € fn' Equivalently, the associated (left) actions of fn on
G and V are c-twisted. As in Section denote by Hom, (A, B) the set of c-twisted
homomorphisms from A to B and let Homc(fn, GL& (V)4 be the set of c-twisted ho-
momorphisms whose associated c-twisted fn—action on G preserves G4. As in Section
10.1{ we have a restriction map 7y, : Homc(fn, GLg(V)) — Hom(kern, GLg(V)). Let
Homgvc(fn, GLg(V)) = Homc(f‘n7 GLa(V)E A rlzelm(/i, ¢). We also have a restriction
map rgo Homgﬁ(f‘n, GLg(V)) — Hom,(Ty, GLge (V)), since 0 is trivial on G4%. Any
automorphism of G preserves the connected component GY of G, hence we have a map
G Hom, (T, GLgo (V) — Hom(Ty, GLge(V)), where the fact that Z(GY) acts triv-
ially on G by conjugation implies that the image consists of (honest) homomorphisms.
In summary, we have the following diagramme:

’V’Gg

Hom(T,, Out(G, V)) +— Homy (T, GLa(V)) — Hom,(Ty, GLge (V)

PFT lTGg )

Hom(T, Out(G, V)) Hom(Ty, GLgo (V)))

(11.4.11)
where ¢, is the pushforward of the natural projection GLs(V) — Out(G, V), given by
(11.1.2), and py is the pullback of pr : I')y — T

Conversely, given a c-twisted homomorphism (x,7) : I'y — GLge(V), where c is a

2-cocycle in Z2(T'y, Z(GY)), we have a representation
plag x € GY %7 A — GL(V).

We say that the pairs (G§ x,. A, plge x €) and (GY, plge ) are isomorphic if there is an

isomorphism f : G§ x,. A = GY of extensions of GY such that po f = p]Gg X €, 1.e.
making the following diagramme commute:

pchXE

GO x.. A —2— GL(V)
[ 2~
G4

Assuming that 7, € and ¢ are chosen so that this is the case, there is a c-twisted extension
Cere: 'y — GLG% (V') given as the composition:

f‘Y —— G(e) X1 i—\‘Y pG—X6> GLngTycA(V> = GLG%(‘/)?

€e,7,c
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where the first map sends v € I' to (1,7) € GO x..Ty.

For each homomorphism 7 : I'yy — GL¢g (V') and each 2-cocycle ¢ € Zf_(fy, Z(GY))
as above we set

Homg,c.o(T, GLa(V)) 1= 1t (ec.re) © Homg (T, GLg(V))  and
Homy . -.o(T, Out(G, V)) := g (Homg ,o(T', GLa(V))).

Now fix homomorphisms (x,0) : kern — GLg(V) and 7 : Iy — GLge(V), a 2-
cocycle c € Zg(fy, Z(GY)) as above and (¢, 7) € Homg,e,m(fn, GLg(V)). There exists an

associated left (7, c)-twisted action of fn on V, namely pz,, := pi(u~')é. The restriction
to V© factors through a (7, ¢)-twisted homomorphism

Iy — Hom(VF, V).

Consequently, as in Remark |10.1.1| we have a notion of (7, ¢, p¢ ,)-twisted fy—equivariant
(GY, V*)-Higgs pair over Y.

0 V'

Proposition 11.4.1. Consider a lift (r,0) : kern — GLg(V) of a|xerr, and a subgroup
A < TY Take a connected étale cover p : Y — X associated to a A-bundle over
X and the group I'y < Aut(Y) fitting in (10.1.2). Let (e,7) : I'y — GLge(V) be a
homomorphism and ¢ € Z*('y, Z(G?)) a 2-cocycle such that there is an isomorphism
(G %, A, p]G(e)Ax €) = (GY, plge ). Assume that pra € Homg - o(I'y, Out(G, V)) and pick
7€ Homy - (I';), GLa(V')) such that q..(7) = pfa.

Let (F, 1) be a (7, c, pe,)-twisted Uy-equivariant (G4, V)-Higgs pair over Y. Then

00 V'
(F, 1) can be regarded as a (GY, v)-Higgs pair over X via Proposition and its
extension of structure group (E, @) to G is isomorphic to (E, @)y for each v € T.
Proof. Follows from Proposition 10.2.1]like Proposition [10.2.2 U

Proposition 11.4.2. Let (E, @) be a simple (G, V')-Higgs pair over X which is isomorphic
to (E, @)y forevery v € I'. Then there exist a lift (k, 8) of a|xer, and a connected reduction
of structure group (F,v) of (E,¢) to (G} := pe_l(A),Vlf) satisfying the following: let
p: Y — X be the étale cover associated to the A-bundle F /GY — X and Ty the subgroup
of Aut(Y) lifting n(T). Then there is a homomorphism (€,7) : Ty — Out(G§, V') such
that, for every homomorphism T : fy — GL(GY) lifting T (which exists by [70]), we can
find a 2-cocycle c € Zf(f‘y, Z(GY)) and a map ¢ Iy — GL(V) such that:

1. The pair (e, 7) is a c-twisted map T'y — GLg (V).
2. We have an isomorphism (G§ x .. A, plag x €) = (Gi,pIG%).
3. pia € Homg,, (T, Out(G, V).

4. There exists (€,7) € Homg’emc(f’n, GLG(V)) such that q.(€,7) = pfa and the tauto-
logical reduction of p*(F, ) to G§ is a (T, ¢, pe,,)-twisted Uy -equivariant (G, V,r)-
Higgs pair.
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Proof. Follows from Proposition|[10.2.3]like Proposition[10.2.4] after replacing Proposition
[5.5.3] with Proposition[11.2.2] The existence of e follows from the construction of 7: take
a lift (%,0) : T — GLg(V) of a, which exists by assumption —see the beginning of the
section. Following the proof of Proposition 7 = @ 1Int, for some map ¢ : fn - G
and so we may set € := Fp(t). N

Proposition 11.4.3. Consider a lift (k,0) : kern — GLg(V) of alxern, a subgroup A <
I'%, a connected étale cover p : Y — X with Galois group A and the group I'y <
Aut(Y) fitting in (10.1.2). Let (€,7) : I'y — GLgg(V) be a c-twisted homomorphism,
where ¢ € Zz(fy, Z(GY)) is a 2-cocycle, such that there is an isomorphism (GY %, .
A plas x €) = (GY, plge ). Assume that pia € Homy  -..(I'y, Out(G, V)) and pick (€,7) €
Hom97e7ﬂc(f‘n, GLG(V)) such that q.(€,7) = pia.

We have a morphism

M(Y, G4 Dy, 7.,V pe,) — M(X, G, V), (11.4.12)
given by Theorem[d.4.8 and extension of structure group.

Proof. Same as Proposition after replacing Theorem with Theorem|11.2.3] and
Proposition [5.6.1 with Proposition [TT.2.5] O

Theorem 11.4.4. Fix 0 € Hom(ker n, GLo(V)) lifting a|ker,,. We have the following rela-
tions between moduli spaces:

1.

MY, G Ty, 7,7 VO pe o) € M(X, G, V)T
[6,8],¥:[e89,789).[c59], (7). [o]

M (X, Q) < U M(K e Ty, 7%, cPe Vj”, Peyus O).
[0.81,Y,[€89,759],[cF],(€,7),[o]

Here [0, (] runs through H,. 4(T', pa(G)), Y runs over étale covers of X with Galois group
equal to a subgroup A < T the elements [¢%,759] e HOH]CBG(fy,OU_t(G'gQ, V) and
[cP] e Hfﬁg(f‘y, Z(G3%)) are such that pta € <H0m5976ﬁ677ﬁ97cﬁ0(fn, Out(@))), their re-
strictions to \ satisfy

0 0
(G(B) X 780 B0 A,p‘Gge X E) = (Gi ap‘Gﬁ(’)

and [o] € Hjﬁg (fy’xi,G). Moreover, for each choice of [0, 3], [¢*°,7%°] and [cP?), the

element 7 € H0m5975ﬁ677567cﬁ9(f‘n, GL¢ (V) satisfies q.7 = pfa.
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Now we tackle the most general case. Let X be a compact Riemann surface, G
a connected semisimple complex Lie group with centre Z and I' a finite subgroup of
HY (X, Z) x (Aut(X) x Out(G,V)) x C*. By Section[11.1]we have a right action of I on
M(X, G, V). The projections on each factor provide homomorphisms 7 : I' — Aut(X),
a:T — Out(G,V)and u : T — C*, together with 1-cocycle o € Z, , (I', H'(X, Z)) as
defined in Section 2.4} where the action of T on H'(X, Z) is determined by « (via extension
of structure group) and 7 (via pullback). This is amap a : I' — H'(X, Z) satisfying

Qyy = 04777:71%(0‘“/)
for each v and 4" € I, where a, acts on Z via its projection on Out(G). In what follows
we assume that there is a homomorphism I' — GL¢(V) lifting a.

The restriction yer,, is 1-cocycle in Z}(kern, H'(X,Z)) ~ HY(X, Z}(kern, Z)),
thus any of its connected components provides an étale cover X,, — X with Galois
group I, < Z}(kern, Z).

Pick a lift (k, 6) : kern — Aut(G) of a|yersy. Letp : Y — X, ,, — X be a connected
component of a [p-bundle in @5 " (Oxery) (se€ ), and set A := Gal(Y/X) < Ty.
Consider the subgroup & < H'(X, Z) generated by the image of «, which is finite because
both I' and Z are finite (thus any element of H'(X, Z) has finite order). Its image p*a <
H'(Y, Z) via pullback is also a finite subgroup determining a connected étale cover

py, Yo 25 Y - X,

Like any pullback, this also has a projection Y, — &, where & € H'(X, Hom(&, Z)) is re-
garded as an étale cover of X. Let A := Gal(Y,/X), call fy to the group of automorphisms
of Y, lifting n(T') < Aut(X) andlet T, := {(+,3) € T x I'y | n(7) = p(3)}. The com-
mutative diagramme (10.1.2) still holds and it has exact rows and columns. We also have a
diagramme (|11.4.11), with the same notation. We may also define Homg,emc(fn, GLg(V))

and Homy . . .(I';,, Out(G, V)).
Given (¢, 7%) : 'y — Autgg (V) and ¢’ e 72,(Ty, Z(GY)) whose restrictions to A
factor through A and satisfy

(G2, p) = (Gf %10 K,p|G§9 X €),

together with 7 € Homyg . ..(I'y, GL(V)), there is a (77, ¢?)-twisted I'y -right action pe ,, :=
p~'€: Ty — Hom(VF, V). As in Proposition 11.4.3| we have a morphism

M (Yo, G4, Ty, 70, &V, pe o) — M(X, G, V)

for each o € {Z%,(I';,,G{)} (here ; are the isotropy points of Y;, with isotropy groups
I';,), whose image we call M(Y,, G§, Ty, 7%, ¢”, VI, pe i, 0).

Theorem 11.4.5. Fix (r,0) € Hom(kern, GLg(V)) lifting a. We have the following rela-
tions between moduli spaces:
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MY, Gy Ty, %, 7,V pe o) € M(X,G, V).
[6,8],Y,[e59,759],[cF0],(&,7),[o]

MSS(X7 G)F U M(Y7 GgeafY7TB070607%7Vuﬁeapélma)'
[6,8],Y,[eP9,759],[cP0],(&,7),[o]

Here [0, 8] runs through H.. 4(T, pc(G)), Y runs over étale covers of X with Galois
group equal to a subgroup A < 80, [P0 759] e Homcge(Fy,Out(Gga, V) and [¢?] €
HEBG(I‘y, (GE%)) are such that pta € (HOHIﬂg’eBG’TBe’cBe(Fn, Out(G))), their restrictions
to A factor through A and satisfy

(Gg‘9 X 1660 86 A,P\Ggﬁ X €) = (Gievp‘cﬁ“’)

and [o] € Hclﬁg (IA’YJE.,G). Moreover, for each choice of [0, 3], [¢%°,7%°] and [c??], the

twisted homomorphism (€, 7) € Homgg cso 760 50 fm GLg(V)) is chosen so that .7 = pia
and, ift : A — G% is the map realizing (10.3.14)) as in the proof of Proposition we
have

AT ETL NN GTIAN TS () = {ay ),

for every v € I" and \ € A, where (,7) € Fn and {cwy, \) is the evaluation of py o X €
Hom(&, Z) at a,.
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