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Abstract

The central topic of this PhD thesis is the study of global properties of bracket–generating
distributions. In the first two parts we focus our attention on the study of tangent and transverse
embeddings to these type of distributions. We have classified regular embedded and transverse
curves into any manifold of dimension greater than 3 (i.e. we have proved that there exists a
complete h−principle). This contrasts with the 3-dimensional contact case, where it is well known
that an h−principle for legendrian/transverse embedded curves does not hold.

We have also studied parametric families of Legendrian embedding in the case of contact
manifolds of dimension 3. We have computed the fundamental group of the space of formal
Legendrian embeddings and as a consequence we have shown that previous examples of
non-trivial loops of Legendrian embeddings in the literature were already non trivial at the formal
level. Continuing with the study of loops of Legendrian embeddings, we have defined a connected
sum for 1−parametric families of legendrian embeddings. As the main application of this
construction, we have found infinitely many new examples of non-trivial loops of Legendrian
embeddings with non-trivial monodromy.

In the third part of this thesis we have studied the classification, up to homotopy, of tangent
distributions satisfying various non-involutivity conditions. On one hand, we have proved that
the full h-principle holds for step-2 bracket-generating distributions. This result follows from an
application of the method of convex integration developed by M. Gromov. The classification of
(3, 5) and (3, 6) distributions follows as a particular case.

The main result of the third part of this thesis is the development of a new h−principle technique
called convex integration up to avoidance. This technique refines the classical method of convex
integration by implementing an “avoidance trick”.

The goal of this trick is to avoid some principal subspaces where the differential relation fails
to be ample. Given any differential relation, this method produces an associated object called
an “avoidance template”. If the process is successful, we say that the relation is “ample up to
avoidance” and we prove that convex integration applies.

Using this technique we have found the first example of a differential relation that is ample in
coordinate directions but not in all directions, answering a question of Eliashberg and Mishachev.
Our main application is the proof, by using this method, of a complete h−principle for hyperbolic
(4, 6) distributions. This example shows that this new technique is capable of addressing differential
relations beyond the applicability of classical convex integration.
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Resumen

El tema central e hilo conductor de esta tesis doctoral es el estudio de propiedades globales de
distribuciones generadoras por corchete. En las dos primeras partes hemos centrado nuestra
atención en el estudio de encajes regulares tangentes y transversos a este tipo de distribuciones.
Hemos clasificado las curvas embebidas horizontales y transversas en cualquier variedad de
dimensión mayor que 3 (i.e. hemos probado que existe un h-principio completo). Esto contrasta
con el caso 3-dimensional de contacto, donde es bien sabido que no existe h−principio para curvas
legendrianas/transversas.

Paralelamente, hemos estudiado familias paramétricas de nudos legendrianos en el caso de
variedades de contacto de dimensión 3. Hemos computado el grupo fundamental del espacio de
nudos legendrianos formales y como consecuencia hemos demostrado que ejemplos previos en la
literatura de lazos de encajes Legendrianos no triviales eran ya no triviales a nivel formal.
Continuando con el estudio de lazos de encajes legendrianos, hemos definido una suma conexa de
familias 1−paramétricas de encajes legendrianos. Como principal aplicación de esta construcción
hemos encontrado infinitos nuevos ejemplos de lazos de encajes legendrianos no triviales con
monodromı́a no trivial.

En la tercera parte de esta tesis hemos estudiado el problema de clasificación, módulo homotoṕıa,
de distribuciones tangentes satisfaciendo varias condiciones de no-involutividad. Por un lado, hemos
demostrado que existe un h−principio completo para distribuciones generadoras por corchete de
paso 2. Este resultado se sigue de una aplicación del método de integración convexa desarrollado
por M. Gromov. La clasificación de distribuciones (3, 5) y (3, 6) se sigue como caso particular.

El principal resultado de la tercera parte de esta tesis es el desarrollo de una técnica de h-
principio novedosa llamada integración convexa módulo evitación. Esta técnica refina el método de
integración convexa clásico implementando un “truco de evitación”.

El objetivo de este truco es evitar algunos subespacios principales donde la relación diferencial
estudiada no satisface amplitud. Dada una relación diferencial, este método produce un objeto
asociado llamado “plantilla de evitación”. Si el proceso es exitoso, decimos que la relación es “amplia
módulo evitación” y demostramos que el método de integración convexa aplica.

Usando esta nueva técnica hemos encontrado el primer ejemplo de una relación diferencial que
es amplia en direcciones coordenadas pero no es amplia en todas las direcciones, dando respuesta
a una pregunta planteada por Eliashberg y Mishachev. Nuestra principal aplicación es la prueba,
usando este método, de que existe un h−principio completo para distribuciones (4, 6) hiperbólicas.
Este ejemplo pone de manifiesto que esta nueva técnica es capaz de abordar relaciones diferenciales
más allá del campo de aplicación del método de integración convexa clásico.
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Chapter 1

Introduction

1.1 Introducción

El tema central de esta tesis doctoral es el estudio de propiedades globales de distribuciones
generadoras por corchete. Está dividida en tres partes bien diferenciadas que conjuntamente
abordan el estudio de propiedades globales de estos objetos. Las dos primeras partes están
dedicadas al estudio de la topoloǵıa global de espacios de encajes tangentes mientras que la
tercera parte trata acerca de la topoloǵıa global de espacios de distribuciones generadoras por
corchete.

Una q-distribución en una variedad diferenciable M es una sección diferenciable D al fibrado de
Grassmann de q-planos. Existe una motivación desde el punto de vista de teoŕıa de control para
considerar estos objetos: podemos pensar enM como el espacio de configuraciones y en D como las
direcciones admisibles de movimiento. Centramos nuestra atención en distribuciones generadoras
por corchete, lo que significa que cualquier vector en TM puede expresarse como combinación lineal
de corchetes de Lie involucrando secciones de D.

Las estructuras de contacto son ejemplos protot́ıpicos de distribuciones generadoras por corchete
y han sido ampliamente estudiadas. La Topoloǵıa de Contacto es un área muy activa en Matemáticas
que tiene intersección no vaćıa con muchas ramas como el estudio de sistemas dinámicos, geometŕıa
algebraica, análisis, topoloǵıa diferencial o topoloǵıa simpléctica. No obstante, no se sabe tanto
acerca de la topoloǵıa gobal de distribuciones generadoras por corchete más generales.

Una pregunta natural es si dos puntos cualesquiera en M pueden ser conectados por un camino
horizontal, i.e. un camino cuyos vectores velocidad tomen valores en D. Una condición suficiente
está dada por un teorema clásico de Chow [27]: dos puntos cualesquiera enM pueden ser conectados
si D es generadora por corchete. Esto es, el teorema de Chow es un enunciado infinitesimal a global.

Aunque las pruebas clásicas del teorema de Chow producen caminos horizontales que son
diferenciables a trozos, también se pueden construir caminos C∞ mediante suavizados apropiados,
ver [60, Subsection 1.2.B]. Se sigue que cualquier clase de homotoṕıa de lazos en M puede ser
representada mediante un lazo horizontal diferenciable. Esto es, la inclusión

ι : L(M,D) −→ L(M)

es una π0-sobreyección. Aqúı L(M) denota el espacio de lazos (no basados) de M (equipado con
la topoloǵıa C∞) y L(M,D) es el subespacio de lazos horizontales. Más recientemente, Z. Ge [51]
ha probado que la inclusión análoga para lazos H1 es una equivalencia débil de homotoṕıa; ver
también [17].

En esta tesis consideramos una variación de este tema, probando resultados de clasificación para
espacios de encajes horizontales. Nuestros teoremas relacionan estos espacios con sus homólogos
formales (grosso modo, espacios de encajes diferenciables más datos homótopicos adicionales). Ser
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cuidadosos con la condición de encaje es delicado (como suele ocurrir con este tipo de h−principios)
y gran parte de la Parte II de esta tesis está dedicada a abordar esta cuestión. También probamos
teoremas de clasificación análogos para inmersiones horizontales mediante pruebas más simples.
Asimismo, deducimos que la aplicación ι mencionada anteriormente es una equivalencia débil de
homotoṕıa (i.e. el análogo smooth del teorema de Ge). Finalmente, nuestras técnicas generalizan al
caso de curvas transversas inmersas/embebidas, dando lugar a resultados de clasificación análogos.

Aśı pues, mostramos que estos objetos tienen una naturaleza flexible (satisfacen un h-principio
completo) excepto en el caso de encajes legendrianos y transversos en variedades 3-dimensionales.
A continuación tratamos el caso de estas familias de curvas particulares en la Parte II de esta tesis.

Estudiamos los espacio homólogos formales a los espacios de encajes legendrianos en el espacio
3−dimensional de contacto standard. Computamos el grupo fundamental y mostramos que ejemplos
previos de la literatura de elementos no triviales del grupo fundamental son ya no triviales a nivel
formal. Esto aporta una perspectiva algebro-geométrica al estudio de estos espacios que produce
invariantes algebraicos no triviales de familias 1−paramétricas de encajes legendrianos. También
introducimos una noción de suma conexa de familias 1−paramétricas de legendrianas que da lugar
a la construcción de infinitos nuevos ejemplos de lazos no triviales de legendrianas.

En la tercera parte de esta tesis estudiamos la clasificación, módulo homotoṕıa, de distribuciones
tangentes satisfaciendo varias condiciones de no-involutividad. Por una parte, hemos probado que
existe h−principio para distribuciones generadoras por corchete de paso 2. Este resultado se sigue
de una aplicación del método de integración convexa desarrollado por M. Gromov. La clasificación
de distribuciones (3, 5) y (3, 6) se sigue como caso particular.

La principal contribución de la tercera parte de esta tesis es el desarrollo de una técnica de
h-principio novedosa llamada integración convexa módulo evitación. Esta técnica refina el método
de integración convexa clásico implementando un “truco de evitación”.

Usando esta nueva técnica hemos encontrado el primer ejemplo de una relación diferencial que
es amplia en direcciones coordenadas pero no es amplia en todas las direcciones, dando respuesta
a una pregunta planteada por Eliashberg y Mishachev. Nuestra principal aplicación es la prueba,
usando este método, de que existe un h−principio completo para distribuciones (4, 6) hiperbólicas.
Este ejemplo pone de manifiesto que esta nueva técnica es capaz de abordar relaciones diferenciales
más allá del campo de aplicación del método de integración convexa clásico.

Trabajamos bajo el siguiente supuesto:

Supuesto 1.1.1 Todas las distribuciones generadoras por corchete que consideramos en esta tesis
son de vector de crecimiento constante (i.e. el vector de crecimiento no depende del punto). Ver
Subsección 1.5.0.2.



1.1.1 Lista de art́ıculos

Parte de los resultados de esta Tesis Doctoral han sido recogidos en la siguiente lista de art́ıculos:

[1 ] E. Fernández, J. Mart́ınez-Aguinaga, F. Presas. Fundamental groups of formal legendrian and
horizontal embedding spaces. Algebraic & Geometric Topology 20 (2020), 3219–3312.

[2 ] E. Fernández, J. Mart́ınez-Aguinaga, F. Presas. Parametric connected sums in the space of
legendrian embeddings. En preparación.

[3 ] J. Mart́ınez-Aguinaga. Existence and classification of maximal growth distributions. En
preparación.

[4 ] J. Mart́ınez-Aguinaga, A. del Pino. Convex integration with avoidance and hyperbolic (4,6)
distributions. arXiv:2112.14632.

[5 ] J. Mart́ınez-Aguinaga, A. del Pino. Classification of tangent and transverse knots in bracket-
generating distributions. arXiv:2210.00582

Durante el desarrollo de esta Tesis Doctoral también se han elaborado los siguientes art́ıculos:

[6 ] E. Fernández, J. Mart́ınez-Aguinaga, F. Presas. Loops of Legendrians in contact 3–manifolds.
Classical and Quantum Physics. 60 Years Alberto Ibort Fest Geometry, Dynamics and Control.
Springer Proceedings in Physics 229, pp 361–372. (2019).

[7 ] E. Fernández, J. Mart́ınez-Aguinaga, F. Presas. The homotopy type of the contactomorphism
groups of tight contact 3-manifolds, part I. arXiv:2012.14948.

1.2 Introduction

The central topic of this PhD thesis is the study of global properties of bracket–generating
distributions. It is divided in three well differentiated parts that coalesce into the global study of
such objects. The first two parts are devoted to the study of the global topology of spaces of
tangent embedding while the third one deals with the study of the global topology of spaces of
bracket–generating distributions.

A q-distribution on a smooth manifold M is a smooth section D of the Grassmann bundle of
q-planes. There is a control-theoretic motivation for considering such objects: we may think of M
as configuration space and of D as the admissible directions of motion. We focus our attention in
bracket–generting distributions, which means that any vector in TM can be written as a linear
combination of Lie brackets involving sections of D.

Contact structures are prototypical examples of bracket–generating distributions and have been
widely studied. Contact Topology is a very active area in Mathematics that has non-empty
intersection with many other branches such as the study of dynamical systems, algebraic
geometry, analysis, differential topology or symplectic topology. Nonetheless, not so much is
known about the global topology of more general bracket–generating distributions.

A natural question is whether any two points in M can be connected by a horizontal path, i.e. a
path whose velocity vectors take values in D. A sufficient condition is given by a classic theorem
of Chow [27]: any two points in M can be connected if D is bracket-generating. Being bracket-
generating means that any vector in TM can be written as a linear combination of Lie brackets
involving sections of D. That is, Chow’s theorem is an infinitesimal to global statement.



Even though classic proofs of Chow’s theorem produce horizontal paths that are piecewise
smooth, C∞-paths can be constructed by suitable smoothing, see [60, Subsection 1.2.B]. It follows
that every homotopy class of loops on M can be represented by a smooth horizontal loop. That
is, the inclusion

ι : L(M,D) −→ L(M)

is a π0-surjection. Here L(M) is the (unbased) loop space of M (endowed with the C∞-topology)
and L(M,D) is the subspace of horizontal loops. More recently, Z. Ge [51] proved that the analogous
inclusion for H1-loops is a weak homotopy equivalence; see also [17].

In this thesis we consider a variation on this theme, proving classification statements for spaces
of horizontal embeddings. Our theorems relate these spaces to their formal counterparts (roughly
speaking, spaces of smooth embeddings plus some additional homotopical data). Taking care of
the embedding condition is rather delicate (as is often the case for h-principles of this type) and
much of Part II of this thesis is dedicated to handling it. Analogous classification statements hold
for horizontal immersions, with simpler proofs. We also deduce that the map ι above is a weak
homotopy equivalence (i.e. the smooth analogue of Ge’s theorem). Lastly, our techniques translate
to the setting of embedded/immersed transverse curves, yielding similar classification results.

Thus, we show that these objects have a flexible nature (they abide by a complete h−principle)
except in the case of legendrian and transverse embeddings in contact 3−dimensional manifolds.
We then move to these particular families of curves in Part II of this thesis.

We study the formal counterpart of spaces of legendrian embeddings in the standard contact
3−dimensional space. We compute the fundamental group and we show that previous examples
in the literature of non-trivial elements in the fundamental group are already non-trivial at the
formal level. This provides an algebraic-geometrical perspective to the study of these spaces that
produces non-trivial algebraic invariants of 1−parametric families of Legendrian embeddings. We
also introduce a notion of connected sum of 1−parametric families of Legendrians that leads to the
construction of infinitely many non-trivial examples of loops of Legendrians.

In the third part of this thesis we study the classification, up to homotopy, of tangent
distributions satisfying various non-involutivity conditions. On one hand, we have proved that the
full h-principle holds for step-2 bracket-generating distributions. This result follows from an
application of the method of convex integration developed by M. Gromov. The classification of
(3, 5) and (3, 6) distributions follows as a particular case.

The main contribution of the third part of this thesis is the development of a new h−principle
technique called convex integration up to avoidance. This technique refines the classic method of
convex integration by implementing an “avoidance trick”.

The goal of this trick is to avoid some principal subspaces where the differential relation fails
to be ample. Given any differential relation, this method produces an associated object called
an “avoidance template”. If the process is successful, we say that the relation is “ample up to
avoidance” and we prove that convex integration applies.

Using this technique we have found the first example of a differential relation that is ample in
coordinate directions but not in all directions, answering a question of Eliashberg and Mishachev.
Our main application is the proof, by using this method, of a complete h−principle holds for
hyperbolic (4, 6) distributions. This example shows that this new technique is capable of addressing
differential relations beyond the applicability of classic convex integration.

We now state our theorems. We work under the following assumption:

Assumption 1.2.1 All the bracket-generating distributions we consider in this thesis are of
constant growth (i.e. the growth vector does not depend on the point). See Subsection 1.5.0.2.
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1.3 Spaces of horizontal and transverse curves into bracket–generating
distributions

1.3.1 Immersed horizontal curves

Let us write Imm(M,D) ⊂ L(M,D) for the subspace of immersed horizontal loops. In order to
study it, we introduce the so-called scanning map:

Imm(M,D) −→ Immf (M,D),

taking values in the space of formal horizontal immersions

Immf (M,D) := {(γ, F ) | γ ∈ L(M), F ∈ Mon(TS1, γ∗D)}.

The question to be addressed is whether the scanning map is a weak homotopy equivalence. The
answer is positive if D is a contact structure [39, Section 14.1] but, for other distributions, the
answer may be negative due to the presence of rigid curves [14].

A horizontal curve is rigid if possesses no C∞-deformations relative to its endpoints, up to
reparametrisation. These curves are isolated and conform exceptional components within the space
of all horizontal maps with given boundary conditions. Rigid loops also exist. Because of this, the
inclusion Imm(M,D) → Immf (M,D) can fail to be bijective at the level of connected components;
see [90, Remark 23]. Being rigid is the most extreme case of being singular. This means that the
endpoint map of the curve is not submersive, so the curve has fewer deformations than expected;
see Subsection 4.1.1. This phenomenon does not happen in the Transverse case (see 1.3.4).



The subspaces of rigid and singular curves have a geometric and not a topological nature. By this,
we mean that small perturbations of D can radically change their homotopy type; see [81] or [90,
Theorem 27]. This motivates us to discard singular curves and focus on Immr(M,D), the subspace
of regular horizontal immersions. In doing so, the subspace that we discard is not too large: germs of
singular horizontal curves were shown to form a subset of infinite codimension among all horizontal
germs, first in the analytic case [89] and then in general [16]. Earlier, it had already been observed
[68, Corollary 7] that regular (i.e. non-singular) germs are C∞–generic.

Our first result reads:

Theorem 1.1. Let (M,D) be a manifold endowed with a bracket-generating distribution. Then, the
following inclusion is a weak homotopy equivalence:

Immr(M,D) −→ Immf (M,D).

Apart from the aforementioned contact case, in which there are no singular curves, this was already
known in the Engel case [90].

Corollary 1.3.1 Let D0 and D1 be bracket-generating distributions on a manifold M , homotopic
as subbundles of TM . Then, the spaces Immr(M,D0) and Immr(M,D1) are weakly homotopy
equivalent.

This follows immediately from Theorem 1.1 and the analogous fact about Immf (M,D0) and
Immf (M,D1). It follows that all the data about D encoded in Immr(M,D) is purely formal.

1.3.2 Embedded horizontal curves

We now consider the subspace of embedded horizontal loops Emb(M,D) ⊂ Imm(M,D), together
with its scanning map

Emb(M,D) −→ Embf (M,D),

into the space of formal horizontal embeddings:

Embf (M,D) :=
{(
γ, (Fs)s∈[0,1]

)
: γ ∈ Emb(M), Fs ∈ MonS1(TS1, γ∗TM),

F0 = γ′, F1 ∈ γ∗D
}
,

i.e. the homotopy pullback of Emb(M) and Immf (M,D) mapping into Immf (M). Reasoning as
above leads us to introduce Embr(M,D), the subspace of regular horizontal embeddings. Our second
(and main) result reads:

Theorem 1.2. Let (M,D) be a bracket-generating distribution with dim(M) ≥ 4. Then, the
following inclusion is a weak homotopy equivalence:

Embr(M,D) −→ Embf (MD).

Note that the dimensional assumption is sharp, since the result is known to be false in 3-dimensional
Contact Topology [11].

Theorem 1.2 was already known in the Engel case [24] and in the higher-dimensional contact
setting [39, p. 128]. Our arguments differ considerably from both. The proof in [39] is contact-
theoretical in nature, relying on isocontact immersions. The one in [24] uses the so-called Geiges
projection, which is particular to the Engel case. The methods in the present thesis use instead



local charts in which the distribution can be understood as a connection; see Subsection 4.3. This
is reminiscent of the Lagrangian projection in Contact Topology and closely related to methods
used in the Geometric Control Theory [60, 81] (with the added difficulty of tracking the embedding
condition).

Much like earlier:

Corollary 1.3.2 Fix a manifold M with dim(M) ≥ 4. Let D0 and D1 be bracket-generating
distributions on M , homotopic as subbundles of TM . Then, the spaces Embr(M,D0) and
Embr(M,D1) are weakly homotopy equivalent.

1.3.3 Horizontal loops

Now we go back to the problem we started with:

Theorem 1.3. Let (M,D) be a manifold endowed with a bracket-generating distribution. Then, the
following inclusion is a weak homotopy equivalence:

L(M,D) −→ L(M).

This also holds for the (based) loop space Ωp(M) and its subspace of horizontal loops Ωp(M,D),
for all p ∈ M . Observe that the statement uses no regularity assumptions. The reason is that
singularity issues can be bypassed thanks to what we call the stopping-trick (namely, one can slow
the parametrisation of a horizontal curve down to zero locally in order to guarantee that enough
compactly-supported variations exist). See Subsection 4.7.5.

1.3.4 Immersed transverse curves

The other geometrically interesting notion for curves in bracket–generating distributions is that
of transversality. We define ImmT (M,D) to be the space of immersed loops that are everywhere
transverse to D. Like in the horizontal setting, one can introduce formal transverse immersions

Immf
T (M,D) = {(γ, F ) : γ ∈ L(M), F ∈ MonS1(TS1, γ∗(TM/SD))},

and see that there is a scanning map

ImmT (M,D) −→ Immf
T (M,D).

Being transverse is an open condition and therefore rigidity/singularity is not a phenomenon we
encounter. We prove:

Theorem 1.4. Let (M,D) be a manifold endowed with a bracket-generating distribution. Then the
inclusion

ImmT (M,D) −→ Immf
T (M,D)

is a weak homotopy equivalence.

This result is not new. The h-principle for smooth immersions (of any dimension!) transverse to
analytic bracket-generating distributions was proven in [89]. The analyticity assumption was later
dropped by A. Bhowmick in [16], using Nash-Moser methods. Both articles rely on an argument



due to Gromov relating the flexibility of transverse maps to the microflexibility of (micro)regular
horizontal curves. The approach in this thesis is independent.

Once again, a corollary is that the weak homotopy type of ImmT (M,D) depends on D only
formally.

1.3.5 Embedded transverse curves

Lastly, we address embedded transverse loops EmbT (M,D) and their scanning map into the
analogous formal space:

EmbfT (M,D) =
{(
γ, (Fs)s∈[0,1]

)
: γ ∈ Emb(M), Fs ∈ MonS1(TS1, γ∗TM),

F0 = γ′, F1 : TS1 → γ∗TM → γ∗(TM/D) is injective
}
.

Our fourth result reads:

Theorem 1.5. Let (M,D) be a bracket-generating distribution with dim(M) ≥ 4. Then the
inclusion

EmbT (M,D) −→ EmbT
f (M,D)

is a weak homotopy equivalence. In particular, EmbT (M,D) depends only on the formal class of D.

The dimension condition is sharp, since transverse embeddings into 3-dimensional contact manifolds
do not satisfy a complete h-principle. Indeed, there are examples of transverse knots that have
the same formal invariants but are not transversely isotopic [15]. Furthermore, Theorem 1.5 is
only interesting in corank 1. Indeed, it is a classical result [39, 4.6.2] that closed n-dimensional
submanifolds transverse to corank k distributions abide by all forms of the h−principle if k > n.

1.4 Legendrian embedding spaces

The computation of the homotopy type of the space of Legendrian embeddings into a contact 3–fold
has a long story. For a while, it was thought that the computation could be made at the formal
level. We mean by that that the inclusion of the space of Legendrian embeddings into the space of
formal Legendrian embeddings, i.e. the space of pairs made of a smooth embedding and a formal
Legendrian derivative, was a weak homotopy equivalence.

This was proven to be wrong in the key article of D. Bennequin [11]; in which it was shown that
the formal space associated to the standard contact R3 possesses some connected components that
are not representable by Legendrian knots. In other words, the restriction of the induced map of
the inclusion at π0–level was not surjective. This was the first hint of ridigity phenomena in contact
topology.

Later on, there has been an industry checking how far the inclusion map is from being injective
or surjective at π0–level , see, eg, the work of Chekanov [26], Ding and Geiges [32], Eliashberg and
Fraser [37], Etnyre and Honda [43] or Osváth, Szabó and Thurston [98].

The next step was the study of higher homotopy groups. This was developed by Kálmán [71]
in dimension 3 using pseudoholomorphic curves invariants and by Sabloff and Sullivan [93] in
dimension 2n + 1, n > 1, using generating function invariants. However, they just checked that
several non trivial loops in the space of Legendrian embeddings were trivial as elements in the



fundamental group of the space of smooth embeddings. We show that all Kálmán’s examples are
non trivial in the space of formal Legendrian embeddings, see Section 2.5. This makes unnecessary
the use of sophisticated invariants to compute these examples. In order to do that, we compute the
fundamental group of the space of formal Legendrian embeddings. This is the content of Section
2.2.

1.5 Preliminaries about bracket–generating distributions

The following definition generalises the notion of distribution:

Definition 1.5.1 Let M be a smooth manifold. A differential system D is a C∞-submodule of
the space of smooth vector fields.

Given a smooth distribution on M , we can construct a differential system by taking its smooth
sections. Conversely, a differential system D gives a distribution if the dimension of its pointwise
span D(p) ⊂ TpM is independent of p ∈ M . Nonetheless, note that this is not a one to one
corresponde. In this manner, we think of differential systems as singular distributions; we will often
abuse notation and use D to denote both the distribution and its sections.

Remark 1.5.2 When M is not compact, it is convenient to impose that D satisfies the sheaf
condition. The reason is that there may be differential systems that only differ from one another
due to their behaviour at infinity; imposing the sheaf condition removes this redundancy. These
subtleties will not be relevant for us.

1.5.0.1 Lie flag

Let us introduce some terminology. We say that the string a, depending on the variable a, is a
formal bracket expression of length 1. Similarly, we say that the string [a1, a2], depending on
the variables a1 and a2, is a formal bracket expression of length 2. Inductively, we define a formal
bracket expression of length n to be a string of the form [A(a1, · · · , aj), B(aj+1, an)] with 0 < j < n
and A and B formal bracket expressions of lengths j and n− j, respectively.

Given a differential system D, we define its Lie flag as the sequence of differential systems

D1 ⊂ D2 ⊂ D3 ⊂ · · ·

in which Di is the C
∞-span of vector fields of the form A(v1, · · · , vj), j ≤ i, where the vk are vector

fields in D and A is a formal bracket expression of length j. As such, D1 = D.

1.5.0.2 Growth vector

Given a point p ∈M , one can use the Lie flag to produce a flag of vector spaces:

D1(p) ⊂ D2(p) ⊂ D3(p) ⊂ · · ·

Here Di(p) denotes the span of Di at p. This yields a non-decreasing sequence of integers

(dim(D1(p)),dim(D2(p)),dim(D3(p)), · · · )



which in general depends on p. This sequence is called the growth vector of D at p.

If the growth vector does not depend on the point, we will say that the differential system D is
of constant growth. If this is the case, all the differential systems in the Lie flag arise as spaces of
sections of distributions. Some examples of distributions of constant growth are (regular) foliations,
contact structures, and Engel structures.

The following notion is central to us:

Definition 1.5.3 A differential system (M,D) is bracket-generating if, for every p ∈ M and
every v ∈ TpM , there is an integer m such that v ∈ Dm(p). This integer is called the step.

This definition a priori depends on the choice of point. Nonetheless, it will not for our purposes
since we will work under the following assumption.

Assumption 1.5.4 As stated in Assumption 1.2.1: we will henceforth assume that the differential
system D we start with is a distribution of constant growth.

1.5.0.3 The nilpotentisation and the curvature

Note that the Lie Flag defined earlier can be understood as follows. Since the Lie bracket is a
(naturally defined) first order operator acting on vector fields, we can apply it to the sections Γ (ξ)
of ξ. This defines for us the sequence of modules that we call Lie flag :

Γ 1(ξ) ⊂ Γ 2(ξ) ⊂ Γ 3(ξ) ⊂ · · ·

Γ 1(ξ) := Γ (ξ), Γ i+1(ξ) := [Γ 1(ξ), Γ i(ξ)].

For simplicity, we will always assume that ξ is regular, i.e. there is a distribution ξi such that
Γ i(ξ) = Γ (ξi). The rank of ξi is then a measurement of the non-involutivity of ξ.

We then have
ξ1 = ξ ⊂ ξ2 ⊂ ξ3 ⊂ · · ·

one notes that it stabilises: i.e. there exists some smallest i0 such that ξi = ξi0 for all i ≥ i0. This
means that Γ i0(ξ) is involutive and thus ξi0 is the tangent bundle of a foliation F on M .

We define the nilpotentisation L(ξ) of ξ as the graded vector bundle

ξ1 ⊕ ξ2/ξ1 ⊕ · · · ⊕ ξi/ξi−1 ⊕ · · · ⊕ ξi0/ξi0−1.

One can then observe that the composition

Γ j(ξ)× Γ i(ξ) −→ Γ i+j(ξ) −→ Γ i+j(ξ)/Γ i+j−1(ξ)

of the Lie bracket with the projection is C∞-linear. In particular, it descends to a bilinear map

Ωi,j(ξ) : ξj/ξj−1 × ξi/ξi−1 −→ ξi+j/ξi+j−1

that is called the (i,j)-curvature. All the curvatures together endow L(ξ) with a fibrewise Lie
bracket compatible with the grading. We will say that L(ξ) is a bundle of positively graded Lie
algebras. These algebras need not be modelled on a single graded Lie algebra (since the Lie bracket
is allowed to vary smoothly from fibre to fibre) and therefore the bundle need not be locally trivial.

Note that L(ξ) (regarded as a graded vector bundle) is the graded version of ξi0 (regarded as a
vector bundle filtered by the ξi). In particular, there is a vector bundle isomorphism between the
two that is unique up to homotopy. A concrete way of defining such an isomorphism is by selecting
a metric on TM .



1.5.0.4 Formal distributions

L(ξ) captures the non-involutivity of ξ in a more refined manner than the Lie flag. We can think of
it as a partial formal datum associated to ξ. Indeed, by construction, L(ξ) is uniquely determined
by the (i0 − 1)-jet of ξ at each individual point. Because we are interested in differential relations
that depend only on the curvatures, we are happy to forget the full jet and focus on L(ξ) instead;
this motivates the upcoming definitions.

In general, given a foliation F , we will say that a formal F-generating distribution is a positively
graded Lie algebra bundle structure on TF such that the degree-1 part is a generating set. The
space of formal F-generating distributions is denoted by Distf (F); we topologise it using the (weak)
C∞-topology. In particular, in families, each of the graded pieces and the bracket vary smoothly
and therefore the rank of each graded piece remains constant.

We denote by Dist(F) the space of regular distributions that are contained in and generate
by Lie brackets F . We similarly topologise it using the C∞-topology, turning the nilpotentisation
procedure described above into a continuous inclusion:

L : Dist(F) −→ Distf (F).

As we pointed out before, L is only defined up to homotopy, but a concrete and consistent choice
for all distributions at once can be made by choosing a metric on TM .

1.5.0.5 Formal distributions with constraints

The inclusion L becomes more interesting once we introduce some natural differential constraints.
Fix a GL-invariant open U in the space of positively graded Lie algebras of dimension rank(F).
Recall that we are interested in distributions whose first layer bracket-generates the rest. This
implies that the smallest U we want to look at consists of those Lie algebras generated by their
degree-1 part.

We will say that F ∈ Distf (F) is a formal U-distribution if F (p) ∈ U for all p ∈ M . Note
that an identification of Fp with Rrank(F) is needed for this to make sense, but the concrete choice
we make is irrelevant due to GL-invariance. The subspace of all such F is denoted by Distf (F ,U).
This process effectively lifts U to a Diff-invariant differential relation RU contained in the space
of (i0 − 1)-jets of distributions. Its solutions (i.e. those distributions whose nilpotentisation takes
values in U) will be denoted by Dist(F ,U).

The nilpotentisation map can be regarded then as an inclusion

LU : Dist(F ,U) −→ Distf (F ,U),

that we sometimes call the scanning map. The main question in the topological study of
distributions reads:

Question 1.6. Fix U . Is LU a weak homotopy equivalence (for any foliated manifold and relative
to boundary conditions)?

A positive answer to this question is often phrased by saying that the differential relation RU
satisfies the full h-principle.



1.5.0.6 Two results of Gromov

We remind the reader that Gromov’s method of flexible sheaves [57] applies to open and Diff-
invariant differential relations to provide a full h-principle over open manifolds. All the non-foliated
examples Dist(TM,U) described above fit within this scheme due to the openness and GL-invariance
of U , as long as M is open.

Another well-known remark of Gromov says that the foliated case can be regarded as a parametric
version of the standard case [59]. More precisely, the following claims are equivalent:

� The full h-principle holds for Dist(TF ,U), for all foliations F of rank n.

� The full h-principle holds for Dist(TM,U), for all manifolds M of dimension n.

Due to these observations, we will tackle Question 1.9 for the case TF = TM , where M is a
closed manifold.

1.6 Convex integration with avoidance and classification of bracket-generating
distributions.

Convex integration appeared first in the work of J. Nash on C1 isometric immersions/embeddings
[85]. Roughly speaking, the idea is that a short immersion can be corrected, one codirection at a
time, by introducing oscillations that increase its length. This process can be iterated in such a
way that, after infinitely many corrections at progressively smaller scales, one obtains an isometric
map that is only C1.

In [58], M. Gromov turned the ideas of Nash into a scheme capable of constructing and classifying
solutions of more general differential relations1. The implementation is rather involved (particularly
for differential relations of order higher than one), but the rough idea remains the same: We start
with an arbitrary section f , which we correct one derivative at a time, inductively in the order of
the derivatives. Namely, given a locally defined codirection λ and an order k, we add oscillations to
f in order to adjust its pure derivative of order k along λ. Once we iterate over all orders and, for
each order, over a well-chosen collection of codirections, we will have corrected all the derivatives
of f , yielding a solution of our differential relation R. There are several subtleties one must deal
with:

Why openness?

On a given step, we correct the pure derivative of order k along some λ. As we do so, we may
introduce errors in all other derivatives, potentially destroying what we had achieved in previous
steps. Therefore, a key part of the argument is proving that oscillations along λ can be added at
the expense of adding arbitrarily small errors in all other derivatives of order at most k.

This leads us to restrict our attention to open relations, because the errors will then be absorbed
by openness. Note that, under this assumption of openness, we do not need to introduce infinitely
many corrections at different scales anymore. This differs from the isometric immersion case.

1 The crucial observation of Gromov is that the arguments presented in [85] and [94, 67] can be understood as
integration processes. Recent work of M. Theillière [99, 100] connects Gromov’s approach to this earlier literature,
showing that, for certain differential relations, one can perform convex integration without integrating, relying instead
on explicit corrugations. This yields solutions with self-similarity properties.



The formal datum

Another key point is that we need to make sense of what “correcting” is. Indeed, at each step
we must study the space of all possible oscillations of f along λ and select one that is closer to
being a solution of R. In order to do this, our initial data will not be f but a pair (f, F ), where F
is a formal solution of R (i.e. a choice of Taylor polynomial solving R at each point). The formal
datum F guides the convex integration process: at each step we add oscillations to both f and F
so that their derivatives along λ agree. The process terminates when we produce a holonomic pair
(g,G) (i.e. G is the Taylor polynomial of g at all points and, since G is a formal solution, g is thus
a solution).

Ampleness

The argument we are outlining only works if, at each step, we can find suitable oscillations for
f and F . The way to do this is to consider Prλ,F ; the space consisting of all Taylor polynomials
that differ from F only in the direction of λ (and in order k); we call this the principal subspace
associated to F and λ. Inside of Prλ,F we can find Rλ,F , the subset of Taylor polynomials that are
still solutions of R. Our oscillations will be chosen within this subset.

Crucially, we know that Rλ,F is non-empty, because it contains F . It is also open by
assumption. To carry out the proof we also require that it is ample: this means that the connected
component R̃λ,F ⊂ Rλ,F containing F has the whole of Prλ,F as its convex hull. The geometric
way of interpreting this condition is that the space of admissible order-k derivatives along λ is
large and, upon integration, can be used to approximate any Taylor polynomial of order one less.

A relation R is said to be ample if each Rλ,F is ample.

Ampleness in coordinate directions

We are then interested in open and ample relations R. In practice, openness is readily checked,
but ampleness takes some effort: a priori, it is a condition that has to be verified for each formal
solution F , each order k, and each codirection λ. However, as is apparent from the explanations
above, one need not study all λ, but only sufficiently many of them (finitely many per chart)
to correct all derivatives. A pair (R, {λi}) consisting of a relation R and a suitable collection of
codirections {λi} is said to be ample in coordinate directions if this weaker condition holds.

In [39, p. 171], Y. Eliashberg and N. Mishachev posed the following question:

Question 1.7. Is there a (geometrically meaningful) differential relation R that is ample in
coordinate directions but not ample?

The present thesis provides the first such examples. We construct them using a convex integration
scheme that we call convex integration up to avoidance. This is our main contribution and we
introduce it next.

1.6.1 Statement of the main result

This thesis extends the applicability of convex integration to open relations that may not be ample
nor ample in coordinate directions. The relevant (weaker) condition that they must satisfy instead
is called ampleness up to avoidance (Definition 5.3.2). Our main theorem reads:

Theorem 1.8. The full C0-close h-principle holds for differential relations that are open and ample
up to avoidance.



This result is restated in slightly more generality in Theorem 5.4, Section 5.3. We emphasise that
we do not require our differential relations to be of first order.

Ampleness up to avoidance effectively allows us to take the relation of interest R and a formal
solution F : M → R, and find a smaller relation R(F ) ⊂ R that is now ample along coordinate
directions and has F as a formal solution. In particular we can now answer Question 1.7:

Corollary 1.6.1 There are open relations R such that:

� R is ample up to avoidance and Diff-invariant.

� R is not ample nor ample in coordinate directions.

� Each relation R(F ) is ample in coordinate directions, but not necessarily ample nor
Diff-invariant.

A concrete example is given in Theorem 1.12 below, which is our main application. To get there
and introduce the rest of our applications, we go into the theory of tangent distributions.

1.6.2 Applications in the study of distributions

We now review what is known about Question 1.9 for various choices of U . We will explain what
the contributions of this thesis are as we go along. Our main application is Theorem 1.12 below.

h-Principle for step 2

We denote by Dist(F) the space of smooth distributions that are contained in F ⊂ TM , a smooth
foliation, and generate by Lie brackets. We can consider the inclusion of spaces of distributions in
their formal counterpart Distf (F). These are spaces that encode the underlying algebraic topology
of the spaces of distributions in the sense of the philosophy of the h-principle. (See subsection
1.5.0.4 for further details)

L : Dist(F) −→ Distf (F).

Formal distributions with constraints

The inclusion L becomes more interesting once we introduce some natural differential constraints.
Fix a GL-invariant open U in the space of positively graded Lie algebras of dimension rank(F).
Recall that we are interested in distributions whose first layer bracket-generates the rest. This
implies that the smallest U we want to look at consists of those Lie algebras generated by their
degree-1 part.

We will say that F ∈ Distf (F) is a formal U-distribution if F (p) ∈ U for all p ∈ M . Those
distributions whose nilpotentisation takes values in U will be denoted by Dist(F ,U).

We can then consider the analogous inclusion of these spaces of distributions into their formal
counterpart:

LU : Dist(F ,U) −→ Distf (F ,U),

that we sometimes call the scanning map. The main question in the topological study of
distributions reads:

Question 1.9. Fix U . Is LU a weak homotopy equivalence (for any foliated manifold and relative
to boundary conditions)?

A positive answer to this question is often phrased by saying that the differential relation RU
satisfies the full h-principle.



Let M be a smooth manifold. One expects the answer to Question 1.9 to be positive if the
differential constraints we introduce are rather weak (i.e. if U is large). As we stated above, the
weakest assumption we are interested in is that U consists of Lie algebras generated by their first
layer, so Dist(TM,U) is the space of bracket-generating distributions in M .

Under this weak assumption we prove:

Theorem 1.10. Let M be a smooth manifold of dimension at least 4. The complete C0-close h-
principle holds for bracket-generating distributions of step 2 in M .

The result is sharp, since the 3-dimensional case corresponds to contact structures, which are known
not to abide by the full h-principle [11]. The proof is presented in Section 6.1 and is, in fact, a
routinary application of convex integration.

Remark 1.6.2 Theorem 1.10 partially answers an open question raised during the workshop on
Engel Structures held in April 2017 at AIM (American Institute of Mathematics, San Jose,
California). Concretely, [38, Problem 6.2] asks whether any parallelizable n-manifold admits a
k-plane field ξ ⊂ TM with maximal growth vector. This question is further refined to ask whether
any formal distribution of maximal growth admits a holonomic representative up to homotopy.

For step 2, our result answers the question and its refinement positively and goes a bit beyond.
Indeed, for k > 3 we provide a full classification in terms of formal data and not just a existence
statement. On the other hand, we do not tackle the higher step case. This is left as an interesting
open question.

Maximal non-involutivity

Theorem 1.10 says that being bracket-generating is a very flexible condition (in dimension 4
onwards). As such, we would like to consider more restrictive assumptions on U . Our guiding
example is Contact Topology, the study of contact structures. These are distributions whose
nilpotentisation is non-degenerate, in the sense that the first curvature is a non-degenerate
two-form. This is equivalent to the fact that a contact structure has as many non-trivial Lie
brackets as possible. This non-degeneracy is, ultimately, responsible for the contact scanning map
not being a homotopy equivalence in general [11], even though partial flexibility results do hold
[34]. In the last few years we have seen spectacular progress in our understanding of
higher-dimensional contact structures [12, 84].

We will henceforth focus on distributions presenting a similar flavour of non-degeneracy. We
will call this maximal non-involutivity; the precise meaning of this will be explained for each
dimension and rank as we go along.

Even-contact structures

In even dimensions, a hyperplane field is maximally non-involutive if its curvature has corank 1
(i.e. it has a 1-dimensional kernel). Such distributions are called even-contact structures. For them,
Question 1.9 was answered positively by McDuff [83], proving that they are (topologically) much
more flexible than contact structures. However, interesting questions about them from a geometric
perspective remain open [86].

Dimensions 3 and 4

In dimension 3, a bracket-generating distribution is necessarily a contact structure; we have
already mentioned that the h-principle fails for them. In dimension 4, a corank-1 regular bracket-
generating distribution is an even-contact structure.

The remaining case in dimension 4 corresponds to rank 2. In this situation, a maximally non-
involutive distribution is a regular bracket-generating distribution of step 3; these are called Engel



structures. Various results have appeared in the last few years regarding their classification [103,
29, 25, 92] and the classification of their submanifolds [52, 90, 24] but a definite answer to Question
1.9 is still open.

Dimension 5

In dimension 5, maximally non-involutive hyperplanes are contact structures.

Rank-3 distributions are maximally non-involutive if they are of step 2. In particular, as a
corollary of Theorem 1.10, we have:

Theorem 1.11. Let M be 5 or 6 dimensional. The complete C0-close h-principle holds for
maximally non-involutive rank-3 distributions.

Maximally non-involutive distributions of rank-2 are the so-called (2,3,5) distributions of Cartan
[21], which have been classified only in open manifolds [31]. If we replace maximal non-involutivity
by some concrete closed growth-vector condition, there are other interesting classes of distributions
(e.g. Goursat structures) whose classification is open as well.

Dimension 6

Our main application concerns rank 4 distributions in 6-dimensional manifolds. It turns out
that maximally non-involutive (4, 6)-distributions come in two families, elliptic and hyperbolic. The
statement reads:

Theorem 1.12. Let M be a 6-dimensional manifold. The complete C0-close h-principle holds for
rank-4 distributions of hyperbolic type.

The proof can be found in Section 7.2 and it is a consequence of our main result Theorem 1.8. We
emphasise that this result requires ampleness up to avoidance and is beyond the scope of classic
convex integration.

Remark 1.6.3 We conjecture that the answer to Question 1.9 is negative for elliptic (4, 6)
distributions. In Corollary 7.2.5 we will show that ampleness does not hold for the differential
relation that defines them.

The remaining cases are: Corank-1 (which are even-contact structures), rank-3 (classified by
Theorem 1.11) and rank-2 (the so-called (2, 3, 5, 6) structures, for which nothing is known).

1.7 Guide to the contents of the thesis.

1.7.1 Chapter 1. Introduction.

We introduce the general framework of bracket–distributions together with an overview of the main
problems solved in this thesis.

1.7.2 Chapter 2. The fundamental group of Formal Legendrian embeddings.

We first reprove a folklore result in the area, the classification of formal legendrian embeddings by
their formal invariants:



Theorem 1.13 (Theorem 2.3). Formal Legendrian embeddings are classified by their
parametrized knot type, rotation number and Thurston–Bennequin invariant.

We then move to the main result in the chapter: the computation of the fundamental group of
the space of Formal Legendrian embeddings.

Theorem 1.14 (Theorem 2.4). The sequence

0 // Z⊕ Zm
// π1(FLeg(R3)) // π1(Emb(S1,R3))⊕ Z // 0

is exact, where m ≥ 0 (this integer depends on the connected component). In particular, if we
fix the connected component Emb′(S1,R3) ⊆ Emb(S1,R3) of the parametrized unknot or of the
parametrized (p, q) torus knot we have that m = 0 and so

0 // Z⊕ Z // π1(FLeg(R3)) // π1(Emb′(S1,R3))⊕ Z // 0

is exact.

Finally we get the main application: the non-triviality of Kálmán’s loop at the formal level:

Proposition 1.7.1 (Proposition 2.5.1) The loop of formal Legendrian embeddings (γθ,k, F θ,k
s )

of Kálmán is non trivial for any k ∈ Z.

1.7.3 Chapter 3. Connected sum of loops of Legendrian embeddings.

In this chapter we define a connected sum of loops of legendrian embeddings in S3 that allow
us construct new loops of Legendrian embeddings. Along the process get the following commutative
diagram:

0 // π1(S3\K) //

��

π1(Leg(R3, ξstd)) //

��

π1(Leg(S3, ξstd))

��

// 0

0 // π1(S3\K)/π2(Emb(S1, S3)) // π1(Emb(S1,R3)) // π1(Emb(S1, S3)) // 0

By using this diagram we can explain how to perform the aforementioned parametric connected
sum for loops of Legendrians in R3. As the main application we construct infinitely many new
examples of loops of Legendrians which are non-trivial:

Theorem 1.15 (Theorem 3.4. Infinitely many new examples of loops with non-trivial
monodromy.).

The monodromy at the level of H0 associated to the following families of loops is not the identity
and, thus, all these families of loops are not contractible in the space L̂eg(R3, ξstd):

For m ≥ 1, the connected sum loop of Kálmán’s loop based at a trefoil and m loops Kθ
pi,qi where

for 1 ≤ i ≤ m is one of the following:

a)Kálmán’s loop based at the torus knot Kpi,qi,

b) Kálmán’s inverse loop based at the torus knot Kpi,qi, or

c) The constant loop Kconst
pi,qi based at the torus knot Kpi,qi.



1.7.4 Chapter 4. h−Principle for horinzontal and transverse curves.

The h-principles for horizontal curves are proven in Section 4.7. The h-principles for transverse
curves in Section 4.8. Along the way we state and prove the appropriate relative versions. We will
put all our emphasis on the embedding cases; the other statements (immersions and smooth curves)
follow from the same arguments with considerable simplifications.

We state the h−principle for regular immesions first:

Theorem 1.16 (Theorem 1.1). Let (M,D) be a manifold endowed with a bracket-generating
distribution. Then, the following inclusion is a weak homotopy equivalence:

Immr(M,D) −→ Immf (M,D).

We then deduce as a corollary:

Corollary 1.7.2 Let D0 and D1 be bracket-generating distributions on a manifold M , homotopic
as subbundles of TM . Then, the spaces Immr(M,D0) and Immr(M,D1) are weakly homotopy
equivalent.

We prove that the h−principle holds for regular embeddings into manifolds of dimension at least
4:

Theorem 1.17 (Theorem 1.2). Let (M,D) be a bracket-generating distribution with dim(M) ≥ 4.
Then, the following inclusion is a weak homotopy equivalence:

Embr(M,D) −→ Embf (MD).

And we get the following corollary:

Corollary 1.7.3 Fix a manifold M with dim(M) ≥ 4. Let D0 and D1 be bracket-generating
distributions on M , homotopic as subbundles of TM . Then, the spaces Embr(M,D0) and
Embr(M,D1) are weakly homotopy equivalent.

We also address the homotopy type of the smooth horizontal loop space, proving the following
h−principle:

Theorem 1.18 (Theorem 1.3). Let (M,D) be a manifold endowed with a bracket-generating
distribution. Then, the following inclusion is a weak homotopy equivalence:

L(M,D) −→ L(M).

Finally, we deal with the transverse case. We prove an h−principle for transverse immersions:

Theorem 1.19. Let (M,D) be a manifold endowed with a bracket-generating distribution. Then
the inclusion

ImmT (M,D) −→ Immf
T (M,D)

is a weak homotopy equivalence.

And we also show that the h−principle holds in the transverse embedded case:

Theorem 1.20 (Theorem 1.5). Let (M,D) be a bracket-generating distribution with dim(M) ≥ 4.
Then the inclusion

EmbT (M,D) −→ EmbT
f (M,D)

is a weak homotopy equivalence. In particular, EmbT (M,D) depends only on the formal class of D.



1.7.5 Chapter 5. Convex integration with avoidance.

In this Chapter we prove the Theorem of convex integration up to avoidance:

Theorem 1.21 (Theorem 1.8). The full C0-close h-principle holds for differential relations that
are open and ample up to avoidance.

This result is restated in slightly more generality in Theorem 5.4, Section 5.3.

We can now answer Question 1.7:

Corollary 1.7.4 There are open relations R such that:

� R is ample up to avoidance and Diff-invariant.

� R is not ample nor ample in coordinate directions.

� Each relation R(F ) is ample in coordinate directions, but not necessarily ample nor
Diff-invariant.

1.7.6 Chapter 6. h-Principle for step-2 distributions.

As an application of classic convex integration we prove:

Theorem 1.22 (Theorem 1.10). Let M be a smooth manifold of dimension at least 4. The
complete C0-close h-principle holds for bracket-generating distributions of step 2 in M .

1.7.7 Chapter 7. h−Principle for hyperbolic (4, 6)-distributions.

Finally we devote this chapter to the main application of Convex integration up to avoidance
(Thereom 1.8): the h−principle for hyperbolic (4, 6) distributions.

Theorem 1.23 (Theorem 1.12). Let M be a 6-dimensional manifold. The complete C0-close
h-principle holds for rank-4 distributions of hyperbolic type.

1.7.8 Chapter 8. Future work.

In this last chapter we address future work and open questions in the field of bracket–generating
distributions.





Part I

Legendrian and Formal Legendrian embedding spaces





Chapter 2

The fundamental group of the space of Formal

Legendrian embeddings.

2.1 Spaces of embeddings of the circle into euclidean space.

Denote by Emb(N,M) the space of embeddings of a manifold N into a manifold M equipped with
the C∞–topology.

2.1.1 The space Emb(S1,R3).

Theorem 2.1 (Hatcher, [63] Appendix: equivalence (15)). The space of parametrized
unknotted circles in R3 has the homotopy type of SO(3).

The group SO(4) acts freely on the connected component Embp,q(S1,S3) ⊆ Emb(S1,S3) of the
parametrized (p, q) torus knots as

SO(4)× Embp,q(S1, S3) −→ Embp,q(S1, S3)
(A, γ) 7−→ A · γ.

Thus, we have an inclusion SO(4) ↪→ Embp,q(S1, S3). The following result holds:

Theorem 2.2 (Hatcher, [65] Theorem 1). The inclusion SO(4) ↪→ Embp,q(S1, S3) is a homotopy
equivalence.

As a consequence of these results we obtain that

Corollary 2.1.1 Let Emb0(S1,R3),Embp,q(S1,R3) ⊆ Emb(S1,R3) be the connected component of
the parametrized unknots or of the parametrized (p, q) torus knots, respectively. The fundamental
groups of these spaces are given by

� π1(Emb0(S1,R3)) ∼= Z2,

� π1(Embp,q(S1,R3)) ∼= Gp,q ⋊ Z2,

where Gp,q is the knot group of the (p, q) torus knot.

Proof. The case of the connected component Emb0(S1,R3) follows from Theorem 2.1.

We need to study the connected component Embp,q(S1,R3) to conclude the proof. Consider the
following space

23



S tereop,q = {(γ, x) : x /∈ Im(γ)} ⊆ Embp,q(S1, S3)× S3.

We have two natural fibrations associated to the projection maps

Embp,q(S1,R3) �
�

// S tereop,q

��

S3\Kp,q
� � // S tereop,q

��

S3 Embp,q(S1,S3)

where Kp,q is the image of the standard (p, q) torus knot in S3. From the first fibration we obtain

π1(Embp,q(S1,R3)) ∼= π1(S tereop,q).

Moreover, from the second one and the fact that Embp,q(S1, S3) has the homotopy type of SO(4)
(Theorem 2.2), we obtain that the sequence

0 // Gp,q
// π1(S tereop,q) // Z2

// 0

is exact. Now, it is a simple exercise to check that this sequence is right split.

2.2 Formal Legendrian Embeddings in R3.

We denote by ξ the standard contact structure in R3 (using coordinates (x, y, z)) given by ξ =
Ker(dz − ydx). Throughout the Section we fix the Legendrian framing ∂y.

1

2.2.1 Formal Legendrian Embeddings in R3.

Definition 2.2.1 An immersion γ : S1 → R3 is said to be Legendrian if γ′(t) ∈ ξγ(t) for all t ∈ S1.
If γ is an embedding, we say it is a Legendrian embedding.

Definition 2.2.2

(a) A formal Legendrian immersion in R3 is a pair (γ, F ) such that:

(i) γ : S1 → R3 is a smooth map.

(ii)F : S1 → γ∗(TR3\{0}) satisfies F (t) ∈ ξγ(t), where 0 is the zero section.

(b) A formal Legendrian embedding in R3 is a pair (γ, Fs), satisfying:

(i) γ : S1 → R3 is an embedding.

(ii)Fs : S1 → γ∗(TR3\{0}), is a 1–parametric family, s ∈ [0, 1], such that F0 = γ′ and F1(t) ∈ ξγ(t).

Use the framing ⟨∂y⟩ (see Footnote) to trivialize the contact distribution understood as a bundle.
This provides a bundle isomorphism ξ ≃ R2. From now on, we will understand the map F : S1 →

1 Observe that ξ is naturally (co)oriented by the contact form dz − ydx and, thus, ∂y determines a unique oriented
framing up to homotopy.



S1 ≡ S2 ∩ R2 and the family Fs : S1 → S2 with F1 : S1 → S1 ≡ S2 ∩ R2. We say that an immersion
is strict if it is a non injective map.

Denote by LegImm(R3) the space of Legendrian immersions in R3 and by Leg(R3) the space
of Legendrian embeddings in R3. Denote also by FLegImm(R3) the space of formal Legendrian
immersions and by FLeg(R3) the space of formal Legendrian embeddings. These definitions make
sense for immersions and embeddings of the interval. We define LegImm([0, 1],R3), Leg([0, 1],R3),
FLegImm([0, 1],R3) and FLeg([0, 1],R3) analogously.

All the spaces of Legendrians are equipped with the C∞–topology. On the other hand, the spaces
of formal Legendrians are equipped with the product topology that is the C∞–topology for the first
factor (the smooth immersion/embedding) and the C∞–topology for the second factor (the formal
derivative).

Remark 2.2.3 It is well–known that h–principle holds for Legendrian immersions (see, eg,
Eliashberg and Mishachev [39]). Hence, π0(LegImm(R3)) ∼= Z, π1(LegImm(R3)) ∼= Z and
πk(LegImm(R3)) = 0, for all k ≥ 2. The connected components of LegImm(R3) are given by the
rotation number. The rotation number of an Legendrian immersion γ is
Rot(γ) = deg(γ′ : S1 → S1). Let us explain the group π1(LegImm(R3)) ∼= Z. Take a loop γθ in
LegImm(R3), the integer is just RotL(γ

θ) = deg(θ 7→ (γθ)′(0)), we call this number rotation
number of the loop. These invariants make sense in the formal case and the definitions are the
obvious ones.

2.2.2 The space FLeg(R3).

Consider the space F̂Leg(R3) = {(γ, F )|γ ∈ Emb(S1,R3), F ∈ Maps(S1,S1)}. We have a natural

fibration FLeg(R3) → F̂Leg(R3). In order to compute the homotopy groups of FLeg(R3), take γ ∈
Leg(R3) and fix (γ, γ′) as base point. The fiber over this point is F = F(γ,γ′) = Ωγ′(Maps(S1, S2)),
where this denotes the space of loops in the space Maps(S1,S2) based at γ′. We have the following
exact sequence of homotopy groups associated to the fibration:

· · · // π2(F̂Leg(R3))

tt

π1(F) // π1(FLeg(R3)) // π1(F̂Leg(R3))

tt

π0(F) // π0(FLeg(R3)) // π0(F̂Leg(R3)) // 0

Notice that F̂Leg(R3) has the homotopy type of Emb(S1,R3) × S1 × Z. Hence,

π0(F̂Leg(R3)) ∼= π0(Emb(S1,R3)) ⊕ Z, where the integer is the rotation number. Moreover,

π1(F̂Leg(R3)) ∼= π1(Emb(S1,R3)) ⊕ Z and the Z factor is given by the rotation number of the

loop. Finally, πk(F̂Leg(R3)) ∼= πk(Emb(S1,R3)) for all k ≥ 2.

The homotopy groups of F are easily computable. Just observe that there is a fibration
Maps(S1,S2) → S2 defined via the evaluation map, with fiber over p ∈ S2 given by Ωp(S2). As
every element [f ] ∈ πn(S2) can be lifted to an element [fn] ∈ πn(Maps(S1, S2)), defined as



fn(p)(t) = f(p), t ∈ S1, p ∈ Sn,

all the diagonal maps in the associated exact sequence to the fibration Maps(S1,S2) → S2 are zero.
This implies that there are short exact sequences πn(Ωp(S2)) → πn(Maps(S1, S2)) → πn(S2) for
n ≥ 1. In particular, since S2 is simply connected, we obtain that

π0(F) ∼= π1(Maps(S1, S2)) ∼= π1(Ωp(S2)) ∼= π2(S2) ∼= Z.

Moreover, theses sequences are right split and, thus, split for n > 2 since the groups involved are
abelian. So, we have

π1(F) ∼= π2(Maps(S1, S2)) ∼= π2(S2)⊕ π2(Ωp(S2)) ∼= π2(S2)⊕ π3(S2) ∼= Z⊕ Z
and π2(F) ∼= π3(Maps(S1, S2)) ∼= π3(S2)⊕ π3(Ωp(S2)) ∼= π3(S2)⊕ π4(S2) ∼= Z⊕ Z2.

Lemma 2.2.4 π0(FLeg(R3)) ∼= π0(Emb(S1,R3))⊕ Z⊕ Z.

Proof. It is sufficient to show that every element in

π1(F̂Leg(R3)) ∼= π1(Emb(S1,R3)) ⊕ π1(Maps(S1,S1)) ∼= π1(Emb(S1,R3)) ⊕ Z can be lifted to an
element in π1(FLeg(R3)).

Take a loop (γθ, F θ
1 ) in F̂Leg(R3). Let F0 = (γθ)′ : S1×S1(θ, t) → S2 be the derivative F0(θ, t) =

(γθ)′(t), we need to show that F0 = (γθ)′ is homotopic to the map F1 : S1 × S1 → S2. Observe that
the homotopy classes of maps from S1 × S1 to S2 are classified by the degree and deg(F1) = 0, so
we just need to show that deg(F0) = 0 to complete the proof.

Indeed, the map

Gε(θ, t) =


(γθ)′(t) if ε = 0,
γθ(t+ε)−γθ(t)

||γθ(t+ε)−γθ(t)|| if 0 < ε < 1,

−(γθ)′(t) if ε = 1,

(2.1)

is well–defined, because γθ, θ ∈ S1, is an embedding. Thus, F0 = (γθ)′ is homotopic to −F0 = −(γθ)′

and deg(F0) = deg(γθ)′ = 0.

2.3 Classification of formal Legendrian embeddings in R3.

We have checked that π0(FLeg(R3)) ∼= π0(Emb(S1,R3)) ⊕ Z ⊕ Z. The first Z corresponds to the
rotation number and we will show that the second one corresponds to the Thurston–Bennequin
invariant.

Let us refine the definition of formal Legendrian embedding to extend the definition of the
Thurston–Bennequin invariant to the formal case.

Definition 2.3.1 A formal extended Legendrian embedding in R3 is a pair (γ,Gs), satisfying:

(i) γ : S1 → R3 is a embedding.

(ii)Gs : S1 → SO(3), is a smooth family in the parameter s ∈ [0, 1], such that G0 = Id and
G1(γ

′) ∈ ξγ(t).

We denote FELeg(R3) for the space of formal extended Legendrian embeddings in R3 equipped
with the C∞–topology in the first factor and the C∞–topology in the second one.



Remark 2.3.2 The natural fibration t : FELeg(R3) → FLeg(R3), (γ,Gs) 7→ (γ,Gs(γ
′)), has

contractible fibers. Note that the fiber is the space of paths in SO(2) starting at the Identity map
and this space is contractible. Thus, this map is a weak homotopy equivalence.

Given (γ,Gs) ∈ FELeg(R3) we have a well–defined formal contact framing FFCont of the normal
bundle ν(G1(γ

′)) given by the Legendrian condition G1(γ
′) ⊆ ξγ(t). Then, G

−1
1 (FFCont) defines a

framing of the normal bundle ν of γ. On the other hand, we have a topological framing FTop of ν
given by a Seifert surface of γ.

Definition 2.3.3 Let (γ,Gs) ∈ FELeg(R3). The Thurston–Bennequin invariant is tb(γ,Gs) =
twν(G

−1
1 (FFCont),FTop), ie the twisting of G−1

1 (FFCont) with respect to FTop.

The Thurston–Bennequin invariant is defined over F̂ELeg(R3) = {(γ,G)|γ ∈ Emb(S1,R3), G ∈
Maps(S1, SO(3)), G(γ′) ∈ ξγ(t)}. Furthermore, since the unique oriented S1–bundle over S1 is the

trivial one, π0(F̂ELeg(R3)) ∼= π0(Emb(S1,R3))⊕Z⊕Z. The first Z is just the rotation number and
the second one corresponds to the Thurston–Bennequin invariant.

Now we can state the main result of this Section, which is folklore.

Theorem 2.3. Formal Legendrian embeddings are classified by their parametrized knot type,
rotation number and Thurston–Bennequin invariant.

The proof of this result follows directly using the fibration F̂ : FELeg(R3) → F̂ELeg(R3) and the
fact that the map t : FELeg(R3) → FLeg(R3) is a weak homotopy equivalence. Note also that the
fibration F̂ has connected fiber, because its π0 is given by π2(SO(3)) = 0. This completes the proof.

However to get a more geometric picture, we will express the isomorphism π0(t) ◦ π0(F̂ )−1 in
more concrete terms. It can be shown that it coincides with the one in Lemma 2.2.4 by comparing
the maps involved. Clearly the isomorphism preserves the rotation invariant, ie the rotation number
(γ,Gs) is sent to the rotation invariant of (γ,Gs(γ

′)). To understand the rest of the isomorphism

we fix a base point (γ, F = γ′) in F̂Leg(R3) with Rot(γ, γ′) = 0, i.e we declare the base point
to be a Legendrian embedding with zero rotation. Now, given an element of the fiber, ie (γ, F s)
with F 0 = F 1 = γ′, we claim that for [(γ, 0, k)] ∈ π0(FLeg(R3)), the isomorphism π0(t) is given by
tb(π0(t)

−1(γ, 0, k)) = tb(γ, γ′)− 2k. In other words, it depends on the choice of base point. This is
obvious if we check that given a double stabilization of the Legendrian knot, the value of the degree
invariant in the fiber increases by 1 and it is a simple computation to check that the tb decreases
by 2.

2.4 Computation of the Fundamental group of formal Legendrian Embeddings
in R3.

As a consequence of Lemma 2.2.4 we have that the following sequence is exact:

· · · // π2(FLeg(R3)) // π2(F̂Leg(R3))

tt

π1(F) // π1(FLeg(R3)) // π1(F̂Leg(R3)) // 0



Take a 2–sphere (γz, F z
1 ) in F̂Leg(R3), the diagonal map d : π2(F̂Leg(R3)) → π1(F) measures

the obstruction to lifting (γz, F z
1 ) to a 2–sphere (γz, F z

s ) in FLeg(R3), ie the obstruction to find a
homotopy between the derivative map F0 = (γz)′ : S2 × S1 → S2, (z, t) 7→ F0(z, t) = (γz)′(t), and
the map F1 : S2 × S1 → S2. Note that by the Legendrian condition F1 is nullhomotopic, since it is
not surjective. The first obstruction to find this homotopy is just the degree of F0(z, 0) = (γz)′(0)
and corresponds to the first Z factor of π1(F) ∼= π2(S2) ⊕ π3(S2) ∼= Z ⊕ Z. In particular, since
(γz)′(0) is homotopic to −(γz)′(0) this obstruction vanishes (see equation (2.1)).

Theorem 2.4. The sequence

0 // Z⊕ Zm
// π1(FLeg(R3)) // π1(Emb(S1,R3))⊕ Z // 0

is exact, where m ≥ 0. In particular, if we fix the connected component Emb′(S1,R3) ⊆ Emb(S1,R3)
of the parametrized unknot or of the parametrized (p, q) torus knot we have that m = 0 and so

0 // Z⊕ Z // π1(FLeg(R3)) // π1(Emb′(S1,R3))⊕ Z // 0

is exact.

Proof. The Zm denotes the subgroup of Z = π3(S2) which comes from the embedding part in the
diagonal map above. Thus,we only need to check the particular cases mentioned above. For the
connected component Emb0(S1,R3) of the parametrized unknot the result follows from Theorem

2.1, since π2(F̂Leg0(R3)) = π2(Emb0(S1,R3)) = π2(SO(3)) = 0, where F̂Leg0(R3) stands for a
formal Legendrian connected component of the smooth unknot.

On the other hand, fix the connected component Embp,q(S1,R3) of the parametrized (p, q) torus
knot and consider the commutative diagram

Embp,q(S1,R3) �
�

//

� _

��

Embp,q(S1,S3)
� _

��

Imm(S1,R3) �
�

// Imm(S1, S3)

defined by the natural inclusions, where Imm(N,M) denotes the space of immersions of a manifold
N into a manifold M equipped with the Cr–topology, r ≥ 5.

By the Smale–Hirsch Theorem for immersions (see [95] or [39]) we have that Imm(S1,R3) has
the homotopy type of Maps(S1,S2) and Imm(S1,S3) has the homotopy type of
Maps(S1, S3) × Maps(S1, S2). Moreover, the map induced by the inclusion
Embp,q(S1,R3) ↪→ Imm(S1,R3) at π2–level sends the homotopy class [γz] ∈ π2(Embp,q(S1,R3)) to
[(γz)′] ∈ π2(Imm(S1,R3)) ∼= π2(Maps(S1, S2)); ie coincides with the diagonal map

d : π2(F̂Leg(R3)) → π1(F) ∼= π2(Maps(S1, S2)).

Consider the induced commutative diagram at π2–level

π2(Embp,q(S1,R3)) //

��

π2(Embp,q(S1, S3))

��

π2(Imm(S1,R3)) // π2(Imm(S1,S3))



since π2(Embp,q(S1, S3)) is trivial (see Theorem 2.2) it is sufficient to show that the homomorphism
π2(Imm(S1,R3)) → π2(Imm(S1, S3)) is injective to conclude the proof. But this is clear, by using
the h–principle for immersions, since the degree of the induced map S2 × S1 to S3 is zero and the
induced map for the derivative from S2 × S1 to S2 is sent to itself by the inclusion.

2.5 Main application: formal non-triviality of Kálmán’s loop.

2.5.1 Kálmán’s loop.

Kálmán has constructed a series of examples of loops of Legendrian positive torus knots
non–contractible in the space Leg(R3), though contractible in Emb(S1,R3) [71]. Let us prove that
Kálmán’s examples are non trivial even as loops of formal Legendrian embeddings; that is, in the
space FLeg(R3). We will prove that they are not contractible for any choice of parametrization.
Since the space of Legendrians can be seen inside the space of Formal Legendrians, thus these
loops are not contractible as loops of unparametrized oriented Legendrian knots. Consider a

Figure 2.1: The loop in front projection (p = 3, q = 7). Note that we have to cycle 2p = 6 times.

Legendrian positive (p, q) torus knot, a loop is described in Figure 2.1. The loop takes the p
strands of the knot to the cyclic rotation of them. This geometrically corresponds to a 2π/p
rotation along the core of the defining torus. Let us consider 2p concatenations of this loop. Thus,
it is generated by two full rotations along the core of the torus.

2.5.1.1 Simplified position.

First, we will deform through formal loops the initial loop into a formal loop in a “simplified”
position.



Step 1. Consider the contactomorphism f(x, y, z) = (x/r, y/r, z/r2) in the standard
(R3,Ker(dz − ydx)). By using it, we assume that the defining torus for the loop has arbitrarily
small meridional radius. Therefore, the knot is C1–close to the core β of the torus. We are not
using the standard notion of C1–closeness, but a weaker one. Ie we mean that a sequence of
immersions γ̂k is C1– close to an immersion γ̃ if for any ε > 0 and for any point t ∈ S1: for every
k ∈ Z large enough there exists a point τ(t) ∈ S1 such that |γ̂k(t) − γ̃(τ(t))| ≤ ε and

| γ̂′
k(t)

||γ̂′
k(t)||

− γ̃′(τ(t))
||γ̃′(τ(t))|| | ≤ ε. This is a way of somehow formalising the notion of closeness for points

and tangent vectors when regarded the knots as submanifolds (non-parametrized).

Moreover, by further shrinking, the knot and the core β, they may be assumed to be arbitrarily
close to Ker dz; ie C1–close to their Lagrangian projections (i.e. the plane {z = 0}).

(a) Front projection of the knot and the core (in
red colour).

(b) Knot C1–close to the core.

Figure 2.2: C1–approximation of the knot to the core, shown in the front projection.

Step 2. Denote γθ the initial loop of Legendrian embeddings. Understood as a formal loop, it
is written as (γθ, F θ

s ), where F
θ
s = (γθ)′. Let us construct a 1–parametric family of formal loops

(γθ,u, F θ,u
s ), u ∈ [0, 1], defined as follows

(i)γθ,u = γθ,

(ii)F θ,u
s = (1− s)(γθ)′ + s((1− u)(γθ)′ + u∂y).

This is a family of formal loops, since (γθ)′ is never a negative multiple of ∂y.
2 To check that, note

that β is C1–close to γθ.

Step 3. We consider the family of rotations {rv ∈ SO(3)}v∈[0,1] taking the quadrant XY to the

quadrant −ZX, see Figure 2.3. Construct a family of formal loops (γθ,u, F θ,u
s ), u ∈ [1, 2], as follows

(i)γθ,u = ru−1 · γθ,

(ii)F θ,u
s = (1− s)(γθ,u)′ + s∂y.

Again, this is a family of formal loops because (γθ,u)′ is never a negative multiple of ∂y. Note
that we are using that γθ is C1–close to β.

Step 4. Finally, we turn over the left lobe of the unknot core r1 · β by an isotopy defined as
follows. Take polar coordinates (r, φ) in the plane Y Z and ε > 0 small enough. We define the
isotopy as:

fu(x, r, φ) =

{
(x, r, φ+ u · χ(x) · π) if x ≤ ε,

(x, r, φ) if ε ≤ x

where 0 ≤ u ≤ 1 and χ : R → R is a non–decreasing smooth function satisfying

2 We are assuming an orientation of the Legendrians. The argument with the opposite orientation runs in the same
way by changing ∂y by −∂y.



� χ(x) = 1 for all x ≤ 0,

� χ(x) = 0 for all x ≥ ε.

We apply the isotopy to r1 ·γθ, see Figure 2.3. Again, the derivative is never tangent to −∂y and
thus we can interpolate to ∂y.

We have proven that our initial loop of Legendrian embeddings is homotopic to the loop of formal
Legendrian embeddings (γ̃θ, F̃ θ

s ) defined as follows:

(i)γ̃θ is the loop of parametrized (p, q) torus knots supported in the torus associated to the unknot
contained in the plane XZ. The loop is obtained by a rotation of 4π radians of the standard
(p, q)–embedding in the direction of the parallel of the supporting torus.

(ii)F̃ θ
s = (1− s)(γ̃θ)′ + s∂y.

X

Y

Z

(a) Step 2.

X

Y

Z

-Z

X
(b) Step 3.

X

-Z

X

-Z

(c) Step 4.

Figure 2.3: Construction of the path of loops. We represent the moves of the core β.

2.5.2 Set of parametrizations of the family of loops.

As an outcome of the previous discussion, we may assume that our formal Legendrian parametrized
(p, q) torus knot can be written as (γ, Fs), where

� γ(t) =

 (cos(2πpt) + 2) cos(2πqt)
sin(2πpt)

(cos(2πpt) + 2) sin(2πqt)

,

� Fs(t) = s∂y + (1− s)(γ)′(t).

One particular parametrization of the loop can be written as (γθ, F θ
s ), where

� γθ(t) =

 cos(4πθ) 0 − sin(4πθ)
0 1 0

sin(4πθ) 0 cos(4πθ)

 (cos(2πpt) + 2) cos(2πqt)
sin(2πpt)

(cos(2πpt) + 2) sin(2πqt)

,

� F θ
s (t) = s∂y + (1− s)(γθ)′(t).



We will show that any possible parametrization of the loop gives raise to a non–trivial loop of
parametrized formal Legendrian embeddings. Up to homotopy, the possible parametrizations of the
formal Legendrian loop are given by:

� γθ,k(t) = γθ(t+ kθ),

� F θ,k
s (t) = F θ

s (t+ kθ) = s∂y + (1− s)(γθ,k)′(t),

where k ∈ Z. This is because π1(Diff+(S1)) = π1(SO(2)) = Z.3

We will prove the following statement.

Proposition 2.5.1 The loop of formal Legendrian embeddings (γθ,k, F θ,k
s ) is non trivial for any

k ∈ Z.

This proves that the loop is non trivial as a loop of non parametrized formal Legendrian knots.

2.5.3 Proof of Proposition 2.5.1.

It follows from the previous discussion that the loop γθ,k(t) of smooth embeddings lies in SO(4) ⊂
Embp,q(S1,S3), ie γθ,k(t) = Aθ,kγ(t), where Aθ,k ∈ SO(4). More specifically, on S3(

√
2), the

√
2

radius sphere in C2, we have

γθ,0(t) =

(
1 0
0 e4πiθ

)(
e2πipt

e2πiqt

)
.

Thus, in these coordinates the other parametrizations are given by

γθ,k(t) = γθ,0(t+ kθ) =

(
e2πipkθ 0

0 e2πi(2+qk)θ

)(
e2πipt

e2πiqt

)
.

By Theorem 2.2 the parametrized loop γθ,k is trivial in Embp,q(S1,S3) if and only if 2 + k(p+ q)
is even. From now on we will assume that this is the case. Thus, there is a family {Ã(r,θ),k}(r,θ)∈D
such that Ã(1,θ),k = Aθ,k. Since π2(SO(4)) = 0, the disk Ã(r,θ),k is unique up to homotopy fixing

the boundary and the same holds for the disk Ã(r,θ),k · γ in Embp,q(S1, S3).

By Theorem 2.4, we have the following exact sequence:

0 // π1(F)
m1 // π1(FLeg(R3))

m2 // π1(F̂Leg(R3)) // 0 (2.2)

Thus, in order to prove that our loop ℓk = [(γθ,k, F θ,k
s )] ∈ π1(FLeg(R3)) is non trivial we

distinguish two cases:

2.5.3.1 Case 1. k ̸= 0.

We claim that m2(ℓk) ̸= 0, ie [γθ,k] ̸= 0 ∈ π1(Embp,q(S1,R3))4.

3 Remember that the Legendrian knots are oriented.
4 Observe that RotL(γ

θ,k, F θ,k
s ) = 0.



Recall from Corollary 2.1.1 that π1(Embp,q(S1,R3)) ∼= π1(S tereop,q) and that we have an exact
sequence

0 // Gp,q
// π1(S tereop,q) // π1(Embp,q(S1, S3)) // 0

Thus, we must show that [(Aθ,kγ,∞)] ∈ π1(S tereop,q) is non trivial. Ie the family of loops that
is trivial by hypothesis in π1(Embp,q(S1, S3)) does not admit a capping disk whose evaluation map
avoids ∞ ∈ S3. We check it by composing with the 1–parametric family of loops Ã−1

(r,θ),k ∈ SO(4),

we obtain a 1–parametric family of loops (Ã−1
(r,θ),kAθ,kγ, Ã

−1
(r,θ),k∞), r ∈ [0, 1]. For r = 0 we obtain

the initial loop and for r = 1 we obtain the loop (γ,A−1
θ,k∞). Thus, these two loops represent the

same element of π1(S tereop,q). Moreover, [(γ,A−1
θ,k∞)] can be lifted to Gp,q, since it lies on the fiber

defined by the element [γ] ∈ π1(Embp,q(S1,S3)). So, we are reduced to check whether [A−1
θ,k∞] ∈ Gp,q

is trivial. The knot group of the (p, q) torus knot is Gp,q = ⟨a, b : ap = bq⟩. Thus, [A−1
θ,k∞] = bpk ̸= 0,

since b is a non torsion element of Gp,q.

Figure 2.4: Visualization of the loop γθ,k for a (5, 2) torus knot (k ̸= 0).

2.5.3.2 Case 2. k = 0.

Since m2(ℓ0) ∈ π1(F̂Leg(R3)) is zero, there exists A ∈ π1(F) such that m1(A) = ℓ0. We are going
to geometrically check that A ̸= 0 and therefore, by the injectivity of m1 provided by the sequence
(2.2), the non triviality of ℓ0 follows.

Write (γθ, F θ
s ) = (γθ,0, F θ,0

s ). Note that in (R3(x, y, z),Ker(dz − ydx)) the parametrized loop is
written as:

� γθ(t) = Bθγ(t) =

 cos(4πθ) 0 − sin(4πθ)
0 1 0

sin(4πθ) 0 cos(4πθ)

 (cos(2πpt) + 2) cos(2πqt)
sin(2πpt)

(cos(2πpt) + 2) sin(2πqt)

,

� F θ
s (t) = s∂y + (1− s)(γθ)′(t).

Moreover, γθ is bounded by γ̃(r,θ)(t) = B̃(r,θ)γ(t), where B̃(r,θ) ∈ SO(3), such that B̃(1,θ) = Bθ

and is homotopic to Ã(r,θ) inside SO(4). Thus, we have a disk D(r, θ) = {(B̃r,θγ, ∂y)} in F̂Leg(R3)
that bounds m2(ℓ0). We try to lift it to a disk in FLeg(R3) that bounds ℓ0. There is no homotopical
obstruction to lifting it for the punctured disk D(r, θ)|r>0. Therefore, the homotopy obstruction is
represented by an element of π1(F). So we obtain a loop (γ0, F̃

θ
s ) over the fiber of (γ0, ∂y) where

γ0 = B0γ. It follows by construction that A = [(γ0, F̃
θ
s )]. Let us perform the computation.



Figure 2.5: Visualization of the loop γθ,0 for a (5, 2) torus knot (k = 0).

F̃ θ
s =

{
B̃2s,θ(γ

′) if 0 ≤ s ≤ 1
2 ,

F θ
2s−1 = (2s− 1)∂y + (2− 2s)Bθ(γ

′) if 1
2 ≤ s ≤ 1.

(2.3)

Observe that F̃ θ
0 = γ′0 and F̃ θ

1 = ∂y. Thus, we can understand F̃ θ
s as a map F̃ : S2 → Maps(S1,S2).

It follows that A = [F̃ ] ∈ π1(F) ∼= π2(Maps(S1, S2)) ∼= π2(S2)⊕π2(Ωp(S2)), that is the fundamental
group of the fiber. We already computed this group in Theorem 2.4. Moreover, we also showed that
the morphism to π1(FLeg(R3)) induced by the inclusion is injective.

To conclude the proof we must check that [F̃ ] ̸= 0. In order to see this, we will verify that
deg(F̃ θ

s (0) : S2 → S2) is nonzero. This degree is the first coordinate of [F̃ ] ∈ Z ⊕ Z ∼= π1 (F) ∼=
π2(S2)⊕ π2(Ωp(S2)).

We give an explicit description of {B̃r,θ} in SO(3). Identify SO(3) with RP3 in the usual way.
Ie understand RP3 as the 3–ball of radius π with its boundary points identified via the antipodal
map. Then a point p = (p1, p2, p3) in the described 3–ball corresponds in SO(3) to the rotation
of angle

√
p21 + p22 + p23 in R3(x, y, z) around the axis described by its position vector p. In these

coordinates, see the left drawing in Figure 2.6, the loop Bθ is given by

Bθ =


(0, 4πθ, 0) if 0 ≤ θ ≤ 1

4 ,

(0,−2π + 4πθ, 0) if 1
4 ≤ θ ≤ 3

4 ,

(0,−4π + 4πθ, 0) if 3
4 ≤ θ ≤ 1.

Define the disk {B̃r,θ} as the intersection of the plane {z = 0} with the π–radius ball. It produces

an RP2 = RP3⋂{z = 0} ⊆ RP3. We have B̂ = {Bθ : θ ∈ S1} ⊆ RP2. We obtain RP2 \ B̂ is an
embedded 2-disk. See Figure 2.6.

We have that γ′(0) = 2πp∂y + 6πq∂z. Substituting in equation (2.3) for t = 0, we get

F̃ θ
s (0) =

{
B̃2s,θ(2πp∂y + 6πq∂z) if 0 ≤ s ≤ 1

2 ,

F θ
2s−1 = (2s− 1)∂y + (2− 2s)Bθ(2πp∂y + 6πq∂z) if 1

2 ≤ s ≤ 1.

Moreover, the maps, u ∈ [0, 1],

G(s, θ, u) =

{
B̃2s,θ((1− u)(2πp∂y + 6πq∂z) + u∂z) if 0 ≤ s ≤ 1

2 ,

F θ
2s−1 = (2s− 1)∂y + (2− 2s)Bθ((1− u)(2πp∂y + 6πq∂z) + u∂z) if 1

2 ≤ s ≤ 1

are always non zero. Thus, the map F̃ θ
s (0) = G(s, θ, 0) is homotopic to



G(s, θ) = G(s, θ, 1) =

{
B̃2s,θ(∂z) if 0 ≤ s ≤ 1

2 ,

(2s− 1)∂y + (2− 2s)Bθ(∂z) if 1
2 ≤ s ≤ 1.

In order to compute the degree of G(s, θ), we write
G(s, θ) = (gx(s, θ), gy(s, θ), gz(s, θ)) ∈ S2(∂x, ∂y, ∂z) and we check that #G−1(−∂y) = 1:

� If 1
2 ≤ s ≤ 1 then G(s, θ) is a linear combination with positive coefficients between ∂y and

Bθ(∂z) ∈ S1(∂x, ∂z) ⊆ S2(∂x, ∂y, ∂z) thus gy(s, θ) ≥ 0.

� If 0 ≤ s ≤ 1
2 then G(s, θ) is just a rotation around an axis in the XY –plane acting over ∂z.

The rotation of angle π
2 around the X–axis is the unique rotation that sends ∂z to −∂y. Thus,

G−1(−∂y) = {(s0, θ0)} where (s0, θ0) is the only point that satisfies that B̃2s0,θ0 is the mentioned
rotation.

The map G is a local diffeomorphism in a neighborhood of the point (s0, θ0). Thus, −∂y is a
regular value for G and |deg(F̃ θ

s (0))| = | deg(G(s, θ))| = 1 ̸= 0.

x
y

Figure 2.6: Explicit construction of the capping disk.





Chapter 3

Connected sum of parametric families of Legendrian

embeddings.

3.1 Topological relations between π1(Leg(R3, ξstd)) and π1(Leg(S3, ξstd)).

Let (R3, ξstd = Ker(dz − ydx)) be the standard contact structure on R3(x, y, z) and (S3, ξstd =
i
2

∑
(zjdz̄j − z̄jdzj) be the standard contact structure on S3 ⊆ C2(z1, z2). Throughout the section

(M, ξstd) denotes (R3, ξstd) or (S3, ξstd) unless other thing is said.

On (R3, ξstd) fix the framings ξstd = ⟨∂x+y∂z, ∂y⟩ and TR3 = ⟨∂x+y∂z, ∂y, ∂z⟩; and on (S3, ξstd),
with quaternionic notation, the framings ξstd,p = ⟨jp, kp⟩ and TpS3 = ⟨ip, jp, kp⟩. The choice of
framings is unique up to homotopy. From now on we understand Fs : S1 → S2 and F1 : S1 → S1 =
S2 ∩ ξstd; i.e. we mean that after trivialising the tangent bundle TM = TR3 for M = R3,S3 we
consider norm-1 vectors. Denote by LX the free loop space of a connected manifold X, then for any
formal Legendrian embedding (γ, Fs) we have that F1 ∈ LS1 and Fs defines a path in LS2 between
γ′ and F1. The evaluation map LX → X defines a fibration with fiber Ωp(X). This fibration has
a section which assigns to each point in X the constant loop based a that point. Moreover, if X
is a Lie group then LX ∼= X × ΩId(X). Denote by FLeg(M, ξstd) the space of formal Legendrian
embeddings in (M, ξstd). The aim is to understand the map induced in homotopy by the natural
inclusion

j : Leg(M, ξstd) ↪→ FLeg(M, ξstd)
γ 7−→ (γ, Fs ≡ γ′).

(3.1)

In this thesis we are interested in studying the homomorphism π1(j).

In this subsection we study the topological relations between the fundamental groups of the
spaces Leg(R3, ξstd) and Leg(S3, ξstd).

Denote by Legp,v(M, ξstd), p ∈ M and v ∈ S(ξstd)p, where S(ξstd) denotes the sphere bundle of
ξstd; i. e. Legp,v(M, ξstd) is the subspace of Legendrian embeddings γ such that γ(0) = p and γ′(0) =
v. Analogously, define the space FLegp,v(M, ξstd) as the space of formal Legendrian embeddings
(γ, Fs) such that γ(0) = p and F1(0) = v. Consider the auxiliary space

S tereoLegN,jN = {(γ, p) : p /∈ γ(S1)} ⊆ LegN,jN (S3, ξstd)× (S3\{N}).

Recall that the standard contact structure over S3 is defined as the complex tangencies of TS3,
thus we have a natural inclusion

iS3 : U(2) ↪→ Cont(S3, ξstd). (3.2)

This inclusion has a left inverse given by

Cont(S3, ξstd) −→ U(2)
φ 7→ Aφ,

(3.3)
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where Aφ = (φ(N), 1
||dφN (jN)||dφN (jN)). Thus, it defines an homotopy injection.

Observe that the inclusion Leg0,(∂x)0(R
3, ξstd) ↪→ S tereoLegN,jN induces a weak homotopy

equivalence.

There is a natural map Leg(S3, ξstd) → U(2), γ 7→ Aγ = (γ(0), γ′(0)). This is a homotopy
equivalence:

Φ : Leg(S3, ξstd) −→ U(2)× LegN,jN (S3, ξstd)
γ 7→ (Aγ , A

−1
γ γ),

(3.4)

This homotopy equivalence was observed by E. Fernández (this is explained in detail in ([46])). On
the other hand there is a Serre fibration

S3\K �
�

// S tereoLegN,jN

��

LegN,jN (S3, ξstd),

where K = γ(S1) is the embedded Legendrian associated to a base point γ ∈ LegN,jN (S3, ξstd).
Notice that given any compact family γz ∈ LegN,jN (S3, ξstd) there is a way to lift it to a family
(γz, pz) ∈ S tereoLegN,jN taking pz to be the image under the Reeb flow of γz(0) at time t = ε > 0
for some small enough ε > 0. Moreover, it is a consequence of the Sphere Theorem that the
complement of a knot is aspherical (see [66, Corollary 3.9]). We conclude that

Lemma 3.1.1 The inclusion Leg0,(∂x)0(R
3, ξstd) ↪→ LegN,jN (S3, ξstd) induces a right split1 exact

sequence
0 → π1(S3\K) → π1(Leg0,(∂x)0(R

3, ξstd)) → π1(LegN,jN (S3, ξstd)) → 0.

From the discussion above, for general Legendrian embeddings we conclude the following

Corollary 3.1.2 There is a right split exact sequence

0 → π1(S3\K) → π1(Leg(R3, ξstd)) → π1(Leg(S3, ξstd)) → 0.

It is interesting to relate the difference between the fundamental groups of the space of
Legendrians in R3 and S3 with the difference between the fundamental groups of their smooth
counterparts. To do this it is enough to redo the previous argument working with the space

S tereo = {(γ, q) : q /∈ γ(S1)} ⊆ Emb(S1, S3)× S3,

in the smooth case, and the space S tereoLeg = S tereo ∩ (Leg(S3, ξstd)) × S3) in the Legendrian
case. It follows that there is a commutative diagram

0 // π1(S3\K) //

��

π1(Leg(R3, ξstd)) //

��

π1(Leg(S3, ξstd))

��

// 0

0 // π1(S3\K)/π2(Emb(S1,S3)) // π1(Emb(S1,R3)) // π1(Emb(S1, S3)) // 0

where the horizontal lines are exact sequences. Note that the quotient by the π2(Emb(S1, S3)) factor
comes from the boundary map coming from the exact sequence of the corresponding fibration.

1 Since we are not working with abelian groups this does not imply that the sequence splits in general.



Remark 3.1.3 Observe that in general we cannot assume that
π1(S3\K)/π2(Emb(S1, S3)) = π1(S3\K). For example, consider the path component of the smooth
unknot in S3. In this case we have that the knot complement is diffeomorphic to a solid torus and,
moreover, the generator of π2(Emb(S1, S3)) ∼= Z can be regarded as the S2–family of oriented lines
passing through 0 ∈ R3 ⊆ S3. Finding a S2–family of points in the complement of each line is
equivalent to finding a vector field tangent to S2 without zeros which is not possible by the
Poincaré–Hopf Theorem. In fact, any generic vector field tangent to S2 has χ(S2) = 2 zeroes.
Thus, the homomorphism

π2(Emb(S1, S2)) ∼= Z → π1(S3\K) ∼= Z

is just multiplication by 2. This fits with the fact that the space of parametrized unknots in R3 is
homotopy equivalent to SO(3) and in S3 to V4,2 (see [63]).

If π2(Emb(S1,S3)) is zero, e.g. for torus knots, we obtain

Corollary 3.1.4 Let γθ ∈ Leg(R3, ξstd) be a loop of Legendrian embeddings.

Assume that π2(Emb(S1, S3), γ0) = 0. If γθ is trivial as an element of π1(Leg(S3, ξstd)) and as
an element of π1(Emb(S1,R3)) then it is trivial as an element of π1(Leg(R3, ξstd)).

Remark 3.1.5 It follows from this corollary that those Kálmán’s examples which are non
contractible as loops of smooth embeddings in R3 (recall that this loops are non contractible as
loops of (formal) Legendrian embeddings in (R3, ξstd) [71, 44]) are, in fact, non contractible as
loops of Legendrian embeddings in (S3, ξstd).

3.1.1 The space of Darboux balls in a contact manifold.

Alexander’s trick allows to prove that the space Emb+(Dn,Rn) of orientation preserving embeddings
Dn → Rn linearise, i.e. it is homotopy equivalent to GL+(n,R). This, together with the Isotopy
Extension Theorem, implies that on a closed oriented n–manifold Nn the space Emb+(Dn, Nn) is
homotopy equivalent to the total space of the oriented frame bundle Fr+(N). Explicitly, there is a
map of fibrations

Emb+p (Dn, Nn) //

� _

��

GL+(n,R)
� _

��

Emb+(Dn, Nn) //

ev0
��

Fr+(Nn)

��

Nn Id // Nn

.

Where the maps between the fibers and between the bases are homotopy equivalences. Thus, the
natural map Emb+(Dn, Nn) → Fr+(Nn) is a homotopy equivalence.

In the contact category there is also an Alexander trick. Indeed, in (R2n+1, ξstd = Ker(dz −∑
i yidxi)) the dilation

δt : R2n+1 → R2n+1, (x,y, z) 7→ (tx, ty, t2z);

is a contactomorphism for any t > 0. This implies that the space CEmb((D2n+1, ξstd), (R2n+1, ξstd))
of co–oriented embeddings (preserving the contact structure with co-orientation) of Darboux balls



(D2n+1, ξstd) into (R2n+1, ξstd) is homotopy equivalent to the space of contact framings, i.e. to U(n).
We refer the reader to [53, Section 2.6.2] for further details. In particular, the Isotopy Extension
Theorems in Contact Topology implies, in the same way as in the smooth case, that

Lemma 3.1.6 Let (N, ξ) be a closed co–oriented (2n+ 1)–contact manifold.
The space CEmb((D2n+1, ξstd), (N, ξ)) is homotopy equivalent to the total space of the bundle of
contact framings CFr(N, ξ) over (N, ξ), which has fiber U(n); i.e. a Darboux ball is determined by
the centre of the ball and the induced framing of ξ at that point.

In particular, for (S3, ξstd) the space of parametrized Darboux balls is homotopy equivalent to
S3 ×U(1).

3.2 Connected sum at the π0–level.

We follow Etnyre and Honda [43] to define the connected sum of a pair of Legendrian embeddings
in (S3, ξstd). Let us explain first the smooth case. Consider two smooth embeddings
γ1, γ2 ∈ Emb(S1,S3) and complete γ′1(0) and γ′2(0) to oriented framings ⟨γ′1(0), f21 , f31 ⟩ and
⟨γ′2(0), f22 , f32 ⟩ of Tγ1(0)S3 and Tγ2(0)S3, respectively. This determines two orientation preserving
embeddings Fγj : D3

ε(x, y, z) → S3, j ∈ {1, 2}; such that

� Fγj (x, 0, 0) = γj(x), (x, 0, 0) ∈ D3
ε, and

� Fγj (D3
ε) ∩ γj(S1) = {Fγj (x, 0, 0) : (x, 0, 0) ∈ D3

ε} = γj(−ε, ε)

for ε > 0 small enough. Perform the ambient connected sum S3#S3 along these disks by using
an orientation reversing diffeomorphism to glue the boundaries of the disks that takes Fγ1(∂D3

ε) ∩
γ1(−ε, ε) to Fγ2(∂D3

ε)∩γ2(−ε, ε) coherently with the orientations of the embeddings, i.e. the image
of γ1(±ε) is γ2(∓ε). Notice that the framings ⟨f2j , f3j ⟩ naturally extends to a trivialization of the

normal bundle of γj|(−ε,ε), j ∈ {1, 2}. Moreover, the image of the framing ⟨f21 , f31 ⟩ can be assumed
to be ⟨f22 ,−f32 ⟩. Clearly, the two embeddings γ1|S1\(−ε,ε) and γ2|S1\(−ε,ε) produce an embedding
γ1#γ2 : S1 → S3 = S3#S3. We define the connected sum of γ1 and γ2 as the embedding γ1#γ2.

In the Legendrian setting the construction is similar. Consider two Legendrian embeddings
γ1, γ2 ∈ Leg(S3, ξstd). There is a canonical framing of γ∗j ξstd, j ∈ {1, 2}, associated to the
Legendrian condition, namely ⟨γ′j , iγ′j⟩ (the j here is just a subindex, it does not stand for

quaternion j) . This framing together with iγj defines a trivialization of γ∗j TS3. In particular,

there is a natural contact framing over Tγj(0)S
3 which defines a co–oriented contact embedding of

a Darboux ball Fγj : (D3
ε(x, y, z), ξstd) → (S3, ξstd), j ∈ {1, 2}, such that

� Fγj (x, 0, 0) = γj(x), (x, 0, 0) ∈ D3
ε, and

� Fγj (D3
ε) ∩ γj(S1) = {Fγj (x, 0, 0) : (x, 0, 0) ∈ D3

ε} = γj(−ε, ε)

for some ε > 0 small enough. Perform the contact connected sum along these Darboux balls by
using an orientation reversing diffeomorphism of ∂D3

ε taking the characteristic foliation to itself
to obtain the connected sum Legendrian embedding γ1#γ2 on the contact manifold (S3, ξstd) ∼=
(S3, ξstd)#γ1,γ2(S3, ξstd). Equivalently, the connected sum can be defined by working with long
Legendrian embeddings, denote by N ∈ S3 the north pole of the sphere, by a contact isotopy we
may assume that the intersection of γ1 with the north hemisphere coincides with the Legendrian
great circle ⟨N, jN⟩2, i.e. with the Legendrian embedding γN,jN (t) = (cos t, sin t) ∈ S3 ⊆ C2, and

2 We use quaternionic notation. Recall that ξstd,p = ⟨jp, kp⟩.



that the intersection of γ2 with the south hemisphere also coincides with ⟨N, jN⟩. It is clear that
in this case we can glue both embeddings together to obtain the connected sum γ1#γ2. This point
of view also works in the smooth case.

3.3 Connected sum at the π1–level.

Let us explain first the smooth case. Consider two loops (γθj , F
θ
j ), θ ∈ S1 and j ∈ {1, 2}; where

� γθj ∈ Emb(S1, S3),

� F θ
j = ⟨(γθj )′(0), f

θ,2
j , fθ,3j ⟩ is a framing of Tγθ

j (0)
S3.

Let us define the connected sum loop of γθ1 and γθ2 with framings F θ
1 and F θ

2 , denoted by
γθ1#F θ

1 ,F
θ
2
γθ2 , which depends on the choice of framings.

Associated with each loop we have a framed embedding, namely a pair of sj : S1 → S3 ×
S1, θ 7→ (γθj (0), θ), j ∈ {1, 2} and the framing F θ

j of the normal bundle of sj . Use this framed

embeddings to glue two copies of S3×S1 and obtain a 4–manifold S = S3×S1#s1,s2S3×S1, i.e. S is
obtained by performing at each slice S3×{θ} the connected sum in the π0–sense of the embeddings
γθ1 and γθ2 . In particular, there is an S3–bundle p : S → S1, where the fiber over θ ∈ S1 is S3θ
together with the connected sum embedding γθ1#γ

θ
2 . In order to obtain a loop of embeddings in

S3 we need to trivialize this bundle. Note that this can always be done because π0(Diff+(S3)) = 0
but not in a canonical way since π1(Diff+(S3)) ∼= Z2. However, there is a choice of framings for
which a choice of trivialization can be made and we will restrict ourselves to the case where the
loops of framings given by (γθj (0), F

θ
j ) are contractible (recall from the discussion in 3.1.1 that

π1(Fr
+(S3)) ∼= π1(Emb+(D3, S3)) ∼= π1(SO(3)) = Z2) and we are asking here that our loops are

the trivial element in this Z2. Therefore, we can understand the 4–manifold S as the boundary of
an S3–bundle over D2 and, in particular, there is a unique trivialization (up to homotopy) of the
bundle S that extends over the disk. More precisely, if the loop (γθj (0), F

θ
j ), j ∈ {1, 2}, is trivial

we can find, for each j ∈ {1, 2}, a disk (pr,θj , F̂ r,θ
j ) ∈ Fr+(S3) such that (p1,θj , F̂ 1,θ) = (γθj (0), F

θ
j ).

By using these framings we can construct the desired S3–bundle over D2 just by performing the
D2–family of connected sums determined by them. This process is unique up to homotopy because
π2(Fr

+(S3)) ∼= π2(Emb+(D3, S3)) ∼= π2(S3)⊕ π2(SO(3)) = 0.

In conclusion, the connected sum of loops is canonically defined whenever we use trivial loops of
framings. In this case the homotopy class of the loop γθ1#F θ

1 ,F
θ
2
γθ2 only depends on the homotopy

class of (γθj , F
θ
j ), j ∈ {1, 2}. This is the content of the next

Lemma 3.3.1 Let (γθj , F
θ
j ), (γ̂

θ
j , F̂

θ
j ), j ∈ {1, 2}, be any pair of loops of smooth embeddings equipped

with a trivial loop of framings at the base points. Assume that (γθj , F
θ
j ) is homotopic to (γ̂θj , F̂

θ
j ),

j ∈ {1, 2}, then, the loop γθ1#F θ
1 ,F

θ
2
γθ2 is homotopic to γ̂θ1#F̂ θ

1 ,F̂
θ
2
γ̂θ2

Proof. Let (γθ,s1 , F θ,s
1 ), s ∈ [0, 1], be any homotopy between (γθ,01 , F θ,0

1 ) = (γθ1 , F
θ
1 ) and (γθ,11 , F θ,1

1 ) =

(γ̂θ1 , F̂
θ
1 ). It is enough to check that γθ,01 #

F θ,0
1 ,F θ

2
γθ2 is homotopic to γθ,11 #

F θ,1
1 ,F θ

2
γθ2 . Perform the

connected sum of the loops (γθ,s1 , F θ,s
1 ) and (γθ2 , F

θ
2 ), s ∈ [0, 1], to built and S3–bundleX → S1×[0, 1]

over the cylinder S1× [0, 1]. Since the loops of framings (γθ,01 (0), F θ,0
1 ) and (γθ,11 (0), F θ,1

1 ) are trivial
we can extend this bundle to a S3–bundle X̂ → S2. Now the statement follows from the fact that
π2(Emb+(D3,S3)) = 0 and thus the bundle X̂ is the boundary of an S3–bundle over the 3–disk D3

and hence canonically trivializable. □



Consider now two loops of Legendrian embeddings γθ1 , γ
θ
2 ∈ Leg(S3, ξstd), θ ∈ S1. Recall that a

Legendrian embedding γ is naturally a framed embedding by means of the framing Fγ = ⟨γ′, iγ′, iγ⟩.
Thus, the choice of framings is canonical and we can denote the connected loop as γθ1#γ

θ
2 . The

construction is analogous to the smooth case. Use the natural contact framings to build a contact
fiber bundle p : S → S1 with fiber p−1(θ) = (S3θ, ξθ, γθ1#γθ2) = (S3, ξstd)#γθ

1 ,γ
θ
2
(S3, ξstd). As in the

smooth case we want to identify, in a canonical way, all the fibers with the standard contact structure
over the 3–sphere. The bundle can be trivialized because π0(Cont(S3, ξstd)) = π0(U(2)) = 0 but
the trivialization is not unique: π1(Cont(S3, ξstd)) = π1(U(2)) ∼= Z. As in the smooth case we
restrict ourselves to the case when the contact framings associated to the loops are trivial. In this
case we can understand the contact fiber bundle p : S → S1 as the boundary of a contact bundle
over D2 and, thus, trivialize it in a unique way. Moreover, the procedure is canonical because
π2(CEmb((D3, ξstd), (S3, ξstd))) = π2(S3)⊕ π2(U(1)) = 0.

Let us explain geometrically under which conditions the loop of contact framings associated with
a loop of Legendrian embeddings is trivial. Consider the natural map

F : Leg(S3, ξstd) −→ CFr(S3, ξstd)
γ 7→ F (γ) = ⟨γ′(0), iγ′(0), iγ(0)⟩. (3.5)

Recall that the space of Darboux balls in (S3, ξstd) is homotopy equivalent to S3 ×U(1) and the
homotopy equivalence is given by associating to each contact framing ⟨e1, e2, e3⟩ over a point p in
S3 the pair (p, e1) ∈ S3 ×U(1) (see Lemma 3.1.6). The induced map at π1–level is given by

π1(F ) : π1(Leg(S3, ξstd)) −→ π1(CFr(S3, ξstd)) ∼= Z
γθ 7→ Rotπ1(γ

θ).
(3.6)

Lemma 3.3.2 Let γθj ∈ Leg(S3, ξstd), j ∈ {1, 2}, be any loop of Legendrian embeddings with

rotation number zero. Then, the Legendrian connected sum loop, denoted by γθ1#γ
θ
2 , is a

well–defined loop of Legendrian embeddings in (S3, ξstd). Moreover, if γ̂θj , j ∈ {1, 2}, is homotopic

to γθj then γ̂θ1#γ̂
θ
2 is homotopic to γθ1#γ

θ
2 .

Proof. The existence part has been proven in the discussion above. The statement about the
homotopy invariance follows in the same way as in the smooth case (Lemma 3.3.1) because
π2(CEmb((D3, ξstd), (S3, ξstd))) = 0.

Remark 3.3.3 The discussion above (the smooth and Legendrian cases) can be generalized for
multi–parametric families and for higher dimensional spheres.

Let us explain this operation from the point of view of long Legendrian embeddings. In order to
do this consider the homotopy equivalence

Φ : Leg(S3, ξstd) −→ U(2)× LegN,jN (S3, ξstd)
γ 7→ (Aγ , A

−1
γ γ),

The rotation number of a loop γθ is just the homotopy class of Aγθ ∈ π1(U(2)) ∼= Z. I.e. Lemma 3.3.2
just says that the connected sum operation for loops is well–defined for loops of long Legendrian
embeddings. In fact, to perform the connected sum of two loops γθ1 and γθ2 of long Legendrian
embedddings we can proceed as follows: let S3N = {(z1, z2) = (x1 + iy1, x2 + iy2) ∈ S3 : x1 ≥ 0}
be the north hemisphere of S3 and S3S the south hemisphere, by using a contact isotopy we may
assume that:

� γθ1(t) = (cos t, sin t) for t ∈ [−π
2 ,

π
2 ] ⊆ S1,

� γθ2(t) = (− cos t,− sin t) for t ∈ [−π
2 ,

π
2 ] ⊆ S1,



� γθ1(
π
2 ,

3π
2 ) ∩ S3N = ∅,

� γθ2(
π
2 ,

3π
2 ) ∩ S3S = ∅.

Since (γθ1(±π
2 ), (γ

θ
1)

′(±π
2 )) = (γθ2(∓π

2 ), (γ
θ
2)

′(∓π
2 )) this two loops can be glued to produce the loop

of Legendrian embeddings

γθ1#̂γ
θ
2(t) =

{
γθ1(t+

π
2 ) if 0 ≤ t ≤ π,

γθ2(t− π
2 ) if π ≤ t ≤ 2π.

(3.7)

This definition of connected sum (in the rotation zero case) is the same, up to homotopy, to the
previous one. Therefore, from now on we denote this operation also with the symbol # instead of
#̂.

The aforementioned homotopy equivalence allows us to define the connected sum of loops of
Lengendrians with any rotation number:

Definition 3.3.4 Let γθj ∈ Leg(S3, ξstd), j ∈ {1, 2}, be any loop of Legendrian embeddings. The

connected sum loop of γθ1 and γθ2 is the loop

γθ1#̃γ
θ
2 = Aγθ

1
Aγθ

2
((Aγθ

1
)−1γθj#(Aγθ

2
)−1γθj ).

Remark 3.3.5 It follows from Lemma 3.3.2 that in the case of rotation number zero the loops
γθ1#γ

θ
2 and γθ1#̃γ

θ
2 are homotopic. Thus, we will denote both of them by γθ1#γ

θ
2 .

From this point of view we can check the commutativity, up to homotopy, of the connected sum
for loops of Legendrian embeddings:

Lemma 3.3.6 Let γθj ∈ Leg(S3, ξstd), j ∈ {1, 2}, be any loop of Legendrian embeddings. The loops

γθ1#γ
θ
2 and γθ2#γ

θ
1 are homotopic.

Proof. It is enough to check the statement in the case that Rotπ1(γ
θ
1) = Rotπ1(γ

θ
2) = 0. Consider

contact isotopy given by the matrices As =

(
cosπs − sinπs
sinπs cosπs

)
∈ U(2), s ∈ [0, 1]. Clearly, the loop

A1(γ
θ
1#γ

θ
2) is homotopic to the loop γθ2#γ

θ
1 , see Equation (3.7).

3.3.1 Connected sum of loops of Legendrian embeddings in (R3, ξstd)

Let us recall the connected sum operation at π0–level explained in [43]. Let γ1 and γ2 be two
Legendrian embeddings in (R3, ξstd) ⊆ (S3, ξstd). Perform the connected sum of both as
Legendrian embeddings in the 3–sphere. To obtain a Legendrian embedding in (R3, ξstd) we just
need to eliminate a point ∞ ∈ S3\γ1#γ2(S1). Since the complement of a knot in S3 is
path–connected the construction is independent, up to Legendrian isotopy, of the choice of
infinity point in the 3–sphere.

Consider now two loops, γθ1 and γθ2 , of Legendrian embeddings in (R3, ξstd). Understand both
loops as Legendrian embeddings in (S3, ξstd) and perform their connected sum to obtain a loop
γθ1#γ

θ
2 of Legendrians in the 3–sphere. To go back to (R3, ξstd) we need to choose a loop pθ ∈ S3

of points in the complement of each embedding to eliminate. In other words, we need to choose a
section of the fiber bundle {(p, θ) ∈ S3 × S1 : p ∈ S3\γθ1#γθ2(S1)} → S1, (p, θ) 7→ θ. This choice is
not unique: the obstruction to homotope two sections is measured by the knot group of γ01#γ

0
2(S1)

(see Corollary 3.1.2).



Figure 3.1: Connected sum at the π0–level for two legendrian trefoils in S3. Note that by eliminating
a point p = ∞ ∈ S3 which does not belong to any of the knots we can regard the constructions,
via the stereographic projection, as a connected sum of knots in R3. This is depicted in the second
row, where suitable projections have been taken.

We denote the connected sum loop associated to the choice pθ by γθ1#pθγ
θ
2 ∈ Leg(R3, ξstd).

A geometric representation of the π1−connected sum: the fly and the elephant.

For smooth embedding spaces satisfying π2(Emb(S1,R3)) = 0, we provide a geometric
representation of π1-connected sums of loops which are smoothly trivial as loops in R3 (and thus
in S3). Note that, since π2(Emb(S1, S3)) = 0, then the obstruction to homotoping two sections of
the fiber bundle

{(p, θ) ∈ S3 × S1 : p ∈ S3\γθ1#γθ2(S1)} → S1, (p, θ) 7→ θ

is measured by π1(S3\K)/π2(Emb(S1, S3)) = π1(S3\K).

Consider two Legendrian embeddings γ1, γ2 ∈ Leg(R3) and two smoothly trivial loops of
legendrians γθ1 , γ

θ
2 ∈ π1(Leg(R3)) based on them, respectively, with rotation number

Rotπ1(γ
θ
1) = Rotπ1(γ

θ
2) = 0. We then produce a loop of legendrians in the connected component of

γ1#γ2 described by the following construction (which we call the fly and the elephant
construction). Note that, as explained above, we will think the construction in S3 (where the
connected-sum operation is defined) and we will come back to R3 afterwards.

Step 1

For small enough ε > 0, consider the small arcs γ1(−ε, ε) and γ2(−ε, ε) and perform the
π0−connected sum γ1#γ2 of both Legendrian embeddings.

Step 2

Shrink the component of γ2 in this connected sum embedding until it becomes arbitrarily small.
This can be schematically understood as in Figure 3.7, where we have the connected sum of a
Legendrian trefoil with a Legendrian p, q-torus knot (the latter can be understood as a shrunk
embedding and thus represented as a small box).

Now regard the embedding γ1#γ2 (where the component of γ2 has been shrunk) as γ1 with a tiny
box (encoding the topology of γ2) attached to it (more precisely, taking the place of the segment
γ1(−ε, ε)). Perform now the loop γθ1 to this connected sum (where the box just moves rigidly with
the embedding). Note that since Rotπ1(γ

θ
1) = 0, this box can be thought (precomposing with a



loop of matrices in U(1)) as constant (not moving) all along the loop at the homotopy level. See
Figure 3.9 for visualizing Step 2 with a particular example.

Step 3.

Once the loop in Step 2 has been performed and, thus, the embedding γ1#γ2 is in its original
position (at θ = 0), we enlarge the component of γ2 until it reaches its original size. We now shrink
the component of γ1 in the embedding and perform the analogous construction from Step 2 but
replacing the roles of the γ1- and γ2-components. In other words, we perform now the loop γθ2 to this
connected sum (where the box encoding the topology of γ1 just moves rigidly with the embedding).
Finally, we enlarge γ2 until it reaches its original size. This completes the construction.

Remark 3.3.7 The terminology fly and elephant construction has been chosen since when each
component in the connected sum has been shrunk and moves rigidly along the loop performed by
the other component, this resembles a fly posed in a big moving elephant.

Note that this construction is a representation of the π1−connected sum for two loops of
Legendrians in S3 where the loop of points pθ in the complement of each embedding is constant.
By means of the following diagram

0 // π1(S3\K) //

��

π1(Leg(R3, ξstd)) //

��

π1(Leg(S3, ξstd))

��

// 0

0 // π1(S3\K)/π2(Emb(S1, S3)) // π1(Emb(S1,R3)) // π1(Emb(S1, S3)) // 0

this is the case since both loops are smoothly trivial in R3 and S3. We conclude that the obstruction
(in π1(Emb(S1,R3))) to going back to R3 is zero.

3.4 Invariants for one-parameter families of Legendrians.

3.4.1 Chekanov–Eliashberg Differential Graded Algebra

The presentation in this Subsection is based on [71], from where we learnt about invariants for
one-parameter families of Legendrians.

Y. Chekanov proved [26] that the homology H(K) associated to a generic Legendrian knot

K ∈ L̂eg(R3, ξstd) is invariant under Legendrian isotopies. We first introduce the differential graded
algebra (DGA) associated to a Legendrian knot. For our purposes it suffices to work with Z2–
graduated algebra.

Fix an oriented Legendrian K. For simplicity we assume that Rot(K) = 0 which is the case
discussed in this chapter, which is assumed as an hypothesis in the rest of the Section, unless
otherwise stated. We define its associated DGA AK over Z2 as the algebra whose generators are
the crossings C = {c1, · · · , ck} of its Lagrangian projection KL. Let us define the grading. Following
[71], we say that the capping path of a crossing c ∈ KL is the (oriented) path in KL starting at the
undercrossing and whose endpoint is the uppercrossing of c. Moreover, assume that all the crossings
take place at right angles (in the Lagrangian projection) and, therefore, the rotation number of the
capping path rc takes values (2k + 1)/4, k ∈ Z. Define the grading of c as

|c| = −2rc −
1

2
∈ Z



and extend it in the usual way to the whole algebra AK . Observe that the condition on the rotation
number of the Legendrian implies that the grading is independent of the choice of orientation and
therefore it is well defined. Define the Reeb sign associated to a quadrant at a crossing by the
following convention: fix the ordered basis given by the tangent vector of the Legendrian at the
upper crossing and the tangent vector at the under crossing. We say that the Reeb sign is positive
if the orientation of this basis coincides with the standard one in R2 and it is negative otherwise.

Fix crossings p, c1, · · · , cn; denote by P(p; c1, · · · , cn) the set of (non parametrized) (n + 1)–
polygons P in R2 satisfying the following properties:

(i) P is immersed everywhere except at the ordered set of points Q = {p, c1, · · · , cn}.

(ii) ∂P ⊂ KL.

(iii)The non immersed curve ∂P fails to be immersed at the sequential set of points Q. Moreover,
it follows a positive (resp. negative) quadrant for p (resp. for cj).

Do note that cj and cj′ , for j ̸= j′, may be the same crossing. Moreover, observe that we consider
polygons, instead of their boundaries because of two facts. First, we want to avoid two different
smooth branches of the curve ∂P that go through a crossing without turning. Second, we want
make sure that ∞ ∈ S2 ≃ R2 ∪ {∞} ⊇ R2 is not contained in P .

Now, define the differential of a crossing p via the formula:

∂(p) =
∑

n∈N,(p,c1,··· ,cn)∈Cn

#P(p; c1, · · · , cn)c1 · · · cn

and extend it to the rest of the words by the (graded) Leibniz rule.

Figure 3.2: Example of a Legendrian connected sum of two trefoil knots with the described choice of
signs for the crossings. In yellow, an example of one of the polygons contributing to the differential
of the uppermost crossing in the diagram.

Remark 3.4.1 Define the height of a crossing c, which is a strict positive number h(c) > 0 to be
the difference of the z coordinates of the two points on c when lifting the Lagrangian projection to
R3, ie the length of the Reeb chord joining them.

If P ∈ P(p; c1, · · · , cn), fix a parametrization of P namely P̃ : D2 → R2, then by Stokes’ Theorem,

h(p)−
n∑

i=1

h(ci) =

∫
D2

P̃ ∗(dx ∧ dy) > 0.

This formula does not depend on the parametrization.



Observe that whenever we fix a crossing p all the words in ∂(p) are made of crossings with strictly
smaller height than p.

Remark 3.4.2 The differential ∂ is well defined since this sum has a finite number of
non–vanishing elements, because of the previous property. Moreover, it has degree −1 and its
square is zero. The algebra AK equipped with the boundary operator ∂ is known as
Chekanov–Eliashberg DGA of the Legendrian knot K. This DGA gives rise to the
Chekanov-Eliashberg Legendrian Contact homology H∗(K) = Ker(δ)/ Im(δ) of a Legendrian K
which depends just on the (Legendrian) isotopy class of the Legendrian [26].

Let Kt, t ∈ [0, 1] be a generic path of Legendrians and consider the Lagrangian projection of
the path πL (Kt),t ∈ [0, 1]. Then, four essentially different Legendrian Reidemeister moves (R− II,
R− II−1, R− IIIa, R− IIIb) take place in this projection at finitely many times {t0, · · · , tk} (see
Figure 3.3), and no other bifurcation takes place for different values of the parameter t.

Denote by (AK , ∂) the differential algebra associated to the Legendrian before one of the
Reidemeister moves takes place and by (A′

K , ∂
′) the one associated to the embedding just after

such a Reidemeister move. Then, the diagram is only locally affected where the Reidemeister
move has taken place and, therefore, there is an obvious mapping p 7→ p′ for all generators p ∈ A
of the algebra not affected by the move. For the ones affected by the Reidemeister move we have
to name the old and the new corners in order to setup a correspondence in each of the eight
Reidemeister moves. There are four (see Figure 3.3).

The notation is as follows. In any of the four R − II moves the pair of points that appear in
the intersecting branches have opposite signs. So, we just label x to the positive one and y to the
other one. For the four R − III moves we denote by z the crossing that remains fixed under the
movement and by x and y the two crossings of the moving branch with respect to the branches
that define the corner z. Moreover, x is chosen to be the negative corner and y the positive one.

We will carefully discuss the holonomy associated to each of the four drawn Reidemeister moves.
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(a) R− II

x y
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(b) R− IIIa
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y' x'

(c) R− IIIb

Figure 3.3: Possible different Reidemeister moves taking place in the Lagrangian projection of a
generic path of Legendrian embeddings.

Theorem 3.1 (Chekanov, [26]). Let Kt, t ∈ [0, 1] be a generic path of Legendrians. Denote by
{t0, · · · , tk} the times where some Legendrian Reidemeister move takes place in the Lagrangian
projection of the path. The following algebra homomorphisms, called holonomy maps, g : AKti−ε →
AKti+ε (described below for generators depending on the different Reidemeister move taking place
at ti) induce isomorphisms at the homology-level.

Name the generators of AK as follows ordered by their heights:

h(xq) ≥ h(xq−1) ≥ · · · ≥ h(x) > h(y) ≥ h(y1) ≥ h(y2) ≥ · · ·h(yℓ)

and let ∂(x) = y + w.



• R − II

The holonomy map for the R − II move maps trivially every yj; i.e. φ(y
′
j) = yj and is defined

recursively for the other generators x1, · · · , xq starting by defining it for x1. Without loss of
generality express ∂(x1) =

∑
Y1yY2y · · ·YmyX, where Y1, · · · , Ym ∈ T (y1, · · · , yℓ) are monomials

and where X ∈ T (x, y, y1, · · · , yℓ) is a monomial where every y is preceded by an x. Then, the
holonomy map acts on x′1 as follows:

φ(x′1) = x1 +
∑

Y1xY2yY3yY4y · · ·YmyX

+ Y1wY2xY3yY4y · · ·YmyX
+ Y1wY2wY3xY4y · · ·YmyX
+ Y1wY2wY3wY4x · · ·YmyX
+ · · ·
+ Y1wY2wY3wY4w · · ·YmxX

and the holonomy map acts recursively on each xj , j ≥ 1 as follows:

Write ∂(xj) =
∑
Y1yY2yY3yY4y · · ·YkyX, where Y1, · · ·Yk ∈ T (y1, · · · yℓ, x1, · · · , xj−1) and where

in the factor X every y is preceded by an x. Then,

φ(x′j) = xj +
∑

Z1xY2yY3yY4y · · ·YmyX

+ Z1wZ2xY3yY4y · · ·YmyX
+ Z1wZ2wZ3xY4y · · ·YmyX
+ Z1wZ2wZ3wZ4x · · ·YmyX
+ · · ·
+ Z1wZ2wZ3wZ4w · · ·YmxX

where each Zi is obtained from Yi just by substituting each x1, · · · , xj−1 by the corresponding
φ(x1), · · · , φ(xj−1) obtained in previous steps of the iterative proccess.

• R − II−1

x 7→ 0, y 7→ w′ and p 7→ p′ for any other p ∈ Ak.

• R − IIIa.

p 7→ p′ for any p ∈ Ak.

• R − IIIb.

x 7→ x′ + z′y′ and p 7→ p′ for any other generator p ∈ AK , where p corresponds to the same
crossing p after the move.

3.4.2 Invariants for one-parameter families of Legendrians.

Theorem 3.2 ([71]). Let K ∈ L̂eg(R3, ξstd) be a generic Legendrian, then the continuation map
on the Chekanov-Eliashberg Legendrian Homology (see Theorem 3.1) defines a multiplicative group
homomorphism

π1(L̂eg(R3, ξstd),K) → Aut(H∗(K)).

We call this homomorphism defined for loops of Legendrians the monodromy invariant of the loop.

The following proposition is useful in order to compute the monodromy of a loop in practice:



Proposition 3.4.3 ([71], Prop. 3.5.) Let p ∈ AK be a generator such that ∂(p) = 0, then the
holonomy φ : AK → A′

K corresponding to a R− II move acts as the identity on p; i.e. φ(p) = p′.

3.5 Legendrian (p, q)-tangles and associated words.

A diagrammatic realization of a (p, q)−torus knot in the Lagrangian projection consists on the
following construction. Take the usual Legendrian (p, q)−braid and close it by joining the i − th
strand at the left side of the braid with the i − th strand at the right side of the braid via a
closed unknotted curve with a kink (for every 1 ≤ i ≤ q). See Figure 3.4 (A). The enclosed 0−area
condition must be satisfied when performing this diagrammatic realization but for practical reasons
we will not take this into consideration in our Figures.

Definition 3.5.1 We define a Legendrian (p, q)−tangle as a tangle consisting on opening a
Legendrian (p, q)−torus knot at a point Q in the curve joining the points in the q−th position both
at left and right side of the Legendrian (p, q)−braid in the knot.

See Figure 3.4 for an example of a (4, 3)-torus knot (A) and its corresponding (4, 3)−tangle (B).

Remark 3.5.2 Any choice of point Q gives raise, up to Legendrian homotopy, to the same tangle
diagram and, therefore, we can speak about the (p, q)−tangle with no ambiguity. Observe that if you
do not assume that the point Q is in the top most strand in the Lagrangian diagram this is not true
by similar reasons to the ones explained in Subsection 3.3.1.

Q

(a) (4, 3)−torus knot and a choice of point Q in the curve
joining the points in the 3−th position both at left and right
side of the Legendrian (4, 3)−braid in the knot
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(b) (4, 3)−torus tangle.

Figure 3.4

Proposition 3.5.3 The Legendrian connected sum of a (p, q)−torus knot and a (p′, q′)−torus knot
admits the diagrammatic realization in the Lagrangian projection consisting on the concatenation
of the (p, q)−tangle and the (p′, q′)−tangle together with an unknotted curve with a kink joining
them (see third step of Figure 3.5).

Proof. The first arrow in Figure 3.5 corresponds to the canonical Legendrian connected sum of
the Legendrian (p, q)−torus knot and the Legendrian (p′, q′)−torus knot. From this diagrammatic
realization we can achieve the desired realization by performing the II−1-Reidemeister move
described by the second arrow. The area of the 2−gon in dark grey can be made smaller than the
sum of the areas of adjacent regions (in light grey) at its vertices (for example, by taking the
(p′, q′)−torus knot very small). Since this is the condition in order for this Reidemeister
II−1-move to be valid in the Legendrian category (see [71], Theorem 4.1), the result follows. □
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#

Figure 3.5: Legendrian canonical connected sum of a (p, q)-torus knot and a (p′, q′)−torus knot
followed by a legit Reidemeister II−1 move. The area of the involved 2−gon (in dark grey) can be
made smaller than the sum of the areas of adjacent regions (in light grey) at its vertices.

Given a (p, q)−tangle Tp,q with endpoints p0 and p1, consider the crossings b1, · · · , bn ∈ C, where
C denotes the set of crossings in the Legendrian (p, q)–braid inside the tangle, i.e. crossings of
degree 0 in the DGA. Denote by Ĉ the set of ordered subsets of C. For any {bj1 , . . . , bjm} ∈ Ĉ
denote by Mp,q(bj1 , · · · , bjm) the set of smooth curves γ : [0, 1] → R2 up to reparametrization
satisfying the following properties:

(i) γ(0) = p0 and γ(1) = p1.

(ii) γ is immersed everywhere except at the points γ(t1) = bj1 , · · · , γ(tm) = bjm ; 0 < t1 < · · · <
tm < 1.

(iii)γ([0, 1]) ⊂ Tp,q.

(iv)Near a point bj , j ∈ {j1, . . . , jn}, where the curve is not immersed the trace of the curve follows
a negative quadrant.

Definition 3.5.4 Define the word Wp,q associated to a (p, q)-tangle as the formal sum:

Wp,q =
∑

{bj1 ,...,bjm}∈Ĉ

#Mp,q(bj1 , . . . , bjm)bj1 · · · bjm
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p0 p1

Figure 3.6: b5 is one of the monomials in the word W4,3 associated to a (4, 3)-torus tangle; i.e.
W4,3 = b5 + · · · .

Let us elaborate a bit on the differential graded algebras of a particular kind of torus knots.
Consider the positive Legendrian torus knots Kn,2. T. Kálmán describes the differentials of the 0-
index generators bi (corresponding to the crossings in the braid from the diagrammatic realization
explained above).



Definition 3.5.5 The braid β corresponding to Kn,2 has an associated matrix called the path
matrix defined as:

Bβ :=

(
B1,1 B1,2

B2,1 B2,2

)
=

(
b1 1
1 0

)(
b2 1
1 0

)
· · ·
(
bn 1
1 0

)
Remark 3.5.6 In fact, Kálmán defines such a matrix for any braid but since we will focus on
(n, 2)-torus knots we will not introduce it in such generality.

Lemma 3.5.7 (Theorem 6.7 in [71]) For the legendrian torus knot Kn,2 with a1, a2 the index-1
generators and b1, · · · , bn index-0 generators, we have:

∂(bi) = 0, ∂(a1) = 1 +B1,1, ∂(a2) = 1 +B2,2 +B2,1B1,2

where Bi,j are the entries of the path matrix associated to Kn,2.

Example 3.5.8 (Example 3.3 in [72]) For the positive right-handed legendrian trefoil K2,3 we
have

Bβ =

(
b1 1
1 0

)(
b2 1
1 0

)(
b3 1
1 0

)
=

(
b1 + b3 + b1b2b3 1 + b1b2

1 + b2b3 b2

)
.

We obtain then that ∂(a1) = 1+ b1 + b3 + b1b2b3 and ∂(a2) = 1+ 1+ b2 + b2b3 + b1b2 + b2b3b1b2.

Definition 3.5.9 We call the length of a polynomial P , and we denote it by ℓ(P ), to the number
of words in P .

Lemma 3.5.10 Let Kn,2 be a torus knot with index−1 generators a1, a2 with a diagrammatic
representation as described in the beginning of Subsection 3.5. Then,

ℓ(B1,1) = Fn+1, ℓ(B1,2) = ℓ(B2,1) = Fn, ℓ(B2,2) = Fn−1,

where Fi denotes the i-th Fibonacci number.

Proof. The proof follows by induction.

� Base case: n=3. The claim is true for K2,3 (see example 3.5.8) since

ℓ(B1,1) = F4 = 3, ℓ(B1,2) = ℓ(B2,1) = F3 = 2, ℓ(B2,2) = F1 = 1.

� Inductive step: n=k+1. We assume the claim true for n = k and we will prove it for n = k+1.

Use the following notation:

B2,k
β =

(
B1,1 B1,2

B2,1 B2,2

)
, B2,k+1

β =

(
B̃1,1 B̃1,2

B̃2,1 B̃2,2

)
.

We then have

B2,k+1
β = B2,k

β ·
(
bk+1 1
1 0

)
=

(
B1,1 B1,2

B2,1 B2,2

)
·
(
bk+1 1
1 0

)
=

(
B1,1 · bk+1 +B1,2 B1,1

B2,1 · bk+1 +B2,2 B2,1

)
.

Therefore, it follows that

– ℓ(B̃1,1) = Fk+1 + Fk = Fk+2,



– ℓ(B̃1,2) = Fk+1,

– ℓ(B̃2,1) = Fk + Fk−1 = Fk+1,

– ℓ(B̃2,2) = Fk.

This proves the inductive step, thus yielding the claim.

We now introduce a class of knots that will play a central role along the chapter. These are the
so called even ∂-class.

Definition 3.5.11 We say that a Legendrian knot is of even ∂-class if it admits a diagrammatic
realization in the Lagrangian projection where the differential of every index-1 crossing ai is an
expression ∂(ai) containing an even number of words.

The following proposition shows that there are infinitely many Legendrian torus knots of even
∂-class and thus the study of this class of knots is meaningful.

Proposition 3.5.12 Legendrian positive (n, 2) torus knots are of even ∂-class if and only if n ̸≡ 1
mod 3.

Proof. By Lemma 3.5.7 and Lemma 3.5.10 we know that ℓ (∂(a1)) has the same parity as the
number A1 := Fn+1 − 1 while ℓ (∂(a2)) has the same parity as the number A2 := Fn−1 + F 2

n − 1.

The i-th Fibonacci number Fi is even if and only if i ≡ 0 mod 3. Therefore, if n ≡ 1 mod 3 or
n ≡ 2 mod 3, both A1 and A2 are even numbers, while if n ≡ 0 mod 3 then this is not the case,
thus yielding the claim.

3.6 New examples of loops with non-trivial monodromy.

Definition 3.6.1 Consider a certain knot diagram with set of crossings C. Then for any formal
expression

ϕ =
∑

k∈N,(b1,··· ,bk)∈Ck

λ(b1, · · · , bk)b1 · · · bk

Denote by maxbj (ϕ) the maximum number of bj letters appearing in a single word of the expression
ϕ (among all the words involved in ϕ).

Denote by hrbj (ϕ) the number of words in ϕ containing exactly r bj-letters. We define the function

τbj (ϕ) as follows:

τbj (ϕ) = h
maxbj (ϕ)

bj
(ϕ)

Lemma 3.6.2 Let K denote the connected-sum knot K3,2#Kp,q where Kp,q is a legendrian torus
knot of even ∂-class. Then for any element ϕ ∈ Im(∂) ⊂ I = ⟨∂(a1), ∂(a2), · · · , ∂(ã1), · · · , ∂(ãk)⟩
(where ãi are the index-1 generators in the p, q-tangle and a1, a2 the other two index-1 generators,
see Figure 3.7), the following property holds:

� The integer τb3(ϕ) is even.

Proof. If there were no Kp,q-tangle involved we recover the trefoil knot, where we have

∂(a1) = 1 + b1 + b3 + b1b2b3



∂(a2) = 1 + 1 + b2 + b2b3 + b1b2 + b2b3b1b2.
3

(p,q)-tangle

a2

a1

b1 b2 b3

Figure 3.7: Connected sum of a (p, q)-torus knot with a trefoil and corresponding labelling of some
of the crossings.

Since we do have an additional (p, q)−tangle involved in the knot between the crossing a2 and
the corresponding path joining it with b1, b2, b3, then there exists an expression P only containing
terms in the (p, q)−tangle such that:

∂(a1) = 1 + b1 + b3 + b1b2b3,

∂(a2) = 1 + P (1 + b2 + b2b3 + b1b2 + b2b3b1b2) .

Also, it is clear that b1, b2, b3 do not appear in the expressions ∂(ãi) for any of the ãi.

We have that
τb3 (∂(a1)) = h1b3 (∂(a1)) = 2 ∈ 2Z,

τb3 (∂(a2)) = h1b3 (∂(a2)) = 2 ·#{words in P} ∈ 2Z.

Therefore the Property holds for both ai generators and it also holds trivially for the other ãi
generators. Since Kp,q is of even ∂-class, all the expressions ∂ãi contain an even number of words
and, thus, it is clear then that the Property holds for any expression in the ideal I. Since Im(∂) ⊂ I,
the claim follows.

Lemma 3.6.3 Let Kθ
p,q be a loop of Legendrian knots based on Kp,q, a Legendrian (p, q)−torus

knot, and let K̃θ be an arbitrary loop of Legendrian knots based on K̃. Denote by FEθ the connected
sum loop of both loops. The restriction of the holonomy morphism to the crossings of degree 0 in
the Kp,q block corresonding to the first part of the loop (when Kp,q knot plays the role of the fly)
coincide with the identity map.

Proof. We must check that when a branch of the loop passes over (or below) the Kp,q-block,
the 0−index crossings of the (p, q)−block are mapped trivially by the holonomy morphism. In
particular, we will show this fact for each of the elementary moves appearing in the homotopy.

For R − IIIa this follows automatically since it maps all generators trivially. Note that since
the moving branch in any R − IIIb move corresponds to the elephant knot, the crossings of the

3 We write 1 + 1 + · · · even if we are working in Z2−coefficients since when considering the additional (p, q)−tangle
in the next case, one of the monogones will produce a different word.



Figure 3.8: Branch passing under and over a Kp,q-block, respectively.

(p, q)−block can only play the role of the crossings y or z in diagram (B) of Figure 3.3 and, thus,
are mapped trivially as well. For R− II moves this fact follows from an application of Proposition
3.4.3 together with the fact that the differential of all 0−index crossings in a (p, q)−block is always
zero. Finally, holonomies of R − II−1 are the identity for all points except for two points (x and
y crossings in Diagram (A) of Figure 3.3). But, in our case, these two points do not correspond
to crossings in the (p, q)−block when a branch passes over (or below) the block. Therefore all the
cases are covered and the claim follows. □

Remark 3.6.4 Another approach to prove the previous Lemma is based on observing that the
action of any crossing in the fly knot is arbitrarily small with respect to the action of any crossing
of the elephant knot. (We are thankful to Tobias Ekholm for this remark).

Theorem 3.3. Let K2,3 be an embedded legendrian trefoil and Kp,q a (p, q)−legendrian torus knot
of even ∂-class (recall Definition 3.5.11). Consider Kálmán’s loop on the trefoil Kθ

2,3 and another

loop Kθ
p,q based on Kp,q. Let (K2,3#Kp,q)

θ be the 1−parametric connected sum loop of both loops.

Then the H0−restricted monodromy associated to (K2,3#Kp,q)
θ
H0(K2,3#Kp,q)

is not the identity and,

therefore, this loop is not contractible in the space L̂eg(R3, ξstd).

Proof. We will focus on the monodromy map restricted to the 0−index generators of the trefoil
block. By Lemma 3.6.3 these generators are mapped trivially when the (2, 3)-block plays the role
of the tiny knot (half of the loop) and, thus, it suffices to study their holonomies for half the loop
(when the block they form part of plays the role of the big knot). Take a diagrammatic realization
for this half of the loop as in Figure 3.9.

The first arrow does not involve any Reidemeister move and, therefore, all crossings are mapped
trivially via the holonomies. The second sequence of moves (first arrow in Figure 3.9) involves a
bunch of II, II−1, IIIa and IIIb−moves but neither of them affect the 0-index generators in the
(2, 3)−tangle, the reason being that II−1 and III−moves do not act on generators remotely and
II-moves do not affect these generators by Proposition 3.4.3. Subsequent II and IIIb-moves (third
and fourth arrows, respectively) do not affect these generators for the same reason. The fifth arrow
corresponds to a IIIb-move that only affects b1 mapping it to b1 as it is shown in the diagram. The
sixth arrow does not involve any Reidemeister move and thus maps trivially any crossing.

The seventh arrow involves a bunch of Reidemeister moves that do not affect the 0–index crossings
of the (2, 3)−tangle because the only move type that could potentially affect them is the II–type
move but this is not the case by Proposition 3.4.3.

The eighth arrow corresponds to a II−1-move whose holonomies restricted to 0−index crossings
coincide with the holonomies of this move in Kálmán’s original loop with an extra factor W(p,q) in
b1. In order to check this, just note that one of the crossings disappearing via this II−1 move will
map to zero whereas b1 will be mapped to the differential of the other crossing before the move.

Therefore, the 0−index crossings are mapped as follows after the 8th arrow in Figure 3.9:

b1 7→ (1 + b3A)W(p,q)
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Figure 3.9: Half the loop consists on the concatenation of three times the depicted loop, which we

denote by Ω
#(p,q)
3,2 (the trefoil plays the role of the big knot whereas the (p, q)−knot plays the role

of the tiny knot).

b2 7→ b2

b3 7→ b3

The ninth arrow maps every crossing trivially since it does not involve any Reidemeister move.

There are a bunch of Reidemeister moves taking place in the tenth arrow but they do not affect
0-index generators of the (2, 3)−tangle for the same reason as in previous arrows. The eleventh
arrow corresponds to a IIIb–move not affecting 0−index crossings of the (2, 3)−tangle. The twelfth
arrow maps b2 to b2 as shown in Figure 3.9 and any other 0−index crossing of the (2, 3)−tangle is
mapped trivially.

Arrow thirteenth corresponds to a II−1-move that maps b2 to 1 + AB and the rest of 0−index
crossings are mapped trivially. Finally, arrows 14th and 15th do not affect 0−index crossings of the
(2, 3)−tangle.



Note that at the end of the loop b3 takes the original position of b1, crossing A the one of b2 and

crossing B the one of b3. Therefore, the monodromy of Ω
#(p,q)
3,2 restricted to the 0−index generators

of the (2, 3)−tangle is described as follows:

b1 7→W(p,q) + b1b2W(p,q)

b2 7→ 1 + b2b3

b3 7→ b1

Nonetheless, the loop consists on the concatenation of 3-times Ω
#(p,q)
3,2 . We check how this

monodromy map acts on generator b3. First, b3 is mapped to b1 in Ω
#(p,q)
3,2 . It is mapped to

W(p,q) + b1b2W(p,q) after
(
Ω

#(p,q)
3,2

)×2
. Finally, it is mapped to

W(p,q) + (W(p,q) + b1b2W(p,q))(1 + b2b3)W(p,q) after
(
Ω

#(p,q)
3,2

)×3
. In other words, the monodromy

acts as follows on b3:

µ(b3) =W(p,q) +W 2
(p,q) +W(p,q)b2b3W(p,q) + b1b2W

2
(p,q) + b1b2W(p,q)b2b3W(p,q).

We need to show that µ(b3)− b3 is not the zero class in H0(K2,3#Kp,q).

µ(b3)− b3 =W(p,q) +W 2
(p,q) +W(p,q)b2b3W(p,q) + b1b2W

2
(p,q) + b1b2W(p,q)b2b3W(p,q) − b3

does not satisfy the Property in Lemma 3.6.2 since τb3 (µ(b3)− b3) is not an even number
independently of the parity of the number of words in W(p,q). Therefore we conclude that
µ(b3) − b3 /∈ Im(∂) and [µ(b3) − b3] ∈ H0(K2,3#Kp,q) is not the zero class in homology. This
completes the proof.

As a corollary we can construct infinitely many new families of loops of Legendrians with non-
trivial monodromy. Denote by Kθ

p,q Kálmán’s loop for any (p, q) torus knot and by Kθ
p,q its inverse

loop (i.e. with reverse orientation in the parameter). Denote by Kconst
p,q the constant loop based at

Kp,q. Then, as an application of Theorem 3.3 we get:

Theorem 3.4 (Infinitely many new examples of loops with non-trivial monodromy).

The monodromy at the level of H0 associated to the following families of loops is not the identity
and, thus, all these families of loops are not contractible in the space L̂eg(R3, ξstd):

For m ≥ 1, the connected sum loop of Kálmán’s loop based at a trefoil and m loops Kθ
pi,qi where

for 1 ≤ i ≤ m is one of the following:

a)Kálmán’s loop based at the torus knot Kpi,qi,

b) Kálmán’s inverse loop based at the torus knot Kpi,qi, or

c) The constant loop Kconst
pi,qi based at the torus knot Kpi,qi.



(p1,q1)-tangle

a2

a1

b1 b2 b3

(pm,qm)-tangle

Figure 3.10: Connected sum of a trefoil with m torus knots Kθ
pi,qi , 1 ≤ i ≤ m. For each m ≥ 1, the

loops described in Theorem 3.4 are based in a knot with this structure. First, the (pi, qi)-tangle
blocks play the role of the fly while the trefoil plays the role of the elephant loop. Then, the roles
are reversed.





Part II

Horizontal and transverse embedding spaces





Chapter 4

h−Principle for horizontal and transverse curves.

4.1 Introduction

In this section we recall some of the basic theory of singularity and rigidity for horizontal curves
(Subsection 4.1.1). For further details we refer the reader to [61, 81].

4.1.1 Regularity of horizontal curves

We now recall how the phenomenon of singularity for horizontal curves shows up.

Given a (M,D) distribution and a point p ∈ M , we write Mapsp([0, 1];M,D) for the space of
horizontal maps of the interval [0, 1] into (M,D) with initial point γ(0) = p; we endow it with the
C∞-topology.

Definition 4.1.1 The endpoint map is defined as the evaluation map at 1 ∈ [0, 1]:

ep : Mapsp([0, 1];M,D) −→ M

γ 7→ γ(1)

This map is smooth. If it were submersive, its fibres would be smooth Frechet manifolds consisting
of horizontal paths with given endpoints. The issue is that this is not always the case, leading to the
conclusion that the fibres may develop singularities in which the tangent space is not well-defined.
These singularities are thus horizontal curves that present issues in order to be deformed.

Definition 4.1.2 A curve γ ∈ Mapsp([0, 1];M,D) is regular if the endpoint map ep is submersive
at γ. Otherwise, a curve is said to be singular.

Equivalently, regularity means that, given any vector v ∈ Tγ(1)M , there exists a variation (γs)s∈(−ε,ε)

such that

dγep

(
d

ds
γs

)
=

d

ds
(ep(γs)) = v.

We denote by Varγ the space of infinitesimal variations of γ, endowed with the C∞-topology. A
more down-to-earth description, when D is a connection, is that Varγ corresponds to the space of
infinitesimal variations of the projection of γ (to the base of the bundle). This approach will be
used repeatedly in upcoming sections.

For the purposes of this thesis, we are interested both in horizontal paths and horizontal loops.
Then:

61



Definition 4.1.3 A curve γ ∈ L(M,D) is regular if it is regular as a path (using the quotient
map [0, 1] → S1 given by a choice of basepoint).

It is not difficult to see that being regular does not depend on the auxiliary choice of basepoint.

Remark 4.1.4 This is a well known fact. One could just elaborate on the argument in [68,
Proposition 4, Corollary 5]: the variations generating infinitesimal directions in the source can be
“localised” by an appropriate use of bump functions in the domain. Therefore, a finite basis of
variations can be found and, thus, they can be modelled by a finite dimensional Euclidean vector
space. One can just now choose another basepoint and the claim readily follows. See [30] for a
similar approach.

4.2 ε-horizontality and ε-transversality

In this section we introduce ε-horizontal curves. These are curves that form an angle of at most
ε with the distribution and thus serve as approximations of horizontal curves. They provide a
convenient starting point for the h-principle arguments that will appear later in the chapter.

In Subsection 4.2.1 we introduce some additional notation regarding horizontal curves.
ε-horizontal curves appear in Subsection 4.2.2. The main result is Proposition 4.2.4: the space of
ε-horizontal curves is weakly equivalent to the space of formal horizontal curves. We then
introduce analogues of this idea in the transverse setting. This is done in Subsections 4.2.3 and
4.2.4.

We assume that the reader is familiar with the h-principle language. The standard references on
the topic are [39, 59].

4.2.1 Horizontal curves

Fix a manifold and a distribution (M,D). We already introduced the spaces of immersed horizontal
loops Imm(M,D) and embedded horizontal loops Emb(M,D). The phenomenon of rigidity forced
us to look instead into Immr(M,D) and Embr(M,D), the subspaces of regular curves. We want
to compare these to the formal analogues Immf (M,D) and Embf (M,D). This comparison relates
geometrically-defined spaces to spaces that are topological in nature.

Proofs in h-principle are local in nature. That is to say, in order to prove our theorems, we will
reduce them to analogous statements for horizontal paths, relative boundary. This motivates us to
introduce the following notation. Given a 1-dimensional manifold I, we write

Immr(I;M,D) −→ Imm(I;M,D) −→ Immf (I;M,D)

for the spaces of regular horizontal immersions, horizontal immersions, and formal horizontal
immersions of I into (M,D). Similarly, we write

Embr(I;M,D) −→ Emb(I;M,D) −→ Embf (I;M,D)

in the case of embeddings. All spaces are endowed with the weak Whitney topology.



4.2.2 ε–horizontal curves

Being horizontal is a closed differential relation. These are typically more difficult to handle than
open relations; dealing with them often requires some input from PDE theory or the use of a trick
that transforms the problem into one involving an open relation. In this thesis we follow the second
route, manipulating horizontal curves through their projections to the space of controls (Section
4.3).

We now introduce ε-horizontality. ε-horizontal curves can also be manipulated using the their
projections, with the added advantage of being described by an open relation. Fix a riemannian
metric g in M . We can measure the (unsigned) angle ∠, in terms of the metric g, between any two
linear subspaces at a given TpM .

Definition 4.2.1 Fix a constant 0 < ε < π/2. The space of ε-horizontal embeddings is defined
as:

Embε(M,D) :=
{
γ ∈ Emb(M) | ∠(γ′,D) < ε

}
.

Its formal analogue, the space of formal ε-horizontal embeddings, is defined as:

Embf,ε(M,D) :=
{(
γ, (Fs)s∈[0,1]

)
: γ ∈ Emb(M), Fs ∈ MonS1(TS1, γ∗TM),

F0 = γ′, ∠(F1, γ
∗D) < ε

}
.

4.2.2.1 Some flexibility statements

It is a classic result due to M. Gromov that the h-principle holds in the ε-horizontal setting:

Lemma 4.2.2 Consider (M,D) with rank(D) ≥ 2. Then, the inclusion
Embε(M,D) → Embf,ε(M,D) is a weak homotopy equivalence.

Proof. This follows from convex integration for open and ample relations [39, Theorem 18.4.1].
The relation is clearly open. Ampleness follows from the fact that principal subspaces are in
correspondence with tangent fibres TpM , and the relation in each is an open conical set (as
depicted in Figure 4.1) that is path-connected and ample, because D has at least rank 2.

Figure 4.1: Schematic depiction of the principal subspaces associated to ε-horizontality. The figure
shows the rank 1 case, in which the relation is conical and open but has two components. When
the rank is at least 2, the relation is path-connected and thus ample.



Furthermore:

Lemma 4.2.3 The inclusion Embf (M,D) → Embf,ε(M,D) is a homotopy equivalence. In
particular, Embε(M,D) and Embf (M,D) are weakly homotopy equivalent.

Proof. Just note that the fiberwise orthogonal riemannian projection of F1 onto D provides a
homotopy inverse.

These results that we have just stated are also relative in the parameter, relative in the domain,
and satisfy C0-closeness. More precisely:

Proposition 4.2.4 Let K be a compact manifold. Let (M,D) be a manifold endowed with a
distribution of rank greater or equal to 2. Suppose we are given a map
(γ, Fs) : K → Embf ([0, 1],M,D) satisfying the boundary conditions:

� (γ, Fs)(k)|Op({0,1}) is a ε-horizontal embedding for all k ∈ K,

� (γ, Fs)(k) ∈ Embε([0, 1],M,D) for k ∈ Op(∂K).

Then, (γ, Fs) extends to a homotopy (γ̃, F̃s) : K × [0, 1] → Embf ([0, 1],M,D) that:

� restricts to (γ, Fs) at time s = 0,

� maps into Embε([0, 1],M,D) at time s = 1

� is relative in the parameter (i.e. relative to k ∈ Op(∂K)),

� is relative in the domain of the curves (i.e relative to t ∈ Op({0, 1})),

� has underlying curves γ̃(k, s) that are C0-close to γ(k) for all k and s.

4.2.2.2 The punchline

We can summarise the previous statements using the following commutative diagram:

Embr(M,D) ⊂ Emb(M,D) Embf (M,D)

Embε(M,D) Embf,ε(M,D)

∼=
∼=

It follows that, in order to prove our main Theorem 1.2, it is sufficient to understand the inclusion
Embr(M,D) ↪→ Embε(M,D). This simplification (passing from formal to ε) is commonly used in
the h-principle literature, see for instance [84, 24].

4.2.2.3 The case of immersions

One can define, analogously, the space of immersed ε-horizontal loops:

Immε(M,D) :=
{
γ ∈ Imm(M) : ∠(γ′,D) < ε

}
.

From the arguments above it follows that:

Lemma 4.2.5 Let D be a distribution with rank(D) ≥ 2. The map Immε(M,D) −→ Immf (M,D)
is a weak homotopy equivalence.



This h-principle is also relative in the parameter, relative in the domain, and C0-close. We leave it
to the reader to spell out the analogue of Proposition 4.2.4. Theorem 1.1 reduces then to the study
of the inclusion Immr(M,D) ↪→ Immε(M,D).

4.2.3 Transverse curves

We have already introduced the spaces of transverse immersed loops ImmT (M,D), transverse
embedded loops EmbT (M,D), formally transverse immersions ImmT

f (M,D), and formally
transverse embeddings EmbT

f (M,D). It was stated in the introduction that

ImmT (M,D) −→ ImmT
f (M,D), EmbT (M,D) −→ EmbT

f (M,D)

are weak equivalences whenever the corank of D is larger than 1, thanks to convex integration.

Assumption 4.2.6 Whenever we work with transverse curves, we do so under the assumption that
the corank of D is one.

4.2.3.1 Coorientations

Suppose that D is coorientable and fix a coorientation. We do not need this assumption for our
results. However, we will make use of it as follows: due the relative nature of the arguments, we will
reduce our theorems to h-principles in which the target manifold is the Euclidean space. In this
local picture, the distribution is parallelisable and co-parallelisable. Furthermore, formal transverse
curves induce a preferred coorientation. This will allow us to define a suitable replacement of ε-
horizontality in the transverse setting.

Definition 4.2.7 A curve γ : S1 → M is positively transverse if γ′ defines the positive
coorientation in TM/D.

If D is cooriented, ImmT (M,D), EmbT (M,D), ImmT
f (M,D), and EmbT

f (M,D) split into two
different path components (the positively transverse and the negatively transverse). In order not
to overload notation, we will follow the convention that if D is cooriented, we focus on the positive
component.

We can now fix a riemannian metric g onM and define the oriented angle ∡(v(p),Dp) between
a vector v ∈ TpM and the corank-1 distribution D. Its absolute value agrees with the (unsigned)
angle ∠(v,D) and its sign is positive if v is positively transverse.

4.2.3.2 Immersions

If I is a 1-manifold, we write

ImmT (I;M,D) → ImmT
f (I;M,D), EmbT (I;M,D) → EmbT

f (I;M,D)

for the spaces of transverse immersions, formal transverse immersions, transverse embeddings and
formal transverse embeddings of I into (M,D). Once again, if D is cooriented, these denote only
the positively transverse component.



Figure 4.2: On the left we depict a vector field ν, providing the global choice of coorientation, and
a positively transverse vector v ∈ TpM ; the two lie on the same side of D. On the right we depict
a negatively transverse vector.

4.2.4 ε-transverse curves

Working under coorientability assumptions allows us to introduce the notion of ε-transversality.

Definition 4.2.8 Let D be a cooriented distribution of corank-1. Fix a positive number π/2 > ε >
0. The space of ε-transverse embeddings is defined as:

EmbT
ε(M,D) =

{
γ ∈ Emb(M) : ∡(γ′,D) > −ε

}
.

We can also consider its formal analogue, the space of formal ε-transverse embeddings:

EmbT
f,ε(M,D) =

{(
γ, (Fs)s∈[0,1]

)
: γ ∈ Emb(M), Fs ∈ MonS1(TS1, γ∗TM),

F0 = γ′, ∡(F1, γ
∗D) > −ε

}
.

4.2.4.1 Flexibility statements

The following is an analogue of Proposition 4.2.4, with a milder condition on the rank. The proof
is analogous, using convex integration and projection to D:

Proposition 4.2.9 Let D be a cooriented corank-1 distribution with rank(D) ≥ 1. Then, the
following inclusions are weak equivalences:

EmbT
ε(M,D) −→ EmbT

f,ε(M,D), Embf (M,D) −→ Embf,ε(M,D).

A statement that is relative in the parameter, relative in the domain, and C0-close also holds:

Proposition 4.2.10 Let K be a compact manifold. Let (M,D) be a manifold endowed with a
cooriented corank-1 distribution of rank at least 1. Suppose we are given a map (γ, Fs) : K →
EmbT

f ([0, 1];M,D) satisfying:

� (γ, Fs)(k)|Op({0,1}) is a ε-transverse embedding for all k ∈ K,

� (γ, Fs)(k) ∈ EmbT
ε([0, 1];M,D) for k ∈ Op(∂K).

Then, (γ, Fs) extends to a homotopy (γ̃, F̃s) : K × [0, 1] → EmbT
f ([0, 1];M,D) that:

� restricts to (γ, Fs) at time s = 0,

� maps into EmbT
ε([0, 1];M,D) at time s = 1



Figure 4.3: The fiberwise relation defining ε-transversality defines a relation that is ample.

� is relative in the parameter (i.e. relative to k ∈ Op(∂K)),

� is relative in the domain of the curves (i.e relative to t ∈ Op({0, 1})),

� has underlying curves γ̃(k, s) that are C0-close to γ(k) for all k and s.

4.2.4.2 The punchline

We obtain the following commutative diagram:

EmbT (M,D) EmbT
f (M,D)

EmbT
ε(M,D) EmbT

f,ε(M,D),

∼=
∼=

telling us that we should focus on the inclusion EmbT (M,D) ↪→ EmbT
ε(M,D). We will do so to

prove Theorem 1.5.

4.2.4.3 The immersion case

We can also define the space of ε-transverse immersions ImmT
ε(M,D) and deduce that:

Lemma 4.2.11 Let D be a cooriented, corank-1 distribution of rank at least 1. The map
ImmT

ε(M,D) → ImmT
f (M,D) is a weak homotopy equivalence.

This h-principle is also relative in the parameter, relative in the domain, and C0-close. We will
henceforth focus on the inclusion ImmT (M,D) ↪→ ImmT

ε(M,D) in order to prove Theorem 1.19.

4.2.4.4 Almost transversality

To wrap up this section, consider the following definition:

Definition 4.2.12 Let D be a cooriented, corank-1 distribution. Let I be a 1-dimensional manifold.
The space of almost transverse embeddings is:



EmbAT (I;M,D) :=
{
γ ∈ Emb(I,M) | ∡(γ′,D) ≥ 0

}
.

We write EmbAT (M,D) in the particular case of loops.

This may be regarded as the closure of the space of positively transverse embeddings
EmbT (I,M,D). We only introduce it because it will allow us to translate flexibility statements
about horizontal curves to the transverse setting.

4.3 Graphical models

One of the two standard projections used in Contact Topology to study legendrian (i.e. horizontal)
knots in standard contact (R3, ξstd = Ker(dy − zdx)) is the so-called Lagrangian projection:

πL : R3 −→ R2

(x, y, z) 7→ (x, z).

It projects ξstd, at each p ∈ R3, isomorphically onto the tangent space TπL(p)R
2 of the base. This

projects a legendrian knot to an immersed planar curve. From the projected curve one can recover
the missing y-coordinate by integration:

z(t) = z(t0) +

∫ t

t0

x(s)y′(s)ds.

Indeed, the integral on the right-hand side, when evaluated over the whole curve, computes the
area it bounds due to Stokes’ theorem. This turns the problem of manipulating Legendrian knots
into a problem about planar curves satisfying an area constraint.

In this Section we introduce graphical models. These are opens in Euclidean space, endowed with
a bracket-generating distribution that is graphical over some of the coordinates; we call these the
base. Projecting to the base and manipulating curves there is analogous to using the Lagrangian
projection. This line of reasoning is also classic in Geometric Control Theory: the tangent space of
the base, upon choosing a framing, corresponds to the space of controls.

Graphical models are introduced in Subsection 4.3.1. The related notion of ODE model appears
in Subsection 4.3.2. In Subsection 4.3.3 we explain how to cover any (M,D) by graphical models.
These local models will be used in Section 4.4 to manipulate horizontal and transverse curves.

4.3.1 Graphical models

Fix a rank q, an ambient dimension n, and a step m. We now introduce the main definition of
this section. It may remind the reader of the ideas used to construct balls in Carnot-Caratheodory
geometry [51, 60, 81]:

Definition 4.3.1 A graphical model is a tuple consisting of:

� a radius r > 0,

� a constant-growth, bracket-generating, rank-q distribution D defined over the ball Br ⊂ Rn,

� the projection π : Br ⊂ Rn → Rq to the so-called base,

� a framing {X1, · · · , Xn} of TBr.



The Lie flag of D will be denoted by

D = D1 ⊂ D2 ⊂ · · · ⊂ Dm = TBr,

and we write qi = rank(Di).

This tuple must satisfy the following conditions:

� {X1, · · · , Xqi} is a framing of Di.

� Given j = qi−1 + 1, · · · , qi, there is a formal bracket expression Aj and a collection of indices

lja = 1, · · · , q satisfying:
Xj = Aj(Xlj1

, · · · , X
lji
),

a. dπ(Xj) = ∂j for all j = 1, · · · , q. In particular, dπ is a fibrewise isomorphism between D and
TRq.

b. Xj(0) = ∂j for all j = 1, · · · , n.

The first two conditions are unnamed because they simply state that the given framing is compatible
with the Lie flag. Condition (a) says that the distribution is a connection over Rq and that its
framing is the lift of the standard coordinate framing. Condition (b) controls {X1, · · · , Xn}, saying
that they agree with the standard coordinate directions at the origin. This will allow us to describe,
quantitatively, how paths in the base lift to horizontal curves. As one may expect, we will be able
to estimate this up to an error of size O(r).

4.3.2 ODE models

Since D is a connection over Rq, any curve γ : R −→ Rq can be lifted to a horizontal curve of D,
uniquely once a lift of γ(0) has been chosen. Conversely, any horizontal curve is recovered uniquely
from its projection by lifting (using the appropriate initial point). This is a consequence of the
fundamental theorem of ODEs.

The caveat is that D is only defined over Br, so the claimed lift may escape the model and
therefore not exist for all times; this is the usual issue one encounters with non-complete flows.
Still, the lift

lift(γ) : U −→ (Br,D)

is uniquely defined over some maximal open interval U ⊂ R that contains zero. In order to discuss
this a bit further, we introduce:

Definition 4.3.2 Consider a curve γ : R −→ Rq mapping to the base of a graphical model. Thanks
to π, Rn can be seen as a fibration F over Rq, allowing us to consider the tautological map

Ψ : γ∗F ∼= R× Rn−q −→ Rn = Rq × Rn−q

that is transverse to D (whenever the latter is defined).

The ODE model associated to γ (and to the graphical model) consists of:

� an open subset D ⊂ γ∗F ∩ Ψ−1(Br),

� the tautological map Ψ : D −→ Br,

� the line field Ψ∗D, whose domain of definition is D.



That is, (D,Ψ) parametrises the region of Br that lies over γ. Do note that Ψ is an
immersion/embedding only if γ itself is immersed/embedded. Our discussion above states that
lifting γ amounts to choosing a basepoint in D, solving the ODE given by Ψ∗D, and pushing
forward with Ψ .

Figure 4.4: A graphical model and an ODE model. The distribution is seen as a connection, where
TRn = D ⊕ Ker dπ. A curve γ is shown in the base, with its ODE model lying above. D restricts
to the ODE model as a line field. A lift of γ is shown in magenta.

The reason behind introducing ODE models is that they allow us to state the following trivial
lemma:

Lemma 4.3.3 Fix a graphical model and consider the following objects:

� A curve γ : [0, 1] −→ Rq mapping to the base.

� A (defined for all time) lift lift(γ) : [0, 1] −→ Br of γ.

� The ODE model (D,Ψ, Ψ∗D) of γ.

� The unique integral curve ν : [0, 1] −→ (D,Ψ∗D), graphical over [0, 1], such that Ψ ◦ ν = lift(γ).

Then, there is a constant δ > 0 and coordinates ϕ : [0, 1]×Bδ −→ D such that:

� ϕ(t, 0) = ν(t),

� ϕ∗Ψ∗D is spanned by ∂1 (the first coordinate direction).

This is a consequence of the flowbox theorem, so we will call ϕ flowbox coordinates. This allows
us to see horizontal/transverse curves as graphs of functions and see horizontality/transversality in
terms of their slope. See Figure 4.5.

4.3.2.1 Size of ODE models

Using the properties of a graphical model, we can estimate how large the constant δ appearing in
Lemma 4.3.3 can be.

Write πv : D → Rn−q for the standard projection to the vertical. According to the definition
of graphical model, D and the foliation by planes parallel to Rq differ by O(r). In particular, the



Figure 4.5: An ODE model in flowbox coordinates. The distribution is of corank-1 and its
coorientation is given by “going up”. It contains a ε-horizontal curve γ with three differentiated
regions. The left region is negatively transverse. In right region the curve is positively transverse.
In the middle region γ is parallel to the x-axis and is thus horizontal.

slope of D is bounded by O(r). The same holds for Ψ∗D in D. This implies a bound for the vertical
displacement:

|πv ◦ lift(γ)(1)− πv ◦ lift(γ)(0)| < len(γ)O(r) (4.1)

where len(γ) is the length of γ. It is valid as long as it is smaller than the distance d of γ(0) to the
boundary of the model. Choosing len(γ) sufficiently small, we can choose δ to be of the magnitude
of d.

The punchline is that, in order to manipulate horizontal curves effectively on a manifold (M,D),
it will be necessary to cover it with graphical models whose radii are very small, as this will allow
us to estimate vertical displacement of curves in an effective manner.

4.3.3 Adapted charts

Fix a manifold M and a bracket-generating distribution D. We now prove that (M,D) can be
covered by graphical models. For notational ease, let us introduce a definition first. Given a point
p ∈M , an adapted chart is a graphical model (Br ⊂ Rn,DU ) together with a chart

ϕ : (Br,DU ) −→ (M,D),

such that ϕ∗D = DU and ϕ(0) = p.

Proposition 4.3.4 Let (M,D) be a manifold endowed with a bracket-generating distribution.
Then, any point p ∈M admits an adapted chart.

Proof. We argue at a fixed but arbitrary point p ∈ M . Fix a basis {Y1, · · · , Yn} of TpM such that
{Y1, · · · , Yq} spans Dp. We construct local coordinates around p applying the exponential map. In
these new coordinates we have that Yi is ∂i. Condition (a) in the definition of graphical model
follows.

In the new coordinates, we have local projection π : Rn → Rq. This allows us to define a framing
FD := {X1, · · · , Xq} of D by lifting the coordinate vector fields ∂i of Rq. Note that these Xi coincide
with the Yi at the point p. Due to the bracket-generating condition, all vector fields around p can
be written as linear combinations of Lie brackets involving vector fields in D. Since all such vector
fields are themselves sums of elements in FD, it can be deduced that TM is spanned by bracket
expressions involving only FD. This allows us to extend FD to a frame {X1, · · · , Xn} such that:



� {X1, · · · , Xqi} spans Di.

� Xj = Aj(Xi1 , · · · , Xil), with ia ≤ q for every a = 1, · · · , l and Aj some bracket-expression.

By construction, the elements in FD commute with one another upon projecting to Rq. I.e. their
Lie brackets are purely vertical, meaning that the vector fields {Xq+1, · · · , Xn} are tangent to the
fibres of π. This implies that, by applying a linear transformation fibrewise, we can produce new
coordinates in which Xj(p) is ∂j . Condition (b) follows.

4.3.3.1 Covering by nice adapted charts

It is crucial for our arguments to be able to produce coverings by graphical models that are
arbitrarily fine, and whose behaviour is controlled regardless of how fine we need them to be.
That is the content of the following corollary:

Lemma 4.3.5 Let (M,D) be a compact manifold endowed with a bracket-generating distribution.
Then, there are constants C, r > 0 such that:

i. Any point p ∈M admits an adapted chart of radius r.

ii. The bound |Xj(x) − ∂j | < C|x| holds for all such adapted charts and all elements Xj in the
corresponding framing.

The measuring in both properties is done using the Euclidean distance given by the adapted chart.

Proof. The construction in Proposition 4.3.4 is parametric on p. This is certainly true for the
exponential map, which yields the resulting local coordinates, the projection π, and thus the frame
FD. This is not necessarily the case, globally, for the choice of bracket expressions Aj , but it is
still true if we argue on opens of some sufficiently fine cover {Ui} of M . The fibrewise linear
transformation chosen at the end of the argument is unique and thus parametric.

It follows that the statement holds for constants Ci, ri > 0 over each Ui. We extract a finite
covering to conclude the argument.

Do note that, upon zooming-in at p, the distribution D locally converges to a Carnot group called
the nilpotentisation [81, Chapter 4]. That is, to a nilpotent Lie group endowed with a bracket-
generating distribution that is left-invariant and invariant under suitable weighted scaling. This
implies that, by taking a sufficiently fine cover of (M,D), one can produce graphical models that
are as close as required to a Carnot group. This is an improvement on Lemma 4.3.5, but it is not
needed for our arguments.

4.4 Microflexibility of curves

The results in this thesis follow an overall strategy that is standard in h-principle. Namely: we first
perform a series of simplifications that are meant to reduce the proof to a problem that is localised
in a small ball. We call this reduction. Reduction arguments can be technical but often follow some
standard heuristics and patterns. Once we have passed to a localised setting, the second step begins.
This is the core of the proof and requires some input that is specific to the geometric setup at hand.



This step is called extension because it often amounts to extending a solution from the boundary
of small ball to its interior1.

In this section we prove several lemmas dealing with deformations of horizontal and transverse
curves; they are meant to be used in the reduction step. These deformations often take place
along stratified subsets of positive codimension, and can therefore be understood as
microflexibility phenomena for horizontal and transverse curves2. Proofs boil down to patching up
local constructions happening in graphical models (Section 4.3).

In Subsection 5.4.4 we review Thurston’s jiggling, which we use to triangulate our manifolds and
thus argue one simplex at a time. Local statements taking place in graphical models are presented
in Subsection 4.4.2. We globalise these constructions in Subsections 4.4.3 (for horizontal curves)
and 4.4.4 (for transverse curves).

4.4.1 Triangulations

In order to reduce our arguments to a euclidean situation, we fix a (sufficiently fine) triangulation
and we work on neighbourhoods of the simplices. For our purposes it is important that these
triangulations are well-behaved. This can be achieved using the Thurston jiggling Lemma. We
state it for the case of line fields (which is all we need):

Lemma 4.4.1 (Thurston, [101]) Let N be a smooth n-manifold equipped with a line field ξ. Fix
a metric g. Then, there exists a sequence of triangulations Tb satisfying the following properties:

i. Each simplex ∆ ∈ Tb is transverse to ξ.

i’. Each n-simplex is homeomorphic to a flowbox of ξ.

ii. The radius of each simplex in Tb is bounded above by 1/b.

iii.The number of simultaneously incident simplices in Tb is bounded above by a constant independent
of b.

Conditions (i) and (i”) say that ξ is almost constant (upon taking it fine enough) in the coordinates
provided by ∆. Condition (ii) says that the triangulations are becoming finer as b increases (and
indeed all of them can be assumed to be refinements of some given triangulation). Condition (iii)
states that the combinatorics of the triangulation remain controlled upon refinement (which is
needed to prove Condition (i’)).

We will also need a version for manifolds with the boundary:

Corollary 4.4.2 In Lemma 4.4.1, suppose that N has boundary. Then we can furthermore assume
that:

� Tb extends a triangulation of the boundary ∂N .

� Conditions (i), (i’), (ii), (iii) hold for all simplices of Tb not fully contained in ∂N .

� The pair (∂N, Tb|∂N ) satisfies the conclusions of the Lemma.

1 The proof of Theorem 1.5 follows these general lines. The proof of Theorem 1.2 presents some subtleties that force
us to do something slightly different; see Remark 4.7.2
2 Do note that, due to rigidity, horizontal curves are not microflexible in general.



4.4.2 Local arguments

We now present a series of statements dealing with families of curves mapping into graphical models.
In order to streamline notation, let us denote the target graphical model by (V,D). Its projection
to the base Rq is denoted by π and the projection to the vertical by π|. We also write K for the
smooth compact manifold serving as the parameter space of the families.

4.4.2.1 Horizontalisation in graphical models

We will often construct horizontal curves as lifts of curves in R1. The following is a quantitative
statement about the existence of lifts:

Lemma 4.4.3 Consider a family γ : K → Embε([0, 1];Dr1 ,D). Then, there is a unique family
ν : K → Emb([0, δ];Dr,D) satisfying

� π ◦ ν = π ◦ γ.

� ν(k)(0) = γ(k)(0).

Furthermore: Let l be an upper bound for the velocity ||(π ◦ γ(k))′||. Then we can assume

δ >
r − r1

l(ε+O(r))
.

Proof. The uniqueness of ν is immediate from the discussion in Subsection 4.3.2, since ν is obtained
from π ◦ γ by lifting with a given initial value. The bound on δ follows from the fact that the slope
of D with the horizontal is at most ε + O(r), so the difference between γ and ν, which is purely
vertical is bounded by δ.l.(ε + O(r)). For ν to remain within the r-ball, this quantity must be
smaller than r − r1, yielding the claim.

Do note that the coefficient in the expression O(r) can be bounded above in terms of the derivatives
of D. In Lemma 4.3.5 we observed that this coefficient can be bounded globally over a compact
manifold.

4.4.2.2 Stability of horizontalisation

Given a family of horizontal curves, we may want to produce a nearby horizontal family by
manipulating its projection to the base. The following lemma says that this is indeed possible:

Lemma 4.4.4 Consider families

γ : K → Emb([0, 1];Dr,D), α : K → Imm([0, 1];Rq)

such that π ◦ γ and α are C0-close and their lengths are close. Then, there is a lift ν : K →
Imm([0, 1];Dr,D) of α that is C0-close to γ.

Proof. The family ν is obtained by lifting α, as in Subsection 4.3.2. The conclusion forces us to
choose an initial value that is close to γ(k)(0). The hypothesis on α (closeness in C0 and length)
imply (Lemma 4.4.8) that the ODE behind the lifting process is close to the ODE associated to
π ◦ γ. This implies that the lifting exists over [0, 1] and is close to γ. □

In concrete instances we will be able to argue that the resulting family ν also consists of embedded
curves. This will follow from the specific properties of the family α under consideration.



4.4.2.3 Interpolation statements

We sometimes consider deformations of ε-horizontal curves in which the projection to the base
remains fixed and the vertical component changes. This is explained in the following lemma, whose
proof we leave to the reader:

Lemma 4.4.5 Fix a family of curves α : K → Imm([0, 1];Rq). Then, there exists a constant δ > 0
such that any two families of curves

γ, ν : K → Immε([0, 1];Dr,D)

lifting α and satisfying |γ(k) − ν(k)|C0 < δ are homotopic through a family of ε-horizontal curves
also lifting α.

Furthermore, this homotopy may be assumed to be relative to Op(∂(K×I)) if the families already
agree there.

The analogue for transverse curves reads:

Lemma 4.4.6 Suppose D is of corank-1 and cooriented. Fix a family of curves
α : K → Imm([0, 1];Rq). Then, there exists a constant δ > 0 such that any two families of curves

γ, ν : K → ImmT ([0, 1];Dr,D)

lifting α and satisfying |γ(k) − ν(k)|C0 < δ are homotopic through a family of transverse curves
also lifting α.

Furthermore, this homotopy may be assumed to be relative to Op(∂(K×I)) if the families already
agree there.

4.4.2.4 Deforming ε-horizontal curves

The following is an analogue of Lemma 4.4.4 in the ε-horizontal setting.

Lemma 4.4.7 Consider families

γ : K → Embε([0, 1];Dr,D) α : K → Imm([0, 1];Rq)

such that π ◦ γ and α are C0-close and their lengths are close. Then, there is a lift ν : K →
Immε([0, 1];Dr,D) of α that is C0-close to γ.

Proof. Constructing ν amounts to choosing its vertical component π| ◦ ν. Naively, we could set
π| ◦ ν = π| ◦ γ, but there is no reason why this would preserve ε-horizontality. The strategy to be
pursued instead is to mimic the proof of Lemma 4.4.4. Namely, we want to see γ as the solution
of an ODE (that makes an angle of at most ε with respect to D) and produce ν as a solution of a
similar ODE.

We define families of vector fields

X,Y, Z,W : K × I → Γ (TV )

satisfying the condition:

� X is tangent to D and satisfies dπ(X(k, t)) = dπ(γ(k)′(t)) over all points lying over π ◦ γ(k)(t).



� Y is vertical and satisfies Y (k, t) = X(k, t) − γ(k)′(t). It follows that, along γ, we have the
inequality:

|Y (k, t)|
|γ(k)′(t)|

= ∠(γ(k)′(t),D) < sin(ε).

� W is tangent to D and satisfies dπ(W (k, t)) = α(k)′(t) over all points projecting to α(k)(t)

� Z is vertical and given by the expression Z(k, t) = Y (k, t)
|α(k)′(t)|
|X(k, t)|

.

According to these definitions, γ(k) is an integral line of X(k, t) + Y (k, t). We define ν(k)(t) to be
the integral line of W (k, t) + Z(k, t) with initial condition γ(k)(0).

By construction, π ◦ ν = α and therefore ν is immersed. Furthermore, due to our definition Z, ν
is ε-horizontal as long as α is sufficiently C1-close to π ◦ γ. Lastly, C0-closeness of ν and γ follows
from the closeness of α and π ◦ γ in C0 and length.

4.4.3 Horizontalisation

We now present semi-local analogues of Lemma 4.4.3. Since the Lemma only provides short-time
existence of horizontal curves, generalisations must also present this feature. The reader should
think of the upcoming statements as analogues of the holonomic approximation theorem [39,
Theorem 3.1.1]. However, they involve no wiggling.

The general setup is the following: We fix a pair (M,D). The distribution need not be bracket-
generating. Our families of curves are parametrised by a compact manifold K and have the unit
interval I = [0, 1] as their domain. The product K × I contains a stratified subset A such that all
its strata are transverse to the I-factor.

4.4.3.1 Horizontalisation along the skeleton

The following result shows that any family of ε-horizontal curves can be made horizontal on a
neighbourhood of .

Lemma 4.4.8 Given a family γ : K → Embε(I;M,D), there exists a family

γ̃ : K × [0, 1] → Embε(I;M,D)

such that:

i. γ̃(k, 0) = γ(k).

ii. γ̃(k)(t) = γ(k)(t) if (k, t) ∈ (K × I) \ OpA

iii. γ̃(k, s) is C0-close to γ(k), for all s.

iii’.the length of γ̃(k, s) is close to the length of γ(k), for all s.

iv. γ̃(k, 1) is horizontal close to A.

Proof. The proof is inductive on the strata of A, starting from the smallest one. At a given step,
working with a stratum B, we will achieve Property (iv) over B, preserving it as well along smaller
strata. The other properties will follow as long as our perturbations are small and localised close
to A.



Let U be a neighbourhood of the smaller strata in which γ̃(k, 1) is already horizontal. We can
then consider a closed submanifold B′ ⊂ B such that {B′, U} cover B. We can triangulate B′ using
Lemma 4.4.1, turning it into a stratified set itself, so that each simplex ∆ is mapped by γ to some
adapted chart (V, ϕ). We then proceed inductively from the smaller simplices. A crucial observation
is that simplices along ∂B are contained in U and therefore no further changes are required there.

For the inductive step consider an l-simplex ∆. The inductive hypothesis is that there is a family
of curves β that has been obtained from γ by a homotopy satisfying Properties (i) to (iii’) and that
is already horizontal over all smaller simplices (and U). Since B is transverse to the I-direction, ∆
has a neighbourhood parametrised as

Φ : Dl × Dk−l × (−δ, δ) −→ K × I.

The map Φ preserves the foliation in the direction of the last component and Φ|Dl×0 is an arbitrarily
small extension of ∆ to a smooth disc. We write η = ϕ ◦ β ◦ Φ for the restriction of the family to
this neighbourhood, mapping now into the graphical model V . From the induction hypothesis it
follows that η is horizontal over Op(∂Dl)× Dk−l × (−δ, δ).

We have thus reduced the claim to the situation in which our stratified set is just a disc, and
we have to work relatively to the boundary of Dl × Dk−l × (δ, δ). There is a unique family of
horizontal curves ν such that ν and η share the same projection to the base of V and such that
ν(k)(0) = η(k)(0) for all k ∈ Dl × Dk−l. We can argue that this family exists for all time if our
triangulation was fine enough. Alternatively, we just observe that there is some δ′ > 0 such that
ν is defined over Dl × Dk−l × (−δ′, δ′) and η lives within an ODE model associated to it (Lemma
4.3.3).

We now deform η, relatively to the boundary of the model, to a family that agrees with ν over
Dl×Dk−l× (−δ, δ). We can do so keeping the projection to the base the same (Lemma 4.4.3). This,
together with a sufficiently small choice of δ′, guarantees Properties (iii) and (iii’). This concludes
the inductive argument to handle a stratum B and thus the inductive argument across all strata.

It is immediate from the proof that the statement also holds relatively to regions of A in which the
curves are already horizontal.

Corollary 4.4.9 Assume that D is cooriented of corank-1 and that γ is positively transverse. Then,
the conclusions of Lemma 4.4.8 hold and additionally γ̃ can be assumed to be almost transverse.

Proof. The horizontalisation process described in the proof of Lemma 4.4.8 was based on passing
locally to some ODE model. In such a model it is immediate that introducing zero slope (making
the curves horizontal) can be done while preserving non-negative slope everywhere (being almost
transverse).

4.4.3.2 Direction adjustment

Lemma 4.4.8 explained to us how to perturb a family of ε-horizontal curves so that it becomes
horizontal along A. The next lemma states that one can prescribe the behaviour along A, as long
as A is contractible and rank(D) ≥ 2.

Lemma 4.4.10 Suppose that A is a k-disc and D has rank at least 2. Fix a family γ : K →
Embε(I;M,D) and a family of horizontal curves ν, defined only on a neighbourhood of A. Assume
that ν|A = γ|A.

Then, there exists a family γ̃ : K × [0, 1] → Embε(I;M,D) such that the conclusions of Lemma
4.4.8 hold and, additionally:



v. γ̃(−, 1) agrees with ν in Op(A).

Proof. Since the argument takes place on a neighbourhood of A and is relative to its boundary, we
may as well assume that K = Op(Dk) and A = Dk × {1/2} ⊂ K × [0, 1].

Since A is contractible and D has rank at least 2, we can find a tangential rotation

(vθ)θ∈[0,1] : Dk −→ TM

such that:

� vθ(k) ∈ Tγ(k)(1/2)M is ε-horizontal.

� v0(x) = γ(k)′(1/2).

� v1(x) = ν(x)′(1/2).

That is, v is a lift of γ|A providing a tangential rotation of its velocity vector to the velocity vector
of ν.

A further simplification enters the proof now: γ may be assumed to take values in a graphical
model V . Otherwise we triangulate A in a sufficiently fine manner and argue inductively on
neighbourhoods of its simplices. There is then a homotopy of linear maps

(Φθ)θ∈[0,1] : Dk −→ GL(Rq,Rq)

that satisfies Φ0(k) = Id and Φθ(k)(dπ(γ(k)
′(1/2))) = dπ(vθ(k)). It exists due to the homotopy

lifting property. It provides us with a rotation of Rq extending the tangential rotation dπ ◦ vθ.

Let χ be a cut-off function that is 1 on a neighbourhood of A and zero away from it. Consider
the homotopy of curves given by

αθ(k)(t) := Φχ(k,t)θ(k)(π ◦ γ(k)(t)).
We claim that αθ(k) is in fact embedded. This will indeed be the case if the support of χ is sufficiently
small, since the curves π ◦ γ|Op(A) are then small embedded intervals resembling a straight line.

By construction, α1(k) is tangent to π ◦ ν(k) at t = 1/2. This allows us to define a further
homotopy (αθ)θ∈[1,2] so that α2(k)(t) = π ◦ ν(k)(t) for every t ∈ Op({1/2}). This latter homotopy
may be assumed to be C1-small and supported in an arbitrarily small neighbourhood of A.

Over Op(A), we have that π◦γ and αθ are C
0-close and of similar length. It follows from Lemma

4.4.7 that there is a family of ε-horizontal curves βθ lifting αθ, that is C0-close to γ. Applying
Lemma 4.4.5 allows us to assume that βθ agrees with γ outside a neighbourhood of A. We can then
apply Lemma 4.4.8 to β2 in order to horizontalise. This yields a homotopy to some ε-horizontal
family β3 that close to A agrees with ν.

4.4.4 Transversalisation

In this subsection we explain the transverse analogues of the results presented in Subsection 4.4.3.
We fix a distribution (M,D). We write K for a compact manifold and I for [0, 1]. A ⊂ K × I is a
stratified set transverse to the second factor.

4.4.4.1 Transversalisation of almost-transverse curves

The following lemma explains that almost transverse curves can be pushed slightly to become
transverse.



Lemma 4.4.11 Suppose D is of corank 1. Given a family of curves γ : K −→ EmbAT ([0, 1];M,D),
there exists a C1-deformation

γ̃ : K × [0, 1] −→ EmbAT ([0, 1];M,D)

such that

� γ̃(k, 0) = γ(k).

� γ̃(k, 1) is transverse.

� Assume that γ is transverse along Op(∂(K×I)). Then this homotopy is relative to the boundary.

Proof. The argument is carried out one adapted chart at a time. If K × I is covered by sufficiently
small opens, we can pass to ODE charts (Subsection 4.3.2), where the statement is obvious and
relative.

Do observe that this process may not be assumed to be relative if the starting family was purely
horizontal. In fact, the argument will certainly displace the endpoint of the curves upwards.

Figure 4.6: We depict transversalisation of a horizontal curve. On a graphical model, it is easy to
construct the desired transverse curve γ̃(−, 1) (in magenta) by adding a small slope. This is not
relative to the final endpoint.

Remark 4.4.12 From this lemma it follows that there is a weak homotopy equivalence between
EmbT (M,D) and the subspace of EmbAT (M,D) consisting of curves that are somewhere (positively)
transverse. This can be refined further to include those curves of EmbAT (M,D) that are regular
horizontal. We leave this as an exercise for the reader.

4.4.4.2 Transversalisation of ε-transverse curves

The following lemma achieves the transverse condition in a neighbourhood of A.

Lemma 4.4.13 Suppose that D is of corank-1 and cooriented. Given a family
γ : K → EmbT

ε(I;M,D), there exists a family

γ̃ : K × [0, 1] → EmbT
ε(I;M,D)



Figure 4.7: Transversalisation for almost horizontal curves, relative to the boundary. The argument
reduces to adding slope in an ODE model.

such that:

i. γ̃(k, 0) = γ(k).

ii. γ̃(k)(t) = γ(k)(t) if (k, t) ∈ (K × I) \ OpA

iii. γ̃(k, s) is C0-close to γ(k), for all s.

iii’.the length of γ̃(k, s) is close to the length of γ(k), for all s.

iv. γ̃(k, 1) is transverse close to A.

Proof. As in the proof of Lemma 4.4.8, we proceed inductively on the strata of A, each of which is
in turn processed one simplex at a time. This reduces the proof to the analogous statement in which
(M,D) is a graphical model, K is Dk, and the curves of γ have arbitrarily small length and image.
Due to the ε-transverse condition, we have that the curves γ(k) are then either (positively) vertical
with respect to the base projection, in which case we do not need to do anything, or graphical
over D. In the latter case we work in an ODE model and add positive slope. This is relative in the
parameter and domain.

4.4.4.3 Transversalisation of formally transverse embeddings

We also need a transversalisation statement, in the spirit of Lemma 4.4.13, that applies instead to
formal transverse embeddings:

Lemma 4.4.14 Given a family γ : K → EmbT
f (I;M,D), there exists a family γ̃ : K × [0, 1] →

EmbT
ε(I;M,D) such that:

i. γ̃(k, 0) = γ(k).

ii. γ̃(k)(t) = γ(k)(t) if (k, t) ∈ (K × I) \ OpA

iii. γ̃(k, s) is C0-close to γ(k), for all s.

iii’.the length of γ̃(k, s) is close to the length of γ(k), for all s.

iv. γ̃(k, 1) is transverse close to A.



Proof. We work inductively over the strata of A and inductively over the simplices of a
triangulation of each stratum. This reduces the proof to a local and relative statement happening
in an adapted chart. Then, the conclusion follows as in the proof of Lemma 4.4.10. Namely, the
tangential homotopy given by γ can be used to rotate the velocity vectors of γ along A to make
them transverse to D.

4.5 Tangles

In this section we introduce tangles. These are particular local models for curves in the base Rq of a
graphical model (V,D). Upon lifting, they act as building blocks for horizontal curves. The reader
should think of them as analogues of the stabilization in Contact Topology, seen in the Lagrangian
projection.

Remark 4.5.1 We have chosen the name “tangle” because they are reminiscent of tangles in 3-
dimensional Knot Theory [28]. In the classical sense, a tangle (D3, T ) consists of a ball D3 with a
finite number of properly imbedded disjoint arcs T . This allows for the factorisation of knots into
elementary pieces [13].

Our tangles are similar: they are presented as boxes containing a homotopy of curves, with fixed
endpoints. This allows us to attach them to any given family of curves in Rq.

The construction of a tangle amounts to concatenating suitable flows and smoothing the resulting
flowlines, taking care of the embedding condition of the lift. This is a natural approach: afterall, the
bracket-generating condition explains how to produce motion in arbitrary directions by considering
commutators of flows tangent to the distribution. We recommend that the reader takes a quick
look at Appendix 4.9, which recaps some elementary results in this direction. In Subsection 4.5.1
we introduce some further notation about bracket-expressions and concatenating flows.

Pretangles are defined in Subsection 4.5.2. These are simply curves in Rq given as flowlines of
commutators of coordinate vector fields. These curves are just piecewise smooth. In order to address
this, we introduce smoothening. This is done, for simple bracket-expressions, using s-pretangles
(Subsection 4.5.2.2). We then introduce attaching models (Subsection 4.5.3) which will allow us
to smooth out more complicated configurations of curves (Subsections 4.5.4 and 4.5.5). These are
shown to be embedded and we explain how to insert them into existing curves. In Subsection 4.5.6
we explain how to manipulate these models to adjust the lifting of their endpoints.

Tangles are finally introduced in Subsection 4.5.7.

4.5.1 Flows

This subsection introduces some of the notation about flows that will be used later in this section.

4.5.1.1 Concatenation of flows

Let ϕt be a flow, possibly time-dependent. We write

(ϕa→b)t := ϕt+a ◦ ϕ−1
a

for the flow in the interval [a, b], shifted so that ϕa→b
0 is the identity.



Fix a second flow ψt and real numbers a < b and c < d. Then, we define the concatenation of
ϕa→b and ψc→d to be:

(ϕa→b # ψc→d)t :=

{
(ϕa→b)t t ∈ [0, b− a] ,

(ψc→d)t−(b−a) ◦ (ϕa→b)b−a t ∈ [b− a, (b− a) + (d− c)] .

This is a time-dependent flow that is piecewise smooth in t, due to the switch at t = b− a.

In general, given flows (ϕi)i=1,··· ,k and real numbers (ai < bi)i=1,··· ,k we can iterate the previous
construction:

#i=1,··· ,l (ϕi)ai→bi := (#i=1,··· ,l−1 (ϕi)ai→bi) # (ϕk)ak→bk .

4.5.1.2 Generalised bracket-expressions

We now generalise the formal bracket-expressions from Subsection 1.5.0.1. The aim is to consider
iterates of formal bracket-expressions.

Definition 4.5.2 We say that the pair (a, k), written as a#k, depending on the variable a and the
integer k, is a generalised bracket expression of length 1. Similarly, we say that the expression
[a1, a2]

#k, depending on the variables a1, a2 and the integer k, is a generalise bracket expression of
length 2. Inductively, we define a generalised bracket expression of length n to be an expression of
the form

[A(a1, · · · , aj), B(aj+1, an)]
#ℓ, 0 < j < n

with A and B generalised bracket expressions of lengths j and n− j, respectively.

4.5.2 Pretangles and s-pretangles

We now fix a graphical model (V,D). All the constructions in this section take place within it. We
write π : V → Rq for its projection to the base. The framing reads {X1, · · · , Xn}, with {X1, · · · , Xq}
a framing of D lifting the coordinate framing {∂1, · · · , ∂q} of Rq. We write ϕi for the flow of ∂i,
here i = 1, · · · , q. The flow of Xi is denoted by Φi.

4.5.2.1 Pretangles

The following construction produces time-dependent flows that are iterates of a given commutator:

Definition 4.5.3 Let A = [a, b]#m be a generalised bracket expression of length 2. Let ϕ and ψ be
flows. We define

A(s) :=

((
ϕ0→ s√

m

)
#
(
ψ0→ s√

m

)
#

(
ϕ−1
0→ s√

m

)
#

(
ψ−1
0→ s√

m

))#m

.

The superindex #m denotes concatenating the described commutator m times.

We can introduce an analogous definition for bracket expressions of greater length, inductively:

Definition 4.5.4 Let B = [a1, A(a2, · · · , al)]m a generalised bracket expression. Consider flows
(ϕi)i=1,··· ,l. Then we denote:



B(s) :=

((
ϕ0→ s√

m

)
#A(s/

√
m)#

(
ψ−1
0→ s√

m

)
#A(s/

√
m)−1

)#m

.

The following is the main definition of this subsection:

Definition 4.5.5 Let A be a generalised bracket-expression with ϕ1, · · · , ϕℓ as inputs. An integral
curve, depending on the parameter s, of the flow defined by the expression A(s) is called a
pretangle. We will denote such a curve by γA(s).

4.5.2.2 S-pretangles

We will introduce the notion of S-pretangles, where the “s” stands for “smooth”.

We can describe a way of smoothing the corners where the previously defined pretangles failed
to be smooth. We will define two different ways of smoothing a corner. Define first the following
time-dependent vector field:

Y
(i,j),δ
t :=

δ − t

δ
·Xi +

t

δ
·Xj , t ∈ [0, δ] .

Denote by si,j0→δ the flow associated to the vector field Y
(i,j),δ
t . Note that the concatenation of

flows ϕi0→η−δ/2 # si,j0→δ # ϕjδ/2→τ or, in short, ϕi0→η−δ/2 #δ
i,j ϕ

j
δ/2→τ , can be made C∞−close to

ϕi0→η#ϕ
j
0→τ by taking δ small enough:

ϕi0→η−δ/2 #
δ
i,j ϕ

j
δ/2→τ

||·||C∞−−−−→
δ→0

ϕi # ϕj .

Figure 4.8: Schematic description of ϕi0→t−δ/2#
δ
i,j ϕ

j
δ/2→t. The flow si,jδ provides a way of smoothing

the previously defined concatenation of two given vector field flows.

The flows si,jδ play the role of smoothing the concatenation of two vector field flows when

concatenated in between. Indeed, note that ϕi0→η−δ/2 #
δ
i,j ϕ

j
δ/2→τ is a C∞−flow.

Let us introduce now a different way of smoothing a corner. Denote by δ′ := δ/4−δ/50, δ′′ := δ/25
and δ′′′ = δ/50. Consider the following flow (see Figure 4.9):

dj,iδ := ϕj0→δ′ #
δ′′
j,i ϕ

i
δ′′′→δ′ #

δ′′
i,−j ϕ

−j
δ′′′→δ′ #

δ′′
−j,−i ϕ

−i
δ′′′→δ/4

We now define smooth pretangles γt,δSPT for two given vector field flows ϕit, ϕ
j
t , as the curve in

Figure 4.11, defined as a pretangle for
[
ϕi, ϕj

]
whose corners have been smoothed by using the flows



Figure 4.9: Schematic description of ϕj
0→

√
t−δ/2

#di,jδ #ϕj
δ/2→

√
t
. The flow di,jδ provides a essentially

different way of smoothing the previously defined concatenation of two given vector field flows.

#δ
±i,±j and dj,−i (see the upright corner). A precise formula for the curve can be given. Indeed,

γt,δSPT is an integral curve of the flow:

SPT t,δ
[ϕi,ϕj ]

:= ϕi0→t−δ/2#
δ
i,jϕ

j
δ/2→t−δ/2#d

j,−i
δ #ϕ−i

δ/2→t−δ/2#
δ
−i,−jϕ

−j
δ/2→t−3δ/2#

δ
−j,i#ϕ

i
δ/2→t−δ#

δ
i,−j#

δ
−j,i

We refer to δ as the smoothing parameter of the s-pretangle SPT t,δ
[ϕi,ϕj ]

. (See Figure 4.11,

where an integral curve of such a flow is depicted inside the grey box).

4.5.3 Attaching models

As we saw earlier, pretangles can be interpreted as a local model that can be attached to a family
of curves in the base of a graphical model in order to quantitatively control the endpoints of the
lift (see Proposition 4.5.18). Nonetheless, we face two fundamental problems when we try to do
that: these curves are not smooth. Furthermore, they are not (topologically) embedded and it is
not readily apparent whether their lifts are embedded.

We now introduce some alternate models by carefully modifying our prior constructions. These
models will depend on certain small “smoothing parameters” and will converge to pretangles, in
the C0-norm, as we make these parameters tend to zero.

The general definition reads:

Definition 4.5.6 Let γ : I → Rq be a curve that is integral for a coordinate vector field Xi in the
adapted frame. We call an attaching model with axis ∂i the choice of:

i) a size η > 0,

ii) two attaching points p1 = γ(t1), p2 = γ(t2) at distance dg(p1, p2) = 2η,

iii) a hypercube B(η) ⊂ Rq, called the box of the model, of side 2η so that p1 and p2 are in opposite
faces of B.

iv) a curve β with endpoints p1, p2 satisfying:

iv.a) its image lies inside B(η).

iv.b) The curve γ̃ : I → Rq defined as γ̃|I\[t1,t2] = γ|I\[t1,t2], γ̃|[t1,t2] = β is continuous. If it has
Cr regularity, we say that the model is Cr−regular.



Figure 4.10: Schematic depiction of an attaching model for certain choice of η > 0, attaching
points p1, p2, a hypercube B(η) and a curve β.

4.5.3.1 Pretangle models

A concrete instance of Definition 4.5.6 to be used in the next section reads:

Definition 4.5.7 Let A be a generalised bracket expression of the form
A(ϕi, · · · , ϕn) = [ϕi, B(ϕℓ, · · ·ϕn)]#k with inputs flows ϕi, · · · , ϕn, and where B is a bracket
expression of smaller length. A pretangle model associated to A is an attaching model where the
curve β : [t1, t2] → Rq inside the box satisfies:

� it is a pretangle for t ∈ (t1 + ϵ, t2 − ϵ),

� it coincides with the straight segment in the direction ∂i joining p1, p2 for t ∈ (t1, t1+ϵ)∪(t2−ϵ, t2).

We call length of the pretangle model the length of the pretangle inside the box.

Figure 4.11: Pretangle model.



4.5.4 Length-2 tangle models

We now introduce the building blocks of the main objects of interest in the section. We present
first a specific type of attaching model that we call basic length 2 tangle model. These are meant
to be better behaved than pretangle models, whose regularity is only C0.

Definition 4.5.8 Let A be a generalised bracket expression of the form
A(ϕi, · · · , ϕn) = [ϕi, B(ϕℓ, · · ·ϕn)]#k with inputs flows ϕi, · · · , ϕn, and where B is a bracket
expression of smaller length. A length-2 base tangle model associated to A is the attaching
model described by Figure 4.12.

The curve βδ : [t1, t2] → Rq inside the box is immersed and satisfies:

� it is a smooth pretangle SPT µ,δ
[ϕi,ϕj ]

for t ∈ (t1 + ϵ, t2 − ϵ),

� it is δ−close to the straight segment in the direction ∂i joining the points p1, p2 for t ∈ (t1, t1 +
ϵ) ∪ (t2 − ϵ, t2),

� the size of the box of the attaching model is µ+ 2δ.

We say that δ is the smoothing parameter of the model.

Whenever it is clear from the context we will refer as the tangle to the curve β in the tangle model.

Figure 4.12: Length 2 base tangle model. The curve inside the box is a smooth pretangle SPT µ,δ
[ϕi,ϕj ]

for t ∈ (t1 + ϵ, t2 − ϵ) and coincides with the straight segment in the direction ∂i joining the points
p1, p2 elsewhere.

Remark 4.5.9 Note that any length 2 pretangle model can be C0−approximated by a length 2 base
tangle model by taking the smoothing parameter δ small enough.

4.5.4.1 Birth homotopy for length-2 base tangle models

We first state the following result:

Proposition 4.5.10 Assume [Xi, Xj = B(X1, · · · , Xℓ)] = Xz. Denote by αz be the covector dual
to Xz.



Then, any curve γ : S1 → Rq enclosing area A in the plane R2 = ⟨∂i, ∂j⟩ lifts to D as a curve
γ̃ : [0, 1] → Rn satisfying ∫

γ
αz = A (1 +O(r)) .

Proof. Denote by Γ(γ̃(1),γ̃(0)) the oriented segment connecting the points γ̃(1) and γ̃(0). Denote by
β := γ̃#Γ(γ̃(1),γ̃(0)) the concatenation of the curves γ̃ and Γ(γ̃(1),γ̃(0)). Note that∫

β
αz = −

∫
Γ(γ̃(1),γ̃(0))

αz

and, thus, this integral measures the difference of the ∂z-coordinate values of the points γ̃(1) and
γ̃(0).

Consider a topological disk Dγ̃ bounded by β and whose boundary gets projected to γ in the
projection onto the plane ⟨∂i, ∂j⟩. By Stokes’ theorem,∫

β
αz =

∫
Dγ̃

dαz.

By Cartan’s formula we have that

dαz(Xi, Xj) = αz ([Xj , Xi]) .

Thus, if we particularize this equation at the point p ∈M , we get that

dαz(p)(Xi(p), Xj(p)) = 1,

and it vanishes when evaluated at any other combination of two elements of the framing associated
to the coordinate chart. Thus, the 2−form dα coincides with dxi ∧ dxj in the origin at the level of
0−jets. As an application of Taylor’s Remainder Theorem we get that∫

Dγ̃

dαz =

∫
Dγ̃

dxi ∧ dxj +O(r) = A+A ·O(r),

yielding the claim. □

Our goal is to present a homotopy that introduced a length-2 base tangle. The following statement
holds:

Proposition 4.5.11 (Birth homotopy for length-2 base tangle models) Let Xi, Xj be two
elements in the adapted framing such that [Xi(p), Xj(p)] = Xℓ(p). Let γ : [−δ, δ] → Rq be a
horizontal curve in a graphical model.

There exists a homotopy of embedded horizontal curves (γu)u∈[0,1] such that:

i) γ0 = γ.

ii)π ◦ γ1|[−δ/2,δ/2] is endowed with a length-2 base tangle model associated to the generalised bracket
expression [ϕi, ϕj ].

iii)π ◦ γu(t) = π ◦ γ(t) for t ∈ Op({−δ, δ}) and all u ∈ [0, 1].

Property iii) guarantees that this homotopy, when projected into the base, is relative to both
endpoints. This, in particular, implies that the lifted homotopy γu through horizontal curves is also
relative to the starting point.



Proof. We construct the homotopy in the base; i.e. we will define π ◦ γu and, being the lifting onto
the connection unique, the claim will follow.

Since iterated models are constructed iteratively on the base length 2 model, it suffices to show
the result for that the latter. We first locally homotope π ◦ γ to an integral curve for Xi in the
base, any segment around γ(t0) is as described by the first frame in Figure 4.13. Consider the local
isotopy of immersed cuves in the base described by the Figure 4.13.

Figure 4.13: Birth homotopy for a length 2 base tangle model T t
[ϕi,ϕj ]

.

The first three depicted frames in the movie correspond to the isotopy (π ◦ γu)u∈[0,
1
2
], while the

fourth one completes it to (π ◦ γu)u∈[0,1].

Points i), ii) and iii) readily follow from the isotopy taking place in the projected plane ⟨∂i, ∂j⟩.
Therefore all we have to check is that embeddedness holds when we lift the curve to D. We will
verify that any pair of intersection points taking place in the base (at most two pairs, depending
on the value of u ∈ [0, 1]) lift to different points upstairs.

Note that this fact can be achieved trivially if the rank of the distribution D is greater than 2,
since we can use an additional coordinate ∂z in order to perform the homotopy while remaining
embedded already in the base. This fact is depicted in Figure 4.14, where it is shown how to avoid
any crossing in the 3−plane ⟨∂i, ∂j , ∂z⟩ during the isotopy.

Figure 4.14: Increase of the additional coordinate ∂z during the homotopy in order to achieve
embeddedness in distributions D of rank greater than 2.

So, let us assume that the distribution is of rank 2 and, thus, because of dim(M) > 3 and the
bracket-generating condition, we can assume that either [Xi(p), Xℓ(p)] = Xz(p) or [Xi(p), Xℓ(p)] =



Xz(p), where Xz is some other element in the adapted frame. Without loss of generality, we assume
[Xi(p), Xℓ(p)] = Xz(p).

Let us denote by (π ◦ γu(t1), π ◦ γu(t2)) the 1−parametric family of pairs of points corresponding
to the upper-right autointersection in the homotopy in Figure 4.13. By Proposition 4.5.10 the
difference in the values of the ∂ℓ-coordinate between the liftings of the points π◦γu(t1) and π◦γu(t2)
is Au (1 +O(r)), where Au is the area enclosed by the curve π ◦ γu|[t1,t2] in the plane ⟨∂i, ∂j⟩.
Therefore for a sufficiently small choice of r > 0, Au (1 +O(r)) is a positive number.

Denote by (π ◦ γu(t′1), π ◦ γu(t′2)) the 1−parametric family of pair of points corresponding to the
other autointersection in Figure 4.13. If the lifting γ|[t′1,t′2] of the curve π ◦ γ|[t′1,t′2] projects onto the
plane ⟨∂i, ∂ℓ⟩ as an opened curve then we are done, since this means that the ∂z-coordinates of the
points γu(t′1) and γ

u(t′2) are different.

Otherwise, we get a closed loop that encloses area Bu in the plane ⟨∂i, ∂ℓ⟩ and that implies that,
again by Proposition 4.5.10, π ◦ γ(t′1) and π ◦ γ(t′2) differ an ammount of Bu (1 +O(r)) in the
∂ℓ-coordinate. We conclude then that the ∂ℓ-coordinates of the liftings of both points are different
by the same argument as above.

Properties i), ii) and iii) are satisfied by construction.

Figure 4.15: When we look at the projection of the curve into the plane ⟨∂i, ∂ℓ⟩ we get a closed
loop that encloses area Bu.

Remark 4.5.12 Note that we can inductively choose two attaching points q1, q2 inside a length 2
base tangle model and a box whose boundary intersects the curve only at q1, q2 as in Figure 4.16.
This way, we can insert to the given model another length 2 base tangle model (see Figure 4.16)
which is 2δ−close, in the C0−norm, to the given one. We call k times nested length 2 tangle
curves with smoothing parameter δ to the curve obtained after repeating this process k times.



Figure 4.16: Length 2 base tangle model on the left with two marked attaching points q1, q2 and a
choice of box for inserting another length 2 base tangle model inside. On the right, a 2 times nested
length 2 tangle curve.

4.5.4.2 Iterated length-2 tangle models

We introduce now a variation on the previously defined model:

Definition 4.5.13 A k−times iterated length-2 tangle model associated to the generalised
bracket expression [ϕi, ϕj ]

#k with inputs ϕi, ϕj is an attaching model described by Figure 4.16. Note
that the curve inside the box satisfies:

� it coincides with the straight segment in the direction p1, p2 for t ∈ (t1, t1 + ϵ) ∪ (t2 − ϵ, t2),

� the curve β inside the box is a k times nested length 2 tangle curve with smoothing parameter δ.

� the size of the box of the attaching model is µ+ 2δ,

Note that a length-2 base tangle model is just a 1−time iterated length 2 tangle model.

Remark 4.5.14 A key remark is the following one: note that as τ, δ → 0, any k-times iterated
length 2 tangle model converges to an also k-times iterated pretangle model in the C0-norm.

Their birth homotopy is explained in the following proposition:

Proposition 4.5.15 Let Xi, Xj be two elements in the adapted framing such that [Xi(p), Xj(p)] =
Xℓ(p). Let γ : [−δ, δ] → Rq be a horizontal curve in a graphical model. There exists a homotopy of
embedded horizontal curves (γu)u∈[0,1] such that:

i) γ0 = γ.

ii)π ◦ γ1|[−δ/2,δ/2] is endowed with a k−times iterated length-2 tangle model associated to the

generalised bracket expression [ϕi, ϕj ]
#k.

iii)π ◦ γu(t) = π ◦ γ(t) for t ∈ Op({−δ, δ}) and all u ∈ [0, 1].

Proof. The claim follows by inductively applying Proposition 4.5.11 starting from the outermost
curve.



4.5.5 Tangle models of higher length

Consider a bracket expression of the form A(ϕ1, · · · , ϕm) = [ϕi, B(ϕr, · · · , ϕℓ)] with flows ϕ1, · · · , ϕm
as inputs. A length-m base tangle model is an attaching model associated to A. It is described
inductively on its length, which is the length of A. The inductive step is described in Figure 4.17.

Figure 4.17: Length N > 2 base tangle model. The grey boxes represent tangle models of size ρ > 0
of one unit smaller length. The real numbers τ, ρ are called smoothing parameters associated to
the inductive step and are all greater than all the smoothing parameters defined in previous steps.
The direction ∂j is associated to the coordinate flow ϕj , which is the first entry appearing in the
generalised bracket expression A, different from ϕi.

The grey boxes in Figure 4.17 represent tangle models of size η > 0 associated to the expression
B(ϕr, · · · , ϕℓ). The direction ∂j is associated to the coordinate flow ϕj , which is the first entry
appearing in the generalised bracket expression A, different from ϕi. All the model, except for
the pieces inside the grey boxes, is described in the plane ∂i, ∂j . The real numbers τ, ρ are called
smoothing parameters associated to the inductive step and are all greater than all the smoothing
parameters defined in previous steps.

For length-N tangle models, we can also choose two attaching points q1, q2 and a box (2τ−close
in the C0−norm to the outermost box) in such a model and iterate the construction, in the same
fashion as in length 2, thus constructing another model over the given one.

Remark 4.5.16 Note that as all the smoothing parameters of any k-times iterated length n tangle
model tend to zero, the model converges to a pretangle model in the C0-norm. Indeed, it is clear
that the result is true for length 2 models (See Remark 4.5.14). On the other hand, assuming that
the grey boxes in Figure 4.18 contained pretangle models instead of tangle models, observe that as
τ and ρ tend to 0, the whole construction would converge to a pretangle model. Combining both
facts the claim follows. We call the pretangle model associated to the tangle model to such
a pretangle model.



Figure 4.18: Length N > 2 base tangle model on the left with two marked attaching points q1, q2
and a choice of box for inserting another length N base tangle model inside. On the right, a 2 times
iterated length N tangle curve.

4.5.5.1 Birth homotopy for higher length tangle models

The birth homotopy is given by the following result:

Proposition 4.5.17 Consider a bracket expression A(ϕ1, · · · , ϕm) with inputs the flows
ϕ1, · · · , ϕm. Consider

π ◦ γ : [−δ, δ] → Rq

a family of curves given by a horizontal lift γ.

Then, there exists a homotopy of embedded horizontal curves (γu)u∈[0,1] such that:

i) γ0 = γ.

ii)π ◦ γ1|[−δ/2,δ/2] is endowed with a k−times iterated length-n tangle model associated to the
generalised bracket expression A.

iii)π ◦ γu(t) = π ◦ γ(t) for t ∈ Op({−δ, δ}) and all u ∈ [0, 1].

Proof. It is easy to construct the homotopy in the base by defining π◦γu. The length n case iterated
model (Figure 4.18) reduces to the non-iterated model (Figure 4.17) since the birth homotopy for
the former can be constructed inductively by using the birth homotopy of the latter.

Note that the birth homotopy for the non-iterated length nmodel can be constructed inductively.
Indeed, assume we already now how to introduce length n − 1-models of sufficiently small size at
any given point of a curve and proceed as follows. We first homotope the given curve in the box to
the curve in Figure 4.17) (but omitting the grey boxes). Now we perform the birth homotopies for
the n− 1 tangle models in the grey boxes and we are done.

The base case corresponds to the case of length 2-tangle models, which we already explained
how to do (See Proposition 4.5.11).



4.5.6 Area isotopy

Associated to a 2−length tangle realizing the bracket [Xi, Xj ], we have a notion of increasing or
decreasing its “area” just by geometrically increasing or decreasing the area enclosed by the tangle
in the ⟨∂i, ∂j⟩ plane. In a sense, the increasing/decreasing of such area parametrizes (controls) the
increase of the ∂z coordinate of the lifted curve (where ∂z = [Xi, Xj ] and Xk the lif of ∂k). We will
extend this notion of area controlling for higher length tangle expressions.

Assume ∂z(p) = A(X1, · · · , Xn)(p) in a graphical model based at p ∈ M with len(A) = λ. The
following statement allows us to estimate how a pretangle controls the endpoint:

Proposition 4.5.18 A pretangle γA(µ) into the graphical model associated to the generalised
bracket-expression A(ϕ1s, · · · , ϕns ) lifts to the distribution as a curve γ̃ : [0, 1] → Rn where the
difference between the endpoints γ(1)− γ(0) is µλ (∂z +O(r)).

Proof. By Proposition 4.9.9 (Subsection 4.9) the following equality holds

A
(
φX1
t , · · · , φXλ

t

)
= εtλ ◦ ϕA(X1,··· ,Xλ)

tλ
.

On one hand we have that ∂z(p) = A(X1, · · · , Xn)(p) and, thus, by Taylor’s Remainder Theorem
we have that for nearby points q ∈ Op(p) the following equality holds

A(X1, · · · , Xn)(q) = ∂z +O(r)

The notation ∂z +O(r) denotes a ∂z plus some vector of size O(r); i.e. not necessarily collinear to
∂z. Combining both inequalities:

A
(
φX1
t , · · · , φXλ

t

)
(q) = εtλ ◦ ϕ∂z+O(r)

tλ
= tλ · (∂z +O(r)),

where the error associated to εtλ has been incorporated by O(r). Now taking t = µ implies the
claim.

The lifting of a curve into a connection does not depend on its reparametrization. Therefore,

Definition 4.5.19 By Proposition 4.5.18, we have associated to a pretangle A(µ) a real number
µλ which is independent of its reparametrization and that we call its total area.

Let γ : I → Rq be a curve in the base of the graphical model equipped with a pretangle model
associated to A with attaching points γ(t1) = q1 and γ(t2) = q2

Corollary 4.5.20 The curve γ equipped with the pretangle model lifts to the distribution as a curve
γ̃ : [0, 1] → Rn where the difference between the endpoints γ̃(1) and γ̃(0) is µλ (1 +O(r)) · ∂z.

Definition 4.5.21 We define the total area of a pretangle model as the total area of the
pretangle in the model.

4.5.6.1 Area isotopy for pretangle models

We now describe a way of increasing/decreasing the total area of a given pretangle model by
appropriately manipulating it.

Assume that the generalised bracket expression A is of the form
A(ϕi, · · · , ϕn) = [ϕi, B(ϕℓ, · · ·ϕn)]#k with inputs flows ϕi, · · · , ϕn, where B is a bracket expression



of smaller length. Let r > 0 be the total number of times that ϕi appears as an entry in the
expression A(ϕi, · · · , ϕn). Consider a pretangle model PMA associated to A with box a
hypercube B ⊂ Rq and total area µλ.

Take coordinates in Rq in such a way that the hypercube B has its center at the origin. Take
a bump function ψ : Rq → [0, 1] in Rq with support Op(M1/r · B), where M1/r · B denotes the
hypercube with side M1/r times the one of B. M denotes the size of the maximal box onto which
we can extend B.

Definition 4.5.22 We define the Area isotopy (Ψu)u∈[1,M ] of the pretangle model PMA as:

(Ψu)u∈[0,M ] : Rq −→ Rq

x = (x1, · · · , xi, · · · , xq) 7−→ (x1, · · · , ψB(x) · (u)1/rxi, · · · , xq)

The upcoming proposition explains how the Area isotopy Ψu ◦γ applied to the curve γ equipped
with the pretangle model PMA behaves with respect to endpoints.

It follows from a combination of Proposition 4.5.18 together with a routinary inductive argument
based on Proposition 4.5.10:

Proposition 4.5.23 (Endpoint of lifted pretangle models under the Area isotopy) Ψu ◦
γ lifts to the distribution as a curve γ̃u : [0, 1] → Rn where the difference between the lifts of the
attaching points γ̃(t1) and γ̃(t2) is (u · µλ) (∂z +O(r)).

4.5.6.2 Area isotopy for tangle models

We have explained so far how the Area isotopy controls the displacement of the lifted endpoints of
pretangle models. Nonetheless, we can extend the discussion to tangle models.

Recall that as all the smoothing parameters of any tangle model tend to zero, the model converges
to a pretangle model in the C0-norm (see Remark 4.5.16). We call the total smoothing parameter
of a given tangle model to the real number δ := maxi{δi}, where {δi}i is the set of all smoothing
parameters of a given tangle model. Then, we have that in the limit case where δ → 0, tangle
models converge to pretangle models in the C0-norm.

Definition 4.5.24 We define the total area of a tangle model as the total area of its associated
pretangle model.

We can analogously define the Area isotopy for a tangle model:

Definition 4.5.25 We define the Area isotopy for a tangle model as the Area isotopy of its
associated pretangle model.

As a consequence of the whole discussion until this point we deduce the following key result:

Proposition 4.5.26 (Endpoint of lifted tangle models under the Area isotopy) Let
γ : I → Rq be a curve equipped with a tangle model associated to A with attaching points
γ(t1) = q1 and γ(t2) = q2. Then, Ψ

u ◦ γ lifts to the distribution as a curve γ̃u : [0, 1] → Rn where
the difference between the lifts of the attaching points γ̃u(t1) and γ̃u(t2) is
(u · µλ) (∂z +O(r)) (1 +O(δ)).

Remark 4.5.27 Note that, as the radius r of the graphical model gets close to zero, the quantity
(1 + O(r)) becomes close to 1. The same phenomenon holds when the total smoothing parameter



Figure 4.19: Schematic description of a length 3 tangle model. The transition from the second frame
to the first one represents the isotopy Ψu acting on the model. The long segments Xi get expanded
while the length 2 subtangle models do not get expanded nor shrunk.

δ of the tangle model gets close to zero, (1 + O(δ)) becomes close to 1. Therefore, in the limit,
adjusting the endpoints of lifted tangle models is practically equivalent to adjusting the endpoints of
the corresponding lifted pretangle models.

4.5.7 Tangles

Let Xj be an element in the framing of TV , with A a bracket-expression generating it. We assume
that A is of the form [ϕi, B(−)]#k. Consider the following data:

� a size R > 0,

� a curve γ : [0, 1] → Rq parallel to ∂i

� two attaching points γ(t1) = q1 and γ(t2) = q2

Then there exists a tangle model T M, associated to the bracket-expression A, and endowed with:

� Total area µλ (determined by R).

� Smoothing parameter δ > 0.

� A birth homotopy for T M, parametrised by θ ∈ [0, 1] and given by Proposition 4.5.17.

� An area isotopy (Definition 4.5.22) parametrised as d 7→ Ψ (d/µλ).

� An upper bound h :=Mµλ for the area isotopy.

We now put together all the ingredients introduced in this section:

Definition 4.5.28 An Xj-tangle is a family of curves

T : (0, h]× [0, 1] −→ Imm([0, 1];Rq)

given by the previously introuced tangle model T M. It is parametrised by

� an estimated-displacement d ∈ (0, h] that governs the area isotopy,



� the birth-parameter θ ∈ [0, 1].

The number h is called the maximal-displacement of the tangle.

4.5.7.1 Error in the displacement

The following statement bounds the difference between the estimated-displacement and the actual
displacement of the endpoint upon lifting a tangle:

Lemma 4.5.29 Lift the tangle T using Lemma 4.4.3. Then the following estimate holds:

lift(T (d, 1))(1) = lift(T (0, 1))(1) + (0, · · · , 0, d, 0, · · · , 0) +O(r + δ)d,

where r is the radius of the graphical model and δ is the smoothing parameter of the tangle.

The proof is immediate from Proposition 4.5.26.

4.6 Controllers

In the previous Section 4.5 we introduced the notion of tangle. The purpose of a tangle is to displace
the endpoint of a horizontal curve in a given direction. In this section we introduce the notion of
controller. This is a sequence of tangles, located one after the other, in order to be able to control
the endpoint of a curve fully.

In Subsection 4.6.1 we talk about general (finite-dimensional) families of horizontal curves. The
goal is to discuss their endpoint map and make quantitative statements about their controllability.
We then particularise to controllers (Subsection 4.6.2), which are specific families of horizontal
curves built out of tangles. The process of adding a controller to a horizontal or ε-horizontal curve
is explained in Subsection 4.6.3.

4.6.1 Controllability

We introduced the notion of regularity in Subsection 4.1.1. This meant that the endpoint map of the
horizontal curve under consideration was an epimorphism, which should be understood as a form
of infinitesimal controllability (every infinitesimal displacement of the endpoint can be followed by
a variation of the curve). In this Subsection we pass from infinitesimal to local.

4.6.1.1 Controlling families

For our purposes we need to work on a parametric setting. Fix (M,D), a manifold endowed with
a bracket-generating distribution, and a compact fibre bundle E → K. We write Ek for the fibre
over k ∈ K.

Given a family of horizontal curves

γ : E −→ Maps([0, 1];M,D)

we have evaluation maps ev0, ev1 : E −→ M defined by the expression eva(e) := γ(e)(a). We
require that ev0 is constant along the fibres of E.



Definition 4.6.1 The family γ is controlling (in a manner fibered over K) if ev1|Ek
is a

submersion for all k ∈ K.

Given a section f : K → E we can produce a family γ ◦ f : K → Maps([0, 1];M,D). We say that
γ ◦ f is controllable and that γ is a controlling extension. That is, we are interested in γ ◦ f
and we think of the controlling family γ as a device that allows us to control its endpoints.

4.6.1.2 Controllability

It is immediate from the parametric nature of the implicit function theorem that this implies local
controllability:

Lemma 4.6.2 Given a controlling family γ and a section f : K → E, there are constants C, η0 > 0
such that:

� for any 0 < η < η0,

� and any smooth choice of endpoint qk ∈ Dη(γ ◦ f(k)(1)) (disk of radius η around γ ◦ f(k)(1)),

there exists a section g : K → E such that:

� g and f are homotopic by a homotopy of C0-size at most Cη.

� γ ◦ g(k)(1) = qk.

Furthermore, if qk = γ ◦ f(k)(1), it can be assumed that g(k) = f(k).

The following variation which follows from the inverse function theorem will be useful for us:

Lemma 4.6.3 Let γ be a controlling family such that its evaluation map ev1|Ek
is an

equi-dimensional embedding for all k ∈ K. Let q : K → M with q ∈ ev1(Ek). Then, there is a
unique section f : K → E such that γ(f(k))(1) = q(k).

4.6.1.3 Existence of controlling families

The following statement follows from standard control theoretical arguments:

Lemma 4.6.4 A family of regular horizontal curves γ : K −→ Maps([0, 1];M,D) admits a
controlling family.

In the non-parametric case, this was proven in [68, Proposition 4 and Corollary 5]. The proof
amounts to choosing infinitesimal variations (given by the regularity condition) and integrating
these to a controlling family. The parametric case was then proved in [89, Section 8] and requires
to patch these variations parametrically in k ∈ K. The idea is that the infinitesimal variations can
be “localised” in [0, 1] by an appropriate use of bump functions. This can be exploited to show that
variations do not interfere with each other when patching.



4.6.2 Defining controllers

A controller will depend on the following input data: a graphical model (V,D), a
maximal-displacement h > 0, a radius R > 0, a size-at-rest S (this will be introduced later, it is
just a name for the parameter), and a smoothing-parameter δ. Recall that π : V → Rq is the
projection to the base in the model and we have a framing {X1, · · · , Xn} of TV such that
{X1, · · · , Xq} is a framing of D obtained as a lift of the coordinate framing of Rq.

4.6.2.1 Setup

We consider the cube C = [−R,R]q ⊂ Rq and we write γ : [0, 1] → C for the curve γ(t) =
(2Rt − R, 0, · · · , 0) parametrising its first coordinate axis. We call it the axis of the controller to
be built. For each vertical direction i = q + 1, · · · , n in the model, we define a pair of points

xi,+ = γ

(
i− q

n

)
, xi,− = γ

(
i− q

n
=

1

2n

)
,

that are meant to serve as insertion points for tangles. We fix a box Ci,± centered at xi,± and of
side 1/4n. In this manner all the boxes are disjoint.

For each i = q + 1, · · · , n, we insert (Proposition 4.5.17) a (±Xi)-tangle at xi,±; we denote
it by T i,±. The radius of these tangles should be smaller than the side 1/4n, so that they are
contained in the boxes Ci,±. We require that the maximal-displacement of the tangles is 2h. We

write T j,±
d,θ whenever we need to include their estimated-displacement d and birth parameter θ in

the discussion. We use δ as their smoothing-parameter.

4.6.2.2 The definition

The estimated-displacement of T i,+ pushes positively along Xi by an amount in the range (0, 2h].
Similarly, the estimated-displacement of T i,− pushes along −Xi. We want to combine these two
displacements in order to produce motion in theXi-direction in the range [−h, h]. To do so, we recall
the size-at-rest S parameter that we fixed earlier, and we consider a bump function χS : R → [0, 1]
satisfying

χS(−∞, S] = S, χS |[2S,∞)(a) = a, χ′
S |(S,2S) > 0.

Definition 4.6.5 A controller is a family of curves

C : [−h, h]n−q × [0, 1] −→ Imm([0, 1];C ⊂ Rq)

parametrised by:

� a estimated-displacement d = (dq+1, · · · , dn) ∈ [−h, h]n−q,

� and a birth parameter θ ∈ [0, 1].

Each curve C(d, θ) is obtained from γ by inserting

T i,+
χS(di),θ

at xi,+, T i,−
χS(di),θ

at xi,−.

In particular, C(d, θ) agrees with γ close to the boundary of C. The controller C depends on the
following parameters:



� the radius R > 0 of the box C that contains it,

� the maximal-displacement h > 0 bounding the estimated-displacement,

� the size-at-rest S that defines the interpolating function χS,

� the smoothing-parameter δ > 0 of its tangles.

4.6.3 Insertion of controllers

Let (V,D) be a graphical model and K a compact manifold that serves as parameter space.

Proposition 4.6.6 Let the following data be given:

� a family γ : K → Emb([0, 1];Dr ⊂ V,D),

� a maximal-displacement 0 < h < 2r,

� a k-disc A ⊂ K,

� a time t0 ∈ (0, 1),

� a constant η > 0 and a sufficiently small τ > 0,

� a sufficiently small radius R > 0, size-at-rest S > 0, and smoothing-parameter δ > 0.

Then, assuming that r is sufficiently small, there are:

� a function θ : K → [0, 1] that is identically one on the τ -neighborhood of A ντ (A) and zero in
the complement of ν2τ (A),

� a family γ̃ : K × [−h, h]n−q × [0, 1] → Emb([0, 1];V,D),

such that the following statements hold:

� γ̃(k, d, 0) = γ(k).

� γ̃(k, d, s)(t) = γ(k)(t) if t ∈ Op(0).

� π ◦ γ̃(k, d, s)(t) = π ◦ γ(k)(t) outside of ν2τ (A)× ν2τ (t0).

� The length of γ̃(k, d, s) in the region ν2τ (t0) \ ντ (t0) is bounded above by η.

� For all k ∈ ντ (A), all t ∈ ντ (t0), and all s ∈ [1/2, 1], it holds that

π ◦ γ̃(k, d, s)(t) = C(d, (2s− 1)θ(k))

(
t− t0 − τ

2τ

)
+ π ◦ γ(k)(t0).

Here the left summand of the right-hand-side is a reparametrised and translated copy of the
controller C with radius R, size-at-rest S, maximal-displacement h, and smoothing-parameter δ.

The family γ̃ is said to be obtained from γ by inserting the controller C along A. The last item
asserts that C has been inserted. The other items provide quantitative control for the insertion.

Proof. We first homotope the family γ in the vicinity of A × {t0} in order to align its projection
with the axis of the controller C. This follows from an application of Lemma 4.4.10. We denote the
resulting homotopy of ε-horizontal curves by β(k, s)|s∈[0,1/2]. When we apply Lemma 4.4.10, we use
a constant τ > 0 such that: β(k, s) agrees with γ(k, s) outside of ν2τ (A) × ν2τ (t0). Furthermore,
over ντ (A) × ντ (t0), the projection π ◦ β(k, 1/2) agrees with a translation of the axis of C. The



desired bound η tells us how small τ must be chosen. In particular, it should be small enough so
that len(β(k, s)) is bounded above by len(γ(k)) + η/2.

We then apply Lemma 4.4.3 to β, relative to t = 0. This yields a family of horizontal curves
γ̃(k, d, s)|s∈[0,1/2] such that π ◦ γ̃(k, d, s) = π ◦ β(k, s). Thanks to the bound η and the fact that γ
is horizontal, we can invoke Lemma 4.4.4 to assert that γ̃(k, d, s) is indeed defined for all t ∈ [0, 1].
Due to the uniqueness of lifts, γ̃(k, d, 0) = γ(k). We denote γ′(k) = γ̃(k, d, 1/2).

By construction, over ντ (A)× ντ (t0), π ◦ γ′ agrees with a translation of the axis of C. Our choice
of τ determines the length of the curves π ◦ γ′ in the region ντ (A) × ντ (t0). This is the available
length for placing the axis of the controller. As such, it provides an upper bound for our choice of
R. We then define

π ◦ γ̃|k∈ντ (A), t∈ντ (t0), s∈[1/2,1]

using the formula appearing in the last item of the statement. For other values of k and t, we set
π ◦ γ̃(k, d, s) = π ◦ γ′(k).

The family γ̃(k, d, s)|s∈[1/2,1] itself is given from its projection by lifting horizontally. This is
done with Lemmas 4.4.3 and 4.4.4. Here is where the smallness of r enters. It must be sufficiently
small to control the error in the estimated-displacement of C (which amounts to the error in the
estimated-displacement of its tangles; Lemma 4.5.29). How small r must be depends only on the
graphical model (V,D). It follows that r being small enough implies that a lift exists for all times
and, due to the properties of tangles, it yields embedded curves.

4.6.3.1 Controllability

We now address how the insertion of a controller allows us to control the endpoint of the
corresponding horizontal curves.

Lemma 4.6.7 Consider the setup and conclusions of Proposition 4.6.6. Consider the endpoint map

ep : K × [−h, h]n−q −→ Rn−q

defined by ep(k, d) := π| ◦ γ̃(k, d, 1)(1). Then the following estimate holds:

ep(k, d) = γ(k) + (0, d)(1 +O(r) +O(δ))

for all k ∈ A.

Proof. This is immediate from the analogous statement about tangles, namely Lemma 4.5.29.

As in Lemma 4.3.5 we can be more precise and say that there is a constant C, depending only on
the graphical model, such that the error is bounded above by C.(r + δ). It follows that imposing
δ, r << 1/C implies that ep(k,−) is an equidimensional embedding whose image contains a ball of
radius h/2, centered at γ(k).

4.6.3.2 Insertion in the ε-horizontal case

For our purposes, we will need the following variation of Proposition 4.6.6:

Lemma 4.6.8 Let r, h, A, t0, η, R, S, and δ be as in Proposition 4.6.6. Given
γ : K → Embε([0, 1];Dr ⊂ V,D), there is a family γ̃ : K × [−h, h]n−q × [0, 1] → Emb([0, 1];V ) such
that:



� γ̃(k, d, 0) = γ(k).

� γ̃(k, d, s) = γ(k) outside of ν2τ (A)× ν2τ (t0).

� The length of γ̃(k, d, s) in the region ν2τ (t0) \ ντ (t0) is bounded above by η.

� For all k ∈ ντ (A), all t ∈ ντ (t0), and all s ∈ [1/2, 1], it holds that

π ◦ γ̃(k, d, s)(t) = C(d, (2s− 1)θ(k))

(
t− t0 − τ

2τ

)
+ π ◦ γ(k)(t0).

Proof. We use Lemmas 4.4.3 and 4.4.4 to horizontalise γ, yielding some family γ′. We apply to it
Proposition 4.6.6, yielding a family γ̃′ that is also horizontal. We then adjust its vertical component
to yield the claimed γ̃. Due to the displacement introduced by the controller, it may be the case
that γ̃ is not ε-horizontal. However, it is still graphical over Rq.

4.7 h-Principles for horizontal embeddings

In this section we prove our main Theorem 1.2, the classification of regular horizontal embeddings.
This uses all the tools that we have presented in previous sections. The corresponding statement for
immersions, Theorem 1.1, will follow from simplified versions of the same arguments. In Subsection
4.7.5 we explain how this is done.

4.7.1 Relative version of Theorem 1.2

We explained in Section 4.2 that our h-principle arguments are relative in nature. This allows us to
state an analogue of Theorem 1.2 that deals with embedded regular horizontal paths and is relative
in parameter and domain.

Proposition 4.7.1 Let K be a compact manifold. Let I = [0, 1]. Let (M,D) be a manifold of
dimension dim(M) > 3, endowed with a bracket–generating distribution. Suppose we are given a
map γ : K → Embε(I;M,D) satisfying:

� γ(k) ∈ Embr(I;M,D) for k ∈ Op(∂K).

� γ(k)(t) is horizontal if t ∈ Op(∂I).

Then, there exists a homotopy γ̃ : K × [0, 1] → Embε(I;M,D) satisfying:

� γ̃(k, 0) = γ(k).

� γ̃(k, 1) takes values in Embr(I;M,D).

� The homotopy is relative to k ∈ Op(∂K). Also, γ̃(k, s)(t) = γ(k)(t) for all k, s and for all
t ∈ Op(∂I).

� γ̃(k, s) is C0-close to γ(k) for all s ∈ [0, 1].

Do note that the analogous statement where we consider formal horizontal embeddings instead of
ε-horizontal ones follows from this one, thanks to the results in Subsection 4.2.2.

Now, as usual, the absolute statement follows from the relative one:



Proof ( of Theorem 1.2 from Proposition 4.7.1). The statement follows, according to Subsection
4.2.2, from the vanishing of the relative homotopy groups of the pair

(Embε(M,D), Embr(M,D)).

Consider a family γ : Da → Embε(M,D) that takes values in Embr(M,D) along Sa−1. This
represents a class in the ath relative homotopy group. We must deform this family to lie entirely
in Embr(M,D).

We may assume, by suitable reparametrisation in the parameter, that in a collar of Sa−1, the
family γ is radially constant. This provides for us an open along the boundary of Da in which all
curves are regular horizontal. We then consider the product space Da × S1 (this S1 factor is the
domain of each loop) and we make the curves γ horizontal in a neighbourhood of the slice Da×{1},
using Lemma 4.4.8. This is a C0-small process.

Regarding Da×S1 as Da×I/ ∼ yields a family of ε-horizontal paths, horizontal at the endpoints,
with all curves regular close to ∂Da. We apply Proposition 4.7.1 to it, relatively to Op(Sa−1) in the
parameter, and relatively to Op(∂I) in the domain. The claim follows.

The remainder of this section is mostly dedicated to the proof of Proposition 4.7.1.

Figure 4.20: Choosing the time slice Da×{1} identifies the product Da×S1 with Da× [0, 1], allowing
us to apply Proposition 4.7.1.

4.7.2 Setup for the proof of Proposition 4.7.1

Given the family of curves γ, we will produce a series of homotopies in order to obtain γ̃(−, 1).
These elementary homotopies are relative to the boundary and through ε-horizontal curves. Their
concatenation will be the homotopy γ̃.

We denote dim(M) = n, rank(D) = q, and dim(K) = k. We write πK and πI for the projections
of K × I to its factors. We fix a metric on K, endow I with the euclidean metric, and endow the
product K × I with the product metric. We will write d(−,−) to denote distance between subsets;
the metric used should be clear from context.

4.7.2.1 A fine cover of K × I

Our first goal is to subdivide K × I in a manner that is nicely adapted to (M,D) and γ. The aim
with this is to reduce our subsequent arguments to constructions happening in very small balls in



which errors are controlled. No homotopy of γ is produced in this subsection, we are just doing
some preliminary work.

Introduce a size parameter N ∈ N, to be fixed as we go along in the proof. We divide I into
intervals Ij of length 1/N . Furthermore, we fix a finite cover of K by charts parametrised by the
unit cube. Such cubes can themselves be divided into cubes of side 3/N , spaced along the coordinate
axes as 1/N . We write

{ϕi : [0, 3/N ]k −→ Ui ⊂ K}

for the resulting collection of cubical charts.

4.7.2.2 Bounding the number of intersections between charts

By construction, there is a constant C1 such that any intersection Ui1 ∩· · ·∩UiC1
, involving distinct

charts, is empty. This follows from the properties of cubical subdivision; a detailed argument can
be found in Section 5.4.3 of this Thesis.

4.7.2.3 Covering the image by graphical models

Given the origin k ∈ K of the chart Ui and the initial time tj := j/N ∈ Ij , we fix an adapted chart
(Vi,j , Ψi,j) centered at γ(k)(tj). These adapted charts are given by Lemma 4.3.5, meaning that they
all have the same radius r0 > 0 and the difference between their framing and the coordinate axes
is controlled by some constant C2 > 0.

4.7.2.4 Discussion about parameters

The constants C1, C2, and r0 are given to us and depend on (M,D) and the family γ. For
convenience, we introduce new parameters 0 < r1 < r0 and 0 < l, to be fixed later in the proof.
We impose 1/N << r1, l in order to ensure that:

γ(k)(t) ∈ Ψi,j(Dr1) for all (k, t) ∈ Ui × Ij (4.2)

Ψ−1
i,j ◦ γ(k)|Ij has euclidean length bounded above by l (4.3)

I.e. the curves in each cube Ui × Ij are very short and are located very close to the origin of the
corresponding graphical model.

4.7.3 Introducing controllers

Our next goal is to add controllers to γ over each cube Ui × Ij . We continue using the notation
introduced in the previous subsection. We write νr(A) for the r-neighbourhood of a subset A.

4.7.3.1 Boundary neighbourhoods

We fix a small enough constant τ > 0 so that all curves γ(k) with k ∈ ντ (∂K) are horizontal and
regular. We then consider a constant τ/2 < τ ′ < τ and a subset U of the cover {Uj × Ii} so that:



� the elements of U , together with ντ ′(∂(K × I)), cover K × I,

� all elements in U are disjoint from ντ/2(∂(K × I)).

Figure 4.21: The cover U , together with the boundary neighbourhoods of radii τ and τ/2. A
controller is shown in one of the Ui × Ij .

4.7.3.2 Introducing controllers

Given Ui × Ij ∈ U , we choose a time ti,j in the interior of Ij . We require that these are all distinct.
We then introduce a controller Ci,j (Lemma 4.6.8) along Ui × {ti,j}. We write:

� S for the size-at-rest of all the controllers.

� η > 0 for the size of the neighbourhood of Ui ×{ti,j} in which the controllers are contained. If η
is sufficiently small, the controllers do not interact with one another.

Later on in the proof we will use the estimated-displacement of the Ci,j , one pair (i, j) at a time. For
now we write γ′ for the K-family of ε-horizontal curves that has the estimated-displacement of each
controller at 0. Do note that S must be small enough to guarantee ε-horizontality. Furthermore, γ′

is homotopic to γ through ε-horizontal curves, relative to the complement of all ντ (Ui × {ti,j}).

There is now a subtlety that we need to take care of: some of the Ci,j enter the region ντ (∂(K ×
I)), destroying the horizontality condition there. This cannot be addressed using the controllers
themselves, since the collection {Ui} does not cover ντ (∂K) completely. We address it instead using
regularity. Note that this is not a technical point: due to the phenomenon of rigidity (Subsection
4.1.1), the usage of regularity at this stage cannot be avoided.



4.7.3.3 Horizontalisation

The family γ′ is horizontal over Op(∂K), but not necessarily over the whole band ντ (∂K), due
to our insertion of controllers. To address this, we reintroduce horizontality, at the cost of losing
control of the endpoints. Namely, given µ > 0, any sufficiently small size-at-rest S will guarantee
that there is a family of horizontal curves (α(k))k∈ντ (∂K) that satisfies:

i.
∣∣α− γ|ντ (∂K)

∣∣
C0 < µ.

i’. len(α(k)) < len(γ(k)) + µ.

ii. α is homotopic to γ|ντ (∂K) through horizontal curves.

iii. This homotopy is relative in the parameter to ντ/2(∂K).

iii’. The homotopy is relative to {t = 0} in the domain.

The family α is constructed inductively, one chart Ui×Ij at a time, increasingly in j, and arbitrarily
in i. The inductive step consists of using each adapted chart (Vi,j , Ψi,j) to see γ′|Ui×Ij as a family
of curves in the graphical model Vi,j . We can then apply the lifting Lemma 4.4.3 to the projection
π◦γ′|Ui×Ij . The lifting process can be completed over [0, 1] because a small S means that π◦γ′|Ui×Ij

is close to π ◦ γ|Ui×Ij . This also justifies Conditions (i) and (i’). The families are homotopic to one
another via the birth of the controller, proving Condition (ii). Lastly, projecting and lifting leaves
horizontal curves invariant, proving Conditions (iii) and (iii’).

We now choose µ small enough so that the bounds provided by Conditions (i) and (i’) allows us
to invoke the interpolation Lemma 4.4.5. This allows us to interpolate through ε-horizontal curves
between α and γ′ in the region {τ ′ < d(k, ∂K) < τ}. The resulting family of curves α′:

� agrees with γ′ in the complement of ντ (∂K),

� agrees with γ in ντ/2(∂K),

� is horizontal in ντ ′(∂K),

� contains controllers along Ui × {ti,j}.

The issue is that α(k)(1) may be different from γ′(k)(1) = γ(k)(1) in the region {τ/2 < d(k, ∂K) <
τ ′}. This is a feature of the lifting process. Nonetheless, according to Lemma 4.4.3, the endpoints
are µ-close.

4.7.3.4 Controllability

By hypothesis, the curves γ|ντ (∂K) are horizontal and regular. It follows that γ|ντ (∂K) is a
controllable family3, according to Lemma 4.6.4. We deduce that there are constants c, δ > 0 such
that any δ-displacement of their endpoints can be followed by a homotopy of the curves
themselves, through horizontal curves, that is cδ-small.

We claim that the family α′|ντ ′ (∂K) is also controllable, with constants 2c and δ/2, as long as
S is sufficiently small. Indeed, consider the variations F of γ that yield controllability. Then, the
homotopy lifting property, applied to F and the homotopy of horizontal curves connecting γ|ντ ′ (∂K)

with α′|ντ ′ (∂K), yields corresponding variations for small values of the homotopy parameter. They
exist for the whole homotopy if µ is assumed to be sufficiently small.

3 Do note that ντ (∂K) is not compact but, since τ is arbitrary, we can take a slightly smaller compact neighbourhood
of ∂K and carry the argument there.



Then, assuming that S is sufficiently small, we have that µ < δ/2 and we can use the
controllability of α′|ντ ′ (∂K) to yield a family γ′′ : K → Embε(I;M,D) that:

� agrees with γ in Op(∂(K × I)).

� is horizontal and regular if k ∈ ντ ′(∂K).

� has a family of controllers, still denoted by {Ci,j}, along Ui × {ti,j}.

The situation is depicted in Figure 4.22.

Figure 4.22: For each element in the cover U , a controller has been introduced. These are shown as
green thin rectangles. Close to the boundary, some controllers (in red) enter its τ -neighbourhood.
Horizontality is reestablished using the variations given by local controllability.

4.7.3.5 Discussion about parameters

In this subsection we added controllers {Ci,j} to the family γ. Each curve γ(k) crosses at most N.C1

controllers; here C1 is the upper bound for the intersections between elements in {Ui}. Inserting
the controllers produces a deformation α of γ|ντ ′ (∂K) through horizontal curves. This deformation
displaces the endpoints an amount µ, which we can estimate. For each controller inserted, the
endpoints move a magnitude O(S), the size-at-rest. This implies that µ is bounded above by
O(S) ·N · C1.

Furthermore, in Subsection 4.7.2 we showed that γ satisfies the size estimates given in Equations
4.2 and 4.3, involving r1 and l. We want α and thus γ′ to satisfy these as well. To this end, the
C0-distance between γ, α, and γ′ must be much smaller than r1 and l.

These considerations force the choice S << 1/N << l, r1.

4.7.4 Using the controllers

In this subsection we complete the proof of Proposition 4.7.1. The idea is to use projection and
lifting to replace γ′′ by a family of horizontal curves β, whose endpoints are incorrect. The endpoints
will then be adjusted thanks to the presence of controllers.

4.7.4.1 Horizontalisation

Much like in the proof of Theorem 1.2, we first apply Lemma 4.4.8 to γ′′ at each time tj = j/N ∈ I.
This can be done in a C0-small way, through ε-horizontal curves, by making the newly created
horizontal region sufficiently small. This is relative to ντ ′(∂K) in the parameter. The resulting



family is denoted by γ0. The proof now focuses on a concrete interval Ij ; the argument is identical
for all of them.

4.7.4.2 Horizontalisation again

We have a family γ0 with values in Embε(Ij ;M,D) that along the boundary of K×Ij is horizontal.
Suppose 1/N is sufficiently small. We can argue as in Subsection 4.7.3.3 to construct a K-family β
with values in Emb(Ij ;M,D) such that:

� β(k) = γ0(k) if d(k, ∂K) ≤ τ ′.

� β(k)(t) = γ0(k)(t) if t ∈ Op({tj}).

� Write π for the projection to the base given by each graphical model Vi,j . Then, the C
∞-closeness

of π ◦ β and π ◦ γ0 is controlled by S.

� In particular, the two families are homotopic through ε-horizontal curves.

In particular, the controllers of the family γ0 define controllers for β. We still denote them by
{Ci,j}i. The goal now is to use these to produce a homotopy of horizontal curves between β and
the claimed γ̃|K×{1}.

4.7.4.3 Adjusting the endpoint over one chart

The difference e = |γ0(k)(tj+1)−β(k)(tj+1)| is certainly bounded above by r1. However, as explained
in Subsection 4.3.2.1, it can also be bounded above by C2 · r1 · l. It follows that we should impose
l << 1/(C2 · r1) to make e much smaller than r1. By making this choice, Equations 4.2 and 4.3
hold for β.

We now perform induction on i to correct this difference. We start with the base case i = 1,
so we work over the chart U1. Adjusting the estimated-displacement of the controller C1,j yields a
homotopy of horizontal curves

β̃ : U1 ×A ⊂ Rn−q −→ Emb(Ij ;M,D)

with β̃(k, 0) = β(k). The variable a ∈ A measures the endpoint displacement introduced by the
controller vertically. We package this as an endpoint map

β̃(−,−)(tj+1) : U1 ×A −→ Rn−q

which satisfies the following error estimate:

β̃(k, a)(tj+1) = β(k)(tj+1) + a · (1 + C3 · (r1 + |a|+ δ)).

According to Lemma 4.3.5, the constant C3 appearing as the coefficient of the error term (r1+ |a|)
is independent of the adapted chart and thus independent of the controller. This forces us to choose
δ, r1 << 1/C3. The quantity |a| will be of magnitude e and thus smaller than r1.

This choice tells us that β̃(k,−)(tj+1)|D2r1
is an embedding whose image contains Dr1 , for all

k ∈ V1. In particular, it contains the desired endpoint γ0(k)(tj+1). The inverse function theorem

(Lemma 4.6.3) defines for us a unique function a : V1 → D2r1 so that β̃(k, a(k))(tj+1) = γ0(k)(tj+1).

We now cut-off the function a, in order to make the construction relative to the boundary of
U1× Ij . Fix a constant ρ > 0 and write Wi ⊂ Ui for a domain covering Ui up to a ρ-neighbourhood



of its boundary. We require that the family {Wi} is an open cover of K \ ντ ′(∂K). This imposes
ρ << 1/N, τ . This allows us to introduce a cut-off function χ1 : K → [0, 1] that is one in W1 and
zero along ∂U1. We set β1(k) := β̃(k, χ(k).a(k)). This is a family of horizontal curves such that:

� β1(k) is horizontal.

� β1 is homotopic to β as maps into Emb(Ij ;M,D).

� The base projections of β1(k) and γ0(k) agree for all k ∈ Op(∂U1).

� β1(k) and γ0(k) agree over t ∈ Op(∂Ij), for every k ∈W1.

The third property allows us to homotope β1 to a family γ1 : U1 → Embε(Ij ;M,D) that is horizontal
over W1 and agrees with γ0 in Op(∂U1). We can then use γ0 to extend γ1 to a family K →
Embε(Ij ;M,D). The two are homotopic, relative to endpoints and to the complement of U1, thanks
to the second property and the fact that β was the horizontal lift of γ0.

4.7.4.4 The inductive argument

The i0-th inductive step follows the exact same argument. It produces a family
γi0 : K → Embε(Ij ;M,D) that is horizontal over the union ∪i≤i0Wi. The observation to be made
is the following. Suppose Ui0 intersects non-trivially some previous Ui. Then, in the overlap
Ui0 ∩ Wi, we have that the family γi0−1 is already horizontal over Wi. It follows that the
associated horizontal family β agrees with γi0−1 over Wi, due to the uniqueness of horizontal lifts.
In particular, when we use the controller Ci0,j to produce a fully controllable family over Wi0 , we
see that no adjustments must be made over Wi, since the endpoint is already correct there. This
is immediate from the uniqueness provided by the inverse function theorem.

Since the Wi cover K \ ντ (∂K), the inductive argument produces the required homotopy γ̃. The
proof of Proposition 4.7.1 is complete.

4.7.4.5 Final discussion about constants

Two quantities are left to be controlled which we will do in this section. The first is the error
accumulated by the controllers. This was proportional (Lemma 4.6.7) to the radius of the
graphical models (and could therefore be controlled by r1 and by the smoothing parameter δ).
The other quantity is the C0-distance e between β and γi−1 (particularly at their endpoints). This
was controlled by setting l << r1.

We note that the embedding condition enters the discussion only in the choice of r1. Namely:
once the error of the controllers has been bounded, it follows that the horizontal curves produced
by the controller are indeed embedded. See Lemma 4.6.7.

The summary is that we require the chain of inequalities δ << S << 1/N << l << r1. □

Remark 4.7.2 The reader experienced in h-principles may wonder why we do not use a
triangulation of K × I, in general position with respect to πK , to argue. Indeed, this would have
the added advantage of localising our arguments to balls that do not interact with one another.
This was not the case in the proof we presented.

The issue with the triangulation approach is that we would have to make a first homotopy that
makes our curves horizontal along the codimension-1 skeleton. This is certainly possible, but we



Figure 4.23: The inductive process. In the ith step of the induction we introduce horizontality over
the regionWi, in dark blue. Appropriate cut-off functions have been introduced in Ui\Wi (light red)
to make this homotopy relative to the boundary of the model. At a later stage, we consider some
Ui0 overlapping with Wi. In the overlap, the step i0 homotopy is constant, thanks to horizontality.

have no guarantee that the produced curves are themselves regular. This is absolutely necessary,
since we need to be able to introduce controllers at the bottom of each top-cell.

In fact, this can be made to work. The local integrability of micro-regular curves (i.e. curves
that are in particular regular over any interval) was proven in [89, 16], which would allow us to
produce regular curves along the skeleton. However, it seemed preferable to us to keep the proof
self-contained and not invoke additional results. □

4.7.5 Other h-principles for horizontal curves

We now discuss how the proof of Theorem 1.2 adapts to prove Theorems 1.19 and 1.3.

Proof (of Theorem 1.19). The absolute statement can be reduced to proving the relative h-principle
over the interval (i.e. the analogue of Proposition 4.7.1). The proof of the relative statement is
identical to the one we presented for embeddings. The reader can check that the proof goes through
line by line. Instead, it is more interesting to point out how the proof simplifies for immersions.

First note that the construction of tangles (Section 4.5) and controllers (Section 4.6) is less
involved if we do not need to take care of self-intersections. In particular, we do not need to develop
all the explicit models shown in Figures 4.14 and 4.15. Similarly, in Subsection 4.7.4.5, we do not
need to control errors in order to ensure the controller produces embedded curves.

This crucial difference explains why the statement for immersions goes through in dim(M) = 3.
Achieving embeddedness parametrically was not possible in dimension 3, but one can certainly
produce tangles and controllers that are immersed.

Similarly:

Proof (of Theorem 1.3). The statement reduces once again to the h-principle for horizontal paths,
relative both in parameter and domain. We now indicate the differences with respect to the proof
of Proposition 4.7.1.

First: since there is no first order formal data, we do not need to set up a convex integration
argument to achieve ε-horizontality. Second: we use the covering arguments as they appear in



Subsection 4.7.2 but we run into issues in Subsection 4.7.3, when we try to introduce controllers. In
Proposition 4.6.6 we explained how to introduce them when our curves are embedded/immersed,
which may not be the case here. To address this, we use the “stopping trick”; see Figure 4.24. We
explain it next.

Given a smooth horizontal arc γ : [a, b] → (M,D), we can precompose it with a non-decreasing
map ϕ : [a, b] → [a, b] that is the identity at the endpoints and is constant in Op({(a+ b)/2}). Since
ϕ is homotopic to the identity rel boundary, it defines a homotopy between γ and a horizontal curve
γ ◦ψ whose parametrisation is stationary at the middle point. The curve γ ◦ψ is thus regular. Even
more: suppose ν : [0, 1] → (M,D) is some other horizontal curve with ν(0) = γ ◦ψ((a+ b)/2). Then
γ ◦ ψ is homotopic to a smooth horizontal curve γ′ whose image is the concatenation

(γ ◦ ψ|[(a+b)/2,b]) • ν • (γ ◦ ψ|[a,(a+b)/2]).

Since ν is arbitrary, it may be chosen to be a curve contained in a graphical model around γ ◦
ψ((a+ b)/2) and projecting to the base as whatever direction we require.

The conclusion is that any family γ : K −→ L(M), horizontal at the boundary, can also be
assumed to be regular along ∂K, up to a homotopy through horizontal curves. Furthermore, it can
be assumed to be immersed whenever controllers need to be introduced. This concludes the proof.

Figure 4.24: The stopping trick. The space of horizontal loops is extremely flexible. Any family can
be homotoped to a regular family by introducing stationary points in the parametrisation. This
allows us to introduce controllers.

4.8 h-Principle for transverse embeddings

In this section we prove Theorem 1.5, the classification of transverse embeddings.

4.8.1 The relative h-principle

The h-principle for transverse paths, relative in parameter and domain, reads:

Proposition 4.8.1 Let K be a compact manifold. Let I = [0, 1]. Let (M,D) be a manifold of
dimension dim(M) > 3, endowed with a bracket–generating distribution of corank 1. Suppose that
we are given a map γ : K → EmbT

f (I;M,D) satisfying:

� γ(k) ∈ EmbT (I;M,D) for k ∈ Op(∂K).

� γ(k)(t) is positively transverse if t ∈ Op(∂I).

Then, there exists a homotopy γ̃ : K × [0, 1] → EmbT
f (I;M,D) satisfying:

� γ̃(k, 0) = γ(k).



� γ̃(k, 1) takes values in EmbT (I;M,D).

� this homotopy is relative to k ∈ Op(∂K) and to t ∈ Op(∂I).

� γ̃(k, s) is C0-close to γ(k) for all s ∈ [0, 1].

Observe that we do not assume that D is cooriented. We will be able to pass to the cooriented case
(and thus use ε-transverse embeddings) during the proof.

Proof (Proof of Theorem 1.5 from Proposition 4.8.1). We must prove the vanishing of the relative
homotopy groups of the pair

(EmbT
f (M,D), EmbT (M,D)).

Given a family γ representing a class in the a-th relative homotopy group, we must deform it to
lie entirely in EmbT (M,D). Close to ∂Da the family is transverse because transversality is an open
condition. We then fix a slice Da × {1} ⊂ Da × S1 and apply the transversalisation Lemma 4.4.13
to γ there. This reduces the argument to a family of paths and thus to Proposition 4.8.1.

We henceforth focus on the proof of Proposition 4.8.1

4.8.2 The first triangulation step

We are given a family of formally transverse curves γ. Our first goal is to pass to the ε-transverse
setting. To do so, we will produce a very fine subdivision of K × I so that we can work over balls
in (M,D). We can then use the local coorientability of D to introduce ε-transversality.

4.8.2.1 Triangulating

We subdivide K × I using a triangulation T . This should be compared to the proof of Proposition
4.7.1, which used a different scheme to localise the arguments to little balls. The reason was
explained in Remark 4.7.2: Triangulating K × I would have led to issues due to the phenomenon
of rigidity for horizontal curves. However, there is no rigidity for transverse curves because they
are defined by an open condition.

In order to produce a triangulation, we proceed as follows. We pick a small constant τ > 0
so that γ is transverse over ντ (∂(K × I)). We choose a closed domain A ⊂ K × I such that
{A, ντ (∂(K × I))} covers K × I. We ask that ∂A is smooth. We then apply the jiggling Corollary
4.4.2 to (A,Ker(dπK)). We do not need to introduce further subdivisions, we simply choose T fine
enough so that each top-cell ∆ ∈ T is mapped by γ to an adapted chart of (M,D).

According to Lemma 4.4.1, the following holds: a simplex ∆ is either transverse to the vertical or
is contained in ∂A. In the latter case, γ is already transverse in Op(∆). It follows that we can apply
Lemma 4.4.14 to γ, along the codimension-1 skeleton, in a manner relative to ∂A. This yields a
homotopy of formal transverse embeddings, relative to ∂A, between γ and a family γ1. The family
γ1 is transverse on a neighbourhood of the codimension-1 skeleton.



4.8.2.2 ε-transversality

Let ∆ ∈ T be a top-cell. Since γ1 maps it to to an adapted chart (V, Φ), we have that γ1|∆ takes
values in a manifold endowed with a coorientable distribution. Furthermore, since γ1|∆ is formally
transverse, it defines a preferred coorientation for D|Φ(V ).

According to Lemma 4.4.1, the top-cells of T are homotopic to flowboxes, meaning that there is
a fibre-preserving embedding

Ψ : Dk × [0, 1] −→ ∆ ⊂ A ⊂ K × I

whose image covers most of ∆. In particular, the boundary of this embedding may be assumed to
be contained in the region where γ is transverse.

The conclusion is that Φ−1 ◦ γ1 ◦ Ψ is a family of formally transverse curves that:

� takes values in a cooriented graphical model (V,DV ),

� is transverse over Op(∂(Dk × [0, 1])).

This implies that we can apply the h-principle for ε-transverse curves (Subsection 4.2.4) to Φ−1 ◦
γ1 ◦ Ψ , yielding a family γ2 : Dk −→ EmbT

ε([0, 1];V,DV ) that is (positively) transverse over
Op(∂(Dk × [0, 1])).

We have one such family per top-cell ∆. Furthermore, their domains are disjoint. This implies
that it is sufficient for us to work with each γ2 individually, homotoping them through ε-transverse
curves (and relative to ∂(Dk × [0, 1])) to a family of transverse curves.

4.8.3 The second triangulation step

Let us explain how the remainder of the proof goes, morally. Our goal is to apply the case of
horizontal embeddings. The reasoning is that, whenever the curves γ2(k) are graphical over DV ,
we can flatten them to make them almost horizontal, which will then allow us to manipulate them
through the use of controllers. In order to project towards DV , we use the projection π : Rn → Rq

to the base of the graphical model.

There are two issues with this idea. The first is that the family γ2 may have uncontrolled length,
since it was produced by the h-principle for ε-transverse curves. To address this, we will triangulate
again to pass to small balls. The other issue will be explained afterwards.

4.8.3.1 Triangulating again.

We proceed as above, applying the jiggling Lemma 4.4.1 to γ2 and (Dk × [0, 1],Ker(dπ[0,1])). We
obtain a sequence of triangulations Tb inducing a triangulation of the boundary (do note that it has
corners, but this is not an issue). We fix b as in the horizontal case (Subsection 4.7.2): each simplex
∆ should have diameter bounded above by 1/N << l, r1. In this manner, γ2(∆) is contained in an
adapted chart (U, Ψ) of radius r1 and each curve in γ2|∆ has length at most l from the perspective
of the corresponding graphical model U . We still refer to these conditions as Equations 4.2 and 4.3.

We now apply Lemma 4.4.13 to γ2, along the codimension-1 skeleton of Tb. This shows that γ2
is homotopic, relative to the boundary, to a family γ3 that is transverse along the codimension-1
skeleton. This is a C0-small process that does not increase the length of the curves much. It follows
that the conditions given by Equations 4.2 and 4.3 apply to γ3 as well.



As we did earlier, we can embed a copy of Dk × [0, 1] into each top-simplex, in a fibered manner,
in such a way that its boundary lies in the region where γ3 is transverse. These domains do not
interact with one another, so we argue on each of them separately.

4.8.3.2 Triangulating one more time

We now encounter the second issue. We cannot flatten γ3 to make it almost horizontal along the
locus

Σ := {(k, t) ∈ Dk × [0, 1] | dπ(γ3(k)′(t)) = 0}.

That is, the locus where the velocity vector becomes vertical. Nonetheless, using Thom
transversality [39, p. 17], we can assume that Σ is a closed submanifold of Dk × [0, 1].

Figure 4.25: Schematic representation of Dk × [0, 1]. The blue band represents a neighbourhood of
the boundary. The thin green curve is the vertical locus Σ. Its neighbourhood W is shown in red.
The region B is a slight thickening of the complement.

The family γ3 is vertical along Σ and ε-transverse in general. It follows that γ3 is positively
transverse on a neighbourhood W ⊃ Σ. We can therefore find a closed subdomain B ⊂ Dk × [0, 1],
disjoint from W , whose smooth boundary lies in the region where γ3 is transverse. See Figure 4.25.

We can then proceed as above, applying Lemma 4.4.1 to γ3 and (B,Ker(dπ[0,1])). We do not
need the resulting triangulation T ′ to be thin, since we already achieved quantitative control in
the previous subdivision. Applying Lemma 4.4.13 shows that γ3 is homotopic, relative to ∂B, to a
family γ4 that is transverse along the codimension-1 skeleton. This is a C0-small process.

We henceforth argue on each top simplex separately, relative to the boundary. The punchline is
that we have a family

γ4 : Dk −→ EmbT
ε([0, 1]; ,DU ),

that is transverse along the boundary. Here (U,DU ) is the graphical model of radius r1 that we
fixed earlier (and that we used to discuss verticality). Each curve of γ4 has length bounded above
by l. Since we avoided Σ, we can assume that each curve γ4(k) is graphical over DU .



4.8.4 End of the argument

Choose τ > 0 small enough so that γ4 is transverse in a τ -neighbourhood of the boundary of
Dk × [0, 1]. We can apply Corollary 4.4.9 to γ4 along the slice D = Dk

1−τ/2 × {τ/2}, in order to

yield a family that is almost transverse in Dk × [0, τ ] and horizontal in Op(D). This allows us to
introduce a controller C along D; see Lemma 4.6.8. The resulting family is called γ5. It consists of
embedded curves as long as r1 was sufficiently small (Lemma 4.6.7).

We now adjust the estimated-displacement of C in order to obtain an almost transverse family
γ6 such that

e = |γ6(k)(1− τ)− γ5(k)(1− τ)|

is small. We require that
e << h = |γ5(k)(1)− γ5(k)(1− τ)| .

If that is the case, we can invoke the fact that γ5(k) is transverse in the interval [1− τ, 1], to extend
γ6(k) to a curve that is transverse in [1 − τ, 1] and agrees at the end with γ5(k). This preserves
embeddedness.

The proof concludes invoking Lemma 4.4.11, which adds a C1-small perturbation to γ6 to yield
a family that is transverse. □

Proof (of Theorem 1.19). The proof follows from the same arguments. As we already observed
for horizontal embeddings, handling the controller becomes easier in the immersion case, since
self-intersections do not need to be avoided. Because of this reason, the statement also holds in
dimension 3.

4.9 Appendix: Technical lemmas on commutators

Given a vector field Z on M we write ϕZt for its flow at time t. Given a pair of vector fields X

and Y on M , we want to compare, in a quantitative manner, the flow of their Lie bracket ϕ
[X,Y ]
t

with the commutator of their flows ϕXt and ϕYt . The contents of this appendix will be an important
technical ingredient in the proof of our main theorems.

Given 1–parameter families (not necessarily subgroups) (φt)t∈R and (ψt)t∈R in the
diffeomorphism group Diff(M), we can define in a given local chart the map
[ψ(t), φ(s)] = φs ◦ ψt ◦ φ−1

s ◦ ψ−1
t (x). Note that if we take s = t then this map is the commutator

of the families taken for each time t, and we denote it by [ψt, φt] := [ψ(t), φ(t)].

Lemma 4.9.1 Write X = ∂
∂t

∣∣∣
t=0

ϕt and Y = ∂
∂t

∣∣∣
t=0

ψt and assume ϕ0 = ψ0 = Id. Then the

following statements hold:

i) There exists a 2−parametric family of diffeomorphisms εts = o(ts) (where ε0 = Id4) such that

ψt ◦ ϕs(x) = εts ◦ φX+Y
ts (x)

ii) ∂k

∂tk

∣∣∣
t,s=0

[ψ(t), ϕ(s)](x) = 0 for any k ∈ N,

iii)∂
k

∂sk

∣∣∣
t,s=0

[ψ(t), ϕ(s)](x) = 0 for any k ∈ N,

4 This will be the case whenever we write εts or εt



iv)12
∂2

∂t∂s

∣∣∣
t=0

[ψ(t), ϕ(s)](x) = [X,Y ].

v)There exists a 2−parametric family of diffeomorphisms ε(ts) = o(ts) such that

[ϕt, ψs] = εts ◦ φ[X,Y ]
ts .

Proof. Part i) follows from Taylor’s Remainder Theorem applied to the composition map ψt◦ϕs(x),
ii) and iii) are obvious, iv) follows from the definition of Lie Bracket and v) follows from an
application of Taylor’s Remainder Theorem together with ii), iii) and iv).

Remark 4.9.2 A trivial but rather useful observation that we will eventually make use of is the
following one. If ϕt, ψt, are two flows such that for some 1−parametric family of diffeomorphisms
εt

ϕt = εt ◦ ψt

then εt is also a flow since it is the composition of two flows εt = ψ−1
t ◦ ϕt. Moreover, if ε = o(t),

then there exists another flow ε̃ = o(t) such that

ψt = ε̃t ◦ ϕt.

For this last statement just note that

ϕt = εt ◦ ψt =⇒ ϕt ◦ ψ−1
t = o(t) =⇒ ψt ◦ ϕ−1

t = o(t)

and thus there exists some flow ε̃t = o(t) such that ψt = ε̃t ◦ ϕt.

The following Lemma formalizes how errors inside a commutator of 1−parametric families of
diffeomorphisms can be taken out the bracket expressions when comparing to the flow of the
respective brackets.

Lemma 4.9.3 Consider a flow ε(t) = o(t) and write X = ∂
∂t

∣∣∣
t=0

ϕt, Y = ∂
∂t

∣∣∣
t=0

ψt and assume

ϕ0 = ψ0 = Id. Then there exists a 2−parametric family of diffeomorphisms ε̃(ts) = o(ts) such that

[φX
s , εt ◦ φY

t ] = ε̃ts ◦ φ[A,B]
ts .

Proof. The result follows from a direct application of points i) and v) from Lemma 4.9.1.

Remark 4.9.4 In particular, if we take s = t in this previous lemma, we get that ε̃t2 is an actual
flow, since it is the composition of two flows as in Remark 4.9.2,

ε̃t2 =
(
φ[A,B]

)−1

t2
◦ [φX

t , εt ◦ φY
t ]

The same remark is true for the family εts in v) from Lemma 4.9.1.

Lemma 4.9.5 Consider X = ∂
∂t

∣∣∣
t=0

ϕt, Y = ∂
∂t

∣∣∣
t=0

ψt and assume ϕ0 = ψ0 = Id. Then, if ϕt =

εt ◦ ψt for certain εt = o(t), then there exists some other ε̃t = o(t) such that

ϕt = ψt ◦ ε̃t

Proof. By Lemma 4.9.3 there exists some ht = o(t) such that ht2 ◦ ε−1
t ◦ ψ−1

t ◦ εt ◦ ψt = Id. So, we
have that ht2 ◦ ε−1

t ◦ ψ−1
t = ϕ−1

t . The result follows from taking inverse flows at both side of the
equation.



Lemma 4.9.6 Write X = ∂
∂t

∣∣∣
t=0

ϕt and Y = ∂
∂t

∣∣∣
t=0

ψt and assume ϕ0 = ψ0 = Id. Then we have

the following estimation:
ϕ−1
t ◦ ψs ◦ ϕt = εts ◦ φX+t[X,Y ]

s .

Proof. First, note that

ϕ−1
t ◦ ψs ◦ ϕt = ψs ◦ [ϕt, ψs] = ψs ◦ ε̃ts ◦ φ[X,Y ]

ts = ψs ◦ ε̃ts ◦ φt[X,Y ]
s ,

where the second equality follows by Lemma 4.9.1. Nevertheless, this implies the existence of a

2−parametric family of diffeomorphisms ϵts = o(ts) such that ψs ◦φt[X,Y ]
s ◦ϵts. But, from point i) in

Lemma 4.9.1 applied to the composition ψs ◦φt[X,Y ]
s , there exist some other ϵ̃ts = o(ts), εts = o(ts)

such that
ψs ◦ φt[X,Y ]

s ◦ ϵts = φY+t[X,Y ]
s ◦ ϵ̃ts = εts ◦ φY+t[X,Y ]

s

thus yielding the claim.

Definition 4.9.7 Given two 1−parametric families of diffeomorphisms φs, ψt, we define their k−th
iterated commutator [ψt, φs]

#k as follows

[ψt, φs]
#k :=

((
φ−1

s√
k

)
◦
(
ψ−1

t√
k

)
◦
(
φ s√

k

)
◦
(
ψ t√

k

))k

.

The reason for parametrizing the flows by s√
k
in the definition of iterated commutator is justified

by the following proposition.

Proposition 4.9.8 Write X = ∂
∂t

∣∣∣
t=0

ϕt and Y = ∂
∂t

∣∣∣
t=0

ψt and assume ϕ0 = ψ0 = Id. Then there

exists εt = o(t) such that

[ψt, φs]
#k = εts ◦ φ[X,Y ]

ts

Proof. By the definition of the k−th iterated commutator of flows and by Lemma 4.9.1, there exist
flows ε1t = o(t), · · · , εkt = o(t) such that

[ψt, φt]
#k =

(
ε1ts/k ◦ φ

[X,Y ]
ts/k

)
◦ · · · ◦

(
εkts/k ◦ φ

[X,Y ]
ts/k

)
But by Lemma 4.9.5 there exist flows ε̃1t = o(t), · · · , ε̃kt = o(t) such that(

ε1ts/k ◦ φ
[X,Y ]
ts/k

)
◦ · · · ◦

(
εkts/k ◦ φ

[X,Y ]
ts/k

)
= ε̃1ts/k ◦ · · · ◦ ε̃

k
ts/k ◦

(
φ
[X,Y ]
ts/k

)k
and so the claim follows.

With this battery of technical results at our disposal, we can compare how taking a given bracket
expression behaves with respect to taking flows [79, Theorem 1]. Our case includes the iterated (#m

case) :

Proposition 4.9.9 Let X1, X2, · · · , Xλ be (possibly repeated) vector fields on a manifold M . Then,
for any bracket expression A(−, · · · ,−) of length λ there exists a flow εt = o(t) such that

A
(
φX1
t , · · · , φXλ

t

)
= εtλ ◦ ϕA(X1,··· ,Xλ)

tλ
.

Proof. We proceed by induction on the length of the formal bracket–expression:



� For k = 2 the result holds by Proposition 4.9.8.

� The Induction Hypothesis (IH) says that the statement holds for all expressions of length k′ < k.
By definition, if A(−, · · · ,−) is an expression of length k, there exists i < k and an integer m
such that A(X1, · · · , Xk) = [B(X1, · · · , Xi), C(Xi+1, · · · , Xk)]

#m, with B() of length i and C()
of length k − i. Computing we see that there are flows ft = o(t) and gt = o(t) such that:

A(ϕX1
t , · · · , ϕXk

t ) =
[
B(ϕX1

t , · · · , ϕXi
t ), C(ϕ

Xi+1

t , · · · , ϕXk
t )
]#m

(4.4)

IH
=
[
fti ◦ ϕ

B(X1,··· ,Xi)

ti
, gtk−i ◦ ϕC(Xi+1,··· ,Xk)

tk−i

]#m

By an application of Proposition 4.9.8 first, and by Lemma 4.9.3, there exists a flow εt = o(t)
such that

[
ft ◦ ϕB(X1,··· ,Xi)

ti
, gt ◦ ϕC(Xi+1,··· ,Xk)

tk−i

]#m
= εtk ◦

[
ϕ
B(X1,··· ,Xi)

ti
, ϕ

C(Xi+1,··· ,Xk)

tk−i

]
(4.5)

But, since
[
ϕ
B(X1,··· ,Xi)

ti
, ϕ

C(Xi+1,··· ,Xk)

tk−i

]
= ϕ

A(X1,··· ,Xk)

tk
the result follows from combining (4.4)

and (4.5).





Part III

Spaces of bracket-generating distributions





Chapter 5

Convex integration with avoidance

5.1 Jets and relations

We now introduce jet spaces (Subsection 5.1.1). We put particular emphasis in the geometry
behind principal directions and subspaces (Subsection 5.1.2). This will allow us to discuss
differential relations and over-relations and study them “one direction at a time” (Subsection
5.1.3). In Subsection 5.1.4 we introduce foliated analogues of these concepts; these will be used to
phrase parametric statements in later Sections.

5.1.1 Jet spaces

Given a smooth fibre bundle X →M , we denote by Jr(X) its associated space of r-jets. We have
projections from the space of r-jets to the space of r′-jets, r′ < r:

πrr′ : J
r(X) → Jr′(X).

Furthermore, we write πrM : Jr(X) → M for the base projection. The projection πrr−1 is an affine
fibration. Given a section f :M → X, we write jrf :M → Jr(X) for its r-jet, which is a holonomic
section of jet space.

5.1.1.1 Jet spaces in local coordinates

If we work in a local chart of X, we can identify M with a vector space V and the fibres of X with
a vector space W . Doing so allows us to identify, locally:

Jr(X) ⊃ Jr(V ×W ) ∼= V ×W ×Hom(V,W )× Sym2(V,W )× · · · × Symr(V,W ),

by sending a Taylor polynomial at a given point in V (an element of the right-hand side) to the
jet it represents in Jr(X). Here Symr(V,W ) denotes the space of symmetric tensors of order r (i.e.
homogeneous polynomials) with entries in V and values in W . In particular, we are identifying the
(affine) fibres of πrr−1 with their underlying vector space Symr(V,W ).

5.1.2 Principal subspaces

The following notion formalises the idea of two r-jets that agree except along a pure derivative of
order r:
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Definition 5.1.1 Given a hyperplane τ ⊂ TpM , we say that two sections f, g : M → X have the
same ⊥(τ, r)-jet at p ∈M if

Dp|τ jr−1f = Dp|τ jr−1g,

where Dp|τ means taking the differential at p and restricting it to τ .

When τ is a hyperplane field, the ⊥(τ, r)-jets form a bundle, which we denote by

J⊥(τ,r)(X).

There are affine fibrations:
πr⊥(τ,r) : J

r(X) → J⊥(τ,r)(X),

π
⊥(τ,r)
r−1 : J⊥(τ,r)(X) → Jr−1(X).

In practice, the hyperplane field τ may be defined only over an open subset U of M , but we will
still write J⊥(τ,r)(X) instead of J⊥(τ,r)(X|U ). Given a section f :M → X, we write

j⊥(τ,r)f :M → J⊥(τ,r)(X)

for the corresponding section of ⊥(τ, r)-jets. A section of this form is said to be holonomic.

Definition 5.1.2 The fibers of πr⊥(τ,r) are said to be the principal subspaces associated to τ (and

r). They are all affine subspaces parallel to one another. Given z ∈ Jr(X), we write

Prτ,z := (πr⊥(τ,r))
−1
(
πr⊥(τ,r)(z)

)
for the principal subspace that contains it.

Instead of talking about hyperplanes, it is often convenient to talk about covectors λ ∈ T ∗M .
We then write ⊥(λ, r) := ⊥(Ker(λ), r). When λ is a global 1-form, the bundle J⊥(λ,r)(X) is only
defined in the open set {λ ̸= 0}. However, we can define Prλ,z everywhere by setting Prλ,z = {z} if
λ = 0.

In the context of convex integration, we will attempt to add to f :M → X oscillations of order
r along codirections λ; this will amount to pushing jrf along Prλ,jrf .

5.1.2.1 Principal subspaces in coordinates

As in Subsubsection 5.1.1.1, we use vector spaces V and W as the local models for M and the fibre
of X →M , respectively.

Lemma 5.1.3 Consider a codirection λ ∈ T ∗
0 V and an element z ∈ Jr(V ×W ) lying over 0 ∈ V .

The principal subspace Prλ,z is the image of the affine map:

W −→ Jr(V ×W )
w 7−→ z + λ⊗r ⊗ w.

In particular, the vector subspace underlying Prλ,z is

{λ⊗r ⊗ w | w ∈W} ⊂ Symr(V,W ),

which we call the principal direction Prλ. Do note that the map from Lemma 5.1.3 is defined for
all λ, and in fact varies smoothly with λ, but is an affine isomorphism betweenW and the principal
subspace if and only if λ ̸= 0. An element in Prλ is said to be principal or pure. We recall:



Lemma 5.1.4 Symr(V,W ) admits a basis consisting of principal elements.

The Lemma says that any two elements F,G ∈ Jr(X) lying over the same H ∈ Jr−1(X) differ by
a finite sequence of modifications along principal subspaces of order r. See Figure 5.1.

Figure 5.1: The principal cone in J2(R2,R). We use coordinates (x, y) in the base R2. We identify
the fibre of J2 → J1 with the symmetric bilinear maps Sym2(R2,R); this is what we depict. The
pure directions are then of the form α⊗2, with α ∈ T ∗R2. They are shown forming a blue cone, on
the right hand side. We single out three principal vectors: dx⊗dx, dy⊗dy, and dx+dy√

2
⊗ dx+dy√

2
. The

cone linearly spans the whole fibre, since these three vectors form a principal basis. The vectors
contained in the left-hand-side cone are not principal, as they are of the form −α⊗2.

5.1.2.2 Principal paths

We have formalised the idea that two jets differ from one another along a single pure derivative by
saying that they have same underlying ⊥ (τ, r)-jet. We can similarly define the notion of two jets
differing by a finite sequence of changes along pure derivatives:

Definition 5.1.5 Fix z ∈ Jr−1(X). A principal path over z is a sequence

{Fi ∈ (πrr−1)
−1(z)}i=0,··· ,I

such that Fi+1 − Fi is principal. We say that I is the (principal) length of the path.

Do note that, unless Fi = Fi+1, the pair (Fi, Fi+1) uniquely determines the principal subspace
Prλ,Fi

= Prλ,Fi+1
containing both.

Fix z ∈ Jr−1(X) and set p = πr−1
M (z) ∈ M . According to Lemma 5.1.4, we can fix an ordered

collection of hyperplanes {τi ⊂ TpM}i=0,··· ,I such that the corresponding principal directions span
the fibre (πrr−1)

−1(z) ∼= Symr(V,W ). If this collection is minimal, we say that it is a (principal)
basis; in this case I = dim(Symr(V,R)). It follows that any two elements F,G ∈ (πrr−1)

−1(z) can be
connected by a principal path of length exactly I. Choosing a basis uniquely determines a principal
path between F and G. See Figure 5.2.



Figure 5.2: Any direction in the fibre Jr → Jr−1 can be written in a unique manner once a principal
basis has been fixed. In this example, as in Figure 5.1, we work in J2(R2,R). Its fibre is identified
with Sym2(R2,R) and we fix {(dx + dy) ⊗ (dx + dy), dx ⊗ dx, dy ⊗ dy} as principal basis. This
provides a preferred principal path between any two given vectors. In the figure we show a vector
in green and how it connects to the origin using a path (which in this concrete case is of length 2).

5.1.3 Over-relations

We are interested in finding and classifying solutions of differential relations. More generally, we
define:

Definition 5.1.6 Let X →M be a fibre bundle. An over-relation of order r is a smooth manifold
R endowed with a smooth map

ιR : R → Jr(X),

that we sometimes call the anchor. If ιR is an inclusion, we will say that R is a differential
relation. The over-relation R is said to be open if the map ιR is a submersion.

A formal solution of R is a section F : M → R of πrM ◦ ιR. A formal solution is a genuine
solution if ιR(F ) is holonomic.

Observe that the map πrM ◦ ιR : R → M need not be a fibration if R is open. It is, however, a
microfibration, meaning that the homotopy lifting property holds for small times.

Remark 5.1.7 More generally, Gromov defines open over-relations as those where ιR is a
microfibration [59, p. 175] but not necessarily submersive. Such generality is unnecessary for our
purposes.

A trivial but key observation is the following:

Lemma 5.1.8 Let ιR : R → Jr(X) be an open over-relation and let R′ ⊂ R be an open subset.
Then ιR|R′ is an open over-relation as well.

The main motivating example for our usage of over-relations is the following:

Example 5.1.9 Given an over-relation ιR : R → Jr(X) of order r, the projection

πrr′ ◦ ιR : R → Jr′(X)

is an over-relation of order r′ < r. That is, over-relations are crucial if we want to construct
solutions inductively on r.



Observe that openess of ιR implies openness of R, since the maps πrr′ are submersive.

We need to understand how over-relations ιR : R → Jr(X) relate to our idea of introducing
oscillations along a given principal subspace. Given z ∈ Jr(E), we write

Rτ,z := ι−1
R (Prτ,z)

for the restriction of R to the principal subspace containing z. Given F ∈ R, we write

Prτ,F := Prτ,ιR(F ) Rτ,F := ι−1
R (Prτ,F ).

We use analogous notation when dealing with covectors λ instead of hyperplanes τ .

5.1.4 The foliated setting

One can generalise all the discussion up to this point to differential relations that vary with respect
to a parameter. The language of foliations is convenient for this purpose.

We fix a foliated manifold (N,F) and a bundle Y → N . We write Jr(Y ;F) for the bundle of
leafwise r-jets (i.e. equivalence classes of sections of Y up to r-order tangency along the leaves of
F). Note that Jr(Y ;F) is the disjoint union of all the individual Jr(Y |L), with L ranging over the
leaves of F , endowed with the natural smooth structure.

Apart from the usual projections among these bundles for varying r, we have a forgetful map

πF : Jr(Y ) → Jr(Y ;F),

that just remembers the leafwise jets. In particular, if L is a leaf of F we obtain a projection map
Jr(Y )|L → Jr(Y |L).

A section of Jr(Y ;F) is holonomic if its restriction to each leaf is holonomic. A section F of
Jr(Y ) is leafwise holonomic if the corresponding πF ◦ F |L are holonomic; this is weaker than F
itself being holonomic.

Definition 5.1.10 A foliated over-relation is a map

ιS : S → Jr(Y ;F)

where S is smooth manifold. We say it is open if it is submersive.

We can restrict S to a leaf L of F and yield a (standard) over-relation S|L → Jr(Y |L).

5.1.4.1 Parametric lifts of over-relations

The most important example of foliated over-relation is the following:

Definition 5.1.11 Let X → M be a bundle, ιR : R → Jr(Y ) an over-relation, and K a compact
manifold serving as parameter space. Set N := M ×K and write πM and πK for the projections
mapping to M and K, respectively. Endow N with the foliation F consisting of the fibres of πK .
Set Y := X ×K = π∗MX and S := R×K = π∗MR.

The parametric lift of R to M ×K is the foliated over-relation

π∗M ιR : S → Jr(Y ;F).



Do note that the leaves of F are copies M × {k} of M and, identifying both using πM , we have
that S restricts to R along each M × {k}. Families (Fk)k∈K of formal solutions of M → R are
then equivalent to formal solutions F : N → S. The family (Fk)k∈K consists of holonomic sections
if and only if F is (leafwise) holonomic.

We remark:

Lemma 5.1.12 The parametric lift of an open over-relation is open.

5.1.4.2 Non-foliated preimage

Any ιS : S → Jr(Y ;F) defines an over-relation in Jr(Y ) by pullback. This will be relevant later on,
because it will allow us to rephrase statements about S to statements about the pullback (therefore
reducing the foliated theory to the non-foliated one).

Definition 5.1.13 Let ιS : S → Jr(Y ;F) be a foliated over-relation. Its non-foliated preimage
is the over-relation

S∗ := {(F, z) ∈ S × Jr(Y ) | ιS(F ) = πF (z)},

with anchor map ι∗S : S∗ → Jr(Y ) defined by the expression ι∗S(F, z) := z.

I.e. S∗ is the pullback of Jr(Y ) → Jr(Y ;F) to S. It follows that:

Lemma 5.1.14 The non-foliated preimage of an open, foliated over-relation is open.

5.2 Ampleness and convex integration

In this Section we recall some key ideas behind convex integration. Our goal is not to be
comprehensive, but rather to fix notation and discuss its different incarnations, as introduced by
Gromov [59]. We also borrow from Spring [96] and Eliashberg-Mishachev [39].

We first recall the three standard flavours of ampleness; each of them is the basis of a concrete
implementation of convex integration. Classic ampleness is explained in Subsection 5.2.2. Ampleness
along principal frames (often called ampleness in coordinate directions) is explained in Subsection
5.2.3. Ampleness in the sense of convex hull extensions appears in Subsection 5.2.4.

We then compare them in Subsection 5.2.5. This will clarify how ampleness up to avoidance (to
appear in Section 5.3) fits within this greater context.

5.2.1 Ampleness in affine spaces

We define ampleness for subsets of affine spaces first. We adapt it to relations in jet spaces in
upcoming Subsections.

Definition 5.2.1 Let A be an affine space. Then:

� Let B ⊂ A be a subset. Given b ∈ B, we write Bb for the path-component containing it. We say
that B is ample if the convex hull Conv(B, b) := Conv(Bb) of each Bb ⊂ B is the whole of A.



� Let C be a topological space and ι : C → A be a continuous map. The map ι is ample if
Conv(C, c) := Conv(ι(Cc)) = A for each c ∈ C.

Furthermore, we say that ampleness holds trivially if for each c ∈ C either ι(CC) = ∅ or ι(CC) = A.

A particularly relevant case in the examples to come is the following:

Example 5.2.2 A stratified subset Σ ⊂ Rn of codimension at least 2 is said to be thin. Its
complement is ample. See Figure 5.3.

Figure 5.3: Example of a thin set L ⊂ R3. Any point in L is a convex combination of points in the
complement. One such example is shown in the image, where three black points in R3 \L convexly
generate a point in L (surrounded by red lines).

Not all ample subsets have thin complements. The following example shows an ample subset
whose complement has codimension one:

Example 5.2.3 The subset of R3 defined by

H− := {(x, y, z) ∈ R3 | xy − z2 < 0}

is the outer-component of a cone. It is ample and thus any point p ∈ R3 can be expressed as a
convex combination of points in H−. The remaining part of the complement of the cone

H+ := {(x, y, z) ∈ R3 | xy − z2 > 0}

consists of two components, neither of which is ample.

The set H− will reappear later on in our study of hyperbolic (4, 6) distributions. H+ appears in
the study of elliptic (4, 6) distributions. See Section 7.2.

5.2.2 Ampleness in all principal directions

We now define the most commonly used notion of ampleness for differential relations. It is also the
most restrictive one.



Definition 5.2.4 Fix a bundle X →M and an over-relation ιR : R → Jr(X). Let λ ∈ T ∗
pM be a

covector. We say that ιR is

� ample along the principal direction determined by λ if, for every F ∈ R projecting to p,
the map ιR : Rλ,F → Prλ,F is ample.

� ample in all principal directions if the over-relations (πrr′ ◦ ιR)r′=1,··· ,r are ample along all
non-zero covectors λ.

Being the most commonly used flavour, we sometimes just say that ιR is ample. Gromov’s convex
integration is usually stated as:

Theorem 5.1. The complete C0-close h-principle holds for any open over-relation that is ample
in all principal directions.

This result was first proven, only for first order, in [58, Corollary 1.3.2]. The statement for all orders
appeared later in [59, Section 2.4, p. 180]. The first order case is treated as well in [39, Part 4].

5.2.2.1 The foliated setting

Fix a bundle Y → (N,F) and a foliated over-relation ιS : S → Jr(Y ;F). We say that S is ample
along all foliated principal directions if, for each leaf L, the restriction S|L satisfies Definition
5.2.4.

By construction, the ampleness of the non-foliated preimage S∗ → Jr(Y ) of S can be read purely
along F :

Lemma 5.2.5 Fix a leaf L, a point p ∈ L, a formal datum z ∈ Jr(Y )|p, and a codirection λ ∈ T ∗
pN .

Write z′ ∈ Jr(Y |L) for the leafwise jet of z and λ′ for the restriction λ|L ∈ T ∗
pL.

The following conditions are equivalent:

� S∗ is ample along the principal subspace Prλ,z ⊂ Jr(Y ).

� S|L is ample along the principal subspace Prλ′,z′ ⊂ Jr(Y |L).

It immediately follows that:

Corollary 5.2.6 The complete C0-close h-principle holds for any open, foliated over-relation that
is ample in all foliated principal directions.

A particularly beautiful consequence of these statements is the following. SupposeK is a compact
manifold, X → M is a bundle, and ιR : R → Jr(X) is an open over-relation that is ample along
all principal directions. Then, the parametric lift R×K is, by definition, ample along all foliated
principal directions. Applying Lemma 5.2.5 we deduce that (R×K)∗ → Jr(X×K) is ample along
all principal directions. It follows that, in order to prove Theorem 5.1 for arbitrary parameters (and
relatively in parameter and domain), it is sufficient to prove the non-parametric version (relatively
in domain). Indeed: theK-parametric statement for R is just the 0-parametric statement for R×K.



5.2.3 Ampleness along principal frames

As we pointed out in the Introduction, we do not need ampleness in all directions, since it is
sufficient to be able to proceed over a base in the space of derivatives. This motivates the following
definitions.

Definition 5.2.7 A locally-defined hyperplane field is a pair (U, τ) consisting of an open set
U ⊂M and a germ of hyperplane field τ along the closure Ū .

The hyperplane field (U, τ) is integrable if τ integrates to a codimension-1 foliation.

Our hyperplane fields will live on charts and therefore they will always be locally-defined. The
condition that τ is a germ along the closure Ū is included to make some of our later statements
cleaner. The reader can think of Ū as being some closed ball in M . Often, we just write τ and we
leave U implicit; we say that U is the support of τ .

Definition 5.2.8 A principal frame of order r is a collection C of locally-defined hyperplane
fields satisfying:

� All of the fields in C are integrable and have the same support U .

� C is a principal basis in each of the fibres of πrr−1 lying over U .

A principal cover of order r is a collection C of principal frames of order r whose supports cover
M .

A principal direction/subspace defined by a hyperplane in C/C will be called a C/C-principal
direction/subspace.

The second flavour of ampleness reads:

Definition 5.2.9 An over-relation ιR : R → Jr(X) is ample along principal frames in order
r if each point p ∈M admits an r-order principal frame C with support U ∋ p such that R is ample
along all C-principal directions.

The over-relation ιR is ample along the principal cover C if R is ample along all C-principal
directions.

The over-relation ιR is ample along principal frames if the relations (πrr′ ◦ ιR)r′=1,··· ,r are
ample along principal frames in their respective order.

If r = 1 (or if r > 1 but dim(M) = 1), a principal cover can be obtained by picking a covering of
M and in each chart setting {τi = Ker(dxi)}, where {dxi} is the coordinate coframe. For this reason,
when one deals with first order jets, ampleness along a principal cover is also called ampleness along
coordinate directions; see [58, Definition 1.2.6] and [39, p. 167].

Theorem 5.2. The complete C0-close h-principle holds for any open over-relation that is ample
along principal frames.

For first order, this is the main result in [58, Theorem 1.3.1]; it appears in [39, p. 172] as well. For
arbitrary order, it follows from [59, p. 179, Principal Stability Theorem C]. An alternate
implementation for arbitrary order appeared in the master thesis [?]; it avoids convex hull
extensions and adapts instead the idea from [58].



5.2.3.1 The foliated setting

Consider a bundle Y → (N,F) and a foliated over-relation S → Jr(Y ;F). It is possible to adapt
Definition 5.2.9 to the foliated setting by relying on principal covers that consist of leafwise
hyperplane fields. This is ultimately unnecessary for us, so we leave the details to the reader. The
same comment applies to the next section.

5.2.4 Ampleness in the sense of convex hull extensions

If an (over)-relation is ample along principal frames, all formal solutions can be made holonomic,
one derivative at a time, by introducing oscillations along the codirections given by the frames.
However, one can imagine a situation where different formal solutions need oscillations along
different principal frames or even oscillations along collections of codirections that do not form a
frame at all.

In order to formalise this idea, we introduce the concept of convex hull extensions:

Definition 5.2.10 Let ιR : R → Jr(X) be an over-relation. Its convex hull extension is the set

Conv(R) := {(F, λ, z) ∈ R×M T ∗M ×M Jr(X) | z ∈ Conv(Rλ,F , F )}

with anchor map (F, λ, z) 7→ z.

Remark 5.2.11 Definition 5.2.10 differs slightly from the definition of convex hull extension
given in [59, p. 177]. The reason is that we want our open over-relations to be manifolds that
submerse onto jet space (instead of more general microfibrations with domain a (quasi)topological
space). Assuming R itself was a manifold, Gromov’s convex hull extension would still yield
instead a topological space with conical singularities. The upcoming convex integration statements
are unaffected by this change.

We observe:

Lemma 5.2.12 Suppose R is open. Then, Conv(R) is an open over-relation. In particular, its
underlying space is a smooth manifold.

Proof. Let W → Jr(X) be the pullback of the vertical tangent space of X; i.e. the subspace of TX
consisting of vectors tangent to the fibres of X →M . Using Lemma 5.1.3 we observe that the space

A = {(F, λ, z) ∈ R×M T ∗M ×M Jr(X) | z ∈ Prλ,F }

is a smooth fibre bundle over R×M T ∗
pM with affine fibre isomorphic to W . Using the Lemma once

more, we see that the anchor map A → Jr(X) given by (F, λ, z) 7→ z can equivalently be written
as

(F, λ, z = ιR(F ) + λ⊗r ⊗ w) 7→ ιR(F ) + λ⊗r ⊗ w,

which is a submersion because R itself was. The proof is complete noting that Conv(R) is an open
subset of A, due to the openness of R.

We write Convl(R) for the l-fold convex hull extension of R. An element in Convl(R) is then an
element F ∈ R, together with a principal path of length l starting at ιR(F ). A section of Convl(R)
is thus a smoothly-varying choice of principal path at each point. Do note that the hyperplanes
associated to such paths vary smoothly, but need not be integrable; for this reason, it is convenient
to restrict our attention to the following nice subclass of sections:



Definition 5.2.13 A section (F, λ1, z1, · · · , λl, zl) :M → Convl(R) is said to be integrable if the
λi are integrable.

Do note that the λi are allowed to vanish and thus we speak of integrability in the locus {λi ̸= 0}.

The following definition corresponds to the idea of being able to connect, using convex hull
extensions, a formal datum F to the holonomic section corresponding to its zero order part πr0◦ιR◦F .

Definition 5.2.14 A formal solution F : M → R is (integrably) short if, for some l, there is a
(integrable) holonomic solution G :M → Convl(R) of the form (F, · · · , jr(πr0 ◦ ιR ◦ F )).

Assume that F is holonomic in a neighbourhood of a closed subset M ′ ⊂ M . Then, F is short
relative to M ′ if the codirections {λi}li=1 associated to G = (F, λ1, z1, · · · , λl, zl) can be chosen to
be zero over Op(M ′).

Do note that if a solution is short it is already a solution of πrr−1 ◦ ιR. That we need such an
assumption is not surprising, since the convex hull extension machinery works purely in order r.
As such, in order to provide a full flexibility statement, we need to consider convex hull extensions
for each πrr′ ◦ ιR, r′ = 1, · · · , r.

The last flavour of ampleness comes in two slightly different incarnations:

Definition 5.2.15 An over-relation ιR : R → Jr(X) is ample in the sense of (integrable)
convex-hull extensions if the following property holds: Fix

� An order r′ = 1, · · · , r,

� A compact manifold K,

� A K-family of formal solutions F :M ×K → R×K that is holonomic of order r′ − 1.

Then, the family F is (integrably) short for πrr′ ◦ ιR, relative to the regions in which it is already
r′-holonomic.

Convex integration, in full generality, reads:

Theorem 5.3. The complete C0-close h-principle holds for any open over-relation that is ample
in the sense of (integrable) convex hull extensions.

This result, assuming integrability, is presented in detail in [96, p. 123, Theorem 8.4]. The statement,
without integrability, was already implicit in [59, p. 179, Principal Stability Theorem C]. The
integrability hypothesis is restrictive; we discuss it further in the next Subsection.

5.2.5 A comparison of the different incarnations of ampleness

As stated earlier, classic ampleness (ampleness in all principal directions) is the most restrictive of
the notions we have introduced. Indeed, it is immediate that Theorem 5.2 implies Theorem 5.1.
Furthermore, Theorem 5.3 implies both: Ampleness along a frame says that we can connect any
formal solution F to jr(πr0 ◦ ιR ◦ F ) using the given principal frames, proving integrable shortness
of F . This works for families and relatively as well.

It is obvious that ampleness in the sense of integrable convex hull extensions is more restrictive
than the version without integrability. In particular, ampleness in the sense of convex hull extensions
is the most general of the four definitions given.



As we wrote above, Theorem 5.3, without integrability, is contained in Gromov’s text implicitly;
it can be deduced from [59, p. 179, Principal Stability Theorem C]. In [96], Spring works always
under integrability assumptions; this allows him to directly invoke 1-dimensional convex integration
in the foliation charts associated to the integrable hyperplane fields appearing in the definition of
integrable shortness.

The key claim that Gromov uses to drop integrability, see [59, p. 177], is that any continuous
hyperplane field can be piecewise approximated by foliation charts. This can then be used to
approximate any section of Convl(R) by an integrable one (at the expense of increasing l). We
interpret this as an h-principle without homotopical assumptions (see also Remark 5.4.5) saying
that there is a weak equivalence between the space of sections and the subspace of integrable ones.
We have not checked this claim in detail. In fact, it is not important for our results:

Remark 5.2.16 None of the results from this thesis rely on Definition 5.2.15 or Theorem 5.3. Our
arguments reduce the h-principle for relations that are ample up to avoidance to the h-principle for
relations that are ample along a principal frame (Theorem 5.2). Nonetheless, in Corollary 5.4.4 we
prove that a relation that is ample up to avoidance is ample in the sense of integrable convex hull
extensions.

5.2.5.1 Computability of ampleness in all principal directions

Ampleness in all principal directions is the most restrictive but easiest to check of the four
incarnations. The reason is that it is pointwise in nature: we just go through each fibre of Jr(X)
checking ampleness, one principal direction at a time. In practice, one often deals with
Diff-invariant relations described as the complement of some fibrewise (semi-)algebraic condition
(which we call the singularity). It is then sufficient to check a single fibre of Jr(X) and a single
codirection; the problem boils down then to checking the intersection of the singularity with each
principal subspace. In practice, this can be already quite involved unless the relation is relatively
simple.

Remark 5.2.17 In [78], P. Massot and M. Theillière prove that convex integration can be used to
prove holonomic approximation in spaces of 1-jets. This is a beautiful application of classic convex
integration in which checking ampleness is highly non-trivial.

Classic ampleness turns out to be limited in its applications. In practice, we only encounter it
if all formal solutions F ∈ R present some form of symmetry guaranteeing that they sit equally
nicely with respect to all codirections λ ∈ T ∗M ; we will see this in examples in Section 6.1. The
relation defining hyperbolic (4, 6) distributions, despite being Diff-invariant, does not satisfy this.
We expect most differential relations of codimension-1 not to satisfy it.

5.2.5.2 Computability of ampleness along principal frames

Ampleness along principal frames turns out to be not so different from ampleness in all directions.
The two are equivalent if we assume Diff-invariance. In terms of computability, once a concrete
principal cover C is given, checking C-ampleness is, by definition, easier than checking it in all
directions.



5.2.5.3 Computability of ampleness in the sense of convex hull extensions

Ampleness in the sense of convex hull extensions is incredibly general, but notoriously difficult to
check. The reason is that it is not a pointwise condition: A formal solution F is short if we can
connect it, using a smooth family of principal paths G, to its underlying holonomic section; both
F and G are global objects.

Suppose we want to construct G and thus prove that F is short. Convex integration is local in
nature, so we try to find a suitable cover of M to proceed. Given a point p ∈M , we may be able to
define G(p) and then extend it locally, by openess, to some open neighbourhood Up. Finding G(p)
is a pointwise process and does not need ampleness in all principal directions; it is sufficient to
find a suitable sequence of ample principal subspaces starting from F . We do this for all p and we
extract a cover {Ui} with a section Gi defined over Ui. In order to patch these up, we start with G1

and we glue it with F using a cut-off close to ∂U1. The problem now is that the principal subspaces
that behaved nicely with respect to F need not behave nicely with respect to G1. In particular, G2

may not help us at all in the overlap U1 ∩ U2.

Furthermore, unlike the previous two flavours, ampleness in the sense of convex hull extensions
is not readily parametric. To deal with families one has to prove that the family in question, as a
whole, is short.

Ampleness up to avoidance is designed to deal with these considerations and make the
aforementioned sketch of argument work. It is also computable pointwise, as we explain in
Subsection 5.3.2.1.

5.3 Avoidance

Let ιR : R → Jr(X) be an open over-relation. Our goal is to construct a so-called avoidance
template A associated to R; if we succeed in constructing A, we will say that R is ample up to
avoidance. Our main Theorem 1.8, whose proof we postpone to the next Section, says that this is
a sufficient condition for the h-principle to hold.

Templates (and more general objects called pre-templates) are introduced in Subsections 5.3.2
and 5.3.3. These definitions require us to introduce some auxiliary notation about configurations
of hyperplanes; this is done in Subsection 5.3.1. In Subsection 5.3.5 we present some simple
constructions of pre-templates. These constructions can yield empty pre-templates when R is very
far from being ample; this is explained in Subsection 5.3.6.

5.3.1 Configurations of hyperplanes

Given a positive integer a and a vector space V , we write

H-Confa(V ) := {(H1, · · · , Ha) ∈ (PV ∗)a | Hi ̸= Hj , for all i ̸= j}/Σa.

I.e. the smooth, non-compact manifold consisting of all unordered configurations [H1, · · · , Ha] of a
distinct hyperplanes in V . Its non-compactness is due to collisions (i.e. any sequence in which Hi

approaches Hj has no convergent subsequence). In order to consider collections of arbitrary finite
cardinality, we consider the union:

H-Conf(V ) :=

∞∐
a=0

H-Confa(V ),



where H-Conf0(V ) := {∅} is the space containing only the empty configuration.

Given two configurations Ξ,Ξ ′ ∈ H-Conf(V ) we will write Ξ ′ ⊂ Ξ if every hyperplane in the
former is contained in the latter.

5.3.1.1 Repetitions

In practice, we will deal with ordered collections of hyperplanes that may have repetitions.
Concretely, these correspond to points in the closed manifold

H-Confa(V ) := (PV ∗)a.

Consider the open dense subset H-Conf∗a(V ) ⊂ H-Confa(V ) consisting of those collections with no
repetitions. Its complement is an algebraic subvariety. By construction, we have a quotient map

π : H-Conf∗a(V ) −→ H-Confa(V )

whose fibres are isomorphic to the symmetric group Σa. As before, we write

H-Conf (V ) :=

∞∐
a=0

H-Confa(V ), H-Conf∗(V ) :=

∞∐
a=0

H-Conf∗a(V ),

where H-Conf0(V ) and H-Conf∗0(V ) are the singleton set {∅}.

5.3.1.2 Bundles of configurations

Fix a manifold M . We write
H-Conf(TM) →M

for the smooth fibre bundle with fibre H-Conf(TpM) at a given p ∈ M . Similarly, we write
H-Conf (TM) and H-Conf∗(TM). By construction, we have a quotient map

H-Conf∗(TM) −→ H-Conf(TM)

given by the fibrewise action of the symmetric groups.

5.3.2 Avoidance templates and ampleness

Fix a bundle X → M , an over-relation ιR : R → Jr(X), and a subset A of the fibered product
R×M H-Conf(TM).

Given a family of hyperplanes Ξ ∈ H-Conf(TpM), we write

A(Ξ) := A ∩ (R×M {Ξ}).

Using the canonical identification R ×M {Ξ} ∼= Rp, we regard A(Ξ) as a subset of the fibre Rp

lying over p ∈M . If we are given a collection of hyperplane fields Ξ :M → H-Conf(TM) instead,
we will similarly write A(Ξ) for the union of all the subsets A(Ξ(p)) as p ranges over the entirety of
M . In this case, A(Ξ) is a subset of R. If it is a smooth submanifold, the map ιR : A(Ξ) → Jr(E)
is an over-relation.



Given some F ∈ R lying over a point p, we similarly denote

A(F ) := A ∩ ({F} ×H-Conf(TpM)) .

As before, we regard A(F ) as the subset of H-Conf(TpM) consisting of those Ξ such that F ∈ A(Ξ).
If F is instead a section M → R, A(F ) will be the subset of H-Conf(TM) given by the union of
all A(F (p)), as p ranges over all points in M .

Definition 5.3.1 An open subset A ⊂ R ×M H-Conf(TM) is an (avoidance) pre-template if
the following property holds:

I. If Ξ ′ ⊂ Ξ ∈ H-Conf(TM) is a subconfiguration, then A(Ξ) ⊂ A(Ξ ′).

The pre-template A is an (avoidance) template if, additionally:

II.Given Ξ ∈ H-Conf(TM), A(Ξ) is ample along the principal directions determined by Ξ.

III.Given F ∈ R lying over p ∈M , A(F ) is dense in each H-Confm(TpM).

Property (I) guarantees coherence: removing hyperplanes from Ξ makes the relation A(Ξ) bigger.
In particular, if A(Ξ) is ample along Ξ, then A(Ξ ′) is ample along Ξ ′ ⊂ Ξ.

Our main definition reads:

Definition 5.3.2 An open over-relation ιR : R → Jr(X) is said to be ample up to avoidance
if each of the over-relations

(πrr′ ◦ ιR : R → Jr′(X))r′=1,··· ,r

admits an avoidance template.

Observe that R×M H-Conf(TM) is an avoidance template if and only if R is ample in all principal
directions.

5.3.2.1 Computability of avoidance

We stated in Subsection 5.2.5 that ampleness up to avoidance is as computable as classic ampleness.
There are two parts to this claim.

First we note that verifying whether a given open subset A ⊂ R×M H-Conf(TM) is a template
boils down to pointwise checks. Property (I) is often given by construction. Property (III) is often
checked together with openness and follows as soon as the complement of A(F ) is given, fibrewise,
by some algebraic equality. Property (II) is the most involved, but it is no different from checking
ampleness along a principal frame.

The second part of the claim is that the construction of templates is algorithmic. Indeed, we
present two possible constructions in Subsection 5.3.5. However, the reader should just think of
these as rough guidelines. In practice (for instance, in the proof of Theorem 1.12), one needs to
make adjustments in order to produce a template. Still, the adjustments that need to be made are
somewhat standard; see Remark 7.2.8.

Lastly, we observe that ampleness up to avoidance is parametric in nature, much like classic
convex integration. Namely, given a template A for R, we can define an associated foliated template
for any parametric lift R × K; see Subsection 5.3.4. The parametric version of Theorem 1.8 will
follow then from the non-parametric one.



5.3.3 Lifted avoidance templates

Definition 5.3.1 is intuitive conceptually but, in practice (see the proofs of Propositions 5.4.2 and
5.4.3), it is often more convenient to deal with the following notion:

Definition 5.3.3 Let π be the quotient map H-Conf∗(TM) → H-Conf(TM). We write

Ā ⊂ R×M H-Conf∗(TM) ⊂ R×M H-Conf(TM)

for the preimage of a given subset

A ⊂ R×M H-Conf(TM).

Given Ξ ∈ H-Conf(TM), we write A(Ξ) := A(π(Ξ)). Similarly, given F ∈ R, we write A(F ) for
the preimage by π of A(F ).

We remark:

Lemma 5.3.4 Fix a subset A ⊂ R×M H-Conf(TM). Then, A is a pre-template if and only if

� A is open.

� A is invariant under the action of the permutation groups Σ∗.

I. Consider Ξ ′, Ξ ∈ H-Conf(TM). Suppose π(Ξ ′) is a subconfiguration of π(Ξ). Then A(Ξ) ⊂
A(Ξ ′).

Furthermore, A is a template if and only if, additionally:

II.Given Ξ ∈ H-Conf(TM), A(Ξ) is ample along the principal directions determined by Ξ.

III.Given F ∈ R lying over p ∈M , A(F ) is dense in each H-Confm(TpM).

Proof. First note that H-Conf∗(TM) ⊂ H-Conf(TM) is open. Its complement, which is an algebraic
variety and thus of positive codimension, consists of all configurations that involve repetitions. The
claim follows from this fact and the observation that π is a quotient map.

Conversely, any open, Σ∗-invariant subset of R×M H-Conf∗(TM) is the A of some template A as
long as Properties (I), (II) and (III) hold.

5.3.4 Foliated templates

We will prove in Section 5.4 that the parametric analogue of Theorem 1.8 follows from Theorem
1.8 itself. Compare this to Theorem 5.1 and Corollary 5.2.6. This is best implemented using the
foliated setting, which we now introduce.

Fix a foliated manifold (N,F), a bundle Y → N , and an over-relation ιS : S → Jr(Y ;F). We
look at subsets A ⊂ S ×N H-Conf(F). We define A(Ξ) and A(F ) in the obvious manner. Then:

Definition 5.3.5 An open subset A ⊂ S×NH-Conf(F) is a foliated pre-template if the following
property holds:

I. If Ξ ′ ⊂ Ξ ∈ H-Conf(F) is a subconfiguration, then A(Ξ) ⊂ A(Ξ ′).



The pre-template A is a foliated template if, additionally:

II. Given Ξ ∈ H-Conf(F), A(Ξ) is ample along the principal directions determined by Ξ.

III.Given F ∈ S lying over p ∈ N , A(F ) is dense in each H-Confm(Fp).

The following observation follows immediately from the leafwise nature of Definition 5.3.5:

Lemma 5.3.6 Let X → M be a bundle and ιR : R → Jr(X) an over-relation. Fix a compact
manifold K. Suppose R admits a template A. Then the parametric lift R × K admits a foliated
template A×K.

Furthermore:

Lemma 5.3.7 Let Y → (N,F) be a bundle over a foliated manifold. If an over-relation S →
Jr(Y ;F) admits a foliated template A, its non-foliated preimage S∗ → Jr(Y ) admits a template
A∗.

Proof. We define A∗ as a subset of S∗ ×N H-Conf(TN). Consider the subspace H-Conf ′(TN) of
H-Conf(TN) consisting of those configurations [H1, · · · , Ha] ∈ H-Conf(TN) that satisfy:

� All Hi ∈ [H1, · · · , Ha] intersect F transversely.

� For all i ̸= j, the intersections Hi ∩ F and Hj ∩ F are distinct.

Then, the intersection with F defines a surjection H-Conf ′(TN) → H-Conf(F) which can easily be
shown to be submersive. In fact, it is a proper map with compact fibres isomorphic to a product
of projective spaces, showing that

π : S∗ ×N H-Conf ′(TN) −→ S ×N H-Conf(F),

is a fibration. This allows us to define

A∗ := π−1(A) ⊂ S∗ ×N H-Conf ′(TN) ⊂ S∗ ×N H-Conf(TN).

The openness of A∗, as well as Properties (I), (II), and (III), follow from the analogous properties
for A. Concretely: Property (I) follows from π : A∗ → A being a fibration. Openess and Property
(III) are a consequence of the fact that H-Conf ′(TN) ⊂ H-Conf(TN) is open and its fibrewise
complement is an algebraic subvariety (and thus of positive codimension). Property (II) follows
from Lemma 5.2.5.

5.3.5 Removing processes

The most straightforward way of producing templates consists of iteratively removing those
principal subspaces along which the relation is not ample.

Definition 5.3.8 Let ιR : R → Jr(X) be an over-relation. We set:

Avoid0(R) := R×M H-Conf(TM).

Inductively, we define Avoidl+1(R) to be the complement in Avoidl(R) of the closure of

{(F,Ξ) | for some τ ∈ Ξ, the component of F in Avoidl(R)(Ξ)τ,F is not ample}.



Do note that, crucially, Avoid1(R) need not be a template. Indeed, upon removing elements from
Avoid0(R), we may have lost ampleness along subspaces that were not problematic previously. This
justifies the necessity of iterating the construction.

Definition 5.3.9 Suppose that the process just described terminates, meaning that there is a step
l0 such that

Avoidl(R) = Avoidl0(R) for every l ≥ l0.

Then, Avoid∞(R) := Avoidl0(R) is the standard pre-template associated to ιR.

By construction:

Lemma 5.3.10 Each Avoidl(R) is a pre-template. Additionally, Avoid∞(R) satisfies Property (II)
in the definition of a template.

Proof. Openness follows from the fact that we are inductively removing closed sets. For Property
(I) we reason inductively as well: By induction hypothesis, Avoidl(R)(Ξ) is contained in
Avoidl(R)(Ξ ′) whenever Ξ ′ ⊂ Ξ. Suppose F is an element of both. Then, the analogous
statement for the components of F in Avoidl(R)(Ξ)τ,F and Avoidl(R)(Ξ ′)τ,F is also true. In
particular, if the latter is not ample, neither is the former. I.e. if (F,Ξ ′) is removed, so is (F,Ξ),
proving the claim.

The second statement follows by definition of the removal process terminating.

As we will observe in examples, Avoid∞(R) need not satisfy Property (III); whether it does needs
to be checked in each concrete application.

5.3.5.1 Thinning

In applications, the following more restrictive notion can also be useful.

Definition 5.3.11 Let ιR : R → Jr(X) be an over-relation. We write Thin(R) for the complement
in R×M H-Conf(TM) of the closure of

{(F,Ξ) | for some hyperplane τ ∈ Ξ, the complement of Rτ,F is not thin}.

We denote the l-fold iterate of this construction by Thinl(R).

Definition 5.3.12 Assuming that there is a step l0 in which this process stabilises, we say that
Thin∞(R) := Thinl0(R) is the thinning pre-template of R.

Much like earlier:

Lemma 5.3.13 Thinl(R) is a pre-template. Additionally, Thin∞(R) satisfies Property (II) in the
definition of a template.

One can also conceive removing pieces from R using schemes different from those presented in
Definitions 5.3.9 and 5.3.12. In fact, this will be necessary for our main application Theorem 1.12;
see Section 7.2.



5.3.6 Trivial pre-templates

It is unclear to the authors whether the standard avoidance/thinning processes always terminate
regardless of what R is. One could imagine a situation where we keep removing pieces from R but
never stabilise. Furthermore, even if they terminate, they may produce uninteresting results. This
is not surprising, as many relations are simply not ample up to avoidance:

Lemma 5.3.14 Fix a fibre bundle X →M and a differential relation R ⊂ Jr(X). Assume that:

� Each Rτ,z is trivially ample or all its components are non-ample.

� Each fibre of πrr−1 contains an element not in R.

Then, Avoid∞(R)(Ξ) = ∅, where Ξ is any tuple that includes a principal basis.

Do note that Avoid∞(R) is only interesting for those Ξ that include a basis. Otherwise there are
not enough directions to span the complete fibre of πrr−1.

Proof. Consider Ξ ∈ H-Conf(TpM) including a principal basis. We work over a fixed fiber of πrr−1

lying over p. The Lemma follows as a consequence of the following inductive claim:

� Let zk differ from some z0 /∈ R by a Ξ-principal path of length k. Then, it follows that zk /∈
Avoidk(R)(Ξ).

The base case k = 0 is definitionally true.

Consider the inductive step k. Given zk, there is some zk−1 such that τ := zk − zk−1 is principal
and zk−1 differs from z0 by a principal path ν of length k − 1.

Due to our assumptions on R, either Rτ,z0 is empty or its components are not ample. We can
then take its complement Rc

τ,z0 and note that the shift

Rc
τ,z0 + ν ⊂ Prτ,zk−1

is, by inductive hypothesis, disjoint from Avoidk−1(R)(Ξ)τ,zk−1
. It follows that

Avoidk−1(R)(Ξ)τ,zk−1
is empty or its components are non-ample. Therefore, Avoidk(R)(Ξ)τ,zk−1

is empty. In particular, zk is not in Avoidk(R)(Ξ).

A couple of concrete instances where Lemma 5.3.14 applies are the relation defining functions
without critical points (Subsection 5.6.1) and the relation defining contact structures (Lemma
6.1.8).

Exactly the same reasoning shows:

Lemma 5.3.15 Let R ⊂ Jr(X) be a differential relation such that:

� Every Rτ,z is trivially ample or has a complement that is not thin.

� Each fibre of πrr−1 contains an element not in R.

Then Thin∞(R)(Ξ) = ∅, where Ξ is any tuple that includes a principal basis.

5.4 Proof of the main Theorem

In this Section we tackle the proof of Theorem 1.8. We restate it now in a slightly more general
form that applies to over-relations:



Theorem 5.4. Fix a smooth bundle X →M and an open over-relation ιR : R → Jr(X). Suppose
that ιR is ample up to avoidance. Then, the full C0-close h-principle applies to R.

The proof consists of two local-to-global steps. The starting point is our assumption that a
template A exists.

1. Given any principal cover C, we use the pointwise data given by A to produce an over-relation
A(C) → Jr(X) globally on M . By construction, A(C) will be ample with respect to C. This is
the content of Proposition 5.4.2.

2. Given a formal solution F : M → R, we choose a cover C of M such that F is still a formal
solution of A(C). This follows from a jiggling-type argument that is explained in Proposition
5.4.3.

Both steps are rather discontinuous in nature. This is not surprising, since covers are discontinuous
objects themselves. One of the consequences of this is that the over-relation A(C) may not be a
fibration (even if R and A were).

This sketch of argument proves that all formal solutions F are short for R. From this, and the
parametric nature of avoidance templates, we deduce the full h-principle for R. We put all these
pieces together in Subsection 5.4.2.

5.4.1 Avoidance relations associated to principal covers

Fix a smooth bundleX →M , an open over-relation ιR : R → Jr(X), an avoidance template A, and
a principal cover C. Since the elements of C are defined only locally, the cardinality of C may change
from point to point. This implies that we cannot regard C as a smooth section M → H-Conf(TM).

Nonetheless, for our purposes, the following discontinuous construction is enough. To each subset
of codirections C ⊂ C (not necessarily a principal frame) we associate the closed set:

TC :=
⋂
τ∈C

Uτ ⊂M,

where Uτ is the support of the hyperplane field τ . Recall that each τ ∈ C is defined as a germ along
the closure Uτ of its support. In particular, once we pick some order for the elements of C, we can
think of C as a germ of smooth section

C|Op(TC) : Op(TC) → H-Conf(TM).

In particular, the expression A(C)|Op(TC) denotes a well-defined subset of R|Op(TC). Here A is the

lift of A to R×M H-Conf(TM).

Definition 5.4.1 The avoidance over-relation associated to A and C is the set

A(C) := R \

(⋃
C⊂C

A(C)c|TC

)
,

where the superscript c denotes taking complement. As a subset of R, the anchor of A(C) into
Jr(X) is ιR.



5.4.2 Proof of Theorem 1.8

Before we get to the proof we introduce two key auxiliary results. The first one states that avoidance
relations are open and ample:

Proposition 5.4.2 Let A be a template and C be a principal cover. Then, the avoidance over-
relation ιR : A(C) → Jr(X) is an open over-relation ample along C.

The second one says that we can choose avoidance relations A(C) adapted to a given formal
datum:

Proposition 5.4.3 Fix an smooth bundle X → M , an open over-relation ιR : R → Jr(X), an
avoidance template A, and a formal solution F : M → R. Then, there is a principal cover C such
that F takes values in A(C).

This result is proven in Subsection 5.4.3.

Proof (Proof of Proposition 5.4.2). Recall the three pointwise Properties in the definition of a
template (Definition 5.3.1).

Using the openness of A and the closedness of each TC , we see that A(C) is the complement in
R of a finite union of closed subsets A(C)c|TC

. As such, it is an open subset, and thus an open
over-relation with respect to ιR.

Ampleness can now be checked at each point p ∈ M individually. We note that there is a
maximal subset C ⊂ C such that TC contains p. According to coherence Property (I) in Definition
5.3.1, A(C(p)) is the smallest among all sets A(C ′(p)) as C ′ ⊂ C ranges over all the subcollections
satisfying p ∈ TC′ . It follows that ⋃

C′⊂C
A(C ′(p))c = A(C(p))c

and therefore we deduce A(C)(p) = A(C(p)). The ampleness of the former follows then from the
ampleness of the latter, which is given by Property (II).

Note that we have not made use of Property (III). It only plays a role in the proof of Proposition
5.4.3.

Proof ( of Theorems 1.8 and 5.4 assuming Proposition 5.4.3).

We want to be able to homotope any given compact family of formal solutions (Fk)k∈K :M → R
to a family of genuine solutions. We regard the family as a formal solution F : M ×K → R×K
of the parametric lift, as in Subsection 5.1.4.1.

Since R is ample up to avoidance we can apply Lemmas 5.3.6 and 5.3.7 to deduce that its
parametric lift R×K is also ample up to avoidance. It follows that each of the foliated relations
(πrr′ ◦ ιR×K)r′=1,··· ,r admits an avoidance template Ar′ .

We apply Proposition 5.4.3 to F , πr1 ◦ ιR×K , and A1 to deduce that there is a principal cover
C1 of M ×K such that A1(C1) is ample along principal directions and F is a formal solution. In
particular, F is short for πr1 ◦ ιR×K .

We then apply convex integration along a principal cover (Theorem 5.2). It follows that F is
homotopic to a formal solution

G1 :M ×K → A1(C1) ⊂ R×K



that is holonomic up to first order. Applying this reasoning inductively on r′ we produce a holonomic
solution G :M×K → R×K homotopic to F . The section G is equivalent to a family of holonomic
solutions (Gk)k∈K :M → R homotopic to (Fk)k∈K . This concludes the non-relative proof.

For the relative case we observe that, according to Theorem 5.2, the homotopy connecting F and
G can be assumed to be constant along any closed set in which F was already holonomic. Since
we are working in the foliated setting, this proves the parametric nature of the h-principle both in
parameter (K) and domain (M).

Corollary 5.4.4 If R is ample up to avoidance, it is ample in the sense of integrable convex hull
extensions.

Proof. Fix some arbitrary formal solution F :M ×K → R×K, holonomic of order r′. During the
proof of Theorem 1.8 we have shown that F is a formal solution of the avoidance relation
Ar′+1(Cr′+1), which is ample along principal frames. It follows that all formal solutions are
integrably short, so Definition 5.2.15 applies to R.

5.4.3 Jiggling for principal covers

In this Subsection we prove Proposition 5.4.3, completing the proof of Theorems 1.8 and 5.4.
Our goal is to find a principal cover C compatible with a given avoidance template A and a formal
solution F . We construct C using a jiggling argument. Namely, we start with an (arbitrary) principal
cover C′ which we then subdivide repeatedly. When the subdivision is fine enough, we tilt/jiggle
the corresponding principal frames in order to obtain the claimed C.

This argument is (strongly) reminiscent of the classic version of jiggling due to W. Thurston
[101]. For completeness, we recall it in Subsection 5.4.4; its contents are not really needed for our
arguments and can be skipped. Our goal with this is to highlight the similarities between the two
schemes. Despite of the many parallels, it is unclear to the authors whether there is some natural
generalisation subsuming both results.

Remark 5.4.5 We think of both jiggling arguments (both Thurston’s and ours) as h-principles
without homotopical assumptions.

Namely, being transverse to a given distribution ξ is a differential relation for submanifolds of
(N, ξ). It may not be possible, in general, to find solutions of this relation. However, by dropping
the smoothness assumption on the submanifold (allowing it to have instead triangulation-like
singularities), Thurston produces solutions. Similarly, given a formal solution F :M → R, we can
define a first order differential relation for tuples of functions {fi : M → R} by requiring
(F, {dfi}) ∈ A. By allowing the functions to be defined only locally (as coordinate codirections of
charts), we are effectively introducing discontinuities; this is the flexibility we need to find a
suitable C.

In both cases, the main point is that, due to the presence of discontinuities, there is no formal
data associated to the objects we consider. h-Principles without homotopical assumptions play now a
central role in Symplectic and Contact Topology through the arborealisation programme [97, 8, 6, 7].

Recall the setup of Proposition 5.4.3: We are given a manifold M , a bundle X → M , an over-
relation ιR : R → Jr(X), an avoidance template A, and a formal solution F : M → R. We want
to find a principal cover C such that A(C) is ample along C and F is still a formal solution of A(C).

We will assume that M is compact. If not, the upcoming argument can be adapted to use an
exhaustion by compacts.



5.4.3.1 Picking an atlas

We pick an arbitrary atlas U of M . We require U to use closed, cubical charts, i.e. each (U, ϕ) ∈ U
has image [−1, 1]n ⊂ Rn. Due to compactness, we may assume that U is finite. We will still write ϕ
to mean an arbitrary but fixed extension of ϕ to an open neighbourhood of U . We pick ϕ−1(0) ∈ U
as a marked point for each (U, ϕ) ∈ U .

To each ordered pair ((U, ϕU ), (V, ϕV )) in U × U we associate the transition function ϕUV :=
ϕV ◦ ϕ−1

U . Its domain and codomain are the images of U ∩ V .

5.4.3.2 Choosing principal frames

Given (U, ϕ) ∈ U , we pick a principal frame ΞU with support in U . We write e for the cardinality
of this frame, which is the dimension of the fibres of πrr−1. We require ϕ∗ΞU to be invariant with
respect to the translations in Rn. Such an invariant principal frame is in correspondence with a
principal basis at the marked point. During our arguments we think of the two interexchangeably.

The collection of all principal frames ΞU , as we range over the different (U,ψ) ∈ U , defines a
principal cover C′ of M .

5.4.3.3 Subdivision

Fix some real number C > 1. Let c be a positive integer to be fixed later on during the proof.

We subdivide [−1, 1]n into (2c)n cubes of side 1/c, homothetic to the original. Given (U, ϕ) ∈ U ,
we apply this subdivision to U using ϕ. This yields a new collection of cubical charts, which we
denote by U(c). A cube V ∈ U(c) is said to be the child of a parent cube U ∈ U if it is obtained
from U by subdivision. Two children of the same parent are siblings.

Each child V inherits the parent chart ϕ, mapping now to a small cube of side 1/c contained
in [−1, 1]n. The marked point of V is the preimage by ϕ of the center of its image. The transition
function between two given cubes in U(c) is inherited from the parents. In particular, if two cubes
are siblings, the transition function between them is the identity (restricted to their overlap).

U(c) need not be a cover, since siblings overlap along sets with empty interior. To obtain a cover
V(c), we dilate each cube in U(c), with respect to its center, by C. If c is sufficiently large, dilating
by C makes sense even for children close to the boundary of the parent. This is why we extended
the charts in U to slightly bigger opens. After C-dilation, each child chart (V, ϕ) ∈ V(c) has for
image a cube of side C/c. The domain of the transition functions is changed accordingly. See Figure
5.4.

Lastly, we attach to each cube in V(c) a principal frame. It is simply the restriction of the
principal frame of the parent. The collection of all these principal frames, as we range over V(c), is
a principal cover that we call C′(c).

We now prove a number of quantitative properties for V(c), as we take c to infinity. We fix
a fibrewise metric on PT ∗M . This defines a fibrewise metric in H-Conf (TM), since its fibres are
simply products of projective spaces.



Figure 5.4: The big cube on the left represents the image [−1, 1]n of a chart (U, ϕ) ∈ U , before the
C-dilation is introduced. We show how it is subdivided into smaller cubes, as well as the (image
by ϕ of the) marked point of each smaller cube. Two of the children are marked in green and red.
On the right, we depict the C-scaling of each child cube. The dilated green and red cubes, which
originally met at a single point, now have an intersection with non-empty interior.

5.4.3.4 A bound on the number of overlapping cubes

Given U ∈ V(c) we write VU (c) for the collection of cubes in V(c) that intersect U non-trivially.

Lemma 5.4.6 There is an upper bound d1, independent of c and U , for the cardinality of VU (c).

Proof. This is trivially true when we restrict ourselves to sibling cubes. For unrelated cubes we
reason as follows: Write P ∈ U for the parent of U and consider the image ϕPP ′(U) ⊂ P ′ in some
other cube P ′ ∈ U , where ϕPP ′ is the transition function between P and P ′. Since ϕPP ′ is C1-
bounded by compactness, the diameter of ϕPP ′(U) behaves as O(1/c). The children of P ′ form a
lattice spaced 1/c. It follows that ϕPP ′(U) can only intersect an amount O(1) of them. The claim
is complete since U has finite cardinality.

5.4.3.5 Colouring

Lemma 5.4.7 There is an integer d2, independent of c, such that we can partition V(c) into d2
colours {V(c)(i)}i=1,··· ,d2 with the following property: If U, V ∈ V(c) belong to different colours, then
they have no common neighbours (i.e. elements W ∈ V(c) overlapping non-trivially with both).

Proof. This property is clear if we restrict to children of a fixed parent in U , since children are
spaced uniformly as O(1/c) and have size O(1/c). Then, by finiteness of U , the claim follows if we
use different sets of colours for each parent in U .

5.4.3.6 Trivialising the configuration bundles

Given (U, ϕ) ∈ V(c), we look at the bundle of hyperplanes PT ∗U . Consider the marked point u ∈ U
and the corresponding fibre PT ∗

uU . Using the parallel transport provided by the translations in the
image of ϕ, we trivialise:

PT ∗U ∼= U × PT ∗
uU.



We denote the resulting projection by

πU : PT ∗U → PT ∗
uU.

Similarly, we trivialise the bundle H-Conf (TU) as U × H-Conf(TuU). This produces again a
projection

H-Conf (TU) → H-Conf(TuU).

We abuse notation and also call πU ; it should be apparent from context which of the two we mean.

Due to the compactness of M , the charts, projective space, and H-Conf , we have that:

Lemma 5.4.8 Fix a positive integer j0. Then, there is a constant A > 1, independent of c and
(U, ϕ) ∈ V(c), such that the following holds:

Fix a point x ∈ U . Identify PT ∗
uU with PT ∗

xU using πU . Then, the fibrewise metrics at x and u
bound each other from above up to a factor of A.

The same statement holds, for every j ≤ j0, for the metrics in H-Conf j(TuU) and H-Conf j(TxU).

5.4.3.7 The diameter of a hyperplane field

Given (U, ϕ) ∈ V(c), we look at the principal directions coming from neighbourhouring cubes. We
want to show that these form a set whose diameter goes to zero as c → ∞. We formalise this as
follows, using the notation from the previous item.

Lemma 5.4.9 Fix a second cube (V, ψ) ∈ V(c). Fix an integrable hyperplane field τ : V → PT ∗V ,
invariant under the translations in (V, ψ). Consider the composition πU ◦ τ : U ∩ V → PT ∗

uM .

The diameter of image(πU ◦ τ) behaves like O(1/c) and the constants involved do not depend on
(U, ϕ), (V, ψ), or τ .

Proof. First note that the claim is automatic if U and V are siblings. Indeed, τ is then translation-
invariant for the parent and thus for U , so πU ◦ τ is constant. Otherwise, write P for the parent of
U and R for the parent of V . Let ϕRP be the transition function between the two; it restricts to
the transition function between V and U .

The Taylor remainder theorem states that

du+hϕRP = duϕRP +O(h)

and the remainder is controlled by the second derivatives of ϕRP , which are bounded independently
of c, U , V and τ . Since the diameter of U is O(1/c), we have that

dxϕRP (πU ◦ τ) = duϕRP (πU ◦ τ) +O(1/c) for all x ∈ U ∩ V ,

proving the claim.

5.4.3.8 The diameter of a principal cover

We now look at covers instead of individual hyperplane fields. Fix (U, ϕ) ∈ V(c) and consider all
the neighbouring cubes. For each cube (V, ψ) ∈ VU (c), suppose a principal frame ξV is given (not
necessarily the one in C′(c) we fixed earlier). We may assume that ξV is defined over the whole of
U simply by temporarily dilating V (a factor of 2 is sufficient).



The cardinality of VU (c) is at most d2 and the cardinality of each ξV is exactly e. By concatenating
all the principal frames (ξV )V ∈VU (c), we can regard them as a section

sU : U → H-Conf j(TU), for some j ≤ d2.e.

Using πU , we see sU as a map U → H-Conf j(TuU).

Lemma 5.4.10 The diameter of image(sU ) behaves like O(1/c). The constants involved do not
depend on (U, ϕ) nor on (ξV )V ∈VU (c).

Proof. The metric on H-Conf (TM) is just the product metric inherited from the metric in PT ∗M .
Then the claim follows from Lemma 5.4.9 due to the finiteness of j.

5.4.3.9 Density bounds on the avoidance template

The discussion up to this point referred only to coverings and principal frames. The avoidance
template A and the formal solution F :M → R enter the proof now. We will make use of openness
and Property (III) in the definition of a template. Our goal is to provide a quantitative estimate
regarding the size of the balls contained in A(F ) that one can find on a given ε-ball in H-Conf (TM).

Fix (U, ϕ) ∈ V(c) with marked point u. Using the projection πU we can associate to A(F ) the
singularity:

ΣU := πU (A(F )c ∩H-Conf(TU)) ⊂ H-Conf(TuU),

where the superscript c denotes taking complement.

Lemma 5.4.11 Let ε > 0 be given. Then, there exists δ > 0 such that, for any sufficiently large c
and any j ≤ d2.e, the following property holds:

Fix (U, ϕ) ∈ V(c) with marked point u. Each ε-ball in H-Conf j(TuU) contains a δ-ball disjoint
from ΣU .

Proof. Consider x ∈M arbitrary but fixed. We claim that there is δx > 0 such that every ε-ball in
H-Conf j(TxM) contains a δx-ball fully contained in A(F ); see Figure 5.5. Indeed: suppose B is a
ε/2-ball in H-Conf j(TxM). Since A(F ) is fibrewise dense, there exists Ξ ∈ A(F )∩H-Conf j(TxM).
By openness of A(F ) there is a δΞ -ball D ⊂ A(F )∩H-Conf j(TxM) centered at Ξ and contained in
B. We now use the compactness of H-Conf j(TxM) to extract a finite cover by ε/2-balls {Bx

i }. There
are corresponding δx-balls {Dx

i } contained in A(F ) ∩ Bx
i . Any ε-ball in H-Conf j(TxM) contains

one of the Bx
i and thus the corresponding Dx

i , as claimed.

Before we address the statement, let us introduce some notation. Fix (P, ϕP ) ∈ U and p ∈ P , not
necessarily the marked point. We use ϕP to trivialise H-Conf j(TP ) = P ×H-Conf j(TpP ), allowing
us to speak of the α × β-polydiscs given by such a trivialisation. These are products of an α-disc
along P (measured by the euclidean metric of the chart) and a β-disc along the fibre H-Conf j(TpP )
(measured by the fibrewise metric at p). By definition, a α×β-polydisc is obtained from a fibrewise
β-disc by parallel transport to the nearby fibres. We can now use the openness of A(F ) to thicken
the collection {Dp

i } to a family of ρp × δp-polydiscs contained in A(F ), for some ρp > 0. We abuse
notation and still denote these thickenings by {Dp

i }.

Using the finiteness of U and the compactness of each (P, ϕP ) ∈ U we can then find constants
ρ, δ > 0, and lattices of points {pPl ∈ P}l∈L,P∈U spaced as ρ/2, such that ρ < ρpPl

/2 and δ < δpPl
/A,

for all l ∈ L and P ∈ U . Here A is the dilation factor given in Lemma 5.4.8.

If c is sufficiently large, any child (U, ϕ) ∈ V(c) of a given (P, ϕP ) ∈ U is contained in the ρ-disc
centered at some pPl ∈ P . In particular, any ρ× ε-polydisc centered at H-Conf j(TuM), with u the



Figure 5.5: The vertical line depicts the fibre of H-Conf j(TM) over a given x ∈M . The branching
set running more or less horizontally is the complement of A(F ). Given a ball B of radius ε/2 in
the fibre, we find Ξ ∈ H-Conf j(TxM) and a ball D ⊂ B around it such that D is fully contained
in A(F ). This argument uses only that A(F ) is dense.

marked point of U , is contained in a 2ρ× ε-polydisc B
pPl
i centered at H-Conf j(TpPl

M). Then, upon

projecting with πU , the corresponding 2ρ×δ-polydisc DpPl
i provides the claimed δ-ball disjoint from

ΣU . See Figure 5.6.

5.4.3.10 Jiggling

The proof concludes by applying jiggling. We fix an arbitrary constant ε0 > 0. By making it smaller
we will be proving that the jiggling can be assumed to be as small as we want. We then define a
sequence of constants (as many as colours):

ε0 > ε1 > · · · > εd2 > 0

by iteratively applying Lemma 5.4.11. Namely, 4εi+1 should be the “δ” corresponding to εi.
Furthermore, we impose for each εi to be much bigger than the subsequent ones. Concretely, the
following inequality should hold:

εi > 2.A
∑
j>i

εj . (5.1)

The successive applications of Lemma 5.4.11 provide us then with a lower bound for c.

We start with the first colour V(c)(1), working simultaneously with all its elements. Let
(U, ϕ) ∈ V(c)(1) with marked point u. Consider all the neighbouring (V, ψ) ∈ VU (c), each with a
corresponding principal frame ΞV . Together, these define a map sU : U → H-Conf(TuM), as in
Subsection 5.4.3.8. According to Lemma 5.4.10, the image of sU has diameter O(1/c). In
particular, if c is sufficiently large (of magnitude O(1/ε1)), we can assume that this diameter is
smaller than ε1. Using Lemma 5.4.11 we can perturb each ΞV to a nearby frame Ξ ′

V such that the
corresponding map s′U : U → H-Conf(TpM) satisfies:

� The C0-distance between s′U and sU is bounded above by ε0/2.

� The ε1-neighbourhood of image(s′U ) is contained in A(F ).



Figure 5.6: The chart U ∈ V(c) is fully contained in the ρ-ball centered at some pPl . The black
vertical line depicts the fibre H-Conf j(TuM) over its marked point u ∈ U . The branching set
in light blue is the complement of A(F ). Given a ρ × ε-polydisc (with orange border) centered
somewhere in H-Conf j(TuM), there is a 2ρ × ε-polydisc (in blue) that contains it. In turn, the
latter contains a 2ρ × δ-polydisc (in purple) which is disjoint from A(F )c. This exhibits a δ-ball
disjoint from ΣU .

I.e. we have jiggled all the frames in the vicinity of U , producing new frames whose distance to the
complement of A(F ) is controlled.

We do the same inductively on the number of colours. At step i we look at all the (U, ϕ) ∈ V(i)(c)
at once. Using Lemma 5.4.11 we perturb the neighbouring frames sU : U → H-Conf(TuU) to a
nearby section s′U satisfying:

� The C0-distance between s′U and sU is bounded above by εi.

� The εi+1-neighbourhood of image(s′U ) is contained in A(F ).

This is possible as long as c is large enough; concretely, of magnitude O(1/εd2). The second item
gives us a lower bound for the distance to A(F ) which, in light of Equation 5.1, is not destroyed
in later steps thanks to the first item. After d2 steps, the proofs of Proposition 5.4.3, Theorem 1.8,
and Theorem 5.4 are complete. □

5.4.4 Detour: Thurston’s jiggling

We invite the reader to compare the upcoming discussion to the proof of Proposition 5.4.3. Let
us stress once more that this Subsection is only included for the sake of pointing out the parallels
between the two.



The classic jiggling procedure was introduced by W. Thurston in [101]. It allows the user to
produce a triangulation whose simplices are transverse to a given distribution ξ. We work with
a manifold N of dimension n. We consider triangulations T all whose i-simplices ∆ ∈ T (i) are
endowed with a parametrisation identifying them with the standard simplex in Ri. Furthermore,
they come with a parametrised neighbourhood germ, which is then identified with a neighbourhood
of the standard simplex in Ri ⊂ Rn.

We say that ∆ is in general position with respect to ξ if the quotient map

mod(ξp) : ∆ ⊂ Ri ⊂ Rn → Rn−k

that quotients by ξp has for image a subset diffeomorphic to a simplex of dimension min(i, n− k).
Here we are restricting ξ to the aforementioned coordinates around ∆. Do note that the general
position condition is then an strengthening of the condition that∆ is transverse to ξ. A triangulation
is in general position if all its simplices are.

Proposition 5.4.12 Let (N, ξ) be an n-manifold endowed with a distribution. Then, there exists
a triangulation T in general position with respect to ξ.

Furthermore, if a constant ε > 0 and a triangulation T ′ of N are given, we may assume that T
is obtained from T ′ by applying finitely many cubical subdivisions and then perturbing the vertices
of the resulting triangulation by an amount no larger than ε.

Proof. We break the argument into steps, much like we did for Proposition 5.4.3. First, we fix a
locally finite atlas U of N .

Upon subdividing c times, we may assume that T ′ is subordinated to U . Cubical subdivision
guarantees that the radius of the simplices goes to zero as c→ ∞, while the cardinality of the star
of each simplex is bounded independently of c.

A key property, which follows from the previous paragraph, is that there is a number d2,
independent of c, such that we can colour the set of vertices into d2 colours so that no two
vertices of the same colour are contained in the same simplex.

We straighten out the simplices so that every ∆ ∈ T ′ is linear with respect to some chart in U .

We tilt/jiggle the positions of the vertices of T ′ in order to change how all simplices are embedded
and thus achieve transversality. We do this inductively colour by colour. It follows that, at each
inductive step, the vertices we tilt do not interfere with one another.

For a given vertex p, we consider those simplices that contain p and whose other vertices are from
previous colours. When we tilt p, the good choices are those that make said simplices transverse.
As c→ ∞, the measure of the subset of bad choices goes to zero (since the radii of all simplices go
to zero).

Given ε0 > 0 and any ε1 > 0 sufficiently small, we can always take c large enough so that, in
each ε0-ball of choices, there is a ε1-ball of good choices. This reasoning can be repeated with ε1
and some ε2 > 0. Repeating it d2 times yields a sequence of positive constants (εi)0,··· ,d2 . Our tilt
at step i+1 can then be taken to be εi/d2 small and contained in a εi+1-ball of good choices as long
as c is sufficiently large. It follows that the transversality achieved in a given step is not destroyed
in subsequent ones. The proof concludes after d2 steps.

5.5 An example: exact, linearly-independent differential forms

In this section we introduce a differential relation R for which the thinning process (Subsection
5.3.5.1) terminates producing an avoidance template. We let M be a 3-dimensional manifold and



we set X := T ∗M × T ∗M . The relation R ⊂ J1(X) is of first order and Diff-invariant. Concretely,
R consists of pairs (F1, F2) ∈ J1(X), where each Fi is a first-order Taylor polynomial of 1-form,
such that the 2-forms dF1 and dF2 are linearly independent.

In Subsection 5.5.1 we recall some notation, involving the exterior differential, that will also be
helpful in later sections. In Subsection 5.5.2 we formalise our claim about the thinning of R, which
we then prove in Subsection 5.5.3.

In Subsection 5.5.4 we will observe that the present example is a bit artificial: a linear algebra
lemma due to Gromov shows that R was already ample in all directions (but not thin). Nonetheless,
we choose to include it as an easy incarnation of the avoidance/thinning approach.

5.5.1 Intermezzo: The symbol of the exterior differential

Let N be a manifold. We focus on the bundle
∧k T ∗N of k-forms. The corresponding space of 1-jets

J1(∧kT ∗N) is an affine fibration

π0 : J
1(∧kT ∗N) −→ ∧kT ∗N

whose model vector bundle is Hom(TN,∧kT ∗N) ∼= T ∗N ⊗ ∧kT ∗N .

It follows that, given a formal datum F ∈ J1(∧kT ∗N) and a codirection λ ∈ T ∗
pN , both based

at the same point p ∈ N , the principal space associated to F and λ can be expressed explicitly as:

Prλ,F := {F + (0, λ⊗ β) | β ∈ ∧kT ∗
pN}.

We are interested in discussing differential relations defined in terms of the exterior differential
d. We will abuse notation and still denote its symbol by:

d : J1(∧kT ∗N) −→ ∧k+1T ∗N.

Given F ∈ J1(∧kT ∗N), the symbol maps F +(0,
∑

i λi ⊗ βi) to dF +
∑

i λi ∧ βi. We also introduce
the extended symbol:

id⊕ d : J1(∧kT ∗N) −→ ∧kT ∗N ⊕ ∧k+1T ∗N,

F 7→ (π0(F ), dF ).

5.5.2 The statement

We now restate the setup of our example. We fix a 3-manifold M and we focus on the first-order
differential relation R ⊂ J1(T ∗M ⊕ T ∗M) defined as:

R := {(F1, F2) ∈ J1(T ∗M)⊕ J1(T ∗M) | dF1 and dF2 are linearly independent}.

The main result of this Section reads:

Proposition 5.5.1 The thinning process for R terminates in one step and the resulting thinning
pre-template Thin(R) is an avoidance template.

In particular, R is ample up to avoidance and thus, according to Theorem 1.8, the h-principle holds
for R.

The proof of Proposition 5.5.1 requires an analysis of the structure ofR along principal subspaces
(Subsection 5.5.3.1). This will then allow us to describe Thin(R) explicitly and deduce that it is
an avoidance template (Subsection 5.5.3.3).



5.5.3 The proof

We introduce some auxiliary notation: Fix a point p ∈ M . Given a principal direction λ ∈ T ∗
pM ,

we define the singularity

Σ(λ) := {F = (F1, F2) ∈ J1
p (T

∗M ⊕ T ∗M) | Both dFi are multiples of λ }.

The complement of Σ(λ) in J1
p (T

∗M ⊕T ∗M) is a first-order differential constraint, defined only at
the point p. Nonetheless, we can still talk about it being ample; in fact, we will prove that Σ(λ) is
a thin singularity (see Lemma 5.5.4 below).

5.5.3.1 The thinning step

The following criterion will allow us to compute Thin(R):

Lemma 5.5.2 Fix p, λ and F as above. The following two conditions are equivalent:

� Rλ,F ⊂ Prλ,F has thin complement.

� F /∈ Σ(λ).

Proof. Recall that the principal space defined by λ and F is given by:

Prλ,F = {(F1, F2) + ((0, λ⊗ β1), (0, λ⊗ β2)) | βi ∈ T ∗
pM}

In particular, it is parametrised by the pairs β1×β2 ∈ T ∗
pM ×T ∗

pM . The restriction of the relation
R to Prλ,F reads:

Rλ,F = {(F1, F2) + ((0, λ⊗ β1), (0, λ⊗ β2)) | The forms dFi + λ ∧ βi are linearly independent}.

The symbol of the exterior differential yields then a map

d : Prλ,F −→ ∧2T ∗
pM × ∧2T ∗

pM

whose image dPrλ,F is 4-dimensional. It is the product L1 × L2 of the plane of 2-forms

L1 := {dF1 + λ ∧ β1 | β1 ∈ T ∗
pM},

passing through dF1, and the plane

L2 := {dF2 + λ ∧ β2 | β2 ∈ T ∗
pM}

passing through dF2. These two planes are parallel to the distinguished plane L consisting of those
2-forms proportional to λ.

There are two possible situations. The first possibility (Figure 5.7) is that both dFi are contained
in L (equivalently, L = L1 = L2; equivalently, F ∈ Σ(λ)). In this case, there are covectors νi such
that dFi = λ ∧ νi. Then we can identify dPrλ,F with the 2-by-2 matrices:

τ : dPrλ,F −→ Ker(λ)∗ ×Ker(λ)∗ ∼= M2×2

(dFi + λ ∧ βi)i=1,2 7→ ((νi + βi)|Ker(λ))i=1,2.

The subset Rλ,F maps precisely to the linearly independent pairs ((νi + βi)|Ker(λ))i=1,2. That is,
τ ◦d is an affine submersion of Rλ,F onto GL(2). We then conclude that the complement of Rλ,F is



Figure 5.7: The first possibility in the proof of Lemma 5.5.2: Both dFi are contained in L.

not thin, because the complement of GL(2) (the zero set of the determinant, which has codimension
1) is not. We will see in Subsection 5.5.4 that GL(2) is nonetheless ample, and so is Rλ,F .

The other possibility is that one of the dFi is not proportional to λ (equivalently, one of the
Li is different from L; equivalently, F /∈ Σ(λ)). Suppose, without loss of generality, that it is dF1.
Then, an element dF1 + λ ∧ β1 is colinear with a single element in L2 (if L2 ̸= L) or with none (if
L2 = L). In the first case (Figure 5.8), the complement of Rλ,F is of codimension-2. In the second
case (Figure 5.9), the complement of Rλ,F is the set {dF2 = 0}, which is also of codimension-2.
This completes the claim.

Figure 5.8: The second possibility in the proof of Lemma 5.5.2: None of the dFi are contained in L.



Figure 5.9: The third possibility in the proof of Lemma 5.5.2: One of the dFi is contained in L but
the other one is not.

Recall the avoidance template notation from Subsection 5.3.2. We remark that the thinning
process was defined as a pointwise process and Lemma 5.5.2 indeed applies to each point p ∈ M
individually. An immediate consequence is:

Corollary 5.5.3 The following statements are equivalent:

� (F,Ξ) ∈ R×M H-Conf(TM) belongs to Thin(R).

� F belongs to R \ (
⋃

λ∈Ξ Σ(λ)).

5.5.3.2 A second step is not necessary

It turns out that the set we have removed from R during the first step is itself thin:

Lemma 5.5.4 Fix a point p ∈M and a codirection ν ∈ T ∗
pM . Then, Σ(ν) ⊂ J1

p (T
∗M ⊕ T ∗M) is

a thin singularity.

Proof. Fix a principal direction λ ∈ T ∗
pM and a formal datum F ∈ J1

p (T
∗M ⊕T ∗M) \Σ(ν). Recall

the affine spaces Prλ,F , dPrλ,F , L and Li from Lemma 5.5.2. We additionally consider the subspace
L′ of 2-forms spanned by ν. The symbol d maps the singularity Σ(ν)∩Prλ,F ⊂ Prλ,F to the product
(L′ ∩ L1)× (L′ ∩ L2) ⊂ dPrλ,F . There are three options:

� λ and ν are proportional and L1 = L2 = L = L′. Then Prλ,F = Σ(ν), which contradicts the fact
that F was in the complement.

� λ and ν are proportional, so L = L′, but at least one Li, say L1, is distinct from L′. Then L′∩L1

is empty and so is Σ(ν) ∩ Prλ,F .

� λ and ν are not proportional. Then both intersections L′ ∩ L1 are lines and thus Σ(ν) has
codimension 2 in Prλ,F .

Only the two last possibilities can happen and the claim follows.



5.5.3.3 Completing the proof

The previous Lemmas allow us to conclude:

Proof (Proof of Proposition 5.5.1). We want to show that Thin(R) is an thinning template. To do
this, we must prove three properties. First, that for all Ξ ∈ H-Conf(TM), the subset Thin(R)(Ξ)
has thin complement along each direction in Ξ. Second, that for all F ∈ R, the subset Thin(R)(F )
is fibrewise dense in H-Conf(TM). Lastly, that Thin(R) is open.

According to Corollary 5.5.3, we have the following explicit description:

Thin(R)(Ξ) = R \ (
⋃
λ∈Ξ

Σ(λ)).

Fix ν ∈ Ξ. According to Lemma 5.5.2, each subspace Rν,F is contained in Σ(ν) (if F ∈ Σ(ν)) or is
disjoint from it and has thin complement. In the former case, Thin(R)(Ξ)ν,F is empty. In the latter
case, we use Lemma 5.5.4 to note that all other singularities Σ(λ) ∩ Rν,F are thin singularities.
This proves the first property.

For the second property, we fix F ∈ R. A configuration Ξ is in the complement of Thin(R)(F )
if and only if there is λ ∈ Ξ such that F ∈ Σ(λ). Equivalently, if and only if dF1∧λ = dF2∧λ = 0.
This is a non-trivial algebraic condition for Ξ, which proves the claim.

Lastly, note that dF1 ∧ λ = dF2 ∧ λ = 0 is an algebraic equality both on dFi and λ. Therefore,
its complement is open (and, in fact, open in each variable upon freezing the other one), proving
the third property.

5.5.4 Linear algebra

As we stated in the proof of Lemma 5.5.2, the subspace of non-degenerate matrices is an ample
subset of the space of all matrices. This shows that the relation R studied in this Section was, in
fact, ample. For completeness we provide a proof:

Proposition 5.5.5 The subspace GL(n) of non-singular matrices is an ample subset of the space
of (n× n)-matrices Mn×n if and only if n ≥ 2.

Proof. The two components GL+(n) and GL−(n) are connected. We have to show that each is
individually ample.

First note that every n × n matrix can be expressed as the convex combination of two non-
singular matrices, since

M =
1

2
(2M − 2λ · Id) + 1

2
λ · 2Id

and the right hand-side is the sum of two non-singular matrices for any choice of λ /∈ Spec(M) \ 0.
Therefore, it is enough to show that any matrix M ∈ GL+(n) can be expressed as a convex
combination of matrices in GL−(n) (and viceversa). This readily follows by writing
M = (v1, v2, v3, · · · , vn) (expressed in column vectors) as M = 1

2M1 +
1
2M2, where

M1 = (−v1, 3v2, v3, · · · , vn)

M2 = (3v1,−v2, v3, · · · , vn) .

Note that M1 and M2 do not belong to the same connected component of GL(n) as M and, thus,
the claim follows.



Proof (Alternate proof). Observe that Mn×n is convexely spanned by those matrices with a single
non-zero entry.

Then: Given a matrix M and a sufficiently large constant C, it holds that M is in the interior
of the convex hull of the matrices e±i,j whose single non-zero entry is (i, j) with value ±C. The
matrix e±i,j has zero determinant so it may be perturbed to yield a matrix ẽ±i,j with positive (resp.
negative) determinant. In doing so, the convex hull is perturbed as well. However, M will remain
in the interior if the perturbations are small enough, by continuity. This proves the ampleness of
GL+(n) (resp. GL−(n)).

We conclude:

Corollary 5.5.6 The subspace of non-singular matrices in Mn×m is ample unless n = m = 1.

Proof. We may assume n ̸= m; otherwise the space of singular matrices has codimension greater
than 1. Then the claim follows from the previous result.

Corollary 5.5.7 The relation R treated in this Section is ample in all principal directions and
therefore abides by the h-principle.

5.6 Relations involving functions

In this Section we restrict our attention to bundles X →M with 1-dimensional fibres. The typical
example is the trivial R bundle over M , whose sections are functions. Our claim is that convex
integration (even if it includes avoidance) is ill-suited to address relations R ⊂ Jr(X).

In Subsection 5.6.1 we prove that the the relation defining functions without critical points fails
to be ample up to avoidance. In Subsection 5.6.2 we generalise this to arbitrary differential relations
R ⊂ Jr(X) that satisfy a mild non-triviality condition.

Remark 5.6.1 Let us compare these claims with [58, Remark 1.3.4]. Gromov states that a generic
codimension-2 singularity Σ is thin. This is true if the fibres of X have dimension at least 2.
Indeed, under genericity assumptions, Σ intersects every principal subspace in a (maybe empty)
codimension-2 subset.

However, if the fibres of X have dimension 1, Σ does not intersect all the principal subspaces,
only a subset of codimension-1. Further, these intersections are necessarily of codimension-1. As
such, thinness and ampleness (even up to avoidance) fail.

Observe further that a differential relation given by a concrete geometric problem is, by definition,
not generic. We claim that our methods can be used to generalise Gromov’s statement to such non-
generic situations. Suppose Σ has codimension 2 and the fibres of X have dimension at least 2. Even
if Σ intersects some principal subspaces in non-thin sets, it intersects most of them transversely,
by Sard’s theorem. One can then apply our methods to analyse the problematic subspaces.

Remark 5.6.2 We observe that the applicability realms of Vassiliev’s h-principle [102] and convex
integration are, in some sense, complementary. The former is most interesting when R is the
complement of a singularity of large codimension (at least dim(M) + 2) and X has 1-dimensional
fibres. The latter is effective in the presence of much larger singularities but requires the fibres of
X to have dimension at least 2.



5.6.1 A non-example: Functions without critical points

Let M be a manifold and we let X be the trivial R-bundle over M . As a differential relation in
J1(X) we take

R = {F ∈ J1(X) | dF ̸= 0},

i.e. the 1-jets of functions whose differential is non-zero. With the standard identification J1(X) ∼=
T ∗M × R we see that R is the complement of the singularity M × R.

Fix now a codirection λ and a formal datum F ∈ J1(X), both based at the same point p ∈ M .
The principal subspace associated to them is one-dimensional and explicitly given by:

Prλ,F = {F + (cλ, 0) ∈ T ∗M × R | c ∈ R}.

We readily see that there are two possible situations:

� dF is proportional to λ. Then the complement of Rλ,F is a point, which is not thin.

� dF is not proportional to λ. Then Rλ,F = Prλ,F so ampleness holds trivially.

This shows that Lemma 5.3.14 applies to R, allowing us to conclude that the standard pre-template
Avoid∞(R) is empty for all configurations of codirections that form a generating set. The same
applies to the thinning pre-template Thin∞(R). This was to be expected since, due to Morse theory,
there is no h-principle for functions without critical points.

5.6.2 The general case

It follows immediately from Lemma 5.3.14 that:

Proposition 5.6.3 Let X → M be a bundle with 1-dimensional fibres. Let R ⊂ Jr(X) be the
complement of a singularity Σ that intersects non-trivially each fibre of Jr(X) → Jr−1(X).

Let l0 be the dimension of the fibres of Jr(X) → Jr−1(X). Then, Avoidl0(R) is empty for all
configurations of codirections of cardinality l ≥ l0 that form a principal basis.

In particular, R is not ample nor ample up to avoidance.



Chapter 6

h-Principle for step-2 distributions

6.1 h-Principle for step-2 distributions

In this Chapter we will prove the h-principle for step-2 distributions (Theorem 1.10) and its corollary
about the classification of (3,5) and (3,6) distributions (Theorem 1.11). The proof can be found in
Subsection 6.1.4. We emphasise that the contents of this Section do not need avoidance and simply
rely on classic convex integration.

Before we get to the results, and in order to set notation, we recall some of the basic theory of
tangent distributions in Subsection 6.1.1. This will allow us, in Subsection 6.1.2, to translate our
statements about distributions to statements about their annihilating forms.

In Subsection 6.1.5, for completeness, we look at convex integration in the setting of (even-
)contact structures, following the work of McDuff [83].

6.1.1 The dual picture

Fix an n-dimensional ambient manifold M and a rank-k distribution ξ. Recall that the Lie flag and
the nilpotentisation were already introduced in the introductory Subsection 1.5.

In practice, whenever we impose (natural) differential conditions on distributions, these can be
read either using a frame of vector fields or a frame of the annihilator. In this thesis, the distributions
we look at have greater rank than corank, so it is more convenient to use the annihilator viewpoint:

ξ⊥ := {α ∈ T ∗M | α(v) = 0, ∀v ∈ ξ}.

In Subsection 1.5.0.3 we discussed the curvature of ξ. Its first entry is a 2-form with entries in ξ
and image in TM/ξ. Upon passing to the wedge product, it is equivalent to a bundle morphism

Ωξ : ξ ∧ ξ −→ TM/ξ.

We can then dualise it using the Cartan formula, yielding a bundle map

dξ : ξ⊥ −→ ∧2ξ∗

α 7−→ −α ◦Ωξ = dα|ξ.

We note that dα|ξ only depends on the pointwise value of α ∈ ξ⊥. At the risk of overloading our
notation, we will say that dξα is the curvature associated to α ∈ ξ⊥.

In light of the Cartan formula, the kernel of dξ is ξ⊥2 . In particular:
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Lemma 6.1.1 ξ is of step-2 if and only if any of the following equivalent conditions holds:

� dξ is a monomorphism.

� Ωξ is an epimorphism.

In particular, if ξ is of step-2, the ambient dimension is at most rank(ξ) +
(
rank(ξ)

2

)
. Conversely,

under this assumption on the dimension, generic distributions are of step-2 at a generic point (see
[9]).

6.1.2 Step-2 as a differential relation

We see rank-k distributions as sections of the grassmannian bundle Grk(TM). Being bracket–
generating in two steps is then a differential relation Rstep2 ⊂ J1(Grk(TM)) of first order. More
concretely, we observe that any element F ∈ J1(Grk(TM)) defines a k-plane j0F , as well as an
associated curvature

ΩF : ∧2j0F −→ TM/j0F,

simply because the curvature depends only on first order derivatives. Then:

Definition 6.1.2 The differential relation Rstep2 ⊂ J1(Grk(TM)) consists of those
F ∈ J1(Grk(TM)) such that ΩF is an epimorphism.

We will write Distf(k,n)(M) for the space of formal solutions of Rstep2. The subspace of holonomic

ones is denoted by Dist(k,n)(M). Being bracket-generating in l + 1 steps is similarly a differential
relation of order l.

Definition 6.1.2 is not very practical and it is best to pass to a description in terms of forms.
Namely, we consider the bundle of tuples ⊕n−k T ∗M . Over the open set ⊕n−k T ∗M consisting of
linearly-independent tuples, we have a quotient map:

π : ⊕n−k T ∗M −→ Grk(TM),

which induces a map
jrπ : Jr(⊕n−k T ∗M) −→ Jr(Grk(TM))

between jet spaces. Then:

Definition 6.1.3 A jet F̃ ∈ J1(⊕n−k T ∗M) is formally bracket-generating of step-2 if the
following conditions hold:

� F̃ ∈ J1(⊕n−k T ∗M) and therefore it projects to an element F ∈ J1(Grk(TM)). Denote ξ = j0F .

� The 2-forms dF̃ |ξ are linearly independent.

The subset of such F̃ will be denoted by Sstep2 ⊂ J1(⊕n−k T ∗M).

The second condition is, according to Lemma 6.1.1, indeed equivalent to ΩF being an epimorphism.
It follows that:

Lemma 6.1.4 Sstep2 is the preimage of Rstep2 under j1π. In particular, Sstep2 fibres affinely over
Rstep2.



6.1.3 Localisation to a ball

As explained before, a formal solution in F ∈ Distf(k,n)(M) defines a k-plane field j0F . It may very

well happen that the annihilator (j0F )⊥ is not trivial as a bundle. This would imply that F cannot

be lifted to F̃ ∈ J1(⊕n−k T ∗M). In particular, there may be no global lift of F to Sstep2.

Nonetheless, the h-principle for Rstep2 reduces to the h-principle for Sstep2. We could directly
invoke that convex integration is local (i.e. that it is performed chart by chart). This would certainly
be enough for our purposes in this Section, which rely on ampleness along all directions. However,
it seems more delicate for ampleness up to avoidance.

In order to set the stage for later Sections, we follow a different approach. The following standard
trick gets the job done (even in the presence of parameters and relatively): The manifold M (or
the product M ×K, in the presence of a parameter space K) can be triangulated and holonomic
approximation [39, Chapter 3] can be applied along the codimension-1 skeleton T . This homotopes

the formal solution F (resp. K-family of formal solutions) to a new formal solution G ∈ Distf(k,n)
(resp. K-family of formal solutions) that is holonomic along T and C0-close to F everywhere. See
[5] for the general theory behind this.

The outcome is that now we can restrict our attention to the top dimensional cells, which are
contractible. Over each ball, the annihilator of j0G is now trivial, and thus a lift to Sstep2 exists.
We conclude that:

Lemma 6.1.5 In order to prove the h-principle for Rstep2, it is sufficient to prove it for Sstep2.

The h-principle for Sstep2 will follow from convex integration, as we prove next.

6.1.4 h-Principle for step-2 distributions

Proof (of Theorem 1.10). According to Lemma 6.1.5, it is sufficient to check that Sstep2 is ample
along all codirections. Fix a formal solution F = (Fi)

n−k
i=1 ∈ Sstep2 based at some point p ∈ M . By

assumption, the j0F = (j0Fi)
n−k
i=1 are linearly independent and thus annihilate a k-plane ξ ⊂ TpM .

Furthermore, the dFi|ξ are linearly independent.

Fix a codirection λ ∈ T ∗
pM . The principal space associated to λ and F reads:

Prλ,F = {(Fi + (0, λ⊗ βi))
n−k
i=1 | βi ∈ T ∗

pM}.

The differential of any F̃ ∈ Prλ,F reads (dF̃i = dFi + λ∧ βi)n−k
i=1 . A tuple F̃ belongs to Sstep2 if and

only if the tuple of two-forms dF̃ |ξ is linearly independent. Suppose λ ∈ ξ⊥. Then we have that

dF̃ |ξ = dF |ξ and therefore ampleness holds (because all F̃ are formal solutions, since F was).

Otherwise, we suppose that λ represents a non-trivial element in ξ∗. Then, as far as dF̃ |ξ is
concerned, only the restriction of βi to ξ ∩ Ker(λ) is important. The forms (dFi|Ker(λ)∩ξ)

n−k
i=1 span

a subspace, say, of dimension l. Up to a change of basis, we may then assume that

dFi|Ker(λ)∩ξ = 0, for all i = l + 1, · · · , n− k.

Equivalently:

dFi|ξ = λ ∧ νi, for all i = l + 1, · · · , n− k, for some νi ∈ T ∗M.

Then, the tuple dF̃ ∈ Prλ,F is in Sstep2 if and only if the forms {(λ ∧ (βi + νi))|ξ}n−k
i=l+1 are linearly

independent. Equivalently, if and only if the forms {(βi+νi)|Ker(λ)∩ξ}n−k
i=l+1 are linearly independent.



This means that the ampleness of Sstep2 along Prλ,F is equivalent to the ampleness of the subspace
A of rank-(n− k − l) matrices within M(n−k−l)×(k−1).

If n − k − l > k − 1 (equivalently l < n − 2k + 1), the subspace A is empty contradicting the
fact that F was a formal solution. Otherwise, n − k − l ≤ k − 1 holds and A is just the subspace
of non-degenerate matrices. Due to our assumptions (step 2 and dimension at least 4), we have
that k ≥ 3 and thus we deduce k − 1 ≥ 2. It follows that A is ample according to Lemma 5.5.6,
concluding the proof.

Theorem 1.10 proves that step-2 distributions are flexible as long as we do not impose any further
non-degeneracy constraints. Nonetheless, according to Theorem 1.11, there are two cases, (3,5) and
(3,6), where the h-principle for maximally non-involutive distributions readily follows from the
Theorem.

The following claims follow by inspection of the proof:

Remark 6.1.6 When the dimension of ∧2ξ is exactly the corank of ξ (i.e. for distributions of
maximal growth (k, k +

(
k
2

)
), including (3, 6) and (4, 10)), the singularity associated to Sstep2 has

codimension-1 and is thus not thin. Indeed, in this situation, the singularity is either trivial or
equivalent to the complement of GL inside of all square matrices.

Further, the singularity may have codimension-1 even when the dimension of ∧2ξ is greater than
the corank of ξ. This can be observed in the case of (3,5) distributions, where the singularity is
thin along most principal subspaces, but not all (corresponding to the case of l = 0 in the previous
proof). This is the same phenomenon observed for the relation studied in Section 5.5.

6.1.5 The contact and even-contact cases

As an appetiser for our study of maximally non-involutive distributions in Sections 7.1 and 7.2,
we now revisit the contact and even-contact cases. We will show that the former fails to be ample
(as was to be expected, since contact structures do not abide by the h-principle [11]), whereas the
latter is thin along all principal directions (as proven by D. McDuff in [83]).

6.1.5.1 The Pfaffian

Let M be an n-dimensional manifold. Once again, it is convenient, since we are dealing with
hyperplane fields, to work with forms. The bundle of interest for us will be the cotangent bundle
T ∗M . In order to measure non-involutivity, we introduce the Pfaffian map:

Γ : J1(T ∗M) −→ T ∗M ⊕ ∧2T ∗M −→ ∧2⌊n−1
2

⌋+1T ∗M

F 7−→ (j0F, dF ) 7−→ j0F ∧ (dF )⌊
n−1
2

⌋,

where the first arrow is the extended symbol of the exterior differential. The Pfaffian measures
whether the formal curvature dF |Ker(j0F ) has maximal rank.

Definition 6.1.7 The (even)-contact differential relation for 1-forms is defined as:

Rcont := J1(T ∗M \ 0) \ Γ−1(0) ⊂ J1(T ∗M).

Once again we emphasise that one can pass from distributions to forms locally (see Subsection
6.1.3), so the h-principle for (even-)contact structures is equivalent to the h-principle for Rcont. We
study its ampleness next.



6.1.5.2 Checking ampleness

Fix a coordinate direction λ and a formal solution F ∈ Rcont, both based at a point p ∈ M . The
two together define the principal subspace

Prλ,F := {F + (0, λ⊗ β) | β ∈ T ∗
pM}

which maps, using the extended symbol of d, to:

dPrλ,F := {(j0F, dF + λ ∧ β) | β ∈ T ∗
pM} ⊂ T ∗

pM ⊕ ∧2T ∗
pM.

We write ξ = Ker(j0F ).

A point F̃ = F + (0, λ⊗ β) ∈ Prλ,F is formally (even-)contact if and only if:

Γ (F̃ ) = n j0F ∧ (dF )⌊
n−1
2

⌋−1 ∧ (dF + λ ∧ β) ̸= 0.

Since F was a formal solution, there are four possible situations:

1. λ is proportional to j0F .

2. λ is not proportional to j0F and n is odd. Then dF has a 1-dimensional kernel L when restricted
to ξ ∩Ker(λ).

3a. λ is not proportional to j0F , n is even, and Ker(λ) contains the 1-dimensional kernel of dF |ξ.
Then dF has a 2-dimensional kernel L′ when restricted to ξ ∩Ker(λ).

3b. λ is not proportional to j0F , n is even, and Ker(λ) is transverse to the 1-dimensional kernel of
dF |ξ. Then dF is non-degenerate when restricted to ξ ∩Ker(λ).

Situation (1) means that Γ (F̃ ) = Γ (F ) ̸= 0, so ampleness holds trivially.

Situation (2) corresponds to the (non-trivial) contact case. Then, Rcont ∩ Prλ,F corresponds to
those choices of β that evaluate non-zero on L. The complement is then a hyperplane, proving that:

Lemma 6.1.8 The differential relation describing contact structures is not ample. In fact, along
any given principal subspace, Rcont ∩ Prλ,F is either trivially ample or not ample.

Situations (3a) and (3b) correspond to the (non-trivial) even-contact case. In (3a), Rcont
λ,F

corresponds to those choices of β that evaluate non-zero on L. Its complement is codimension-2.
In (3b), ampleness holds trivially since Rcont

λ,F = Prλ,F . We have shown:

Lemma 6.1.9 The differential relation describing even-contact structures has thin complement.

The h-principle for even-contact structures follows then from classic convex integration Theorem
5.1.





Chapter 7

h−Principle for hyperbolic (4, 6)-distributions.

7.1 Maximal non-involutivity

Fix two positive integers k < n. We want to define maximal non-involutivity for step-2 distributions
of rank k in dimension n. Just like in Subsection 6.1.5, we will use the Pfaffian map to capture this
in an algebraic manner (Subsection 7.1.1). In Subsection 7.1.2 we will particularise the discussion to
the rank-4 case. Much of what we explain in this Section we learnt from the book by R. Montgomery
[82].

7.1.1 The Pfaffian and degenerate differential forms

Let ξ be a distribution of rank k in an n-dimensional manifoldM . We measure the non-involutivity
of ξ using the curvature Ωξ. Recall that Ωξ is a 2-form with entries in ξ and values in TM/ξ.
Dually, we think of it as a ξ⊥-family of 2-forms. As in Subsection 6.1.5, we can take the highest
potentially-non-trivial power of the curvatures using the map:

p : ∧2ξ∗ −→ ∧2⌊ k
2
⌋ξ

ω 7−→ ω⌊ k
2
⌋.

That is, a curvature gets mapped to a top-form when the rank k is even, and to a codimension-1
form when k is odd.

Definition 7.1.1 A 2-form ω ∈ ∧2ξ∗ is degenerate if p(ω) = 0.

The map p is algebraic and of degree ⌊k2⌋. Its zero level set C consists of the degenerate 2-forms. It
has codimension 1 inside ∧2ξ∗ if k is even and codimension k if k is odd. Then we define:

Definition 7.1.2 The composition p ◦ dξ is called the Pfaffian:

Pf : ξ⊥ −→ ∧2ξ∗ −→ ∧2⌊ k
2
⌋ξ∗

α 7−→ dα|ξ 7−→ (dα|ξ)⌊
k
2
⌋ .

We are interested in the Diff-invariant non-degeneracy condition:

Definition 7.1.3 Let k be even. A step-2 distribution ξ is maximally non-involutive if Pf
intersects C transversely.

Maximal non-involutivity may be described similarly (but differently) for k odd. This is unnecessary
for the purposes of this thesis. We now focus on rank-4 distributions.
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7.1.2 4-distributions

Since k = 4 is even, the target of p is a 1-dimensional line bundle; namely, the determinant of ξ.
Assuming orientability of ξ, which we can do locally, we can fix a volume form on ξ to trivialise it.
This allows us to see p as a quadratic form on ∧2ξ∗ and study its signature. The signature does
not depend on the choice of volume form:

Lemma 7.1.4 The real quadratic form p has signature (3, 3).

Proof. Take a local frame ξ∗ = ⟨β1, β2, β3, β4⟩ compatible with the chosen orientation. Define now
the space of self-dual forms

∧+(ξ∗) and the space of anti self-dual forms
∧+(ξ∗) as follows:

+∧
(ξ∗) = ⟨a1 = β1 ∧ β2 + β3 ∧ β4, a2 = β1 ∧ β3 + β4 ∧ β2, a3 = β1 ∧ β4 + β2 ∧ β3⟩ ⊂ ∧2ξ∗.

−∧
(ξ∗) = ⟨b1 = β1 ∧ β2 − β3 ∧ β4, b2 = β1 ∧ β3 − β4 ∧ β2, b3 = β1 ∧ β4 − β2 ∧ β3⟩ ⊂ ∧2ξ∗.

A straightforward computation shows that the matrix associated to the bilinear form p with respect
to the basis ⟨a1, a2, a3, b1, b2, b3⟩ consists of an upper-left Id3×3 identity block and another −Id3×3

in the right-down corner. I.e. p diagonalises with the claimed signature.

Since ξ is bracket–generating, the exterior differential dξ maps ξ⊥ injectively into ∧2ξ∗. We can
then talk about the signature of p restricted to the image. This is equivalent to:

Definition 7.1.5 The signature of a distribution ξ is the signature of the quadratic form Pf : ξ⊥ →
∧2(ξ∗) ∼= R.

Two remarks are in order. First: the signature is well-defined only once a volume form on ξ has
been chosen. Otherwise, we cannot distinguish the signatures (i, j, k) and (j, i, k). Furthermore, the
signature of ξ may vary from point to point.

We focus on the case of (4, 6)−distributions:

Definition 7.1.6 A bracket–generating 4-distribution in a 6-dimensional manifold M is said to be
maximally non-involutive if, at all points, any of the following equivalent conditions holds:

� The map dξ is transverse to the locus of degenerate 2-forms.

� The Pfaffian is transverse to zero.

� The Pfaffian is non-degenerate as a quadratic form.

Furthermore, we can distinguish two different types of (4, 6)-distributions:

Definition 7.1.7 A maximally non-involutive (4, 6)-distribution is

i. elliptic or fat if the signature is definite.

ii.hyperbolic if the signature is mixed.

Since p has signature (3, 3) and ξ⊥ has dimension 2, there are, up to changing the orientation,
four possible signatures for ξ: (0, 0, 2), (1, 0, 1), (1, 1, 0) and (2, 0, 0). Only the last two cases are
maximally non-involutive. They correspond, respectively, to the hyperbolic and elliptic cases.



7.1.3 Formal maximally non-involutive 4-distributions

As in Section 6.1, it is more convenient not to work with the distribution itself but with its
annihilating forms. We define:

Definition 7.1.8 A formal datum F = (Fi)i=1,2 ∈ J1(T ∗M⊕T ∗M) is said to be formally elliptic
if:

� the 1-forms j0Fi are linearly independent and thus span a 4-plane ξ.

� the 2-forms dFi|ξ are linearly independent and span a 2-plane of definite signature.

The formal datum F is formally hyperbolic if, instead:

� the 1-forms j0Fi are linearly independent and thus span a 4-plane ξ.

� the 2-forms dFi|ξ are linearly independent and span a 2-plane of mixed signature.

A first jet of distribution is elliptic/hyperbolic if and only if any pair of forms (Fi)i=1,2 representing
it is elliptic/hyperbolic.

We write Rell for the differential relation defining elliptic (4, 6) distributions. Similarly, Rhyp

denotes the differential relation consisting of formal hyperbolic (4, 6)-distributions. Their
counterparts at the level of forms are denoted by Sell and Shyp, respectively. As in Subsection
6.1.3, one can use holonomic approximation to reduce to the case of a ball, proving that:

Lemma 7.1.9 The full C0-close h-principle for Rhyp reduces to the full C0-close h-principle for
Shyp.

The upcoming final Section of the chapter deals with the construction of an avoidance template
for Shyp.

7.2 h-Principle for hyperbolic (4, 6)-distributions

In this Section we tackle the proof of Theorem 1.12. According to Lemma 7.1.9, the h-principle for
Rhyp will follow from the h-principle for formally hyperbolic pairs of 1-forms Shyp ⊂ J1(T ∗M ⊕
T ∗M). Applying Theorem 1.8 we see that we just need to construct an avoidance template for
Shyp.

7.2.1 First avoidance step

As we advanced in Subsection 1.6.1, Shyp (and thus Rhyp) does not intersect all principal subspaces
in ample sets, so avoidance will act non-trivially. Before we provide a precise statement, we need
to introduce some notation.

7.2.1.1 The singularity associated to non-ampleness

We define Σ(1) ⊂ Shyp ×M T ∗M as the subspace of pairs (F, λ) such that



j0F1 ∧ j0F2 ∧ λ ∧ dF1 and j0F1 ∧ j0F2 ∧ λ ∧ dF2 are linearly dependent. (7.1)

We write Σ(1)(λ) ⊂ Shyp for the subset of those F such that (F, λ) ∈ Σ(1). Similarly, Σ(1)(F ) ⊂
T ∗M denotes those λ such that (F, λ) ∈ Σ(1).

Lemma 7.2.1 The following statements hold:

� Σ(1) is a closed subset of Shyp ×M T ∗M .

� All the fibres (Σ
(1)
p )p∈M are isomorphic algebraic subvarieties.

� Fix F ∈ Shyp lying over p ∈M . The subspace Σ(1)(F ) has positive codimension in T ∗
pM .

Proof. Shyp is Diff-invariant, and therefore all its fibres are isomorphic to one another. Furthermore,
the expressions in Equation 7.1 are algebraic on their entries and linear dependence is itself a closed
algebraic condition. These statements prove the first two claims.

For the last claim, we observe that fixing F yields still an algebraic equality for λ that is non-
trivial as long as j0F1 ∧ j0F2 ∧ dF1 and j0F1 ∧ j0F2 ∧ dF2 are linearly independent. This is indeed
the case if F ∈ Shyp.

Write ξ ⊂ TpM for the 4-plane given as the kernel of j0F . We note that the following are
equivalent:

� (F, λ) ∈ Σ(1).

� The 3-forms (λ ∧ dF )|ξ are linearly-dependent.

� λ|ξ is zero or the 2-forms dF |ξ∩Ker(λ) are linearly-dependent.

7.2.1.2 Main statement

We claim that Σ(1) is precisely the set to be removed in order to carry out the first avoidance step.

Proposition 7.2.2 Let F ∈ Shyp and λ ∈ T ∗
pM , both based at the same point p ∈ M . Write

ξ ⊂ TpM for the 4-plane defined by j0F . Then:

i. Shyp
λ,F is non-trivially ample if and only if (F, λ) /∈ Σ(1).

ii. Shyp
λ,F is trivially ample if and only if λ|ξ = 0. In particular, (F, λ) ∈ Σ(1).

iii. Shyp
λ,F is not ample otherwise. I.e. if (F, λ) ∈ Σ(1) but λ|ξ ̸= 0.

Let us provide some geometric insight before we get into the proof. An element F̃ in the principal
subspace Prλ,F maps under the exterior differential to a pair (dF̃i = dFi + λ ∧ βi)i=1,2, where the
βi range over T ∗

pM .

According to Definition 7.1.8, the pair dF |ξ spans a plane of 2-forms L. The restriction p|L is a
bilinear form of mixed signature, due to hyperbolicity. Now consider the subspace

K := {(λ ∧ β)|ξ | β ∈ T ∗
pM} ⊂ ∧2ξ∗.

By definition, given any other element F̃ ∈ Prλ,F , the pair dF̃ |ξ is obtained from dF |ξ by shifting

each form dFi|ξ along K. As such, when K and L are transverse, the pair dF̃ |ξ will span a plane

L̃ that is a graph over L in the direction of K. If transversality fails, it may very well happen that
the pair dF̃ |ξ is linearly dependent; however, we still think of its span L̃ as a degenerate plane.



We further note that being a graph over L in the direction of K is an intrinsic characterisation
of the planes L̃ associated to elements F̃ ∈ Prλ,F . I.e. the set of all such planes does not depend on

the concrete basis dF of L. We furthermore note that F̃ ∈ Sλ,F if and only if p|
L̃
is non-degenerate

of mixed signature. This means that all relevant properties of F̃ can be read from L̃. We conclude
that we are allowed to choose a convenient basis of L in order to simplify our computations.

Proof (Proof of Proposition 7.2.2). Consider F̃ ∈ Prλ,F and restrict p to its (possibly degenerate)

span L̃. This restriction can be represented by the 2-by-2 matrix(
g11 g12
g12 g22

)
(7.2)

whose coefficients read:

g11(β1, β2) = (dF1 + λ ∧ β1)2 = dF 2
1 + 2λ ∧ β1 ∧ dF1,

g22(β1, β2) = (dF2 + λ ∧ β2)2 = dF 2
2 + 2λ ∧ β2 ∧ dF2,

g12(β1, β2) = (dF1 + λ ∧ β1) ∧ (dF2 + λ ∧ β2) = dF1 ∧ dF2 + λ ∧ (β2 ∧ dF1 + β1 ∧ dF2).

Each of these expressions can be identified with a real function by fixing a volume form on ξ. We
fix such a volume; all our upcoming computations do not depend on this auxiliary choice.

We have effectively defined an affine map that takes values in the space of symmetric 2-by-2
matrices, which we think of as R3:

Ψ : ξ∗ ⊕ ξ∗ −→ R3

(β1, β2) 7−→ (g11(β1, β2), g22(β1, β2), g12(β1, β2))

It is now convenient to introduce the determinant, which we see as a quadratic form in the space
of symmetric 2-by-2 matrices:

det : R3 −→ R
(x, y, z) 7−→ xy − z2.

We saw back in Example 5.2.3 that the signature of det was (1, 2, 0), so its zero set C is a cone.
See Figure 7.1. The cone C divides the space in 3 components: The two positive ones we called
H+; they are convex and thus not ample. The third component H− is the exterior of the cone; it
corresponds to the matrices with negative determinant and it is ample. In particular, hyperbolicity
is equivalent to det ◦Ψ(−) < 0 and thus equivalent to Ψ(−) ∈ H−. Similarly, ellipticity is equivalent
to det ◦Ψ(−) > 0 and thus equivalent to Ψ(−) ∈ H+. We will come back to ellipticity in Lemma
7.2.4 below; for now we focus on hyperbolicity. We want to check ampleness; there are various
possibilities, depending on what the image of Ψ is.

Suppose that λ|ξ is zero. Then the subspace K defined before the proof is zero as well. In
particular, Ψ is constant and its image must be in H−, since F is a formal solution. It follows that
Shyp
λ,F = Prλ,F , so ampleness holds trivially. Situation (ii.) holds. We henceforth assume λ|ξ ̸= 0 and

thus K ̸= 0.

Suppose that the forms dF |ξ∩Ker(λ) are both zero. This is equivalent to L ⊂ K. This means that
both dFi|ξ are proportional to λ. However, this readily implies that dFi ∧ dFi = dF1 ∧ dF2 = 0,
contradicting the fact that F was a formal solution.

Suppose that the forms (dFi|ξ∩Ker(λ))i=1,2 are linearly independent. This amounts to

transversality of L and K. It follows that Ψ is surjective. Then, ampleness of Shyp along Prλ,F is
equivalent to the ampleness of the subspace H− of symmetric matrices with negative determinant
(and thus, of mixed signature). This space is indeed ample, but not trivially. Situation (i.) holds.

Lastly, suppose that the dF |ξ∩Ker(λ) are linearly dependent but not identically zero; i.e. L∩K is
1-dimensional. Up to changing basis we may assume that dF1|ξ∩Ker(λ) = 0; i.e. dF1 spans the line



Figure 7.1: The space of 2-by-2 symmetric matrices. In blue, the cone of degenerate matrices.
The outside of the cone H− corresponds to matrices with negative determinant. It has a single
ample component. The subspace of matrices with positive determinant H+ has two non-ample
components. The image of Ψ can be a single point, the whole space, or a vertical plane A, shown
in green. In the latter case, the intersection of A with the cone is a single line, cutting A in two
non-ample components.

L ∩ K. In this case, dF2|ξ∩Ker(λ) ̸= 0. Then dF1 ∧ dF1 = 0, so the image of Ψ is a 2-dimensional
plane A through the origin, tangent to the cone. The restriction H−∩A consists of two half-spaces,
separated by the line A ∩ C. Since this complement A ∩ C is linear and of codimension-1, it is not
a thin singularity. Situation (iii.) holds.

7.2.1.3 Conclusion of the first avoidance step

We now describe Avoid(Shyp) using Proposition 7.2.2.

Corollary 7.2.3 Avoid(Shyp) consists of those pairs (F,Ξ) ∈ Shyp ×M H-Conf(TM) such that

(F, λ) /∈ Σ(1) for every codirection λ ∈ Ξ.

Proof. Write ξ for the kernel of j0F . Recall Situations (i.), (ii.) and (iii.) from Proposition 7.2.2.
We define ∆3 ⊂ Shyp ×M H-Conf(TM) as the subspace of pairs (F,Ξ) for which Situation (iii.)
holds for F and some λ ∈ Ξ. We define ∆2 ⊂ Shyp ×M H-Conf(TM) as the subspace of those
(F,Ξ) /∈ ∆3 such that Situation (ii.) holds for some λ ∈ Ξ.

According to Proposition 7.2.2, ∆3 consists exactly of those pairs (F,Ξ) such that Shyp
λ,F is not

ample, for some λ ∈ Ξ. By definition, it follows that:

Avoid(Shyp) = Shyp ×M H-Conf(TM) \ ∆3.

We claim that the closure ∆3 is exactly ∆2 ∪∆3.

We first observe that the closure is contained in the union. Indeed, the pairs (F, λ) satisfying
Situation (ii.) or (iii.) are precisely the elements of Σ(1). Lemma 7.2.1 states that this is a closed
subset.



We then prove ∆2 ⊂ ∆3. For fixed F , the set of ν ∈ T ∗M such that Situation (iii.) holds for (F, ν)
is non-empty, invariant under scalings of ν, and depends only on the restriction ν|ξ. Take λ ∈ Ξ
such that λ|ξ = 0. Then there is a neighbourhood of λ in T ∗M that submerses onto a neighbourhood
of the zero section in ξ∗. This implies that any neighbourhood of λ contains codirections ν such
that Situation (iii.) holds for (F, ν). This proves the claim and concludes the proof.

7.2.1.4 Ampleness fails for (4,6) elliptic distributions

For completeness, we observe:

Lemma 7.2.4 Let F ∈ Sell and λ ∈ T ∗
pM , both based at the same point. Write ξ ⊂ TpM for the

4-plane defined by j0F . Then:

� Sell
λ,F is trivially ample if and only if λ|ξ = 0.

� Sell
λ,F is not ample otherwise.

In particular, for fixed F , the set of λ ∈ T ∗
pM such that Sell

λ,F is not ample is open and dense.

Proof. We reason as in the proof of Proposition 7.2.2. Using the same notation as there, we have
that the image of Ψ is either a point, a plane through the origin tangent to the cone C, or the
whole of R3. The first case corresponds to trivial ampleness and to λ|ξ = 0. The second case cannot
happen, as the plane would be disjoint from H+. The last case, corresponding to (F, λ) /∈ Σ(1), is
not ample as H+ consists of two convex components. Density follows from the fact that λ|ξ = 0
cuts out a linear subspace.

Reasoning as in Corollary 7.2.3 implies that:

Corollary 7.2.5 Avoid(Sell) is empty.

Which is exactly the same situation as in the contact case (Lemma 6.1.8). This leads us to conjecture
that there is no full h-principle for elliptic (4,6) distributions.

7.2.2 Second avoidance step

We will prove now that Avoid(Shyp) is not ample along all principal subspaces, so further elements
have to be removed. This is different from the example in Section 5.5, where a single thinning step
was sufficient to produce a thinning template.

Applying standard avoidance would lead us to study Avoid2(Shyp). It turns out that it is difficult
to determine whether Avoid2(Shyp) is an avoidance template. The reason is that we do not have a
explicit description of the elements removed from Avoid(Shyp) to yield Avoid2(Shyp).

Due to this, it is more fruitful to ignore Avoid2(Shyp) altogether and instead construct an
avoidance template A ⊂ Avoid(Shyp) with more transparent properties.

7.2.2.1 The singularity of interest

We define a new singularity



Σ(2) ⊂ Shyp ×M T ∗M ×M T ∗M

as the subspace of pairs (F, λ1, λ2) such that

j0F1 ∧ j0F2 ∧ λ1 ∧ λ2 ∧ dF1 = j0F1 ∧ j0F2 ∧ λ1 ∧ λ2 ∧ dF2 = 0. (7.3)

It is also convenient to denote Σ(2)(λ1, λ2) ⊂ Shyp for the subset of elements F such that
(F, λ1, λ2) ∈ Σ(2). Similarly we define Σ(2)(F ).

We note again that the expressions in Equation 7.3 are algebraic on their entries. Furthermore,
these expressions are non-trivial on the λi as long as j0F1 ∧ j0F2 ∧ dF ̸= 0. This proves:

Lemma 7.2.6 The following statements hold:

� Σ(2) is a closed subset of Shyp ×M T ∗M ×M T ∗M .

� All the fibres (Σ
(2)
p )p∈M are isomorphic algebraic subvarieties.

� Fix F ∈ Shyp lying over p. The subspace Σ(2)(F ) has positive codimension in T ∗
pM ⊕ T ∗

pM .

Write ξ ⊂ TpM for the 4-plane given as the kernel of j0F . We note that (F, λ1, λ2) ∈ Σ(2) if and
only if at least one of the following conditions holds:

� (λ1 ∧ λ2)|ξ is zero.

� Both 2-forms (dFi)|ξ∩Ker(λ1)∩Ker(λ2) are zero. Equivalently, both (dFi)|ξ are proportional to (λ1∧
λ2)|ξ.

7.2.2.2 Main statement

We now study the ampleness of Avoid(Shyp). This amounts to the following: Given a collection of
codirections Ξ and a codirection λ ∈ Ξ, we try to determine whether

Shyp
λ,F \ (

⋃
ν∈Ξ

Σ(1)(ν))

is an ample subset of Prλ,F , for each formal solution F .

Proposition 7.2.7 Fix codirections λ, ν ∈ T ∗
pM and a formal datum F ∈ Shyp, based also at p.

Write ξ ⊂ TpM for the 4-plane cut out by j0F .

The following statements hold:

� Suppose F /∈ Σ(2)(λ, ν). Then Prλ,F ∩Σ(1)(ν) is a thin singularity.

� Suppose F ∈ Σ(2)(λ, ν) but λ ∧ ν|ξ ̸= 0. Then Prλ,F \Σ(1)(ν) is ample but its complement is of
codimension 1.

Proof. In both situations we are assuming that the forms λ|ξ and ν|ξ are linearly independent. This
allows us to define the restriction map

Φ : Prλ,F −→ ∧2(ξ ∩Ker(ν))∗ ⊕ ∧2(ξ ∩Ker(ν))∗

that sends F̃ ∈ Prλ,F to dF̃ |ξ∩Ker(ν). Recall that F̃ ∈ Σ(1)(ν) if and only if the pair dF̃ |ξ∩Ker(ν) is
linearly dependent. The upcoming argument follows the proof of Lemma 5.5.2 (Section 5.5), since
the linear dependence problems under consideration are exactly the same.



Write L ⊂ ∧2(ξ∩Ker(ν))∗ for the subspace of 2-forms proportional to λ|ξ∩Ker(ν). Due to the linear
independence of λ|ξ and ν|ξ, L is a 2-dimensional plane. We write Li for the plane passing through
dFi parallel to L. Then, the image of Prλ,F under Φ is the sum L1 ⊕ L2, which is 4-dimensional.

The condition F ∈ Σ(2)(λ, ν) is equivalent to Φ(F ) = 0, which in turn is equivalent to L1 =
L2 = L. Ampleness of Prλ,F \Σ(1)(ν) is thus equivalent to ampleness of GL2 ⊂M2×2, proving the
second claim.

Similarly, F /∈ Σ(2)(λ, ν) means that Φ(F ) ̸= 0. I.e. at least one Li is different from L and
therefore does not pass through the origin. We deduce the singularity Σ(1)(ν) has codimension 2.

Remark 7.2.8 Consider the following elementary facts:

� Removing a thin singularity from an ample set still yields an ample set.

� The intersection of two ample sets need not be ample. For instance, the union of two codimension-
1 singularities, both having ample complement individually, may separate the space into non-
ample pieces. See Figure 7.2.

Our claim is that these statements largely determine the steps to be taken during avoidance.

Indeed, suppose in our current example that Shyp
λ,F is ample, for some λ and F . Then, the condition

F /∈ Σ(2)(λ, ν) implies that Shyp
λ,F \Σ(1)(ν) is ample, according to the first fact. This may still be true

even if F ∈ Σ(2)(λ, ν), but the second fact tells us that it need not be. This is even more delicate
when there are several codirections involved (which will always be the case in the construction of
a template). Avoiding the uncertainty of the second situation effectively forces us to consider the
singularity Σ(2), and thus prescribes what the second avoidance step must be.

Our claim is that this type of analysis, which is algorithmic in nature, is not specific to Shyp.
Indeed, it must guide the avoidance process of any given differential relation.

Figure 7.2: On the left and middle, two cubics in R2. Their complements (as well as themselves)
are ample subsets. On the right, we intersect the complements, yielding four components, none of
which is ample. The intersection of the two cubics is a point, also not ample.

7.2.2.3 Conclusion of the second step

Using Proposition 7.2.7 we now define:

A := {(F,Ξ) ∈ Avoid(Shyp) | (F, λ1, λ2) /∈ Σ(2) for all λ1 ̸= λ2 ∈ Ξ}.



Lemma 7.2.9 A is a pretemplate.

Proof. As we noted in Lemma 7.2.6, the condition (F, λ1, λ2) ∈ Σ(2) is closed, smooth in its entries,
and algebraic over each given point p ∈M . Furthermore, for a given F formal solution of Shyp, the
condition is non-trivial on λ1 and λ2. This proves the claim.

7.2.3 End of the proof

The proof of Theorem 1.12 will be complete once we show that:

Theorem 7.1. A is a template for Shyp.

This statement requires the following auxiliary result:

Proposition 7.2.10 Fix codirections λ, ν1, ν2 ∈ T ∗
pM and a formal datum F /∈ Σ(2)(ν1, ν2), based

also at p. Write ξ ⊂ TpM for the 4-plane cut out by j0F .

Then Prλ,F ∩Σ(2)(ν1, ν2) is a thin singularity.

Proof. Recall that Σ(2) is defined by Equation 7.3. The condition F /∈ Σ(2)(ν1, ν2) implies that the
forms νi|ξ are linearly independent. As such, Equation 7.3 reads:

(dF1)|ξ∩Ker(ν1)∩Ker(ν2) = (dF2)|ξ∩Ker(ν1)∩Ker(ν2) = 0.

Suppose first that λ is in the span ⟨ν1|ξ, ν2|ξ⟩. Any given element F̃ ∈ Prλ,F then satisfies

dF̃ |ξ∩Ker(ν1)∩Ker(ν2) = dF |ξ∩Ker(ν1)∩Ker(ν2),

proving that Prλ,F ∩Σ(2)(ν1, ν2) must be empty.

Suppose instead that λ is linearly independent from the other two forms. We can write out
dF̃ |ξ∩Ker(ν1)∩Ker(ν2) as a pair of 1-forms

(dFi + λ ∧ βi)|ξ∩Ker(ν1)∩Ker(ν2).

Equation 7.3 provides then two independent, affine, codimension-1 constraints, one for each βi. The
locus cut out by both has then codimension-2, proving thinness.

Proof (Proof of Theorem 7.1). First we prove that A satisfies Property (II) in the definition of
template. Fix (F,Ξ) ∈ A and λ ∈ Ξ. By construction, such a pair is characterised by the following
properties:

� F ∈ Shyp.

� F /∈ Σ(1)(ν) for all ν ∈ Ξ.

� F /∈ Σ(2)(ν1, ν2) for all pairs ν1 ̸= ν2 ∈ Ξ.

We need to show that A(Ξ) is ample along Prλ,F . An explicit description reads:

A(Ξ)λ,F = Shyp
λ,F \

⋃
ν∈Ξ

Σ(1)(ν) ∪
⋃

ν1 ̸=ν2∈Ξ
Σ(2)(ν1, ν2)

 .
We then observe:



� Using condition F /∈ Σ(1)(λ), we apply Proposition 7.2.2 to deduce that Shyp
λ,F is ample.

� Using condition F /∈ Σ(2)(λ, ν), we apply Proposition 7.2.7 and deduce that each Σ(1)(ν) is thin.

� According to Proposition 7.2.10, the singularities Σ(2)(ν1, ν2) are all thin.

The claim follows because ampleness is preserved upon removal of thin singularities.

Secondly, we prove that A satisfies Property (III) in the definition of template. We need to
show that, for each F ∈ Shyp lying over p ∈ M , the subspace A(F ) is dense in H-Conf(TpM). Its
complement can be explicitly written down as

A(F )c∩H-Conf(TpM) = {Ξ ∈ H-Conf(TpM) | F ∈ Σ(1)(ν1)∪Σ(2)(ν1, ν2) for some ν1 ̸= ν2 ∈ Ξ}.

The conditions ν1 ∈ Σ(1)(F ) or (ν1, ν2) ∈ Σ(2)(F ) are given, respectively, by Equations 7.1 and 7.3.
Both of them are non-trivial on their entries, since F is in Shyp; see Lemmas 7.2.1 and 7.2.6. We
deduce that A(F )c ∩ H-Conf(TpM) is a finite union of positive-codimension subvarieties, proving
the claim.

Proof (Proof of Theorem 1.12). According to Lemma 7.1.9, the h-principle for Rhyp reduces to the
h-principle for Shyp. Theorem 1.8 says that the h-principle for Shyp follows from the existence of
an avoidance template. Theorem 7.1 yields such a template A.





Part IV

Future work





Chapter 8

Future work

In this last chapter we discuss some possible research lines to explore in the short-mid term taking
this PhD thesis as starting point. We state some of the expected/conjectured results based on our
current understanding of the global topology of bracket–generating distributions.

8.1 Transverse submanifolds.

In this thesis we proved an h−principle for 1−dimensional embeddings transverse to bracket–
generating distributions. We intend to address, in future work, the analogous problem for higher
dimensional transverse submanifolds.

We expect the h−principle to hold for n-dimensional submanifolds transverse to corank k
distributions for certain values of n ≤ k (recall that closed n-dimensional submanifolds transverse
to corank k distributions abide by all forms of the h−principle if k > n, see [39, 4.6.2]).

The role that higher dimensional transverse submanifolds can play in showing flexibility for
distributions becomes apparent in the paper [92], where del Pino and Vogel construct transverse
2-tori to Engel distributions and manipulate them in order to prove a complete h−principle for
overtwisted Engel structures.

Therefore, we expect this type of submanifolds to be key in showing flexibility for broader families
of bracket–generating distributions.

8.2 Spaces of distributions.

8.2.1 Towards an h-principle for maximal-growth distributions of higher step.

We have shown that step-2 distributions of maximal growth abide by a complete h-principle but,
what about higher step distributions? We expect the argument to generalise. In other words, we
expect an h−principle for distributions D of step-r (r ≥ 2) to hold in the following case:

� rank(D) > 2 and

� the growth vector of D is of maximal growth.

This is ongoing work in progress and, in order to give a better understanding of the situation,
the following examples aim to illustrate the bracket generating condition when regarded along
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horizontal line fields. This is a potential strategy to tackle the problem trough convex integration,
since this description becomes relevant when studying the associated differential relation along
principal subspaces.

Let’s start with two known examples: contact distributions and Engel structures.

8.2.1.1 Contact distributions as immersed curves in S1.

Consider a 2- distribution D in R3 and a vector field Y ∈ D. Consider now a flowbox chart for
Y (where Y is seen as a coordinate direction ∂t) and take a germ of a transverse disk D2(x, y)
transverse to ∂t around p = (x0, y0, t0). For

Let Xt be vector field tangent to the leaves of the foliation ⊔tD2 × {t}. It can be regarded as a
1-parametric family of vector fields such that D(x,y,t) = ⟨∂t, Xt⟩ and ||Xt|| = 1 (we can thus regard

the 1−parametric family Xt as a curve γ : R → S1 ⊂ TD2). Denoting Ẋt = [∂t, Xt], the contact
condition then reads as

dim⟨∂t, Xt, Ẋt⟩ = 3

By construction, since Ẋt = [∂t, Xt] =
∂Xt
∂t

, Xt and Ẋt are both linearly independent with respect

to ∂t and the contact condition thus reads as dim⟨Xt, Ẋt⟩ = 2. But, from the condition ||Xt|| = 1
we get that d

dt⟨Xt, Xt⟩ = 1
2⟨Xt, Ẋt⟩ = 0 and, thus, Xt and Ẋt are orthogonal. Therefore, the

contact condition reads as Xt (when regarded as a curve in S1) being an immersion. Another way
of interpreting it is noticing that the vector Xt must be turning (without stop) along the direction
∂t.

Figure 8.1: The contact condition for D = ⟨∂t, Xt⟩ locally reads as Xt being an immersed curve
when regarded as a curve into S1. In terms of vector fields, the Legendrian vector Xt must turn
positively along the direction ∂t.

8.2.1.2 Engel distributions as convex curves in S2.

(First described in [29] (Sec. 2.2), and subsequently treated in [91], [87], [25], [92]). Consider a
rank-2 distribution (R4,D2) and a vector field Y ∈ D which, after taking a flowbox chart, becomes
the coordinate direction ∂t. Take a germ of a 3-disk D3(x, y, z) transverse to ∂t around a point
p = (x0, y0, z0, t0).



Again, take Xt a vector field tangent to the leaves of the foliation ⊔tD3 × {t} (as before, it can
be regarded as a 1-parametric family of vector fields such that D(x,y,z,t) = ⟨∂t, Xt⟩). Also, we can
impose that ||Xt|| = 1 and we can thus regard the 1−parametric family Xt as a curve γ : R → S2.
Denoting Ẋt = [∂t, Xt] and Ẍt = [∂t, Ẋt], the Engel condition then reads as:

� dim⟨∂t, Xt, Ẋt⟩ = 3 and

� dim⟨∂t, Xt, Ẋt, [Xt, Ẋt], Ẍt⟩ = 4

By the same argument as in the previous example, a sufficient condition for a distribution Dt to
be Engel is given by Ẋt ̸= 0 and Ẍt ̸= 0 which, in terms of curves into S2, translates as the curve
described by Xt being convex.

Figure 8.2: In view of the aforementioned Engel conditions for D = ⟨∂t, Xt⟩, a sufficient condition
for being Engel is Xt being convex when regarded as a curve into the 2-sphere.

Observe that the other sufficient condition for Dt to be Engel is given by Ẋt ̸= 0 and [Xt, Ẋt] ̸= 0.
This tantamounts to ξt := ⟨Xt, Ẋt⟩ locally defining a contact structure in the transverse 3-disk D3.

8.2.1.3 Bracket-generating distributions of higher step

Consider a manifold equipped with a k-rank distribution (M,D) and asosociated Lie flag

D ⊂ D2 ⊂ · · · ⊂ Dr ⊂ TM

Proceeding in the same fashion as in the previous examples, we take a vector field Y ∈ D and
locally regard it (after taking a flowbox chart) as the coordinate direction ∂t. We consider a germ
of an n− 1-disk Dn−1 transverse to ∂t around a point p = (x0, y0, z0, t0).

Take now a set Br1t of k − 1 different 1-parametric vector fields Br1t := {X1
t , · · · , Xk−1

t } such
that D = ⟨X1

t , · · · , Xk−1
t ⟩. Denote X0 := ∂t. For i > 1, let Brit denote the set of brackets of vector

fields ∂t, X
0, X1

t , · · · , Xk−1
t (possibly with repetitions) of length less or equal than i where ∂t does

not appear i− 1 times in each bracket-expression:

Brit := {[Xℓq , · · · , [Xℓ2 , [Xℓ1 , Xℓ0 ]] · · · ] : q < i, σ◦(Xℓ0 , · · · , Xℓq) ̸= (∂t, · · · , ∂t, Xj)∀σ ∈ Σi, j ≤ k − 1}

The condition for D having growth vector νD = (n1, n2, · · · , ni, · · · ) then translates as

For each i ≥ 1, dim
(
⟨∂t,Br1t ,Brit, ∂

i−1
t (X1

t ), · · · , ∂i−1
t (Xk−1

t )⟩
)
= ni. (8.1)



Here ∂0t (X
j
t ) just means Xj

t . There are two cases where condition (8.1) will become relevant:

C1) In the case of growth vectors of free Lie algebras; i.e. ni − ni−1 is the dimension of a free
Lie algebra. Then every generated bracket must contribute to producing new directions. Thus, a
necessary condition for condition (8.1) to be satisfied is that for each i ≥ 1, the vectors
∂it(X

1
t ), · · · , ∂it(Xk−1

t ) must be linearly independent in the quotient space Rdim(M)/⟨∂t,Br1t ,Brit⟩.
This will be the case for all elements Di in the flag of a maximal growth distribution except for,
possibly, Dstep(D)−1.

C2) Let ni be the first entry in the growth vector for which dim(ni) = dim(M) holds. Whenever
the inequality dim(⟨∂t,Br1t ,Bri−1

t ⟩) ≥ ni − ni−1 − (k − 1) holds, a direct computation shows
that the condition of the vectors ∂it(X

1
t ), · · · , ∂it(Xk−1

t ) being linearly independent in the quotient
space Rdim(M)/⟨∂t,Br1t ,Brit⟩ is also sufficient for D being bracket-generating of maximal growth.
By normalizing the vectors Xα

t , this generalises the immersion condition for contact distributions
(8.2.1.1) and the convexity condition for Engel structures (8.2.1.2).

After generalising to the setting of general bracket-generating distributions (Subsection 8.2.1.3)
the result in [29] where Engel structures along horizontal line fields are regarded as curves in S2
(Example 8.2.1.2), we intend to fit this geometric description into the general scheme of M. Gromov’s
higher order convex integration [59]. In fact, describing this geometric condition along horizontal line
fields can be understood as describing the associated differential relation along principal subspaces
which lie (locally) entirely in the distribution. We claim that the rest of directions do not contribute
in terms of ampleness and, thus, these are the only relevant directions to check.

So, a natural question is why we need rank(D) > 2. First, note that the contact case does not
abide by a complete h-principle. The reason is that when one tries to check if ampleness holds
by observing the conditions described in C1) and C2), it turns out that this will only follow if
rank(D) ≥ 3.

The geometric intuition is as follows: once we fix a principal direction in D (for rank(D) = 2),
we have only one degree of freedom (by choosing another vector along the principal direction so as
to complete a frame of D) in order to introduce oscillations to our initial solution. When checking
ampleness, this does not give raise to ample sets. Instead, if rank(D) ≥ 3, we have at least two
degrees of freedom and ampleness wil follow.

This different behaviour comes from the fact that we can reduce the problem to checking if
ampleness holds for GL(r) inside the space of all matrices for certain values of r > 0. And, as
we saw, GL(r) is ample in the space of all matrices if and only if r ≥ 2, which translates by our
reduction into rank(D) ≥ 3.

8.2.2 Spaces of maximally non-integrable corank 2 distributions.

Part of the goal of Part III in this thesis was to pinpoint those pairs (k, n), consisting of a rank
k and a dimension n, for which the relation defining maximally non-involutive distributions is not
ample. Our goal was to narrow down the (open and Diff-invariant) classes of distributions that may
display rigid behaviours (as contact structures do). Our discussion in the Introduction (see 1.6.2)
provides a list of candidates in dimensions up to 6. Proving rigidity and/or constructing suitable
overtwisted classes in each case are interesting open questions.

Beyond dimension 6, we propose (jointly with I. Zelenko and Álvaro del Pino), the following
concrete conjecture. Consider maximally non-involutive distributions of corank-2. These are always
of step 2, with the exception of dimension 4 (the Engel case, which we leave out of the discussion).
Then:



� In odd rank (2l + 1, 2l + 3), maximal non-involutivity means that the top-wedge of the pencil
of curvatures has maximal linear span (i.e. of dimension l + 1). The differential relation is then
the complement of a singularity of codimension l. We expect flexibility to hold due to (classical)
ampleness.

� In even rank (4l, 4l + 2) we see an elliptic versus hyperbolic dichotomy (just like for (4, 6)). We
expect flexibility to hold in the hyperbolic case, but avoidance to be necessary to prove it. Elliptic
distributions are good candidates for rigidity.

� In even rank (4l + 2, 4l + 4) maximal non-involutivity is equivalent to hyperbolicity. We expect
flexibility based on the developed new technique convex integration up to avoidance.

We intend to address this conjecture in future work.
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98. P. Ozsváth, Z. Szabó, D. Thurston. Legendrian knots, transverse knots and combinatorial Floer
homology. Geometry & Topology 12 (2008), no. 2, 941–980.



99. M. Theillière. Corrugation Process and ε-isometric maps. Actes du séminaire de Théorie spectrale et
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