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Sin ellos este documento nunca hubiera existido.

Eskerrak eman nahi dizkiet nire familiako kide guztiei, oraindik hemen daudenei, eta
baita, zoritxarrez, gure ondoan jada ez direnei. Nire betiko adiskideei, eta beti hobetzen
lagundu didaten guztiei, bere pazientzia amaitezina ez delako inoiz bukatzen.

And thanks to you reader, for finding a moment to read this work.
Y gracias a ti lector, por encontrar un momento para leer este trabajo.
Eta eskerrik asko zuri irakurle, lan hau irakurtzeko une bat aurkitzeagatik.



Sometimes, it is the people no one imagines anything
who do the things that no one can imagine.

A veces es la gente de la que nadie espera nada
la que hace cosas que nadie puede imaginar.

Batzuetan, ezer ez egiteko gai imajinatzen ditugun pertsonak dira
inor imajinatu ezin dituzten gauzak egiten dituztenak.

Alan Turing (1912-1954).



Contents

Abstract 1

Resumen en Español 3
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Abstract

The goal of the present thesis is to construct embeddings of the N = 2 superconformal
vertex algebra, motivated by mirror symmetry, into the chiral de Rham complex, provi-
ded that we have solutions to the Killing spinor equations.

Our approach to the chiral de Rham complex is based on the universal construction by
Bressler and Heluani, which applies to any Courant algebroid over smooth manifolds. In
fact, the main results of this document are based on the approach to SUSY vertex alge-
bras studied by Heluani and Kac, and furthermore extend the techniques developed by
Heluani and Zabzine to obtain N = 2 superconformal structures on the chiral de Rham
complex. The Killing spinor equations we consider come from the approach to special ho-
lonomy based on Courant algebroids in generalized geometry, and they are inspired by
the physics of heterotic supergravity and string theory.

Our embeddings are constructed in two different set-ups. Firstly, for equivariant Courant
algebroids over homogeneous manifolds, where the construction reduces to an embedding
into the superaffinization of a quadratic Lie algebra, and the Killing spinor equations be-
come purely algebraic conditions that can be checked on explicit examples. Secondly, for
string Courant algebroids over complex manifolds, where these equations are equivalent
to the Hull-Strominger system, with origins in heterotic σ-models studied by physicists.

The manuscript also includes several examples where our results apply. As an applicati-
on, we present the first examples of (0, 2) mirror symmetry on compact non-Kähler com-
plex manifolds via the chiral de Rham complex. In fact, this thesis lays the ground to
Borisov’s vertex algebra approach to (0, 2) mirror symmetry on non-Kähler manifolds.
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Resumen en Español

El objetivo de esta tesis es el de construir embeddings del álgebra de vértices N = 2 su-
perconforme, motivada por la simetŕıa espejo, en el complejo quiral de de Rham, siempre
que tengamos soluciones para las ecuaciones de los espinores de Killing.

Se ha seguido la construcción universal de Bressler y Heluani para construir el complejo
quiral de de Rham, que se aplica a algebroides de Courant arbitrarios sobre variedades di-
ferenciables. De hecho, los resultados principales de esta tesis están basados en el enfo-
que de las álgebras de vértices supersimétricas estudiado por Heluani y Kac, y extiende
las técnicas desarrolladas por Heluani y Zabzine para construir N = 2 estructuras super-
conformes en el complejo quiral de de Rham. Las ecuaciones de los espinores de Killing
consideradas provienen del enfoque de holonomı́a especial basado en los algebroides de
Courant en geometŕıa generalizada, y están inspiradas por la f́ısica de supergravedad he-
terótica y la teoŕıa de cuerdas.

Nuestros embeddings se construyen en dos situaciones diferentes. Primero, en algebroides
de Courant equivariantes sobre variedades homogéneas, donde la construcción se reduce
a embeddings de la superafinización de un álgebra de Lie cuadrática, y las ecuaciones de
los espinores de Killing vienen dadas por condiciones puramente algebraicas que pueden
ser comprobadas en ejemplos expĺıcitos. En segundo lugar, para algebroides de Courant
string sobre variedades complejas, donde estas ecuaciones son equivalentes al sistema de
Hull-Strominger, con oŕıgenes en los modelos σ heteróticos estudiados por los f́ısicos.

Este manuscrito también incluye una gran cantidad de ejemplos en los que se aplican es-
tos resultados. Como aplicación, se presentan los primeros ejemplos de simetŕıa espejo de
tipo (0, 2) en variedades complejas compactas no Kähler a través del complejo quiral de
de Rham. De hecho, esta tesis sienta las bases del enfoque de álgebras de vértices intro-
ducido por Borisov para la simetŕıa espejo de tipo (0, 2) en variedades no Kähler.
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Introduction

Vertex algebras provide a surprising bridge between physics and mathematics. On the
physical side, they provide a rigorous definition of the chiral part of a 2-dimensional con-
formal field theory. Indeed, there exists a natural class of operators, called vertex opera-
tors, arising from field insertions at points (that is, vertices) and depending holomor-
phically on the position. The product of these operators admit power series expansions
when insertions collide, which satisfy the relations specified in the definition of a vertex
algebra. On the mathematical side, vertex algebras were formulated by Borcherds [9] to
prove the Monstruous Moonshine Conjecture [10], and they have played an important
role in many areas of mathematics, such as representation theory of Kac-Moody algebras,
where they were originally discovered in mathematics [29, 67]. In the recent years, ver-
tex algebras have had a strong impact in geometry, first by the construction of the chiral
de Rham complex by Malikov-Schechtmann-Vaintrob [73], and also by their applications
to mirror symmetry [12], and more recently to gauge theory [47, 59].

The central problem studied in this thesis is motivated by mirror symmetry, and consists
of finding appropriate geometric conditions under which the vertex algebra of global
sections of the chiral de Rham complex on a smooth manifold admits an embedding of
certain superconformal vertex algebras. Here, the chiral de Rham complex is understood
as a sheaf of vertex algebras that can be attached to any Courant algebroid, as shown
independently by Gorbounov, Malikov and Shechtman [44, 45, 46], and Beilinson and
Drinfeld [8], and more explicitly by Bressler and Heluani [15, 53, 54]. The superconformal
vertex algebras we will use in this thesis are mainly N = 2 supersymmetric extensions of
the Virasoro algebra, while the geometric conditions are inspired by the Killing spinor
equations in supergravity.

The original construction of the chiral de Rham complex in [73] was carried out locally,
gluing the so-called ghost system over coordinate patches, and corresponds to the stan-
dard Courant algebroid. The name of chiral de Rham complex was adopted because it
carries a grading and a differential such that it is quasisomorphic to the usual de Rham
complex. In this seminal work, it was shown that for Calabi-Yau manifolds, the vertex
algebra of global sections of the chiral de Rham complex admits an embedding of the
N = 2 superconformal vertex algebra. Inspired by this work, many other embeddings of
different algebras have been obtained in the chiral de Rham complex on special holono-
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my manifolds. This includes related N = 2 superconformal vertex algebra embeddings
for Kähler manifolds [53], two commuting N = 2 superconformal vertex algebra embed-
dings for generalized Calabi-Yau metric manifolds [55], two commuting embeddings of
the Odake algebra [77] for Calabi-Yau threefolds [24], two commuting embeddings of the
Shatashvili-Vafa superconformal algebra [81] for holonomy G2 manifolds [80], etc. See
[56] for more information. Complete descriptions of the space of the global sections of the
chiral de Rham complex have been obtained in the special case of a K3 surface [84, 85],
and a compact Ricci-flat Kähler manifold [86].

Our embeddings are motivated by a conjectural extension of mirror symmetry to general
non-Kähler manifolds, a relatively new field of research which is capturing a lot of atten-
tion over the last years [1, 65, 79, 90]. Since the works of Candelas, de la Ossa, Green,
Parkes [16], Witten [92], Strominger, Yau, Zaslow [88], and many other outstanding re-
searchers in the 90’s, the study of mirror symmetry became a highly studied topic in ma-
thematics. Originated by physics, this concept lead us to surprising and deep connections
between different areas of mathematics. So far, mirror symmetry was essentially bound
to Kähler-Calabi-Yau manifolds, in relation to type IIA and type IIB string theories.
There is another version of string theory, called heterotic, that is getting more attention
from the mathematical community, and a version of mirror symmetry for it, called (0, 2)
mirror symmetry, is expected to exist by the mathematical-physic community [74, 75].

A general way to approach mirror symmetry, as formulated geometrically by Borisov [13],
is via vertex algebras, following more closely the physics approach to mirror symmetry.
As proved by Borisov and Kauffman [14], this is well-suited for understanding certain as-
pects of (0, 2) mirror symmetry. The basic idea is to construct representations of N = 2
superconformal vertex algebras, associated to mirror spaces, and to relate them via an au-
tomorphism, called the mirror involution. A general recipe to find such representations
is via embeddings of the N = 2 superconformal vertex algebra into the chiral de Rham
complex, as mentioned earlier. While such embeddings are known to exist for the chiral
de Rham complex of (generalized) Calabi-Yau manifolds by the works of Heluani and
Zabzine [54, 55], until now nothing was known about the potential embeddings into the
chiral de Rham complex of heterotic analogues of Calabi-Yau manifolds. Results in this
direction, for the N = 1 superconformal vertex algebra, can be found in the physics lite-
rature in the works of de la Ossa, Fiset and Galdeano [21, 28, 33].

In the present thesis we give a precise answer to this problem, providing, in much genera-
lity, embedded N = 2 superconformal vertex algebras into the chiral de Rham complex
of a string Courant algebroid over a complex manifold, carrying solutions to the Killing
spinor equations. In this set-up, these equations are equivalent to the Hull-Strominger
system, which describes supersymmetric compactifications of the heterotic string theory.
Furthermore, in the special case of homogeneous Hopf surfaces, we can use these embed-
dings to obtain the first examples of (0, 2) mirror symmetry on compact non-Kähler com-
plex manifolds.

6



Introduction

SUSY Vertex Algebras

In the standard approach (see Definition 1.1.15), a vertex algebra consists of a vector spa-
ce V (space of states), endowed with a non-zero vector |0〉 ∈ V (the vacuum), an endo-
morphism T : V → V (infinitesimal translation operator), and an injective linear map gi-
ven by Y : V → (EndV )[[z±]] (state-field correspondence) mapping vectors into fields.
By a field, we mean a formal sum

A(z) := Y (a, z) =
∑
n∈Z

z−1−na(n), for a ∈ V,

in an indeterminate z, with Fourier modes a(n) ∈ EndV , such that Y (a, z)(b) is a formal
Laurent series for each b ∈ V , so that the operator product expansions are finite sums of
the form

A(z)B(w) ∼
∑
n∈N

(a(n)b)(w)

(z − w)n+1
, for a, b ∈ V.

This data should satisfy several conditions called vacuum axioms, translation invariance,
and locality. One is often interested in vertex algebras that are conformal, that is, they
carry a so-called conformal vector ν ∈ V , so the Fourier modes of the corresponding field

Y (ν, z) = L(z) =
∑
n∈Z

z−2−nLn

satisfy the Virasoro commutation relations

[Lm, Ln] = (m− n)Lm+n + δ−nm
m3 −m

12
c,

where c ∈ C is the central charge, L−1 = T , and the operator L0 is diagonalizable on V ,
with eigenvalues bounded below. More precisely, we have the following identity

[L0, Y (a, z)] = (∆a + z∂z)Y (a, z), for a ∈ V,

where ∆a ∈ C is the conformal weight of a ∈ V .

Sometimes a vertex algebra admits an enhancement of translation symmetry, which is
called supersymmetry, given by an odd linear map S : V → V (supersymmetry genera-
tor) such that S2 = T , or even an enhancement of conformal symmetry, which is given
by a superconformal vector τ such that the field

Y (τ, z) = G(z) =
∑

n∈ 1
2

+Z

z−
3
2
−nGn

satisfy the (extra) Neveu-Schwarz commutation relations

[Gm, Ln] =
(
m− n

2

)
Gm+n, [Gm, Gn] = 2Lm+n +

c

3

(
m2 − 1

4

)
δ−nm ,
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and ν = 1/2G−1/2 (τ) recovers the conformal vector with central charge c. This is called
the N = 1 superconformal vertex algebra, since the Neveu-Schwarz is the simplest among
the superconformal vertex algebras [26].

The previous situation motivates the notion of supersymmetric vertex algebras, given as
follows. We will work with Z2-graded vector spaces, simply called vector superspaces, and
we will use the approach to SUSY vertex algebras in terms of superfields developed by
Heluani-Kac [52]. In this approach, we define the superfields

Y (a, z; θ) = Y (a, z) + θY (Sa, z) =
∑
n∈Z

J∈{0,1}

z−1−nθ1−Ja(n|J), for a ∈ V,

where θ is an odd Grassmannian indeterminate, commuting with z and anticommuting
with S, so θ2 = 0 and θz = zθ. In [52], two equivalent formulations of SUSY vertex
algebras are considered. We recall the one that will be important for the present work.
This is a SUSY version of a reformulation, studied by Bakalov-Kac [3], of the notion of
vertex algebra. Since S2 = T , then V is a supermodule over the translation algebra H,
defined as the associative superalgebra with an odd generator S, an even generator T ,
and the relation S2 = T . This superalgebra can be identified with the parameter algebra,
that is, the associative superalgebra L with an odd generator χ, an even generator λ, and
the relation χ2 = −λ. Then, we can introduce the Λ-bracket, and the normally ordered
product as the bilinear maps defined by

[aΛb] =
∑
n∈N

J∈{0,1}

λnχJ

n!
a(n|J)b, : ab := a(−1|1)b, for a, b ∈ V,

respectively. The properties of the first operation motivates the definition of SUSY Lie
conformal algebra (see Definition 2.3.1), while adding the data given by the second one,
we obtain the notion of SUSY vertex algebra (see Theorem 2.3.6).

Next, we will describe an example of SUSY vertex algebra that plays a fundamental role
in this thesis. The N = 2 superconformal vertex algebra of central charge c ∈ C is gene-
rated by the SUSY Lie conformal algebra, whose underlying H-module is freely genera-
ted by two superfields, namely an odd vector H (the Neveu-Schwarz generator), an even
vector J (usually known as a current), and a scalar c, with non-zero Λ-brackets given
by

[HΛH] = (2T + χS + 3λ)H +
χλ2

3
c,

and

[JΛJ ] = −
(
H +

λχ

3
c

)
, [HΛJ ] = (2T + 2λ+ χS)J.

One of the main problems of the present thesis is to construct embeddings from theN = 2
superconformal vertex algebras into a SUSY vertex algebra naturally associated to any

8
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quadratic Lie algebras (that is, Lie algebras with a symmetric and invariant pairing),
called the superaffinization of quadratic Lie algebras. Given (g, (·|·)) a finite-dimensional
quadratic Lie algebra and k ∈ C, let Πg be the corresponding purely odd vector super-
space. The universal superaffine vertex algebra with level k associated to g is the SUSY
vertex algebra V k

super (g) generated by the supercurrent algebra, which is the H-module
freely generated by Πg and the level k, with non-zero Λ-brackets given by

[ΠaΛΠb] = Π [a, b] + χk (a|b) , for a, b ∈ g.

The first embeddings of this type were given by Getzler [43], starting with a Manin triple
satisfying the technical algebraic condition (3.9). Our embeddings in Theorem 10.1.5 and
Theorem 10.1.8 generalizes Getzler’s construction, and, furthermore, provide a geometric
meaning to Getzler’s technical algebraic condition. Moreover, these embeddings reduce
to the well-known Kac-Todorov construction [60] under appropriate conditions (see Coro-
lary 10.2.7). The new input for the constructions of these embeddings is a solution of the
Killing spinor equations on the quadratic Lie algebra. These equations can be regarded
as purely algebraic conditions on real quadratic Lie algebras (see Chapter 7), but in fact
they come from geometry and physics, specifically from the approach to special holonomy
based on generalized geometry on Courant algebroids [57].

The Killing Spinor Equations

LetM be a 2n-dimensional spin manifold, andK a compact Lie group. Consider a princi-
pal K-bundle P −→M . For any principal connection A on P , we denote its curvature by
FA ∈ Ω2(M, adP ). Now, given H ∈ Ω3(M) and g a Riemannian structure, we define the
connections

∇+ = ∇g +
1

2
g−1H, ∇+ 1

3 = ∇g +
1

6
g−1H,

where ∇g is the Levi-Civita connection of g. The data (g,H, ϕ,A, η), where ϕ ∈ Ω1(M)
and η is a spinor on (TM, g), is a solution of the Killing spinor equations on M [35] if

FA · η = 0, ∇+ · η = 0,
(
/∇+ 1

3 + ϕ
)
· η = 0.

When ϕ is exact, these equations are equivalent in low dimensions to the Killing spinor
equations in a compactification of the ten-dimensional heterotic supergravity [27, 30].

Let M be a complex manifold with vanishing first Chern class, and suppose that K is
endowed with 〈·, ·〉 : k× k −→ R a bi-invariant non-degenerate pairing. In this situation,
the Killing spinor equations are related to the Hull-Strominger system [39, 58, 87] when
suplemented with the so-called Bianchi identity

dH + 〈FA ∧ FA〉 = 0.

To see this, note that a solution for the Killing spinor equations with ϕ exact that solves
the Bianchi identity gives rise to a solution of the Hull-Strominger system. More gene-
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rally, when ϕ is closed, we find the twisted Hull-Strominger system, as defined in [39]. We
say that a triple (Ψ, ω,A), given by an SU(n)-structure (Ψ, ω) on M , is a solution to the
twisted Hull-Strominger system if

F 0,2
A = 0, FA ∧ ωn−1 = 0,

dΨ− θω ∧Ψ = 0,

dθω = 0,

ddcω − 〈FA ∧ FA〉 = 0.

When K = {1} (so, FA = 0), we obtain the twisted Calabi-Yau equations

dΨ− θω ∧Ψ = 0,

dθω = 0,

ddcω = 0.

The Killing spinor equations jointly with the Bianchi identity admit a universal formula-
tion in terms of Courant algebroids [36], which is important for the present work. To see
this, recall that a Courant algebroid is given by a vector bundle E −→M together with a
non-degenerate symmetric bilinear form 〈·, ·〉 and the Dorfman bracket [·, ·] on Γ(E), with
a bundle map π : E −→ TM (the anchor) satisfying certain axioms (see Definition 6.1.1).
In particular, we obtain a map D : C∞(M) −→ Γ(E) combining π, the de Rham exterior
differential d of M and the pairing 〈·, ·〉. In this set-up, the Killing spinor equations have
unknowns given by a Riemannian generalized metric E = C+⊕C−, a divergence opera-
tor div : Γ(E) −→ C∞(M), and a spinor η (see Definition 6.2.15). They are formulated in

terms of natural operators D+
− and /D

+
associated to C+ and div, and read as follows:

D+
−η = 0, /D

+
η = 0. (1)

The relation to the twisted Hull-Strominger system above arises when one considers the
so-called string Courant algebroid over M (see Proposition 6.1.6) associated to a solution
of the Bianchi identity [4, 34], that is, the data (EH,A, 〈·, ·〉 , [·, ·]H,A , π), where we have
EH,A = TM ⊕ adP ⊕ T ∗M and, for X + r + ζ, Y + t+ η ∈ EH,A,

[X + r + ζ, Y + t+ η]H,A = [X,Y ] + LXη − ιY dζ + ιY ιXH

− FA(X,Y ) + 2 〈ιXFA, t〉 − 2 〈ιY FA, r〉
+ 2

〈
dAr, t

〉
+ dAXt− dAY r − [r, t] ,

〈X + r + ζ, Y + t+ η〉 =
1

2
(η(X) + ζ(Y )) + 〈r, t〉 ,

π : E −→ TM, π(X + r + ζ) = X.

When the Bianchi identity is suplemented by the Killing spinor equations with dϕ = 0,
the string Courant algebroid EH,A is endowed with a solution of (1). As a matter of fact,
the formulation of the Killing spinor equations on Courant algebroids provides an unify-
ing framework for metrics with special holonomy, solutions to the Hull-Strominger sys-
tem, and other interesting canonical geometries.

10
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Embedding Superconformal Vertex Algebras

Surprisingly, the formulation of the Killing spinor equations on Courant algebroids makes
sense and has non-trivial solutions for real quadratic Lie algebras, where the Killing spin-
or equations become purely algebraic conditions. To find these algebraic conditions, we
must suppose that the rank of the generalized metric V+ is even. Then, the Killing spinor
equations are described in terms of natural conditions for a decomposition

gc := g⊗ C = (V+ ⊗ C)⊕ (V− ⊗ C) = l ⊕ l ⊕ (V− ⊗ C) ,

and a divergence ε ∈ l ⊕ l, where l, l ⊆ gc are complex isotropic subspaces and we have
that V− ⊗ C = (l ⊕ l)⊥. The resulting conditions

[l, l] ⊆ l,
[
l, l
]
⊆ l, 1

2

dim l∑
j=1

[εj , εj ] = εl − εl (2)

make sense over an arbitrary closed field C, where εj ∈ l, εj ∈ l for j ∈ {1, . . . ,dim l}
defines an isotropic basis of V+⊗C. In this generality, we can state our first results. Let
ej = Πεj , e

j = Πεj , and consider the bilinear map [·, ·] : Πg×Πg −→ Πg given by

[Πa,Πb] := Π [a, b] , for a, b ∈ gc.

Firstly, in Theorem 10.1.5, we obtain the following embedding.

Theorem 1. Let (g, (·|·)) be a complex quadratic Lie algebra. Assume that
(
l ⊕ l, ε

)
, with

l, l ⊆ g and ε ∈ l ⊕ l, satisfy (2), and that

ε ∈ [l, l]⊥ ∩
[
l, l
]⊥
. (3)

Then, the vectors

J0 =
i

k

dim l∑
j=1

: ejej :,

H ′ =
1

k

dim l∑
j=1

(
: ej

(
Sej
)

: + : ej (Sej) :
)

+
2

k
TΠε+ +

1

k2

dim l∑
j,k=1

(
: ej : ek

[
ej , ek

]
::

+ : ej : ek

[
ej , e

k
]

:: − : ej : ek

[
ej , ek

]
:: − : ej : ek [ej , ek] ::

)
,

induce an embedding of the N = 2 superconformal vertex algebra with central charge
c0 = 3 dim l into the universal superaffine vertex algebra V k

super (g) with level 0 6= k ∈ C.

Furthermore, in Theorem 10.1.8, we construct a “dilaton correction” of the previous em-
bedding as follows. For this, we require that ε ∈ l⊕l is holomorphic (see Definition 7.2.3),
which is the geometric version of (3), first appearing in Getzler’s construction.

11
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Theorem 2. Let (g, (·|·)) be a complex quadratic Lie algebra. Assume that
(
l ⊕ l, ε

)
, with

l, l ⊆ g and ε ∈ l ⊕ l, satisfy (2), and that ε ∈ l ⊕ l is holomorphic. Then, the vectors

J =J0 − 2
S

k
i

dim l∑
j=1

[
ej , ej

]
,

H =H ′ − 2

k
TΠε+,

induce an embedding of the N = 2 superconformal vertex algebra with central charge

c = 3

(
dim l +

4

k
(ε|ε)

)
∈ C,

into the universal superaffine vertex algebra V k
super (g) with level 0 6= k ∈ C.

These two results can be applied to the geometric situation, where one has an equivariant
Courant algebroid E over a homogeneous manifold (see Proposition 10.1.11). This allows
us to obtain two different embeddings of the N = 2 superconformal vertex algebra in the
vertex algebra of the global sections of the chiral de Rham complex of E. In this thesis,
we will follow the construction by Bressler and Heluani of the chiral de Rham complex
associated to any Courant algebroid E (see Theorem 9.1.10). This is a sheaf Ωch

E of SUSY
vertex algebras generated by the SUSY Lie conformal algebra, whose underlying H-mo-
dule is R = C∞(M)⊕ (Γ(ΠE)⊗H), with non-zero Λ-brackets given by

[ΠaΛf ] = 〈ΠDf, a〉 , [ΠaΛΠb] = Π [a, b] + 2χ 〈a, b〉 , for a, b ∈ Γ(E), f ∈ C∞(M).

We next turn to consider Killing spinors with closed divergence on a string Courant alge-
broid E = EH,A. For this, we assume that the base manifold is even-dimensional, and we
describe the twisted Hull-Strominger system above in terms of a decomposition

E ⊗R C = (C+ ⊗R C)⊕ (C− ⊗R C) = `⊕ `⊕ (C− ⊗R C) ,

where `, ` ⊆ E⊗RC are complex isotropic subbundles, and C−⊗RC = (`⊕`)⊥. The resul-
ting conditions

[`, `] ⊆ `,
[
`, `
]
⊆ `, 1

2

dim `∑
j=1

[εj , εj ] = ϕ` − ϕ,

where ϕ ∈ Ω1(M) is minus the Lee form, make sense over any Courant algebroid, where
εj ∈ `, εj ∈ ` for j ∈ {1, . . . ,dim `} defines an isotropic local frame of C+⊗R C such that

[εj , εk] = 0, for j, k ∈ {1, . . . ,dim `} .

Now, we introduce the torsion bi-vector, which is canonically associated to any hermitian
structure (see Section 5.3). In holomorphic coordinates, this is given by

σω :=

dim `∑
k=1

[
g−1dzk,

(
g−1 ⊗ g−1

)(
ι ∂
∂zk

∂ω

)]0,2

∈ Γ
(
Λ2T 0,1M

)
.
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In this generality, we state Theorem 10.1.19, writing ej = Πεj , e
j = Πεj , and defining

[Πa,Πb] := Π [a, b] , for a, b ∈ Γ (E ⊗R C) .

Theorem 3. Let (Ψ, ω,A) be a solution of the twisted Hull-Strominger system. Consider
the string Courant algebroid E−dcω,A, endowed with the associated decomposition

C+ ⊗R C = `⊕ `

for the generalized metric C+ ⊆ E−dcω,A, and ϕ = −θω ∈ Γ(E−dcω,A). Let {εj , εj}dim `
j=1

be the frames defined by (6.18) using the atlas given in Lemma 5.2.2. Then, the sections

J =
i

2

dim `∑
j=1

: ejej : −SiΠϕ,

H =
1

2

dim `∑
j=1

(
: ej

(
Sej
)

: + : ej (Sej) :
)

+
1

4

dim `∑
j,k=1

(
: ej : ek

[
ej , ek

]
::

+ : ej : ek

[
ej , e

k
]

:: − : ej : ek

[
ej , ek

]
:: − : ej : ek [ej , ek] ::

)
+ TΠϕ`,

are global. Furthermore, if the torsion bi-vector vanishes identically, then these sections
induce an embedding of the N = 2 superconformal vertex algebra with c = 3 dim ` ∈ C
into the space of global sections of the chiral de Rham complex Ωch

E−dcω,A⊗RC.

When K = {1}, we can study what happens for a pair of solutions for the Killing spinor
equations, that is, if we have solutions in both C+ and C−. We expect that this cons-
truction is related with the one given by Heluani-Zabzine [55]. For quadratic Lie alge-
bras, we obtain two Λ-commuting embeddings in Theorem 10.2.2 and Theorem 10.2.4,
along with honest N = 2 superconformal vertex algebra structures (see Theorem 10.2.6).

The stated embeddings are the main results of this thesis. We should emphasize that the
three results are independent, so each one induce, a priori, different embeddings of the
N = 2 superconformal vertex algebra in examples. In particular, we obtain embeddings
for some explicit cases: compact complex surfaces (see Proposition 11.1.9), the Iwasawa
manifold (see Proposition 11.1.12, and Proposition 11.1.15), and the Calabi-Yau 3-fold
introduced in [78] (see Proposition 11.1.20). Actually, in the Hopf surface, we obtain up
to three different embeddings of the N = 2 superconformal vertex algebra (see Proposi-
tion 11.1.3, and Proposition 11.1.7). Moreover, applying Theorem 10.1.5 to the Hopf sur-
face, we extend these constructions to an embedding of the N = 4 superconformal vertex
algebra into the superaffine vertex algebra (see Subsection 2.5.5 and Proposition 11.1.22).

Finally, in Section 11.2, we apply Theorem 10.1.8 to obtain the first examples of (0, 2) mi-
rror symmetry on compact non-Kähler complex manifolds via the chiral de Rham com-
plex, following Borisov [13]. We require that the geometric data is homogeneous, so that
the construction of the mirror symmetry involution is reduced to the study of the Killing

13
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spinor equations on quadratic Lie algebras, to the construction of N = 2 superconfor-
mal vertex algebra embeddings, and to T -duality applied to the Killing spinor equations.
The obtained examples of (0, 2) mirrors are given by pairs of Hopf surfaces endowed with
a Bismut-flat pluriclosed metric (see Theorem 11.2.5).

Organization of the Thesis

The thesis is divided in four parts.

Part I is a brief summary of SUSY vertex algebras. Chapter 1 and Chapter 2 contain
the background on (SUSY) vertex algebras, including the canonical examples we are go-
ing to work with. The main references for this study are [52, 63]. Chapter 3 reviews the
previously well-known embeddings of superconformal vertex algebras, the ones construc-
ted by Segal-Sugawara [89], Kac-Todorov [60] and Getzler [43].

Part II is a brief account of geometric structures and Killing spinors. Chapter 4 contains
some basic notions aboutG-structures and spin geometry. Chapter 5 is devoted to Killing
spinors on spin manifolds, and the F -term and D-term conditions. Here (see Section 5.3),
we also introduce a new tensor, called the torsion bi-vector, which will be fundamental
to construct the last embedding in Part III. Chapter 6 is devoted to the study of Killing
spinors on Courant algebroids [36], their relation to the Hull-Strominger system, and the
links with the F -term and D-term conditions introduced in previous chapter. Chapter 7
contains a complete study of Killing spinors on real quadratic Lie algebras [2]. Chapter 8
includes a summary of generalized Kähler geometry that will be used in Section 9.2.

Part III is devoted to the interplay between vertex algebras and Killing spinors. Chapter
9 contains a brief account of several constructions of the chiral de Rham complex and a
quick presentation of two embeddings, constructed by Heluani and Zabzine, of supercon-
formal vertex algebras in the space of global sections of the chiral de Rham complex [55].
Chapter 10 contains the main results of this thesis about embeddings of superconformal
vertex algebras. Concretely, there are constructed three new embeddings of the N = 2
superconformal vertex algebra. This chapter also includes some conjectures related with
the presented constructions. Chapter 11 is devoted to applications of these embeddings,
namely the construction of some explicit geometric examples and (0, 2) mirror symmetry
on Hopf surfaces.

Finally, part IV contains the most technical aspects to make the reading fluent. This con-
sists of three appendices, respectively devoted to the explanation of some basic identities
for (SUSY) Lie conformal algebras and (SUSY) vertex algebras, the technical calculati-
ons used in the main computations of (SUSY) vertex algebras, and the proof of Theorem
10.1.1, which contains all the principal technical computations from where we deduce the
three results stated before (all these are collected in Theorem 10.1.5, Theorem 10.1.8,
and Theorem 10.1.19 in the main text), which are the main results of the present thesis.
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Vertex algebras

15





Chapter 1

Basics on Vertex Algebras

The goal of this chapter is summarize basic aspects of the theory of vertex algebras. The
main examples are in Section 1.4. Here, the adjective “super” applied to vector spaces V ,
algebras A, modules R, etc. will always mean Z/2Z-graded. We will omit it sometimes.

1.1 Standard Definition of Vertex Algebras

The most basic structure of a vertex algebra is given by a vector space V , called the space
of states, a non-vanishing vacuum vector |0〉 ∈ V , and the state-field correspondence,
which is a linear map from V to endomorphism-valued bilateral series. This will be called
the standard definition. Firstly, we need some background in formal distributions.

1.1.1 Formal Distributions and Quantum Fields

We will always work with vector superspaces in order to include bosons (even elements,
with parity 0) and fermions (odd elements, with parity 1). So, we have a vector space
decomposed in direct sum of two subspaces V = V0 ⊕ V1, and we shall say that a
homogeneous vector v ∈ V has parity |v| ∈ {0, 1} if v ∈ V|v|. All computations involving
parities are modulo 2. When this term appears, we will understand that all vectors are
homogeneous. In addition, all formulas involving parities are only valid for those vectors.
So, for the rest of elements, we will extend them by linearity (or other properties we are
trying to preserve) in terms of the homogeneous components of that element. Moreover,
when we consider bilinear forms on vector superspaces, we will understand that all of
them are consistent. That is, they are zero on V0 × V1 and V1 × V0. Finally, when we
speak about superdimension of a vector superspace, we mean sdimV := dimV0−dimV1.

Example 1.1.1 (Superendomorphisms). Let V be a vector superspace. Then, we can
endow End(V ) with a vector superspace structure by setting

End(V )α := {M ∈ End(V ) | MVβ ⊆ Vα+β, for β ∈ Z2 } , for α ∈ Z2.
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If V is finite-dimensional, for each M ∈ End(V ), we can take a decomposition such that

M =

(
A B
C D

)
=

(
A 0

0 D

)
+

(
0 B

C 0

)
∈ End(V )0 ⊕ End(V )1.

The supertrace of M is defined by str(M) := tr(A)− tr(D).

Example 1.1.2 (Lie Superalgebras). Let a be a vector superspace. We say that a is
a superalgebra if it is endowed with a Z2-graded compatible product · : a× a −→ a. This
means that if a, b ∈ a are two homogeneous elements, then a · b ∈ a|a|+|b|. If the product
· is associative, we can define a compatible commutator, the supercommutator, by

[·, ·] : a× a −→ a

(a, b) 7→ [a, b] := a · b− (−1)|a||b|b · a .

This is a compatible product (in the sense of Lie algebras), so it satisfies the following:

(1) The antisymmetry axiom

[a, b] = −(−1)|a||b| [b, a] , for a, b ∈ a. (1.1)

(2) The Jacobi identity axiom

[a, [b, c]] = [[a, b] , c] + (−1)|a||b| [b, [a, c]] , for a, b, c ∈ a. (1.2)

This product is known as the superbracket, and motivates the notion of Lie superalgebra,
which is a vector superspace endowed with a superbracket satisfying (1.1) and (1.2).

To introduce quantum fields, we need some background on formal distributions. Let V be
a vector superspace. Then, we say that a V -valued formal distribution in the indeter-
minates z1, . . . , zn is a formal expression of the form

A (z1, z2, . . . , zn) =
∑
i1∈Z

∑
i2∈Z
· · ·
∑
in∈Z

ai1,i2,...,inz
i1
1 z

i2
2 · · · z

in
n ,

where ai1,i2,...,in ∈ V . We denote by V
[[
z±1

1 , z±1
2 , . . . , z±1

n

]]
the set of all V -valued formal

distributions in z1, z2 . . . , zn. It admits a natural vector superspace structure, since the
parity of homogeneous formal distributions is determined by each coefficient.

Remark 1.1.3. Let g be a Lie superalgebra. Considering

A(z) =
∑
n∈Z

anz
n ∈ g

[[
z±1
]]
, B(w) =

∑
m∈Z

bmw
m ∈ g

[[
w±1

]]
,

it is possible to introduce formally the superbracket

[A(z), B(w)] :=
∑
n,m∈Z

[an, bm] znwm ∈ g
[[
z±1, w±1

]]
.

This one satisfies both properties (1.1) and (1.2) formally, however it does not induce a
Lie superbracket since this is defined for formal distributions in different indeterminates.
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We say that a V -valued Laurent polynomial in the indeterminates z1, . . . , zn is a formal
distribution in which almost every coefficient is zero. So, these are expressions

A (z1, z2, . . . , zn) =

M1∑
i1=−M1

M2∑
i2=−M2

· · ·
Mn∑

in=−Mn

ai1,i2,...,inz
i1
1 z

i2
2 · · · z

in
n ,

where M1, . . . ,Mn <∞. We denote by V
[
z±1

1 , . . . , z±1
n

]
the set of all V -valued Laurent

polynomials in indeterminates z1, . . . , zn. It is a subsuperspace of V
[[
z±1

1 , z±1
2 , . . . , z±1

n

]]
.

Remark 1.1.4. For any superalgebra A, the set A
[
z±1

1 , z±1
2 , . . . , z±1

n

]
has structure of

superalgebra. Moreover, the product between any A-valued Laurent polynomial and any
A-valued formal distribution is always a well-defined A-valued formal distribution.

We will restrict to the case of one indeterminate, that is, we will focus on V -valued
formal distributions of the form

A(z) =
∑
n∈Z

anz
n ∈ V

[[
z±1
]]
. (1.3)

We say that a V -valued Laurent series in the indeterminate z is a formal distribution in
which almost every coefficient with negative powers is zero. Hence, these are expressions

A(z) =
∞∑

n=−M
anz

n, (1.4)

where M <∞. We denote by V ((z)) the set of V -valued Laurent series, and it is a vector
subsuperspace of V

[[
z±1
]]

. Moreover, it is satisfied that V
[
z±1
]
⊆ V ((z)) ⊆ V

[[
z±1
]]

.

Remark 1.1.5. Given A superalgebra, then A ((z)) has structure of superalgebra.

Example 1.1.6 (Formal Taylor Series). The Laurent series

ez :=
∑
n∈N

zn

n!
∈ C ((z))

is called formal exponential, and it is a special type of Laurent series. Indeed, a V -valued
formal distribution of the form (1.4) is called a Taylor series when M = 0. The set of all
V -valued Taylor series is denoted by V [[z]], and is a supersubspace of V ((z)). Note that

V ((z)) = V [[z]]
[
z−1
]
.

We can introduce the formal derivative of A(z) with respect to z as

∂zA(z) :=
∑
n∈Z

(n+ 1)an+1z
n ∈ V

[[
z±1
]]
,

and the formal residue by the usual formula

Resz A(z) := a−1 ∈ V.
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It is easily seen that ∂z is an (even) endomorphism over V
[[
z±1
]]

satisfying the Lebniz
rule, provided that we have a well-defined product, and Resz : V

[[
z±1
]]
−→ V is a linear

application that sends even/odd formal distributions to even/odd vectors, for which

Resz (∂zA(z) ·B(z)) = −Resz (A(z) · ∂zB(z))

follows by Leibniz rule and Resz (∂zA(z)) = 0. We extend these notions to an arbitrary
number of indeterminates, since V

[[
z±1

1 , z±1
2 , . . . , z±1

n

]] ∼= (V [[z±1
2 , . . . , z±1

n

]]) [[
z±1

1

]]
.

Now, note that a V -valued formal distribution A(z) of the form (1.3) induces a V -valued
linear form over C

[
z±1
]

setting the map

gA(z) : C
[
z±1
]
−→ V

P (z) 7→ 〈P (z)|A(z)〉 := Resz (P (z) ·A(z))
.

Notice that any V -valued linear form over C
[
z±1
]

is obtained in a unique way as above.
Indeed, for the existence, given f : C

[
z±1
]
−→ V any linear form, we define

A(z) :=
∑
n∈Z

f
(
z−1−n) zn ∈ V [[z±1

]]
.

Then, f (zn) = Resz (znA(z)) for n ∈ Z. This motivates the definition of Fourier modes.
Given A(z) any V -valued formal distribution of the form (1.3), its Fourier modes are

a(n) := Resz (znA(z)) ∈ V, for n ∈ Z.

So, formal distributions admit an alternative expression, the one we will use from now,

A(z) =
∑
n∈Z

z−1−na(n) ∈ V
[[
z±1
]]
. (1.5)

We will write in the expressions above the Fourier modes after the indeterminates always,
for parity reasons that we will see in future chapters, and because these will be in general
endomorphisms. This is the case of (quantum) fields on V that we are ready to introduce.

Definition 1.1.7. [63] We will say that an End(V )-valued formal distribution A(z) as
in (1.5) is a (quantum) field on V if its Fourier modes satisfy, for each v ∈ V fixed, that

a(n)(v) = 0, for n� 0.

The value of n depends on v ∈ V . This is equivalent to the condition A(z)(v) ∈ V ((z)),
for every v ∈ V . The natural structure of vector superspace for End(V ) implies that the
field A(z) has parity |A| ∈ {0, 1} if a(n) (Vα) ⊆ Vα+|A| for α ∈ {0, 1} and n ∈ Z. The set of
fields on V is denoted by F(V ), and is clearly a vector subsuperspace of End(V )

[[
z±1
]]

.

An endomorphism is parity-preserving when it is even, and otherwise, we will say that is
parity-reversing. These two notions are naturally extended to general linear and bilinear
maps. Indeed, we will say that f : V ×V ′ −→W is parity-preserving if |f(a, b)| = |a|+|b|
for a ∈ V and b ∈ V ′. Otherwise, it is said that f as before is parity-reversing.
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1.1.2 The Notion of Locality

We will work with formal distributions in two indeterminates z and w in this section.
Complex rational functions may be expanded in several ways under certain convergence
domains. Analogously, we can do the same for formal rational expressions via the notion
of formal expansions. We will consider the algebra of rational expressions in V with poles
only at z = 0, w = 0 and z = w. Then, we can define the two homomorphisms

iz,w : V [[z, w]]
[
z−1, w−1, (z − w)−1

]
−→ V ((z))((w)),

iw,z : V [[z, w]]
[
z−1, w−1, (z − w)−1

]
−→ V ((w))((z)),

via generalized Binomial expansions. For that, take another formal indeterminate x, and
now consider the algebra of formal rational expressions in V with poles only at x = 0.
For r ∈ Z, we define the next power series expansion in the domain |x| < 1 by

V
[
(1− x)−1

]
3 1

(1− x)r
:=
∑
k∈N

(
r + k − 1

k

)
xk ∈ V [[x]].

So, the two homomorphisms iw,z and iw,z above are defined using the linear extensions
in V of the formal rational functions as power series expansions in the domains |z| < |w|
and |w| < |z|, respectively. In particular,

iz,w

(
1

z − w

)
:= z−1

∑
n∈N

(w
z

)n
, iw,z

(
1

z − w

)
:= −w−1

∑
n∈N

( z
w

)n
Notice that the maps iz,w and iw,z commute with both ∂z and ∂w partial derivatives.

Definition 1.1.8. [63] The delta formal distribution is

δ(z − w) := (iz,w − iw,z)
(

1

z − w

)
∈ C

[[
z±1, w±1

]]
.

The delta formal distribution can be seen as the algebraic abstraction of the usual Dirac’s
delta distribution (see, for example, [63, Proposition 2.1]). Indeed, for A(z) ∈ V

[[
z±1
]]

,
the delta formal distribution is the unique formal distribution such that

Resz (A(z)δ(z − w)) = A(w).

Now, by the universal property of the localizations

V [[z, w]] ↪→ V ((z))((w)) and V [[z, w]] ↪→ V ((w))((z)).

Moreover, the natural inclusions V ((z))((w)), V ((w))((z)) ↪→ V
[[
z±1, w±1

]]
induce

V [[z, w]]� _

��

� � // V ((z))((w))� u

((
V [[z, w]]

[
z−1, w−1, (z − w)−1

]iz,w
44

iw,z **

V
[[
z±1, w±1

]]
.

V [[z, w]]
� ?

OO

�� // V ((w))((z))
	)

66
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The left-hand side subdiagrams are commutative, but the one in the right-hand side is
not, as shown by the delta formal distribution. Now, consider a V -valued formal distribu-
tion A(z, w), and suppose there exists f(z, w) ∈ V [[z, w]]

[
z−1, w−1, (z − w)−1

]
such that

A(z, w) = (iz,w − iw,z) f(z, w) ∈ V
[[
z±1, w±1

]]
.

Let N ∈ N be such that P (z, w) := (z − w)Nf(z, w) ∈ V [[z, w]]
[
z−1, w−1

]
. Then,

iz,wP (z, w) = iw,zP (z, w) if and only if (z − w)NA(z, w) = 0.

Definition 1.1.9. [63] It is said that A(z, w) ∈ V
[[
z±1, w±1

]]
is local when there exists

NA � 0 such that

(z − w)NAA(z, w) = 0.

Theorem 1.1.10 ([63, Theorem 2.3] Decomposition Theorem). Consider the formal
distribution A(z, w) ∈ V

[[
z±1, w±1

]]
. Then, A is local if and only if there exists NA � 0

such that

A(z, w) =

NA−1∑
n=0

Cn(w)
∂nwδ(z − w)

n!
,

where Cn(w) ∈ V
[[
w±1

]]
are formal distributions given by

Cn(w) := Res ((z − w)nA(z, w)) , for n ∈ {0, 1, . . . , N − 1}.

Definition 1.1.11. [63] Let g be any Lie algebra. We will say that two g-valued formal
distributions A and B are mutually local if [A(z), B(w)] is local.

Remark 1.1.12 (The Positive n-products in Formal Distributions). Let g be a
Lie algebra, and consider A and B two g-valued mutually local formal distributions. The
Decomposition Theorem gives us new g-valued formal distributions

Cn(w) =
(
A(n)B

)
(w) := Resz ((z − w)n [A(z), B(w)]) ∈ g

[[
w±1

]]
, for n ∈ N.

These are known as the positive n-products of A and B.

Let A be any superalgebra. Given A and B two A-valued formal distributions, we can
introduce a new A-valued formal distribution in two indeterminates as

: A(z)B(w) := A(z)+B(w) + (−1)|A||B|B(w)A(z)− ∈ A
[[
z±1, w±1

]]
,

where

A(z)+ :=
∑
n<0

z−1−na(n), A(z)− :=
∑
n∈N

z−1−na(n) ∈ A
[[
z±1
]]
.

This new operation is very important in the case of fields, as we will see in a moment.

22



Chapter 1. Basics on Vertex Algebras

Remark 1.1.13 (Normally Ordered Product and OPE). Let V be a vector space,
and consider the fields A and B. The normally ordered product of A and B is given by

(: AB :) (z) := A(z)+B(z) + (−1)|A||B|B(z)A(z)−.

This is a well defined End(V )-valued formal distribution, and is again a field on V (see,
for example, [63, Section 3.1]). Moreover, we introduce the negative j-products as

(
A(−1−j)B

)
(z) :=

:
(
∂jzA(z)

)
B(z) :

j!
∈ F(V ), for j ∈ N.

Thus, if A and B are mutually local, as a consequence of the Decomposition Theorem,

A(z)B(w) = : A(z)B(w) : + [A(z)−, B(w)]

= : A(z)B(w) : +
∑
n∈N

(
A(n)B

)
(w)iz,w

(
1

(z − w)n+1

)
;

(−1)|A||B|B(w)A(z) = : A(z)B(w) : − [A(z)+, B(w)]

= : A(z)B(w) : +
∑
n∈N

(
A(n)B

)
(w)iw,z

(
1

(z − w)n+1

)
.

Here, abusing notation, we write the operator product expansion (OPE) of A and B by

A(z)B(w) =: A(z)B(w) : +
∑
n∈N

(
A(n)B

)
(w)

(z − w)n+1
∼
∑
n∈N

(
A(n)B

)
(w)

(z − w)n+1
,

The singular part of the OPE (positive n-products) encodes the information of brackets
between coefficients of A and B. Indeed, by the Decomposition Theorem, if a(n), b(m) and(
a(j)b

)
(k)

are the Fourier modes of A, B and A(j)B, respectively, then

[
a(n), b(m)

]
=

N∑
j=0

(
n

j

)(
a(j)b

)
(n+m−j) , for n,m ∈ Z. (1.6)

So, we omit the regular part of the OPE. For j ∈ Z it satisfies(
A(j)B

)
(w) = Resz

((
A(z)B(w)iz,w − (−1)|A||B|B(w)A(z)iw,z

)
(z − w)j

)
.

Then, ∂w is an even derivation for the j-products, and
∣∣A(j)B

∣∣ = |A|+ |B| for j ∈ Z.

Remark 1.1.14. Notice that everything we have introduced above for all the positive
n-products make perfect sense for formal distributions on Lie algebras. In particular,
we can take the singular part of the OPE, and the formulas (1.6) still hold.

1.1.3 The Notion of Vertex Algebra

We are now ready to introduce the first definition of vertex algebra.
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Definition 1.1.15. [6] A vertex algebra is the data (V, |0〉 , T, Y (·, z)), where

� V = V0 ⊕ V1 is a vector superspace (space of states).

� |0〉 ∈ V0 is an even state (vacuum vector).

� T : V −→ V is an even endomorphism (infinitesimal translation operator).

� Y (·, z) : V −→ F(V ) is a parity-preserving linear map from a given state to a field
(state-field correspondence) given by

Y (a, z) :=
∑
n∈Z

z−1−na(n) ∈ F(V ), for a ∈ V,

that satisfy the following:

Axiom 1 (vacuum axioms) We have that T |0〉 = 0, and Y (a, z) (|0〉)|z=0 = a, for a ∈ V.
Axiom 2 (translation covariance axiom) For a ∈ V , we have [T, Y (a, z)] = ∂zY (a, z).

Axiom 3 (locality axiom) The fields F = {Y (a, z) | a ∈ V } are mutually local. So, for
a, b ∈ V , there exist N � 0, depending on the vectors a and b, such that

(z − w)N [Y (a, z), Y (b, w)] = 0.

Remark 1.1.16 (j-products in Vertex Algebras). Given (V, |0〉 , T, Y (·, z)) any ver-
tex algebra, we can introduce naturally the following parity-preserving bilinear maps

a(j)b = a(j)(b) = Resz
(
zjY (a, z)(b)

)
, for j ∈ Z,

for any a, b ∈ V , which are known as the j-products of the vertex algebra.

Remark 1.1.17 ([6], Homomorphisms, Subalgebras, Ideals, Quotients in VAs).
Let (V, |0〉 , T, Y (·, z)) be a vertex algebra. We introduce the basic notions for algebraic
structures as usual. Indeed, the natural product operations are the j-products. We do
not need a separate notion for left and right ideals (see, for example, [63, Section 4.3]).

Proposition 1.1.18 ([22, Corollary 1.7] j-product identities). For (V, |0〉 , T, Y (·, z))
a vertex algebra, one has

Y
(
a(j)b, z

)
= Y (a, z)(j)Y (b, z), for j ∈ Z; a, b ∈ V.

As a consequence,
Y (Ta, z) = ∂zY (a, z) (1.7)

In particular, T is an even derivation for all the j-products.

Remark 1.1.19 (Normally Ordered Product in Vertex Algebras). It is seen that
the (−1)-product plays a special role in this theory. Indeed, for (V, |0〉 , T, Y (·, z)) vertex
algebra, this is, roughly speaking, the product of the vertex algebra V as an algebra,
and it is called the normally ordered product of V , and we will write : ab : for a, b ∈ V . It
contains the information about all the negative j-products of V thanks to (1.7). Indeed,
applying this inductively, we obtain that

:

(
Tn(a)

n!

)
b := a(−1−n)b, for a, b ∈ V ;n ∈ N. (1.8)
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1.2 Bakalov-Kac Characterization of Vertex Algebras

We study now Bakalov-Kac’s characterization of vertex algebras from [3], which is the one
we will use for the computations in future chapters (see Chapter 3). For this, we need
to introduce the notion of Lie conformal algebras.

1.2.1 Lie Conformal Algebras

First, we consider the tensor catefgory of C [∂]-modules. In particular, given R and P
two C [∂]-modules, we have that ∂ acts on R⊗P via the Leibniz rule. In this context, we
can introduce the following interesting bracket (see [63, Equation 2.7.2]).

Definition 1.2.1. [63] A Lie conformal algebra is the data (R, [·λ·]), where

� R is a C[∂]-module.

� [·λ·] : R⊗R −→ C[λ]⊗R is a parity-preserving bilinear map, called the λ-bracket,
where λ is an even formal parameter, satisfying

– Sesquilinearity : this is an equality in C[λ]⊗R. For a, b ∈ R,

[∂aλb] = −λ [aλb] , [aλ∂b] = (∂ + λ) [aλb] . (1.9)

In particular, ∂ is an even derivation for the λ-bracket.

– Antisymmetry : this is an equality in C[λ]⊗R. For a, b ∈ R,

[aλb] = −(−1)|a||b| [b−∂−λa] . (1.10)

– Jacobi identity : given γ another even formal parameter, this is an equality in
C[λ]⊗ C[γ]⊗R. For a, b, c ∈ R,

[aλ [bµc]] =
[
[aλb]λ+µ c

]
+ (−1)|a||b| [bµ [aλc]] . (1.11)

The meaning of these expressions are explained in Appendix A.1.

Remark 1.2.2 (Homomorphisms, Subalgebras, Ideals, Quotients in LCAs).
We can introduce the basic notions for algebraic structures as usual. Indeed, the natural
product operation is the λ-bracket. Thanks to the antisymmetry axiom, we do not need
a separate notion for left and right ideals (see, for example, [63, Section 2.7]).

Example 1.2.3 ([63, Section 2.7]). Let R be a Lie conformal algebra, and define

[·, ·] : R⊗R −→ R
(a, b) 7→ [a, b] := [aλb]|λ=0

.

It follows from sesquilinearity that ∂R ⊆ R is an ideal for this new product. Therefore,
defining g := R/∂R, the previous product descends to a bilinear map g⊗ g −→ g. The
product [·, ·] endows g with Lie superalgebra structure. This is the Lie algebra associated
to R. Now, let R̃ = LR be the loop algebra of R. That is, the Lie conformal algebra of
loops R[t±1] (see [76, Section 2.6]) with associated derivation ∂̃ := ∂ ⊗ Idt + IdR ⊗ ∂t.
The Lie superalgebra associated to R̃ is denoted by Lie (R), and it will be useful.
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Proposition 1.2.4 ([3, Lemma 5.1]). Let (V, |0〉 , T, Y (·, z)) be a vertex algebra. Then,
we obtain a Lie conformal algebra, with ∂ = T and the λ-bracket

[aλb] :=
∑
n∈N

λn

n!
a(n)b ∈ C [λ]⊗ V, for a, b ∈ V.

In particular, the λ-bracket above is none other than the OPE of our vertex algebra.

1.2.2 Universal Enveloping Vertex Algebras

We will follow closely the construction explained in [22, Section 1.7]. Let (R, [·λ·]) be a
Lie conformal algebra, for which we construct g := Lie (R) a Lie algebra (see Example
1.2.3). Notice that ∂̃ : R[t±1] −→ R[t±1] induces a Lie algebra derivation −∂t : g −→ g.
Then, we can construct canonically a vertex algebra. Consider the (−∂t)-invariant Lie
subalgebra

g− = spanC { [atn] ∈ Lie (R) | n ∈ N} ⊆ g.

Let U (g) be the universal enveloping Lie algebra of g. Then, the derivation −∂t extends
uniquely to a derivation T of U (g), and T (C) = 0. Moreover, the centre Z (g) of g is
T -invariant. Now, we are ready to define the data (V, |0〉 , T, Y (·, z)) as follows:

� V ≡ V (g,R) := U (g) /U (g) g− is a left U (g)-module, where U (g) g− ⊆ U (g) is
the left ideal generated by the T -invariant Lie subalgebra g− ⊆ g.

� |0〉 ∈ V is the element induced by the identity 1 ∈ U (g).

� T : V −→ V is the derivation induced by T : U (g) −→ U (g).

� Y (·, z) : R −→ End(V ) [[z±]] is a parity-preserving linear map defined, for a ∈ R,
by

Y (a, z) : V −→ V
[[
z±1
]]

π(b) 7→
∑
n∈Z

z−1−nπ([atn] · b) ,

where · is the product on U (g), and π : U (g) −→ V is the canonical projection.

Theorem 1.2.5 ([22, Theorem 1.17] Existence Theorem). The data (V, |0〉 , T, Y (·, z))
gives a vertex algebra. In particular, the map Y (·, z) induces a state-field correspondence.

Definition 1.2.6. [22] The vertex algebra V (R) ≡ V (g,R) above is called the universal
enveloping vertex algebra associated to the Lie conformal algebra R.

Remark 1.2.7. Let V denote the universal enveloping vertex algebra associated to the
pair (g,R), and consider α : Z (g) −→ C a linear map such that α (T (Z (g))) = 0. Then,

Iα(V ) := spanC {(C − α(C))V | C ∈ Z (g)} ⊆ V

is a vertex algebra ideal, and we can introduce the quotient

V α :=
V

Iα(V )
,

which is going to play a fundamental role to construct our examples in a moment.
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Corolary 1.2.8 ([51, Theorem 14.6]). If R is a Lie conformal algebra, then there exists
a unique vertex algebra V (R) satisfying the following universal property: any homo-
morphism ϕ : R −→ V of Lie conformal algebras, where V is a vertex algebra, extends
uniquely to an homomorphism of vertex algebras ϕ : V (R) −→ V making commutative
the diagram

V (R)
ϕ

""
R
?�
i

OO

ϕ
// V.

Theorem 1.2.9 ([3, 22]). A vertex algebra is equivalent to the following data:

� A Lie conformal algebra (V, [·λ·]), where V is a C[T ]-module.

� A unital differential algebra ((V, |0〉 , : ·· :) , T ) satisfying quasicommutativity and
quasiassociativity axioms, which are respectively given, for a, b, c ∈ V , by

: ab : −(−1)|a||b| : ba :=

∫ 0

−T
dλ [aλb] , (1.12)

:: ab : c : − : a : bc ::=:

(∫ T

0
dλ a

)
[bλc] : +(−1)|a||b| :

(∫ T

0
dλ b

)
[aλc] : . (1.13)

� The non-commutative Wick formula, a quasi-Leibniz rule, is satisfied, which relates
the λ-bracket [·λ·] and the product : ·· :, for a, b, c ∈ V , as follows:

[aλ : bc :] =: [aλb] c : +(−1)|a||b| : b [aλc] : +

∫ λ

0
dµ
[
[aλb]µ c

]
. (1.14)

The meaning of the integrals in these identities are explained in Appendix A.2.

1.3 Conformal Vertex Algebras

Let (V, |0〉 , T, Y (·, z)) be a vertex algebra.

Definition 1.3.1. [3] A diagonalizable operator H ∈ End(V ) will be called a Hamilto-
nian of V . The state-field correspondence Y (·, z) : V −→ F(V ) is graded by H if

[H,Y (a, z)] = Y (Ha, z) + z∂zY (a, z), for a ∈ V.

If a ∈ V is homogeneous of degree ∆a ∈ C (that is, Ha = ∆aa), then

[H,Y (a, z)] = (∆a + z∂z)Y (a, z).

In general, any field A(z) ∈ End(V )
[[
z±1
]]

is said to have conformal weight ∆ ∈ C if

[H,A(z)] = (∆ + z∂z)A(z). (1.15)

In these cases, we say that A(z) is an eigenfield for H of conformal weight ∆ ∈ C.
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Given A(z) eigenfield for H ∈ End(V ) Hamiltonian, we write, by (1.15),

A(z) =
∑

n∈−∆+Z
z−∆−nan ∈ F(V ), (1.16)

if it is of conformal weight ∆ ∈ C. We can shift the subscripts in the coefficients, writing

an = a(n+∆−1), for n ∈ −∆ + Z or, equivalently, a(n) = an−∆+1, for n ∈ Z.

Definition 1.3.2. [63] A conformal vector of V is ν ∈ V0 satisfying:

1. The field associated to ν is a Virasoro field with central charge c ∈ C. That is,

Y (ν, z) := L(z) =
∑
n∈Z

z−2−nLn ∈ F(V ), (1.17)

where the coefficients Ln satisfy, for C = c Id constant field, the relations

[Lm, Ln] = (m− n)Lm+n + δ−nm
m3 −m

12
C. (1.18)

2. The infinitesimal translation operator is T = L−1.

3. The endomorphism L0 is diagonizable on V by positive integer eigenvalues. So,

V =
⊕
n∈Z

V (n),

where

V (n) = {0} if n < 0, and V (n) = {a ∈ V | L0(a) = na} if n ∈ N.

Sometimes, it may happen that n ∈ 1
2 + N as we will explain in Chapter 2.

The number c ∈ C is called the central charge of ν. A vertex algebra V endowed with a
conformal vector ν is known with the name of conformal vertex algebra of rank c.

1.3.1 Virasoro Embeddings

Let (R, [·λ·]) be a Lie conformal algebra, and fix L ∈ R an even vector. In what follows,
we will embrace the characterization in Theorem 1.2.9 and take this as our definition of
vertex algebra. In particular, we will just give the underlying Lie conformal algebras.

Definition 1.3.3. [3] We say that a ∈ R has weight ∆a ∈ C with respect to L if

[Lλa] = (∂ + ∆aλ) a+O
(
λ2
)
.

In these cases, we say that a is an eigenvector of weight ∆a with respect to L. Moreover,
we will say that a ∈ R is a primary eigenvector of weight ∆a with respect to L if

[Lλa] = (∂ + ∆aλ) a.
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We say that R is Z-graded by L if we have a basis of primary eigenvectors with integer
weights with respect to L. We say that L is a Virasoro vector if

[LλL] = (∂ + 2λ)L+
λ3

12
C,

where C ∈ R is a central element. When L is a Virasoro vector, the weight of any element
with respect to L is called the conformal weight of such a vector (with respect to L).

As any vertex algebra is in particular a Lie conformal algebra by Proposition 1.2.4, the
notions introduced above have perfect sense for vertex algebras.

Proposition 1.3.4 ([63, Corollary 4.10]). Given any vertex algebra (V, |0〉 , T, Y (·, z))
for which there exists an even vector ν ∈ V such that L(z) = Y (ν, z) is the Virasoro
field, then, a ∈ V is an eigenvector of conformal weight ∆a ∈ C with respect to L if and
only if L0a = ∆aa, and L−1a = Ta.

Remark 1.3.5. The previous result can be modified to obtain something similar for
primary vectors. Indeed, in that case, the first identity is Lna = δ0

n∆aa for n ∈ N.

Corolary 1.3.6. Let R be a Lie conformal algebra, and suppose that V (R) contains
a Virasoro vector L of central charge c ∈ C. Then, we have that (V (R), L) defines a
conformal vertex algebra of rank c if and only if we have a basis of eigenvectors of certain
conformal weight ∆ ∈ Z with respect to L.

1.4 Examples of Conformal Vertex Algebras

We construct vertex algebras from Lie algebras. We will work with the underlying Lie
conformal algebra R, taking the quotient of V (R) by some ideal via Remark 1.2.7.

1.4.1 Virasoro Vertex Algebra

The next example is taken from [6, 63, 64]. The Virasoro algebra is the Lie algebra g,
which is the unique non-trivial central extension 0 −→ CC −→ g −→ A −→ 0 of the Witt
algebra A by C central element. So,

A = Vect(D̊) := DerC
(
C
[
t±1
])

= C
[
t±1
]
∂t,

where D̊ := Spec(C
[
t±1
]
) is the punctured line. Fix Ln := −tn+1∂t, for n ∈ Z the basis,

for which we have the Lie brackets [Ln, Lm] := (m− n)Ln+m. Then,

g = Vect(D̊)⊕ CC

as vector space, with the non-zero commutators (1.18). As a Lie conformal algebra, this
is Vir := (CL⊗ C[T ])⊕ CC, where L,C are even, with the non-zero λ-bracket

[LλL] = (T + 2λ)L+
λ3

12
C. (1.19)
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Notice that Lie (Vir) = g. Applying the Existence Theorem, we obtain a vertex algebra
V (Vir), which is known as the universal Virasoro vertex algebra. Now, since C is the
generator of the centre, we have α : Z (g) = CC −→ C a linear map as in Remark 1.2.7.
So, denoting c := α(C) ∈ C as the central charge, we can take the quotient

V c (Vir) :=
V (Vir)

(C − c)V (Vir)
.

This is known as the universal Virasoro vertex algebra of central charge c ∈ C, and it is
seen that has conformal vertex algebra structure, since L−2 |0〉 is a Virasoro vector.

1.4.2 Affinization of quadratic Lie algebras

We will work in next two examples with (·, ·) : V ×V −→ C bilinear forms over V vector
superspaces that can be symmetric and antisymmetric in this “super” sense. That is,

� we say that (·, ·) is supersymmetric if (a, b) = (−1)|a||b| (b, a) for a, b ∈ V .

� we say that (·, ·) is superantisymmetric if (a, b) = −(−1)|a||b| (b, a) for a, b ∈ V .

Definition 1.4.1. Let g be a Lie superalgebra and (·|·) : g× g −→ C a non-degenerate,
supersymmetric and invariant bilinear form. That is, it satisfies ( [a, b]| c) = (a |[b, c] ) ,
for a, b, c ∈ g. The pair (g, (·|·)) is a quadratic Lie superalgebra.

The next example is taken from [6, 63, 64]. Let (g, (·|·)) be a finite-dimensional quadratic
Lie superalgebra. The affinization of g is a complex Lie superalgebra, which is the central
extension 0 −→ CK −→ ĝ −→ Lg −→ 0 of the loop algebra of g via (·|·) by K central
element. Here, Lg is the Lie superalgebra of loops Lg := Map(D̊, g) = g

[
t±1
]
. Then,

ĝ = Lg⊕ CK as vector superspace, with the non-zero commutators

[atn, btm] = [a, b] tn+m + nδ0
n+m (a|b)K, for a, b ∈ g, n,m ∈ Z. (1.20)

If g is simple, this is called the Kac-Moody affinization, and we have a unique non-trivial
central extension as above. In such cases, we can take h∨ ∈ C∗ the dual Coxeter number
of g (see [62, Section 6.1]). We can also include the supercommutative case for h∨ = 0.
As Lie conformal algebra, this is the current algebra Curg = (C[T ]⊗ g)⊕CK, with the
non-zero λ-brackets

[aλb] = [a, b] + λ (a|b)K, for a, b ∈ g. (1.21)

Notice that Lie (Curg) = ĝ. Applying the Existence Theorem, we obtain a vertex algebra
V (Curg), which is known as the universal affine vertex algebra. Now, since K is the gene-
rator of the centre, we have α : Z (ĝ) = CK −→ C a linear map as in Remark 1.2.7. So,
denoting k := α(K) as the level, we can take the quotient

V k (g) :=
V (Curg)

(K − k)V (Curg)
.

This is known as the universal affine vertex algebra of level k ∈ C. At last, we can prove
that it is possible to endow a conformal vertex algebra structure when g is simple or
supercommutative to the universal affine vertex algebra of level k ∈ C when we are not
at the critical level, which is k = −h∨. Finally, we can state the following result.
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Theorem 1.4.2 ([89] The Sugawara Construction). If g is simple or supercommuta-
tive, and k 6= −h∨, then there exists an embedding V c (Vir) ↪→ V k (g), where the vectors
a ∈ g are primary of conformal weight 1, and c ∈ C is given by

c(k) =
k sdim g

k + h∨
∈ C. (1.22)

1.4.3 Clifford Affinization of vector superspaces

We follow [63] to introduce the next example. Let V be a finite-dimensional vector space,
which is endowed with 〈·|·〉 : V × V −→ C a non-degenerate and superantisymmetric
bilinear form. The Clifford affinization of V is a complex Lie superalgebra, which is the
central extension 0 −→ CK −→ V̂ −→ LV −→ 0 of the loop algebra of V (viewed as
an abelian Lie algebra) via 〈·|·〉 by K central element. Then, V̂ = LV ⊕ CK as vector
space, with the non-zero commutators

[ϕtn, ψtm] = δ−1−n
m 〈ϕ|ψ〉K, for ϕ,ψ ∈ V, n,m ∈ Z.

As Lie conformal algebra, this is R = (C[T ]⊗ V )⊕ CK, with the non-zero λ-brackets

[ϕλψ] = 〈ϕ|ψ〉K, for ϕ,ψ ∈ V.

Notice that Lie (R) = V̂ . Applying the Existence Theorem, we obtain a vertex algebra
V (R), which is known as the universal superfermionic vertex algebra. Now, since K is the
generator of the centre, we have α : Z(V̂ ) = CK −→ C a linear map as in Remark 1.2.7.
So, we can take the quotient

FF(V ) :=
V (R)

(K − 1)V (R)
.

This is known as the free superfermions. Notice that we are taking level α(K) = k = 1
because all the non-zero levels give isomorphic vertex algebras.

Theorem 1.4.3 ([51]). There exists an embedding V c (Vir) ↪→ FF(V ), where vectors
ϕ ∈ g are primary of conformal weight 1/2, and c ∈ C is given by the formula

c(k) = −sdimV

2
∈ C.

Note that the conformal weights are not integers. We will understand why that happens
in the next chapter. In such cases, we will work with reversed-parities. That is, consider
Π: V −→ ΠV the parity-reversing functor, which sends each element ϕ ∈ V to the same
vector, but with reversed parity. Repeating everything exactly as above, but using these
parity reversed vectors, we obtain the very same vertex algebra FF(V ) as in the process
applied above. This is what it is always done in the literature when we obtain conformal
weights in Z+ 1/2. Mathematically, there is no difference in taking one or the other (at
least, in this moment). The reason comes from conformal field theory, since we use this
change of variable so that the obtained conformal weight ∆ ∈ Z+ 1/2 matches with the
values that appear in the associated formal distributions written using the form (1.16).
So, from now, we will construct our examples keeping this in mind.
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Remark 1.4.4. We should be careful, since we will use V and ΠV at the same time
in the formulas, and we must be able to distinguish which one is used on each moment.
For example, the bilinear form 〈·|·〉 : V ×V −→ C is always defined over V . However, as
a vertex algebra, the underlying vector superspace is ΠV . This distinction will be very
important to understand correctly the constructions in future chapters.

1.4.4 βγ-system or Symplectic Bosons

If V0 = {0} (so, ΠV is even) in the Clifford affinization, we obtain a symplectic form on
V . So, this example is known as the symplectic bosons (see, for example, [56, 63, 73]).
For the usual property for symplectic forms, V is even dimensional, that is, n = 2N . So,
denoting by VN the corresponding Lie conformal algebra, we can consider a symplectic
basis {βj , γj}j=1,...,N ⊆ V , and we obtain the non-zero λ-brackets[

βjλγ
k
]

=
〈
βj
∣∣∣γk〉 = δkj , for j, k ∈ {1, . . . , N}. (1.23)

This is also known as the βγ-system. We can endow a conformal vertex algebra structure
to the βγ-system giving three different embeddings V c(Vir) ↪→ V (VN ). Indeed,

Lβγ1 7→
N∑
j=1

: (Tγj)βj :, Lβγ2 7→ −
N∑
j=1

: (Tβj)γj :, Lβγ 7→ 1
2

(
Lβγ1 + Lβγ2

)
;

cβγ1 7→ 2N, cβγ2 7→ 2N, cβγ 7→ −N.

Moreover, the vectors γj for j ∈ {1, . . . , N} are primary of conformal weights 0, 1, 1/2

with respect to Lβγ1 , Lβγ2 , Lβγ , respectively; while the vectors βj for j ∈ {1, . . . , N} are

primary of conformal weights 1, 0, 1/2 with respect to Lβγ1 , Lβγ2 , Lβγ , respectively.

1.4.5 bc-system

We follow [56, 73] to introduce the next example. Let V be a totally odd 2N -dimensional
vector space, and consider (·|·) : V × V −→ C a symmetric and non-degenerate bilinear
form. Fix {bj , cj}j=1,...,N ⊆ V a basis, where {bj}j=1,...,N and {cj}j=1,...,N are dual with
respect to (·|·). So, denoting by ΛN the Lie conformal algebra generated by this basis,
with the non-zero λ-brackets[

bjλc
k
]

=
(
bj
∣∣∣ck) = δkj , for j, k ∈ {1, . . . , N}. (1.24)

This is known as the bc-system. We can endow a conformal vertex algebra structure to
the bc-system giving three different embeddings V c(Vir) ↪→ V (ΛN ). Indeed,

Lbc1 7→
N∑
j=1

: (Tbj)cj :, Lbc2 7→
N∑
j=1

: (Tcj)bj :, Lbc 7→ 1
2

(
Lbc1 + Lbc2

)
;

cbc1 7→ −2N, cbc2 7→ −2N, cbc 7→ N.

Moreover, the vectors bj for j ∈ {1, . . . , N} are primary of conformal weights 0, 1, 1/2
with respect to Lbc1 , L

bc
2 , L

bc, respectively; while the vectors cj for j ∈ {1, . . . , N} are
primary of conformal weights 1, 0, 1/2 with respect to Lbc1 , L

bc
2 , L

bc, respectively.
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SUSY Vertex Algebras

Our next goal is to introduce NK = 1 SUSY vertex algebras. The main reference for
that will be [52], where the authors studied NK and NW SUSY vertex algebras in the
most general case. Since we are just interested in the case of NK = 1, we will drop this
qualifier, and we will study this construction from vertex algebras directly. Remember
that, for V vector superspace, we denote by Π: V −→ ΠV the parity-reversing functor
that sends each vector v ∈ V to the same one Πv ∈ ΠV , but with reversed parity.

2.1 Superconformal Vertex Algebras

Sometimes, conformal vertex algebras admit what is called a “supersymmetry”. We are
interested in studying such type of vertex algebras.

Definition 2.1.1. [52] Let (V, ν) be a conformal vertex algebra of rank c ∈ C, where
Y (·, z) : V −→ F(V ) is the state-field correspondence. A superconformal vector of (V, ν)
(remember that Y (ν, z) := L(z) ∈ F(V ) is the Virasoro field given in (1.17)) is an odd
element τ ∈ V1 satisfying the following:

1. The field associated to τ is a Neveu-Schwarz field with central charge c ∈ C. That
is,

Y (τ, z) := G(z) =
∑

n∈ 1
2

+Z

z−
3
2
−nGn ∈ F(V ),

where the coefficients Ln, Gm satisfy the extra commutation relations

[Gm, Ln] =
(
m− n

2

)
Gm+n, [Gm, Gn] = 2Lm+n +

C

3

(
m2 − 1

4

)
δ−nm . (2.1)

for C = c Id the constant field.

Define the odd endomorphism S := G− 1
2

: V −→ V . Notice that S2 = T by (2.1).

2. It is satisfied that Sτ = 2ν.

The number c ∈ C is also called the central charge of τ . Any vertex algebra V endowed
with a superconformal vector τ is called a superconformal vertex algebra of rank c.
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2.1.1 What is a Supersymmetry? From VAs to SUSY VAs

Roughly speaking, a supersymmetry can be introduced as a mathematical formalism for
describing a hypothetical relationship between bosons and fermions. In this set-up, a su-
persymmetry is just an odd endomorphism S : V −→ V as in a superconformal vertex
algebras (see above). We will formalize this point of view using the structure theory of
vertex algebras explained in the previous chapter. Let (V, τ) be a superconformal vertex
algebra, with Y (·, z) : V −→ F(V ) the state-field correspondence. Note that by (1.6),

S |0〉 = G− 1
2
|0〉 = 0.

Furthermore, computing the supercommutator between S : V −→ V and Y (a, z) for each
a ∈ V , since G(z) has conformal weight 3/2, by (1.6),

[S, Y (a, z)] =
[
G− 1

2
, Y (a, z)

]
= Y

(
G− 1

2
a, z
)

= Y (Sa, z), for a ∈ V. (2.2)

Moreover, thanks to (1.7), we obtain the extra condition

[S, Y (Sa, z)] = [S, Y (Sa, z)] = Y (Ta, z) = ∂zY (a, z), for a ∈ V. (2.3)

So, it is natural to introduce the following notion.

Definition 2.1.2. [5, 52] A SUSY vertex algebra is the data (V, |0〉 , S, Y (·, z)) as given in
Definition 1.1.15, but where instead of T : V −→ V the infinitesimal translation operator,
we have S : V −→ V an odd endomorphism (supersymmetry generator), satisfying:

A1 S |0〉 = 0 and Y (a, z) (|0〉)|z=0 = a for a ∈ V.

A2 [S, Y (a, z)] = Y (Sa, z) and [S, Y (Sa, z)] = ∂zY (a, z) for a ∈ V .

A3 The fields F = {Y (a, z) | a ∈ V } are mutually local.

The notion given above corresponds to NK = 1 SUSY vertex algebras, but we will omit
the qualifier NK = 1 for simplicity, since we are not going to study the NK > 1 case or
the NW case (for more information about these cases, see [52]). Obviously, any SUSY
vertex algebra is going to be a vertex algebra defining T := S2. The advantage of using
this type of vertex algebras resides in that we can introduce a new formalism for which we
will be able to express certain equations for superconformal theories in a more compact
way. This is going to be really useful for our computations.

2.2 Superfield Formalism of SUSY Vertex Algebras

For V a vector superspace, let θ be a Grassmannian indeterminate (odd commuting with
z such that θ2 = 0), and consider the pair Z = (z, θ) for z even indeterminate as usual.
We will denote

Zj|J := zjθJ , for j ∈ Z; J ∈ {0, 1}.
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We say that a V -valued formal superdistribution in the indeterminates Z = (z, θ) is an
element of the vector superspace V

[[
z±1
]]

[θ], given by

A(Z) =
∑
j∈Z

J∈{0,1}

Z−1−j|1−Ja(j|J) =
∑
j∈Z

z−1−ja(j|1) + θ
∑
j∈Z

z−1−ja(j|0) =:

=: A1(z) + θA0(z),

where A0 and A1 are usual formal distributions in z. In particular, coefficients a(j|J) ∈ V
denote the Fourier supermodes of A for j ∈ Z and J ∈ {0, 1}. We impose that these are
homogeneous elements of the vector superspace V

[[
z±1
]]

[θ], where |A| = |A1| = |a(j|1)|,
while, since θ is odd, |A| = |A0| + 1 = |a(j|0)| + 1 for j ∈ Z. We could introduce many
notions studied in previous chapters in the presence of Grassmannian indeterminates.
In particular, the superesidue of A ∈ V

[[
z±1
]]

[θ] as above is the parity-reversing linear
map given by

ResZ A(Z) := a(0|0) ∈ V.

Moreover, if g is a Lie superalgebra, we define formally a bracket for A,B ∈ g
[[
z±1
]]

[θ],
where Z = (z, θ) and W = (w, ξ) are two pairs of different formal indeterminates, by

[A(Z), B(W )] :=
∑
j,k∈Z

J,K∈{0,1}

(−1)(1−K)|a(j|J)|Z−1−j|1−JW−1−k|1−K [a(j|J), b(k|K)

]
.

Now, we say that A and B are mutually local if there exists N � 0 such that

(z − w)N [A(Z), B(W )] = 0. (2.4)

Let
δ(Z −W ) := (iz,w − iw.z) (Z −W )−1|1

be the delta superdistribution, where we have used the notation

(Z −W )j|J := (z − w − θξ)j(θ − ξ)J , for j ∈ Z; J ∈ {0, 1}.

As a consequence of the Decomposition Theorem, we have that (2.4) is equivalent to

[A(Z), B(W )] =
∑
j∈N

J∈{0,1}

(−1)J
∂jzDJ

z,θδ(Z −W )

j!
Cj|J(W ),

where Dz,θ := ∂θ + θ∂z (D2
z,θ = ∂z) is the odd action on formal superdistributions, and

Cj|J(W ) :=
(
A(j|J)B

)
(W ) = ResZ

(
(Z −W )j|J [A(Z), B(W )]

)
are the (j|J)-products, for j ∈ N and J ∈ {0, 1}. Now, given A a superalgebra, we define
the normally ordered product of A and B by

(: AB :) (Z) := A+(Z)B(Z) + (−1)|A||B|B(Z)A(Z)−,
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where

A(Z)+ :=
∑
n<0

J∈{0,1}

Z−1−n|1−Ja(n|J), A(Z)− :=
∑
n∈N

J∈{0,1}

Z−1−n|1−Ja(n|J) ∈ A
[[
z±1
]]

[θ] .

When the normally ordered product is well defined, we can introduce

(
A(−1−j|1−J)B

)
(Z) :=

:
(
∂jzDJ

z,θA(Z)
)
B(Z) :

j!
, for j ∈ N; J ∈ {0, 1}.

The normally ordered product of formal superdistributions is not well defined in general.
An End(V )-valued formal superdistribution A ∈ End(V )

[[
z±1
]]

[θ] is a superfield when,
for v ∈ V , is A(n|J)(v) = 0 for n� 0 and J ∈ {0, 1}. We denote the vector superspace of
superfields on V by Fsuper(V ). In the case of superfields, the normally ordered product
is a well-defined superfield, and for A,B ∈ Fsuper(V ), j ∈ Z and J ∈ {0, 1}, we have(

A(j|J)B
)

(W ) = ResZ

((
A(Z)B(W )iz,w − (−1)|A||B|B(W )A(Z)iw,z

)
(Z −W )j|J

)
.

Then, Dz,w is an odd derivation for the (j|J)-products, and
∣∣A(j|J)B

∣∣ = |A|+ |B|+J+1.
This formalization using even and odd indeterminates was studied by Barron in [5].

Theorem 2.2.1 ([5, 52]). A SUSY vertex algebra is equivalent to the following data:

� V = V0 ⊕ V1 is a vector superspace.

� |0〉 ∈ V0 is an even state.

� S : V −→ V is an odd endomorphism.

� Y (·, Z) : V −→ Fsuper(V ) is a parity-preserving linear map, called state-superfield
correspondence, given by

Y (a, Z) :=
∑
j∈Z

J∈{0,1}

Z−1−j|1−Ja(j|J) ∈ Fsuper(V ), for a ∈ V,

where a(j|J) ∈ End(V ) for j ∈ Z and J ∈ {0, 1} are the Fourier supermodes of the
superfield Y (a, Z), for each a ∈ V , such that satisfy the following:

Axiom 1 We have that S |0〉 = 0, and Y (a, Z) (|0〉)|z=0,θ=0 = a, for a ∈ V.
Axiom 2 For a ∈ V , we have [S, Y (a, Z)] = (∂θ − θ∂z)Y (a, Z).

Axiom 3 The superfields F = {Y (a, Z) | a ∈ V } are mutually local. So, for a, b ∈ V ,
there exists N � 0, depending on the vectors a and b, such that

(z − w)N [Y (a, Z), Y (b,W )] = 0.
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Proof. Let (V, |0〉 , S, Y (·, z)) be a SUSY vertex algebra as in Definition 2.1.2. Then, we
can introduce a superfield on V by

Y (a, Z) := Y (a, z) + θY (Sa, z) ∈ Fsuper(V ), for a ∈ V.

Now, from (2.2) and (2.3), since S and θ are odd,

[S, Y (a, Z)] = (∂θ − θ∂z)Y (a, Z), for a ∈ V. (2.5)

Conversely, if (V, |0〉 , S, Y (·, Z)) is a SUSY vertex algebra as above, we can define a field

Y (a, z) := Y (a, z; 0) ∈ F(V ), for a ∈ V.

It is easily seen that (2.3) and (2.2) are both satisfied by (2.5).

Remark 2.2.2 ((j|J)-products in SUSY Vertex Algebras). Given (V, |0〉 , S, Y (·, Z))
any SUSY vertex algebra, we can introduce naturally the following bilinear maps

a(j|J)b = a(j|J)(b) = ResZ

(
Zj|JY (a, Z)(b)

)
, for j ∈ Z; J ∈ {0, 1},

for any a, b ∈ V , which are known as the (j|J)-products of the SUSY vertex algebra. In
particular, we have that the (j|1)-products are the j-products of the underlying vertex
algebra, while the (j|0)-products are parity-reversing bilinear maps.

Remark 2.2.3. We will compare identity (2.5) with the action of S in the superfields
to obtain an identity as in (1.7). Indeed, note that Dz,θ 6= ∂θ − θ∂z. So, instead of the
relation between T and ∂z obtained in (super)fields, for S and Dz,θ we obtain that

Y (Sa,Z) = Dz,θY (a, Z), for a ∈ V. (2.6)

In particular, S is an odd derivation for all the (j|J)-products.

Remark 2.2.4 (Normally Ordered Product in SUSY Vertex Algebras). Notice
that the (−1|1)-product is the normally ordered product of the underlying vertex algebra
V . We will use the same name and notation for SUSY vertex algebras, calling it the nor-
mally ordered product of V as SUSY vertex algebra. In this case, it contains the infor-
mation about all the (n|J)-products of V for n < 0 thanks to (1.8) and (2.6) as a conse-
quence of all we have mentioned. Indeed, it is easily seen that

:

(
TnSJ(a)

n!

)
b := a(−1−n|1−J)b, for a, b ∈ V ;n ∈ N; J ∈ {0, 1}.

2.3 Heluani-Kac Characterization of SUSY VAs

Heluani and Kac introduced an alternative notion for SUSY vertex algebras in [52], which
is the one we will use for our computations, similar to the Bakalov-Kac characterization
of vertex algebras given in Section 1.2 in terms of Lie conformal algebras. To do that,
first of all, we need to introduce the superfield version of Lie conformal algebras.
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2.3.1 SUSY Lie Conformal Algebras

Similarly as we have done in Subsection 2.1.1 with vertex algebras, we can just introduce
SUSY Lie conformal algebras as Lie conformal algebras (R, [·λ·]) as in Definition 1.2.1,
where remember that R is a C[∂]-module, for which there exists an odd endomorphism
D : R −→ R satisfying certain compatibility conditions, which are the following ones:

D2 = ∂, D [aλb] = [Daλb] + (−1)|a| [aλDb] , for a, b ∈ R. (2.7)

Let now ∇ = (∂,D) be the pair formed by the translation operators above, and consider
H the (non-commutative) associative translation superalgebra generated by the set ∇,
subject to the relations [∂,D] = 0 and [D,D] = 2∂. In particular, D2 = ∂. So, we can see
this superalgebra just as H = C[D] for which we define the even endomorphism ∂ := D2.
Then, a SUSY Lie conformal algebra should be a pair (R, [·λ·]), where R is an H-module
and [·λ·] is a λ-bracket satisfying (1.9), (1.10), (1.11), with D : R −→ R odd derivation
for the λ-bracket. However, this notion does not make sense completely, since we do not
have an analogue of the sesquilinearity rule for the λ-bracket with respect to D. So, we
must give a new bracket for which we have such a rule. With this purpose, we introduce
a new pair Λ = (λ, χ) for which we consider χ a new odd parameter, and consider L the
(non-commutative) associative parameter superalgebra generated by the set Λ, subject
to the relations [λ, χ] = 0 and [χ, χ] = −2λ. In particular, χ2 = −λ. So, we can see
this superalgebra just as L = C[χ] for which we define the even parameter λ := −χ2.
Remember that, for j ∈ Z and J ∈ {0, 1}, we will write ∇j|J := T jSJ and Λj|J := λjχJ .
In particular, notice that we have an isomorphism H −→ L given by ∇ 7→ −Λ. Then,
using D, χ and [·λ·], we define

[·Λ·] : R⊗R −→ L⊗R
(a, b) 7→ [aΛb] := [Daλb] + χ [aλb]

.

Definition 2.3.1. [52] A SUSY Lie conformal algebra is the data (R, [·Λ·]), where

� R is an H-module.

� [·Λ·] : R⊗R −→ L⊗R is a parity-reversing bilinear map, the Λ-bracket, satisfying

– Sesquilinearity : this is an equality in L ⊗R. For a, b ∈ R,

[DaΛb] = χ [aΛb] , [aΛDb] = (−1)|Πa|(D + χ) [aΛb] . (2.8)

In particular, D is an odd derivation for the Λ-bracket.

– Antisymmetry (understanding this in the odd version): this is an equality in
L ⊗R, where ∇ is as above. For a, b ∈ R,

[aΛb] = (−1)|a||b| [b−∇−Λa] . (2.9)

– Jacobi identity : given L′ another copy of L generated by the pair Γ = (γ, η),
this is an equality in L ⊗ L′ ⊗R. For a, b, c ∈ R,

[aΛ [bΓc]] = (−1)|Πa|
[
[aΛb]Λ+Γ c

]
+ (−1)|Πa||Πb| [bΓ [aΛc]] . (2.10)
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The meaning of these expressions are explained in Appendix A.3.

Proposition 2.3.2 ([52]). Let (R, [·λ·]) be a Lie conformal algebra, and D : R −→ R
an odd derivation for the λ-bracket satisfying D2 = ∂. Define

[aΛb] := [Daλb] + χ [aλb] , for a, b ∈ R.

Then, (R, [·Λ·]) is a SUSY Lie conformal algebra. Conversely, let (R, [·Λ·]) be a SUSY
Lie conformal algebra as in Definition 2.3.1, and define a λ-bracket by

[aλb] := ∂χ [aΛb] , for a, b ∈ R,

where ∂χ is the partial derivative with respect to the odd indeterminate χ. Then, (R, [·λ·])
is a Lie conformal algebra satisfying (2.7).

Proposition 2.3.3 ([52]). Let (V, |0〉 , S, Y (·, Z)) be a SUSY vertex algebra. Then, we
obtain a SUSY Lie conformal algebra, with D = S and the Λ-bracket

[aΛb] :=
∑
n∈N

J∈{0,1}

Λn|J

n!
a(n|J)b ∈ L ⊗ V, for a, b ∈ V. (2.11)

2.3.2 Universal Enveloping SUSY Vertex Algebras

We can introduce SUSY vertex algebras canonically from SUSY Lie conformal algebras.
We can do this via a general construction as in Chapter 1 (see [52][Section 3.4] for details).
Furthermore, we can construct a Lie algebra LieR from a SUSY Lie conformal algebra
(R, [·Λ·]) in a canonical way (see [52, Lemma 3.2.8] for details). However, we will not do
this, and we will give this type of SUSY vertex algebras via universal properties directly.

Theorem 2.3.4 ([52]). If R is a SUSY Lie conformal algebra, then there exists a unique
SUSY vertex algebra V (R) satisfying the following universal property: any homomor-
phism ϕ : R −→ V of SUSY Lie conformal algebras, where V is a SUSY vertex algebra,
extends uniquely to an homomorphism of SUSY vertex algebras ϕ : V (R) −→ V making
commutative the diagram

V (R)
ϕ

""
R
?�
i

OO

ϕ
// V.

Definition 2.3.5. [52] The SUSY vertex algebra V (R) from above is called the univer-
sal enveloping SUSY vertex algebra associated to the SUSY Lie conformal algebra R.

Following Bakalov-Kac characterization of vertex algebras, we obtain that a SUSY vertex
algebra should be equivalent to the data (V, |0〉 , S, [·λ·] , : ·· :), where

39



Supersymmetric Vertex Algebras and Killing Spinors

� (V, [·λ·]) is a Lie conformal algebra for which there exists S : V −→ V odd derivation
for the λ-bracket.

� ((V, |0〉 , : ·· :) , S) is a differential algebra satisfying (1.12) and (1.13).

� The λ-bracket [·λ·] and the product : ·· : are related by (1.14).

Then, using Λ-brackets, we arrive at the Heluani-Kac characterization.

Theorem 2.3.6 ([52]). A SUSY vertex algebra is equivalent to the following data:

� A SUSY Lie conformal algebra (V, [·Λ·]), where V is an H-module.

� A unital differential superalgebra ((V, |0〉 , : ·· :) , S) satisfying the quasicommutati-
vity and quasiassociativity axioms, which are respectively given, for a, b, c ∈ V , by

: ab : −(−1)|a||b| : ba :=

∫ 0

−∇
dΛ [aΛb] , (2.12)

:: ab : c : − : a : bc ::=:

(∫ ∇
0

drΛa

)
[bΛc] : +(−1)|a||b| :

(∫ ∇
0

drΛb

)
[aΛc] : . (2.13)

� The non-commutative Wick formula, a quasi-Leibniz rule, is satisfied, which relates
the Λ-bracket [·Λ·] and the product : ·· :, for a, b, c ∈ V , as follows:

[aΛ : bc :] =: [aΛb] c : +(−1)|Πa||b| : b [aΛc] : +

∫ Λ

0
dΓ [[aΛb]Γ c] . (2.14)

The meaning of the integrals in these identities are explained in Appendix A.4.

2.4 Neveu-Schwarz Embeddings

Let (R, [·Λ·]) be a SUSY Lie conformal algebra, and fix H ∈ R an odd vector.

Definition 2.4.1. [52] We say that a ∈ R has weight ∆a ∈ C with respect to H if

[HΛa] = (2∂ + 2∆aλ+ χD) a+O
(
λ2
)

+ χO(λ).

In these cases, we say that a is an eigenvector of weight ∆a with respect to H. Moreover,
we will say that a ∈ R is a primary eigenvector of weight ∆a with respect to H if

[HΛa] = (2∂ + 2∆aλ+ χD) a. (2.15)

Now, we say that H is a Neveu-Schwarz vector if

[HΛH] = (2∂ + 3λ+ χD)H +
χλ2

3
C,

where C ∈ R is a central element. When H is a Neveu-Schwarz vector, the weight of any
element with respect to H is the conformal weight of such a vector (with respect to H).

40



Chapter 2. SUSY Vertex Algebras

As any SUSY vertex algebra is in particular a SUSY Lie conformal algebra by Proposition
2.3.3, the notions introduced above have perfect sense for SUSY vertex algebras.

Proposition 2.4.2 ([52]). Given any SUSY vertex algebra (V, |0〉 , S, Y (·, z)) for which
exists an odd vector τ ∈ V such that G(z) = Y (τ, z) is the Neveu-Schwarz field, then,
a ∈ V is an eigenvector of conformal weight ∆a ∈ C with respect to τ if and only if the
following, for ν = Sτ/2 ∈ V so that L(z) := Y (ν, z), holds:

L0a = ∆aa, L−1a = Ta, G− 1
2
a = Sa.

Remark 2.4.3. The previous result can be modified to obtain a similar equivalence for
primary vectors. Indeed, in that case, the first identity is Lna = δ0

n∆aa for n ∈ N, while
we add the following one Gna = 0 for n ∈ 1/2 + N.

Corolary 2.4.4. Let R be a SUSY Lie conformal algebra, and suppose that V (R) con-
tains a Neveu-Schwarz vector H of central charge c ∈ C. Then, we have that (V (R), H)
defines a superconformal vertex algebra of rank c ∈ C if and only if we have a basis of
eigenvectors of certain conformal weight ∆ ∈ 1/2 + Z with respect to H.

2.5 Examples of Superconformal Vertex Algebras

We construct examples from Lie algebras. We will work with the underlying SUSY Lie
conformal algebra, taking the quotient of V (R) by some ideal as we did in Section 1.4.

2.5.1 Neveu-Schwarz SUSY Vertex Algebra

The next example is taken from [5, 52]. The Neveu-Schwarz algebra is the Lie superalge-
bra g, which is the unique non-trivial central extension 0 −→ CC −→ g −→ A −→ 0 of
the complex Lie superalgebra A by C central element. Here,

A = C
[
t±1, ζ

]
Dt,ζ ⊆ Vect(D̊1|1) = DerC

(
C
[
t±1, ζ

])
,

where D̊1|1 := Spec
(
C
[
t±1, ζ

])
is the punctured superline, and Dt,ζ = ∂t+ ζ∂ζ preserves

α = dt + ζdζ up to multiplication by functions, with ζ a Grassmanian indeterminate.
Fix Ln := −tn+1∂t, Gm := −ζtn+1Dt,ζ , for n ∈ Z,m ∈ 1/2 + Z, the basis for which we
have the Lie superbrackets [Ln, Gm] := (m− n)Lm+n, [Ln, Gm] := (n/2−m)Gn+m and
[Gn, Gm] := 2Ln+m. Then, g = A⊕CC as vector space, with the non-zero commutators
(1.18) and (2.1). As Lie conformal algebra, this is NS := ((CL⊕ CH)⊗ C[T ]) ⊕ CC,
where H is odd, and L,C even, with the non-zero λ-brackets (1.19) and

[LλH] =

(
T +

3

2
λ

)
H, [HλH] = 2L+

λ2

3
C. (2.16)

Let S be the odd derivation for the λ-bracket defined by SH := 2L and SL := TH/2.
Then, S2 = T . So, we have a SUSY Lie conformal algebra. Then, NS = (CH ⊗H)⊕CC
as an H-module, with the non-zero Λ-bracket

[HΛH] = (2T + χS + 3λ)H +
χλ2

3
C. (2.17)
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The associated universal enveloping SUSY vertex algebra is V (NS), which is known as
the universal Neveu-Schwarz SUSY vertex algebra. Now, since C is the generator of the
centre, we can take the quotient

V c (NS) :=
V (NS)

(C − c)V (NS)
,

where c ∈ C is the central charge. This is known as the universal Neveu-Schwarz SUSY
vertex algebra of central charge c ∈ C, and it is seen that has superconformal vertex
algebra structure, since G−3/2 |0〉 is a Neveu-Schwartz vector. This is also known as the
N = 1 superconformal vertex algebra, since it is part of a bigger family of vertex algebras.

2.5.2 Superaffinization of quadratic Lie algebras

The next example is taken from [52, 63]. Let (g, (·|·)) be a finite-dimensional quadratic
Lie superalgebra. The superaffinization of (g, (·|·)) is the super extension of the affiniza-
tion, which is 0 −→ CK −→ ĝsuper −→ SLg −→ 0 central extension of the superloop
algebra of g via (·|·) by K central element. Here, SLg is the Lie superalgebra of loops, so,
if ζ is Grassmanian, SLg := g [t±, ζ] . Then, ĝsuper = SLg⊕CK as vector space, with the
non-zero commutators (1.20) and

[atn, btmζ] = [a, b] tn+mζ, for a, b ∈ g, n,m ∈ Z,
[atnζ, btmζ] = (b|a)K, for a, b ∈ g, n,m ∈ Z.

As Lie conformal algebra, this is SCurg := ((g⊕Πg)⊗ C[T ])⊕ CK, which is called the
supercurrent algebra, with the non-zero λ-brackets (1.20) and

[aλΠb] = Π [a, b] , [ΠaλΠb] = (b|a)K, for a, b ∈ g.

Let S be the odd derivation for the λ-bracket defined by Sa := TΠa, and SΠa := a, for
a ∈ g. Then, S2 = T . We have the SUSY Lie conformal algebra SCurg = (Πg⊗H)⊕CK
as an H-module, with the non-zero Λ-brackets

[ΠaΛΠb] = (−1)|a| (Π [a, b] + χ (a|b)K) , for a, b ∈ g. (2.18)

The associated universal enveloping SUSY vertex algebra is V (SCur(g)), which is known
as the universal superaffine SUSY vertex algebra. Now, for being C the generator of the
centre, we can take the quotient

V k
super (g) :=

V (SCur(g))

(K − k)V (SCur(g))
,

where k ∈ C is the level. This is known as the universal superaffine vertex algebra of level
k ∈ C. Now, we can state the supersymmetric version of Theorem 1.4.2.

Theorem 2.5.1 ([60] The Kac-Todorov Construction). If g is simple or supercom-
mutative, and k 6= −h∨, then there exists an embedding V c (NS) ↪→ V k+h∨

super (g), where
vectors Πa ∈ Πg are primary of conformal weight 1/2, and c ∈ C is given by

c(k) =
k sdim g

k + h∨
+

sdim g

2
∈ C. (2.19)
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2.5.3 Ghost or bc-βγ System

Taking the tensor product between the βγ-system (Subsection 1.4.4), and the bc-system
(Subsection 1.4.5), we obtain the bc-βγ system (see, for example, [56, 73]). This is also
known as the ghost system. ForN ∈ N, this is generated by {β1, . . . , βN , γ1, . . . , γN} even
and {b1, . . . , bN , c1, . . . , cN} odd as Lie conformal algebra, with the non-zero λ-brackets
(1.23) and (1.24). Let S be the odd derivation for the λ-bracket defined by Sγj := bj ,
Scj := βj , Sbj := Tγj and Sβj := Tcj for j ∈ {1, . . . , N}. Then, S2 = T . We have the
SUSY Lie conformal algebra

ΩN :=

 N⊕
j=1

Cγj ⊕
N⊕
j=1

Ccj
⊗H

⊕ C

as an H-module, with the non-zero Λ-bracket[
γjΛc

k
]

= δkj , for j, k ∈ {1, . . . , N}.

The associated universal enveloping SUSY vertex algebra is V (ΩN ), which is known as
the bc-βγ system. We obtain a superconformal structure defining the odd vector

G :=
N∑
j=1

(
: bjβj : + : (Tγj)cj :

)
∈ V (ΩN ) . (2.20)

We will return to this example in Chapter 3, where we will enhance the previous structure
in order to have a higher number of supersymmetries. Before ending, we will introduce
the examples that have the higher number of supersymetries considered in this thesis. We
will use the Heluani-Kac formalism of [52][Examples 5.10 and 5.11].

Remark 2.5.2. The finite simple Lie conformal superalgebras are completely classified
[26] (where finite means finitely generated as C[∂]-modules).

Fix N ∈ N, and consider the Grassmannian indeterminates ζ1, . . . , ζN . Let W (1|N) be
the Lie superalgebra of all the derivations of C

[
t±1, ζ1, . . . , ζN

]
, and K(1|N) ⊆W (1|N)

the Lie subsuperalgebra consisting of vector fields preserving

α := dt+

N∑
j=1

ζjdζj ,

up to multiplication by a function. The Lie superalgebras W (1|N) and K(1|N) deter-
mine Lie conformal superalgebrasWN and KN (see [26]). Furthermore, the Lie conformal
superalgebra KN admits a unique non-trivial extension if N ≤ 3 [26][Proposition 4.17],
and no non-trivial central extensions for N ≥ 5 [26][Proposition 4.19]. In the special case
N = 4, the Lie superalgebra K(1|4) is not simple, but its derived algebra K(1|4)′ is both
simple and determines a Lie conformal superalgebra K′4 (namely, the derived algebra of
K4 [26][Example 3.9]), that has two, up to isomorphism, linearly independent central ex-
tensions [26][Proposition 4.18]. The unique central extension of K1 is the Neveu-Schwarz
algebra. Now, we are going to introduce the unique non-trivial central extension of K2

and a central extension of K′4 that is in fact a central extension of K4.
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2.5.4 N = 2 Superconformal Vertex Algebra

Let K2 be the associated SUSY Lie conformal algebra to the non-trivial central extension
of K(1|2), which is freely generated by H odd, and J,C even (this last one central). That
is, K2 := ((CH ⊕ CJ)⊗H)⊕ CC, with the non-zero Λ-brackets (2.17) and

[JΛJ ] = −
(
H +

λχ

3
C

)
, [HΛJ ] = (2T + 2λ+ χS)J. (2.21)

Now, since C is the generator of the centre, we can take the quotient

V c (K2) :=
V (K2)

(C − c)V (K2)
,

where c ∈ C is the central charge. This is known as the N = 2 superconformal vertex alge-
bra of central charge c ∈ C. If Y (·, z) and Y (·, Z) denote the state-(super)field corres-
pondences, respectively, and we expand in components the superfields J and H, then

Y (J, Z) = −i
(
J(z) + θ

(
G−(z)−G+(z)

))
, Y (H,Z) =

(
G+(z) +G−(z)

)
+ 2θL(z),

where, from the components of J(z) and G±(z) in coefficients,

Y (J, z) = J(z) =
∑
n∈Z

z−1−nJn, Y
(
G±, z

)
= G±(z) =

∑
n∈ 1

2
+Z

z−
3
2
−nG±n ,

since L(z) is given by (1.17), one obtains from (2.17) and (2.21) the extra commutators

[Jm, Jn] =
m

3
δ−nm c,

[
Jm, G

±
n

]
= ±G±m+n,

[
G±m, Ln

]
=
(
m− n

2

)
G±m+n,

[Lm, Jn] = −nJm+n,
[
G+
m, G

−
n

]
= Lm+n +

m− n
2

Jm+n +
c

6

(
m2 − 1

4

)
δ−nm .

Here, it is easily seen that Lie(K2) = K(1|2)⊕ CC is the underlying Lie superalgebra.

Remark 2.5.3. Notice that we can recover the Neveu-Schwarz vector H from J . More
precisely, it is proven using Jacobi identity that (2.21) implies (2.17).

2.5.5 N = 4 Superconformal Vertex Algebra

The (“small”) N = 4 superconformal vertex algebra of central charge c ∈ C is generated
by the SUSY Lie conformal algebra Kc4 after localizing, whose underlying H-module is
freely generated by an odd vector H, three even vectors J1, J2, J3, and c ∈ C, with the
non-zero Λ-brackets (2.17) and (2.21) for J = Js with s ∈ {1, 2, 3} (each even vector Js

generate an N = 2 superconformal vertex algebra of central charge c with same H), and[
JsΛJ

t
]

= −εs,t,k(S + 2χ)Jk, for s 6= t; s, t ∈ {1, 2, 3}, (2.22)

where ε =
(
εs,t,k

)
s,t,k∈{1,...,N} is the totally antisymmetric tensor.
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Chapter 3

Classical Embeddings

The aim of this chapter is to study classical embeddings of the Virasoro, Neveu-Schwarz,
and N = 2 superconfomal vertex algebras into the (super)affinization of a quadratic Lie
algebra and the bc-βγ system. The first two constructions have been mentioned before.
We will prove both of them using the λ-bracket and Λ-bracket formalisms, respectively, as
an example of computations. The other two embeddings can be seen as an introduction
for the chiral de Rham complex, and what we are going to do in future chapters.

3.1 The Segal-Sugawara Construction

As we have seen in Chapter 1, Theorem 1.4.2 gives an embedding from the universal Vira-
soro vertex algebra for certain central charge into the universal affine vertex algebra of a
quadratic Lie algebra (g, (·|·)) with non-critical level. So, any module for the affine vertex
algebra is also a module for the Virasoro algebra, obtaining infinite dimensional repre-
sentations of the Virasoro Lie algebra. We need g to be simple or supercommutative for
representation theory reasons we will see below. Some authors refer to this embedding as
the Sugawara construction (since Sugawara was the first proving this result in [89]), but
the geometric construction is due to Segal (see [83]), and hence we will refer to it as the
Segal-Sugawara construction. To start, we will recall the notion and basic properties of
the Casimir operators on Lie superalgebras.

3.1.1 (Quadratic) Casimir Operators

Let V be an n-dimensional vector superspace endowed with the non-degenerate bilinear
form (·, ·) : V × V −→ C, and let us consider {aj}j=1,...,n ⊆ V a basis of V .

Definition 3.1.1. The dual basis of {aj}j=1,...,n with respect to (·, ·) is such that(
aj , a

k
)

= δkj , for j, k ∈ {1, . . . , n}.

In other words, {aj}j=1,...,n ⊆ V is the unique basis in V given by the canonical bijection
V ∼= V ∗ obtained via (·, ·) from the dual basis of {aj}j=1,...,n in V ∗.
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Consider {aj}j=1,...,n ⊆ V the dual basis of {aj}j=1,...,n ⊆ V with respect to (·, ·). Then,

x =

n∑
j=1

(aj , x) aj =

n∑
j=1

(
x, aj

)
aj , for x ∈ V. (3.1)

Remark 3.1.2. LetA be any superalgebra with · product, and a non-degenerate bilinear
form (·, ·) : A × A −→ C. Let {aj}j=1,...,n ⊆ A be a basis, such that {aj}j=1,...,n ⊆ A
is its dual basis with respect to (·, ·). Let {bj}j=1,...,n ⊆ A be now another basis, where
{bj}j=1,...,n ⊆ A is its dual basis with respect to (·, ·), such that the change of coordinates
is

bj =
n∑
k=1

Ajka
k and bj =

n∑
k=1

Bk
j ak, for j ∈ {1, . . . , n}.

Then, for j, k ∈ {1, . . . , n},

δkj =
(
bj , b

k
)

=

(
n∑
r=1

Bl
jar,

n∑
s=1

Aksa
s

)
=

n∑
r,s=1

AksB
r
j (ar, a

s) =
n∑
r=1

AkrB
l
j ,

or, equivalently,
n∑
j=1

AjkB
r
j = δrk, for k, r ∈ {1, . . . , n}.

So, we have

n∑
j=1

bj · bj =

n∑
k=1

 n∑
r=1

 n∑
j=1

AjkB
r
j

 ak · ar

 =

n∑
j=1

aj · aj .

Now, let g be a Lie superalgebra, and consider its universal enveloping algebra U (g).

Definition 3.1.3. The Killing form on g is the supersymmetric and invariant bilinear
form k (·, ·) : g⊗ g −→ C defined by

k (a, b) := str ((ada) (adb)) , for a, b ∈ g,

where ad: g −→ End(g) is the adjoint representation ada(b) := [a, b] , for a, b ∈ g.

Remark 3.1.4. In general, the Killing form is degenerate. By Cartan’s criterion, if h is
a totally even (or odd) Lie algebra, then h is semisimple if and only if the Killing form
is non-degenerate. This is not true for g a general Lie superalgebra (see [61]).

Let {aj}j=1,...,n ⊆ g be a basis with dual basis {aj}j=1,...,n ⊆ g with respect to the
non-degenerate bilinear form (·, ·) : g× g −→ C.

Definition 3.1.5. The Casimir element for (·, ·) : g× g −→ C is given by

Ω :=

n∑
j=1

aj · aj ∈ U(g),

where · is the product in U(g). In particular, by Remark 3.1.2, we have that Ω does not
dependent on the chosen basis.

46



Chapter 3. Classical Embeddings

Proposition 3.1.6 ([51] Ω is g-invariant). Let (g, (·, ·)) be a Lie superalgebra endowed
with an invariant and non-degenerate bilinear form (·, ·) : g⊗ g −→ C. Then, the asso-
ciated Casimir element Ω belongs to the center of U (g). That is, [g,Ω] = 0 in U (g) .

Proof. Suppose that (·, ·) is invariant, and let x ∈ g. Then, since

[a, b · c] = [a, b] · c+ (−1)|a||b|b · [a, c] , for a, b, c ∈ g,

we obtain that [x,Ω] = 0 for x ∈ g using (3.1).

As a consequence of previous result, we have that Ω acts as a scalar in every irreducible
representation of g. Now, notice that in the adjoint representation

Ω(a) ≡ adΩ(a) :=

n∑
j=1

adaj
(
adaj (a)

)
=

n∑
j=1

[
aj , [aj , a]

]
, for a ∈ g. (3.2)

So, since when g is simple or supercommutative the adjoint representation is irreducible,
then Ω ∈ C, and it is related with h∨ ∈ C the dual Coxeter number of g (we introduced
it in Chapter 1, and h∨ = 0 when g is supercommutative). Indeed, it is satisfied that

Ω(a) = 2h∨a, for a ∈ g. (3.3)

Remark 3.1.7. By Schur Lemma, when h is a totally even (or odd) simple Lie algebra,
then any invariant, supersymmetric and non-degenerate bilinear form on h is a scalar
multiple of the Killing form. However, for g Lie superalgebra, this is not true (see [61]).

We are ready for the Segal-Sugawara construction. Let (g, (·|·)) be any n-dimensional
quadratic Lie superalgebra, and consider now the basis {aj}j=1,...,n ⊆ g with dual basis
{aj}j=1,...,n ⊆ g with respect to (·|·). Remember that V c (Vir) denotes the universal
Virasoro vertex algebra of central charge c ∈ C generated as a Lie conformal algebra
by L with λ-brackets (1.19), while V k (g) is the universal affine vertex algebra of level
k ∈ C generated as a Lie conformal algebra by g with λ-brackets (1.21).

Theorem 3.1.8 ([51, Section 7] The Segal-Sugawara Construction for λ-brackets).
If g is simple or supercommutative, given k 6= −h∨ as above, then

L =
1

2(k + h∨)

n∑
j=1

: ajaj :∈ V k (g) (3.4)

is a Virasoro vector of central charge given by (1.22). Moreover, the vectors a ∈ g are
primary of conformal weight 1 with respect to L.

Proof. In order to simplify the computations, we are going to use the Einstein summation
convention for repeated indexes. In addition, we will use some technical properties from
Appendix B.1 and B.2. First, we define

Y :=
1

2
: ajaj := (k + h∨)L ∈ V k (g) .
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By Remark 3.1.2, notice that Y (and L) above are independent on the chosen basis. Now,
for a ∈ g, by the non-commutative Wick formula, supersymmetry and invariance,

[aλY ] =
1

2

[
aλ : ajaj :

]
=

1

2

(
:
[
aλa

j
]
aj : +(−1)|a||a

j | : aj [aλaj ] : +

∫ λ

0

[[
aλa

j
]
µ
aj

]
dµ

)
=

1

2

(
:
[
a, aj

]
aj : +kλ

(
a
∣∣aj ) aj)+

1

2
(−1)|a||a

j | (: aj [a, aj ] : +kλ (a |aj ) aj
)

+
1

2

∫ λ

0

[[
a, aj

]
µ
aj

]
dµ =

1

2

(
:
[
a, aj

]
aj : +(−1)|a||a

j | : aj [a, aj ] :
)

+ λka+
1

2

∫ λ

0

[[
a, aj

]
, aj
]
dµ+

k

2

∫ λ

0
µ
([
a, aj

]∣∣ aj) dµ
= λka+

1

2

∫ λ

0
Ω(a)dµ+

k

2

∫ λ

0
µ
(
a
∣∣[aj , aj]) dµ

= λ(k + h∨)a,

thanks to (B.1), (B.2), (3.3) and (B.3). By antisymmetry,

[Lλa] : =
1

k + h∨
[Yλa] = − 1

k + h∨
[a−λ−TY ]

= (λ+ T )a.

So, the vectors a ∈ g are primary of conformal weight 1 with respect to L provided that
L is a Virasoro vector. By the non-commutative Wick formula and sesquilinearity, since
T is an even derivation for the normally ordered product,

[LλY ] : =
1

2

[
Lλ : ajaj :

]
=

1

2

(
:
[
Lλa

j
]
aj : + : aj [Lλaj ] : +

∫ λ

0

[[
Lλa

j
]
µ
aj

]
dµ

)
=

1

2

(
:
(
(T + λ) aj

)
aj : + : aj ((T + λ) aj) :

)
+

1

2

∫ λ

0

[
(T + λ) ajµaj

]
dµ

= 2λY +
1

2

(
:
(
Taj

)
aj : + : aj (Taj) :

)
+

1

2

∫ λ

0
(λ− µ)

[
ajµaj

]
dµ

= 2λY +
1

2
T
(
: ajaj :

)
+

1

2

∫ λ

0
(λ− µ)

([
aj , aj

]
+ µk

(
aj
∣∣ aj)) dµ

= (T + 2λ)Y +
k sdim g

2

∫ λ

0
(λ− µ)µdµ = (T + 2λ)Y +

k sdim g

12
λ3.

So,

[LλL] : =
1

k + h∨
[LλY ] = (T + 2λ)L+

λ3

12
c(k),

thanks to (B.1). This concludes the proof of the result.

The vector Y above is known as the Segal-Sugawara conformal vector of g.
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Corolary 3.1.9 ([51] The Segal-Sugawara Modification). For g simple or super-
commutative, if k 6= −h∨, let L and c(k) be as in (3.4) and (1.22), respectively. Define

La := L+ Ta ∈ V k(g), ca(k) := c(k)− 12k (a|a) ∈ C, for a ∈ g even.

Then, we have that La is another Virasoro vector of central charge ca(k).

Proof. It is straightforward. Indeed, by sesquilinearity, since [a, a] = 0 (a ∈ g is even),

[LaλL
a] : = [LλL] + (λ+ T ) [Lλa]− λ [aλL]− λ(λ+ T ) [aλa]

= (T + 2λ)(L+ Ta) +
λ3

12
(c(k)− 12k (a|a)) .

Remark 3.1.10. Notice that previous result may not give us primary vectors, since

[Laλb] = Tb+ λ (b− [a, b])− λ2 (a|b) k, for a ∈ g0, b ∈ g.

3.2 The Kac-Todorov Construction

Let (g, (·|·)) be any n-dimensional quadratic Lie superalgebra, and consider Π: g −→ Πg
the parity-reversing functor. Now, we are going to take the basis {aj}j=1,...,n ⊆ g with
dual basis {aj}j=1,...,n ⊆ g with respect to (·|·). Remember that V c (NS) denotes the
universal Neveu-Schwarz SUSY vertex algebra of central charge c ∈ C generated as a
SUSY Lie conformal algebra by H with Λ-brackets (2.17), while V k

super (g) is the universal
superaffine vertex algebra of level k ∈ C generated as a SUSY Lie conformal algebra by
Πg with Λ-brackets (2.18). From now, we will use some usual abuse of notations.

Remark 3.2.1. Abusing notation,

[·, ·] : Πg×Πg −→ Πg, (·|·) : Πg×Πg −→ C,

will denote the two bilinear maps corresponding to the Lie superbracket defined on g,
and the supersymmetric, invariant and non-degenerate form on g, identifying elements
a ∈ g with their corresponding odd copies Πa ∈ Πg. Explicitly,

[Πa,Πb] := Π [a, b] , (Πa|Πb) := (a|b) , for a, b ∈ g.

We write aj := Πaj and aj := Πaj for j ∈ {1, . . . , n}. The Kac-Todorov construction we
present is more general than the one in Chapter 2 (see Theorem 2.5.1 and Remark 3.2.3).

Theorem 3.2.2 (The Kac-Todorov Construction for Λ-brackets). For k 6= 0,

H =
1

k

n∑
j=1

(
(−1)|aj|+1 :

(
Saj

)
aj : − 1

3k

n∑
k=1

: aj : ak

[
ak, aj

]
::

)
∈ V k

super(g) (3.5)

is a Neveu-Schwarz vector of central charge

c(k) =
3

2

sdim g−
n∑
j=1

(
Ω
(
aj
)∣∣ aj)

3k

 ∈ C. (3.6)

Moreover, the vectors a ∈ Πg are primary of conformal weight 1/2 with respect to H.
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Proof. In order to simplify the computations, we are going to use the Einstein summation
convention for repeated indexes. In addition, we will use some technical properties from
Appendix B.1 and B.3. We will start computing [aΛH] for a ∈ Πg. Notice that

[aΛH] : =
1

k
(−1)|a

j |+1
[
aΛ :

(
Saj

)
aj :
]
− 1

3k2

[
aΛ : aj : ak

[
ak, aj

]
::
]

=:
1

k
Υ1
a −

1

3k2
Υ2
a.

Hence, by the non-commutative Wick formula, sesquilinearity, antisymmetry, supersym-
metry, invariance, (B.2), (B.4), (B.5) and (B.6),

Υ1
a : = (−1)|a

j |+1
[
aΛ :

(
Saj

)
aj :
]

= (−1)|a
j |+1

(
:
[
aΛSa

j
]
aj : +(−1)(|a|+1)|Saj | :

(
Saj

)
[aΛaj ] :

+

∫ Λ

0
dΓ
[[
aΛSa

j
]
Γ
aj
])

= (−1)|a
j |+1

(
(−1)|a|+1 :

(
(S + χ)

[
aΛa

j
])
aj :

+(−1)(|a|+1)(|aj |+1) :
(
Saj

)
[aΛaj ] : +

∫ Λ

0
dΓ
[
(−1)|a|+1(S + χ)

[
aΛa

j
]
Γ
aj

])
= (−1)|a

j |+1 :
(
S
[
a, aj

])
aj : +(−1)|a||a

j |+1 :
(
Saj

)
[a, aj ] :

+ λ
(

(−1)|a
j |+12k

(
a|aj

)
aj + (−1)|a

j |k
(
a|aj

)
aj + (−1)|a|+1Ω(a)

)
+ χ

(
(−1)|a

j |+1 :
[
a, aj

]
aj : +(−1)|a

j |(|a|+1)kS
(
(a|aj) aj

))
= (−1)|a|+1

(
χ : aj

[
aj , a

]
: +k (λ+ χS) a+ λΩ(a)

)
,

Υ2
a : =

[
aΛ : aj : ak

[
ak, aj

]
::
]

=:
[
aΛa

j
] (

: ak

[
ak, aj

]
:
)

:

+ (−1)(|a|+1)|aj| : aj
(

: [aΛak]
[
ak, aj

]
: +(−1)(|a|+1)|ak| : ak

[
aΛ

[
ak, aj

]]
:

+

∫ Λ

0
dΓ
[
[a, ak]Γ

[
ak, aj

]])
: +

∫ Λ

0
dΓ
(

:
[[
aΛa

j
]
Γ
ak
] [
ak, aj

]
:

+(−1)(|[aΛa
j]|+1)|ak| : ak

[[
aΛa

j
]
Γ

[
ak, aj

]]
: +

∫ Γ

0
dΩ
[[[

aΛa
j
]
Γ
ak
]
Ω

[
ak, aj

]])
= (−1)|a|+1

(
:
[
a, aj

]
: ak

[
ak, aj

]
:: +(−1)(|a|+1)|aj | : aj : [a, ak]

[
ak, aj

]
::

+(−1)(|a|+1)(|aj |+|ak|) : aj : ak

[
a,
[
ak, aj

]]
::
)

+ λ(−1)|a|k
(

(−1)(|a|+1)|aj |+|ak|
(

[a, ak]
∣∣∣[ak, aj]) aj

+ (−1)|a
j | ([a, aj]∣∣ ak) [ak, aj]+ (−1)(|a|+|aj |)|ak|+|aj |+|ak|

([
a, aj

] ∣∣∣[ak, aj]) ak)
+ χ(−1)|a|+1k

((
a|aj

)
: ak

[
ak, aj

]
: +(−1)|a||a

j | (a|ak) : aj
[
ak, aj

]
:

+ (−1)(|aj |+|ak|)|a|
(
a
∣∣∣[ak, aj]) : ajak :

)
= (−1)|a|+13k

(
χ : aj

[
aj , a

]
: +λΩ(a)

)
.
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By antisymmetry, [HΛa] = (λ+ 2T + χS) a. Therefore, the vectors a ∈ Πg are primary
of conformal weight 1/2 with respect to H provided that H is a Neveu-Schwarz vector.
Indeed,

[HΛH] : =
1

k
(−1)|a

j |+1
[
HΛ :

(
Saj

)
aj :
]
− 1

3k2

[
HΛ : aj : ak

[
ak, aj

]
::
]

=:
1

k
Υ1
H −

1

3k2
Υ2
H .

So, by the non-commutative Wick formula, sesquilinearity, antisymmetry, supersymme-
try, invariance, (B.1), (B.2), (B.4), (B.7), (B.8), and for being S and T both odd and
even derivations for the normally ordered product, respectively,

Υ1
H : = (−1)|a

j |+1
[
HΛ :

(
Saj

)
aj :
]

= (−1)|aj|+1
(
:
(
(S + χ)

[
HΛa

j
])
aj : + :

(
Saj

)
[H0Λaj ] :

+

∫ Λ

0
dΓ
[
(S + χ)

[
HΛa

j
]
Γ
aj
])

= (−1)|aj|+1
(
:
((

2ST − χS2 + 2λS + χλ+ 2χT
)
aj
)
aj :

+ :
(
Saj

)
((λ+ 2T + χS) aj) : +λ2(−1)|aj|+1

([
aj , aj

]
+ χ

k
(
aj
∣∣ aj)

2

))

= (3λ+ 2T + χS)(−1)|a
j |+1 :

(
Saj

)
aj : +χλ(−1)|a

j |+1 : ajaj : +χλ2k sdim g

2

= (3λ+ 2T + χS)(−1)|a
j |+1 :

(
Saj

)
aj : +χλ2k sdim g

2
,

Υ2
H : =

[
HΛ : aj : ak

[
ak, aj

]
::
]

=:
[
HΛa

j
]

: ak

[
ak, aj

]
:: + : aj

(
: [HΛak]

[
ak, aj

]
: + : ak

[
HΛ

[
ak, aj

]]
:

+

∫ Λ

0
dΓ
[
[HΛak]Γ

[
ak, aj

]])
: +

∫ Λ

0
dΓ
(

:
[[
HΛa

j
]
Γ
ak
] [
ak, aj

]
:

+(−1)(|aj|+1)|ak| : ak

[[
HΛa

j
]
Γ

[
ak, aj

]]
: +

∫ Γ

0
dΩ
[[[

HΛa
j
]
Γ
ak
]
Ω

[
ak, aj

]])
= 3λ : aj : ak

[
ak, aj

]
:: +2

(
:
(
Taj

)
: ak

[
ak, aj

]
:: + : aj : (Tak)

[
ak, aj

]
::

+ : aj : ak

(
T
[
ak, aj

])
::
)

+ χ
(

:
(
Saj

)
: ak

[
ak, aj

]
::

+(−1)|aj| : aj : (Sak)
[
ak, aj

]
:: +(−1)|aj|+|ak| : aj : ak

(
S
[
ak, aj

])
::
)

+ λχ
(

(−1)|aj|+|ak|+1 : aj
[
ak,
[
ak, aj

]
,
]

: +(−1)|aj|+1 :
[
aj , ak

] [
ak, aj

]
:

+(−1)|ak|+1 : ak

[
aj ,
[
ak, aj

]]
:
)

+ (−1)|a
j |+1χλ2k

([
aj , ak

]∣∣ [ak, aj])
2

= (3λ+ 2T + χS) : aj : ak

[
ak, aj

]
:: +χλ2k

(
Ω(aj)

∣∣ aj)
2

.
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In conclusion,

[HΛH] = (3λ+ 2T + χS)H +
χλ2

3
c(k),

where c(k) is given by formula (3.6), which concludes the proof. Notice that similarly as
in Remark 3.1.2, it is easily seen that H above is independent on the chosen basis.

The vector H above is known as the Kac-Todorov superconformal vector of g.

Remark 3.2.3. In Theorem 2.5.1, which we referred to as the Kac-Todorov construc-
tion, we required g to be simple or supercommutative. This hypothesis comes from the
classical statement, but, as we have seen during the proof, it is not necessary, although we
have used it for the Segal-Sugawara construction. Requiring that hypothesis, we obtain
a fancier formula for (3.6). Indeed, if (3.3) is satisfied, localizing at k + h∨ ∈ C,

c(k + h∨) : = 3

(
1

2
− h∨

3(k + h∨)

)
sdim g =

(k + h∨) + 2k

2(k + h∨)
sdim g

=
sdim g

2
+
k sdim g

k + h∨
,

which is the formula (2.19) given for the central charge in the previous chapter. In fact,
we can drop the assumptions on simplicity and supercommutativity, and obtain the same
central charge as above, defining a generalized dual Coxeter number. Indeed, let h∨ ∈ C
be such that

str (Ω) = 2h∨str (Id) .

So, localizing at k+ h∨ ∈ C, we obtain the previous formula in the non-hypothesis case.
If g is simple or supercommutative, this coincides with the usual dual Coxeter number.

Remark 3.2.4 ([51] The Virasoro vector for the Free Superfermions). For V an
n-dimensional vector superspace with 〈·|·〉 : V × V −→ C non-degenerate and superan-
tisymmetric bilinear form, let {ϕj}j=1,...,n ⊆ V be a basis with {ϕj}j=1,...,n ⊆ V dual
basis with respect to 〈·|·〉. Then, the embedding V c (Vir) ↪→ FF(V ) in Theorem 1.4.3 is
given by

L 7→ 1

2

n∑
j=1

: (Tϕj)ϕj :, c 7→ −sdimV

2
. (3.7)

Observe that the Virasoro vector obtained from the Kac-Todorov construction is different
from the one which is obtained via the Segal-Sugawara construction. In fact, for commu-
tative Lie superalgebras, this one is the sum of (3.4) and (3.7).

Corolary 3.2.5 ([54] The Kac-Todorov Modification). For k 6= 0, let H and c(k)
be defined as in (3.5) and (3.6), respectively. Define

Ha := H + Ta ∈ V k
super(g), ca(k) = c(k)− 3k (a|a) ∈ C, for a ∈ Πg odd.

Then, we have that Ha is another Neveu-Schwarz vector of central charge ca(k).

52



Chapter 3. Classical Embeddings

Proof. It is straightforward. Indeed, by sesquilinearity, since [a, a] = 0 (a ∈ Πg is odd),

[Ha
ΛH

a] : = [HΛH] +
χλ2

3
c(k) + (λ+ T ) [HΛa]− λ [aΛH]− λ(λ+ T ) [aΛa]

= (3λ+ 2T + χS)(H + Ta) +
χλ2

3
(c(k)− 3k(a|a)).

Remark 3.2.6. Notice that previous result may not give us eigenvectors, since

[Ha
Λb] = (2T + χS) b+ λ(b− [a, b])− λχ (a|b) k, for a ∈ Πg0, b ∈ Πg.

Remark 3.2.7. We must notice that without the Λ-bracket formalism this computations
will be longer (although maybe easier to understand). Indeed, in [20, Apéndice B] we can
find these computations using λ-brackets. Notice that in this case we should compute
the double of λ-brackets, since we would do computations for a ∈ g and parity reversed
vectors, and, moreover, again the double of λ-brackets, since each one should be done
with respect to H and SH = 2L (remember that (2.16) implies (1.19)). So, this new
formalism simplifies a lot the computations, at the expense of a more complex procedure.

3.3 N = 2 Superconformal VAs from Manin triples

In this section, we are going to take another step in our construction of superconformal
vertex algebra embeddings. For instance, we will show that it is possible to extend the
Kac-Todorov construction under certain circunstances to obtain N = 2 superconformal
structures in the universal superaffine vertex algebra. This is very important for us, since
it will be the our starting point for the constructions in following chapters. We will work
with totally even quadratic Lie algebras.

3.3.1 Manin Triples of Quadratic Lie Algebras

Let (g, (·|·)) be a finite dimensional (even) quadratic Lie algebra. The basic structure we
need to construct the N = 2 superconformal vertex algebra is known as a Manin triple.
This ones are related with Lie bialgebras (see [25][Chapter 4]).

Definition 3.3.1. [25] A finite-dimensional Manin triple of (g, (·|·)) is a triple (g, g+, g−)
of finite-dimensional Lie algebras such that

� Both g+ and g− are Lie subalgebras of g such that g = g+ ⊕ g−.

� Both g+ and g− are Lagrangian (or maximal isotropic) with respect to (·|·). So,

g⊥± = g±, and dim g± =
1

2
dim g,

where g⊥± denotes the orthogonal subspaces of g± with respect to (·|·).
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Let (g, g+, g−) be a Manin triple of (g, (·|·)), and consider {εj}nj=1 ⊆ g+ and {εj}nj=1 ⊆ g−
basis such that form an isotropic basis of g with respect to (·|·), in other words, we have
a basis {εj , εj}nj=1 ⊆ g such that

(εj |εk) = 0,
(
εj
∣∣ εk) = δjk,

(
εj
∣∣∣εk) = 0, for j, k ∈ {1, . . . , n}. (3.8)

Let h∨ ∈ C be the generalized dual Coxeter number of g. Then, for k 6= −h∨, consider
V k+h∨

super (g) the universal superaffine vertex algebra associated to (g, (·|·)). We will write
ej := Πεj and ej := Πεj for j ∈ {1, . . . , n} abusing notation. Define the even vector

J :=
i

k + h∨

n∑
j=1

: ejej :∈ V k+h∨
super (g) .

We will work with parity-reversed vectors, so keep in mind Remark 3.2.1. Define now

v :=
n∑
j=1

[
ej , ej

]
, w :=

n∑
j=1

([
ej , ej

]
+
−
[
ej , ej

]
−

)
∈ Πg,

where the subscripts denote the canonical projections π± : g −→ g±, a 7→ ag± ≡ a±.

Remark 3.3.2. The conclusion of Remark 3.1.2 also holds true when we replace a basis
and its dual for an isotropic basis. Indeed, the very same proof works. As a consequence,
we have that v, w and J are all of them independent on the chosen isotropic basis.

Theorem 3.3.3 ([43, 54] Getzler’s Construction). Let (g, g+, g−) be a Manin triple
of (g, (·|·)) quadratic Lie algebra. Then,

(1) The even vector J satisfies [JΛJ ] = −
(
H + χλ

3 c
)
, where H is given by

H : =
1

k + h∨
Tw +

1

k + h∨

n∑
j=1

(
: ej

(
Sej
)

: + : ej (Sej) :

+
1

k + h∨

n∑
k=1

(
: ej : ek [ej , ek] :: + : ej : ek

[
ej , ek

]
::
))
∈ V k+h∨

super (g),

where c = 3 dim g+ ∈ C. In fact, this vector is obtained applying the Kac-Todorov
modification to the vector w/(k + h∨) ∈ Πg. Indeed, we have

H := H0 +
1

k + h∨
Tw ∈ V k+h∨

super (g),

where H0 is the Kac-Todorov superconformal vector of g. In particular, we have
that this construction may not define a superconformal vertex algebra.

(2) Assuming that
w ∈ [g+, g+]⊥ ∩ [g−, g−]⊥ , (3.9)

the vectors J and H as above generate an N = 2 superconformal vertex algebra of
central charge c = 3 dim g+. That is, the formulas (2.21) are satisfied for {J,H, c}.
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Proof. The proof is given on [54, Proposition 2.14]. We will not repeat it here, since in
next chapters we will give a construction that generalizes this one.

Corolary 3.3.4 ([43, 54], Freudental’s Formula). Let (g, g+, g−) be a Manin triple
of a quadratic Lie algebra (g, (·|·)) for which w ∈ Πg satisfies (3.9). Then,

(w|w) = −2

3
h∨ dim g+.

Proof. This identity follows after mathing the values for the central charge c = 3 dim g
and the one from the modification of the Kac-Todorov construction in Theorem 3.3.3.

3.4 N = 2 Superconformal VAs in the bc-βγ System

We will show now that the bc-βγ system always admits an N = 2 superconformal vertex
algebra structure. For that, we will introduce an equivalent notion of this structure.

3.4.1 Topological Vertex Algebras

In [73, Section 2], the notion of topological vertex algebra is introduced, which is in fact
equivalent to the notion of N = 2 superconformal vertex algebras. We will see now that
the bc-βγ system admits this type of structure.

Definition 3.4.1. [73] A topological vertex algebra is the structure that is obtained via
the universal enveloping vertex algebra of the Lie conformal algebra defined by

R := (CL⊗ C[T ])⊕ (CJ ⊗ C[T ])⊕
(
CG+ ⊗ C[T ]

)
⊕
(
CG− ⊗ C[T ]

)
⊕ CD,

where D is an even central element, J and L are two even vectors, and G± are two odd
vectors, all of them related via the non-zero λ-brackets

[LλL] = (T + 2λ)L, [JλJ ] = Dλ, [JλG
±] = ±G±,

[LλG
−] = (2λ+ T )G−, [LλG

+] = (λ+ T )G+,[
G+
λG
−] = L+ λJ +D λ2

2 , [LλJ ] = (λ+ T )J −D λ2

2 .

In the practice, we will work with the quotient

V (R)

(D − d)V (R)
,

which receives the name of topological vertex algebra of rank d ∈ C.

Theorem 3.4.2 ([73, Section 2.2]). The bc-βγ system of dimension 2N ∈ N admits a
structure of topological vertex algebra of rank N for the generators defined by

G+ :=

N∑
j=1

: bjβj :, G− :=

N∑
j=1

:
(
Tγj

)
cj :∈ V (ΩN ) . (3.10)
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Proof. We leave to the reader this verification using λ-brackets. In particular, computing[
G+
λG
−] = L+ λJ +N

λ2

2
,

we recover the even vectors

L :=
N∑
j=1

:
(
Tγj

)
βj : + :

(
Tbj
)
cj :, J :=

N∑
j=1

: bjcj :∈ V (ΩN ) .

We will show that this structure is equivalent to an N = 2 superconformal vertex algebra.

Theorem 3.4.3 ([11]). Let (L, J,G±) be a set of generators for a topological vertex
algebra of rank d ∈ C. Defining

L̃ := L− 1

2
TJ, (3.11)

the new set (L̃, J,G±) generate an N = 2 superconformal vertex algebra with central
charge c = −3d ∈ C. Conversely, from any N = 2 superconformal vertex algebra with
central charge c ∈ C, we can define in a natural way, reversing the previous construction,
thanks to formula (3.11), a topological vertex algebra of rank d = −c/3 ∈ C.

Corolary 3.4.4 ([52, Example 5.10]). The bc-βγ system of dimension 2N ∈ N admits a
structure of N = 2 superconformal vertex algebra with central charge c = −3N ∈ C for
the generators defined by

J := −i
N∑
j=1

:
(
Sγj

)
cj :, H :=

N∑
j=1

(
:
(
Sγj

) (
Scj
)

: + :
(
Tγj

)
cj :
)
∈ V (ΩN ) .

Although we will not use it, the bc-βγ system admits more supersymmetries.

Remark 3.4.5 ([52, Example 5.11]). We can endow the bc-βγ system with a N = 4
superconformal vertex algebra structure. Indeed, supposing that this one has dimension
2N ∈ N, let

σs =
(
σsj,k
)
j,k∈{1,...,N} , for s ∈ {1, 2, 3}

be the Pauli matrices of rank N . That is, the three N ×N matrices satisfying

σjσk = i
N∑
l=1

εj,k,lσl, (σs)2 = Id, for j, k, s ∈ {1, 2, 3}, j 6= k,

where ε =
(
εj,k,l

)
i,j,l∈{1,...,N} is the totally antisymmetric tensor. Then, the even vectors

Js := −i
N∑

j,k=1

σsj,k :
(
Sγj

)
ck :∈ V (ΩN ) , for s ∈ {1, 2, 3},

together with the odd vector (2.20), which is obtained adding the two vectors in (3.10),
generate an N = 4 superconformal vertex algebra with central charge c = −3N ∈ C.
That is, they satisfy the commutation relations (2.22).

The topological vertex algebra structure of the bc-βγ system will be fundamental when
we arrive at Chapter 9 to construct the chiral de Rham complex for smooth manifolds.
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Chapter 4

Preliminaries

The goal of this chapter is to review some basics on differential geometry. Concretely, we
recall and introduce notations in classical and spin geometry, relating them with the view-
point provided by the theory of G-structures. We follow closely [91, Section 2].

4.1 G-structures and Classical Geometry

Let M be any n-dimensional smooth manifold. When n is even, we will write n = 2m,
and if n is multiple of 4, we will write n = 4k. By classical geometry, we mean a collection
of tensors over TM (structures), the tangent bundle of M , satisfying certain algebraic
properties. Often, we will require that these tensors satisfy certain integrability condition.
Now, an alternative viewpoint is provided by the theory of G-structures. Remember that,
for G a Lie group, a G-structure on M is a reduction of the GL(n)-principal bundle of the
frames of TM to G such that TM is associated to the G-bundle via the monomorphism
of Lie groups G ↪→ GL(n). All the (classical) geometric structures can be described via
reductions to a principal G-bundle. In this case, the tangent bundle can be regarded as a
vector bundle associated to the principal G-bundle given by the G-structure, and refers
to the Lie group G as the structure group of TM . Locally, choosing some trivializations
U × Rn ∼= TU of TM , a G-structure is a smooth family of Lie group representations
rp : G −→ GL (TpM) parametrized by points p ∈ M , which is well behaved under the
transitions of trivializations. We express classical geometric structures via G-structures.

Definition 4.1.1. A Riemannian structure on M is a (2, 0)-tensor g such that the indu-
ced bilinear form on TpM is positive-definite for each p ∈M . This endows TpM the tan-
gent space with a family of representations

rp : O(n) ∼= O (TpM, gp) ↪→ GL (TpM) ,

and, since g is global, they come from a principal O(n)-bundle. In particular, we have
that each TpM is endowed with the structure of an Euclidean space. So, a Riemannian
structure is equivalent to having that TM is associated with an O(n)-structure.
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Remark 4.1.2. If M is orientable, any Riemannian structure g on M is equivalent to
having that TM is associated with a SO(n)-structure. Indeed, for each point p ∈M , the
tangent TpM is endowed with the structure of an orientable Euclidean space.

Remember that on M we can define affine connections ∇ and the associated torsion T∇.
If g is a Riemannian structure, the (unique) affine connection ∇g such that ∇gg = 0 (it
preserves the metric), and is torsion-free receives the name of Levi-Civita connection.

Definition 4.1.3. An almost symplectic structure on M is an antisymmetric 2-form ω
such that the induced bilinear form on TpM is non-degenerate for each p ∈ M . This
endows TpM the tangent space with a family of representations

rp : Sp(m,R) ∼= Sp(TpM,ωp) ↪→ GL(TpM),

and, since ω is global, they come from a principal Sp(m,R)-bundle. So, an almost sym-
plectic structure is equivalent to having that TM is associated with a Sp(m,R)-structure.
Here, M must be even dimensional. The structure is called integrable, or symplectic, if
dω = 0. By the Darboux Theorem, the integrability condition is equivalent to existence
of symplectic coordinates (q1, ..., qn, p1, ..., pm) such that

ω =

n∑
j=1

dqj ∧ dpj .

Definition 4.1.4. An almost complex structure on M is an (1, 1)-tensor J (so, a bundle
morphism J ∈ End(TM)) such that the induced morphism on TpM satisfies J2

p = −Id
for each p ∈M . This endows TpM the tangent space with a family of representations

rp : GL(m,C) ∼= GL(TpM,Jp) ↪→ GL(TpM),

and, since J is global, they come from a principal GL(m,C)-bundle. In particular, we
have that each TpM is endowed with the structure of a complex (orientable) vector space.
So, an almost complex structure is equivalent to having that TM is associated with a
GL(m,C)-structure. Equivalently, we have a decomposition of the complexification into
complex vector bundles by TM⊗C = T 1,0M⊕T 0,1M , which are conjugate to each other.
So, we have that T 1,0M and T 0,1M are, respectively, the (±i)-eigenbundles of J . The
structure is called integrable, or complex, if the associated Nijenhuis tensor

NJ(X,Y ) := [X,Y ]− [JX, JY ] + J [JX, JY ] + J [X, JY ] , for X,Y ∈ X(M),

vanishes. More geometrically, this is equivalent to the fact that the bundles T 1,0M and
T 0,1M are preserved by the Lie bracket. By the Newlander-Niremberg Theorem, the inte-
grability condition is equivalent to existence of holomorphic coordinates (z1, ..., zn) such
that J is the multiplication by the imaginary constant i. Let T ∗M⊗C = T 1,0∗M⊕T 0,1∗M
be now the decomposition induced by J∗ ∈ End(T ∗M). Put

Λp,qT ∗M := ΛpT 1,0∗M⊗ΛqT 0,1∗M, ΛkT ∗M
⊕
k=p+q

Λp,qT ∗M, for k, p, q ∈ {0, 1, . . . ,m}.
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We define ∂ : Λp,qT ∗M −→ Λp+1,qT ∗M, and ∂ : Λp,qT ∗M −→ Λp,q+1T ∗M by composing
the exterior differential d with the corresponding projection operator. Then, the inte-
grability of J is also equivalent to d = ∂+∂. As mentioned above, this is also equivalent
to the existence of holomorphic coordinates z1 := x1 + iy1, . . . , zm := xm + iym on M .
That is,

J

(
∂

∂xj

)
:=

∂

∂yj
and J

(
∂

∂yj

)
:= − ∂

∂xj
, for j ∈ {1, . . . ,m}.

The bundles T 1,0M and T 0,1M are spanned by

∂

∂zj
:=

∂

∂xj
− i ∂

∂yj
and

∂

∂zj
:=

∂

∂xj
+ i

∂

∂yj
, for j ∈ {1, . . . ,m},

respectively, while the dual bundles T 1,0∗M and T 0,1∗M are spanned by the differentials

dzj := dxj + idyj and dzj := dxj − idyj , for j ∈ {1, . . . ,m}.

Definition 4.1.5. An almost special complex structure on M is given by a global volume
form Ω ∈ Ωm(M)⊗ C satisfying the following:

(1) Ω ∧ Ω 6= 0.

(2) (locally decomposable) Ω = θ1 ∧ · · · ∧ θm locally, for complex 1-forms θ1, . . . , θm.

For each p ∈M , this endows TpM the tangent space with a family of representations

rp : SL(m,C) ∼= SL(TpM,Ωp) ↪→ GL(TpM),

and, since Ω is global, they come from a principal SL(m,C)-bundle. So, a special complex
structure is equivalent to having that TM is associated with a SL(m,C)-structure. Note
that, by conditions (1) and (2), we obtain that Ω defines an almost complex structure J
on M . Indeed, we have the splitting T ∗M⊗C = T 1,0∗M⊕T 0,1∗M, where the (1, 0)-forms
T 1,0∗M are locally spanned by the 1-forms θ1, . . . , θm. The structure is called integrable,
or special complex, if

(3) dΩ = 0.

Applying (3), we obtain that J is integrable. Indeed, by the previous decomposition we
obtain that Ω∧θ = 0 for any (1, 0)-form θ. Then, condition (3) implies Ω∧dθ = 0 for any
(1, 0)-form θ. Consequently, we have that the 2-form dθ has no (2, 0)-part, which implies
the integrability condition of J , the associated almost complex structure, since we have
obtained d = ∂+∂. In particular, we have ∂Ω = 0. So, the volume form Ω defines an holo-
morphic trivialization of the canonical bundle KM = Λm,0T ∗M = ΛmT 1,0∗M. Note that
T 1,0M ∼= TM as complex vector bundles. Combining the Newlander-Niremberg Theo-
rem with the holomorphic Darboux Theorem, one can prove that dΩ = 0 is equivalent to
the existence of holomorphic coordinates (z1, ..., zn) with constant determinant of the Ja-
cobian such that

Ω = dz1 ∧ · · · ∧ dzn.
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Definition 4.1.6. Let J be an almost complex structure on M . The pair (J, h) is said an
almost Hermitian structure on M if h is a complex sesquilinear (2, 0)-tensor (that is, line-
ar in the first coordinate and antilinear in the second one, for the point-wise complex
multiplication induced by J), and such that the induced bilinear form on TpM is posi-
tive definite for each p ∈M . This endows TpM the tangent space with a family of repre-
sentations

rp : U(m) ∼= U(TpM,hp) ↪→ GL(TpM),

and, since h is global, they come from a principal U(m)-bundle. In particular, we have
that each TpM is endowed with the structure of an hermitian vector space. So, an almost
hermitian structure is equivalent to having that TM is associated with a U(m)-structure.
An almost hermitian structure on M defines, respectively, an almost symplectic structure
ω and a Riemannian metric g by

ω := Im(h) =
i

2

(
h− h

)
and g := Re(h) =

i

2

(
h+ h

)
.

In addition, it follows from the hermitian condition that ω is a (1, 1)-form. Notice that,
if we have any of the pairs (J, ω) or (J, g) consisting on an almost complex structure J , a
Riemannian metric g, and an almost symplectic structure ω on M such that the second
structure of the pair is invariant under J (so, J acts as an isometry for that structure),
requiring also that ω(·, J ·) > 0 when ω appears, then we recover an almost hermitian
structure, since ω(·, ·) = g(J ·, ·) and g(·, ·) = ω(·, J ·), so h := g − iω defines the almost
hermitian structure. The structure is called integrable, or hermitian, if it is J .

Recall that on (M,h) hermitian manifold we define hermitian connections ∇, which are
the ones with ∇g = 0 and ∇J = 0. The (unique) hermitian connection ∇B such that

H := g (T∇B (·, ·), ·) ∈ ΛT 3M

receives the name of Bismut connection. The (unique) hermitian connection∇c such that
T 1,1
∇c = 0 receives the name of Chern connection.

Definition 4.1.7. An almost Kähler structure is given by a pair (J, ω) that is an almost
hermitian structure on M . The associated (1, 1)-form ω is known as the almost Kähler
form of M . Moreover, the structure is called integrable, or Kähler, if both structures J
and ω are integrable. The (1, 1)-form ω is called the Kähler form of M if dω = 0.

Lemma 4.1.8. Let (J, ω) be an almost Kähler structure, and consider ∇g and ∇B the
Levi-Civita and Bismut connections, respectively. Then, ∇g = ∇B if and only if dω = 0.

Definition 4.1.9. An (almost) hyperkähler structure on M is given by (g, I), (g, J) and
(g,K) three (almost) Kähler structures satisfying I2 = J2 = K2 = IJK = −1 (known
as the quaternionic identities). For each p ∈M , an almost hyperkähler structure endows
TpM the tangent space with a family of representations

rp : UQ(k) ∼= UQ(TpM, Ip, Jp,Kp, gp) ↪→ GL(TpM),
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and, since I, J,K and g are all of them global, they come from a principal UQ(k)-bundle.
So, an almost hyperkähler structure is equivalent to having that TM is associated with
a UQ(k)-structure. Here UQ(k) denotes the k-dimensional quaternionic unitary group.
The structure is called integrable, or hyperkähler, if I, J,K are all integrable.

Definition 4.1.10. An almost Calabi-Yau structure on M is a pair (Ω, ω) such that ω
is an almost symplectic structure and Ω is an almost special complex structure such that

(1) Ω ∧ Ω = (−1)
m(m−1)

2 imωm.

(2) Ω ∧ ω = 0.

For each p ∈M , this endows TpM the tangent space with a family of representations

rp : SU(m) ∼= SU(TpM,Ωp, ωp) ↪→ GL(TpM),

and, since Ω and ω are global, they come from a principal SU(m)-bundle. So, an almost
Calabi-Yau structure is equivalent to having that TM is associated with a SU(m)-struc-
ture. In particular, the inclusion SU(m) ↪→ U(m) induces an almost Hermitian structure.
The structure is called integrable, or Calabi-Yau, if Ω is closed.

4.2 Clifford Bundles and Spin Geometry

To finish this chapter, we include a brief review on the basics of spin structures, which we
will extensively use in the rest of this work. In particular, we will study their relationship
with the previous structures. We will follow closely reference [66]. We will start studying
the case given by a finite-dimensional real vector space V with a non-degenerate symme-
tric bilinear form 〈·, ·〉 : V ⊗ V −→ R of arbitrary signature (p, q).

Definition 4.2.1. The Clifford algebra Cl(V ) associated to V is an associative algebra
with unit defined as follows: we take the quotient of the tensor algebra of V by the ideal
generated by the relation

v · v = 〈v, v〉 , for v ∈ V. (4.1)

We have a Z2-graded decomposition on Cl(V ) determined by the automorphism

α : Cl(V ) −→ Cl(V )
v 7→ −v .

Indeed, for being α2 = Id, there exists a decomposition in even and odd eigenspaces

Clj(V ) :=
{
ϕ ∈ Cl(V ) | α(ϕ) = (−1)jϕ

}
, for j ∈ {0, 1}.

The associated pin and spin spaces are defined by

Pin(V, 〈·, ·〉) := {v1 · · · vk ∈ Cl∗(V ) | vj ∈ V, k ∈ N, 〈vj , vj〉 = ±1 for j ∈ {1, . . . , k}} ,
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and
Spin(p, q) ∼= Spin(V, 〈·, ·〉) := Pin(V, 〈·, ·〉) ∩ Cl0(V ).

Most of the important applications of Clifford algebras come through a detailed under-
standing of their representations. We are interested on consider now real representations
that we will complexify to obtain a complex representation.

Definition 4.2.2. A real representation of the Clifford algebra of V is an algebra homo-
morphism

ρ : Cl(V ) −→ HomR(W,W ).

The vector space W is called a real Cl(V )-module. We simplify notations by writing

ρ(ϕ)(w) ≡ w · ϕ, for w ∈W,ϕ ∈ Cl(V ).

This product is often referred to as Clifford multiplication on W .

We now come to the notion or (ir)reducibility of representations.

Definition 4.2.3. A real representation ρ : Cl(V ) −→ HomR(W,W ) will be said to be
reducible if the vector space W can be written as a non-trivial real direct sum

W = W1 ⊕W2

such that ρ(ϕ)(Wj) ⊆Wj for j ∈ {1, 2} for all ϕ ∈ Cl(V ). Note that in this case we can
write

ρ = ρ1 ⊕ ρ2,

where
ρj(ϕ) ≡ ρ(ϕ)|Wj

, for j ∈ {1, 2}.
A real representation ρ is called irreducible if it is not reducible.

The representations of the Clifford algebra Cl(V ) give rise to important representations
of certain groups, such as the spin group representations.

Definition 4.2.4. A real spinor representation of Spin(V, 〈·, ·〉) is an homomorphism

∆: Spin(V, 〈·, ·〉) −→ GL(S) (4.2)

given by the restricting an irreducible real representation ρ : Cl(V ) −→ HomR(W,W ) to
the spin group Spin(V, 〈·, ·〉). The real vector space S is called an irreducible real spinor
space, and its elements ξ ∈ S are known as real spinors.

Now, let Cl(V )C := Cl(V )⊗RC be the complexified Clifford algebra, which has associated
irreducible complex spinor space SC := S⊗RC, for S irreducible real spinor space. Then,
for each complex spinor ξ ∈ SC, we consider the C-linear map jξ : V ⊗RC −→ SC defined
by

jξ(v) := v · ξ, for v ∈ V ⊗R C,
where · denotes the C-linear extension of the Clifford multiplication to Cl(V )C-modules.
From this point on, we shall assume that V is an oriented 2n-dimensional vector space,
and that the symmetric bilinear form 〈·, ·〉 : V ⊗ V −→ R is positive-definite. We will
denote the C-linear extension to V ⊗R C of this form just by 〈·, ·〉.
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Definition 4.2.5. A spinor ξ ∈ SC is pure if Ker(jξ) is maximal isotropic. That is, if the
vector space Ker(jξ) has maximal dimension n.

Moreover, we define S±C ⊆ SC to be the (±1)-eigenspaces for the Clifford multiplication
by the complex volume form

ωC := ina1 · · · · · a2n ∈ Cl(V )C,

for {a1, . . . , a2n} any positively oriented orthonormal basis of V . So, we have the natural
decomposition SC = S+

C ⊕S
−
C into two spinor spaces S±C of positive and negative chirality.

Lemma 4.2.6 ([66, IV. Lemma 9.6]). If ξ ∈ SC is pure, then either ξ ∈ S+
C or ξ ∈ S−C .

For any spinor ξ ∈ SC, we can define its isotropy group by

Gξ := {σ ∈ Spin(2n) | σ · ξ = ξ} . (4.3)

Lemma 4.2.7 ([66, IV. Lemma 9.15]). For σ ∈ S±C pure, then Gξ = SU(n).

Let PSC ⊆ SC be the subset of pure spinors, and let F2n be the set of maximal isotropic
subspaces of V ⊗RC. We consider the natural map K : PSC −→ F2n. Now, let AC(V ) be
the set of all orthogonal almost complex structures on V . Associated to any J ∈ AC(V )
there exists a decomposition

V ⊗R C = E(J)⊕ E(J),

where E(J) ⊆ V ⊗R C denotes the (−i)-eigenspace of J . These vector spaces are both
maximal isotropic. We can consider the natural map E : AC(V ) −→ MIS(V ) that sends
the almost complex structures of V to the associated maximal isotropic subspace. The
set AC(V ) of almost complex structures falls into two connected components C±n , where
C+
n consists of those almost complex structures whose canonical orientation agrees with

the one given on V . Let PSC be the space of pure spinors, which admits a decomposition
PS± of pure spinors with, respectively, positive and negative chirality. Let P

(
PS±

)
be the

projectivization of the positive and negative, respectively, pure spinor spaces. We have
arrived at the following result that will be useful in the future.

Lemma 4.2.8 ([66, IV. Proposition 9.7]). The maps σ 7→ K(σ) and J 7→ E(J) induce
the SO(2n)-equivariant diffeomorphisms

P
(
PS±

)
−→ F±2n −→ C

±
n .

Now, we will extend the given notions and results to an arbitrary smooth manifold M .
Let E −→M be a smooth real vector bundle with a non-degenerate symmetric bilinear
pairing 〈·, ·〉 : Γ(E)⊗ Γ(E) −→ C∞(M) of arbitrary signature (p, q). Then, we can give
the following notions that extends canonically the ones given over a point.

Definition 4.2.9. The Clifford bundle Cl(E) −→ M associated to E is a smooth real
algebra bundle, whose fibers are the Clifford algebras generated by each real vector space
Ep for p ∈M . That is, the fiber Cl(E)p over p ∈M is given by the quotient of the tensor
algebra of Ep by the ideal generated by the relation (4.1).
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Definition 4.2.10. A spinor bundle for E is a pair (S,Υ) consisting of a vector bundle
S −→M , and a morphism of bundles Υ: Cl(E) −→ EndR(S) of unital and associative al-
gebras. The sections of S are called spinors. If the orthogonal frame bundle of E admits
a reduction to Spin(p, q) (that is, E admits a spin structure), then any representation of
Spin(p, q) induces a spinor bundle S. In the special case in which E = TM , if it admits
a spin structure, then we say that M is a spin manifold.

Let (S,Υ) be a spinor bundle for E. Consider the natural inclusion σ : Γ(E) −→ Cl(E)
and define

Υ ◦ σ : Γ(E) −→ EndR(S),

which gives an action for the sections of E on the spinors.

Definition 4.2.11. We can introduce the Clifford multiplication on S by the action

s · ξ := (Υ ◦ σ(s)) (ξ), for s ∈ Γ(E), ξ ∈ Γ(S).

Let ∇ be a connection on E compatible with 〈·, ·〉. Then, we can choose a connection on
the spinor bundle given by ∇S : Γ(S) −→ Γ(E∗ ⊗ S), which is called a spin connection
such that it satisfies the Leibniz rule with respect to the previous Clifford multiplication.
That is,

∇S (s · ξ) = ∇s · ξ + s · ∇Sξ, for s ∈ Γ(E), ξ ∈ Γ(S).

If the spinor bundle S is such that End(S) is isomorphic to Cl(E), two spin connections
differ by a 1-form on M with values in the centre of Cl(E). When the orthogonal frame
bundle of E reduces to Spin(p, q) (for example, when E = TM, for M a spin Riemannian
manifold), then there exists a canonical choice of spin connection. We assume from now
that M is a 2n-dimensional spin manifold with positive-definite symmetric pairing 〈·, ·〉.

Definition 4.2.12. Let S be a spinor bundle for E of rank r, and suppose that ∇ is a
connection on E. The associated Dirac operator /∇ : Γ(S) −→ Γ(S) is defined by

/∇ξ =
r∑
j=1

aj · ∇Sajξ, for ξ ∈ Γ(S),

for
{
aj , a

j
}r
j=1
⊆ Γ(E) orthogonal dual local frames for E and the Clifford multiplication.

The Dirac operators are independent of the coordinate system. Now, taking E = TM , we
have that Lemma 4.2.7 and Proposition 4.2.8 generalizes into the following results.

Proposition 4.2.13 ([66, IV. Proposition 9.16]). Each globally defined pure spinor field
on M determines a unique reduction of the structure group of M to SU(n).

Proposition 4.2.14 ([66, IV. Proposition 9.8]). Let M be an oriented 2n-dimensional
Riemannian manifold. Then, the orthogonal almost complex structures on M , with cano-
nical positive orientation, are in a natural one-to-one correspondence with cross-sections
of the projectivized bundle P

(
PS+

)
of positive pure spinors on M .

We will return in the two following chapters to the concrete study between spinors and
geometric structures. This study plays an important role in the present thesis.
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Chapter 5

The Killing Spinor Equations

In the present chapter, we introduce the main geometric structure we will work with, the
Killing spinor equations on smooth spin manifolds. In Section 5.3, we introduce a new
tensor that will be fundamental for our purposes. It is noteworthy that, despite being a
quantity that can be defined via classical hermitian geometry, it does not seem to have
been previously considered in the literature.

5.1 Killing Spinors on Spin Manifolds

Let M be an n-dimensional smooth spin manifold. Let K be a compact Lie group, and
consider p : P −→ M principal K-bundle. Given any principal connection A on P , its
curvature is FA ∈ Ω2(M, adP ). For H ∈ Ω3(M,R), and g a Riemannian structure, we
define the connection ∇+ on TM with skew-symmetric torsion, compatible with g, by

∇+ : = ∇g +
1

2
g−1H, (5.1)

and the connection ∇+ 1
3 on TM with skew-symmetric torsion by

∇+ 1
3 : = ∇g +

1

6
g−1H, (5.2)

where ∇g denotes the Levi-Civita connection of g. We introduce the following notion.

Definition 5.1.1. [35] We say that the tuple (g,H, ϕ,A, η), where ϕ ∈ Ω1(M), and η is
a spinor on (TM, g), is a solution of the Killing spinor equations when, denoting by · the
Clifford multiplication,

FA · η = 0, (5.3a)

∇+ · η = 0, (5.3b)(
/∇+ 1

3 + ϕ
)
· η = 0, (5.3c)

where /∇+ 1
3 denotes the Dirac operator associated to ∇+ 1

3 . We will call ϕ ∈ Ω1(M) the
dilaton 1-form, although this is the name given to a potential for ϕ, when ϕ is exact.

67



Supersymmetric Vertex Algebras and Killing Spinors

Remark 5.1.2. These equations are known as Gaugino, gravitino, and dilatino equa-
tions, respectively, and they are motivated by physics. If ϕ is exact, these equations are
equivalent in low dimensions to the Killing spinor equations in a compactification of the
ten-dimensional heterotic supergravity [27, 30]. Note that there exists a well-stablished
notion of Killing spinors for pseudo-Riemannian geometry, which does not agree with
the notion considered here. Nonetheless, the name Killing spinor equations refering to
(5.3) is now well-stablished in the mathematical physics literature.

We have an interesting equivalence when we are in even dimensions. Recall that a com-
plex spinor induces an SU(n)-structure as we have seen in the previous chapter.

Definition 5.1.3. [41] Let M be a 2n-dimensional manifold endowed with (J, ω) an
almost hermitian structure on M . The associated Lee form is defined by

θω := d∗ω ◦ J, (5.4)

where d∗ := − ∗ ◦d ◦ ∗ (since M is even dimensional), and ∗ is the Hodge star operator.

Remark 5.1.4. Notice that the Lee form (5.4) can also be defined by

θω := Λωdω,

where Λω : Ωk(M) −→ Ωk−2(M), α 7→ − ∗ (ω ∧ ∗α) is defined for any α ∈ Ω2(M) by

Λωα
ωn

n!
= α ∧ ωn−1

(n− 1)!
. (5.5)

In particular, the Lee form is the unique 1-form such that dωn−1 = θω ∧ ωn−1.

LetM be any compact almost complex manifold with vanishing first Chern class endowed
with a hermitian structure determined by an almost Kähler form ω and a complex struc-
ture J . Consider Ψ a smooth global section of the canonical bundle KM , and the function
‖Ψ‖ω on M defined via the point-wise norm of Ψ, as follows

(−1)
n(n−1)

2 inΨ ∧Ψ = ‖Ψ‖2ω
ωn

n!
.

Then, an SU(n)-structure on M is given by a pair (Ψ, ω), as before, satisfying

‖Ψ‖ω = 1. (5.6)

Proposition 5.1.5 ([35, Theorem 5.1],[87, Section 2]). Let M be a 2n-dimensional spin
smooth manifold, and P −→M principal K-bundle with K compact Lie group. Consider
A principal connection on P with FA ∈ Ω2(M, adP ) associated curvature, (J, ω, g) an al-
most hermitian structure on M , and H ∈ Ω3(M). Then, a solution (g,H, ϕ,A, η) to the
Killing spinor equations (5.3) with η pure is equivalent to a tuple (Ψ, ω, ϕ,A), where
(Ψ, ω) is a SU(n)-structure, such that

FA ∧ ωn−1 = 0, F 0,2
A = 0,

θω + ϕ = 0, dΨ− θω ∧Ψ = 0,
NJ = 0, H + dcω = 0.
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Proof. We assume that there exists a global solution (g,H, ϕ,A, η) as in Definition 5.1.1.
By Proposition 4.2.13, the spinor η determines a reduction of the orthonormal frame bun-
dle of (M, g, J) to SU(n). So, this is equivalent to a pair (Ψ, ω) given by an SU(n)-struc-
ture. Using now the following model for the complex spinor bundle,

S+
∼= Λ0,even(TM ⊗R C),

where the spinor η can be identified with λ ∈ C∗, one can prove that ω is a (1, 1)-form,
g = ω(·, J ·), and

T 0,1M = {X ∈ TM ⊗ C | ιXΨ = 0} .
Now, the gaugino equation (5.3a) is equivalent to ΛωFA = 0 and F 0,2

A = 0. Now, the
gravitino equation (5.3b) implies that the connection ∇+, understood as a connection
on the spinor bundle of M , has holonomy contained in SU(n). This is equivalent to the
triple (ω, J,Ψ) be parallel with respect to ∇+ (as metric connection on TM), and to

H = (−dcω)(1,2)+(2,1) + g(NJ ·, ·).

Finally, the dilatino equation (5.3c) implies that J is integrable, that is, NJ = 0, and
furthermore

H = −dcω, θω = −ϕ ∈ Ω1(M).

At last, by Gauduchon’s formula [42, Equation (2.7.6)] for∇+ we obtain dΨ = θω∧Ψ.

In particular, if we have the trivial fibre bundle with K = {1}, we obtain the following.

Proposition 5.1.6 ([35, Theorem 5.1],[87, Section 2]). Let M be a 2n-dimensional spin
smooth manifold. Consider (J, ω, g) almost hermitian structure on M , and H ∈ Ω3(M).
Then, a solution (g,H, ϕ, η) to the Killing spinor equations (5.3) with η pure is equivalent
to a tuple (Ψ, ω, ϕ), where (Ψ, ω) is a SU(n)-structure, such that

θω + ϕ = 0, dΨ− θω ∧Ψ = 0,
NJ = 0, H + dcω = 0.

5.1.1 The F -term and D-term Conditions

Motivated by Proposition 5.1.5, we can distinguish two different type of conditions which
appear for solutions of the Killing spinor equations in even dimensions and with η pure.

Definition 5.1.7. We will say that the data given by (g,H,A), where g gives an almost
hermitian structure via J , and H ∈ Ω3(M), and A is a connection on P is a solution to
the F -term conditions if

F1) F 0,2
A = 0, F2) H = (−dcω)(1,2)+(2,1) + g(NJ ·, ·), F3) NJ = 0. (5.7)

Notice that if J is integrable (it is satisfied F3)), then F2) is the same as H = −dcω.

Definition 5.1.8. We will say that the data given by (g,H,A, ϕ, ω,Ψ), where (Ψ, ω) is
an SU(n)-structure, and H ∈ Ω3(M), is a solution to the D-term condition if

D1) ΛωFA = 0, D2) dΨ = θω ∧Ψ, D3) θω + ϕ = 0. (5.8)
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Remark 5.1.9. One has the following equivalences:

� F1) F
(0,2)
A = 0 and D1) ΛωFA = 0 are equivalent to the gaugino equation.

� F2) H = (−dcω)(1,2)+(2,1) + g(NJ ·, ·) and D2) dΨ = θω ∧ Ψ are equivalent to the
gravitino equation.

� F3) NJ = 0 and D3) θω + ϕ = 0 are equivalent to the dilatino equation.

5.2 Special Maximal Holomorphic Atlas

In this work, we are mainly concerned with solutions of the Killing spinor equations with
ϕ closed, in other words, θω closed. Imposing this condition, we will be able to construct
new embeddings of SUSY vertex algebras on the chiral de Rham complex. Motivated
by this, we can construct a special atlas associated to SU(n)-structures (Ψ, ω) satisfying
the following equations:

dΨ− θω ∧Ψ = 0, dθω = 0. (5.9)

Let (M,J) be any compact complex manifold with vanishing first Chern class.

Lemma 5.2.1 ([39, Lemma 2.2]). If an SU(n)-structure (Ψ, ω) on M satisfies (5.9), then
the Bismut connection

∇+ = ∇g − 1

2
g−1dcω, (5.10)

where ∇g is the Levi-Civita connection of g, has holonomy contained in SU(n).

Proof. By the holonomy principle, it is enough to prove that

∇+Ψ = 0. (5.11)

Since θω is closed, given p ∈M there exists a smooth local function φ such that θω = dφ
around p. Then, by the first equation in (5.9), we have that Ω := e−φΨ is closed. Indeed,

dΩ = e−φ (−dφ) ∧Ψ + e−φdΨ

= e−φ ((−dφ+ θω) ∧Ψ) = 0.

Hence, Ω provides an holomorphic trivialization of KM around p, and the metric induces
by g in KM is ‖Ω‖2ω. In this trivialization, the Chern connection ∇c on KM induced by
ω is given by

∇c = d+ 2∂ log ‖Ω‖ω = d− 2∂φ,

since (5.6) implies φ = − log ‖Ω‖ω. Now, the proof follows using Gauduchon’s formula
[42, Equation (2.7.6)], relating ∇c with the connection induced by ∇+ on the canonical
bundle

∇cΨ = ∇+Ψ + id∗ω ⊗Ψ,

which implies (5.11) around p as desired.
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We want to obtain via (5.9) thatM admits a unique maximal holomorphic atlas for which
the Jacobian of any change of coordinates has constant determinant.

Lemma 5.2.2. Let M be a 2n-dimensional smooth manifold for which we have (J, ω)
a hermitian structure, and (Ψ, ω) satisfying (5.6) and (5.9). Then, M admits a unique
maximal holomorphic atlas such that for U ⊆M open set we have that

Ψ|U = eφUdz1 ∧ · · · ∧ dzn,

where θω|U = dφU . Consequently, the holomorphic Jacobian of any change of coordinates
in this atlas has constant determinant.

Proof. We will keep the notations used for the proof of Lemma 5.2.1. We will prove that
around each p ∈M there exists a neighbourhood U ⊆M , and an holomorphic coordinate
patch ϕ : U −→ Cn, with functions z1, . . . , zn such that

Ψ|U = eφUdz1 ∧ · · · ∧ dzn,

where
θω|U = dφU . (5.12)

Fix an holomorphic atlas on M , and take U ⊆M a coordinate domain. By hypothesis,
there exists a function φU ∈ C∞(U) satisfying (5.12). By the first equation in (5.9), the
following local (n, 0)-form

ΩU = e−φU Ψ|U (5.13)

is holomorphic. So, by the holomorphic Darboux Theorem, we can construct a new atlas
associating to each ϕ : U −→ V ⊆ Cn coordinate patch a new one ϕ̃ : Ũ = U −→ Ṽ ⊆ Cn
such that Ω

Ũ
= dz̃1 ∧ · · · ∧ dz̃n, where z̃1, . . . , z̃n are the new coordinates. We will work

with this atlas. Let ϕ : U −→ V ⊆ Cn and ϕ′ : U ′ −→ V ′ ⊆ Cn be two coordinate patches
from this atlas, with coordinates z1, . . . , zn and z′1, . . . , z

′
n, respectively, and the transiti-

on map
ψ = ϕ′ ◦ ϕ−1 : ϕ(U ∩ U ′) −→ ϕ′(U ∩ U ′).

The holomorphic volume form satisfies ΩU = dz1 ∧ · · · ∧ dzn, and ΩU ′ = dz′1 ∧ · · · ∧ dz′n.
Notice that (5.13) still holds in this atlas, for the corresponding local potential φU of θω.
This follows as a consequence that Ψ and θω are globally defined on this atlas. Then,

d (φU − φU ′) = dφU − dφU ′ = θω|U − θω|U ′ = 0, in U ∩ U ′,

so c := φU − φU ′ ∈ C in U ∩ U ′. Therefore, in U ∩ U ′ we have the following

ΩU ′ = det (dψ) ΩU = det (dψ) dz1 ∧ · · · ∧ dzn,
ΩU ′ = e−φU′ Ψ|U ′ = eφU−φU′e−φU Ψ|U

= ecΩU = ecdz1 ∧ · · · ∧ dzn,

where det (dψ) = ec ∈ C is the determinant of the Jacobian of the change of coordinates ψ
considered above, which is constant as desired. Finally, if we have two atlas as above, the
union is again an atlas satisfying the same properties. This ensures the uniqueness.

The constructed atlas will be fundamental for our purposes.
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Remark 5.2.3. Let (g,H,A, ϕ, ω,Ψ) be a solution to the F -term and D-term conditi-
ons. Associated to a solution (ω,Ψ) of (5.9), by Lemma 5.2.2, there exists a unique maxi-
mal atlas of holomorphic coordinates such that

Ψ|U = efωdz1 ∧ · · · ∧ dzn, where fω := − log ‖Ω‖ω,

for U ⊆M open, with {zj}nj=1 ⊆ C∞(M) local holomorphic coordinates.

5.3 The Torsion Bi-vector

To finish the chapter, we will define a bi-vector, canonically associated to any hermitian
structure. This one will play an important role in the construction of our SUSY vertex
algebra embeddings in Chapter 10. Let (M, g, J) be a 2n-dimensional complex manifold
with hermitian structure g, fow which the associated almost Kähler form is ω = g(J ·, ·).
Now, for v ∈ Γ(T 0,1M), consider(

g−1 ⊗ g−1
)

(ιvi∂ω) ∈ Γ
(
Λ2T 0,1M

)
,

which is a bi-vector field of type (0, 2). Then, we can take the Schouten bracket[
w,
(
g−1 ⊗ g−1

)
(ιvi∂ω)

]
∈ Γ(Λ2TM ⊗ C),

for w ∈ Γ(T 1,0M), and its (0, 2) component[
w,
(
g−1 ⊗ g−1

)
(ιvi∂ω)

]0,2 ∈ Γ(Λ2T 0,1M),

Given local holomorphic coordinates around a point, we define

σω :=

n∑
k=1

[
g−1dzk,

(
g−1 ⊗ g−1

)(
ι ∂
∂zk

∂ω

)]0,2

. (5.14)

Lemma 5.3.1. The expression (5.14) is independent of the choice of local holomorphic
coordinates. In consequence, it defines a bi-vector field of type (0, 2), that is,

σω ∈ Γ
(
Λ2T 0,1M

)
.

Furthermore,

(σω)ij = i
n∑
k=1

g−1dzk

(
∂ω

(
g−1dzi, g

−1dzj ,
∂

∂zk

))
, for i, j ∈ {1, . . . , n}. (5.15)

Proof. The first part is immediate by change of holomorphic coordinates, since locally

σω =
∑
m,l,p,k

∑
i<j

gpk
∂

∂zp

(
gmiglj (∂ω)mlk

) ∂

∂zi
∧ ∂

∂zj
,

where the sums are taken from 1 to n. The second part follows clearly using (5.14).

We will prove in Chapter 10 that we are able to construct embeddings of SUSY vertex
algebras when the F -term and D-term conditions are satisfied, provided that σω = 0.
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Chapter 6

The Killing Spinor Equations on
Courant Algebroids

Now, we will introduce the Killing spinor equations in generalized geometry, following
[36]. Generalized geometry is a geometric framework orginally introduced by Hitchin and
Gualtieri [50, 57], which puts vectors and covector on a manifold on equal footing. It has
been proved to be very useful in understanding field equations in supergravity. Roughly
speaking, the Killing spinor equations in generalized geometry amount to suplement (5.3)
with a Bianchi identity for H and A, and to prove that the corresponding equations are
natural on a Courant algebroid associated to (H,A). The Bianchi identity has the effect
of rigidifying these equations, and gives rise to the twisted Hull-Strominger system.

6.1 Basics on Courant Algebroids

Let M be any n-dimensional smooth manifold. The following notion was first given by
Liu-Weinstein-Xu in [71] as an axiomatization of the natural structure on the direct sum
of vector fields and the space of 1-forms introduced by Courant in [19].

Definition 6.1.1. [71] A Courant algebroid is a vector bundle E −→M endowed with a
non-degenerate symmetric bilinear form 〈·, ·〉, the Dorfman bracket [·, ·] on Γ(E), and a
bundle map π : E −→ TM called the anchor such that satisfies the following axioms:

(1) (Jacobi identity) [a, [b, c]] = [[a, b] , c] + [b, [a, c]] for a, b, c ∈ Γ(E).

(2) (π is an homomorphism) π [a, b] = [π(a), π(b)] for a, b ∈ Γ(E).

(3) ([·, ·] is a differential) [a, fb] = f [a, b] + π(a)(f)b for a, b ∈ Γ(E) and f ∈ C∞(M).

(4) (Compatibility) π(a) 〈b, c〉 = 〈[a, b] , c〉+ 〈b, [a, c]〉 for a, b, c ∈ Γ(E).

(5) (Quasiantisymmetry) [a, b] + [b, a] = D 〈a, b〉 for a, b ∈ Γ(E).
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Here, the map D : C∞(M) −→ Γ(E) denotes the composition of three maps: the exterior
differential d : Ω(M) −→ Ω(M) acting on functions, the map π∗ : T ∗M −→ E∗ and the
isomorphism E∗ ∼= E provided by the non-degenerate symmetric pairing 〈·, ·〉. So,

〈Df, a〉 = π(a)(f), for a ∈ Γ(E); f ∈ C∞(M).

In particular, it is satisfied π ◦ D = 0. In other words, 〈Df,Dg〉 = 0 for f, g ∈ C∞(M).

Example 6.1.2 ([19, 38] H-Twisted Courant Algebroids). Let H ∈ Ω3(M) be a
closed 3-form on a manifold M . Then, the data (TM ⊕ T ∗M, 〈·, ·〉 , [·, ·] , π) defined, for
X + ζ, Y + η ∈ TM ⊕ T ∗M , by

〈X + ζ, Y + η〉 : =
1

2
(η(X) + ζ(Y )) ,

[X + ζ, Y + η] : = [X,Y ] + LXη − ιY dζ + ιY ιXH,

π : TM ⊕ T ∗M −→ TM, π (X + ζ) := X,

defines a Courant algebroid on M , usually called the H-twisted Courant algebroid (for
H = 0, this is simply known as the standard Courant algebroid). In this explicit situation,

Df = 2df, for f ∈ C∞(M).

Remark 6.1.3 (Quadratic Lie Algebras from CAs). A Courant algebroid over a
point (localization) is equivalent to a real (even) quadratic Lie algebra (Definition 1.4.1).

Motivated by the previous examples, we define two special types of Courant algebroids
that will play an important role in the present thesis, which firstly appeared in [82].

Definition 6.1.4. [82] A Courant algebroid E is said to be transitive if the anchor map
π is surjective. In addition, E is said exact if the kernel of the anchor coincides with the
image of π∗. In other words, if it fits into an exact sequence of vector bundles

0 // T ∗M
π∗ // E

π // TM // 0.

For E any Courant algebroid, an isotropic splitting is a section σ : TM −→ E such that
the image σ (TM) ⊆ E is isotropic with respect to 〈·, ·〉. When E is exact, we can choose
σ as above, and define

(
TM ⊕ T ∗M, 〈·, ·〉 , [·, ·]Hσ , π

)
for Hσ ∈ Ω3(M) closed defined by

Hσ(X,Y, Z) := 2 〈[σ(X), σ(Y )] , σ(Z)〉 , for X,Y, Z ∈ T ∗M. (6.1)

A detailed proof of the next result can be found in [38, Theorem 2.19].

Theorem 6.1.5 ([82]). Given H ∈ Ω3(M) closed, there exists a one-to-one correspon-
dence between exact Courant algebroids and H-twisted Courant algebroids.

Now, we introduce a special class of transitive Courant algebroids which will play a funda-
mental role. Let M be a complex manifold, and K compact Lie group with bi-invariant
non-degenerate pairing 〈·, ·〉 : k ⊗ k −→ R. Given P −→ M a principal K-bundle, let A
be any principal connection on P with associated curvature FA ∈ Ω2(X, adP ). For such
a connection A, we can choose H ∈ Ω3(M) such that satisfies the Bianchi identity

dH + 〈FA ∧ FA〉 = 0. (6.2)
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Proposition 6.1.6 ([4, Proposition 3.2],[34, Proposition 2.4]). Let (H,A) be a pair that
solves (6.2). Now, consider the vector bundle EH,A := TM ⊕ adP ⊕ T ∗M endowed, for
X + r + ζ, Y + t+ η ∈ EH,A, with the symmetric pairing

〈X + r + ζ, Y + t+ η〉 :=
1

2
(η(X) + ζ(Y )) + 〈r, t〉 , (6.3)

the bracket

[X + r + ζ, Y + t+ η]H,A : = [X,Y ] + LXη − ιY dζ + ιY ιXH

− FA(X,Y ) + 2 〈ιXFA, t〉 − 2 〈ιY FA, r〉
+ 2

〈
dAr, t

〉
+ dAXt− dAY r − [r, t] ,

(6.4)

and the canocical projection

π : E −→ TM, π(X + r + ζ) := X.

Then, the data (EH,A, 〈·, ·〉 , [·, ·]H,A , π) determines a transitive Courant algebroid.

Definition 6.1.7. [37] Let (H,A) be a pair that solves (6.2). The transitive Courant al-
gebroid EH,A constructed as explained in Proposition 6.1.6 is known as the string Cou-
rant algebroid associated to the given pair (H,A).

6.1.1 Generalized Metrics on String Courant Algebroids

We recall the notion of generalized metric on Courant algebroids, which generalizes the
concept of Riemannian metric on a manifold [48, 57]. Note that reductions of the struc-
ture group on the standard Courant algebroid give interesting geometries, since it reduces
the structure group to O(n, n). We want to study a further reduction to O(n)×O(p, q).

Definition 6.1.8. [38] Let E be a general Courant algebroid over M smooth manifold.
A generalized metric on E is given by an orthogonal decomposition

E = C+ ⊕ C−

in subundles C± ⊆ E such that the restriction of 〈·, ·〉 on E to each C± is non-degenerate.
We say that a generalized metric is Riemannian if 〈·, ·〉|C+

is positive-definite.

Lemma 6.1.9 ([34], Section 3.2). A Riemannian generalized metric C± on E any tran-
sitive Courant algebroid is equivalent to either:

(1) a reduction of the frames to a subgroup O(n)×O(p, q) ⊆ O(n+ p+ q).

(2) an endomorphism G ∈ Γ(EndE) satisfying the following:

� 〈Ga,Gb〉 = 〈a, b〉 for a, b ∈ Γ(E).

� 〈Ga, b〉 = 〈a,Gb〉 for a, b ∈ Γ(E).

� The bilinear pairing 〈G·, ·〉 is positive-definite on C+ = {a ∈ E | Ga = a}, and
has signature (p, q) on C− = {a ∈ E | Ga = −a}.

We denote by G(E) the space of generalized metrics for E transitive Courant algebroid.
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Remark 6.1.10. Given C± a generalized metric on E exact Courant algebroid,

C± = {X ± g(X) | X ∈ TM} .

In particular, we have the natural morphisms

π± : E −→ C±, π±(X + ζ) =
1

2

(
X ± g−1(ζ) + ζ ± g(X)

)
,

σ± : TM −→ C±, σ±(X) = X ± g(X),

inducing isomorphisms π|C± : TM ∼= C±.

Let next study generalized metrics for string Courant algebroids. So, let (H,A) be a pair
as above solving (6.2). Fix g a usual Riemannian metric on M . Then, we can construct
canonically a generalized metric C± on EH,A by setting

C+ : = {X + g(X) | X ∈ TM} ,
C− : = {X − g(X) + r | X ∈ TM, r ∈ adP} .

(6.5)

Remark 6.1.11. More invariantly, if we fix a string Courant algebroid of type EH,A as
above, and we consider a generalized metric EH,A = C+ ⊕ C− such that

π|C+
: C+

∼= TM, 〈·, ·〉|C+
> 0,

then this determines a pair (g′, σ), where g′ denotes a usual Riemannian metric on M
and σ : TM −→ EH,A is an isotropic splitting such that determines another pair (H ′, A′)
as above satisfying (6.2). Even more, the isotropic splitting σ : TM −→ EH,A induces
an isomorphism EH,A ∼= EH′,A′ for which the generalized metric C± ⊆ EH′,A′ is (6.5).

6.1.2 Divergence Operators on String Courant Algebroids

Definition 6.1.12. [38] Let E be a Courant algebroid. A divergence operator on E is a
differential operator div : Γ(E) −→ C∞(M) satisfying the Leibniz rule

div(fe) = π(e)(f) + fdiv(e), for e ∈ Γ(E), f ∈ C∞(M).

Remark 6.1.13. By Leibniz rule, it is seen that the divergence operators on E form an
affine space modeled on Γ(E). Indeed, fixing div and div′ divergence operators, then

div′ = div + 〈e, ·〉 , for certain e ∈ Γ(E).

We give a compatibility condition between generalized metrics and divergence operators.

Definition 6.1.14. [38] Given C+ Riemannian canonical generalized metric on a string
Courant algebroid E as in (6.5) such that determines the Riemannian metric g, we define
its Riemannian divergence as

div0(e) :=
Lπ(e)µ

g

µg
, for e ∈ Γ(E),

where µg is the associated Riemannian volume form of g Riemannian metric.
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Definition 6.1.15. [38] For div : Γ(E) −→ C∞(M) divergence operator on a string Cou-
rant algebroid E, we define the Weyl structure of div as the map

W : G(E) −→ Γ(E)
G 7→ div− div0

.

We are ready to introduce the desired condition from the notion of infinitesimal isometry.
For G generalized metric on E string Courant algebroid, define, for each e ∈ Γ(E),

[e,G] ∈ End (Γ(E)) by [e,G] (e′) :=
[
e,Ge′

]
− G

[
e, e′

]
, for e′ ∈ Γ(E).

This defines a tensor, and we say that e ∈ Γ(E) is an infinitesimal isometry if [e,G] = 0.

Definition 6.1.16. [38] Let E be a string Courant algebroid. A pair (G, div) is said com-
patible if W (G) is an infinitesimal isometry. Furthermore, it is closed if π (G) = 0.

Remark 6.1.17 ([38, Lemma 2.50]). For (C+, div) a compatible pair on a string Courant
algebroid E, we have that e = X + ζ + r in the splitting σ determined by C+, and the
condition infinitesimal isometry reads

LXg = 0, dAr = −ιXFA, dζ = ιXH − 2 〈FA, r〉 . (6.6)

In particular, being closed corresponds to X = r = 0 and dζ = 0 in the identities above.

6.2 Killing Spinors on Courant Algebroids

We introduce now the equations of our main interest in the most general set-up. These
equations were introduced in [36, Definition 5.6] generalizing the ones from Chapter 5.

6.2.1 Generalized Connections and Dirac-type Operators

First, we will start the study of connections in the setting of generalized geometry.

Definition 6.2.1. [38] A generalized connection D on E general Courant algebroid is a
first-order differential operator D : Γ(E) −→ Γ(E∗ ⊗E) satisfying the Leibniz rule, and
certain compatibility condition with the pairing 〈·, ·〉. Explicitly, using the notation

Dab := 〈a,Db〉 , for a, b ∈ Γ(E),

we have, for a, b, c ∈ Γ(E) and f ∈ C∞(M), that

Da (fb) = π(a)(f)b+ fDab, and π(a) 〈b, c〉 = 〈Dab, c〉+ 〈b,Dac〉 .

Remark 6.2.2. If D denotes the set of generalized connections on E, one can see that
it has structure of affine space modelled on the vector space Γ (E∗ ⊗ o(E)), where o(E)
denotes the bundle of skew-symmetric endomorphisms of E with respect to the bilinear
form 〈·, ·〉. This works as follows: for a standard orthogonal connection ∇E on (E, 〈·, ·〉),
we can construct a generalized connection on E by

Dab := ∇Eπ(a)b, for a, b ∈ Γ(E). (6.7)

Moreover, any other generalized connection on E is given byD+χ, for χ ∈ Γ (E∗ ⊗ o(E)).
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Definition 6.2.3. [38, 49] Given E a Courant algebroid and D a generalized connection
on E, the torsion TD of D is defined by

TD(a, b, c) := 〈Dab−Dba− [a, b] , c〉+ 〈Dca, b〉 , for a, b, c ∈ Γ(E).

Using the axioms of Courant algebroids and connections, then TD ∈ Γ
(
Λ3E∗

)
.

Fix T ∈ Γ(Λ3E∗), and consider the set DT of generalized connections on E with fixed
torsion T . Let σ(a, b, c) denote the sum over all the cyclic permutations on a, b, c ∈ Γ(E).
Then, for D ∈ DT and χ ∈ Γ (E∗ ⊗ o(E)), the condition for D′ = D + χ to be in DT is
given by ∑

σ(a,b,c)

〈χab, c〉 = 0, for a, b, c ∈ Γ(E).

Lemma 6.2.4 ([38, Lemma 3.6]). Let D be any connection with torsion T . Then, the
space DT is an affine space modeled on the vector space of mixed symmetric 3-tensors

Σ =

χ ∈ Γ
(
E⊗3

) ∣∣∣∣∣∣ χ(a, b, c) = −χ(a, b, c),
∑

σ(a,b,c)

χ(a, b, c) = 0

 . (6.8)

From this, we obtain that the space Σ admits a canonical splitting Σ = Σ0⊕Γ(E), where
e ∈ Γ(E) corresponds to the mixed symmetric tensor χe defined by

χe(a, b, c) = 〈a, b〉 〈e, c〉 − 〈e, b〉 〈a, c〉 , for a, b, c ∈ Γ(E),

and the orthogonal complement of Γ(E) is given by

Σ0 =

χ ∈ Σ

∣∣∣∣∣∣
rE∑
j=1

χ (aj , ãj , ·) = 0

 . (6.9)

Here, the value rE ∈ N denotes the rank of E, and {aj}rEj=1 is an orthogonal local frame

for E, where {ãj}rEj=1 are the orthogonal local frame of E defined to be its dual. That is,

〈aj , ãk〉 = δkj , for j, k ∈ {1, . . . , rE}.

More explicitly, given χ ∈ Γ (E∗ ⊗ o(E)), there is a unique decomposition

χ = χ0 + χe, (6.10)

where χ0 ∈ Γ (E∗ ⊗ o(E)) is such that

rE∑
j=1

(χ0)aj ãj = 0,

and
χeab = 〈a, b〉 e− 〈e, b〉 a, for a, b ∈ Γ(E)
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with

e =
1

rE − 1

rE∑
j=1

χaj ãj .

It follows by construction that χ− χe ∈ Σ0.

Remark 6.2.5. [36] The E∗-valued skew-symmetric endomorphism χe in the decompo-
sition (6.10) is reminiscent of the “1-form valued Weyl endomorphisms” in conformal
geometry, which appear in the variation of a metric connection with fixed torsion upon
a conformal change of the metric. Similarly, these E∗-valued Weyl endomorphisms χe

enable us to deform a generalized connection D with fixed torsion T inside DT . It will be
important to study the interaction between this space DT and divergence operators div.
This allows us to “gauge-fix” the Weyl degrees of freedom in the space DT corresponding
to Γ(E) in the splitting Σ = Σ0 ⊕ Γ(E). We will call this procedure Weyl gauge fixing.

Definition 6.2.6. [38] The divergence operator of a generalized connection D on E is

divD(a) := tr (Da) ∈ C∞(M), for a ∈ Γ(E).

Lemma 6.2.7 ([36, Lemma 2.4]). Fix T ∈ Γ(Λ3E∗), and let div : Γ(E) −→ C∞(M) be
a divergence operator on E. Then,

DT (div) = {D ∈ D | TD = T, divD = div} ⊆ DT

is an affine space modelled on Σ0, as defined in (6.9).

We introduce next the natural compatibility condition between generalized connections
and generalized metrics.

Definition 6.2.8. [38] Let E be a Courant algebroid, and fix E = C+⊕C− generalized
metric. We say that D generalized connection on E is compatible with C+ ⊆ E if

D (Γ(C±)) ⊆ Γ(E∗ ⊗ C±).

Remark 6.2.9. Let D (C±) be the space of G-compatible generalized connections. It
defines an affine space modeled on Γ (E∗ ⊗ o(C+))⊕Γ (E∗ ⊗ o(C−)). Consequently, any
D ∈ D (C±) splits into four first-order differential operators satisfying the Leibniz rule

D+
− : Γ(C+) −→ Γ(C∗− ⊗ C+), D−+ : Γ(C−) −→ Γ(C∗+ ⊗ C−),

D+
+ : Γ(C+) −→ Γ(C∗+ ⊗ C+), D−− : Γ(C−) −→ Γ(C∗− ⊗ C−).

The operators D±± : Γ(C±) −→ Γ(C∗± ⊗C±) are said of pure-type, whereas the operators
D±∓ : Γ(C±) −→ Γ(C∗∓⊗C±) are called mixed-type. Moreover, we will say that the torsion
TD is of pure-type when TD ∈ Γ

(
Λ3C∗+ ⊕ Λ3C∗−

)
.

Our next result shows that the mixed-type operators are fixed, if we vary a generalized
connection D inside D(G) while preserving the torsion. Furthermore, when the torsion
is of pure-type, these operators are uniquely determined by C± and [·, ·].
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Lemma 6.2.10 ([36, Lemma 3.2]). Fix D ∈ D(C+) with torsion TD ∈ Γ(Λ3E∗).

� If D′ ∈ D(C+) and TD′ = TD, then (D′)±∓ = D±∓.

� Furthermore, T is of pure-type if and only if the mixed-type operators D±∓ are

Da−b+ = [a−, b+]+ , Da+b− = [a+, b−]− , for a, b ∈ Γ(E). (6.11)

Now, we must analize the space of torsion-free G-compatible generalized connections

D0(C±) := D(C±) ∩ D0 = {D ∈ D(C±) | TD = 0} .

Proposition 6.2.11 ([36, Proposition 3.3] Many Levi-Civita GCs). Let C± be any
generalized metric on E Courant algebroid. Then, we have that D0(C±) 6= ∅.

Proof. We construct D a C+-compatible generalized connection of pure-type torsion on
E, defining D±∓ by (6.11), and D±± by choosing ∇± metric connections and using (6.7).
Finally,

D0 := D − 1

3
TD,

where we use the metric 〈·, ·〉 to regard TD ∈ Γ(V ∗+ ⊗ o(V+))⊕Γ(V ∗− ⊗ o(V−)). Crucially,
the pure-type condition on TD implies that D0 is C+-compatible.

The space D0 (C±) forms an affine space, modelled on the pure-type mixed symmetric
3-tensors Σ+ ⊕ Σ−, where Σ± = Γ

(
C⊗3
±
)
∩ Σ, for Σ as in (6.8). So, there are canonical

splittings
Σ± = Σ±0 ⊕ Γ(C±), (6.12)

where the first summand corresponds to “trace-free” elements, in analogy with (6.9). To
see this, denote by r± the rank of C±, and consider the orthogonal dual local frames{

a±j , ã
±
j

}r±
j=1
⊆ Γ(C±).

Then, (6.12) corresponds to
χ± = χ±0 + χ

e±
± ,

for a general element χ± ∈ Γ
(
C∗± ⊗ o(C±)

)
, where χ±0 is such that

r±∑
j=1

(
χ±0
)
a±j
ã±j = 0,

and (
χ
e±
±
)
a±
b± = 〈a±, b±〉 e± − 〈e±, b±〉 a±, for a, b ∈ Γ(E) (6.13)

with

e± =
1

r± − 1

r±∑
j=1

χ±aj ã
±
j .
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At last, we will introduce the space of torsion-free metric connections compatible with a
fixed divergence operator div : Γ(E) −→ C∞(M). So, given (C±, div) a pair formed by a
generalized metric and a divergence operator, we define

D0 (C±,div) = {D ∈ D (C±) | TD = 0, divD = div} .

By Lemma 6.2.7, this space forms an affine space modeled on Σ+
0 ⊕ Σ−0 .

Lemma 6.2.12 ([38, Lemma 3.17]). Let C± be any generalized metric on E Courant
algebroid, and div a divergence operator. Then, we have that D0 (C±,div) 6= ∅. Further-
more, an element D ∈ D0 (C±,div) is given by the formula

D = DB −
1

3
TDB +

1

r± − 1

(
χ
e+
+ + χ

e−
−
)
,

where divG −div = 〈e+, ·〉 − 〈e−, ·〉, for e± ∈ Γ(C±), where χ
e±
± is as defined in (6.13).

By Lemma 6.2.12, the freedom in the previous construction of torsion-free generalized
connections compatible with C± corresponds to a choice of the pure-type operators

D+
+ : Γ(C+) −→ Γ(C∗+ ⊗ C+), D−− : Γ(C−) −→ Γ(C∗− ⊗ C−).

It was proved in [36] that one can define a pair of Dirac-type operators that are indepen-
dent of these choices, once we have fixed a divergence operator div on the Courant alge-
broid E (see Lemma 6.2.7). Fixed C± a generalized metric, let Cl(C±) be the bundles of
the Clifford algebras of C±. We assume that Cl(C±) admit irreducible Clifford modules
S± such that Γ(EndS±) ∼= Γ(Cl(C±)). Furthermore, we assume that the line bundles(

detS∗±
) 1
rS±

exist, and let us denote

S± = S± ⊗
(
detS∗±

) 1
rS± ,

where rS± denotes the rank of S±. With these assumptions, for any choice of a connection
D ∈ D0(C±), the operators D±± induce canonically the spin connections

D
S+
+ : Γ(S+) −→ Γ(C∗+ ⊗ S+), D

S−
− : Γ(S−) −→ Γ(C∗− ⊗ S−).

In these circunstances, we can introduce the desired operators as follows.

Definition 6.2.13. [36] Any generalized connection D ∈ D0(C±) determines a pair of
Dirac-type operators

/D
+

: Γ(S+) −→ Γ(S+), /D
−

: Γ(S−) −→ Γ(S−),

given explicitly by

/D
±
α =

r±∑
j=1

ã±j ·D
S±
a±j
α, for α ∈ Γ(S±),

where we choose the orthogonal dual local frames
{
a±j , ã

±
j

}r±
j=1
⊆ Γ (C±) .

Lemma 6.2.14 ([36, Lemma 3.4]). /D
±

are independent of the chosen D ∈ D0 (C±, div).
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Before ending, notice that the canonical operators D±∓ associated to a generalized metric
C± ⊆ E (see Lemma 6.2.10) induce the spin connections

D
S+
− : Γ(S+) −→ Γ(C∗− ⊗ S+), D

S−
+ : Γ(S−) −→ Γ(C∗+ ⊗ S−).

We are ready to introduce the following notion of Killing spinors on Courant algebroids.

Definition 6.2.15. [36] Let E be a Courant algebroid over a spin manifold M . We will
say that a triple (C+, div, η) given by C+ ⊆ E a Riemannian generalized metric with
spinor bundle S±, a divergence operator div : Γ(E) −→ C∞(M), and a non-vanishing
spinor η± ∈ Γ(S±), is a solution of the Killing spinor equations, if

D
S±
∓ η± =0, (6.14)

/D
±
η± =0, (6.15)

where operators D
S±
∓ and /D

±
are defined above. If we have solutions in both C+ and C−,

we will say that we have pairs of solutions of the Killing spinor equations on E.

Notice that, unlike (6.15), the equation (6.14) only depends on the pair (C+, η). Indeed,
by Lemma 6.2.12 and Lemma 6.2.14, the Dirac-type operators depend on div.

6.3 The Hull-Strominger System on Courant Algebroids

Now, we reformulate the Killing spinor equations introduced in Chapter 5 for string
Courant algebroids. These will be related with the twisted Hull-Strominger system. Let
M be an 2n-dimensional smooth spin manifold. Let K be a compact Lie group, and fix
〈·, ·〉 : k ⊗ k −→ R bi-invariant non-degenerate pairing. Consider p : P −→ M principal
K-bundle, and A principal connection on P with associated curvature FA ∈ Ω2(M, adP )
solving (6.2). The Killing spinor equations as introduced in Chapter 5 with these extra
integrability conditions are motivated by the Hull-Strominger system [58, 87]. Its study
was initiated by the works of Fu-Li-Yau [31, 32, 68].

Definition 6.3.1. [39] We say that a triple (Ψ, ω,A), given by an SU(n)-structure (Ψ, ω)
on M compact 2n-dimensional complex manifold, with vanishing first Chern class, and
A principal connection on a principal K-bundle P −→ M , is a solution to the twisted
Hull-Strominger system if

F 0,2
A = 0, FA ∧ ωn−1 = 0,

dΨ− θω ∧Ψ = 0,

dθω = 0,

ddcω − 〈FA ∧ FA〉 = 0.

(6.16)

Here θω is the Lee form (5.4) of ω, and dc := i
(
∂ − ∂

)
is the conjugate differential. In

particular,
dcω (·, ·, ·) = −dω (J ·, J ·, J ·) ,
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where J denotes the complex structure on M . When K = {1} (so, FA = 0), we say that
an SU(n)-structure (Ψ, ω) on M is a solution to the twisted Calabi-Yau equations if

dΨ− θω ∧Ψ = 0,

dθω = 0,

ddcω = 0.

(6.17)

We say that an almost hermitian structure (J, ω) is pluriclosed if ddcω = 0,.

Remark 6.3.2. [39] A solution of the twisted Hull-Strominger with [θω] = 0, is equiva-
lent to a solution of the Hull-Strominger system [39]. If we have a solution to the twisted
Calabi-Yau equations with [θω] = 0, it determines a Kähler-Calabi-Yau structure on M .

These equations are really important for the present work, since these are equivalent to
the Killing spinor equations under certain conditions. LetM be a smooth 2n-dimensional
spin manifold, and P −→M principal K-bundle with K compact Lie group. Remember
that, in even dimensions, a spinor bundle for M decomposes as

S± = S+
± ⊕ S−± ,

where the factors correspond to irreducible spin representations. In these circunstances,
we recover the next result as a consequence of Proposition 5.1.5 and Proposition 5.1.6.

Proposition 6.3.3 ([35, Theorem 1.2]). A solution (C+, div+, η) to the Killing spinor
equations on a transitive Courant algebroid E over a spin manifold M with (C+, div+)
closed and η ∈ Γ

(
S+

+

)
pure is equivalent to a solution (Ψ, ω,A) of the twisted Hull-Stro-

minger system (6.16). In particular, for K = {1}, a solution (C±,div±, η±) of the Killing
spinor equations on E exact Courant algebroid over a spin manifold M for (C±,div±)
closed and η ∈ Γ

(
S+

+

)
pure is equivalent to a solution for the twisted Calabi-Yau equa-

tions (6.17). Here, notice that

div± := div|C± , H = −dcω, div0−div = 2θω.

Remark 6.3.4. Having a solution to the Killing spinor equations of the form (C±,div, η)
on a transitive Courant algebroid E over M is equivalent to Definition 5.1.1 when we
add the integrability condition (6.2). Indeed, notice that we can construct generalized
connections as above from (5.1) and (5.2) using (6.7), since

C+ = {X + g(X) | X ∈ TM} ∼= TM

in transitive Courant algebroids (see [36, Section 3.3] for details). Note that the condition
for C+ to admit an irreducible Clifford module implies that M admits a spin structure.
So, if M is 2n-dimensional and η is pure, we obtain an SU(n)-structure. Now, suppose
that we have pairs of solutions to the Killing spinor equations (C±,div, η±) on a exact
Courant algebroid E over a smooth 2n-dimensional manifold M . In this case, we can
characterize pairs of equations as in Definition 5.1.1 doing the same as above, since we
have isomorphisms π± : C± −→ TM , and

C± = {X ± g(X) | X ∈ TM } ∼= TM, ∇± = ∇g ± 1

2
g−1H, ∇±

1
3 = ∇g ± 1

6
g−1H

makes sense in the exact case. In particular, we obtain an SU(n)× SU(n) structure.
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6.3.1 The F -term Conditions on String Courant Algebroids

Let E be a transitive Courant algebroid over a 2n-dimensional smooth manifold M en-
dowed with a complex structure J . We can consider the complexification E ⊗R C of our
Courant algebroid, which is the C-linear extension of E. Now, we will see what happens
when we introduce an integrability condition for the presented Killing spinor equations.

Definition 6.3.5. [38] An almost lifting of T 0,1M to E ⊗R C is an isotropic subbundle

` ⊆ E ⊗R C

mapping isomorphically to T 0,1M under the C-linear extension of the anchor map. That
is, π(`) = T 0,1M . This one is called integrable, or lifting, if ` is involutive for the Dorfman
bracket. That is, [`, `] ⊆ `. A generalized metric C± ⊆ E is said compatible with J if

` =
{
e ∈ C+ ⊗R C | π(e) ∈ T 0,1M

}
is a lifting of T 0,1M to E⊗RC. So, we have that ` ⊆ C+⊗RC is isotropic and involutive.

Remark 6.3.6. Any solution (ω,Ψ, A) of the twisted Hull-Strominger system (6.16) on
M is equivalent to having a string Courant algebroid E := E−dcω,A for which we have
solutions (g,−dcω,A) and (g,−dcω,A, ω,Ψ) to the F -term and D-term conditions, res-
pectively, with dϕ = 0, where (−dcω,A) satisfies (6.2). In particular,

C+ = {X + g(X) | X ∈ TM} and C− = {X − g(X) + r | X ∈ TM, r ∈ adP}

determine a J-compatible generalized metric C± ⊆ EH,A.

Proposition 6.3.7 ([38, Theorem 7.56]). Any generalized metric C± ⊆ E of the form
(6.5) is compatible with J complex structure on M if and only if the triple (g,H,A)
satisfies H = −dcω and F 0,2

A = 0, where g is compatible with J and ω(·, ·) = g(J ·, ·).
That is, if and only if (g,H,A) satisfies the F -term conditions from Definition 5.1.7.

6.3.2 The D-term Conditions on String Courant Algebroids

Let (g,H,A) be any solution to the F -term conditions onM , and consider the string Cou-
rant algebroid E := EH,A over M . In particular, we can consider

` := e−iω
(
T 1,0M

)
⊆ C+ ⊗R C.

Then, for {zj}nj=1 choice of local holomorphic coordinates on U ⊆M , we can define

εj := eiω
(
∂

∂zj

)
=

∂

∂zj
+ g

∂

∂zj
∈ Γ (U, `) and εj := g−1dzj + dzj ∈ Γ

(
U, `
)

(6.18)

isotropic local frames, for j ∈ {1, . . . , n}, so π (εj) = g−1dzj ∈ T 1,0M , for j ∈ {1, . . . , n}.

Lemma 6.3.8. The frames (6.18) satisfy that

[εj , εk]H,A = 0, for j, k ∈ {1, . . . , n}. (6.19)
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Proof. For j, k ∈ {1, . . . , n}, using the formula in [35, Proposition 4.3], then

[εj , εk]H,A : =

[
eiω
(
∂

∂zj

)
, eiω

(
∂

∂zk

)]
H,A

= eiω

([
∂

∂zj
,
∂

∂zk

]
H+idω,A

)

= eiω
([

∂

∂zj
,
∂

∂zk

]
− FA

(
∂

∂zj
,
∂

∂zk

)
+ ι ∂

∂zk

ι ∂
∂zj

(H + idω)

)
= −F 0,2

A

(
∂

∂zj
,
∂

∂zk

)
+ ι ∂

∂zk

ι ∂
∂zj

(
−i∂ω + i∂ω

)
= 0,

by F -term conditions (5.7), since H = −dcω and F 0,2
A = 0.

Lemma 6.3.9. Let E be a Courant algebroid over M endowed with a Riemannian metric
g, which is compatible with the complex structure J on M . Moreover, assume that M ad-
mits an atlas A of holomorphic coordinates such that the holomorphic Jacobian of any
change of coordinates has constant determinant. In this atlas, we define the isotropic lo-
cal frame {εj , εj}nj=1 as in (6.18) such that satisfies (6.19). Then, the local section

n∑
j=1

[εj , εj ] (6.20)

is global. That is, it does not depend on the frames we have chose.

Proof. For
{
z′j

}n
j=1

other choice of local holomorphic coordinates on U ′ ⊆M such that

ε′j := eiω

(
∂

∂z′j

)
∈∈ Γ

(
U ′, `

)
and ε′j := g−1dz′j + dz′j ∈∈ Γ

(
U ′, `

)
, for j ∈ {1, . . . , n}

is a new isotropic local frames satisfying the same properties above, we must prove that

n∑
j=1

[εj , εj ] =

n∑
j=1

[
ε′j , ε

′
j

]
.

Let us suppose that

ε′j =
n∑
k=1

Akj εk and ε′j =
n∑
k=1

Bk
j εk, for j ∈ {1, . . . , n},

for the matrices

A =
(
Akj

)
j,k∈{1,...n}

, B =
(
Bk
j

)
j,k∈{1,...n}

∈ Matn (C∞(M))

for the change of coordinates. The isotropy condition implies B = A−1. Indeed,

δjk =
〈
ε′j , ε

′
k

〉
=

n∑
m,r=1

AjmB
r
k 〈εm, εr〉 =

n∑
m,r=1

AjmB
r
kδ
m
r =

n∑
m=1

AjmB
m
k .
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Then, by Courant algebroid axioms, (B.10) and Jacobi’s formula (see Appendix B.6),

n∑
j=1

[
ε′j , ε

′
j

]
=

n∑
j=1

 n∑
k,m=1

Ajkπ (εk)
(
Bm
j

)
εm −

n∑
k,m=1

Bm
j π (εm)

(
Ajk

)
εk + [εj , εj ]


+ 2d log detA.

Since detA ∈ C by hypothesis and〈
n∑
j=1

[
ε′j , ε

′
j

]
, ε′k

〉
= 0, for k ∈ {1, . . . , n},

by Courant algebroid axioms and (6.19), everything reduces to prove that

π (εk)
(
Bm
j

)
= 0, for j, k,m ∈ {1, . . . , n}

because Bm
j is antiholomorphic, and π (εk) = ∂k for j, k,m ∈ {1, . . . , n}. Indeed,

∂

∂zj
=

n∑
k=1

∂z′k
∂zj

∂

∂z′k
=

n∑
k=1

(
∂z′k
∂zj

)
∂

∂z′k
, for j ∈ {1, . . . , n}

for our change of coordinates, so, since eiω is C-linear,

εj = eiω
(
∂

∂zj

)
= eiω

(
n∑
k=1

(
∂z′k
∂zj

)
∂

∂z′k

)
=

n∑
k=1

(
∂z′k
∂zj

)
eiω
(

∂

∂z′k

)
=

n∑
k=1

(
∂z′k
∂zj

)
εk,

so
n∑
k=1

Bj
kεk, for j ∈ {1, . . . , n}, so Bj

k =

(
∂z′k
∂zj

)
, for j, k ∈ {1, . . . , n}.

Finally, from above identities, we obtain that

π (εk)
(
Bm
j

)
= g−1 (dzk)

(
Bm
j

)
=

n∑
t=1

gkt
(
∂z′j
∂zm

)
∂

∂zt
=

n∑
t=1

gkt
∂z′j
∂zm

∂

∂zt
= 0,

for j, k,m ∈ {1, . . . , n}, since ∂z′j = 0 thanks to holomorphicity, for j ∈ {1, . . . , n}.

Remark 6.3.10 (Holomorphicity on CA). By the proof of Lemma 6.3.9, we can give
an abstract notion of holomorphicity for a change of frames on any general Courant
algebroid E. Indeed, using the same notations as above, a change of frames on E is said
holomorphic if the matrices A and B satisfy that

π (εk)
(
Bm
j

)
= 0 = π

(
ε′m
) (
Ajk

)
, for j, k,m ∈ {1, . . . , n}.
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At last, we are ready to prove the following key result, where we compute the value of the
section in Lemma 6.3.9. For that, we consider the string Courant algebroid EH,A deter-
mined by a solution (g,H,A) to the F -term conditions. We have σ+ : TM −→ C+ the
isomorphism given by the generalized metric (6.5). Even more, define

σ−(X) := X − g(X) ∈ C−, for X ∈ X(M).

Notice that this only gives an isomorphism when E is exact. We have the following.

Lemma 6.3.11 ([36, Equation (7.5)]). The Bismut connection (5.10) satisfies that

[σ−(X), σ+(Y )]H,A = σ+

(
∇+
XY − g

−1 〈ιY FA, r〉
)
, for X,Y ∈ X(M). (6.21)

Lemma 6.3.12. Let M be a complex manifold of complex dimension n. Let (Ψ, ω) be an
SU(n)-structure on M satisfying (5.9). Assume that (g,H,A) is a solution of the F -term
conditions, with g = ω(·, J), and consider the associated Courant algebroid E = EH,A.
Now, take the involutive and isotropic frames (6.18) constructed via the atlas in Lemma
5.2.2. Then, the global section (6.20) is given by

n∑
j=1

[εj , εj ]H,A = σ+

(
g−1

(
θ1,0
ω

))
− σ−

(
g−1 (θω)

)
+ iΛωFA ∈ Γ(E ⊗R C). (6.22)

Proof. Consider w := σ−(v) ∈ Γ(C− ⊗R C). By (6.21), using Courant algebroid axioms,〈
n∑
j=1

[εj , εj ]H,A , w

〉
=

n∑
j=1

〈
εj ,

[
σ−(v), σ+

(
∂

∂zj

)]
H,A

〉

=
n∑
j=1

〈
g−1dzj + dzj , σ+

(
∇+
v

∂

∂zj
− g−1

〈
ι ∂
∂zj

FA, r

〉)〉

=
n∑
j=1

dzj

(
∇+
v

∂

∂zj

)
− g

(
g−1

〈
ι ∂
∂zj

FA, r

〉
, g−1dzj

)

= ∆−
n∑
j=1

〈
FA

(
∂

∂zj
, g−1dzj

)
, r

〉
,

where

∆ =

n∑
j=1

dzj

(
∇+
v

∂

∂zj

)
.

Suppose without loss of generality that v is real. Then,

∆ =

n∑
j=1

dzj

(
∇+
v

∂

∂zj

)
.
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Let ∇B′ be the connection in K−1
M = ΛnT 1,0M induced by ∇+. Taking traces,

∇B′ (Φ) = dΦ +
n∑

i,j=1

(
Γijidzj ⊗ Φ + Γi

ji
dzi ⊗ Φ

)
, for Φ ∈ Γ

(
K−1
M

)
,

where the Christoffel symbols are defined by

n∑
i=1

Γijk
∂

∂zi
:= ∇B′∂

∂zj

(
∂

∂zk

)
,

n∑
i=1

Γi
jk

∂

∂zi
:= ∇B′∂

∂zj

(
∂

∂zk

)
, for j, k ∈ {1, . . . , n}.

So, ∇Bv = ιvd + ∆. Let ∇c be the Chern connection on KM . By Gauduchon’s formula
[42, Equation (2.7.6)], since Ω = e−fωΨ is holomorphic with ‖Ω‖ω = e−fω , we have that
∇c = d− 2∂fω, which implies that the connection ∇B in KM induced by ∇+ is given by

∇B = d− 2∂fω − id∗ω = d− dfω = d− θω,

so ∇B′ = d+θω, which is real. In conclusion, we have obtained that ∆ = ∆ = θω(v). The
other quantity is proportional to ΛωFA, defined by (5.5). Even more, for any

F =

n∑
i,j=1

Fijdzi ∧ dzj ∈ Ω1,1(M),

we have that

iΛωF =
n∑
j=1

F

(
∂

∂zj
, g−1dzj

)
.

We can compute this for a neighbourhood of p ∈M such that

ω|p =
i

2

n∑
j=1

dzj ∧ dzj .

In summary, for any w := σ−(v) ∈ Γ(C− ⊗ C) is satisfied that〈
n∑
j=1

[εj , εj ]H,A , w

〉
= θω(v)− i 〈ΛωFA, w〉 .

Now, notice that by Courant algebroid axioms and (6.19),〈
n∑
j=1

[εj , εj ]H,A , εk

〉
=

n∑
j=1

〈
εj , [εk, εj ]H,A

〉
= 0, for k ∈ {1, . . . , n}.

At last, since εk = 2dzk+σ−
(
g−1dzk

)
, for k ∈ {1, . . . , n}, by Courant algebroid axioms,

holomorphicity and (6.21), since dzk is exact,〈
n∑
j=1

[εj , εj ]H,A , εk

〉
=

n∑
j=1

〈
εj , [εk, εj ]H,A

〉
=

n∑
j=1

〈
εj ,
[
σ−
(
g−1dzk

)
, εj
]
H,A

〉
=

n∑
j=1

dzj

(
∇+
g−1dzk

∂

∂zj

)
= θ1,0

ω

(
g−1dzk

)
, for k ∈ {1, . . . , k}.
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In summary, we conclude that

n∑
j=1

[εj , εj ]H,A = θω + θ1,0
ω − g−1θ0,1

ω + iΛωFA.

Notice that, from (6.22), we obtain that〈
n∑
j=1

[εj , εj ]H,A ,

n∑
j=1

[εj , εj ]H,A

〉
= −2g

(
θ0,1
ω , θ1,0

ω

)
=: −‖θω‖2g. (6.23)

In summary, we have arrived at the following result.

Proposition 6.3.13. With the hypotheses of Lemma 6.3.12, let ϕ = −θω ∈ Γ(E) be the
section associated to minus the closed Lee form. Then, if (g,H,A, ω,Ψ) is a solution to
the D-term conditions from Definition 5.1.8, the identity (6.22) is equivalent to

1

2

n∑
j=1

[εj , εj ]H,A = π`ϕ− ϕ, (6.24)

where π` : EH,A ⊗R C −→ ` denotes the canonical projection. Moreover, we have that

[ϕ, ·]H,A = 0 and 〈ϕ,ϕ〉 = 0.

Proof. The fisrt part of the statement follows directly by Lemma 6.3.12. Indeed, we have
that the two equations (6.22) and (6.24) are equivalent when ϕ = −θω and ΛωFA = 0.
The last part of the statement follows from dθω = 0, by the formula for the pairing (6.3)
and the bracket (6.4) corresponding to string Courant algebroids.

6.3.3 The F -term and D-term Conditions on Complex CAs

We are going to write in a formal set-up the F -term and D-term conditions in Section
5.1.1 for transitive Courant algebroids. Note that the following reformulation makes per-
fect sense for general Courant algebroids over smooth manifolds. Fix Ec complex (transi-
tive) Courant algebroid over M smooth manifold (see [37] for more information on this).
Let

L =
{
l ⊕ l ⊆ Ec

∣∣ l, l are isotropic and 〈·, ·〉|l⊕l is non-degenerate
}

be the space of non-degenerate isotropic subbundles. By definition, given an element
C+ := l ⊕ l ∈ L, we have a canonical identification l∗ ∼= l. We will write

π+ : Ec −→ C+, πl : E
c −→ l, πl : E

c −→ l

for the orthogonal projections, which exist by assumption. So, when there is no possible
confusion, we will use the simplified notation

a+ = π+a, al = πla, al = πla, for a ∈ Γ(Ec). (6.25)
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Definition 6.3.14. [2] We say that an element l⊕ l ∈ L satisfies the (algebraic) F-term
condition if

[l, l] ⊆ l,
[
l, l
]
⊆ l. (6.26)

We will use a weaker variant of (6.26). Explicitly, we will refer independently to the
condition

[l, l] ⊆ l ⊕ l,
[
l, l
]
⊆ l ⊕ l, (6.27)

Remark 6.3.15. Note that the weaker variant of the F -term condition (6.27) is equiva-
lent to [(

l ⊕ l
)⊥
, l
]

+
⊆ l,

[(
l ⊕ l

)⊥
, l
]

+
⊆ l.

Now, given l ⊕ l ∈ L, we fix a dual isotropic frame {εj , εj}dim l
j=1 of l ⊕ l. So, we have

〈εj , εk〉 = 0, 〈εj , εk〉 = δkj , 〈εj , εk〉 = 0, for j, k ∈ {1, . . . ,dim l}. (6.28)

Suppose that M admits an atlas of holomorphic coordinates such that the holomorphic
Jacobian of any change of coordinates has constant determinant, for which we can cons-
truct the dual isotropic frame {εj , εj}dim l

j=1 of l ⊕ l as in (6.18) such that satisfies

[εj , εk] = 0, for j, k ∈ {1, . . . ,dim l}. (6.29)

The first part of Proposition 6.3.13 motivates the following notion.

Definition 6.3.16. We say that l⊕ l ∈ L satisfies the (algebraic) D-term condition with
Lee form ϕ ∈ Γ(Ec) if, for {εj , εj}dim l

j=1 of l ⊕ l any frame as in (6.28),

1

2

dim l∑
j=1

[εj , εj ] = ϕl − ϕ. (6.30)

We have that the left-hand side of (6.30) is a well-defined section by Lemma 6.3.9. We
will use a weaker variant of (6.30). Explicitly, we will refer independently to the condition

1

2

dim l∑
j=1

[εj , εj ] + ϕ ∈ l ⊕ l, (6.31)

The following notion will be used independently in the present thesis when we arrive at
Chapter 10, although it follows directly by Proposition 6.3.13 in the given conditions.

Definition 6.3.17. Any element a ∈ Γ(Ec) is said to be closed if

[a, e] = 0, for e ∈ Γ(Ec), and 〈a, a〉 = 0. (6.32)

The presented viewpoint will be useful in Chapter 10 to construct embeddings of SUSY
vertex algebras from F -term and D-term conditions in the most general set-up. In other
words, we will forget the underlying manifold M to construct embeddings from a general
Courant algebroid to which we can endow the presented different conditions.
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Chapter 7

The Killing Spinor Equations on
Quadratic Lie Algebras

Now, we will study the Killing spinor equations over a real quadratic Lie algebra (g, (·|·)).
An important feature of the Killing spinor equations in this case is that they can be regar-
ded as algebraic conditions on the quadratic Lie algebra. We will focus on the equations
for pure spinors when the rank of the generalized metric g = V+⊕ V− is even (that is, if
dimV+ = 2n+ for n+ ∈ N). This content appeared in [2, Section 2].

7.1 Killing Spinors on Quadratic Lie Algebras

We will study several notions introduced in Chapter 6 when the base manifold is a point.
In this case, a Courant algebroid becomes a real quadratic Lie algebra (see Remark 6.1.3),
and the main concepts introduced in Chapter 6 become purely algebraic. Let (g, (·|·)) be
a real quadratic Lie algebra (see Definition 1.4.1). We introduce the following notions.

Definition 7.1.1. [2] We have the following:

� A generalized metric on g is an orthogonal decomposition

g = V+ ⊕ V−,

so that the restriction of (·|·) to V± is non-degenerate. We say that the generalized
metric is Riemannian if (·|·)|V+

is positive definite, and (·|·)|V− is negative definite.

� A divergence on g is an element α ∈ g∗.

� Let g = V+⊕V− be a generalized metric and Cl (V±) be the complex Clifford alge-
bras of V±⊗RC (see Definition 4.2.1). Fix irreducible representations S± of Cl (V±).
Their elements η± ∈ S± are called spinors.

Given a generalized metric V± ⊆ g, the associated orthogonal projections will be denoted
by

π± : g −→ V±.
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When there is no possibility of confusion, we will use the shorter notation

a± = π±a, for a ∈ g.

In the sequel we will only consider Riemannian metrics, but a similar analysis can be
carried out in other signatures. Observe that a generalized metric is uniquely determined
by a choice of the positive-definite subspace V+ ⊆ g. We will identify divergences with
elements a ∈ g via the isomorphism g ∼= g∗ induced by the bilinear form (·|·).

Definition 7.1.2. [2] Let V+ ⊆ g be a generalized metric. We will say that a ∈ g is an
infinitesimal isometry of V+ if

[a, V±] ⊆ V±.

In this case, we will say that (V+, a) is a compatible pair.

Definition 7.1.3. [2] We have the following:

� A generalized connection on g is a linear map D : g −→ g∗ ⊗ g such that

(Dab| c) + (b |Dac) = 0, for a, b, c ∈ g.

The notation Dab stands for the elements in g obtained from a and Db given above
via the natural duality pairing g⊗ g∗ −→ R. The space of connections is denoted
by D(g), and can be canonically identified with g∗ ⊗ Λ2g.

� Given a generalized connection D, its torsion TD ∈ Λ3g∗ is defined by

TD(a, b, c) = (Dab−Dba− [a, b]| c) + (Dca| b) , for a, b, c ∈ g.

Let V+ ⊆ g be a generalized metric. A generalized connection D is said V+-compatible if
D(V±) ⊆ g∗ ⊗ V±. The space of V+-compatible connections is D(V+), while the space of
torsion-free V+-compatible connections is

D0 (V+) = {D ∈ D(V+) | TD = 0} .

Now, fix V+ ⊆ g any generalized metric. Notice that there is a canonical identification

D(V+) ∼= g∗ ⊗
(
Λ2V+ ⊕ Λ2V−

)
,

so any D ∈ D(V+) splits into four mixed-type and pure-type operators

D+
− ∈ V ∗− ⊗ Λ2V+, D−+ ∈ V ∗+ ⊗ Λ2V−,

D+
+ ∈ V ∗+ ⊗ Λ2V+, D−− ∈ V ∗− ⊗ Λ2V−.

By Lemma 6.2.10, both mixed-type operators D±∓ are uniquely determined by the genera-
lized metric V+ ⊆ g for any element D ∈ D0(V+). Indeed,

Da−b+ = [a−, b+]+ , Da+b− = [a+, b−]− , for a, b ∈ g.
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Now, note that any connection D ∈ D(g) determines a divergence αD by the formula

αD(a) = −trDa, for a ∈ g.

Given V+ ⊆ g a generalized metric and ε ∈ g a divergence, we denote by

D0(V+, ε) =
{
D ∈ D0(V+) | trD = − (ε|·)

}
the space of torsion-free V+-compatible generalized connections with a fixed divergence.
By Lemma 6.2.12, we can define an element D ∈ D0(V+, ε), for a, b ∈ g, by

Dab = Da−b+ +Da+b− +
1

3

(
[a+, b+]+ + [a−, b−]−

)
+
φ
ε+
a+b+

n+ − 1
+
φ
ε−
a−b−

n− − 1
, (7.1)

where n± = dimV± and φε± ∈ V ∗± ⊗ Λ2V± and are defined from ε ∈ g by

φε±a±b± := (a±|b±) ε± − (ε±|b±) a±, for a, b ∈ g. (7.2)

Consider Cl(V±) the associated complex Clifford algebras, and fix irreducible representa-
tions S± of Cl(V±). For any choice of D ∈ D(V+), consider the induced spin connections

D
S+
+ ∈ V ∗+ ⊗ End(S+), D

S−
− ∈ V ∗− ⊗ End(S−).

Fix
{
a±j

}n±
j=1

an orthogonal basis of V± with dual basis
{
aj±

}n±
j=1

.

Definition 7.1.4. [2] Given D ∈ D0(V+, ε), we define a pair of Dirac-type operators

/D
+ ∈ End(S+), /D

− ∈ End(S−),

given explicitly by

/D
±
η± =

n±∑
j=1

aj± ·D
S±
a±j
η±, for η± ∈ S±,

where · denotes the Clifford multiplication.

This construction is independent of the chosen basis. Furthermore, these Dirac operators
are independent of the choice made for D ∈ D0(V+, ε) by Lemma 6.2.14. We are ready
to write the desired equations. Notice that the Dirac-type operators depend only on the
divergence ε ∈ g (more explicitly, on the projections ε± = π±ε). The canonical operators
D±∓ associated to V+ ⊆ g generalized metric induce for S± the spin connections

D
S+
− ∈ V ∗− ⊗ End(S+), D

S−
+ ∈ V ∗+ ⊗ End(S−).

Definition 7.1.5. [2] We say that a triple (V+, ε, η±) given by V+ ⊆ g generalized metric
for which there exists the spinor bundle S±, a divergence ε± ∈ g, and a non-vanishing
spinor η± ∈ S±, is a solution of the Killing spinor equations, if

D
S±
∓ η± =0, (7.3)

/D
±
η± =0, (7.4)

where the operators D
S±
∓ and /D

±
are defined above. When we have solutions in both V+

and V−, we say that we have pairs of solutions of the Killing spinor equations on g.
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Now, we will give a more amenable characterization of these equations for the quadratic
Lie algebra case, something that we cannot do for general Courant algebroids.

Lemma 7.1.6 ([2, Lemma 2.14]). A pair (V+, η±), given by a generalized metric V+ ⊆ g
and a non-vanishing spinor η± ∈ S±, is a solution of (7.3) if and only if

D±∓ ∈ V ∗∓ ⊗ LieGη± ,

where Gη± ⊆ Spin(V±) is the stabilizer of η±. More explicitly, (7.3) is equivalent to

n±∑
j,k=1

([
b∓, a

±
j

] ∣∣∣ak±) ak±a±j · η± = 0,

for any choice of orthogonal basis
{
a±j

}n±
j=1

of V± with dual basis
{
aj±

}n±
j=1

and b± ∈ V±.

Proof. The first part of the statement follows simply from the identity (4.3), since

LieGη =
{
B ∈ Λ2V±

∣∣ B · η = 0
}
.

As for the second part, an endomorphism A ∈ End(V±) satisfies

A =

n±∑
j,k=1

(
Aa±j

∣∣∣ak±)(aj±∣∣∣ ·)⊗ a±k .
Since (

aj±

∣∣∣ ·)⊗ a±k − (ak±∣∣∣ ·)⊗ a±j ∈ so(V±), for j, k ∈ {1, . . . , n±}

embeds as 1
2a

j
±a
±
k in Cl(V±), an endomorphism A ∈ so(V±) corresponds to

A =
1

4

n±∑
j,k=1

(
Aa±j

∣∣∣ak±) ak±a±j ∈ Cl(V±).

Then, given a spinor η± ∈ S±, we have for b± ∈ V± that

D±b∓η± =
1

4

n±∑
j,k=1

([
b∓, a

±
j

] ∣∣∣ak±) ak±a±j · η±.
Lemma 7.1.7 ([2, Lemma 2.16]). A triple (V+, ε, η±) as in Definition 7.1.5 is a solution
of (7.4) if and only if

1

6

n±∑
i,j,k=1

([
a±k , a

±
i

] ∣∣∣aj±) ak±aj±a±i · η± = ε± · η±,

for any choice of orthogonal basis
{
a±j

}n±
j=1

of V± with dual basis
{
aj±

}n±
j=1

.
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Proof. Consider D ∈ D(V+, ε) in (7.1). Arguing as in Lemma 7.1.6, for any b± ∈ V±,

D
S±
b±
η =

1

12

n±∑
j,k=1

([
b±, a

±
j

] ∣∣∣ak±) ak±a±j · η±
+

1

4(n± − 1)

n±∑
j,k=1

((
b±

∣∣∣a±j )(ε± ∣∣∣ak±)− (ε+

∣∣∣a±j )(b± ∣∣∣ak±))ak±a±j · η±
=

1

12

n±∑
j,k=1

([
b±, a

±
j

] ∣∣∣ak±) ak±a±j · η± +
1

4(n± − 1)
(ε±b± − b±ε±) · η±.

Hence, setting

C± :=
1

12

n±∑
i,j,k=1

([
a±k , a

±
i

] ∣∣∣aj±) ak±aj±a±i · η±,
we have

/D
±
η± = C± +

1

4(n± − 1)

n±∑
j=1

aj±(ε±a
±
j − a

±
j ε±) · η±

= C± +
1

4(n± − 1)

n±∑
j=1

(
2
(
ε±

∣∣∣aj±) a±j − 2ε±

)
· η± = C± −

1

2
ε±η±.

We conclude the section by showing that there exists a perfect match between the geome-
tric Definition 6.2.15, and the algebraic Definition 7.1.5, provided that we consider invari-
ant solutions of (6.14) and (6.15) on homogeneous manifolds.

Definition 7.1.8. Let M be a manifold equipped with an action of a Lie group K. A
Courant algebroid E over M is equivariant if it is equipped with a lift of the K-action
on M that preserves its Courant algebroid structure.

Proposition 7.1.9 ([2, Proposition 4.5]). Let M be a smooth oriented spin manifold,
endowed with a left-transitive action of the Lie group K. Let E be an exact equivariant
Courant algebroid over M . Then, the space of invariant sections

g = Γ(E)K

of E, endowed with the induced bracket and pairing, defines a real quadratic Lie algebra.
Furthermore, there is a one-to-one correspondence between the invariant solutions to the
equations in Definition 6.2.15, and the solutions to the equations in Definition 7.1.5.

Proof. The first part of the statement is straightforward from the axioms of a Courant
algebroid, transitivity of the action, and the equivariance of E. As for the second part,
it follows from the natural construction of the operators D

S±
∓ and /D

±
using torsion-free

generalized connections done in Chapter 6. Observe here that an invariant generalized
connection on E corresponds to an element D ∈ g∗⊗Λ2g as in Definition 7.1.3. Similarly,
for an invariant pair (C±,div±), one has

div0|V± −div± = 〈e±, ·〉 ∈ C∗±.
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7.2 The F -term and D-term Conditions on QLAs

Given (g, (·|·)) real quadratic Lie algebra, we fix g = V+⊕V− a generalized metric and an
orientation on V±. Let Cl(V±) be the complex Clifford algebras of V± and fix irreducible
representations S±. Assuming that dimV± = 2n± for n± ∈ N, we have that S± split as
irreducible Spin(2n±)-representations by

S± = S+
± ⊕ S−± , (7.5)

which corresponds to the (±1)-eigenspaces for the action of the complex volume form

ν±C = in±a±1 · · · a
±
2n±

,

for a choice of an oriented orthonormal basis
{
a±j

}n±
j=1
⊆ V±. That is, a basis satisfying

(
a±j

∣∣∣ a±k ) = δkj , for j, k ∈ {1, . . . , n±}.

Let η± ∈ S± be now a pure spinor. By Lemma 4.2.6, it must have definite chirality. So,
either η± ∈ S+

± or η± ∈ S−± . We know that η± ∈ S+
± has isotropy group Gη± = SU(n±)

in Spin(2n±) by Lemma 4.2.7. In particular, η± determines an almost complex structure
J on V± compatible with (·|·)|V± and the orientation, such that the decomposition

V C
± := V± ⊗R C = V 1,0

± ⊕ V 0,1
±

in (±i)-eigenspaces is determined by

V 1,0
+ =

{
a+ ∈ V C

+

∣∣∣ a+ · η+ = 0
}

and V 0,1
− =

{
a− ∈ V C

−

∣∣∣ a− · η− = 0
}
.

Our goal is to characterize the Killing spinor equations in terms of this SU(n±)-structure.
We fix a pure spinor η ∈ S+

+ (the case η ∈ S+
− is analogue). Then, we have a model

S+ = Λ∗V 0,1
+

in terms of the almost complex structure J on V+ determined by this spinor, with Clifford
action

a+ · σ =
√

2ι(a1,0
+ |·)σ +

√
2a0,1

+ ∧ σ, for σ ∈ S+, a+ ∈ V 1,0
+ .

Here (·|·) denotes the C-linear extension of the pairing to the complexification V C
+ , which

is a symmetric tensor of type (1, 1). With this identification, (7.5) corresponds to

Λ∗V 1,0
+ = ΛevenV 0,1

+ ⊕ ΛoddV 0,1
+ .

By Lemma 4.2.8, in this model η = λ ∈ C− {0}. We fix an oriented orthonormal basis{
a+

1 , Ja
+
1 , . . . , a

+
n+
, Ja+

n+

}
⊆ V C

+
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for (·|·)|V+
, with associated basis

{
ε+j

}n+

j=1
⊆ V 1,0

+ and
{
ε+j

}n+

j=1
⊆ V 0,1

+ defined by

ε+j =
1√
2

(
a+
j − iJa

+
j

)
and ε+j = ε+j =

1√
2

(
a+
j + iJa+

j

)
, for j ∈ {1, . . . , n+}.

Notice that the C-linear extension of our pairing satisfies(
ε+j

∣∣∣ ε+k ) = 0,
(
ε+j

∣∣∣ ε+k ) = δkj ,
(
ε+j

∣∣∣ ε+k ) = 0, for j, k ∈ {1, . . . , n+}.

So, we have an isotropic basis. With the previous notation, we have the next result.

Proposition 7.2.1 ([2, Proposition 2.19]). Let (V+, ε±, η) be a triple, where we have
dimV± = 2n± and η± ∈ S+

± pure. Then, (V+, ε±, η) is a solution of the Killing spinor
equations if and only if

F )
[
V 0,1
± , V 0,1

±

]
⊆ V 0,1

± , D)
i

2

n±∑
j=1

[
ε±j , ε

±
j

]
= ∓Jε±. (7.6)

Proof. We start proving that the pair (V+, η±), with dimV± = 2n± and η± ∈ S+
± pure,

is a solution of the gravitino equation (7.3) if and only if the conditions

F1)
[
V 0,1
± , V 0,1

±

]
⊆ V C

± , D1)

n±∑
j=1

[
ε±j , ε

±
j

]
∈ V C
± (7.7)

are satisfied. Assume η ∈ S+
+ . Given a− ∈ V−, define τ ∈ Λ2V+ by the formula

τ(b+, c+) = ([a−, b+] |c+) , for b+, c+ ∈ V+.

We have identified V+
∼= V ∗+ with the isomorphism given by the induced metric on V+.

Then, by Lemma 7.1.6, there exists λ ∈ C∗ such that gravitino equation is equivalent to

τ · η = τ · λ = 0.

Decompose τ as
τ = τ2,0 + τ1,1 + τ0,2,

where τ0,2 = τ2,0. Using

εj · 1 = 0,

εj · 1 =
√

2εj ,

εjεk · 1 = 2δkj ,

we obtain

τ · η = 2λτ0,2 + 2λ

n+∑
j=1

τ1,1(εj , εj).
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Thus τ · η = 0 holds if and only if

0 = τ
(
b0,1+ , c0,1

+

)
=
([
a−, b

0,1
+

]∣∣∣ c0,1
+

)
=
(
a−

∣∣∣[b0,1+ , c0,1
+

])
,

0 =

n+∑
j=1

(a− |[εj , εj ] ) ,

for all b+, c+ ∈ V C
+ . The statement follows from the fact that a− can be chosen arbitrarily.

Similarly, η ∈ S+
− pure is a solution of the gravitino equation if and only if

F1)
[
V 1,0
− , V 1,0

−

]
⊆ V C

− , D1)

n−∑
j=1

[
ε−j , ε

−
j

]
∈ V C
− .

Now, we will prove that the triple (V+, ε±, η±), with dimV± = 2n± and η± ∈ S+
± pure,

is a solution of the dilatino equation (7.4) if and only if the conditions

F2)
[
V 0,1
± , V 0,1

±

]
+
⊆ V 0,1

± , D2)
i

2

n±∑
j=1

[
ε±j , ε

±
j

]
+

= ∓Jε± (7.8)

are satisfied. Assume η ∈ S+
+ . Define H ∈ Λ3V+ by the formula

H(a+, b+, c+) = ([a+, b+] |c+) , for a+, b+, c+ ∈ V+.

Then, by Lemma 7.1.7, the dilatino equation is equivalent to

1

6
H · λ = ε+ · λ.

Decompose H as
H = H3,0 +H2,1 +H1,2 +H0,3,

where H3,0 = H0,3 and H2,1 = H1,2. Using

ε+j ε
+
k ε

+
l · 1 = 2

√
2δlkε

+
j ,

ε+j ε
+
k ε

+
l · 1 = 2

√
2
(
δkj ε

+
l − δ

l
jε

+
k

)
,

we obtain

(H − 6ε+) · η = λ2
√

2

H0,3 +
3

2

n+∑
j=1

H1,2
(
ε+j , ε

+
j

)
− 3ε0,1

+

 .

Thus (H − 6ε+) · η = 0 holds if and only if

0 = H
(
a0,1

+ , b0,1+ , c0,1
+

)
=
([
a0,1

+ , b0,1+

]∣∣∣ c0,1
+

)
,

0 =

n+∑
j=1

(
a1,0

+

∣∣∣[ε+j , ε+j ])− 2
(
a1,0

+

∣∣∣ ε0,1
+

)
,
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for a+, b+, c+ ∈ V C
+ . Using the orthogonal decomposition g ⊗R C = V C

+ ⊕ V C
− , and the

fact that (·|·)|V+
is of type (1, 1), we see that the dilatino equation is equivalent to

[
V 0,1

+ , V 0,1
+

]
+
⊆ V 0,1

+ and
1

2

n+∑
j=1

[
ε+j , ε

+
j

]0,1

+
= ε0,1

+ .

Using now

i
[
ε+j , ε

+
j

]
= −i

[
ε+j , ε

+
j

]
= i
[
ε+j , ε

+
j

]
for j ∈ {1, . . . , n+}, it follows that

−Jε+ = iε0,1
+ + iε0,1

+ =
i

2

n+∑
j=1

([
ε+j , ε

+
j

]0,1

+
+
[
ε+j , ε

+
j

]1,0

+

)
=
i

2

n+∑
j=1

[
ε+j , ε

+
j

]
+
.

Similarly, a pure spinor η ∈ S+
− is a solution of the dilatino equation if and only if

F2)
[
V 1,0
− , V 1,0

−

]
−
⊆ V 1,0

− , D2)
i

2

n−∑
j=1

[
ε−j , ε

−
j

]
−

= Jε−.

The desired result follows now by comparing (7.6) with (7.7) and (7.8).

Remark 7.2.2. Let (V+, ε±, η±) be any solution of the Killing spinor equations as in
Proposition 7.2.1, and let η′± ∈ S−± be a pure spinor in the line corresponding to −J . It
follows from (7.6) that (V+, ε±, η

′
±) is also a solution of the Killing spinor equations.

7.2.1 The F -term and D-term Conditions on Complex QLAs

The study above suggests a weaker version of the Killing spinor equations, which forgets
about the real structure underlying the complex quadratic Lie algebra g⊗RC, taking as
main object the isotropic subspace V 1,0

+ ⊆ g⊗RC. This alternative point of view is more
flexible, allowing to work over an arbitrary field of characteristic zero. Let g be a quadra-
tic Lie algebra over a field C of characteristic zero. We consider the space

L =
{
l ⊕ l ⊆ g

∣∣ l, l are isotropic and (·|·)|l⊕l is non-degenerate
}

of non-degenerate isotropic subspaces. By definition, given an element V+ := l ⊕ l ∈ L,
we have a canonical identification l∗ ∼= l. We will write

π+ : g −→ V+, πl : g −→ l, πl : g −→ l

for the orthogonal projections, which exist by assumption. When there is no possible con-
fusion, we will use the simplified notation

a+ = π+a, al = πla, al = πla, for a ∈ g.

Since the (algebraic) F -term conditions for quadratic Lie algebras coincide with the ones
for Courant algebroids in Definition 6.3.14, we will not repeat them here.
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Definition 7.2.3. [2] Any element a ∈ g is said to be

1. an infinitesimal isometry if [
a, l ⊕ l

]
⊆ l ⊕ l. (7.9)

2. holomorphic if
[a, l] ⊆ l,

[
a, l
]
⊆ l. (7.10)

Note that condition (7.10) implies (7.9). Moreover, the condition (6.32) for quadratic Lie
algebras implies (7.10). Notice that the previous notion gives a “holomorphic counter-
part” to Definition 7.1.2. Indeed, in the following result we will study a salient feature of
holomorphicity for a divergence ε ∈ g in terms of the derived Lie subalgebras

[l, l] ,
[
l, l
]
⊆ g.

Lemma 7.2.4 ([2, Lemma 2.26]). Assume that ε ∈ g is a holomorphic divergence. Then,
ε is orthogonal to the derived Lie subalgebras of l and l. That is,

ε ∈ [l, l]⊥ ∩
[
l, l
]⊥
. (7.11)

Proof. It is a consequence of the invariance for (·|·) and the isotropic condition on l, l.

Now, given l⊕ l ∈ L, we fix a dual isotropic basis {εj , εj}dim l
j=1 of l⊕ l. So, we have (3.8).

Definition 7.2.5. [2] We say that an element l⊕ l ∈ L satisfies the (algebraic) D-term
condition with divergence ε ∈ l ⊕ l if, for {εj , εj}dim l

j=1 of l ⊕ l any basis as in (3.8),

1

2

dim l∑
j=1

[εj , εj ] = εl − εl. (7.12)

We will use weaker variants of (7.12). Explicitly, we will refer independently to the two
conditions

dim l∑
j=1

[εj , εj ] ∈ l ⊕ l, (7.13)

and

1

2

dim l∑
j=1

[εj , εj ]+ = εl − εl. (7.14)

All vectors (7.12), (7.13) and (7.14) are basis independent. Indeed, the same proof as in
Remark 3.1.2 for dual basis works here. This formal set-up was applied in [2] to obtain
embeddings from the N = 2 superconformal vertex algebras into the superaffinization of
quadratic Lie algebras, provided that both the F -term and the D-term conditions are sa-
tisfied. The main results of this thesis will extend these embeddings to transitive Courant
algebroids using the results of Chapter 6. To obtain these new embeddings, we will need
some background about generalized Kähler geometry and the chiral de Rham complex.
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Generalized Kähler Geometry

Now, we will review the basics of the theory of generalized Kähler metrics on exact Cou-
rant algebroids, following [50]. This will be useful to understand the embeddings of SUSY
vertex algebras into the chiral de Rham complex we are going to build on.

8.1 Generalized Complex Geometry

We will give notions for almost generalized complex and Dirac structures. We also need
a notion of integrability. We describe generalized complex structures in terms of spinors.

Definition 8.1.1. [38] Given E an exact Courant algebroid over M smooth manifold,
an almost generalized complex structure on E is J ∈ Γ(EndE) such that

(1) J 2 = − Id.

(2) 〈J a,J b〉 = 〈a, b〉 for a, b ∈ Γ(E). That is, J is orthogonal with respect to 〈·, ·〉.

Notice that the manifold M must be 2n-dimensional to admit such J ∈ Γ(EndE).

Lemma 8.1.2 ([38, Section 7.1.1]). An almost generalized complex structure on E exact
Courant algebroid is equivalent to either:

(1) a reduction of the frames to a maximal compact subgroup U(n, n) ⊆ O(2n, 2n).

(2) a maximal isotropic subbundle L ⊆ E ⊗ C satisfying L ∩ L = {0}.

Example 8.1.3 ([38] Examples of Almost Generalized Complex Structures).
Let M be a smooth manifold, with J almost complex structure and ω ∈ Ω2(M). Then,

JJ :=

(
J 0
0 −J∗

)
,Jω :=

(
0 −ω−1

ω 0

)
∈ Γ(End (TM ⊕ T ∗M))

define two almost generalized complex structure on the standard Courant algebroid.
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8.1.1 Dirac Structures and Integrability

The equivalent condition of having a maximal isotropic subbundle L ⊆ E ⊗C for which
L ∩ L = {0} gives us the integrability condition for generalized complex manifolds.

Definition 8.1.4. [38] Let E be an exact Courant algebroid. An almost Dirac structure
on E is a subbundle L ⊆ E, which is maximally isotropic with respect to 〈·, ·〉. We say
that L is an integrable Dirac structure if L is involutive. That is, [L,L] ⊆ L.

Let us consider (TM ⊕ T ∗M, 〈·, ·〉 , [·, ·]H , π) exact Courant algebroid with closed 3-form
H ∈ Λ3T ∗M . For C ⊆ TM a subbundle and φ ∈ Λ2C∗, define the almost Dirac structure

L(C, φ) := {X + ζ ∈ C ⊕ T ∗M | ζ|U = φ(X, ·)} .

Lemma 8.1.5 ([38, Proposition 7.13]). Every maximal isotropic L ⊆ TM ⊕ T ∗M with
respect to 〈·, ·〉 is of the form L(C, φ). Moreover, this is integrable if and only if:

(1) The subbundle C is closed under the Lie bracket between fields.

(2) It is satisfied that ιY ιX(H + dφ) = 0 for all X,Y ∈ Γ(C).

Now, we can give the notion of integrability for almost generalized complex structures.

Definition 8.1.6. [38] For E exact Courant algebroid, we say that an almost generalized
complex structure J on E is integrable if the (+i)-eigenbundle L ⊆ E⊗C is an integrable
Dirac structure. An integrable J on E will be called a generalized complex structure.

Example 8.1.7 ([38] Examples of Generalized Complex Structures). Let M be
smooth, with JJ ,Jω the almost generalized complex structures as in Example 8.1.3,

� J is integrable if and only if JJ is integrable.

� ω is symplectic if and only if Jω is integrable.

8.1.2 Spin Formulation

Let Cl(E) be the Clifford bundle of E exact Courant algebroid determined by a closed
3-form H, which is defined using the identification (4.1). In particular, remember that
we can identify E = TM ⊕ T ∗M via the H-twisted bracket. Furthermore, consider

Spin(E) = {v1 · · · v2k ∈ Cl∗(E)| vj ∈ E, k ∈ N, 〈vj , vj〉 = ±1 for j ∈ {1, . . . , 2k}} ,

the associated spin bundle. Then, the action of E on the space Ω(M) of polyforms

(X + ζ) · φ = ιXφ+ ζ ∧ φ, for X + ζ ∈ Γ(E), φ ∈ Ω(M),

given by the Clifford multiplication of Γ(E), extends to a natural action of the Clifford
bundle Cl(E) on Ω(M). Now, since TM is 2n-dimensional, as a spin representation, we
have that the space Ω(M) splits into a direct sum

Ω(M) = Ωev(M)⊕ Ωodd(M),

corresponding to irreducible representations, of positive and negative chirality. We turn
next to the study of Dirac structures on TM in terms of spinors in Ωev(M) or Ωodd(M).
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Definition 8.1.8. [38] For ρ ∈ Ω(M) a spinor, we define the associated annihilator bun-
dle by

Lρ := Ann(ρ) = {e ∈ Γ(E) | e · ρ = 0} ⊆ Γ(E).

It is clear that Lρ is always isotropic, since

〈a, b〉 · ρ =
1

2
(〈a+ b, a+ b〉 − 〈a, a〉 − 〈b, b〉) · ρ = 0, for a, b ∈ Γ(E).

We will say that ρ is pure if Lρ is maximal isotropic. That is, it has dimension n.

Lemma 8.1.9 ([38, Proposition 7.18]). Every maximal isotropic subbundle L = L(C, φ)
is completely determined by a pure spinor line subbundle KL ⊆ Ω(M). Given {θ1, . . . , θk}
a frame of Ann(C) and B ∈ Ω2(M) such that ι∗B = −φ, where ι : C −→ TM is the
inclusion, then KL representing L(C, φ) is generated by the pure spinor

ρ = eBθ1 ∧ · · · ∧ θk.

Consider an almost generalized complex structure J on E with associated complex Dirac
structure L ⊆ E ⊗ C. Regarding Ω(M)⊗ C as a representation of the complex Clifford
algebra bundle of E ∼= TM ⊕ T ∗M , the analogue of result above applies, and we obtain
a complex pure spinor line subbundle KL ⊆ Ω(M)⊗ C generated by the pure spinor

ρ = eB+iωθ1 ∧ · · · ∧ θk,

for B,ω ∈ Ω2(M) and θ1, . . . , θk a frame of L∩(T ∗M⊗C). Further, there is a one-to-one
correspondence between the line bundles in Ω(M)⊗C, whose local trivializations consist
of pure spinors, and maximally isotropic subbundles of E ⊗ C.

Definition 8.1.10. [38] Let J be an almost generalized complex structure on M . The
canonical bundle of J , denoted by KJ , is the line subbundle in Ω(M)⊗C given via the
one-to-one correspondence above by the annihilator subbundle associated to J .

If CL := πTML is the subbundle associated to an almost Dirac structure L, this yields

Ω(M) =
n⊕
k=0

Uk, where U0 = KJ , Uk = ΛkAnn(C)∗ · U0. (8.1)

Definition 8.1.11. [38] The Mukai pairing is an invariant bilinear form on the spinors
of E defined by

(·, ·) : Ω(M)⊗ Ω(M) −→ detT ∗M
(ψ, φ) 7→

[
ψ⊥ ∧ φ

]
top

,

where α 7→ α⊥ is the antiautomorphism of the Clifford bundle Cl(E) determined by the
tensor map v1⊗ · · · ⊗ vk 7→ vk ⊗ · · · ⊗ v1, and [·]top applied to forms indicates taking the
top degree component of the form. The Mukai pairing extends C-linearly to Ω(M)⊗C.

Lemma 8.1.12 ([38, Lemma 7.19]). Two maximal isotropic subbundles L,L′ ⊆ E ⊗ C
satisfy L∩L′ = {0} if and only if their pure spinor representatives ρ, ρ′ satisfy (ρ, ρ′) 6= 0.
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We arrive at this characterization of what is an almost generalized complex structure.

Lemma 8.1.13 ([38, Proposition 7.20]). An almost generalized complex structure J on
E exact Courant algebroid is equivalent to a choice of a pure spinor line KJ ⊆ Ω(M)⊗C
such that

µ := (ρ, ρ) 6= 0,

for ρ a pure spinor representative. Note that µ ∈ Γ(detT ∗M) is a gobally defined volume
form that gives an orientation, which is independent of the choice of ρ, giving a global
orientation on the underlying manifold M .

Consider now the H-twisted differential dH : Ω(M) −→ Ω(M) acting on Ω(M) by

dHρ = dρ−H ∧ ρ, for ρ ∈ Ω(M).

This is independent of the choice we have done of the isotropic splitting. We will denote
by /d0 : Ω(M) −→ Ω(M) the corresponding differential on E.

Lemma 8.1.14 ([38, Proposition 3.8]). Let J be an almost generalized complex structure
on E exact Courant algebroid over M smooth 2n-dimensional manifold, with associated
pure spinor line KJ ⊆ Ω(M) ⊗ C. Then, J is integrable if and only if for any local
trivialization ρ of KJ there exists a local section v ∈ Γ(L∗) such that

/d0ρ = v · ρ. (8.2)

8.2 Generalized Calabi-Yau Geometry

We will recall what we know as generalized Kähler and Calabi-Yau structures.

Definition 8.2.1. [50] For an exact Courant algebroid E, an almost generalized Kähler
structure is a pair (J+,J−) of two commutative almost generalized complex structures,
for which G := −J+J− is Riemannian generalized metric, called the generalized Kähler
metric of E. If (J+,J−) are both integrable, we have a generalized Kähler structure.

Remark 8.2.2. [50] Note that on any exact Courant algebroid E the presence of a single
generalized complex structure, together with 〈·, ·〉 the neutral inner product, reduces the
structure group of E to U(n, n). So, with this new notion, we obtain a further reduction.
Indeed, an almost generalized Kähler structure is equivalent to a reduction of the frames
to a maximal compact subgroup U(n)×U(n) ⊆ O(2n)×O(2n).

We want to describe now the geometric structures induced on the underlying manifold
M by the (almost) generalized Kähler structure (J+,J−). We need the following notion.

Definition 8.2.3. [50] An almost generalized complex structure J is said compatible
with a generalized metric G if GJ defines another almost generalized complex structure.
This is equivalent to being J and G commutative. Moreover, if we have that E = C+⊕C−
is the decomposition given by the metric, this means that J preserves C±.
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Theorem 8.2.4 ([50, Theorem 2.18]). A generalized Kähler structure J± on an exact
Courant algebroid E is equivalent to having a metric g which is Hermitian with respect to
two integrable complex structure J±, and such that

±dc±ω± = H,

for H ∈ Ω3(M) closed defined in (6.1), and dc± = i
(
∂± − ∂±

)
.

Let (g, J±) be a data corresponding to a generalized Kähler structure J± as above. Let
L± be the (+i)-eigenbundles of J±. Since J± commute,

L+ = `+ ⊕ `−, L− = `+ ⊕ `−, (8.3)

where `+ = L+ ∩ L− and `− = L+ ∩ L−. Now, since G = −J+J− has eigenvalue +1 on
`+ ⊕ `+, we obtain a decomposition into four n-dimensional isotropic subbundles

C± ⊗ C = `± ⊕ `±, E ⊗ C = `+ ⊕ `− ⊕ `+ ⊕ `−. (8.4)

Example 8.2.5 ([50] Example of Generalized Kähler Structure). Let M be any
smooth manifold, with JJ ,Jω generalized complex structures as in Example 8.1.3. Then,
J is integrable and ω symplectic. We have that the pair (JJ ,Jω) is commutative, and

G = −JJJω = −
(

0 −Jω−1

−J∗ω 0

)
=

(
0 g−1

g 0

)
defines a Riemannian generalized metric on TM ⊕ T ∗M with g = ω(·, J ·).

Example 8.2.6 ([50] Hyper-Kähler Structures). Given an hyper-Kähler structure
(M, g, I, J,K), we have that the triple (g, I, J) is an almost generalized Kähler structure,
and, even more, this one is integrable, since it is satisfied that dωI = 0 = dωJ . We can
reconstruct the associated two generalized complex structures, which are

J± =
1

2

(
I ± J −(ω−1

I ∓ ω
−1
J )

ωI ∓ ωJ −(I∗ ± J∗)

)
.

We are ready to introduce the generalized Calabi-Yau structures as appear in [57]. As it is
mentioned in [91], these structures mimics the classical relation between the complex and
the special complex manifolds, rather than generalizing classical Calabi-Yau manifolds.

Definition 8.2.7. [57] Let E be an exact Courant algebroid over M smooth manifold.
An almost generalized Calabi-Yau structure on E is ρ ∈ Ωev,odd(M)⊗C with (ρ, ρ) 6= 0.
We say that ρ is integrable, or generalized Calabi-Yau structure, if /d0ρ = 0.

By definition, the purity of ρ implies that the associated annihilator bundle Lρ is maximal
isotropic. Furthermore, the second condition is equivalent, by Lemma 8.1.12, to having
that Lρ∩Lρ = {0}. Now, since Lρ = Lρ clearly, an almost generalized Calabi-Yau struc-
ture induces a decomposition

E ⊗ C = Lρ ⊕ Lρ.
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In other words, we have obtained an almost generalized complex structure. Now, we want
a different formulation for the notion above from J an almost generalized complex struc-
ture. Let KJ be the canonical bundle of J , and suppose that is trivial. Then, we can
split /d0 = ∂ + ∂ having that ∂ : Uk −→ Uk−1 and ∂ : Uk −→ Uk+1 for the bundles Uk
defined in (8.1). We obtain the following result that gives an equivalent statement.

Lemma 8.2.8 ([91]). An almost generalized Calabi-Yau structure is equivalent to an
almost generalized complex structure J , whose canonical bundle KJ is trivialized by a
global section ρ ∈ Γ(KJ ) that is generalized holomorphic, in the sense that ∂ρ = 0 is
satisfied. Moreover, we obtain the integrability condition if we also require that ∂ρ = 0.

Example 8.2.9 ([91] Example of Generalized Calabi-Yau Structure). Let M be
a symplectic 2n-dimensional manifold with closed non-degenerate ω ∈ Ω2(M). Then,

ρ = eiω, (ρ, ρ) = cωn,

for non-zero c ∈ R. So, (M,ρ) is a generalized Calabi-Yau manifold. It can be seen that
Jω is the correspondent generalized complex structure. Let M be an special complex
manifold with Ω holomorphic volume form with associated J complex structure. Then,

ρ = Ω, (ρ, ρ) = ±Ω ∧ Ω 6= 0,

by definition of Ω, and (M,ρ) is a generalized Calabi-Yau manifold. It can be seen that
JJ is the corresponding generalized complex structure.

We are ready for the last definition, which generalizes the classical Calabi-Yau manifolds.

Definition 8.2.10. [48] For E exact Courant algebroid over an 2n-dimensional smooth
manifold M , an (almost) generalized Calabi-Yau metric structure is determined by an
(almost) generalized Kähler structure (J+,J−) such that (M,J+) and (M,J−) are both
(almost) generalized Calabi-Yau structures with the corresponding pair of pure spinors
ρ± satisfying the normalization condition given by

(ρ+, ρ+) = c (ρ−, ρ−) ,

for some non-zero constant c ∈ R.

Remark 8.2.11. [48] An almost generalized Calabi-Yau metric structure is equivalent to
a reduction of the frames to a maximal compact subgroup SU(n)×SU(n) ⊆ U(n)×U(n).

Example 8.2.12 ([55] Example of Generalized Calabi-Yau Metric Structure).
Let M be a classical 2n-dimensional Calabi-Yau manifold, determined by the symplectic
form ω and the holomorphic volume form Ω with associated J complex structure. Then,

ρ+ = eiω, ρ− = Ω, (ρ+, ρ+) = (−1)
n(n−1)

2 (ρ−, ρ−) .

Further, as we have seen above, we have that (Jω,JJ) is a generalized Kähler structure.

As a future work, it will be interesting to study the relation between these structures and
Killing spinors. This is needed to understand the relation between our new embeddings
and the ones known before that we will remember in next chapter.
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Chapter 9

The Chiral de Rham Complex

We are going to recall the definition of a sheaf of SUSY vertex algebras originally given by
Malikov-Schechtman-Vaintrob in [73]. Roughly speaking, this is a complex constructed
from AN via the topological vertex algebra structure of the bc-βγ system of dimension
2N introduced in Subsection 2.5.3. Furthermore, it is seen that this object is related
with the usual de Rham complex, and receives the name of chiral de Rham complex.
At this point, by gluing these SUSY vertex algebras constructed for each open set, we
can construct a sheaf for any smooth manifold M . In fact, this construction works in a
coordinate independent way. It was Lian-Linshaw who gave an abstract version for this
object in [69, 70]. Bressler and Heluani extended this construction to any Courant alge-
broid in [15, 53], although the result goes back to Gorbounov-Malikov-Shechtman in
[44, 45, 46], and independently by Beilinson-Drinfeld [8][Section 2.8]. We give a quick
general view of all these constructions. This allows us to give embeddings from super-
conformal vertex algebras into the chiral de Rham complex if we have some geometric
structures. In Section 9.2, we include the embeddings given by Heluani-Zabzine.

9.1 Classical Constructions of the CDR complex

We review three approaches to the construction of the chiral de Rham complex. First, the
classical construction by Malikov-Schechtman-Vaintrob based on the bc-βγ system. After
that, the coordinate independent construction, valid for any smooth manifold, given by
Lian-Linshaw. Finally, the generalization by Bressler and Heluani to any Courant alge-
broid. We will show how these three settings define the same object. Moreover, this last
construction gives a relation with the superaffinization of quadratic Lie algebras.

9.1.1 Construction over the Affine Space

We are going to introduce a complex starting with the affine space, which is going to be
related with the usual de Rham complex on it. To fix notation, the usual N -dimensional
complex affine space will be denoted by

AN := {(x1, . . . , xN ) | xj ∈ C, for j ∈ {1, . . . , N}} .
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Then, the de Rham complex is

Ω
(
AN
)

:=
⊕
|I|≤N

C [x1, . . . , xN ] dANxI =

N⊕
p=0

Ωp
(
AN
)
,

where dAN : Ωp
(
AN
)
−→ Ωp+1

(
AN
)

is the usual de Rham differential defined by

dANϕ :=
∑
|I|≤N

 N∑
j=1

∂fI
∂xj

dANxj

 ∧ dANxI , for ϕ =
∑
|I|≤N

fIdANxI ∈ Ωp
(
AN
)

where I = {i1, . . . , it} is a set such that 1 ≤ i1 ≤ · · · ≤ it ≤ N , and

dANxI := dANxij ∧ · · · ∧ dANxit .

Let ΩN = V (ΩN ) be the bc-βγ system of dimension 2N (see Subsection 2.5.3). Recall
that by Theorem 3.4.2, ΩN is a topological vertex algebra of rank N . In particular, it
contains the following two generators, along with L and G−:

J =
N∑
j=1

: bjcj :, G+ =
N∑
j=1

: bjβj :∈ ΩN .

Let VN = V (VN ) and ΛN = V (ΛN ). Since βj and γj have conformal weight, respecti-
vely, 1 and 0 with respect to L,

Y
(
βj , z

)
= aj(z) =

∑
n∈Z

z−n−1ajn, Y
(
γj , z

)
= bj(z) =

∑
n∈Z

z−nbjn ∈ F(VN ).

By the second vacuum axiom, we construct the following isomorphism between the alge-
bra of polynomials in the infinitely many Fourier modes ajn, for n < 0, and bjm, for m ≤ 0
(viewed as formal even variables), where j ∈ {1, . . . , N}, and VN :

C
[{
ajn, bkm

∣∣∣ 1≤j,k≤N
n<0,m≤0

}]
∼= VN

P
(
ajn, bkm

)
↔ P

(
ajn, bkm

)
|0〉 .

Similarly, since bj and cj have conformal weight, respectively, 0 and 1 with respect to L,

Y
(
bj , z

)
= φj(z) =

∑
n∈Z

z−nφjn, Y
(
cj , z

)
= ψj(z) =

∑
n∈Z

z−n−1ψjn ∈ F(ΛN ).

By the second vacuum axiom, we construct the following isomorphism between the exte-
rior algebra of polynomials in the infinitely many Fourier modes φjr, for r < 0, and ψjs,
for s ≤ 0 (viewed as formal odd variables), where j ∈ {1, . . . , N}, and ΛN :

C
[
{ψpr , φqs | 1≤p,q≤N

r<0,s≤0

}]
∼= ΛN

P (ψpr , φ
q
s) ↔ P (ψpr , φ

q
s) |0〉 .

As a consequence,

ΩN
∼= C

[{
ajn, b

k
m;ψpr , φ

q
s

∣∣∣ 1≤j,k,p,q≤N
n,r<0;m,s≤0

}]
.
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Definition 9.1.1. [73] The fermionic charge is the operator F := [Jλ·]|λ=0 ∈ End (ΩN ).

In particular,

F (|0〉) = F
(
Tnβj

)
= F

(
Tnγj

)
= 0, for n ∈ N; j ∈ {1, . . . , N}, (9.1)

while

F
(
Tnbj

)
= Tnbj and F

(
Tncj

)
= −Tncj , for n ∈ N; j ∈ {1, . . . , N}. (9.2)

Given p ∈ Z, we can set
Ωp
N = {ω ∈ ΩN | F (ω) = pω} ,

where it is easily seen that VN ⊆ Ω0
N from (9.1), and, obviously,

ΩN =
⊕
p∈Z

Ωp
N .

Definition 9.1.2. [73] The chiral de Rham differential is defined by

dCDR := −
[
G+

λ·
]∣∣
λ=0
∈ End (ΩN ) .

In particular, d2
CDR = 0 since[

Y
(
G+, z

)
(0)
, Y
(
G+, z

)
(0)

]
= 0.

The endomorphism dCDR is an odd derivation that increases by 1 the fermionic charge,
by (9.1) and (9.2). So, the space ΩN endowed with the grading given by the fermionic
charge F and the chiral de Rham differential dCDR above, define a complex

ΩN . . .
dCDR // Ω−1

N

dCDR // Ω0
N

dCDR // Ω1
N

dCDR // . . .

Definition 9.1.3. [73] The chiral de Rham complex of AN is the vertex algebra ΩN with
the grading given by the fermionic charge and the chiral de Rham differential.

Identifying the coordinate functions x1, . . . , xN of AN with b10, . . . , b
N
0 , and their differen-

tials dx1, . . . , dxN with φ1
0, . . . , φ

N
0 , we can identify the usual de Rham complex Ω(AN )

with the conformal weight zero subspace of the chiral de Rham complex. Indeed, we can
consider the subspace Ω̃N ⊆ ΩN obtained via the isomorphism above by

C
[{
bj0, φ

k
0

∣∣∣ 1 ≤ j, k ≤ N
}]

∼= Ω̃N

P
(
bj0, φ

k
0

)
↔ P

(
bj0, φ

k
0

)
|0〉

.

Theorem 9.1.4 ([73, Theorem 2.4]). There exists an embedding

i :
(
Ω
(
AN
)
, dAN

)
↪→ (ΩN , dCDR) ,

compatible with the differentials, which is a quasisomorphism.
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An important step in [73] to define the chiral de Rham complex Ωch
M of a smooth complex

algebraic variety M is the construction, via localization, of a sheaf of vertex algebras on
AN , whose space of global sections is ΩN . By an explicit calculation of the transformation
of the generators of the chiral de Rham complex ΩN under coordinate changes, these
sheaves glue and so determine the required sheaf Ωch

M over M (see [73, Section 3]). The
construction works for smooth manifolds in either the algebraic, complex-analytic or C∞
settings. We will just focus on the C∞ settings, the one we are interested in.

9.1.2 Construction over Smooth Manifolds

Let M be an n-dimensional smooth manifold. Given an open coordinate patch U ⊆M ,
with coordinates (γ1, . . . , γn), we consider the SUSY Lie conformal algebraR(U) genera-
ted, for j ∈ {1, . . . , n}, by the formal symbols

bj := Πdγj , cj := Πι ∂

∂γj
·, βj :=

∂

∂γj
, f := f

(
γ1, . . . , γn

)
∈ C∞(U).

The non-zero λ-brackets are given by (1.24), and the generalization of (1.23) to[
βjλf

]
=

∂f

∂γj
, for j ∈ {1, . . . , n}.

Notice that the odd derivation S is extended to have that Sf := Πdf , for f ∈ C∞(U).
So, we can endow to R(U) a structure of SUSY Lie conformal algebra using f ∈ C∞(U),
the vector fields βj , the 1-forms bj , and the contractions cj . Now, consider the universal
enveloping SUSY vertex algebra V (R(U)), and define a SUSY vertex algebra Ωch

M (U)
taking its quotient by the ideal generated, for f, g ∈ C∞(U) and j ∈ {1, . . . , n}, by

: fbj : −fbj , : fcj : −fcj , : fβj : −fβj , : fg : −fg, |0〉 − Id.

Now, using Λ-brackets, it is easily seen that this SUSY Lie conformal algebra is defined,
for f = f

(
γ1, . . . , γn

)
∈ C∞(U), via the unique non-zero Λ-bracket relation[

cjΛf
]

=
∂f

∂γj
, for j ∈ {1, . . . , n}.

Let us see why we define a sheaf of SUSY vertex algebras over M . For U ′ ⊆M other open
coordinate patch, let g :=

(
g1, . . . , gn

)
: U −→ U ′, f := g−1 =

(
f1, . . . , fn

)
: U ′ −→ U be

the corresponding coordinate change, given by

γ̃j = gj
(
γ1, . . . , γn

)
, γj = f j

(
γ̃1, . . . , γ̃n

)
, for j ∈ {1, . . . , n}.

Then, as it is explained in [7, Section 5], we get a unique transformation rule

c̃j =

n∑
k=1

:

(
∂f j

∂γ̃k
(
g
(
γ1, . . . , γn

)))
ck :, for j ∈ {1, . . . , n}.

Indeed, we can recover the relations for the rest of generators using that Sf = Πdf , for
f ∈ C∞(U), and Scj = βj for j ∈ {1, . . . , n}. We have arrived at the following result.
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Theorem 9.1.5 ([69, Lemma 2.26]). For M smooth manifold, the change of coordinates
g : U −→ U ′ induces a SUSY vertex algebra isomorphism ϕg : Ωch

M (U ′) −→ Ωch
M (U). In

addition, given diffeomorphisms g : U1 −→ U2, and h : U2 −→ U3, we get ϕh◦g = ϕg ◦ϕh.

For U ⊆M open, we can endow to Ωch
M (U) a structure of topological vertex algebra as in

Theorem 3.4.2. Thus, we can repeat the process explained in Subsection 9.1.1 to obtain
a complex Ωch

M given by the fermionic charge and the chiral differential dch defined using
J(0) and G+

(0), respectively, which are well-defined operators. Then, denoting by Ω(M)
the usual de Rham complex of M , we obtain that

i : (Ω(M), d) ↪→
(

Ωch
M , d

ch
)

is a quasisomorphism compatible with these differentials (see [72, Section 3]).

9.1.2.1 Coordinate Independent Construction

Given M an n-dimensional smooth manifold, let U ⊆ M be open. We will denote by
X(U) the set of vector fields over U , and by Ω1(U) the set of 1-forms over U . Consider

R(U) :=
(
C∞(U)⊕

(
X(U)⊕ Ω1(U)

)
⊕Π

(
X(U)⊕ Ω1(U)

))
⊗ C[T ]

a vector superspace, with the relation Tf = df for f ∈ C∞(U).

Proposition 9.1.6 ([72, Theorem 1]). The non-zero λ-brackets

[Xλf ] = X(f), for X ∈ X(U); f ∈ C∞(U),

[XλΠY ] = Π [X,Y ] , for X,Y ∈ X(U),

[XλY ] = [X,Y ] , for X,Y ∈ X(U),

[XλΠη] = ΠLXη, for X ∈ X(U); η ∈ Ω1(U),

[Xλη] = LXη + λιXη, for X ∈ X(U); η ∈ Ω1(U),

[ΠXλΠη] = ιXη, for X ∈ X(U); η ∈ Ω1(U),

endow R(U) with a structure of Lie conformal algebra.

In addition, we can define naturally an odd derivation S : R(U) −→ R(U) as follows:

Sf := Πdf, SΠX := X, SΠη := η, for f ∈ C∞(U);X ∈ X(U); η ∈ Ω1(U).

As a consequence, we obtain the isomorphism

R(U) ∼=
(
C∞(U)⊕Π

(
X(U)⊕ Ω1(U)

))
⊗H

of vector superspaces, with the relation Sf = Πdf for f ∈ C∞(U) in the right-hand side.

Proposition 9.1.7 ([52, Example 5.13], [53, Section 5]). The non-zero Λ-brackets

[ΠXΛf ] = X(f), for X ∈ X(U); f ∈ C∞(U),

[ΠXΛΠY ] = Π [X,Y ] , for X,Y ∈ X(U),

[ΠXΛΠη] = ΠLXη + χιXη, for X ∈ X ∈ X(U); η ∈ Ω1(U),

endow R(U) with a structure of SUSY Lie conformal algebra.
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Remark 9.1.8. Strictly speaking, the version of the construction of the SUSY Lie con-
formal algebraR(U) in Proposition 9.1.6 given in [72, Theorem 1] does not involve Ω1(U)
as generators, and the version of the construction of the SUSY Lie conformal algebra
R(U) in Proposition 9.1.7 given in in [52, Example 5.13] and [53, Section 5] adds Ω1(U)
as generators. The fact that Proposition 9.1.6 and Proposition 9.1.7 are equivalent to
the cited results, respectively, follows from the last part of [53, Proposition 4.6].

Let V (R(U)) be the universal enveloping SUSY vertex algebra, and define a new SUSY
vertex algebra Ωch

M (U) taking its quotient by the ideal generated by the relations

: fg : −fg, : fΠX : −Π (fX) , : f (Πη) : −Π(fη), |0〉 − Id,

for f, g ∈ C∞(U), X ∈ X(U) and η ∈ Ω1(U). We have arrived at the following result.

Theorem 9.1.9 ([69, Section 3],[52, Theorem 5.14],[53, Theorem 5.3]). For M a smooth
manifold, the assignment U 7→ Ωch

M (U) defines a sheaf of SUSY vertex algebras Ωch
M .

9.1.3 Construction over Courant Algebroids

More generally, one can attach a sheaf of vertex algebras Ωch
E to any Courant algebroid E,

as shown independently by Gorbounov, Malikov and Shechtman [45], and Beilinson and
Drinfeld [8], and more explicitly by Bressler and Heluani [15, 53, 54]. To describe Ωch

E ,
we will use the superfield formalism, following [53, 54]. Let (E, 〈·, ·〉 , [·, ·] , π) be a Courant
algebroid over a smooth manifold M . Let ΠE be the corresponding purely odd vector
superbundle. Abusing notation, we will write

[Πa,Πb] := Π [a, b] , 〈Πa,Πb〉 := 〈a, b〉 , for a, b ∈ Γ(E). (9.3)

So, we will write a := Πa for a ∈ Γ(E). Similarly, we obtain an odd differential operator
D : C∞(M) −→ Γ (ΠE) from the usual one introduced for Courant algebroids.

Theorem 9.1.10 ([54, Proposition 4.1]). Let E be any Courant algebroid over M smooth
manifold. Then, there exists a unique sheaf of SUSY vertex algebras Ωch

E on M endowed
with embeddings of sheaves i : C∞(M) ↪→ Ωch

E and j : Γ (ΠE) ↪→ Ωch
E , satisfying that

(1) i is an isomorphism of unital commutative algebras onto its image, so

i (Id) = |0〉 , i(fg) =: i(f)i(g) :, for f, g ∈ C∞(M).

(2) i and j are compatible with the C∞(M)-module structure of ΠE and the H-module
structure of Ωch

E . That is, D and S are compatible and the following identities hold:

j(fA) =: i(f)j(a) :, 2Si(f) = j(Df), for f ∈ C∞(M); a ∈ Γ (ΠE) .

(3) i and j are compatible with the Dorfman bracket and pairing, in the sense that

[j(a)Λj(b)] = j ([a, b]) + 2χi (〈a, b〉) , for a, b ∈ Γ (ΠE) .

(4) i and j are compatible with the action of Γ(ΠE) on C∞(M), in the sense that

[j(a)Λi(f)] = iπ(a)(f), for a ∈ Γ (ΠE) ; f ∈ C∞(M).

(5) Ωch
E is universal with all these properties.
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Proof. Let V (R) be the universal enveloping SUSY vertex algebra associated to R the
H-module given by (C∞(M)⊕ Γ (ΠE))⊗H with the relation 2Sf = Df , for f ∈ C∞(M),
which is a SUSY Lie conformal algebra with the non-zero Λ-brackets (see also (B.11))

[aΛf ] = 〈Df, a〉 , for a ∈ Γ (ΠE) ; f ∈ C∞(M),

[aΛb] = [a, b] + 2χ 〈a, b〉 , for a, b ∈ Γ (ΠE) .

Then, the quotient of V (R) by the ideal generated by

: fg : −fg, : fa : −fa, Id− |0〉 , for f ∈ C∞(M); a ∈ Γ (ΠE)

satisfies the properties above. This is the unique sheaf satisfying them by construction.
The proof of R being a SUSY Lie conformal algebra is found in [53, Proposition 4.3].

Theorem 9.1.11 ([53, Proposition 4.6],[54, Proposition 4.1]). Let E be any complex
Courant algebroid over an n-dimensional smooth manifold M such that Ωch

E is the chiral
de Rham complex of E. Then,

(1) if E is the complexified standard Courant algebroid, then Ωch
E
∼= Ωch

M , where Ωch
M is

the chiral de Rham complex of M . Given U ⊆ M an open coordinate patch, then
Γ
(
Ωch
M (U)

)
is isomorphic to the tensor product of ghost systems of dimension 2n.

(2) if M is a point, then E is a complex quadratic Lie algebra, and, as a consequence,
Γ(Ωch

E ) is isomorphic to the universal superaffine vertex algebra of level k = 2.

9.2 Embeddings of Superconformal VAs into the CDR

Let M be an n-dimensional smooth orientable manifold, and E an exact Courant alge-
broid over M . Suppose that (M,J ) is a generalized Calabi-Yau manifold (see Definition
8.2.7). Let ρ be a non-vanishing section of the corresponding canonical bundle KJ . If L is
the associated Dirac structure, there exists a unique v ∈ Γ(L∗) satisfying (8.2). As a con-
sequence, there exists ζ ∈ Γ(detL∗) given by ρ = ζ · ρ. Let

{εj}j=1,...,n ⊆ L and {εj}j=1,...,n ⊆ L ∼= L∗

be a local isotropic frame. By [55, Section 7], we can write ζ locally for η ∈ C∞(M) as

ζ = eηε1 ∧ · · · ∧ εn.

Moreover, we fix a closed pure spinor, and a corresponding volume form µ such that

divµ εj = −
n∑
k=1

〈εk, [εj , εk]〉 , divµ εj = −
n∑
k=1

〈εk, [εj , εk]〉 , for j ∈ {1, . . . , n},

where divµ is the Riemannian divergence with respect to µ, for the frames given above.
Remember that we write ej = Πεj ∈ ΠL and ej = Πεj ∈ ΠL, for j ∈ {1, . . . , n}.
Lemma 9.2.1 ([54, Lemma 5.1], [55, Lemma 1]). We have two global sections of Ωch

E ,

J0 :=
i

2

n∑
j=1

: ejej :, J = J0 + iTη.
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Theorem 9.2.2 ([54, Lemma 5.3, Theorem 5.5], [55, Theorem 1]). We obtain that

(1) the following are global sections of the chiral de Rham complex of E,

H0 =
1

2

n∑
j=1

(
: ej(Se

j) : + : ej(Sej) :
)
− i

2
TJ

n∑
j=1

[
ej , ej

]
+

1

4

n∑
j,k=1

(
: ej : ek [ej , ek] :: + : ej : ek

[
ej , ek

]
::
)
,

H =H0 − iTJDη.

(2) J0 and H0 generate an N = 2 superconformal vertex algebra with c = 3 dimM .

(3) the functions f ∈ C∞(M) are primary of conformal weight 0 with respect to H. Mo-
reover, the sections a ∈ Γ(ΠE) have conformal weight 1/2 with respect to H.

(4) J and H generate an N = 2 superconformal vertex algebra with c = 3 dimM .

Let (M,J+,J−) be a 2n-dimensional generalized Calabi-Yau metric manifold (see Defi-
nition 8.2.10). Since M is generalized Kähler, we have a metric g on M , and we get (8.4).
Consider L± the associated Dirac structures of J±, for which it is satisfied (8.3). Now,
let ρ± ∈ KJ± be the corresponding non-vanishing pure spinors with associated global
sections ζ± ∈ Γ

(
detL∗±

)
. For the holomorphic coordinates {z±j }j=1,...,n ⊆ C∞(M), let{

ε±j :=
∂

∂z±j
+ g

∂

∂z±j

}
j=1,...,n

⊆ `± and
{
ε±j = g−1dz±j + dz±j

}
j=1,...,n

⊆ `±

be local isotropic frames. By [55, Section 7], we can write ζ± locally for η± ∈ C∞(M) as

ζ+ = eη
++η−ε+

1 ∧ · · · ∧ ε
+
n ∧ ε−1 ∧ · · · ∧ ε

−
n , ζ− = eη

+−η−ε+
1 ∧ · · · ∧ ε

+
n ∧ ε−1 ∧ · · · ∧ ε

−
n .

Remember that we write e±j = Πε±j ∈ Π`± and ej± = Πε±j ∈ Π`±, for j ∈ {1, . . . , n}.
Theorem 9.2.3 ([55, Theorem 2]). The global sections

J± :=
i

2

n∑
j=1

: ej±e
±
j : +iTη± ∈ Γ(Ωch

E ), (9.4)

H± :=
1

2

n∑
j=1

(
: e±j (Sej±) : + : ej±(Se±j ) :

)
− i

2
TJ±

n∑
j=1

[
ej±, e

±
j

]
− iTJ±Dη±

+
1

4

n∑
j,k=1

(
: ej± : e±k

[
e±j , e

k
±

]
:: − : ej± : ek±

[
e±j , e

±
k

]
::

+ : e±j : ek±

[
ej±, e

±
k

]
:: − : e±j : e±k

[
ej±, e

k
±

]
::
)
∈ Γ(Ωch

E ) (9.5)

generate two Λ-commuting N = 2 superconformal vertex algebra with c = 3/2 dimM .

The results of this last section are our starting point for the construction of the embed-
dings from solutions to the Killing spinor equations that we will give in next chapter.
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Chapter 10

Embeddings from Killing Spinors

The aim of this chapter is the recollection of the main results of this thesis corresponding
to the construction of embeddings from the N = 2 superconformal vertex algebra into the
superaffinization of quadratic Lie algebras with non-zero level, and the chiral de Rham
complex of Courant algebroids. The condition we will require to obtain our embeddings
is, essentially, having a solution to the Killing spinor equations. These new embeddings
are generalizations of Getzler’s Theorem 3.3.3 for Manin triples, while they are based on
Heluani-Zabzine’s Theorem 9.2.3 for generalized Calabi-Yau metric structures

10.1 Embedding SUSY VAs from F -term and D-term

Let E be the complexification of a real Courant algebroid over a smooth manifold M ,
for which we can construct the chiral de Rham complex Ωch

E . Now, fix E = l⊕ l⊕C− a
direct sum decomposition, with l, l ⊆ E isotropic n-dimensional subbundles, for which
the restriction 〈·, ·〉|C± is non-degenerate, where C+ = l ⊕ l, and C− = C⊥+ . Let

π± : E −→ C±, πl : E −→ l, πl : E −→ l

be the orthogonal projections. So, when there is no possible confusion, we will write

a± = π±a, al = πla, al = πla, for a ∈ Γ(E). (10.1)

Now, fix a frame {εj , εj}nj=1 ⊆ C+ satisfying (6.28). Define the associated odd sections

ej = Πεj , ej = Πεj , for j ∈ {1, . . . , n}.

Remember that we work with parity-reversed sections (see Remark 3.2.1). In particular,
for a, b, c ∈ l ⊕ l elements of this isotropic frame, it is clearly satisfied that

[a, b] = − [a, b] , 〈[a, b] , c〉 = −〈b, [a, c]〉 , 〈[a, b] , c〉 = 〈a, [b, c]〉 .

We define
I+ : C+ −→ C+

a 7→ al − al
,
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writing I+Πa ≡ ΠI+a for a ∈ C+. Now, define the element of C+ ⊆ E given by

w = ΠI+ [εj , εj ]+ =
[
ej , ej

]
l
−
[
ej , ej

]
l
∈ Γ(ΠC+).

This also works for (g, (·|·)) complex quadratic Lie algebra, taking V k
super(g) the universal

superaffine vertex algebra of g with level 0 6= k ∈ C by Theorem 9.1.11. So, the following
results are written for an arbitrary non-zero level in quadratic Lie algebras, but, for the
chiral de Rham complex, we take k = 2. Define the local sections

J0 : =
i

k

n∑
j=1

: ejej :,

H ′ : =
1

k

n∑
j=1

(
: ej

(
Sej
)

: + : ej (Sej) :
)

+
T

k
w +

1

k2

n∑
j,k=1

(
: ej : ek

[
ej , ek

]
::

+ : ej : ek

[
ej , e

k
]

:: − : ej : ek

[
ej , ek

]
:: − : ej : ek [ej , ek] ::

)
,

(10.2)

and
c0 := 3 dim l ∈ C. (10.3)

Now, define for each i, j ∈ {1, . . . , n} the locally defined sections

R : =
n∑

j,k=1

(
3

〈[
ej , ej

]
− ,
[
ek, ek

]
−

〉
−
〈[
ej , ek

]
− ,
[
ek, ej

]
−

〉)
,

F ij : = tr|l
(
ad[ei,ej ]

)
+

n∑
k=1

(〈
D
〈
ei,
[
ek, e

k
]〉
, ej
〉
−
〈
D
〈
ej ,
[
ek, e

k
]〉
, ei
〉)

,

Fij : = tr|l
(

ad[ei,ej ]

)
+

n∑
k=1

(〈
D
〈
ei,
[
ek, ek

]〉
, ej

〉
−
〈
D
〈
ej ,
[
ek, ek

]〉
, ei

〉)
,

The following result is our starting point for the construction of all our embeddings.

Theorem 10.1.1. Assume that l ⊕ l satisfies the F -term condition (6.26). Then,

[J0ΛJ0] = −
(
H ′ +

λχ

3
c0

)
,

[
H ′ΛJ0

]
= (2λ+ 2T + χS)

J0 −
i

k
S

n∑
j=1

[
ej , ej

]
−


+

i

2k
TSDR+

i

k2
λ

n∑
i,j=1

(
: F ij : ejei :: − : Fij : ejei ::

)
− i

k

(
T +

3

k
λ

) n∑
i,j=1

(
: ei
[[
ej , ej

]
− , ei

]
−

: + : ei

[[
ej , ej

]
− , e

i
]
−

:

)
.

(10.4)

Moreover, the sections (10.2) are global if M admits an atlas of holomorphic coordinates
such that the Jacobian of any change of coordinates has constant determinant.
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Proof. The proof is given in Appendix C.

Let α ∈ Γ(E) be arbitrary, and consider the associated odd section a = Πα ∈ Γ(ΠE).
Introduce the locally defined sections

J : = J0 − 2
S

k
ia,

H : = H ′ − 2
T

k
I+a+ + 2

S

k2

n∑
j=1

(
:
[
a, ej

]
ej : + : ej [a, ej ] : −2T

〈[
a, ej

]
, ej
〉)
,

and

c := 3

dim l − 4

k

 n∑
j=1

〈[
a, ej

]
, ej
〉
− 〈a, a〉

 .

We obtain the following result for the “corrected” generators above.

Theorem 10.1.2. Assume that l ⊕ l satisfies the F -term condition (6.26). Then,

[JΛJ ] = −
(
H +

λχ

3
c

)
− 1

2
(χS + λ)S (c− c0) . (10.5)

Proof. The result follows from Theorem 10.1.1. By sesquilinearity, we have

[JΛJ ] = [J0ΛJ0]− i2
k

[J0ΛSa]− i2
k

[SaΛJ0]− 4

k2
[SaΛSa]

= [J0ΛJ0] + i
2

k
(χ+ S) [J0Λa]− i2

k
χ [aΛJ0] +

4

k2
(λ− χS) [aΛa] .

The first summand is known from the first identity in (10.4). Moreover, by Lemma C.1.1,
we also know the following two summands. We must compute the last one, which is

[aΛa] = [a, a] + 2χ 〈a, a〉 = (S + 2χ) 〈a, a〉 ,

using (B.9). So, we obtain the required identity, since

[JΛJ ] = [J0ΛJ0] + i
2

k
(χ+ S) [J0Λa]− i2

k
χ [aΛJ0] +

4

k2
(λ− χS) [aΛa]

= −

H ′ − 2

k
TI+a+ +

2

k2
S

n∑
j=1

(
:
[
a, ej

]
ej : + : ej [a, ej ] : −2T

〈[
a, ej

]∣∣ ej〉)

+
λχ

3
c+ (χS + λ)S

 n∑
j=1

〈[
a, ej

]∣∣ ej〉− 〈a, a〉


Remark 10.1.3. (a) A necessary condition to construct an embedding of the N = 2
superconformal vertex algebra generated by J and H as above, is to have

n∑
j=1

〈[
a, ej

]∣∣ ej〉− 〈a, a〉 ∈ C. (10.6)

This also simplifies the formula (10.5), since the last summand will be zero.
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(b) If α ∈ Γ(E) is holomorphic (see Definition 7.2.3), then by (B.38) we obtain that

H = H ′ − 2
T

k
I+a+. (10.7)

We will use this notion in our algebraic results. Note that this follows if [α, ·] = 0.

(c) Let α ∈ Γ(E) be a section satisfying [α, ·] = 0 (that is, α ∈ Γ(E) is a symmetry of
E). Then, the condition (10.6) is equivalent to have that 〈α, α〉 ∈ C. In fact, this
is always satisfied when [α, ·] = 0, since D 〈α, α〉 = 2 [α, α] = 0 implies 〈α, α〉 ∈ C.
Moreover, this holds provided that α is closed (see Definition 6.3.17). We will use
this notion in our geometric results, since (6.32) follows by Proposition 6.3.13.

Remark 10.1.4. In the definitions of J0 and J , we are considering l ⊕ l as an ordered
pair. If J0 and J are the sections associated to l⊕ l, by (B.14), J0 = −J0 and J = −J .
In both cases, the associated candidate to Neveu-Schwarz generator is going to be H ′

and H, respectively, since the extra minus signs is absorbed by J0 and J , respectively.

Now, fix ϕ, ε ∈ Γ(E), related by I+ε+ = ϕ+, and consider the associated odd sections

e = Πε, u = Πϕ ∈ Γ(ΠE).

From now, to simplify the computations, we are going to use the Einstein summation con-
vention for repeated indices. We study the algebraic and geometric cases independently.

10.1.1 Main Theorems: Algebraic Case

As a first consequence of Theorem 10.1.1, we obtain the embeddings for quadratic Lie
algebras [2]. Now, these results are direct consequences of more general computations.

Theorem 10.1.5 ([2, Theorem 3.13]). Let (g, (·|·)) be a complex quadratic Lie algebra.
Assume that l⊕ l ⊆ g satisfies the F -term condition (6.26), the weaker variant (7.13) of
the D-term condition, and that

w ∈ [l, l]⊥ ∩
[
l, l
]⊥
. (10.8)

Then, the vectors

J0 =
i

k

n∑
j=1

: ejej :∈ V k
super (g) ,

H ′ =
1

k

n∑
j=1

(
: ej

(
Sej
)

: + : ej (Sej) :
)

+
T

k
w +

1

k2

n∑
j,k=1

(
: ej : ek

[
ej , ek

]
::

+ : ej : ek

[
ej , e

k
]

:: − : ej : ek

[
ej , ek

]
:: − : ej : ek [ej , ek] ::

)
∈ V k

super (g) ,

(10.9)

induce an embedding of the N = 2 superconformal vertex algebra with central charge
c0 = 3 dim l into the universal superaffine vertex algebra V k

super (g) with level 0 6= k ∈ C.
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Proof. Remember that vectors J0, H and w are well-defined as explained in Chapter 3.
Then, the result follows directly from Theorem 10.1.1, since, by the weaker variant of the
D-term condition (7.13), we must check Fij = 0 = F ij for i, j ∈ {1, . . . , n}. Indeed,

tr|l
(

ad[ei,ej ]

)
=

n∑
k=1

([
[ei, ej ] , e

k
]∣∣∣ ek) = −

(
[ei, ej ]l

∣∣w) = 0, for i, j ∈ {1, . . . , n},

and

tr|l
(
ad[ei,ej ]

)
=

n∑
k=1

([[
ei, ej

]
, ek
] ∣∣∣ek) = −

([
ei, ej

]
l

∣∣w) = 0, for i, j ∈ {1, . . . , n},

by antisymmetry and invariance, using extra condition (10.8).

The next result can be seen as the “dilaton correction” of previous one, since we correct
the supersymmetry generator J0 by adding α = ϕ+ ∈ l⊕l to obtain J . We need to impose
holomorphicity condition from Definition 7.2.3. We need some technical results.

Lemma 10.1.6 ([2, Lemma 3.15]). Let (g, (·|·)) be a complex quadratic Lie algebra.
Assume that l⊕l ⊆ g satisfies the weaker variant (7.14) of the D-term condition, and that
ϕ+ ∈ l ⊕ l is holomorphic, so (7.10) is satisfied. Recall that e+ = ΠI+ϕ+. Then,

H =
1

k

n∑
j=1

(
: ej

(
Sej
)

: + : ej (Sej) :
)

+
1

k2

n∑
j,k=1

(
: ej : ek

[
ej , ek

]
::

+ : ej : ek

[
ej , e

k
]

:: − : ej : ek

[
ej , ek

]
:: − : ej : ek [ej , ek] ::

)
∈ V k

super (g) ,

c = 3

(
dim l +

4

k
(e+|e+)

)
∈ C.

Proof. The vector H is well defined as explained in Chapter 3. Then, the result follows
directly from Theorem 10.1.2 after impossing the extra conditions given in the statement.
Indeed, since ϕ+ ∈ l ⊕ l is holomorphic, by (B.38), we obtain that (10.7). Finally, we
conclude the identity by the weaker variant of the D-term condition (7.14).

Remark 10.1.7. Notice that, if l⊕l satisfies the F -term condition (6.26), then ε+ ∈ l⊕l
is holomorphic if and only if ϕ+ = I+ε+ ∈ l ⊕ l is holomorphic.

So, as a consequence of Theorem 10.1.2 and Lemma 10.1.6, we obtain another different
embedding for quadratic Lie algebras. Note that we can give a geometric meaning to the
condition (10.8) first introduced by Getzler (see Section 3.3) in terms of the previously
given notion of holomorphicity (see Definition 7.2.3).

Theorem 10.1.8 ([2, Theorem 3.16]). Let (g, (·|·)) be a quadratic Lie algebra. Assume
that l ⊕ l ⊆ g satisfies the F -term condition (6.26), that (l ⊕ l, ε+) satisfies the D-term
condition (7.12), and that ε+ ∈ l ⊕ l is holomorphic, so (7.10) is satisfied. Recall that

e+ = Πε+, u+ = ΠI+ε+.
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Then, the vectors

J =
i

k

n∑
j=1

: ejej : −2
S

k
iu+ ∈ V k

super (g) ,

H =
1

k

n∑
j=1

(
: ej

(
Sej
)

: + : ej (Sej) :
)

+
1

k2

n∑
j,k=1

(
: ej : ek

[
ej , ek

]
::

+ : ej : ek

[
ej , e

k
]

:: − : ej : ek

[
ej , ek

]
:: − : ej : ek [ej , ek] ::

)
∈ V k

super (g) ,

(10.10)

induce an embedding of the N = 2 superconformal vertex algebra with central charge

c = 3

(
dim l +

4

k
(e+|e+)

)
∈ C

into the universal superaffine vertex algebra V k
super (g) with level 0 6= k ∈ C.

Proof. The result follows from Proposition 10.1.2 and Lemma 10.1.6. That is, the proof
reduces to check the second identity in (2.21). By sesquilinearity, we have

[HΛJ ] =
[
H ′ΛJ0

]
− i2

k

[
H ′ΛSu+

]
− 2

k
[Te+ΛJ0] + i

4

k2
[Te+ΛSu+]

=
[
H ′ΛJ0

]
− i2

k
(S + χ)

[
H ′Λu+

]
+

2

k
λ [e+ΛJ0]− i 4

k2
λ (χ+ S) [e+Λu+] .

The first summand is known for having that J0 and H ′ are generators for an embedding
of an N = 2 superconformal vertex algebra with central charge c0. We compute the other
summands. So, by sesquilinearity and Remark C.2.4, since ε+ ∈ l ⊕ l is an infinitesimal
isometry in particular, we have that[

H ′Λu+

]
=
[
H ′Λel

]
−
[
H ′Λel

]
= (λ+ 2T + χS)u+ +

λ

k
[u+, w]+ − λχ (u+ |w ) .

By (C.2a), using that ε+ ∈ l ⊕ l is holomorphic, we have that

[e+ΛJ0] =
i

k

n∑
j=1

(
:
[
e+, e

j
]
l
ej : + : ej [e+, ej ]l : +kχe+ kλ

(
e+

∣∣[ej , ej]))
= i (χu+ − λ (u+ |w )) ,

where we have used the identity (B.38) for a = e+ to obtain the last equality. Now, using
again the infinitesimal isometry condition, a simple computation shows that

[e+Λu+] = [e+, u+] + kχ (e+|u+) = [e+, u+]+ .

Applying now the D-term equation, we obtain the required identity, since

[HΛJ ] =
[
H ′ΛJ0

]
− i2

k
(S + χ)

[
H ′Λu+

]
+

2

k
λ [e+ΛJ0]− i 4

k2
λ (χ+ S) [e+Λu+]

= −i 4

k2
λ (S + χ)

(
[u+, e+]+ + [e+, u+]+

)
+ (2λ+ 2T + χS) J

= (2λ+ 2T + χS) J.

The formula for H and the central charge follow from Lemma 10.1.6.
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Remark 10.1.9. Notice that Theorem 10.1.5 generalizes Getzler’s construction. Indeed,
it suffices to take V− = {0} to recover Theorem 3.3.3. Moreover, Theorem 10.1.8 gives a
dilaton correction of Getzler’s construction, where the associated Neveu-Schwarz vector
is the one given by the Kac-Todorov construction applied to g = V+ := l ⊕ l.
Remark 10.1.10. The two embeddings of Theorem 10.1.5 and 10.1.8 do not necessarily
induce on V k

super(g) a superconformal vertex algebra structure. In fact, the Fourier modes
L−1 and L0 associated to the underlying Virasoro generator, respectively, may not be
the translation operator T of V k

super(g), or may not act semisimply on V k
super(g).

Notice that these two embeddings induce similar results for the chiral de Rham complex
of homogeneous manifolds. Indeed, assume that our manifold is a compact Lie group K,
and let E be a left-equivariant Courant algebroid over K. By Proposition 7.1.9, we can
associate to E a quadratic Lie algebra g given by the invariant sections of E. Applying
the universal construction in Theorem 9.1.10, we obtain an embedding of V 2

super (g⊗R C).

Proposition 10.1.11 ([2, Proposition 4.17]). Given K compact Lie group, let E be any
left-equivariant Courant algebroid over K. Then, there exists

V 2
super

(
Γ(E ⊗R C)K

)
↪→ Γ

(
Ωch
E⊗RC

)
:= H0

(
K,Ωch

E⊗RC

)
embedding of the universal superaffine vertex algebra of level k = 2 into Γ

(
Ωch
E⊗RC

)
.

Proof. Observe that H0(K,Ωch
E⊗RC) inherits a natural structure of SUSY vertex algebra.

We denote by R the underlying SUSY Lie conformal algebra. Now, by the superaffine
vertex algebra example in Subsection 2.5.2 and Theorem 9.1.10, we have an embedding
of the underlying SUSY Lie conformal algebra SCur (g⊗R C) localized at k = 2 into R.
Since V 2

super(g ⊗R C) is the universal enveloping SUSY vertex algebra of SCur (g⊗R C)
of level k = 2, this induces an embedding as in the statement. This follows because any
morphism from a SUSY Lie conformal algebra R′ into a SUSY vertex algebra can be
extended to a unique SUSY vertex algebra morphism from V (R′).

10.1.2 Main Theorems: Geometric Case

Now, we return to the general case to generalize the embedding given on previous result.
We can take k = 2 from now, since we will restrict to the chiral de Rham complex. Since
we will use closeness condition introduced in Definition 6.3.17 in our conditions, we will
work from now with a section α = ϕ ∈ Γ(E) satisfying [ϕ, ·] = 0.

Lemma 10.1.12. Assume that l ⊕ l satisfies the F -term condition (6.26) and that the
section ϕ ∈ Γ(E) satisfies that [ϕ, ·] = 0. Then, setting u = Πϕ, for the local sections in-
troduced in (10.2), we obtain that[

uΛH
′] = χ

n∑
j=1

(
: ej

[
u+, e

j
]
− : + : ej [u+, ej ]− : − (λ+ T )

〈[
e+, e

j
]
, ej
〉)

+ χ
n∑

j,k=1

(
:
〈[
u+, e

j
]
, ek
〉

: ejek :: + : 〈[u+, ej ] , ek〉 : ejek ::
)

+ (λ+ χS)u+,
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and [
H ′Λu

]
= (χ+ S)

n∑
j=1

(
: ej

[
u+, e

j
]
− : + : ej [u+, ej ]− : +λ

〈[
e+, e

j
]
, ej
〉)

+ (χ+ S)
n∑

j,k=1

(
:
〈[
u+, e

j
]
, ek
〉

: ejek :: + : 〈[u+, ej ] , ek〉 : ejek ::
)

+ (λ+ χS + 2T )u+.

Proof. Applying Jacobi identity for the Λ-bracket, thanks to the first identity in (10.4),
we obtain by antisymmetry of the Λ-bracket that[
uΛH

′] =
[
uΛ

(
H ′ +

γη

3
c0

)]
= − [uΛ [J0ΓJ0]] = −

[
[uΛJ0]Λ+Γ J0

]
−
[
[uΛJ0]−∇−Γ J0

]
.

Now, by (C.2a), since [ϕ, ·] = 0, we obtain that

[[uΛJ0]Ω J0] = −iχ [e+ΩJ0]

=
χ

2

(
:
[
e+, e

j
]
ej : + : ej [e+, ej ] :

)
+ χ

(
ξe+ + ω

〈[
e+, e

j
]
, ej
〉)
.

So, we arrive at[
uΛH

′] = −χ
(
:
[
I+u+, e

j
]
ej : − : ej [I+u+, ej ] : + (λ− T )

〈[
e+, e

j
]
, ej
〉)

+ (λ+ χS)u+

= −χ
(

:
[
u+, e

j
]
− ej : − : ej [u+, ej ]− : + (λ+ T )

〈[
e+, e

j
]
, ej
〉)

+ χ
(

:
〈[
u+, e

j
]
, ek
〉

: ejek :: + : 〈[u+, ej ] , ek〉 : ejek ::
)

+ (λ+ χS)u+,

where last identity follows from (B.39) for a = u. So, we have obtained the first desired
identity. The last one follows from antisymmetry of the Λ-bracket.

So, from now, we will work with the local sections

J = J0 − Siu, H = H ′ − Te+, (10.11)

where remember that e+ = I+u+, and

c = 3 (dim l + 2 〈ϕ,ϕ〉) . (10.12)

Proposition 10.1.13. We assume that l⊕ l satisfies the F -term condition (6.26), and
that ϕ ∈ Γ(E) satisfies that [ϕ, ·] = 0. Then, setting u = Πϕ, the locally defined sections
(10.11) satisfy

[HΛJ ] = (2λ+ 2T + χS)

J0 − Si

u+ +
1

2

n∑
j=1

[
ej , ej

]
−


+
i

4

TSDR+ λ

n∑
j,k=1

(
: F ij : ejei :: − : Fij : ejei ::

)
− i
(
T +

3

2
λ

) n∑
j,k=1

(
: ek

[
u+ +

1

2

[
ej , ej

]
− , e

k

]
: + : ek

[
u+ +

1

2

[
ej , ej

]
− , ek

]
:

)
.
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Proof. The result follows from Theorem 10.1.2. First, we start applying sesquilinearity,

[HΛJ ] =
[
H ′ΛJ0

]
− i
[
H ′ΛSu

]
− [Te+ΛJ0] + i [Te+ΛSu]

=
[
H ′ΛJ0

]
− i (χ+ S)

[
H ′Λu

]
+ λ [e+ΛJ0]− iλ (χ+ S) [e+Λu] .

The first summand is known from the second identity in (10.4). By Lemma 10.1.12, and
Lemma C.1.1 for a = e+, we also known the following two summands. Indeed,

[e+ΛJ0] =
i

2

(
:
[
I+u+, e

j
]
ej : + : ej [I+u+, ej ] :

)
+ i
(
χu+ + λ

〈[
e+, e

j
]
, ej
〉)

=
i

2

(
:
[
u+, e

j
]
− ej : − : ej [u+, ej ]− :

)
+ i(λ+ T )

(〈[
Iu+, e

j
]
, ej
〉
− χu+

)
+
i

2

(
:
〈[
u+, e

j
]
, ek
〉

: ekej :: + : 〈[u+, ej ] , ek〉 : ekej ::
)
,

using (B.39) for a = u. We must compute the last one,

[e+Λu] = [Iu+, u] + 2χ 〈Iu+, u〉 = − [u, ul] +
[
u, ul

]
+D

(
〈u, ul〉 −

〈
u, ul

〉)
= 0,

where we have used that [ϕ, ·] = 0. Applying (6.31), using (B.41) and (B.42) for a = u,
we obtain the required identity, since

[HΛJ ] =
[
H ′ΛJ0

]
− i (χ+ S)

[
H ′Λu

]
+ λ [e+ΛJ0]

=
[
H ′ΛJ0

]
− i
(
T +

3

2
λ

)(
: ej

[
u+, e

j
]
− : + : ej [u+, ej ]− :

)
− (2λ+ 2T + χS)Su+

= (2λ+ 2T + χS)

J0 − Si

u+ +
1

2

n∑
j=1

[
ej , ej

]
−


+
i

4

TSDR+ λ

n∑
j,k=1

(
: F ij : ejei :: − : Fij : ejei ::

)
− i
(
T +

3

2
λ

) n∑
j,k=1

(
: ek

[
u+ +

1

2

[
ej , ej

]
− , e

k

]
: + : ek

[
u+ +

1

2

[
ej , ej

]
− , ek

]
:

)
,

for being [ϕ, ·] = 0 by hypothesis.

Now, suppose that M admits an atlas of holomorphic coordinates for which the Jacobian
of any change of coordinates has constant determinant. Then, notice that, by the weaker
variant (6.31) of the D-term condition, there exists a relation between R and the terms
with F ij , Fij (for i, j ∈ {1, . . . , n}) thanks to Jacobi identity for the Λ-bracket.
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Lemma 10.1.14. Assume that l⊕ l satisfies the F -term condition (6.26), that (l⊕ l, ϕ)
satisfies the weaker variant (6.31) of the D-term condition, and that ϕ ∈ Γ(E) satisfies
that [ϕ, ·] = 0. Then,

TSDR =
2

3

n∑
i,j=1

T
(
: F ij : ejei :: − : Fij : ejei ::

)
. (10.13)

Proof. By Proposition 10.1.13, applying antisymmetry for the Λ-bracket,

[JΛH] = − (2λ+ T + χS) J +
i

4

(
TSDR− (λ+ T )

(
: F ij : ejei :: − : Fij : ejei ::

))
.

Now, by Jacobi identity for the Λ-bracket, since

[JΛJ ] = −
(
H +

λχ

3
c

)
,

for being [ϕ, ·] = 0, so 〈ϕ,ϕ〉 ∈ C is satisfied, and then c ∈ C (see (10.12)), we obtain

[JΛH] =
[
JΛ

(
H +

γη

3
c
)]

= − [JΛ [JΓJ ]]

= −
[
[JΛJ ]Λ+Γ J

]
− [JΓ [JΛJ ]]

= −
([

[JΛJ ]Λ+Γ J
]

+
[
[JΛJ ]−∇−Γ J

])
= − (2λ+ T + χS) J − i

2
TSDR− i

4
(λ− T )

(
: F ij : ejei :: − : Fij : ejei ::

)
,

so, substrating these two identities, we arrive at (10.13).

In particular, when F ij = Fij = 0 for i, j ∈ {1, . . . , n}, then

TSDR = 0.

Now, suppose that for the considered atlas we can construct (odd) dual isotropic frames
associated to {εj , εj}nj=1 of l ⊕ l satisfying the following condition:

[ej , ek] = 0, for j, k ∈ {1, . . . , n}. (10.14)

Proposition 10.1.15. We assume that l⊕ l satisfies the F -term condition (6.26), that
(l⊕ l, ϕ) satisfy the D-term condition (6.30), and that ϕ ∈ Γ(E) satisfies that [ϕ, ·] = 0.
Then, setting u = Πϕ, the locally defined sections (10.11) satisfy

[HΛJ ] = (2λ+ 2T + χS) J +
i

4

TSDR+ λ

n∑
i,j=1

: F ij : ejei ::

 ,

where

R = 4
n∑
j=1

〈
[ej , u] , ej

〉
− 3

〈
n∑
j=1

[
ej , ej

]
,
n∑
k=1

[
ek, ek

]〉
,

F ij =

n∑
k=1

〈
D
〈[
ei, ej

]
, ek
〉
, ek
〉
, for i, j ∈ {1, . . . , n}.
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Proof. The result follows from Proposition 10.1.13. Notice that (10.14) implies Fij = 0
by (C.6a). Now, in order to arrive at the desired formula for F ij , we must see that〈[[

ek, e
k
]
, ei
]
, ej
〉

= 0, for i, j ∈ {1, . . . , n},

which follows by (C.6b). So, by the D-term condition (6.30), since [ϕ, ·] = 0,〈[[
ek, e

k
]
, ei
]
, ej
〉

=
〈[

2ul − 2u, ei
]
, ej
〉

= 2
〈[
ul, e

i
]
, ej
〉

= 0.

Now, for the last term, note that〈[
ej , ek

]
, [er, es]

〉
=
〈[
ej , ek

]
− , [e

r, es]
〉
, for j, k, r, s ∈ {1, . . . , n}

in our frame (10.14). So,

R = 3
〈[
ej , ej

]
,
[
ek, ek

]〉
−
〈[
ej , ek

]
,
[
ek, ej

]〉
.

Finally, using Jacobi identity (among others axioms of Courant algebroids), that we are
in the frame (10.14), and that it is satisfied the D-term condition (6.30), we arrive at〈[

ej , ek
]
,
[
ek, ej

]〉
= 4

〈
[ej , u] , ej

〉
.

Theorem 10.1.16. Assume that l⊕l satisfies the F -term condition (6.26), that
(
l ⊕ l, ϕ

)
satisfies the D-term condition (6.30), that ϕ ∈ Γ(E) satisfies that [ϕ, ·] = 0, and that

n∑
i,j=1

: F ij : ejei :: = 0. (10.15)

Then, setting u = Πϕ, for the frames satisfying (10.14), the local sections

J =
i

2

n∑
j=1

: ejej : −Siu,

H =
1

2

n∑
j=1

(
: ej

(
Sej
)

: + : ej (Sej) :
)

+
1

4

n∑
j,k=1

(
: ej : ek

[
ej , ek

]
::

+ : ej : ek

[
ej , e

k
]

:: − : ej : ek

[
ej , ek

]
:: − : ej : ek [ej , ek] ::

)
+ Tul,

induce an embedding of the N = 2 superconformal vertex algebra with central charge gi-
ven by (10.12) into the space of local sections of the chiral de Rham complex Ωch

E .

Proof. This follows from Proposition 10.1.2, Lemma 10.1.14 and Proposition 10.1.15.

We are going to state one of the main results of this thesis, which is a direct consequence
of the work we have done in Section 6.3, and Theorem 10.1.16 above, about embeddings
from the twisted Hull-Strominger system (6.16). We need the next intermediate results.
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Lemma 10.1.17. The above sections J , H, and

n∑
i,j=1

: F ij : ejei :: (10.16)

are all global. Even more, R is a well-defined global function on M .

Proof. Let
{
fj , f

j
}n
j=1
⊆ l ⊕ l be a new isotropic frame, for which there exists

A =
(
Akj

)n
j,k=1

, B =
(
Bk
j

)n
j,k=1

∈ Matn (C∞(M))

matrices for the change of coordinates, such that

fj =
n∑
k=1

Akj ek and f j =
n∑
k=1

Bk
j e
k, for j ∈ {1, . . . , n}.

By hypothesis,

D detA = 0, π
(
ek
) (
Bs
j

)
= 0 = π (fs)

(
Ajk

)
, for j, k, s ∈ {1, . . . , n}. (10.17)

Then, thanks to Lemma 6.3.9 and Lemma C.3.1, we must just prove that

:
〈
D
〈[
ei, ej

]
, ek
〉
, ek
〉

: ejei ::=:
〈
D
〈[
f i, f j

]
, fk
〉
, fk
〉

: fjfi ::,

and 〈
[ej , u] , ej

〉
=
〈
[fj , u] , f j

〉
.

Indeed, for the first term, by (B.19) (B.25) and (B.26), notice that

:: Aqjeq :: Ari er :: =:
(
AqjA

r
i

)
: eqer ::,

while by Courant algebroid axioms and (B.10),〈
D
〈[
Bi
re
r, Bj

me
m
]
, Askes

〉
, Bk

pe
p
〉

= Bk
pA

j
mB

i
r 〈[er, em] , es〉 〈DAsk, ep〉

+ 〈[er, em] , es〉
(
Bi
r

〈
DBj

m, e
s
〉

+Bj
m

〈
DBi

r, e
s
〉)

+Bj
m

(
Bi
r 〈D 〈[er, em] , es〉 , es〉

+ Bk
p

〈
DBi

s, e
m
〉
〈DAsk, ep〉

)
+
〈
DBi

k, e
m
〉 〈
DAjm, ek

〉
+
〈
DBj

m, e
m
〉 〈
DBi

k, e
k
〉

+Bj
m

〈
D
〈
DBi

k, e
m
〉
, ek
〉

+Bi
k

〈
D
〈
DBj

m, e
m
〉
, ek
〉

+Bk
pB

i
s

〈
DBj

m, e
m
〉
〈DAsk, ep〉 ,

from where we obtain the desired identity thanks to second equation in (10.17). Finally,
by Courant algebroid axioms and (B.10), using Jacobi’s formula from Appendix B.6,〈[

Akj ek, u
]
, Bj

se
s
〉

=
〈
[ej , u] , ej

〉
− 1

detA
〈D detA, u〉+Ajs 〈u, ek〉

〈
DAkj , es

〉
,

from where we obtain the desired identity thanks to (10.17).
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Lemma 10.1.18. Let σω be the torsion bi-vector from Section 5.3. We have that

(σω)ij = F ij , for i, j, k ∈ {1, . . . , n}.

Proof. We must keep in mind Section 6.3. Indeed, by Courant algebroid axioms,〈[
ei, ej

]
, ek
〉

= −
〈
ej ,
[
ei, e

k
]

+

〉
= −

〈
ej , σ+

(
∇+
g−1dzi

∂

∂zk

)〉
= −dzj

(
∇+
g−1dzi

∂

∂zk

)
= −dzj

(
∇+
g−1dzi

∂

∂zk
−∇+

∂
∂zk

(
g−1dzi

))
= −dcω

(
g−1dzi, g

−1dzj ,
∂

∂zk

)
, for i, j, k ∈ {1, . . . , n},

as desired, since ∇+g−1dzi ∈ Ω1,0(M) for i ∈ {1, . . . , n} and[
g−1dzi,

∂

∂zk

]0,1

=

[
g−1dzi,

∂

∂zi

]1,0

= ∂g−1dzi

(
∂

∂zk

)
= 0.

The proof follows now from the explicit formula (5.15) combined with

F ij =
〈
D
〈[
ei, ej

]
, ek
〉
, ek
〉

= −π (εk)

(
dcω

(
g−1dzi, g

−1dzj ,
∂

∂zk

))
= igmk

∂

∂zm

(
∂ω

(
g−1dzi, g

−1dzj ,
∂

∂zk

))
.

Let P −→ M be a principal K-fibre bundle over M any complex manifold, and fix the
bi-invariant non-degenerate pairing 〈·, ·〉 : k⊗k −→ R. At last, we arrive at the following.

Theorem 10.1.19. Let (ω,Ψ, A) be a solution to the twisted Hull-Strominger system
(6.16), and consider the associated string Courant algebroid E := E−dcω,A. Then, the fo-
llowing sections, defined for the frames (6.18) induced by the atlas in Lemma 5.2.2,

J =
i

2

n∑
j=1

: ejej : +SiΠθω,

H =
1

2

n∑
j=1

(
: ej

(
Sej
)

: + : ej (Sej) :
)

+
1

4

n∑
j,k=1

(
: ej : ek

[
ej , ek

]
::

+ : ej : ek

[
ej , e

k
]

:: − : ej : ek

[
ej , ek

]
:: − : ej : ek [ej , ek] ::

)
− TΠg−1θ0,1

ω ,

(10.18)

are global. Furthermore, when
σω = 0,

they induce an embedding of the N = 2 superconformal vertex algebra with central charge

c = 3 dim l ∈ C

into the space of global sections of the chiral de Rham complex Ωch
E⊗RC.

Proof. This follows from Proposition 10.1.16, Lemma 10.1.17 and Lemma 10.1.18.

In particular, this result applies when we have a solution (ω,Ψ) to the twisted Calabi-Yau
equations (6.17) for the associated exact Courant algebroid E−dcω.

129



Supersymmetric Vertex Algebras and Killing Spinors

10.2 Pairs of Solutions for the Killing Spinor Equations

Now, we will study what happens when we have pairs of solutions for the Killing spinor
equations. In particular, this will give us the analogue of Theorem 9.2.3 for quadratic
Lie algebras. This will allow us to construct “an honest” N = 2 superconformal vertex
algebra structure that will be related with some constructions studied in Chapter 3.

10.2.1 The Λ-Commuting Sectors on Quadratic Lie Algebras

Let (V±, ε±) be two solutions for the Killing spinor equations on (g, (·|·)) quadratic Lie
algebra, such that they generate a pair of solutions on g (see Definition 7.1.5). Following
previous section, we fix g = l+ ⊕ l− ⊕ l+ ⊕ l− direct sum decomposition, with l±, l± ⊆ g
isotropic n±-dimensional subspaces, for which we have that the restriction (·|·) to V± is
non-degenerate, where V± := l± ⊕ l±, and V± = V ⊥∓ . Let

π± : g −→ V±, πl± : g −→ l±, πl± : g −→ l±

be the orthogonal projections. So, when there is no possible confusion, we will write

a± = π±a, al± = πl±a, al± = πl±a, for a ∈ g.

Fix
{
ε±j , ε

±
j

}n±
j=1
⊆ V± basis satisfying (6.28). Let V k

super(g) with 0 6= k ∈ C, and define

e±j = Πε±j , ej± = Πε±j , for j ∈ {1, . . . , n±}.

Remember that we work with parity-reversed vectors (see Remark 3.2.1). We define

I± : V± −→ V±
a± 7→ al± − al±

,

writing I±Πa ≡ ΠI±a for a ∈ V±. Now, define the element of V± ⊆ g given by

w± = ΠI±

[
ε±j , ε

±
j

]
±

=
[
ej±, e

±
j

]
l±
−
[
ej±, e

±
j

]
l±
∈ ΠV±.

Define the well-defined (they do not depend on the chosen basis) vectors

J±0 : =
i

k

n±∑
j=1

: ej±e
±
j :∈ V k

super(g),

H ′± : =
1

k

n±∑
j=1

(
: e±j

(
Sej±

)
: + : ej±

(
Se±j

)
:
)

+
T

k
w±

+
1

k2

n±∑
j,k=1

(
: e±j : ek±

[
ej±, ek±

]
:: + : ej± : e±k

[
e±j , e

k
±

]
::

− : e±j : e±k

[
ej±, e

k
±

]
:: − : ej± : ek±

[
e±j , e

±
k

]
::
)
∈ V k

super(g).

(10.19)
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Moreover, consider

c±0 := 3n± ∈ C. (10.20)

Remark 10.2.1. Notice that if we have {J1, H1, c1} and {J2, H2, c2} two different sets
of generators for the N = 2 superconformal vertex algebra, when [J1ΛJ2] = 0 is satisfied,
then [H1ΛH2] = 0. Indeed, by first equation in (2.21),

[H1ΛH2] =

[
−
(
H1 +

γη

3
c1

)
Λ
−
(
H2 +

ωξ

3
c2

)]
= [[J1ΓJ1]Λ [J2ΩJ2]] = 0.

Now, repeating the processes explained in Theorem 10.1.5, we can obtain two embeddings
of the N = 2 superconformal vertex algebra of central charge (10.20) into V k

super(g). In
addition, we obtain the next result, where, to simplify computations, we are going to use
the Einstein summation convention for repeated indexes, for the mentioned embeddings.

Theorem 10.2.2. Assume that l± ⊕ l± ⊆ g satisfies the F -term condition (6.26), that
(l± ⊕ l±, ε±) satisfies the weaker variant (7.13) of the D-term condition, that

w± ∈ [l±, l±]⊥ ∩
[
l±, l±

]⊥
,

and that n := n+ = n−. Then, the vectors (10.19) induce two Λ-commuting embeddings
of the N = 2 superconformal vertex algebra with the same central charge c0 = 3n into
the universal superaffine vertex algebra V k

super(g) with level 0 6= k ∈ C.

Proof. We have to prove that
[
J+

0 ΛJ
−
0

]
= 0. By the non-commutative Wick formula,

[
J+

0 Λ : ej−e
−
j :
]

=:
[
J+

0 Λe
j
−

]
e−j : − : ej−

[
J+

0 Λe
−
j

]
: +

∫ Λ

0
dΓ
[[
J+

0 Λe
j
−

]
Γ
e−j

]
=
i

k

(
::
[
ek−, e

j
+

]
l−⊕l−⊕l+

e+
j : e−k : + :: ej+

[
ek−, e

+
j

]
l+⊕l−⊕l+

: e−k :

− : ek− :
[
e−k , e

j
+

]
l+⊕l−⊕l−

e+
j :: − : ek− : ej+

[
e−k , e

+
j

]
l+⊕l−⊕l−

::

)
+
i

k

∫ λ

0
dγ (I1 + I2)− iλ

([
ej+, e

+
j

]
l−
−
[
ej+, e

+
j

]
l−

)
,

where we have used (C.2b) for J0 = J+
0 and a ∈ V− the basis elements, and after applying

the non-commutative Wick formula and antisymmetry for the Λ-bracket,

I1 : = ∂η

[
:
[
ek−, e

j
+

]
l+⊕l−⊕l−

e+
j :Γ e

−
k

]
= k

[
ek−, e

−
k

]
l+
,

I2 : = ∂η

[
: ej+

[
ek−, e

+
j

]
l+⊕l−⊕l−

:Γ e
−
k

]
= −k

[
ek−, e

−
k

]
l+
.
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Finally, using basic properties, some of them from Appendix B, we arrive at

[J+ΛJ−] = − 1

k2

(
::
[
ek−, e

j
+

]
l+⊕l−

e+
j : e−k : + :: ej+

[
ek−, e

+
j

]
l+⊕l−

: e−k :

− : ek− :
[
e−k , e

j
+

]
l+⊕l−

e+
j :: − : ek− : ej+

[
e−k , e

+
j

]
l+⊕l−

::

)
+ iλ

([
ej−, e

−
j

]
l+
−
[
ej−, e

−
j

]
l+
−
[
ej+, e

+
j

]
l−

+
[
ej+, e

+
j

]
l−

)
,

which is zero by (6.26), (7.13), and Remark 6.3.15.

Now, fix ϕ±, ε± ∈ V±, related by I±ε± = ϕ±, and consider the associated odd sections

e± = Πε±, u± = Πϕ± ∈ ΠV±.

Using (10.19), define the well-defined vectors

J± : = J±0 ∓ 2
S

k
iu± ∈ V k

super(g),

H± : = H ′± ∓ 2
T

k
e± + 2

S

k2

n±∑
j=1

(
:
[
u±, e

j
±

]
e±j : + : ej±

[
u±, e

±
j

]
:
)
∈ V k

super(g).
(10.21)

Moreover, consider

c± : = 3

(
n± ±

4

k
(e± |e± )

)
∈ C. (10.22)

We also define the vectors ε = ε+ + ε− ∈ g, and e = Πε ∈ Πg.

Remark 10.2.3. Notice that in formula (10.22) above we obtain that c+ = c− when
n+ = n− and (e |e) = 0. Indeed, this last condition is equivalent to (e+|e+) = −(e−|e−).
We will require in the following result these two conditions. However, strictly speaking,
we do not really need the second condition to obtain the Λ-commuting embeddings.

Now, repeating the processes explained in Theorem 10.1.8, we can obtain two embeddings
of the N = 2 superconformal vertex algebra of central charge (10.22) into V k

super(g). In
addition, we obtain the following result for the mentioned embeddings.

Theorem 10.2.4. Assume that l± ⊕ l± ⊆ g satisfies the F -term condition (6.26), that
(l±⊕ l±, ε±) satisfies the D-term condition (7.12), that ε± ∈ l±⊕ l± is holomorphic, that
n := n+ = n−, and that (e|e) = 0. Then, the vectors (10.21) induce two Λ-commuting
embeddings of the N = 2 superconformal vertex algebra with the same central charge

c = 3

(
n+

4

k
(e+ |e+ )

)
∈ C. (10.23)

into the universal superaffine vertex algebra V k
super(g) with level 0 6= k ∈ C.
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Proof. We have to proof [J+ΛJ−] = 0. By sesquilinearity, thanks to Theorem 10.2.2,

[J+ΛJ−] =
[
J+

0 ΛJ
+
0

]
+ i

2

k

[
J+

0 ΛSu−
]
− i2

k

[
Su+ΛJ

−
0

]
− 4

k2
[Su+ΛSu−]

= −i2
k

(χ+ S)
[
J+

0 Λu−
]
− i2

k
χ
[
u+ΛJ

−
0

]
− 4

k2
χ (S + χ) [u+Λu−] .

Now, we have that

[
J+

0 Λu−
]

=
i

k

n∑
j=1

(
:
[
u−, e

j
+

]
−
e+
j : + : ej+

[
u−, e

+
j

]
:

)
,

[
u+ΛJ

+
0

]
=
i

k

n∑
j=1

(
:
[
u+, e

j
−

]
e−j : + : ej−

[
u+, e

−
j

]
:
)
,

aplying (C.2b) for J = J+
0 and a = u−, and (C.2a) for J = J−0 and a = u+. At last,

[u+Λu−] = [u+, u−] + kχ (u+|u−) = [u+, u−]+ − [u−, u+]− .

In conclusion,

[J+ΛJ−] =
2

k2
(χ+ S)

(
:
[
u−, e

j
+

]
−
e+
j : + : ej+

[
u−, e

+
j

]
−

:

)
+

2

k2
χ

(
:
[
u+, e

j
−

]
+
e−j : + : ej−

[
u+, e

−
j

]
+

:

)
− 4

k2
(χS − λ)

(
[u+, u−]+ − [u−, u+]−

)
,

which is zero for being u± ∈ l± ⊕ l± an infinitesimal isometry.

Remark 10.2.5. Applying the process above for pairs of solutions of the Killing spinor
equations, but in exact Courant algebroids, we should recover Theorem 9.2.3. We leave
this as a future question, since it requires further analysis.

10.2.2 Honest N = 2 Superconformal Vertex Algebra Structures

Consider J± two even Λ-commuting elements satisfying, for c ∈ C and some H± odd,

[J±ΛJ±] = −
(
H± +

λχ

3
c

)
.

Define
J1 := J+ + J−, J2 := J+ − J−, H := H+ +H−. (10.24)

It is proven in [55, Lemma 2] that when {J1, H} and {J2, H} generate the N = 2 super-
conformal vertex algebra of central charge 2c, then the quadruple {J±, H±} generates
two Λ-commuting copies of the N = 2 superconformal vertex algebra of central charge c.
Now, we will prove the converse, which allows us to obtain honest N = 2 superconformal
vertex algebra structures from pairs of solutions for the Killing spinor equations.
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Theorem 10.2.6. If {J±, H±, c} are Λ-commuting N = 2 superconformal vertex algebra
structures, then the even elements J1, J2 of (10.24) generate two N = 2 superconformal
vertex algebra structures of central charge 2c with the same odd element H of (10.24).

Proof. By Λ-commutativity, we have that

[J1ΛJ1] = [J2ΛJ2] = [J+ΛJ+] + [J−ΛJ−] = −
(
H +

λχ

3
c

)
.

Finally, since [H+ΛJ−] = 0 = [H−ΛJ+] clearly, then

[HΛJ1] = [H+ΛJ+] + [H+ΛJ−] + [H−ΛJ+] + [H−ΛJ−] = (2λ+ 2T + χS)J1,

[HΛJ2] = [H+ΛJ+]− [H+ΛJ−] + [H−ΛJ+]− [H−ΛJ−] = (2λ+ 2T + χS)J2.

Corolary 10.2.7. Let (g, (·|·)) be a quadratic Lie algebra. Then, by Theorem 10.2.2 and
Theorem 10.2.4, each J1 and J2 defined using J± as given in (10.19) and (10.21) generate
a copy of the N = 2 superconformal vertex algebra of central charge, respectively,

c0 =
3

2
dim g or c = 3

(
dim g

2
+

8

k
(e+|e+)

)
.

Furthermore, the vector H defined using H± as in (10.21) is the Kac-Todorov vector of g.
Consequently, localizing at k + h∨ ∈ C we recover the Freudental’s formula n∑

j=1

([
ej+, e

+
j

]
+
[
ej−, e

−
j

]) ∣∣∣∣∣
n∑
k=1

([
ek+, e

+
k

]
+
[
ek−, e

−
k

]) =
h∨

3
dim g.

Remark 10.2.8. The last result above is the true generalization of Getzler’s Theorem
for pairs of solutions for the Killing spinor equations on quadratic Lie algebras. Indeed,
note that we have two Manin triples(

g, l+ ⊕ l−, l+ ⊕ l−
)

and
(
g, l+ ⊕ l−, l+ ⊕ l−

)
,

which induce each one two different embeddings. In particular, for the dilaton correction,
the odd generator is the Kac-Todorov vector of g. As a consequence, we have two honest
N = 2 superconformal vertex algebra structures on the superaffinization of g.

Corolary 10.2.9. Let E be an exact Courant algebroid over an smooth manifold M .
Then, applying Theorem 9.2.3, each J1 and J2 defined using J± as given in (9.4) genera-
te a copy of the N = 2 superconformal vertex algebra of central charge c = 3 dimM . Note
that the odd generator coincide, and it is given by H defined using H± as in (9.5).

The previos result is a consequence of Theorem 9.2.2, firstly given in [54, Theorem 5.5].
Indeed, the authors used it to prove, precisely, Theorem 9.2.3 given in [55, Theorem 2].
However, since by Remark 10.2.5 we hope that generalized Calabi-Yau metric structures
can be rewritten using pairs of solutions for the Killing spinor equations, this last result
will be now a consequence of our main Theorem 10.1.19 for exact Courant algebroids.
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10.3 Open Questions

We include open problems related to the results we have obtained, for future studies.

10.3.1 Embedding N = 1 Superconformal VAs

Originally, when we started the present work, we were expecting to construct embeddings
of the N = 2 superconformal vertex algebra under much weaker hypothesis, related to
the vanishing of the generalized Ricci tensor. Even though we have not been able to com-
plete this ambitious programme, our development motivates some open questions related
to this initial problem. Let E be a general Courant algebroid over M . In order to define
the Ricci tensor of a generalized metric C± ⊆ E, we first need to give the following notion
for a connection D ∈ D(C±), due to Gualtieri.

Definition 10.3.1. [36] For C± ⊆ E generalized metric, the Ricci tensors ofD ∈ D(C±),
a compatible generalized connection, are Ric±D ∈ Γ

(
C∗∓ ⊗ C∗±

)
defined by

Ric±D (e∓, e±) = tr
(
d± −→ R±D (d±, e∓) e±

)
, for e± ∈ Γ(C±),

where R±D ∈ Γ(C∗± ⊗C∗∓ ⊗ o(C±)) are the curvature operators associated to D, given by

R+
D (a+, b−) c+ = Da+Db−c+ −Db−Da+c+ −D[a+,b−]c+,

R−D (a−, b+) c− = Da−Db+c− −Db+Da−c− −D[a−,b+]c−,

for a±, b±, c± ∈ Γ(C±).

If M 6= {·}, given div : Γ(E) −→ C∞(M) any divergence operator on E, it is proven in
[36, Proposition 4.4] that for any choice of generalized connection D ∈ D(C+,div), the
induced Ricci tensors R±D are equal. In such cases, the Ricci tensor Ric± ∈ Γ(C∗∓⊕C±∗)
of (C±, div) are defined by

Ric± := Ric±D

for any choice of D ∈ D(C+, div). To see this, assume that C± ⊆ E admits the spinor
bundles S±, and consider the twisted spinor bundles S± that are endowed with the cano-
nical Dirac-type operators /D on Γ(S±). Then, with the same notation as in Subsection
6.2.1, for α ∈ Γ(S±) and a± ∈ Γ(C±), we obtain that

ιa∓Ric± · α = 4

 /DDa∓ −De∓ /D
± − 2

r±∑
j=1

ã±j ·D[a±j ,e∓]∓

α. (10.25)

Thanks to this property, we are ready to introduce the following notion.

Definition 10.3.2. [36] We say that a pair (C±,div) satisfies the Ricci-flat condition if

Ric± = 0. (10.26)
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Being Ricci flat is a second-order equation, and corresponds to the integrability condition
for the first-order equation given by Killing spinor equations in Definition 6.2.15. More
precisely, using (10.25), if (C±,div, η) is a solution of the Killing spinor equations, then
Ric± = 0. So, we expect that the next conjecture is true, where (g, (·|·)) is a quadratic
Lie algebra for which we obtain equations from (10.25) and (10.26).

Conjecture 1. If (V±, div) satisfies (10.26), then the odd vectors in (10.9) and (10.10)
generates two embeddings of the N = 1 superconformal vertex algebra into V k

super(g).

For the case of exact Courant algebroids, one can relate these conditions to the known
as Bismut-Hermite-Einstein metrics. We can give the following notion.

Definition 10.3.3. [38] Let E be an exact Courant algebroid over a complex manifold
M . We say that a J-compatible generalized metric C± is Bismut-Hermite-Einstein if we
have (g,H, ω) satisfying the following conditions

0 =Ricg −
1

4
H ◦H +

1

2
Lg−1θωg,

0 =d∗H + dθω +
1

2
ιg−1θωH.

(10.27)

where Ricg denotes the Ricci tensor associated to g Riemannian metric, and ω is the al-
most Kähler form. These conditions are equivalent to ρB(g) = 0 and ddcω = 0.

If a J-compatible generalized metric C± on an exact Courant algebroid E over a complex
manifold M is Ricci-flat with respect to the divergence given by the Lee form, Ric+ = 0,
this gives a solution to (10.27). Furthermore, the twisted Calabi-Yau equations (6.17)
coming from having a solution to the Killing spinor equations, implies ρB(g) = 0.

Conjecture 2. Let E be any exact Courant algebroid over any 2n-dimensional complex
manifold M , with (ω, g) hermitian structure such that

ρB(g) = 0, ddcω = 0, (10.28)

for H = −dcω. Then, one can prove that there exists f ∈ C∞(M) such that

ϕ : = g−1θω −∇f + θω + df ∈ Γ(E)

is holomorphic. Then, the section H ∈ Γ(Ωch
E ) given in (10.11) is global, and generates an

embedding of the N = 1 superconformal vertex algebra into Γ(Ωch
E ).

For this conjecture to be true, it is necessary that (10.12) defines a central charge, so one
needs to prove that under the given hypothesis

n∑
j=1

〈[ϕ, εj ] , εj〉 − 〈ϕ,ϕ〉 ∈ C,

for {εj , εj}nj=1 ⊆ `⊕ ` the local isotropic frames defined by (6.18).
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10.3.2 Superconformal Vertex Algebras from Killing Spinors

All the given constructions does not necessarily induce a superconformal vertex algebra
structure (see Remark 10.1.10). Indeed, we need (2.15) for the basis elements. In general,
this is not true as we can see in Lemma C.2.3. However, we know the following.

Proposition 10.3.4. The embeddings in Section 10.1 for quadratic Lie algebras induce
an N = 2 superconformal vertex algebra structure if

(1) we have a Manin triple.

(2) we have pairs of solutions for the Killing spinor equations.

Proof. It follows by Theorem 10.1.8 and Theorem 10.2.6.

It is possible that when stronger conditions on g are imposed (but weaker than the two
above), then we could obtain the honest N = 2 superconformal vertex algebra structure
in our constructions. An anonymous referee of [2] suggested the following.

Conjecture 3. When we take BRST cohomology of g, then we induce an honest N = 2
superconformal vertex algebra structure into the cohomology of V k

super(g).

10.3.3 More Discussions on Main Theorem 10.1.19

We believe that the bi-vector field given in Section 5.3 vanishes when we have a solution
to the twisted Hull-Strominger system (6.16). In other words, we have strong evidence
(see examples in Section 11.1) to state the following.

Conjecture 4. Let (M, g) be a complex manifold with an hermitian structure g. If we
have a solution (Ψ, ω,A) to the twisted Hull-Strominger system (6.16), then we have that
the torsion bi-vector σω identically vanishes. That is,

σω = 0

is always true in our hypotheses, and it does not give a real obstruction. As a consequen-
ce, we have that Theorem 10.1.19 is true without this extra condition. However, maybe,
this is a little bit strong, and this is just true for a compact complex threefold. In any
case, we have not seen this obstruction given by the torsion bi-vector in the literature,
and we have not been able to obtain a counterexample of having solutions for the twisted
Hull-Strominger system for which σω 6= 0. It seems to be an interesting problem.

The conjecture above is supported by Lemma 10.1.14, since it allows us to obtain that
T 2R = 0 when σω = 0, and that is enough to contruct the desired embedding. However,
for a long time, we tried to find a geometric meaning for R, in order to cancel the term
T 2R. In the next result, we give an explicit formula for this term R.

Lemma 10.3.5. Let (M, g) be any complex 2n-dimensional manifold with an hermitian
structure g. If (Ψ, ω) is a solution to the twisted Hull-Strominger system (6.16) and θω
closed, then

R = 2d∗θω − ‖θω‖2g ∈ C∞(M,C). (10.29)
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Proof. We have seen in Proposition 10.1.15 that

R = 4
n∑
j=1

〈
[ej , u] , ej

〉
− 3

〈
n∑
j=1

[
ej , ej

]
,
n∑
k=1

[
ek, ek

]〉
,

where by (6.23) we know the value of the second term. Let us see what happens with the
first one. By Courant algebroid axioms, since [ϕ, ·] = 0, in the frames (6.18),

n∑
j=1

〈
[ej , u] , ej

〉
=

n∑
k=1

g−1dzk

(
θ0,1
ω

(
∂

∂zk

))
.

Now, we can assume θω = dfω as before, and

ω =
i

2

n∑
j=1

dzj ∧ dzj

locally. Then,

n∑
k=1

g−1dzk

(
θ0,1
ω

(
∂

∂zk

))
= −1

2
∆∂fω,

where

∆∂fω : = Λω
(
2i∂∂fω

)
= ∆dfω + ‖θω‖2g.

Now, we know that there exists f ∈ C∞(M) such that

0 = Ricg −
1

4
H ◦H +∇2f,

0 = d∗H + ι∇fH.

Using these conditions and the ones in (10.28), after non-trivial computations based on
[38, Subsection 4.4.2] about generalized Ricci solitons, we obtain that

1

6
‖dcω‖2g − d∗θω − ‖θω‖2g ∈ C,

which always holds if we have a Bismut-Hermite-Einstein metric (in particular, a solution
to the twisted Hull-Strominger system). But, unfortunately, this constant value does not
coincide with our value of R. We expect that the value of R is somehow related with the
Conjecture 2. So, we can state the following.

Conjecture 5. We can correct the supersymmetry generator J0 to obtain certain J , so
that the associated Neveu-Schwarz section H generates an embedding of the N = 1 su-
perconformal vertex algebra into Γ(Ωch

E ), thanks to be R replaced by

R′ = k

(
1

6
‖dcω‖2g − d∗θω − ‖θω‖2g

)
,

where k ∈ C is certain constant.

The role played by the quantity R, as computed in (10.29), remains a mistery to us.

138



Chapter 11

Applications of the Main Results

We collect in this last chapter different applications of the main results from Chapter 10.
In particular, we give the first examples of (0, 2) mirror symmetry on compact complex
non-Kähler manifolds. We include more open questions related with these applications.

11.1 Geometric Examples

First, we will present some geometric examples of solutions to the Killing spinor equati-
ons, where we can apply the methods explained in Section 10.1 to construct embeddings.

11.1.1 N = 2 from Calabi-Yau Equations on Complex Domains

We will see that a complex domain X ⊆ C2 endowed with an SU(2)-structure (Ψ, ω) that
satisfies the twisted Calabi-Yau equations (6.17) induces an embedding of the N = 2
superconformal vertex algebra into the global sections of the chiral de Rham complex
using Theorem 10.1.19 for the case of an exact Courant algebroid. So, given f ∈ C∞(X)
a real positive harmonic function, that is, such that f > 0,∆ω0f = 0, let

Ψ : = fΩ0 := fdz1 ∧ dz2 ∈ Ω2(X),

ω : = fω0 :=
i

2
f (dz1 ∧ dz1 + dz2 ∧ dz2) ∈ Ω2(X).

(11.1)

Since dω = d log f ∧ ω, the associated Lee form is

θω := d log f ∈ Ω1(X). (11.2)

Lemma 11.1.1. (Ψ, ω) defines a solution of the twisted Calabi-Yau equations (6.17).

Proof. Notice that

Ψ ∧ ω = 0, Ψ ∧Ψ =
ω2

2

clearly, so we have an SU(2)-structure. Now, since

dcω = dcf ∧ ω0 = dc log f ∧ ω (11.3)

139



Supersymmetric Vertex Algebras and Killing Spinors

and ∆ω0f = 0, then
dΨ = θω ∧Ψ, dθω = 0, ddcω = 0.

Let σω be the torsion bi-vector from Section 5.3. We must check that it vanishes using
Lemma 10.1.18. Consider for j ∈ {1, 2} the local isotropic frames

εj : = eiω
(
∂

∂zj

)
=

∂

∂zj
+ g

∂

∂zj
∈ eiω

(
T 1,0X

)
,

εj : = g−1dzj + dzj ∈ e−iω
(
T 1,0X

)
.

Lemma 11.1.2. The torsion bi-vector of ω vanishes, that is,

σω = 0.

Proof. Clearly (σω)11 = (σω)22 = 0 for being ` isotropic. Now, notice that

g−1dzj = 2f−1 ∂

∂zj
, for j ∈ {1, 2}.

So, by direct application of Lemma 10.1.18, using (11.3),

〈[ε1, ε2] , ε1〉 = −dcω
(
g−1dz1, g

−1dz2,
∂

∂z1

)
= 4f−2dcω

(
∂

∂z1
,
∂

∂z2
,
∂

∂z1

)
= −2if−2dcf

(
∂

∂z2

)
= −2if−2

(
−i∂f

(
∂

∂z2

))
= −2

∂

∂z2

(
f−1

)
,

〈[ε1, ε2] , ε2〉 = −dcω
(
g−1dz1, g

−1dz2,
∂

∂z2

)
= 4f−2dcω

(
∂

∂z1
,
∂

∂z2
,
∂

∂z2

)
= 2if−2dcf

(
∂

∂z1

)
= 2if−2

(
−i∂f

(
∂

∂z1

))
= 2

∂

∂z1

(
f−1

)
.

In summary,

(σω)12 : =
2∑
j=1

〈D 〈[ε1, ε2] , εj〉 , εj〉 = 4f−1

(
∂

∂z1

∂

∂z2

(
f−1

)
− ∂

∂z2

∂

∂z1

(
f−1

))
= 0,

(σω)21 : =
2∑
j=1

〈D 〈[ε2, ε1] , εj〉 , εj〉 = −
2∑
j=1

〈D 〈[ε1, ε2] , εj〉 , εj〉 = 0.

So, we are in the conditions of Theorem 10.1.19. Let E := E−dcω be the exact Courant
algebroid associated to the solution to the twisted Calabi-Yau equations (11.1).

Proposition 11.1.3. Let X ⊆ C2 be a complex domain, and consider f ∈ C∞(X) a har-
monic function with respect to the standard flat Kähler metric. Then, the solution of the
twisted Calabi-Yau equations (11.1), with associated Lee form (11.2), induces an embed-
ding of the N = 2 superconformal vertex algebra of central charge 6 into the space of global
sections of the chiral de Rham complex Ωch

E⊗RC. The generators of this embedding are gi-
ven by (10.18) for the frames above.

Proof. It is a direct consequence of Theorem 10.1.19 and Lemma 11.1.2.
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11.1.1.1 The (Homogeneous) Hopf Surface

As a particular case of the hypothesis of the previous result, we can take the following:

X̃ := C2 − {(0, 0)} −→ X =
X̃

Z
, f :=

1

‖ · ‖2
.

This corresponds to the universal cover of the Hopf surface. Indeed, the solution of the
twisted Calabi-Yau equation above is preserved by Deck transformations and descends
to a solution (Ψ, ω) of the twisted Calabi-Yau equations in X. Furthermore, the atlas
given by the universal covering corresponds in this case to the atlas of X in Lemma 5.2.2.
This one corresponds by the classification given in [39] to a locally conformally Kähler
metric. As a consequence, if E := E−dcω is the exact Courant algebroid associated to the
solution (Ψ, ω), we can apply Proposition 11.1.3 to induce an embedding of the form

V 6 (K2) ↪→ Γ
(

Ωch
E⊗RC

)
. (11.4)

On the other hand, we can obtain a family of solutions for the Killing spinor equations
as in Definition 6.2.15 for E exact, such that we have a left-invariant triple (V+, div+, η),
and Proposition 6.3.3 and Proposition 7.1.9 apply. Then, applying Theorem 10.1.5 and
Theorem 10.1.8, we are able to obtain 2 more embeddings (this appears in [2]). We will
explain it briefly. Consider the compact 4-dimensional manifold M = S3 × S1 endowed
with the canonical orientation. We use the Lie group structure given by identifying

M ∼= K = SU(2)×U(1).

Consider the next generators for the Lie algebra of left-invariant vector fields

k = su(2)⊕ R = 〈v1, v2, v3, v4〉,

with relations

[v2, v3] = −v1, [v3, v1] = −v2, [v1, v2] = −v3, [v4, ·] = 0.

Equivalently,

dv1 = v2 ∧ v3, dv2 = v3 ∧ v1, dv3 = v1 ∧ v2, dv4 = 0,

for {vj}j∈{1,2,3,4} the dual basis. We take ` ∈ R and define a left-invariant 3-form

H` = `v123. (11.5)

This corresponds to a constant multiple of Cartan 3-form on the SU(2) factor, and hence
it is bi-invariant and closed. Thus, this defines an exact equivariant Courant algebroid
E` = TK ⊕ T ∗K, with usual pairing and Dorfman bracket (where H = H`). Our next
goal is to define a one-parameter family of left-invariant solutions of the Killing spinor
equations on E`. Given x, a > 0 positive real numbers, consider

gx,a =
a

x
(v1 ⊗ v1 + v2 ⊗ v2 + v3 ⊗ v3 + x2v4 ⊗ v4)
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the bi-invariant metric on K. We define a bi-invariant generalized metric on E`

V x,a
± = {v ± gx,a(v) | v ∈ k}

and a bi-invariant divergence divx,a = div0−〈εx, ·〉, for div0 the Riemannian divergence
of gx,a, and εx = −xv4. We have arrived at the following result.

Lemma 11.1.4 ([2, Lemma 4.7]). For x, a > 0 and ` ∈ R, the pair (V x,a
± , εx) is closed.

Proof. The statement follows trivially from (6.6).

Now, we must specify a left-invariant spinor line 〈η〉 ⊆ S+
+ corresponding to an almost

complex structure on V x,a
+ . For this, note that the anchor map π : E` → TK induces an

isomorphism V x,a
+
∼= TK, and we set Ix : V x,a

+ −→ V x,a
+ almost complex structure by

Ixv4 := xv1, Ixv2 := v3. (11.6)

Now, for
divx,a+ := divx,a|

V
x,a
+

,

we have to prove that (V x,a
+ , divx,a+ , Ix) defines a solution of the Killing spinor equations,

provided that ` = a/x. For this, we adopt an algebraic approach. By Proposition 7.1.9,

g` := Γ(E`)
K

has structure of quadratic Lie algebra, with underlying vector space g` ∼= k⊕ k∗, where

(v + α|w + β) =
1

2
(α(w) + β(v)) , for v + α,w + β ∈ g`,

[v + α,w + β] = [v, w]− β([v, ·]) + α([w, ·]) + `iwivv
123, for v + α,w + β ∈ g`.

Now, notice that, for fixed x, a > 0, we have that the pair (V x,a
+ , divx,a) can be regarded

as the pair (V x,a
+ , εx) of generalized metric and divergence on the quadratic Lie algebra

g`. Denote by ηx ∈ S+
+ a non-vanishing pure spinor in 〈η〉 ⊆ S+

+ . We have that

Ix(v + gx,a(v)) := Ixv + gx,a (Ixv) , for v ∈ V x,a
+ .

Lemma 11.1.5 ([2, Lemma 4.8]). We have that the triple (V x,a
+ , εx+, ηx) is a solution of

the Killing spinor equations as in Definition 7.1.5 on g` if and only if ` = a/x.

Proof. By Proposition 7.2.1, it suffices to prove that (7.6) holds if and only if ` = a/x.
Now, an oriented orthonormal basis for V x,a

+ is given by{√
x
av2 +

√
a
xv

2,
√

x
av3 +

√
a
xv

3, 1√
xa
v4 +

√
xav4,

√
x
av1 +

√
a
xv

1
}
,

with associated isotropic basis of V 1,0
+ and V 0,1

+ given by

ε+1 = 1√
2

((√
x
av2 +

√
a
xv

2
)
− i
(√

x
av3 +

√
a
xv

3
))
, ε+1 = ε+1 ,

ε+2 = 1√
2

((
1√
xa
v4 +

√
xav4

)
− i
(√

x
av1 +

√
a
xv

1
))
, ε+2 = ε+2 .
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Now, a direct calculation shows that[
ε+1 , ε

+
2

]
= 1

2

(
x
av2 +

(
2− `xa

)
v2
)
− i

2

(
x
av3 +

(
2− `xa

)
v3
)
.

So,
[
ε+1 , ε

+
2

]
∈ V x,a

+ ⊗ C if and only if ` = a/x and, assuming this condition, it follows
that [

V 1,0
+ , V 1,0

+

]
⊆ V 1,0

+ ,

where V 1,0
+ ⊆ V x,a

+ ⊗ C is the i-eigenbundle of Ix. Similarly,

v :=
2∑
j=1

[
ε+j , ε

+
j

]
= i
(
−x
av1 −

(
2− `xa

)
v1
)
.

So, v ∈ V x,a
+ ⊗C if and only if ` = a/x. Finally, assuming this condition and using that

Ix(εx+) = −1
2Ix

(
1
av4 + xv4

)
= −1

2

(
x
av1 + v1

)
,

it follows that the second equation in (7.6) holds.

Consequently, by direct application of Proposition 7.1.9, the triple (V x,a
+ ,divx,a+ , ηx) is a

left-invariant solution of the Killing spinor equations as in Definition 6.2.15 on E` if and
only if ` = a/x. Our solutions of the Killing spinor equations in the previous result are
such that εx is an infinitesimal isometry for V x,a

+ in the sense of Definition 7.1.2. In the
next result we prove that the dual vector field πεx+ is holomorphic with respect to Ix.

Lemma 11.1.6 ([2, Lemma 4.10]). The left-invariant vector field πεx+ is Ix-holomorphic,
that is, [

εx+, V
1,0

+

]
⊆ V 1,0

+ ,

where V 1,0
+ ⊆ V x,a

+ ⊗ C is the i-eigenbundle of Ix.

Proof. Immediate, since εx+ = −1
2

(
1
av4 + xv4

)
is in the center of g`.

We study our family of solutions in terms of complex geometry by means of Proposition
6.3.3 in the exact case, in order to compare with the construction given at the beginning
of the present section. Assuming ` = a/x, the family of solutions of (6.17) induced by(

V x
+ , divx+, ηx

)
:=
(
V x,`x

+ ,divx,`x+ , ηx

)
(11.7)

is given by

ωx = `xv4 ∧ v1 + `v2 ∧ v3,

Ψx = `
2

(
iv1 + xv4

)
∧
(
v2 + iv3

)
,

(11.8)

with Lee form θx = −xv4. To see the relation with the construction we started with, note
that the complex manifold (K, Ix) is biholomorphic to the diagonal Hopf surface

Xx =
C2 − {(0, 0)}
〈γx〉

,

where 〈γx〉 ∼= Z is generated by γx(z1, z2) = (exz1, e
xz2). So, we arrive at the following.
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Proposition 11.1.7. For any `, x > 0, the solution of the Killing spinor equations in
Lemma 11.1.5 induces embeddings of the N = 2 superconformal vertex algebra of central
charges 6 and 6 + 6/` into the space of global sections of the chiral de Rham complex
Ωch
E`⊗RC. The generators are, on each case, (10.9) and (10.10), and in both cases these

formulas work for k = 2, and the basis is given by formulas in the proof of Lemma 11.1.5.

Proof. Applying Theorem 10.1.5 and Theorem 10.1.8, and Lemma 11.1.5, we obtain
embeddings in the quadratic Lie algebras. So, we have embeddings of the N = 2 super-
conformal vertex algebra of central charges 6 and 6 + 6/` into the universal superaffine
vertex algebra V k

super

(
gC`
)

with k 6= 0. Now, as in Proposition 10.1.11, if k = 2, there is
an embedding

V 2
super

(
gC`

)
↪→ Γ

(
Ωch
E`⊗RC

)
on the space of global sections of the chiral de Rham complex Ωch

E`⊗RC. So, we obtain
two more embeddings of the N = 2 superconformal vertex algebra of central charges 6
and 6 + 6/` into the global sections of the chiral de Rham complex of E` ⊗R C.

Notice that these two constructions can be compared. Indeed, it can be seen that there
exists `0 > 0 for which E`0

∼= E−dcω, where E−dcω is the exact Courant algebroid induced
by the solution (Ψ, ω) on the quotient X considered to construct the embedding (11.4).
So, multipliying ω by c > 0, we obtain the family of exact Courant algebroids E`.

11.1.1.2 Compact Complex Surfaces

A complete classification for the solutions of the twisted Calabi-Yau equations (6.17) on
compact complex surfaces was obtained in [39, Proposition 2.10]. As a direct consequence
of that classification, we can obtain a more general result for compact complex surfaces.
Let X be any compact complex surface, and suppose that (ω0,Ψ0, A) is a solution to the
twisted Hull-Strominger system (6.16). Now, by Gauduchon’s Theorem [41], there exists
φ ∈ C∞(X) such that

Ψ : = eφΨ0 ∈ Ω2(X),

ω : = eφω0 ∈ Ω2(X),

is an SU(2)-structure satisfying that ddcω = 0. Even more, since

dω = dφeφ ∧ ω + eφdω = (dφ+ θω0) ∧ ω,

clearly, the associated Lee form is by definition θω = θω0 + dφ ∈ Ω1(X).

Lemma 11.1.8. (Ψ, ω) is a solution of the twisted Calabi-Yau equations (6.17).

Proof. Notice that, by hypothesis,

Ψ ∧ ω = 0, Ψ ∧Ψ =
ω2

2
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clearly, so we have an SU(2)-structure. Now, since

dΨ = dφ ∧Ψ + eφθω0 ∧Ψ0

and dθω0 = 0 by hypothesis, then

dΨ = θω ∧Ψ, dθω = 0, ddcω = 0.

In conclusion, we are ready now to state the following important result.

Theorem 11.1.9. Let X be a compact complex surface for which (ω0,Ψ0, A) is a solution
to the twisted Hull-Strominger system (6.16), and consider the string Courant algebroid
E := E−dcω0,A. Then, there exists an embedding of the N = 2 superconformal vertex
algebra of central charge 6 into the space of global sections of the chiral de Rham complex
Ωch
E⊗RC. The generators of this embedding are given by (10.18) for the frames above.

Proof. It follows easily for all the work we have done. Indeed, thanks to the classification
for solutions of the twisted Calabi-Yau equations (6.17) on compact complex surfaces
obtained in [39, Proposition 2.10], we have that either (X,ω, I) is a flat torus T4 or a K3
surface with a Kähler Ricci-flat metric (and hence θω = 0), or (X,ω, I) is a quaternionic
Hopf surface and θω 6= 0. In both cases, ω0 = e−φω is, in the corresponding (unique)
maximal atlas given by Lemma 5.2.2, locally conformally Kähler. Then, we can repeat
the same proof in Lemma 11.1.2 with f := eφ, since we do not use the harmonicity of f .
The proof is now a direct consequence of Theorem 10.1.19, since (10.16) is global.

11.1.2 N = 2 from Hull-Strominger System on Complex Dimension 3

We study now two examples whose solutions to the Killing spinor equations come from
the Hull-Strominger System. From now, we will use the notations for m ∈ N,

v1 ∧ · · · ∧ vm = v1···m, v1 ∧ · · · ∧ vm = v1···m,

where v1, · · · , vm, v1, · · · , vm are the 1-forms such that vj(vk) = δjk for j, k ∈ {1, . . . ,m}.

11.1.2.1 The (Homogeneous) Iwasawa Manifold

We start discussing an application of Theorem 10.1.5. We show that from an invariant
solution of the Hull-Strominger system over a certain Lie group K, we can construct a
quadratic Lie algebra gK endowed with a solution of the Killing spinor equations as in
Definition 7.1.5, where Theorem 10.1.5 applies. In particular, we will provide an infinite
family of examples for which V C

+ = l⊕ l does not define a Manin triple (as we mentioned
in Remark 10.2.8). We restrict to a family of solutions studied in [40]. We will follow the
abstract definition of the equations in [39]. Consider the complex Heisenberg Lie group

G := HC =


 1 z2 z3

0 1 z1

0 0 1

 ∣∣∣∣∣∣ zi ∈ C

 .
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The following 1-forms

ω1 = dz1, ω2 = dz2, ω3 = dz3 − z2dz1

define a global left-invariant holomorphic frame of T 1,0∗G, and satisfy the equations

dω1 = dω2 = 0, dω3 = ω12,

from which all the exterior algebra relations can be easily derived. Now, for any choice
of (m,n, p) ∈ R3 − {(0, 0, 0)}, we consider the purely imaginary (1, 1)-form given by

F = π (m (ω11 − ω22) + n (ω12 + ω21) + ip (ω12 − ω21)) . (11.9)

Consider the left-invariant SU(3)-structure on G defined by

Ω = ω123, ω = i
2 (ω11 + ω22 + ω33) . (11.10)

Notice that dΩ = 0 clearly, while dω 6= 0 (we have Calabi-Yau non-Kähler structure).

Proposition 11.1.10 ([40, Proposition 4.1]). Fix α =
(
2π2

(
m2 + n2 + p2

))−1 ∈ R.
Then, the pair (ω, F ) is a solution of the Hull-Strominger system. That is,

F 0,2 = 0, F ∧ ω2 = 0,

d(‖Ω‖ωω2) = 0,

ddcω − αF ∧ F = 0.

(11.11)

Starting from any solution of the form (11.11), it is proven in [35] that one can construct
solutions of the Killing spinor equations on a transitive Courant algebroid overK. Taking
left-invariant sections, one obtains a quadratic Lie algebra endowed with a solution for
the Killing spinor equations as in Definition 7.1.5, similarly as in Proposition 7.1.9. Using
that the solution in Proposition 11.1.10 is left-invariant, it follows that ‖Ω‖ω is constant,
and hence ω is balanced. That is, θω = 0. From this, the induced solution for the Killing
spinor equations has zero divergence and Theorem 10.1.5 applies. Rather than given the
details of this general argument, we shall provide here an explicit direct proof. Denote
by hC the Lie algebra of G. Then, for any choice of (m,n, p) ∈ R3 − {(0, 0, 0)}, one can
define a real quadratic Lie algebra with underlying vector space

gm,n,p = hC ⊕ iR⊕ h∗C,

pairing

(v + r + η |w + t+ ξ ) =
1

2
(η(v) + ξ(w))− αrt, for v + r + η, w + t+ ξ ∈ gm,n,p,

and Lie bracket

[v + r + η, w + t+ ξ] = [v, w]− ξ([v, ·]) + η([w, ·]) + iwiv (dcω)− F (v, w)

+ 2α(riwF − tivF ), for v + r + η, w + t+ ξ ∈ gm,n,p,
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where F and α are as in Proposition 11.1.10. The definition of α is necessary for the Lie
bracket to satisfy Jacobi identity. More explicitly, taking a real basis of h∗C defined by

ω1 = v1 + iv2, ω2 = v3 + iv4, ω3 = v4 + iv6,

one has the non-trivial relations

dv5 = v13 − v24, dv6 = v14 + v23,

and the (integrable almost) complex structure on hC reads as

Iv1 = v2, Iv3 = v4, Iv5 = v6,

where vj for j ∈ {1, 2, 3, 4, 5, 6} is the dual basis. From this, it follows that

dcω = v135 + v236 + v146 − v245,

and also that

F = 2πi
(
m
(
v34 − v12

)
+ n

(
v23 − v14

)
+ p

(
v13 + v24

))
.

We prove that the previous data determines a solution of the Killing spinor equations
on gm,n,p with zero divergence. Consider the generalized metric on gm,n,p defined by

V+ = {v + g(v, v) | v ∈ hC}, V− = {v + r − g(v, v) | v + r ∈ hC ⊕ iR},

where

g (·, ·) := ω (·, I·) = v1 ⊗ v1 + v2 ⊗ v2 + v3 ⊗ v3 + v4 ⊗ v4 + v5 ⊗ v5 + v6 ⊗ v6.

Consider the spinor line 〈η〉 ⊆ S+
+ corresponding to the complex structure on V+

∼= hC.

Lemma 11.1.11 ([2, Lemma 5.5]). The triple (V+, 0, η) is a solution of the Killing
spinor equations on gm,n,p, and V C

+ ⊆ gCm,n,p is a Lie subalgebra if and only if m = 0.

Proof. It suffices to prove (7.6). An isotropic basis of V 1,0
+ and V 0,1

+ is given by

ε+1 = 1√
2

((
v1 + v1

)
− i
(
v2 + v2

))
, ε+1 = ε+1 ,

ε+2 = 1√
2

((
v3 + v3

)
− i
(
v3 + v3

))
, ε+2 = ε+2 ,

ε+3 = 1√
2

((
v5 + v5

)
− i
(
v6 + v6

))
, ε+1 = ε+1 .

Now, a direct calculation shows that[
ε+1 , ε

+
2

]
= −
√

2ε+3 ,
[
ε+1 , ε

+
3

]
= 0,

[
ε+2 , ε

+
3

]
= 0,

and therefore
[
V 1,0

+ , V 1,0
+

]
∈ V 1,0

+ . Similarly,[
ε+1 , ε

+
1

]
= −2πm,

[
ε+2 , ε

+
2

]
= 2πm,

[
ε+3 , ε

+
3

]
= 0,

and therefore the first part of the statement follows. From previous formula, we conclude
that m 6= 0 implies V C

+ ⊆ gCm,n,p is not a Lie subalgebra. The other implication is left to
the reader.
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So, by Theorem 10.1.5, we obtain an embedding of the N = 2 superconformal vertex
algebra of central charge c = 9 into the universal superaffine vertex algebra associated
to gCm,n,p, which works for any level 0 6= k ∈ C. When m 6= 0, these embeddings are not
associated to Manin triples, showing that Theorem 10.1.5 provides a strict generalization
of Getzler’s construction mentioned in Theorem 3.3.3. That is, we have the next result.

Proposition 11.1.12 ([2, Proposition 5.6]). For (m,n, p) ∈ R3−{(0, 0, 0)}, the solution
of the Killing spinor equations in Lemma 11.1.11 induces an embedding of the N = 2
superconformal vertex algebra of central charge 9 into the universal superaffine vertex al-
gebra V k

super

(
gCm,n,p

)
for k 6= 0. The generators are given by (10.9) for the basis above.

Proof. It is a direct consequence of Theorem 10.1.5 and Lemmma 11.1.11.

Remark 11.1.13. As it is proven in [35], associated to a solution of the Hull-Strominger
system, there exists a transitive Courant algebroid E. Denote by Em,n,p this transitive
Courant algebroid on K determined by the solution given in Proposition 11.1.10. Then,
similarly as in Proposition 10.1.11, when k = 2 there exists an embedding

V 2
super

(
gCm,n,p

)
↪→ Γ

(
Ωch
Em,n,p⊗RC

)
on the space of sections for the chiral de Rham complex of Em,n,p⊗R C. By Proposition
11.1.12, one obtains an embedding of the N = 2 superconformal vertex algebra of central
charge 9 into the space of global sections of the chiral de Rham complex Ωch

Em,n,p⊗RC.

Now, we will apply instead the general method for general transitive Courant algebroids
provided by Theorem 10.1.19. Indeed, in order to apply Theorem 10.1.19, we must see
that the associated torsion bi-vector σω vanishes by Lemma 10.1.18. For j ∈ {1, 2, 3},
consider the local isotropic frames

εj : = eiω
(
∂

∂zj

)
=

∂

∂zj
+ g

∂

∂zj
∈ eiω

(
T 1,0G

)
,

εj : = g−1dzj + dzj ∈ e−iω
(
T 1,0G

)
.

Lemma 11.1.14. The torsion bi-vector of ω vanishes, that is,

σω = 0.

Proof. First, we will compute dcω from (11.10). Since dω = i
2 (ω123 − ω312) , then

dcω = −dω(I·, I·, I·) =
1

2
(ω123 + ω312) . (11.12)

Clearly (σω)11 = (σω)22 = (σω)33 = 0, since ` is isotropic. Now, notice that

g−1dz1 = 2

(
∂

∂z1
+ z2

∂

∂z3

)
,

g−1
u dz2 = 2

∂

∂z2
,

g−1
u dz3 = 2

(
z2

∂

∂z2
+
(
1 + |z2|2

) ∂

∂z3

)
.
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So, by direct application of Lemma 10.1.18, using (11.12), we obtain the non-zero values

〈[ε1, ε2] , ε1〉 = −dcω
(
g−1dz1, g

−1dz2,
∂

∂z1

)
= −2z2,

〈[ε1, ε2] , ε3〉 = −dcω
(
g−1dz1, g

−1dz2,
∂

∂z3

)
= 2.

That is, we have that

(σω)12 : =
3∑
j=1

〈D 〈[ε1, ε2] , εk〉 , εk〉 = −2
(
g−1dz1(z2)− g−1dz3(2)

)
= 0.

Again, by direct application of Lemma 10.1.18, using (11.12), we obtain that

〈[ε1, ε3] , ε1〉 = 〈[ε1, ε3] , ε2〉 = 〈[ε1, ε3] , ε3〉 = 0.

That is, we have that

(σω)13 : =

3∑
j=1

〈D 〈[ε1, ε3] , εk〉 , εk〉 = 0.

By direct application of Lemma 10.1.18, using (11.12), we obtain the non-zero values

〈[ε2, ε3] , ε1〉 = −dcω
(
g−1dz2, g

−1dz3,
∂

∂z1

)
= 2z2

2,

〈[ε2, ε3] , ε3〉 = −dcω
(
g−1dz2, g

−1dz3,
∂

∂z3

)
= −2z2.

That is, we have that

(σω)23 : =

3∑
j=1

〈D 〈[ε1, ε2] , εk〉 , εk〉 = 2
(
g−1dz1(z2

2) + g−1dz3(z2)
)

= 0.

In summary, we arrive at the desired result, applying antisymmetry to obtain that

(σω)21 = (σω)31 = (σω)32 = 0.

Proposition 11.1.15. For (m,n, p) ∈ R3 − {(0, 0, 0)}, consider the transitive Courant
algebroid E := Em,n,p associated to the solution to the Hull-Strominger system (11.11).
Then, we induce an embedding of the N = 2 superconformal vertex algebra of central
charge 9 into the space of global sections of the chiral de Rham complex Ωch

E⊗RC. The ge-
nerators of this embedding are given by (10.18) for the frames above.

Proof. It is a direct consequence of Theorem 10.1.19 and Lemma 11.1.14.

We expect that the two embeddings we have obtained in Proposition 11.1.12 and Propo-
sition 11.1.15 actually coincide. We hope to prove this in future work.
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11.1.2.2 The Picard Calabi-Yau Three-fold

We give our last application of Theorem 10.1.19. We study the non-Kähler Calabi-Yau
3-fold introduced by S. Picard in [78]. Consider the complex 3-dimensional manifold

X := C3/ ∼, where (z1, z2, z3) ∼ (z1 + a, z2 + c, az2 + b), for a, b, c ∈ Z[i].

Observe that there is an holomorphic fibration structure

p : T2 ↪→ X −→ T4 := C2/ ∼
[(z1, z2, z3)] 7→ [(z1, z2)]

.

The following 1-forms

ω1 = dz1, ω2 = dz2, ω3 = dz3 − z1dz2

define a global holomorphic frame of T 1,0∗M , and satisfy the equations

dω1 = dω2 = 0, dω3 = ω21.

Note that the difference between this new example and the Iwasawa manifold lies in the
1-form ω3. Indeed, this is qualitatively different, since here dω3 ∈ Ω1,1(X). Now, for a
choice of (m,n, p) ∈ Z3−{(0, 0, 0)}, we can consider the purely imaginary (1, 1)-form F
given by (11.9). Consider any u ∈ C∞(T4,R), and define on X the forms

Ω = ω123 = dz123, ωu =
i

2
(eu (ω11 + ω22) + ω33) .

Notice that dΩ = 0 clearly, while dωu 6= 0 (we have Calabi-Yau non-Kähler structure).

Lemma 11.1.16. We have that

d
(
‖Ω‖ωuω2

u

)
= 0.

Proof. Write

ωT4 =
i

2
(ω11 + ω22) , ωu = euωT4 +

i

2
ω33.

Then,

‖Ω‖2ωu
ω3
u

6
= −iΩ ∧ Ω = −idz112233,

ω3
u

6
=
i

4
e2uω2

T4 ∧ ω33 = −i 1

16
e2udz112233.

So, ‖Ω‖2ωu = λ2e−2u for certain λ ∈ R. That is, ‖Ω‖ωu = λe−u. At last,

d
(
‖Ω‖ωuω2

u

)
= λd

(
e−u

(
e2uω2

T4 + iω33 ∧ e
uωT4

))
= λd

(
euω2

T4

)
= 0,

since

dω33 ∧ ωT4 = ω3 ∧ (dω3 ∧ ωT4)− ω3 ∧ (dω3 ∧ ωT4) = 0.

Notice that this condition is equivalent to θω = −d log ‖Ω‖ωu . So, θωu = du.
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Taking Ψu := ‖Ω‖−1
ωuΩ, we obtain that (Ψu, ωu) define an SU(3)-structure solving (5.9).

So, by Lemma 5.2.2, there exists a canonically associated unique maximal atlas on X.
Let F be as in (11.9), for m,n, p ∈ Z. Then, one can prove that

i

2π
[F ] ∈ H1,1

(
T4,R

)
∩H2

(
T4,R

)
.

Hence, there exists an holomorphic line bundle with an hermitian metric (L, h) such that
Fh = F . Furthermore, consider

k(m,n, p) :=

∫
T4

[F ]2 ,

which is a positive integer. We have arrived at the following result.

Lemma 11.1.17. There exists an SU(2)-bundle E1 over T4 with c2(E1) = k(m,n, p),
and a connection A1 on E1, such that its pull-back to X satisfies:

F 0,2
A1

= 0, FA1 ∧ ω2
u = 0.

Proof. By [23, Chapter 4], we know that there exists a Hermitian-Yang-Mills connection
on T4 with respect to ωT4 and with second Chern class k(m, , n, p). The fact that A1 is a
Hermitian-Yang-Mills connection for ωu follows easily from F ∧ ωT4 = 0.

Lemma 11.1.18. For suitable α ∈ R, there exists u ∈ C∞(T4,R) such that

ddcωu = αF ∧ F − α trFA1 ∧ FA1 .

Proof. First, we will compute dcωu. Since

dωu = du ∧ euωT4 +
i

2
(ω213 − ω321) ,

then

dcωu = −dωu (J ·, J ·, J ·)

= dcu ∧ euωT4 −
1

2
(ω213 + ω321) .

(11.13)

Now, notice that

ddcωu =
1

2
∆ωT4 (eu)ω2

T4 − ω1122,

where

∆ωT4 (φ) = 1 + α
(
−2π2

(
m2 + n2 + p2

))
− α |FA1 |

2 , for φ ∈ C∞(T4,R).

So,
1

2
∆ωT4 (φ)ω2

T4 = ω1122 − α
(
2π2

(
m2 + n2 + p2

))
ω1122 − α trFA1 ∧ FA1 .

Now, we can solve this equation [23] for u, α such that eu = φ+ C taking C � 0 when

0 =

∫
T4

ω2
T4 − α

(
2π2

(
m2 + n2 + p2

))
+ 8π2αc2 (E1) .
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By proof of Lemma 11.1.17, we have that adP = p∗ (iR⊕ End E1). Now, we consider the
transitive Courant algebroid

EH,A := TX ⊕ adP ⊕ T ∗X,

where
H := −dcωu

and, for Ah Chern connection of (L, h),

A := Ah ⊕A1.

By the previous results, for α ∈ R and u ∈ C∞(T4,R) as stated above, the pair (ωu, FA),
where ωu is the (1, 1)-form defined before using this concrete u, and FA is the curvature
associated to this particular connection, is a solution of the Hull-Strominger system

F 0,2
A = 0, FA ∧ ω2

u = 0,

d
(
‖Ω‖ωuω2

u

)
= 0,

ddcωu − α 〈FA ∧ FA〉 = 0.

(11.14)

In this example, the associated Lee form is exact (so, closed). So, we are in the hypothesis
of Theorem 10.1.19, and we must see that the associated torsion bi-vector σω from Section
5.3 vanishes. Consider for j ∈ {1, 2, 3} the local isotropic frames

εj : = eiω
(
∂

∂zj

)
=

∂

∂zj
+ g

∂

∂zj
∈ eiω

(
T 1,0X

)
,

εj : = g−1dzj + dzj ∈ e−iω
(
T 1,0X

)
.

Lemma 11.1.19. The torsion bi-vector of ωu vanishes, that is,

σω = 0.

Proof. Clearly (σω)11 = (σω)22 = (σω)33 = 0, since ` is isotropic. Now, notice that

g−1
u dz1 = 2e−u

∂

∂z1
,

g−1
u dz2 = 2

(
e−u

∂

∂z2
+ e−uz1

∂

∂z3

)
,

g−1
u dz3 = 2

(
z1e
−u ∂

∂z2
+
(
1 + e−u|z1|2

) ∂

∂z3

)
.

So, by direct application of Lemma 10.1.18, using (11.13), we obtain the non-zero values

〈[ε1, ε2] , ε1〉 = −dcωu
(
g−1
u dz1, g

−1
u dz2,

∂

∂z1

)
= −2

∂

∂z2

(
e−u
)
,

〈[ε1, ε2] , ε2〉 = −dcωu
(
g−1
u dz1, g

−1
u dz2,

∂

∂z2

)
= 2

∂

∂z1

(
e−u
)
,
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That is, we have that

(σω)12 : =
3∑
j=1

〈D 〈[ε1, ε2] , εk〉 , εk〉 = 4e−u
1∑
j=0

(−1)j
∂

∂zj+1

(
∂

∂z2−j

(
e−u
))

= 0.

Again, by direct application of Lemma 10.1.18, by (11.13), we obtain the non-zero values

〈[ε1, ε3] , ε1〉 = −dcωu
(
g−1
u dz1, g

−1
u dz3,

∂

∂z1

)
= −2

∂

∂z2

(
z1e
−u) ,

〈[ε1, ε3] , ε2〉 = −dcωu
(
g−1
u dz1, g

−1
u dz3,

∂

∂z2

)
= 2

∂

∂z1

(
z1e
−u) ,

That is, we have that

(σω)13 : =

3∑
j=1

〈D 〈[ε1, ε3] , εk〉 , εk〉 = 4e−u
1∑
j=0

(−1)j
∂

∂zj+1

(
∂

∂z2−j

(
z1e
−u)) = 0.

Now, by direct application of Lemma 10.1.18, using (11.13), we obtain that

〈[ε2, ε3] , ε1〉 = 〈[ε2, ε3] , ε2〉 = 〈[ε2, ε3] , ε3〉 = 0.

That is, we have that

(σω)23 : =

3∑
j=1

〈D 〈[ε1, ε2] , εk〉 , εk〉 = 0.

In summary, we arrive at the desired result, applying antisymmetry to obtain that

(σω)21 = (σω)31 = (σω)32 = 0.

So, we can apply Theorem 10.1.19. We have the following.

Proposition 11.1.20. For (m,n, p) ∈ Z3−{(0, 0, 0)}, consider the string Courant alge-
broid E := EH,A associated to the solution of the Hull-Strominger system (11.14), with
associated Lee form

θωu = du, for u ∈ C∞(T4,R)

as in Lemma 11.1.18. Then, we induce an embedding of the N = 2 superconformal ver-
tex algebra of central charge 9 into the space of global sections of the chiral de Rham com-
plex Ωch

E⊗RC. The generators of this embedding are given by (10.18) for the frames above.

Proof. It is a direct consequence of Theorem 10.1.19 and Lemma 11.1.19.

This is the first (and unique, for the moment) non-homogeneous example with non-zero
closed Lee form for which we have constructed an embedding of the N = 2 superconfor-
mal vertex algebra into the space of global sections of the chiral de Rham complex.
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11.1.3 N = 4 on Homogeneous Hopf Surfaces

The following discussion is essentially contained in [2, Section 5.1]. We summarize
here the main results, and suggest a generalization of the given embeddings. We will
show that each element of the constructed family of N = 2 superconformal vertex
algebra embeddings induced by Theorem 10.1.5 and Lemma 11.1.5 embeds in certain
N = 4 superconformal vertex algebra with central charge 6. Fix `, x > 0, and consider
the obtained solution of the Killing spinor equations (V x

+ ,divx+, Ix) on the equivariant
Courant algebroid E` over K = SU(2)× U(1) from Lemma 11.1.5. Now, notice that gx
is compatible with the left-invariant hyperholomorphic structure (Ix, Jx,Kx) on K, with
Ix defined by (11.6), and Jx and Kx defined using (11.8) by

2Ψx = ωJx + iωKx ,

where gx = ωJx(·, Jx·) = ωKx(·,Kx·). More explicitly, we have

Jxv4 = xv2, Jxv3 = v1, Kxv1 = v2, Kxv4 = xv3,

and it is straightforward to check that the quaternionic identities hold.

Lemma 11.1.21 ([2, Lemma 5.1]). If `, x > 0, the triples (V x
+ ,divx+, Ix), (V x

+ ,divx+, Jx)
and (V x

+ ,divx+,Kx) are left-invariant solutions of the Killing spinor equations on E`.
Consequently, the triple (Ix, Jx,Kx) is an hyperholomorphic structure compatible with
gx and fixed Lee form

θx = −xv4.

Proof. The claim about the complex structure Ix has been checked in Lemma 11.1.5.
We check that (V x

+ ,divx+,Kx) is a solution of the Killing spinor equations on E`, and
leave the other case for the reader. It suffices to prove that

ωKx = `v12 + `xv43, ΨKx = (v1 + iv2) ∧ (iv3 + xv4)

satisfies (6.17) with dcKxωKx = −H` and θωKx = −xv4. We calculate

dΨKx = ixv43 ∧ (v1 + iv2) = −xv4 ∧ΨKx ,

dωKx = −`xv412 = −xv4 ∧ ωKx ,
dcKxωKx = −dωKx(Kx,Kx,Kx) = `xv412(Kx,Kx,Kx) = −`v123 = −H`.

The statement follows from the structure equation for the Lee form on a complex surface,
given by dωKx = θωKx ∧ ωKx .

By Lemma 11.1.21 and Proposition 7.2.1, it follows that

w := wJx = wIx = wKx = εx+,

and hence condition (7.11) holds by Lemma 11.1.6.
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Proposition 11.1.22 ([2, Proposition 5.2]). The solutions in Lemma 11.1.21 induce an
embedding of the N = 4 superconformal vertex algebra of central charge 6 into the space
of global sections of the chiral de Rham complex Ωch

E`⊗RC. If

JI0 = J0(V x
+ ,divx+, Ix), H ′I = H ′(V x

+ ,divx+, Ix),

JJ0 = J0(V x
+ ,divx+, Jx), H ′J = H ′(V x

+ ,divx+, Jx),

JK0 = J0(V x
+ ,divx+,Kx), H ′K= H ′(V x

+ , divx+,Kx),

are all the generators of each N = 2 superconformal vertex algebra from Theorem 10.1.5,
then H ′I = H ′J = H ′K , and furthermore there are satisfied[
JI0 ΛJ

J
0

]
= − (2χ+ S) JK0 ,

[
JJ0 ΛJ

K
0

]
= − (2χ+ S) JI0 ,

[
JK0 ΛJ

I
0

]
= − (2χ+ S) JJ0 .

Proof. We write wj = Πvj and wj = Πvj for j ∈ {1, 2, 3, 4}, where the vectors vj , v
j for

j ∈ {1, 2, 3, 4} are as in Paragraph 11.1.1.1. We obtain the explicit formulas

JI0 =
1

2`

(
:
(
w2 + `w2

) (
w3 + `w3

)
: + :

(
1

x

(
w4 + `x2w4

)) (
w1 + `w1

)
:

)
,

JJ0 =
1

2`

(
:
(
w3 + `w3

) (
w1 + `w1

)
: + :

(
1

x

(
w4 + `x2w4

)) (
w2 + `w2

)
:

)
,

JK0 =
1

2`

(
:
(
w1 + `w1

) (
w2 + `w2

)
: + :

(
1

x

(
w4 + `x2w4

)) (
w3 + `w3

)
:

)
.

We compute
[
JI0 ΛJ

J
0

]
By the non-commutative Wick formula, we have

[
JI0 ΛJ

J
0

]
=

1

2

(
1

`

(∫ Λ

0
dΓ
[[
JI0 Λ

(
w3 + `w3

)]
Γ

(
w1 + `w1

)]
+ :

[
JI0 Λ

(
w3 + `w3

)] (
w1 + `w1

)
: − :

(
w3 + `w3

) [
JI0 Λ

(
w1 + `w1

)]
:
)

+

(
1

`x

∫ Λ

0
dΓ
[[
JI0 Λ

(
w4 + `x2w4

)]
Γ

(
w2 + `w2

)]
+ :

[
JI0 Λ

(
w4 + `x2w4

)] (
w2 + `w2

)
: − :

(
w4 + `x2w4

) [
JI0 Λ

(
w2 + `w2

)]
:
))
.

Now, we compute the following intermediate Λ-brackets,[(
w3 + `w3

)
Λ
JI0
]

= −χ
(
w2 + `w2

)
+

1

2`

(
:
(
w1 + `w1

) (
w3 + `w3

)
:

+ :

(
1

x

(
w4 + `x2w4

)) (
w2 + `w2

)
:

)
,[(

w1 + `w1
)

Λ
JI0
]

= −λ− χ1

x

(
w4 + `x2w4

)
,[(

w2 + `w2
)

Λ
JI0
]

= χ
(
w3 + `w3

)
− 1

2`

(
:
(
w2 + `w2

) (
w1 + `w1

)
:

− :

(
1

x

(
w4 + `x2w4

)) (
w3 + `w3

)
:

)
,[(

w4 + `x2w4
)

Λ
JI0
]

= xχ
(
w1 + `w1

)
.
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Combining the non-commutative Wick formula, the antisymmetry of Λ-bracket, (1.12),
and (B.4), since S is an antiderivation for the normally ordered product, we conclude[

JI0 ΛJ
J
0

]
=

1

2`

(
χ :
(
w2 + `w2

) (
w1 + `w1

)
: + :

(
S
(
w2 + `w2

)) (
w1 + `w1

)
:

+
1

x

(
χ :
(
w3 + `w3

) (
w4 + `x2w4

)
: − :

(
w3 + `w3

) (
S
(
w4 + `x2w4

))
:
)

− (λ+ T )
(
w3 + `w3

)
+ λ

(
w3 + `w3

)
− χ :

(
w1 + `w1

) (
w2 + `w2

)
: − :

(
S
(
w1 + `w1

)) (
w2 + `w2

)
:

− 1

x

(
χ :
(
w4 + `x2w4

) (
w3 + `w3

)
: − :

(
w4 + `x2w4

) (
S
(
w3 + `w3

))
:
)

= − (2χ+ S) JK0 .

Finally, the identity H ′I = H ′J = H ′K follows calculating a basis as in (3.8) in each case
and substituting in the formula from Lemma C.2.1.

Remark 11.1.23. Note that the method of Proposition 11.1.22 does not apply to the
family of N = 2 superconformal structures with central charge 6+6/` in Theorem 10.1.8.
Even more, this value of the central charge 6 for our family of N = 4 algebras coincides
with the one obtained via Theorem 10.1.19. Maybe the generalizable result is this last
one. It would be interesting to compare these two supersymmetry generators.

In conclusion, this Proposition 11.1.22 suggests a generalization of our constructions.

Conjecture 6. When V± is 4k-dimensional, and we have that Gη = Sp(k) in Lemma
7.1.6, where Sp(k) denotes the compact symplectic group, then there exists an embedding
of the N = 4 superconformal vertex algebra into V k

super(g).

Remark 11.1.24. It would be interesting to study what happens when we have other
type of geometric structures, such as solutions to the G2-Strominger system (see [18] for
more information on this). Based on the work by Rodŕıguez Dı́az in [80] for the chiral
de Rham complex over a smooth manifold with holonomy G2, one can expect to induce
embeddings of the Shatashvili-Vafa vertex algebra [81], generated by a superconformal
vector and a non-primary even field, from solutions to the G2-Strominger system.

11.2 (0, 2) Mirror Symmetry on Hopf Surfaces

The main goal of [2] is to find the first examples of (0, 2) mirror symmetry on compact
non-Kähler complex manifolds. For that, we have followed Borisov’s approach to mirror
symmetry in [13], which needs SUSY vertex algebras and the chiral de Rham complex.
The responsible for the mirror symmetry in which we are interested in is our embeddings
of the N = 2 superconformal vertex algebra. Concretely, we constructed (0, 2) mirror
pairs in the Hopf surface, via T -duality for the family of solutions for the Killing spinor
equations in Lemma 11.1.5. Thanks to [36, Theorem 6.5], such solutions are preserved
under T -duality, and we shall prove that the T -dual of (V x

+ ,divx+, ηx) is a different element
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in the same family. We start recalling some background on topological T -duality following
[38, Chapter 10]. Let Tk be a k-dimensional torus acting freely and properly on a smooth
compact manifold M , so that M is a principal Tk-bundle over the smooth manifold given
by B := M/Tk. We endow M with the choice of a Tk-invariant cohomology class

τ ∈ H3 (M,R)T
k

.

Now, fix another pair (M̂, τ̂) consisting of a smooth compact manifold M̂ with a proper
and free Tk-action such that

B =
M̂

Tk
, and τ̂ ∈ H3(M̂,R)T̂

k
.

Consider the fibre product M = M ×B M̂ and the diagram

M
q

~~

q̂

  
M

p
  

M̂

p̂~~
B

Definition 11.2.1. We will say that two pairs (M, τ) and (M̂, τ̂) as above are T -dual
if there exists representatives

H ∈ Ω3(M)T
k
, Ĥ ∈ Ω3(M̂)T̂

k

of τ and τ̂ cohomology classes above, respectively, such that q∗H − q̂∗Ĥ = dB, where

B ∈ Ω2(M)T
k×T̂k

is such that B : Ker dq ⊗Ker dq̂ → R is non-degenerate.

Given M as above, if t = B × Lie Tk, we have the natural exact sequence

0→ t→ TM

Tk
→ TB → 0.

This one induces a filtration

Ω∗(B) ∼= F0 ⊆ F1 ⊆ · · · ⊆ F• = Ω∗(M)T
k
,

where F i = Ann(∧i+1t) for i ∈ N. Now, given the T -dual pairs (M, τ) and (M̂, τ̂), there
exists representatives

H ∈ τ, Ĥ ∈ τ̂

in F1 of M and M̂ , respectively, in the conditions of Definition 11.2.1 [38, Lemma 10.5].
Let E be an exact equivariant Courant algebroid over M with respect to the Tk-action.
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Recall that such an E has an associated Ševera class [E] ∈ H3(M,R)T
k
. Consider the

vector bundle E/Tk → B, whose sheaf of sections is given by the invariant section of E.
We can endow E/Tk with a natural structure of Courant algebroid, with pairing and
Dorfman bracket given by the restriction of the neutral pairing and Dorfman bracket on
E to Γ(E)T

k
. We will call E/Tk the simple reduction of E by Tk.

Theorem 11.2.2 ([17]). Let E −→M and Ê −→ M̂ be two equivariant exact Courant
algebroids. Assume that (M, [E]) is T -dual to (M̂, [Ê]). Then, there exists a canonical
isomorphism of Courant algebroids between the simple reductions

ψ :
E

Tk
→ Ê

T̂k
. (11.15)

We briefly describe the construction of (11.15). We will choose the equivariant isotropic
splittings of E and Ê such that the corresponding 3-forms H and Ĥ are in F1 of their
respective fibrations. Given X + ξ ∈ Γ(TM ⊕T ∗M)T

k
, choose the unique lift X of X to

the invariant sections of TM such that

q∗ξ(Y )−B(X,Y ) = 0, for Y ∈ t. (11.16)

Due to this condition, the form q∗ξ − B(X, ·) is basic for the bundle determined by q̂,
and, therefore, can be pushed forward to M̂ . Then, ψ is defined by the explicit formula

ψ(X + ξ) = q̂∗(X + q∗ξ −B(X, ·)).

To apply T -duality to the situation of our interest, we regard K = SU(2) × U(1) as a
T1-principal bundle over S3 ∼= SU(2), via the natural left action of the central subgroup

T1 = U(1) ⊆ SU(2)×U(1)

given by the second factor. Given ` ∈ R we consider the closed 3-form H` in (11.5).

Lemma 11.2.3 ([2, Lemma 4.13]). For any ` ∈ R, the pair (K, [H`]) is self-T-dual.

Proof. We regard the correspondence space K in Definition 11.2.1 inside the Lie group

ι : K ↪→ K × K̂,

where K̂ is a copy of K. Then, define B as the pull-back to K of a left-invariant 2-form

B = −ι∗(v4 ∧ v̂4). (11.17)

Then, we have dB = 0 = p∗H`− p̂∗Ĥ`, where we used that H` and Ĥ` are both pull-back
of the same 3-form on B = SU(2). The non-degeneracy condition on B follows from the
fact that this 2-form is bi-invariant.

Proposition 11.2.4 ([2, Proposition 4.14]). Given 0 < ` ∈ R, consider the equivariant
exact Courant algebroid E` over K. Then, two solutions (V x

+ , divx+, ηx) and (V x̂
+ , divx̂+, ηx̂)

as in Lemma 11.1.5 are exchanged under T -duality, provided that

x̂ =
1

`x
. (11.18)
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Proof. We calculate first the isomorphism (11.15) in Theorem 11.2.2 corresponding to
the 2-form (11.17). Firstly, notice that by (11.16) we have

ψ(vj) = v̂j , ψ(vj) = v̂j , for j = 1, 2, 3.

A direct calculation also shows that

ψ(v4) = v̂4, ψ(v4) = v̂4.

By definition of V x
+ (see (11.7)) we have

V x
+ = 〈v2 + `v2, v3 + `v3, v1 + `v1, v4 + `x2v4〉 ⊆ TK ⊕ T ∗K,

and therefore

V̂ x
+ := ψ(V x

+) = 〈v̂2 + `v̂2, v̂3 + `v̂3, v̂1 + `v̂1, v̂4 + `x2v̂4〉 ⊆ TK ⊕ T ∗K.

From this, for x̂ defined as in (11.18), the T -dual metric is

ĝx = `
(
v̂1 ⊗ v̂1 + v̂2 ⊗ v̂2 + v̂3 ⊗ v̂3 + (`x)−2v̂4 ⊗ v̂4

)
= gx̂.

Similarly, writing εx̂+ for the orthogonal projection of εx̂ onto V̂ x
+ = V x̂

+ , we have that

ψ(εx+) = −1
2ψ
(

1
`xv4 + xv4

)
= −1

2

(
1
`x v̂

4 + xv̂4

)
= εx̂+,

The T -dual complex structure Îx := ψIxψ
−1
|V x+

is given by Îxv̂2 = v̂3, and Îxv̂4 = 1
`x v̂1.

We are ready to state the main result in [2], which gives the first examples of (0, 2) mirror
pairs on compact non-Kähler complex manifolds. For that, we fix a non-zero ` ∈ R, and
we identify a left-invariant solution (V+, div+, η) for the Killing spinor equations on the
equivariant Courant algebroid E` over K, as in Lemma 11.1.5, with (V+, ε+, I) solution
of F -term and D-term equations on g` (see Proposition 7.1.9 and Proposition 7.2.1).
Firstly, if (V+, ε+, I) is a solution of (7.6) with ε+ holomorphic, then so is (V+, ε+,−I)
(see Remark 7.2.2). Secondly, if we denote by

J := J(V+, ε+, I), H := H(V+, ε+, I) ∈ V 2
super

(
gC`

)
the generators of the embeddings constructed in Theorem 10.1.8, then, by Remark 10.1.4,

J(V+, ε+,−I) = −J, H(V+, ε+,−I) = H. (11.19)

Finally, by a result of Linshaw-Mathai [72], the T -duality isomorphism (11.15) induces

ψch : p∗

(
Ωch
E`⊗RC

)T1

→ p̂∗

(
Ωch
E`⊗RC

)T1

(11.20)

isomorphism, where here we have the sheaf of SUSY vertex algebras on K generated by
the T1-invariant sections of E` and functions on K/T1 ∼= SU(2) (for a precise definition,
see [72, Section 5.2]). Notice that, by Proposition 10.1.11, we have an embedding

V 2
super

(
gC`

)
↪→ H0

(
SU(2), p∗

(
Ωch
E`⊗RC

)T1
)
.

The existence of (11.20) relies on the fact that (M, [H`]) is self-T -dual.
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Theorem 11.2.5 ([2, Theorem 4.18]). Given non-zero ` ∈ R, consider the one-parameter
family of solutions (V x

+ ,divx+, Ix) on E` as in Lemma 11.1.5 parametrized by x ∈ R+.
Then, (V x

+ ,divx+, Ix) and (V x̂
+ ,divx̂+,−Ix̂) are related by (0, 2) mirror symmetry, provided

that x̂ = 1/`x. More precisely, if

J = J(V x
+ ,divx+, Ix), H = H(V x

+ , divx+, Ix),

Ĵ = J(V x̂
+ ,divx̂+,−Ix̂), Ĥ = H(V x̂

+ , divx̂+,−Ix̂),

are the generators of the embedding with central charge 6 + 6/` constructed in Theorem
10.1.8, then the Linshaw-Mathai isomorphism (11.20) realises the mirror involution

ψch(J) = −Ĵ , ψch(H) = Ĥ.

Proof. The solutions of the Killing spinor equations (V x
+ , divx+, Ix) constructed in Lemma

11.1.5 are such that the corresponding divergence ε+ ∈ V x
+ is holomorphic in the sense

of Definition 7.2.3 (see Lemma 11.1.6), and hence Theorem 10.1.8 applies. The central
charge is given by c = 6 + 6/`. By (11.19) it suffices to prove the identity

ψch(J) = J̃ := J(V x̂
+ ,divx̂+, Ix̂).

To see this, we write wj = Πvj and wj = Πvj for all j ∈ {1, 2, 3, 4}, where the vj , v
j are

as in Section 11.1.1.1. By (1.12) and setting a = `x, a simple calculation shows that

J =
1

2

(
1

`
: w2w3 : + : w2w

3 : + : w2w3 : +
a

x
: w2w3 :

+
1

a
: w4w1 : +

1

x
: w4w

1 : +x : w4w1 : +a : w4w1 :

)
− 1

2
S

(
1

`
w1 + w1

)
,

J̃ =
1

2

(
1

`
: ŵ2ŵ3 : + : ŵ2ŵ

3 : + : ŵ2ŵ3 : +
a

x
: ŵ2ŵ3 :

+ x : ŵ4ŵ1 : +a : ŵ4ŵ
1 : +

1

a
: ŵ4ŵ1 : +

1

x
: ŵ4ŵ1 :

)
− 1

2
S

(
1

`
ŵ1 + ŵ1

)
.

Now, using that ψch is an isomorphism of SUSY vertex algebras (so, in particular, is an
homomorphism for the normally ordered product and Sψch = ψchS), we obtain that

ψch (J) =
1

2

(
1

`
: ŵ2ŵ3 : + : ŵ2ŵ

3 : + : ŵ2ŵ3 : +
a

x
: ŵ2ŵ3 :

+
1

a
: ŵ4ŵ1 : +

1

x
: ŵ4ŵ1 : +x : ŵ4ŵ1 : +a : ŵ4ŵ

1 :

)
− 1

2
S

(
1

`
ŵ1 + ŵ1

)
= J̃ ,

which concludes the desired identity.

Now, since we have a more general result for any string Courant algebroid admitting solu-
tions to the twisted Hull-Strominger system (6.16), we can state the following.

Conjecture 7. It is possible to construct more examples of (0, 2) mirror symmetry on
(non-homogeneous) compact non-Kähler complex manifolds via T -duality.

We hope to obtain more examples of (0, 2) mirror symmetry in future work.
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Appendix A

Rules and Identities in (SUSY)
LCAs and VAs

In this appendix, we collect some relevant rules and identities about (SUSY) Lie confor-
mal algebras and (SUSY) vertex algebras in order to clarify their axioms.

A.1 Lie conformal algebras

Let R be a Lie conformal algebra. Then, we must apply the following rules to define the
expressions appearing in Definition 1.2.1:

� Sesquilinearity. To obtain (∂+χ)[aλb] as an element of C[µ]⊗R in (1.9), first cal-
culate the Λ-bracket, and then commute ∂ with λ to the right.

� Antisymmetry. To obtain [b−λ−∂a] as element of C[λ]⊗R in (1.10), first expand the
λ-bracket as follows

[bµa] =
∑
n∈N

µn

n!
cn

in C[µ]⊗R, where µ is a new even formal parameter, and then replace µ by −λ−∂
applying ∂ to the coefficients cn ∈ R.

� Jacobi identity. To obtain[
[aλb]λ+µ c

]
∈ C[λ]⊗ C[µ]⊗R

in (1.11), first calculate [[aλb]ω c] ∈ C[λ]⊗C[ω]⊗R, where ω is another even formal
parameter, and apply the identity

[p(µ)aλb] = p(µ)[aλb], for a, b ∈ R, (A.1)

for any homogeneous polynomial p(µ) in µ (the sign follows from the Koszul sign
rule applied to the parity-preserving λ-bracket, because µ is even) to obtain an ex-
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pansion of the form

[[aλb]ωc] =
∑
n,m∈N

λnωm

n!m!
cn,m.

Then, replace ω by λ+µ, and use that λ and µ are commutative formal parameters.
To calculate the other two terms in (1.11) as elements of C[λ]⊗C[µ]⊗R, we proceed
as above, using previous relations and

[aλp(µ)b] = p(µ)[aλb], for a, b ∈ R,

for any homogeneous polynomial p(µ) in µ (the sign follows from the Koszul sign
rule applied to the parity-preserving λ-bracket, because µ is even).

A.2 Vertex Algebras

Let V be a vertex algebra. Then, we apply the following rules to define the expressions
appearing in Theorem 1.2.9:

� Quasicommutativity. To compute the integral in (1.12), we use the expansion

[aλb] =
∑
n∈N

λn

n!
a(n)b ∈ C[λ]⊗ V.

Then, on each term p(λ) = λna(n)b ∈ C[λ]⊗ V , compute the indefinite integral in
the formal parameter λ, taking the difference of the values at the limits.

� Quasiassociativity. The first integral in (1.13) is computed by expanding [bλc] as
above, putting the powers of λ inside the integral in the left, under the integral
sign, and performing the definite integral on each term p(λ) = λna ∈ C[λ] ⊗ V .
The second integral in (1.13) is calculated applying the same rules.

� The non-commutative Wick formula. To compute the integral in (1.14), expand

[[aλb]µc] =
∑
n,m∈N

λnµm

n!m!

(
a(n)b

)
(m)

c ∈ C[λ]⊗ C[µ]⊗ V,

using that λ and µ are commutative formal parameters, and (A.1). Then, perform
the definite integral on each term

p(µ) = λnµm
(
a(n)b

)
(m)

c ∈ C[λ]⊗ C[µ]⊗ V.

Remark A.2.1. In the quasiassociativity identity (1.13), we have omitted the parenthe-
sis that determines the order for computing the normally ordered products for simplicity,
since it is clear thanks to the notation we are using for the normally ordered product.

Remark A.2.2. In the last two identities, that is, (1.13) and (1.14), we must apply the
identities

: (p(λ)a) b := p(λ) : ab :=: a (p(λ)b) :, for a, b ∈ R,
for any homogeneous polynomial p(λ) in λ (the sign follows from the Koszul sign rule
applied to the parity-preserving normally ordered product, because λ is even).
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A.3 SUSY Lie conformal algebras

Let R be a SUSY Lie conformal algebra. Then, we must apply the following rules to defi-
ne the expressions appearing in Definition 2.3.1:

� Sesquilinearity. To obtain (D + χ)[aΛb] as an element of L ⊗ R in (2.8), first
calculate the Λ-bracket, and then commute D with χ and λ to the right using the
relations [D,λ] = 0 and [D,χ] = 2λ.

� Antisymmetry. To obtain [b−Λ−∇a] as element of L ⊗R in (2.9), first expand the
Λ-bracket as follows

[bΓa] =
∑
n∈N

J∈{0,1}

Γn|J

n!
cn|J

in L′⊗R using the relations [γ, η] = 0 and [η, η] = −2γ, where L′ is other copy of L
generated by the pair Γ = (γ, η), and then replace Γ by −Λ−∇ = (−λ−∂,−χ−D)
applying ∂ and D to the coefficients cn|J ∈ R.

� Jacobi identity. To obtain
[
[aΛb]Λ+Γ c

]
∈ L ⊗ L′ ⊗ R in (2.10), first calculate

[[aΛb]Ω c] ∈ L⊗L′′⊗R, where L′′ is other copy of L generated by the pair Ω = (ω, ξ),
and apply

[p(Γ)aΛb] = (−1)|p|p(Γ)[aΛb], for a, b ∈ R, (A.2)

for any homogeneous polynomial p(Γ) in Γ (the sign follows from the Koszul sign
rule applied to the parity-reversing Λ-bracket) to obtain an expansion of the form

[[aΛb]Ωc] =
∑
n,m∈N

J,K∈{0,1}

Λn|JΩm|K

n!m!
cn|J,m|K .

Then replace Ω by Λ + Γ = (λ+ γ, χ+ η) and use the following relations between
these formal parameters [λ, γ] = [λ, η] = [χ, γ] = [χ, η] = 0. To calculate the other
terms in (2.10) as elements of L⊗L′⊗R, we proceed as above, using the previous
relations and

[aΛp(Γ)b] = (−1)|p|(|a|+1)p(Γ)[aΛb], for a, b ∈ R,

for any homogeneous polynomial p(Γ) in Γ (the sign follows from the Koszul sign
rule applied to the parity-reversing Λ-bracket).

A.4 SUSY Vertex Algebras

Let V be a SUSY vertex algebra. Then, we must apply the following rules to define the
expressions appearing in Theorem 2.3.6:
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� Quasicommutativity. To compute the integral in (2.12), we will use the expansion
(2.11). Then on each term p(Λ) = Λn|Ja(n|J)b ∈ L ⊗ V , apply the formula∫ 0

−∇
dΛ p(Λ) =

∫ 0

−T
dλ (∂χp(Λ)) , (A.3)

where we are taking first the (left) partial derivative with respect to the odd formal
parameter χ, performing the indefinite integral in the even formal parameter λ,
and, finally, taking the difference of the values at the limits. Notice that the (left)
partial derivative ∂χp(Λ) is zero if J = 0, while it is given by λnb(n|1)a if J = 1.

� Quasiassociativity. The first integral in (2.13) is computed by expanding [bΛc] as
above, putting the powers of Λ inside the integral that we have on the left, under
the integral sign, and performing the definite integral∫ ∇

0
drΛp(Λ) =

∫ T

0
dλ
(
∂rχp(Λ)

)
on each term p(Λ) = aΛn|J ∈ L⊗V . Notice that we perform right partial derivati-
ves ∂rχp(Λ), which is zero if J = 0, while it is given by aλn if J = 1. The second inte-
gral in (2.13) is calculated applying the same rules.

� The non-commutative Wick formula. To compute the integral in (2.14), we expand

[[aΛb]Γc] =
∑
n,m∈N

J,K∈{0,1}

Λn|JΓm|K

n!m!

(
a(n|J)b

)
(m|K)

c ∈ L ⊗ L′ ⊗ V,

using the relations [λ, γ] = [λ, η] = [χ, γ] = [χ, η] = 0 and (A.2). Then, perform the
definite integral on each term

p(Γ) = Λn|JΓm|K
(
a(n|J)b

)
(m|K)

c ∈ L ⊗ L′ ⊗ V,

applying the formula ∫ Λ

0
dΓ p(Γ) =

∫ Λ

0
dγ (∂ηp(Γ)) . (A.4)

Notice that the (left) partial derivative ∂ηp(Γ) is zero if K = 0, while it is given
by (−1)JχJλnγm

(
a(n|J)b

)
(m|1)

c if K = 1.

Remark A.4.1. In the notations of [52, Equation (3.3.3.2), Theorem 3.3.14, Equation
(3.2.6.12)], all the integrals that have the form (A.3) and (A.4) are taken from the right,
which means that they take the right partial derivative with respect to the odd formal
parameter. This does not change the final result.

Remark A.4.2. In the last two identities, that is, (2.13) and (2.14), we must use that

: (p(Λ)a) b := p(Λ) : ab : and : a (p(Λ)b) := (−1)|a||p|p(Λ) : ab :, for a, b ∈ R,

for any homomegeneous polynomial p(Λ) in Λ (the sign follows from the Koszul sign rule
applied to the parity-preserving normally ordered product).
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Intermediate Computations

In this appendix, we collect some relevant remarks and various identities about quadratic
Lie superalgebras, universal (super)affine vertex algebras, Courant algebroids, the chiral
de Rham complex, and basic linear algebra (concretely, Jacobi’s Formula). To simplify
the computations, we will use the Einstein summation convention for repeated indexes.

B.1 Quadratic Lie Superalgebras

Let (g, (·|·)) be an n-dimensional quadratic Lie superalgebra, and {aj}j=1,...,n ⊆ g a basis
with {aj}j=1,...,n ⊆ g dual basis with respect to (·|·).
Lemma B.1.1. The following identity holds:[

aj , aj
]

= 0. (B.1)

Proof. Firt, notice that
[
aj , aj

]
is independent of the choice done of the basis. Therefore

we can assume that {aj}j=1,...,k ⊆ g0, for some k ≤ n, is formed by even vectors and
{aj}j=k+1,...,n ⊆ g1 is formed by odd vectors. Since the bilinear form(·|·) is even, their
dual elements have the same parity. Then

� by the Gram-Schmit method, we can obtain {uj}j=1,...,k ⊆ g0 an orthogonal basis
such that uj = εjuj , where εj ∈ {−1, 1} for j ∈ {1, . . . , k}. So, given that the bra-
cket is antisymmetric for even elements,

k∑
j=1

[
aj , aj

]
=

k∑
j=1

εj [uj , uj ] = 0.

� Since (·|·) is a symplectic form on g1, it is even dimensional, say of dimension 2m, so
it has a symplectic basis {ej , fj}j=1,...,m ⊆ g1, with dual basis {ej , f j}j=1,...,m ⊆ g1

satisfying ej = fj and f j = −ej for j ∈ {1, . . . ,m}. Now, since the bracket is sym-
metric on the odd elements,

n∑
j=k+1

[
aj , aj

]
=
[
ej , ej

]
+
[
f j , fj

]
=
[
ej , ej

]
−
[
ej , e

j
]

= 0.
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In conclusion, we have that
[
aj , aj

]
=
[
uj , uj

]
+
[
ej , ej

]
+
[
f j , fj

]
= 0.

The following result provides a useful formula for the adjoint action of the Casimir ele-
ment Ω for a quadratic Lie algebra (g, (·|·)) (see Definition 3.1.5 and (3.2)).

Lemma B.1.2. For a ∈ g, the following identity holds:

Ω(a) =
[[
a, aj

]
, aj
]
. (B.2)

Proof. This is a direct consequence of (3.2), because Ω is independent of the choice of
basis. Indeed, it is easily checked that the basis {(−1)|a

j |aj}j=1,...,n ⊆ g has dual basis
{aj}j=1,...,n ⊆ g with respect to (·|·). Then

Ω(a) : =
[
aj , [aj , a]

]
=
[
aj ,
[
(−1)|a

j |aj , a
]]

= (−1)|a
j |(−1)|aj |+|a||aj |(−1)|a||a

j | [[a, aj] , aj] =
[[
a, aj

]
, aj
]
,

because (·|·) is even and so, |aj | = |aj | for j ∈ {1, . . . , n}.

B.2 Universal Affine Vertex Algebras

Let V k(g) be the universal affine vertex algebra with level k ∈ C associated to (g, (·|·)),
and {aj}j=1,...,n ⊆ g a basis, and

{
aj
}
j=1,...,n

⊆ g the dual basis with respect to (·|·).

Lemma B.2.1. For a ∈ g, the following identity holds:

0 =:
[
a, aj

]
aj : +(−1)|a||a

j | : aj [a, aj ] : . (B.3)

Proof. This follows from supersymmetry and invarince

:
[
a, aj

]
aj : =:

((
ak|
[
a, aj

])
ak
)
aj :=: ak

((
[ak, a] |aj

)
aj
)

:

= −(−1)|ak||a| : ak [a, ak] :;

0 = −(−1)|ak||a| : ak [a, ak] : +(−1)|a||a
j | : aj [a, aj ] :

=:
[
a, aj

]
aj : +(−1)|a||a

j | : aj [a, aj ] :,

because (·|·) is even, so |aj | = |aj | for j ∈ {1, . . . , n}.

B.3 Universal Superaffine Vertex Algebras

Let V k
super(g) be the universal superaffine vertex algebra with level k ∈ C associated to

(g, (·|·)), and Π: g −→ Πg the parity-reversing functor.

Lemma B.3.1. For a, b ∈ Πg, the following identities hold:

: ab : = (−1)|a||b| : ba :, (B.4)

: a(Sb) : = −(−1)|a||Πb| : (Sb)a : +T [a, b] .

: a(Tb) : = (−1)|a||b| : (Tb)a :,
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Proof. All the identities are immediate consequences of quasicommutativity.

Lemma B.3.2. For a, b, c ∈ Πg, the following identities hold:

: a : bc :: = (−1)|a||b|(−1)|a||c| :: bc : a : +kT ((a|b) c− (a|c) b) ,

:: ab : c : =: a : bc :: +kT
(

(c|b) a+ (−1)|a||b| (c|a) b
)
,

:: a(Sb) : c : =: a : (Sb)c :: + : (Ta) [b, c] : +(−1)|a||b|(−1)|a|kTS (a|c) b.

Proof. The first identity is an immediate consequence of quasicommutativity, while the
last two identities follow from quasiassociativity.

Now, abusing notation, and keeping in mind Remark 3.2.1, write

aj := Πaj and aj := Πaj , for j ∈ {1, . . . , n} ,

for {aj}j=1,...,n ⊆ g basis with dual basis with respect to (·|·) given by
{
aj
}
j=1,...,n

⊆ g.

Lemma B.3.3. For a ∈ Πg, the following identities hold:

0 = (−1)|a
j |+1 :

(
S
[
a, aj

])
aj : +(−1)|a||a

j |+1 :
(
Saj

)
[a, aj ] :, (B.5)

0 =:
[
a, aj

]
: ak

[
ak, aj

]
:: +(−1)(|a|+1)|aj | : aj : [a, ak]

[
ak, aj

]
::

+ (−1)(|a|+1)(|ak|+|aj |) : aj : ak

[
a,
[
ak, aj

]]
:: . (B.6)

Proof. The identity (B.5) follows because by antisymmetry and invariance,

(−1)|a||a
j |+1 :

(
Saj

)
[a, aj ] : = (−1)|a||a

j |+1 :
(
Saj

) ((
[a, aj ]

∣∣∣ak) ak) :

= (−1)|a|+|a
j |+1 :

(
S
(
aj

∣∣∣[a, ak]) aj) ak :

= −(−1)|a
k|+1 :

(
S
[
a, ak

])
ak :,

since |aj | = |aj | = |a|+|ak|+1. The identity (B.6) follows because by the Jacobi identity,

(−1)(|a|+1)(|ak|+|aj |) : aj : ak

[
a,
[
ak, aj

]]
:: = (−1)(|a|+1)(|ak|+|aj |) : aj : ak

[[
a, ak

]
, aj

]
+ (−1)(|aj |+1)(a+1) : aj : ak

[
ak, [a, aj ]

]
,

so, by antisymmetry and invariance,

:
[
a, aj

]
: ak

[
ak, aj

]
:: = −(−1)(|a|+1)(|aj |+1) : aj : ak :

[
ak, [a, aj ]

]
,

(−1)(|a|+1)|aj | : aj : [a, ak]
[
ak, aj

]
:: = −(−1)(|a|+1)(|ak|+|aj |) : aj : ak

[[
a, ak

]
, aj

]
.

Lemma B.3.4. The following identities hold:

0 = (−1)|a
j |+1 : ajaj :, (B.7)

0 = (−1)|a
j |+1 :

[
aj , ak

] [
ak, aj

]
: . (B.8)
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Proof. Both identities follow directly from (B.4).

We will use other identities for V k
super(g) when g is even, but we will write them below for

the chiral de Rham complex of a general Courant algebroid E over any smooth manifold
M (recall that they are isomorphic when M = {·} and k = 2, by Theorem 9.1.11(2)).

B.4 General Courant Algebroids

Fix E any Courant algebroid over a smooth manifold M (see Definition 6.1.1).

Lemma B.4.1. For a ∈ Γ(E), the following identity holds:

2 [a, a] = D 〈a, a〉 . (B.9)

Proof. It is straigthforward from quasiantisymmetry axiom for Courant algebroids.

Lemma B.4.2. For f ∈ C∞(M) and a, b ∈ Γ(E), the following identity holds:

[fa, b] = f [a, b]− fD 〈a, b〉 − 〈Df, b〉 a+D 〈b, fa〉 . (B.10)

Proof. It is straigthforward from Courant algebroids axioms.

B.5 Chiral de Rham Complex

Let E be the complexification of a real Courant algebroid over M smooth manifold, and
take the chiral de Rham complex Ωch

E of E (see Section 9.1.3). Recall that we will work
with parity-reversed sections (see (9.3)). We will write some identities for sections of Ωch

E

for k ∈ C, although they work only for k = 2 when M 6= {·} (see Theorem 9.1.11(2)).

Lemma B.5.1. For f, g ∈ C∞(M,C), the following identity holds:

: (Tmf) (Tng) : =: (Tng) (Tmf) :, for m,n ∈ N.

Proof. This identity is immediate from quasicommutativity.

Since the previous identity is quite obvious and is used very often, we will not refer to it
directly in the other results.

Lemma B.5.2. For f ∈ C∞(M,C) and a ∈ Γ(ΠE), the following identities hold:

[fΛa] = 〈Df, a〉 , (B.11)

S (fa) =: f (Sa) : +
1

2
: (Df) a :, (B.12)

: (Tma) (Tnf) : =: (Tnf) (Tma) :, for m,n ∈ N. (B.13)

Proof. The first identity is a direct consequence of the antisymmetry of the Λ-bracket, the
second one is for being S an odd derivation for the normally ordered product, while the
last one is immediate from quasicommutativity.
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Lemma B.5.3. For a, b ∈ Γ(ΠE), the following identities hold:

: ab : + : ba : = 2T 〈a, b〉 , (B.14)

: (Sa) b : =: b (Sa) : +T [a, b] , (B.15)

: a (Tb) : + : (Tb) a : = T 2 〈a, b〉 . (B.16)

Proof. All follow from quasicommutativity. Note that these identities are the generaliza-
tion in the even case of the identities in Lemma B.3.1 to the chiral de Rham complex.

Lemma B.5.4. For f ∈ C∞(M,C) and a, b ∈ Γ(ΠE), the following identities hold:

:: ab : f : =: f : ab ::, (B.17)

: a : fb :: =:: fb : a : +2T (: f 〈a, b〉 :) , (B.18)

:: ab : f : =: a : bf ::, (B.19)

:: af : b : =: a : fb :: +2 : (Tf) 〈a, b〉 :, (B.20)

:: af : (Sb) : =: a : f (Sb) :: − : (Ta) 〈Df, b〉 : − : (Tf) (D 〈a, b〉 − [a, b]) :, (B.21)

:: a (Tf) : b : =: a : (Tf) b :: +2 :
(
T 2f

)
〈a, b〉 :, (B.22)

:: (Ta) f : b : =: (Ta) : fb :: − :
(
T 2f

)
〈a, b〉 :, (B.23)

: (T (: ab :)) f : =: f (T (: ab :)) : . (B.24)

Proof. The first, second and last identities follow directly from quasicommutativity, while
the other ones are all immediate consequences of quasiassociativity. Some of the identi-
ties need to use the non-commutative Wick formula in their proofs.

Lemma B.5.5. For f, g ∈ C∞(M,C) and a, b ∈ Γ(ΠE), the following identities hold:

:: fg :: ab :: =: f : g : ab :::, (B.25)

:: fa :: gb :: =: f : a : gb ::: +2 : (Tf) : g 〈a, b〉 :: . (B.26)

Proof. Both identities follow from quasiassociativity.

Lemma B.5.6. For a, b, c ∈ Γ(ΠE), the following identities hold:

: a : bc :: =:: bc : a : +2T (〈a, b〉 c− 〈a, c〉 b) , (B.27)

:: ab : c : =: a : bc :: +2 (: (Ta) 〈b, c〉 : − : (Tb) 〈a, c〉 :) , (B.28)

:: a (Sb) : c : =: a : (Sb) c :: + : (Ta) [b, c] : +2 : (TSb) 〈a, c〉 :, (B.29)

: a : bc :: =: b : ca :: +2 (: c (T 〈a, b〉) : − : b (T 〈a, c〉) :) , (B.30)

: a : bc :: =: c : ab :: +2 (: a (T 〈b, c〉) : − : b (T 〈a, c〉) : + : c (T 〈a, b〉) :) . (B.31)

Proof. The identity (B.27) follows directly from quasicommutativity, while the identities
(B.28) and (B.29) follow from quasiassociativity. Note that these three identities are the
generalizations in the even case of identities in Lemma B.3.2 to the chiral de Rham com-
plex. The last two identities are obtained combining the first ones in the correct order.
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Indeed, the first identity follows applying (B.27) and (B.28), while the second one follows
applying (B.28) and (B.27) in that order. Notice that they are valid if M = {·} and we
have even Lie algebras (in this case the terms multiplied by 2 are zero).

Lemma B.5.7. For f ∈ C∞(M,C) and a, b, c ∈ Γ(ΠE), the following identities hold:

:: fa :: bc :: =: a : b : fc ::: +2 (: (Tf) (: 〈a, b〉 c : − : b 〈a, c〉 :) :) , (B.32)

: a : b : fc ::: = − : b : a : fc ::: +2 : (T 〈a, b〉) : fc ::, (B.33)

: a : b : fc ::: =: a :: bf : c :: −2 : (Tf) : 〈b, c〉 a :: . (B.34)

Proof. The first identity follows from quasiassociativity, and applying identities (B.17),
(B.19) and (B.13) in that order. The second one comes from quasiassociativity, (B.14),
and quasiassociativity, in that order. The last one follows from quasiassociativity.

Lemma B.5.8. For a, b, c, d ∈ Γ(ΠE), the following identities hold:

:: a : bc :: d : =: a :: bc : d :: +k (: (Ta) (〈d, c〉 b− 〈d, b〉 c) : + : T (: bc :) 〈a, d〉 :) , (B.35)

: a :: bc : d :: = − ::: bc : d : a : +k (: 〈a, b〉 (T (: cd :)) : − : 〈a, c〉 (T (: bd :)) :

+ : (T (: bc :)) 〈a, d〉 :) . (B.36)

Proof. The first identity comes from quasiassociativity, while the last one comes from
quasicommutativity. In both cases, we use the non-commutative Wick formula. We also
have to use (B.17) and (B.24).

Now, suppose that E = l⊕ l⊕C−, where C+ := l⊕ l ⊆ E, for two isotropic subbundles
l and l such that the restriction of 〈·, ·〉 to C± is non-degenerate, and C− = C⊥+ . Keep in
mind the notations (10.1). Consider {εj , εj}nj=1 ⊆ l⊕l isotropic frame, and the associated
sections

ej := Πεj and ej := Πεj , for j ∈ {1, . . . , n}.

Lemma B.5.9. The following identity holds:

:
[
ej , ek

]
−

[
ek, ej

]
−

: = T

〈[
ej , ek

]
− ,
[
ek, ej

]
−

〉
. (B.37)

Proof. It follows from (B.14) directly, using the axioms of Courant algebroids.

Define
I+ : C+ −→ C+

a 7→ al − al
.

Abusing notation, we will write I+Πa ≡ ΠI+a for a ∈ C+.

Lemma B.5.10. For a ∈ Γ(ΠE), the following identities hold:

2T
〈[
a, ej

]
, ej
〉

=:
[
a, ej

]
l
ej : + : ej [a, ej ]l :, (B.38)

:
[
I+a+, e

j
]
+
ej : + : ej [I+a+, ej ]+ : =:

〈[
al, e

j
]
, ek
〉

: ekej :: + :
〈[
al, ej

]
, ek
〉

: ekej ::

+ 2T
〈[
I+a+, e

j
]
, ej
〉
. (B.39)
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Proof. The first identity comes from (B.20) and (B.13), while the second one also needs
(B.17), (B.18) and (B.19). In both cases, we need the axioms of Courant algebroids.

Define w := I+

[
ej , ej

]
+
∈ Γ (ΠC+) .

Lemma B.5.11. The following identity holds:

: ej [ej , w]l : + :
[
ej , w

]
l
ej : =: ek (D 〈w, ek〉)l : + :

(
D
〈
w, ek

〉)
l
ek :

− 2T
〈[
w, ej

]
, ej
〉
.

(B.40)

Proof. It follows using Courant algebroid axioms, (B.13) and (B.20).

Assume from now that l ⊕ l satisfies the F -term condition (6.26).

Lemma B.5.12. For a ∈ Γ(ΠE) and j ∈ {1, . . . , n}, the following identities hold:[
a, ej

]
l

=
[
al, e

j
]
l

or, equivalently,
[
ej , a

]
l

=
[
ej , al

]
l
, (B.41)

[a, ej ]l =
[
al, ej

]
l

or, equivalently, [ej , a]l =
[
ej , al

]
l
. (B.42)

Proof. By F -term condition and Courant algebroid axioms[
al, e

j
]
l

= [al, ej ]l = 0,[
a−, e

j
]
l

=
〈[
a−, e

j
]
, ek
〉
ek =

〈
a−,

[
ej , ek

]
l

〉
ek = 0,

[a−, ej ]l = 〈[a−, ej ] , ek〉 ek =
〈
a−, [ej , ek]l

〉
= 0.

In conclusion, we have obtained the desired identities.

Now, we collect a result that will be useful in the next Appendix to prove Lemma C.2.3.

Lemma B.5.13. For each i ∈ {1, . . . , n}, define

ai : =: ej :
[
ek, e

j
]
l

[
ei, e

k
]
l

::,

bi : =: ej :
(
D
〈[
ek, ei

]
, ej
〉)

l
ek ::,

Ai : =: [ei, ej ]l
(
Sej
)

: + : ej

(
S
[
ei, e

j
]
+

)
: + :

[
ei, e

j
]
+

(Sej) : + : ej
(
S [ei, ej ]l

)
,

Bi : =: [ei, ej ]l : ek

[
ej , ek

]
l

:: + : ej : [ei, ek]l

[
ej , ek

]
l

::

+ : ej : ek

[
ei,
[
ej , ek

]]
+

:: + :
[
ei, e

j
]
+

: ek [ej , ek]l ::

+ : ej :
[
ei, e

k
]

+
[ej , ek]l :: + : ej : ek [ei, [ej , ek]] ::,

Ci : = 2 : ej : ek

[
ej ,
[
ei, e

k
]
−

]
+

:: + : ej : ek

[
ei,
[
ej , ek

]]
−

::

+ 2 : [ei, ej ]l : ek
[
ej , ek

]
− :: + :

[
ei, e

j
]
− : ek [ej , ek]l ::

+ 2 : ej :
[
ei, e

k
] [
ej , ek

]
− :: + : ej :

[
ei, e

k
]
−

[ej , ek]l ::

+ 2 : ej : ek
[
ei,
[
ej , ek

]
−

]
:: .
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The following identities hold:

0 = ai + bi, (B.43)

Ai = 2 :
(
T
〈
ek, [ei, ej ]

〉) [
ek, e

j
]

: + :
(
T
〈[
ek, ei

]
, ej
〉)

[ek, ej ]l :

+ T
(

: ej

(〈
D
〈[
ek, ei

]
, ek

〉〉
−
〈
D
〈
ej , [ei, ek]

〉
, ek
〉)

+ : ej
(〈
D
〈[
ek, ei

]
, ej

〉
, ek

〉)
:
)

+
1

k
bi

+ : ej : ek (〈D 〈[ei, ej ] , em〉 , ek〉 em) ::

+ : ej

(
: ek

(
1

2

〈
D
〈[
ej , ei

]
, ek
〉
, em

〉
+
〈
D
〈[
ei, e

j
]
, em

〉
, ek
〉)

em :

)
:

+
1

2
: ej :

(
D
〈[
ek, ei

]
, ej
〉)
−
ek :: + : ek :

(〈
D
[
ei, e

k
]
, ej

〉)
−
ej ::, (B.44)

Bi = ai + 2 : ej : ek

[
ej ,
[
ei, e

k
]
−

]
+

:: +4 :
(
T
〈[
ej , ei

]
, ek
〉) [

ek, ej

]
+

:

+ 2 :
(
T
〈[
ej , ei

]
, ek
〉)

[ek, ej ]l : −2 : ej : ek (〈D 〈em, [ei, ej ]〉 , ek〉 em) ::

+ : ej : ek

((〈
D
〈
ek,
[
ei, e

j
]〉
, em

〉
− 2

〈
D
〈
em,

[
ei, e

j
]〉
, ek
〉)

em
)

:: , (B.45)

Ci = 2

(
: ej : ek

[
ej ,
[
ei, e

k
]
−

]
−

:: + : ej : ek

[
ej ,
[
ei, e

k
]
−

]
l

::

+ : ej : ek
[
ek,
[
ej , ei

]
−

]
−

:: + : ej :
[
ei, e

k
]
−

[
ej , ek

]
− ::

+ : ej : ek
[
ei,
[
ej , ek

]
−

]
l

::
)

+ : ej :
(
D
〈[
ei, e

k
]
, ej
〉)
−
ek ::

− 2 : ek :
(
D
〈[
ei, e

k
]
, ej

〉)
−
ej :: +4 :

(
T
〈[
ej , ei

]
, ek
〉) [

ek, ej

]
−

: . (B.46)

Proof. The first identity is easy. Indeed, by Courant algebroid axioms, (B.13) and (B.34),

ai =: ej : ek

[
ei,
[
ej , ek

]]
l

:: .

So, by Jacobi identity for the Dorfman bracket and (B.41),

ai =: ej : ek

[[
ei, e

j
]
l
, ek
]
l

:: + : ej : ek

[
ej ,
[
ei, e

k
]
l

]
l

:: .

Using Courant algebroid axioms, (B.13), (B.14), (B.30), (B.31), (B.32) and (B.34),

: ej : ek

[[
ei, e

j
]
l
, ek
]
l

:: = −ai − 2bi.

Using Courant algebroid axioms, (B.13), (B.14), (B.32) and (B.34),

: ej : ek

[
ej ,
[
ei, e

k
]
l

]
l

:: = −ai − bi.
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So we have that

ai + bi = −2 (ai + bi) ,

which gives (B.43). For next identity, by Courant algebroid axioms, (B.12) and (B.21),

: ej
(
S [ei, ej ]l

)
: =:

(
Tej

) 〈
D
〈[
ek, ei

]
, ej

〉
, ek

〉
: − :

(
T
〈[
ek, ei

]
, ej

〉) [
ej , ek

]
:

+
1

2
: ej :

(
D
〈
ek, [ei, ej ]

〉)
ek :: − :

[
ei, e

j
]
l
(Sej) :,

: [ei, ej ]l
(
Sej
)

: =:
(
T
〈
ek, [ei, ej ]

〉) [
ek, e

j
]

: − : (Tej)
〈
D
〈
ej , [ei, ek]

〉
, ek
〉

:

− 1

2
: ek :

(
D
〈[
ek, ei

]
, ej

〉)
ej :: − : ej

(
S
[
ei, e

j
]
l

)
:,

: ej
(
S
[
ei, e

j
]
l

)
: =: (Tej)

〈
D
〈[
ek, ei

]
, ej
〉
, ek

〉
: − :

(
T
〈[
ek, ei

]
, ej
〉)

[ej , ek] :

+
1

2
: ej :

(
D
〈
ek,
[
ei, e

j
]〉)

ek :: − :
[
ei, e

j
]
l
(Sej) : .

So using Courant algebroid axioms, (B.13), (B.14), (B.30) and (B.32), we obtain (B.44).
Now, by Jacobi identity for the Dorfman bracket and (B.41),[

ei,
[
ej , ek

]]
+

=
[[
ei, e

j
]
, ek
]
l
+
[[
ei, e

j
]
l

]
l
+
[[
ei, e

j
]
l
, ek
]
l
+
[[
ei, e

j
]
− , e

k
]

+

+
[
ek,
[
ei, e

j
]]
l
+
[
ek,
[
ei, e

j
]
l

]
l
+
[
ek,
[
ei, e

j
]
l

]
l
+
[
ek,
[
ei, e

j
]
−

]
+
,[

ei, [ej , ek]l
]
l

=
[
[ei, ej ]l , ek

]
l
+ [ej , [ei, ek]l]l .

By Courant algebroid axioms, (B.10), (B.13), (B.32) and (B.33),

: ej : ek
[
[ei, ej ]l , ek

]
l

:: = − :
[
ei, e

j
]
l

: ek [ej , ek]l :: +2 :
(
T
〈[
ek, ei

]
, ej

〉) [
ej , ek

]
l

:

+ : ek : ej (〈D 〈em, [ei, ej ]〉 , ek〉 em) :: .

By Courant algebroid axioms, (B.13) and (B.34),

: ej : ek [ej , [ei, ek]l]l :: = − : ej :
[
ei, e

k
]
l
[ej , ek]l :: −2 :

(
T
〈[
ej , ei

]
, ek
〉) [

ej , e
k
]
l

:

+ : ej : ek (〈D 〈em, [ei, ek]〉 , ej〉 em) :: .

By Courant algebroid axioms, (B.10), (B.13), (B.14), (B.20) and (B.32),

: ej : ek

[[
ei, e

j
]
l
, ek
]
l

:: = − :
[
ei, e

j
]
l

: ek [ej , ek]l :: +2 :
(
T
〈
ek,
[
ei, e

j
]〉)

[ej , ek]l :

+ : ej : ek

(〈
D
〈
ek,
[
ei, e

j
]〉
, em

〉
em
)

:: .

By Courant algebroid axioms, (B.10), (B.13) and (B.32),

: ej : ek

[[
ei, e

j
]
l
, ek
]
l

:: = − : [ei, ej ]l : ek

[
ej , ek

]
l

:: +2 :
(
T
〈
ek,
[
ei, e

j
]〉) [

ej , e
k
]
l

:

− : ej : ek

(〈
D
〈
em,

[
ei, e

j
]〉
, ek
〉
em
)

:: .
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By Courant algebroid axioms, (B.13), (B.31), (B.32) and (B.34),

: ej : ek

[
ej ,
[
ei, e

k
]
l

]
l

:: = − : ej :
[
ei, e

k
]
l
[ej , ek]l :: .

By Courant algebroid axioms, (B.13) and (B.34),

: ej : ek

[
ej ,
[
ei, e

k
]
l

]
l

:: = − : ej : [ei, ek]l

[
ej , ek

]
l

:: −2 :
(
T
〈
ej ,
[
ei, e

k
]〉) [

ej , ek
]
l

:

+ : ej : ek

(〈
D
〈
em,

[
ei, e

k
]〉
, ej
〉
em
)

:: .

At last, by Courant algebroid axioms and (B.30),

: ej : ek

[[
ei, e

j
]
− , e

k
]

+
:: + : ej : ek

[
ej ,
[
ei, e

k
]
−

]
+

:: = 2 : ej : ek

[
ej ,
[
ei, e

k
]
−

]
+

:: .

In summary, by Courant algebroid axioms, (B.13) and (B.33), we obtain (B.45). Finally,
for the last identity, by Jacobi identity for the Dorfman bracket,[
ei,
[
ej , ek

]]
−

=
[[
ei, e

j
]
l
, ek
]
−

+
[[
ei, e

j
]
− , e

k
]
−

+
[
ej ,
[
ei, e

k
]
l

]
−

+

[
ej ,
[
ei, e

k
]
−

]
−
.

By Courant algebroid axioms and (B.30),

:
[
ei, e

j
]
− : ek [ej , ek]l :: =: ej :

[
ei, e

k
]
−

[ej , ek]l ::,

: ej : ek

[[
ei, e

j
]
l
, ek
]
−

:: =: ej : ek

[
ej ,
[
ei, e

k
]
l

]
−

:: + : ej : ek

(
D
〈[
ei, e

j
]
, ek
〉)
−

::,

: ej : ek

[[
ei, e

j
]
− , e

k
]
−

:: =: ej : ek

[
ej ,
[
ei, e

k
]
−

]
−

::,

: ej : ek

[
ej ,
[
ei, e

k
]
−

]
l

:: =: ej : ek

[[
ei, e

j
]
− , e

k
]
l

:: .

By Courant algebroid axioms, (B.13) and (B.34),

: ej :
[
ei, e

k
]
l

[
ej , ek

]
− :: = − : ej : ek

[
ej ,
[
ei, e

k
]
l

]
−

:: .

Since using Jacobi identity for the Dorfman bracket, for being l involutive,[
ej , [ek, ei]l

]
− =

[[
ej , ek

]]
− +

[
ek,
[
ej , ei

]]
− ,

by Courant algebroid axioms, (B.13) and (B.34),

: ej :
[
ei, e

k
]
l

[
ej , ek

]
− :: =: ej : ek

[[
ej , ek

]
l
, ei
]
− :: − : ej : ek

[
ei,
[
ej , ek

]
−

]
−

::

+ : ej : ek
[
ek,
[
ej , ei

]
l

]
− :: + : ej : ek

[
ek,
[
ej , ei

]
−

]
−

:: .
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So, we have arrived at the next identity.

Ci = 2

(
:
[
ei, e

j
]
− : ek [ej , ek]l :: + : ej : ek

[
ej ,
[
ei, e

k
]
−

]
−

::

+ : ej : ek

[[
ei, e

j
]
− , e

k
]
l

:: + : [ei, ej ]l : ek
[
ej , ek

]
− :: + : ej : ek

[[
ej , ek

]
l
, ei
]
− ::

+ : ej : ek
[
ek,
[
ej , ei

]
l

]
− :: + : ej : ek

[
ek,
[
ej , ei

]
−

]
−

:: + : ej

[
ei, e

k
]
−

[
ej , ek

]
− ::

+ : ej : ek
[
ei,
[
ej , ek

]
−

]
l

:: + : ej : ek

(
D
〈[
ei, e

j
]
, ek
〉)
−

::

)
.

By Courant algebroid axioms and (B.31),

:
[
ei, e

j
]
− : ek [ej , ek]l :: = − : [ej , ek]l : ek

[
ei, e

j
]
− :: +2 :

[
ei, e

j
]
−

(
T
〈

[ej , ek] , e
k
〉)

: .

Now, by Courant algebroid axioms (B.10), (B.13) and (B.32),

: [ei, ej ]l : ek
[
ej , ek

]
− :: = − : ej : ek

[
ek,
[
ej , ei

]
l

]
− :: +2 :

(
T
〈
ek, [ei, ej ]

〉) [
ej , ek

]
− : .

At last, by Courant algebroid axioms, (B.10), (B.13), (B.31) and (B.32),

: ej : ek
[[
ej , ek

]
l
, ei
]
− :: =: [ei, ek]l : ek

[
ei, e

j
]
− :: − : ek : ej

(
D
〈
ei,
[
ej , ek

]〉)
− ::

− 2 :
[
ei, e

k
]
−

(
T
〈
ej , [ek, ej ]

〉)
: .

In summary, by Courant algebroid axioms, (B.14) and (B.30), we obtain (B.46), which
concludes the proof of all the desired identities.

Remark B.5.14. Analogously, for each i ∈ {1, . . . , n}, define

ai : =: ej :
[
ek, ej

]
l

[
ei, ek

]
l

::,

bi : =: ej :
(
D
〈[
ek, e

i
]
, ej
〉)
l
ek ::,

Ai : =:
[
ei, ej

]
+

(
Sej
)

: + : ej
(
S
[
ei, ej

]
l

)
: + :

[
ei, ej

]
l
(Sej) : + : ej

(
S
[
ei, ej

]
+

)
,

Bi : =:
[
ei, ej

]
+

: ek

[
ej , ek

]
l

:: + : ej :
[
ei, ek

]
+

[
ej , ek

]
l

::

+ : ej : ek

[
ei,
[
ej , ek

]]
:: + :

[
ei, ej

]
l

: ek [ej , ek]l ::

+ : ej :
[
ei, ek

]
l
[ej , ek]l :: + : ej : ek

[
ei, [ej , ek]

]
+

::,

Ci : = 2 : ej : ek
[
ej ,
[
ei, ek

]
−

]
+

:: + : ej : ek
[
ei, [ej , ek]

]
− ::

+ 2 :
[
ei, ej

]
l

: ek

[
ej , e

k
]
−

:: + :
[
ei, ej

]
− : ek

[
ej , ek

]
l

::

+ 2 : ej :
[
ei, ek

] [
ej , e

k
]
−

:: + : ej :
[
ei, ek

]
−

[
ej , ek

]
l

::

+ 2 : ej : ek

[
ei,
[
ej , e

k
]
−

]
:: .
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Then, the following identities hold:

0 = ai + bi,

Ai = 2 :
(
T
〈
ek,
[
ei, ej

]〉) [
ek, ej

]
: + :

(
T
〈[
ek, e

i
]
, ej
〉) [

ek, ej
]
l

:

+ T
(

: ej
(〈
D
〈[
ek, e

i
]
, ek
〉〉
−
〈
D
〈
ej ,
[
ei, ek

]〉
, ek

〉)
+ : ej

(〈
D
〈[
ek, e

i
]
, ej
〉
, ek
〉)

:
)

+
1

k
bi

+ : ej : ek

(〈
D
〈[
ei, ej

]
, em

〉
, ek
〉
em
)

::

+ : ej
(

: ek
(

1

2

〈
D
〈[
ej , e

i
]
, ek
〉
, em

〉
+
〈
D
〈[
ei, ej

]
, em

〉
, ek
〉)

em :

)
:

+
1

2
: ej :

(
D
〈[
ek, e

i
]
, ej
〉)
− e

k :: + : ek :
(〈
D
[
ei, ek

]
, ej
〉)
− ej ::,

Bi = ai + 2 : ej : ek
[
ej ,
[
ei, ek

]
−

]
+

:: +4 :
(
T
〈[
ej , e

i
]
, ek
〉) [

ek, e
j
]
+

:

+ 2 :
(
T
〈[
ej , e

i
]
, ek
〉) [

ek, ej
]
l

: −2 : ej : ek

(〈
D
〈
em,

[
ei, ej

]〉
, ek
〉
em
)

::

+ : ej : ek
((〈
D
〈
ek,
[
ei, ej

]〉
, em

〉
−
〈
D
〈
em,

[
ei, ej

]〉
, ek
〉)
em
)

:: ,

Ci = 2

(
: ej : ek

[
ej ,
[
ei, ek

]
−

]
−

:: + : ej : ek
[[
ei, ej

]
− , ek

]
l

::

+ : ej : ek

[
ek,
[
ej , e

i
]
−

]
−

:: + : ej :
[
ei, ek

]
−

[
ej , e

k
]
−

::

+ : ej : ek

[
ei,
[
ej , e

k
]
−

]
l

::

)
+ : ej :

(
D
〈[
ei, ek

]
, ej
〉)
− e

k ::

− 2 : ej :
(
D
〈[
ei, ek

]
, ej
〉)
− e

k :: +4 :
(
T
〈[
ej , e

i
]
, ek
〉) [

ek, e
j
]
− : .

B.6 Basic Linear Algebra: Jacobi’s Formula

LetM be an n-dimensional smooth manifold, and E a Courant algebroid overM . We will
consider the differential algebra (Matn (C∞(M)) , ·,D), for which

DA :=
(
DAkj

)n
j,k=1

, for A =
(
Akj

)n
j,k=1

∈ Matn (C∞(M)) .

We have the following result that will be applied in Chapter 6 and Chapter 10.

Lemma B.6.1. Given A ∈ Matn (C∞(M)), the following identity holds:

D detA = tr
(
Adj(A)T · DA

)
.

Proof. It is seen by induction on n ∈ N, using basic properties from linear algebra.

Remark B.6.2. The previous result is also true for the chiral de Rham complex Ωch
E if we

take the even derivation T and the normally ordered product, using the canonical iden-
tification Γ(SΠE) ∼= Γ(E) for the elements 2Tf = Df with f ∈ C∞(M).
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Appendix C

Proof of Theorem 10.1.1

In this appendix, we give a complete proof of Theorem 10.1.1, which can be considered
the main result of Chapter 10. In order to simplify computations, we will use the Einstein
summation convention for repeated indexes.

C.1 Generator of N = 2 Supersymmetry

Let E be the complexification of a real Courant algebroid over M smooth manifold, for
which we can construct the chiral de Rham complex Ωch

E . Now, fix E = l ⊕ l ⊕ C− a
direct sum decomposition, with l, l ⊆ E isotropic n-dimensional subbundles, for which
the restriction 〈·, ·〉|C± is non-degenerate, where C+ = l ⊕ l, and C− = C⊥+ . Let

π± : E −→ C±, πl : E −→ l, πl : E −→ l

be the orthogonal projections. When there is no possible confusion, we use the notation
(10.1). Fix a frame {εj , εj}nj=1 ⊆ C+ satisfying (6.28). Define the associated odd sections

ej = Πεj , ej = Πεj , for j ∈ {1, . . . , n}.

Remember that we work with parity-reversed sections by (9.3). We define

I+ : C+ −→ C+

a 7→ al − al
.

Abusing notation, we write I+Πa ≡ ΠI+a for a ∈ C+. Now, define

w = ΠI+ [εj , εj ]+ =
[
ej , ej

]
l
−
[
ej , ej

]
l
∈ Γ(ΠC+).

Note that the following computations are also valid for (g, (·|·)) a complex quadratic Lie
algebras, replacing Ωch

E by V k
super(g) the universal superaffine vertex algebra of g with

non-zero level k ∈ C by Theorem 9.1.11. So, the following results are written for arbitrary
level k 6= 0 to work for complex quadratic Lie algebras, but, for the chiral de Rham com-
plex, we always assume k = 2. Define the locally defined section

J0 : =
i

k
: ejej : . (C.1)
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Lemma C.1.1. Given a ∈ Γ(ΠE), the following identities hold:

[aΛJ0] =
i

k

(
:
[
a, ej

]
ej : + : ej [a, ej ] :

)
+ i
(
χI+a+ + λ

〈[
a, ej

]∣∣ ej〉) , (C.2a)

[J0Λa] =
i

k

(
:
[
a, ej

]
ej : + : ej [a, ej ] :

)
−
(
(χ+ S) I+a+ + (λ+ T )

〈[
a, ej

]
, ej
〉)
. (C.2b)

Proof. The first identity follows directly by the non-commutative Wick formula, since

[
aΛ : ejej :

]
=:
[
aΛe

j
]
ej : + : ej [aΛej ] : +

∫ Λ

0
dΓ
[[
aΛe

j
]
Γ
ej
]

=:
[
a, ej

]
ej : + : ej [a, ej ] : +k

(
χ
(〈
a, ej

〉
ej − 〈a, ej〉 ej

)
+ λ

〈[
a, ej

]
, ej
〉)

=:
[
a, ej

]
ej : + : ej [a, ej ] : +kχI+a+ + kλ

〈[
a, ej

]
, ej
〉
,

[aΛJ0] =
i

k

(
:
[
a, ej

]
ej : + : ej [a, ej ] :

)
+ i
(
χI+a+ + λ

〈[
a, ej

]∣∣ ej〉) .
The other identity is obtained applying antisimmetry of the Λ-bracket.

Define the locally defined sections

H0 : =
1

k

(
: ej

(
Sej
)

: + : ej (Sej) :
)

+
1

k2

(
: ej : ek

[
ej , ek

]
::

+ : ej : ek

[
ej , e

k
]

:: − : ej : ek

[
ej , ek

]
:: − : ej : ek [ej , ek] ::

)
,

H ′ : = H0 +
T

k
w, (C.3)

and
c0 := 3 dim l ∈ C.

Proposition C.1.2. One has

[J0ΛJ0] = −
(
H ′ +

λχ

3
c0

)
.

Proof. We start applying the non-commutative Wick formula using (C.2b) to obtain

[
J0Λ : ejej :

]
=:
[
J0Λe

j
]
ej : − : ej [J0Λej ] : +

∫ Λ

0
dΓ
[[
J0Λe

j
]
Γ
ej
]

=
i

k

(
::
[
ej , ek

]
ek : ej : + :: ek

[
ej , ek

]
: ej : − : ej :

[
ej , e

k
]
ek ::

− : ej : ek [ej , ek] ::
)

+ iλ
(〈
ej ,
[
ek, ek

]〉
ej −

〈
ej ,
[
ek, ek

]〉
ej

)
+ i
(

: ej
(
T
〈
ej ,
[
ek, ek

]〉)
: − :

(
T
〈
ej ,
[
ek, ek

]〉)
ej :

+ : ej (Sej) : + :
(
Sej
)
ej :
)

+
i

k

∫ Λ

0
dΓI1 + i

∫ Λ

0
dΓ
(
I1

2 + I2
2

)
.
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Here, we compute each integral independently using sesquilinearity, antisymmetry and
the non-commutative Wick formula. Indeed, we arrive at the following:

I1
1 : =

[
ejΓ :

[
ej , ek

]
ek :
]

=:
[
ejΓ

[
ej , ek

]]
ek : + :

[
ej , ek

] [
ejΓek

]
:

+

∫ Γ

0
dΩ
[[
ejΓ

[
ej , ek

]]
Ω
ek

]
=:
[
ej ,
[
ej , ek

]]
ek : + :

[
ej , ek

]
[ej , ek] :

+ kη
〈
ej ,
[
ej , ek

]〉
ek + kξ

〈[
ej ,
[
ej , ek

]]
, ek

〉
;

I2
1 : =

[
ejΓ : ek

[
ej , ek

]
:
]

=:
[
ejΓe

k
] [
ej , ek

]
: + : ek

[
ejΓ

[
ej , ek

]]
:

+

∫ Γ

0
dΩ
[[
ejΓe

k
]

Ω

[
ej , ek

]]
=:
[
ej , e

k
] [
ej , ek

]
: + : ek

[
ej ,
[
ej , ek

]]
:

+ kη
([
ej , ej

]
−
〈
ej ,
[
ej , ek

]〉
ek
)

+ kξ
〈[
ej , e

k
]
,
[
ej , ek

]〉
;∫ Λ

0
dΓI1 : =

∫ Λ

0

[
:
[
ej , ek

]
ek : + : ek

[
ej , ek

]
:
Γ
ej

]
= kλ

([
ej , ej

]
l
−
[
ej , ej

]
−
[
ej , ej

]
l

)
= −2kλ

[
ej , ej

]
l
,

and

I1
2 : =

[
(χ+ S) ejΓej

]
= (η − χ)

([
ej , ej

]
+ kη

〈
ej , ej

〉)
= η

([
ej , ej

]
+ kχ dim l

)
− kγ dim l − χ

[
ej , ej

]
;

I2
2 : =

[
T
〈
ej ,
[
ek, ek

]〉
Γ
ej

]
= −γ

[〈
ej ,
[
ek, ek

]〉
Γ
ej

]
= −γ

〈
D
〈
ej ,
[
ek, ek

]〉
, ej

〉
;∫ Λ

0
dΓI2 : =

∫ Λ

0
dΓ
(
I1

2 + I2
2

)
= λ

[
ej , ej

]
+ kλχdim l.

Then, we finally obtain that

[J0ΛJ0] =
i

2

[
J0Λ : ejej :

]
= − 1

k2

(
::
[
ej , ek

]
ek : ej : + :: ek

[
ej , ek

]
: ej : − : ej :

[
ej , e

k
]
ek ::

− : ej : ek [ej , ek] ::
)
− 1

k
λ
([
ej , ej

]
l
−
[
ej , ej

]
l

)
− 1

k

(
: ej

(
T
〈
ej ,
[
ek, ek

]〉)
: − :

(
T
〈
ej ,
[
ek, ek

]〉)
ej :

+ : ej (Sej) : + :
(
Sej
)
ej :
)

+
2

k
λ
[
ej , ej

]
l
− 1

k
λ
[
ej , ej

]
− λχ dim l

= − 1

k2

(
::
[
ej , ek

]
ek : ej : + :: ek

[
ej , ek

]
: ej : − : ej :

[
ej , e

k
]
ek ::

− : ej : ek [ej , ek] ::
)
− 1

k

(
: ej (Sej) : + :

(
Sej
)
ej :
)

− 1

2

(
: ej

(
T
〈
ej ,
[
ek, ek

]〉)
: − :

(
T
〈
ej ,
[
ek, ek

]〉)
ej :
)
− λχ dim l.
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Applying properties (B.14), (B.15) and (B.27) we rewrite the above expression, since

:
(
Sej
)
ej : =: ej

(
Sej
)

: +T
[
ej , ej

]
;

− : ej :
[
ej , e

k
]
ek :: =: ej : ek

[
ej , e

k
]

:: −2 : ej
(
T
〈
ej ,
[
ek, ek

]〉)
:;

:: ek
[
ej , ek

]
: ej : =: ej : ek

[
ej , ek

]
:: −kT

([
ej , ej

]
+
[
ej , ej

]
l

)
;

::
[
ej , ek

]
ek : ej : = − : ej : ek

[
ej , ek

]
:: +kT

[
ej , ej

]
l
+ 2 :

(
T
〈
ej ,
[
ek, ek

]〉)
ej :,

so

[J0ΛJ0] = − 1

k2

(
::
[
ej , ek

]
ek : ej : + :: ek

[
ej , ek

]
: ej : − : ej :

[
ej , e

k
]
ek ::

− : ej : ek [ej , ek] ::
)
− 1

k

(
: ej (Sej) : + :

(
Sej
)
ej :
)
− 1

k
Tw − λχ dim l,

= −
(
H ′ +

λχ

3
c0

)
,

as desired.

C.2 Neveu-Schwarz Generator from F -term Condition

Now, we assume that l ⊕ l satisfies the F -term condition (6.26).

Lemma C.2.1. The following identity is satisfied:

H0 =
1

k

(
: ej

(
Sej
)

: + : ej (Sej) :
)

+
1

k2

(
2 : ej : ek

[
ej , ek

]
− :: + : ej : ek

[
ej , ek

]
l

:: + : ej : ek [ej , ek]l ::
)
.

Proof. First, notice that applying (B.30) we obtain that

: ej : ek
[
ej , ek

]
:: = − : ek : ej

[
ej , ek

]
::=: ek : ej

[
ek, e

j
]

:: .

Then, using F -term condition, we have that

H0 =
1

k

(
: ej

(
Sej
)

: + : ej (Sej) :
)

+
1

k2

(
2 : ej : ek

[
ej , ek

]
:: − : ej : ek

[
ej , ek

]
l

:: − : ej : ek [ej , ek]l ::
)
.

Moreover, using (B.31) and (B.32), we obtain that

: ej : ek

[
ej , e

k
]
l

:: = − :
[
ej , e

k
]
l

: eke
j :: −2 : ek

(
T
〈
ej ,
[
ej , e

k
]〉)

:

= − :
(〈
em,

[
ej , e

k
]〉
em

)
: eke

j :: −2 : ek

(
T
〈[
ej , ej

]
, ek
〉)

:

=: em : ek

(〈
ej ,
[
em, ek

]〉
ej
)

::

+ 2
(

:
(
T
〈
ej ,
[
ej , e

k
]〉)

ek : − : ek

(
T
〈[
ej , ej

]
, ek
〉)

:
)

=: ej : ek

[
ej , ek

]
l

:: .
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Analogously, using (B.14), (B.31) and (B.32), we obtain that

: ej : ek

[
ej , e

k
]
l

:: = − :
[
ej , e

k
]
l

: eke
j :: +2 : ej

(
T
〈
ek,
[
ej , e

k
]〉)

:

=:
(〈
em,

[
ej , e

k
]〉
em
)

: ejek :: +2 : ej
(
T
〈
ej ,
[
ek, ek

]〉)
:

=: em : ej
(〈

[em, ej ] , e
k
〉
ek

)
::

− 2
(

:
(
T
〈
ek,
[
ej , e

k
]〉)

ej : − : ej
(
T
〈
ej ,
[
ek, ek

]〉)
:
)

=: ej : ek [ej , ek]l :: .

So, we have obtained the required formula for H0.

Remark C.2.2. Notice that we can exchange l and l in the expression of H0 and H ′.
Indeed, in both cases, we obtain the same local sections. So, in particular, the values of
[H0Λei] and

[
H0Λe

i
]

(respectively, [H ′Λei] and
[
H ′Λe

i
]
) for i ∈ {1, . . . , n} are dual. The

aim of our next result is to compute the values of the previous Λ-brackets.

We are ready to give the following result, for which we will need some of the properties
collected in Lemma B.5.13.

Proposition C.2.3. For each i ∈ {1, . . . , n}, the following identities hold:

[H0Λei] =
λ

2

((〈
D
〈[
ek, ei

]
, ej
〉
, ek

〉
−
〈
D
〈
ej , [ei, ek]

〉
, ek
〉)

ej

−
〈
D
〈[
ek, ei

]
, ej

〉
, ek

〉
ej
)
− 2

k2

(
: ej : ek

[[
ei, e

j
]
− , e

k
]
l

::

+ : ej : ek

[[
ei, e

j
]
− , e

k
]
−

:: + :
[
ei, e

j
]
− : ek

[
ej , e

k
]
−

::

+ : ej : ek
[
ei,
[
ej , ek

]
−

]
l

:: + : ej : ek

[[
ek, ei

]
−
, ej

]
−

::

)
+

1

k

(
χ : ej

[
ei, e

j
]
− : −2 : ej

(
S
[
ei, e

j
]
−

)
: +2T

[
ej ,
[
ei, e

j
]
−

]
l

+ λ

([
ej ,
[
ei, e

j
]
−

]
l
+
[[
ei, e

j
]
− , ej

]
−

))
+ (λ+ 2T + χS) ei, (C.4a)

[
H0Λe

i
]

=
λ

2

((〈
D
〈[
ek, e

i
]
, ej
〉
, ek
〉
−
〈
D
〈
ej ,
[
ei, ek

]〉
, ek

〉)
ej

−
〈
D
〈[
ek, e

i
]
, ej
〉
, ek
〉
ej

)
− 2

k2

(
: ej : ek

[[
ei, ej

]
− , ek

]
l

::

+ : ej : ek
[[
ei, ej

]
− , ek

]
−

:: + :
[
ei, ej

]
− : ek

[
ej , ek

]
− ::

+ : ej : ek

[
ei,
[
ej , e

k
]
−

]
l

:: + : ej : ek
[[
ek, e

i
]
− , e

j
]
−

::

)
+

1

k

(
χ : ej

[
ei, ej

]
− : −2 : ej

(
S
[
ei, ej

]
−

)
: +2T

[
ej ,
[
ei, ej

]
−

]
l

+ λ

([
ej ,
[
ei, ej

]
−

]
l
+
[[
ei, ej

]
− , e

j
]
−

))
+ (λ+ 2T + χS) ei. (C.4b)
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[
H ′Λei

]
= [H0Λei]−

λ

k

(〈[
ej , ej

]
, en
〉

[en, ei]l −
〈[
ej , ej

]
, en
〉

[en, ei]
)

+
λ

2

(〈
D
〈
ej ,
[
ek, ek

]〉
, ei

〉
ej −

〈
D
〈
ej ,
[
ek, ek

]〉
, ei

〉
ej

+ D
〈
ei,
[
ej , ej

]〉)
+ λχ

〈[
ej , ej

]
, ei
〉
, (C.4c)[

H ′Λe
i
]

=
[
H0Λe

i
]

+
λ

k

(〈[
ej , ej

]
, en
〉 [
en, ei

]
l
−
〈[
ej , ej

]
, en
〉 [
en, e

i
])

− λ

2

(〈
D
〈
ej ,
[
ek, ek

]〉
, ei
〉
ej −

〈
D
〈
ej ,
[
ek, ek

]〉
, ei
〉
ej

)
+ D

〈
ei,
[
ej , ej

]〉)
− λχ

〈[
ej , ej

]
, ei
〉
. (C.4d)

Proof. By antisymmetry of the Λ-bracket, we have that

[H0Λei] = − [ei−Λ−∇H0] , for i ∈ {1, . . . , n}.

Hence, fixed i ∈ {1, . . . , n}, we need to compute

[eiΛH0] =
1

k
Υ1
i +

1

k2
Υ2
i ,

for which we will use the expression for H0 in Lemma C.2.1. We compute first

Υ1
i : =

[
eiΛ
(
: ej

(
Sej
)

: + : ej (Sej) :
)]

= Υ1,1
i + Υ1,2

i .

Applying the non-commutative Wick formula once on each summand, by sesquilinearity,

Υ1,1
i : =

[
eiΛ : ej

(
Sej
)

:
]

=: [ei, ej ]l
(
Sej
)

: + : ej
(
S
[
ei, e

j
])

: −χ : ej
[
ei, e

j
]

:

+ λ
(
kei +

[
[ei, ej ]l , e

j
]

+D
〈
ei,
[
ej , ej

]〉)
,

Υ1,2
i : =

[
eiΛ : ej (Sej) :

]
=:
[
ei, e

j
]

(Sej) : + : ej
(
S [ei, ej ]l

)
: −χ : ej [ei, ej ]l : +kχSei

+ λ
([[
ei, e

j
]
, ej
]

+D
〈
ei,
[
ej , e

j
]〉)

,

where we have used the involutivity of l. Then,

Υ1
i =:

[
ei, e

j
]
− (Sej) : + : ej

(
S
[
ei, e

j
]
−

)
: + : ej : ek (〈D 〈[ei, ej ] , en〉 , ek〉 en) ::

+ 2 :
(
T
〈
ek, [ei, ej ]

〉) [
ek, e

j
]

: + :
(
T
〈[
ek, ei

]
, ej
〉)

[ek, ej ]l :

+ T
(

: ej

(〈
D
〈[
ek, ei

]
, ek

〉〉
−
〈
D
〈
ej , [ei, ek]

〉
, ek
〉)

+ : ej
(〈
D
〈[
ek, ei

]
, ej

〉
, ek

〉)
:
)

+
1

k
: ej :

(
D
〈[
ek, ei

]
, ej
〉)

l
ek ::

+ : ej

(
: ek

(
1

2

〈
D
〈[
ej , ei

]
, ek
〉
, en

〉
+
〈
D
〈[
ei, e

j
]
, en
〉
, ek
〉)

en :

)
:

+
1

2
: ej :

(
D
〈[
ek, ei

]
, ej
〉)
−
ek :: + : ek :

(〈
D
[
ei, e

k
]
, ej

〉)
−
ej ::

+ χ
(
kSei− : ej

[
ei, e

j
]

: − : ej [ei, ej ] :
)

+ λ
(
kei +

[
[ei, ej ] , e

j
]

+
[[
ei, e

j
]
, ej
])
.
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Here, we have used Lemma B.5.13. Concretely, the identity (B.44). Next, we compute

Υ2
i : =

[
eiΛ

(
: ej : ek

[
ej , ek

]
l

:: + : ej : ek [ej , ek]l :: +2 : ej : ek
[
ej , ek

]
− ::
)]

= Υ2,1
i + Υ2,2

i + Υ2,3
i .

Applying the non-commutative Wick formula twice on each summand,

Υ2,1
i : =

[
eiΛ : ej : ek

[
ej , ek

]
l

::
]

=: [ei, ej ]l : ek

[
ej , ek

]
l

:: + : ej : [ei, ek]l

[
ej , ek

]
l

:: + : ej : ek

[
ei,
[
ej , ek

]
l

]
::

+ kχ : ej
[
ei, e

j
]
l

: +kλ
(

2
[
ej , [ei, ej ]l

]
l
+ 2

〈
D
〈
ej , [ek, ei]

〉
, ek
〉
ej

)
,

Υ2,2
i : =

[
eiΛ : ej : ek [ej , ek]l ::

]
=:
[
ei, e

j
]

: ek [ej , ek]l :: + : ej :
[
ei, e

k
]

[ej , ek]l :: + : ej : ek
[
ei, [ej , ek]l

]
l

::

+ 2kχ : ej [ei, ej ]l : +kλ
(

2
[
ej ,
[
ei, e

j
]
l

]
l
+
[
ek,
[
ei, e

k
]
l

]
l

+ 2
〈
D
〈[
ek, ei

]
, ej

〉
, ek

〉
ej +

〈
D
〈[
ek, ei

]
, ej
〉
, ek

〉
ej

)
,

Υ2,3
i : =

[
eiΛ : ej : ek

[
ej , ek

]
− ::
]

=: [ei, ej ]l : ek
[
ej , ek

]
− :: + : ej :

[
ei, e

k
] [
ej , ek

]
− :: + : ej : ek

[
ei,
[
ej , ek

]
−

]
::

+ kχ : ej
[
ei, e

j
]
− : +kλ

([
ej ,
[
ei, e

j
]
−

]
l
+
[
ej , [ei, ej ]l

]
−

)
,

where we have used the involutivity of l, l and Courant algebroid axioms. Then,

Υ2
i =: ej :

[
ek, e

j
]
l

[
ei, e

k
]
l

:: +4 :
(
T
〈[
ej , ei

]
, ek
〉) [

ek, ej

]
:

+ 2 :
(
T
〈[
ej , ei

]
, ek
〉)

[ek, ej ]l : −2 : ej : ek (〈D 〈em, [ei, ej ]〉 , ek〉 em) ::

+ : ej : ek

((〈
D
〈
ek,
[
ei, e

j
]〉
, em

〉
− 2

〈
D
〈
em,

[
ei, e

j
]〉
, ek
〉)

em
)

::

+ : ej :
(
D
〈[
ei, e

k
]
, ej
〉)
−
ek :: −2 : ek :

(
D
〈[
ei, e

k
]
, ej

〉)
−
ej ::

+ 2

(
: ej : ek

[
ej ,
[
ei, e

k
]
−

]
:: + : ej : ek

[
ek,
[
ej , ei

]
−

]
−

::

+ : ej :
[
ei, e

k
]
−

[
ej , ek

]
− :: + : ej : ek

[
ei,
[
ej , ek

]
−

]
l

::

)
+ kχ

(
: ej

[
ei, e

j
]
l

: +2 : ej [ei, ej ]l : + : ej
[
ei, e

j
]
− :
)

+ kλ
(

2
[
ej , [ei, ej ]l

]
l
+ 2

〈
D
〈
ej , [ek, ei]

〉
, ek
〉
ej + 2

[
ej ,
[
ei, e

j
]
l

]
l

+
[
ek,
[
ei, e

k
]
l

]
l
+ 2

〈
D
〈[
ek, ei

]
, ej

〉
, ek

〉
ej +

〈
D
〈[
ek, ei

]
, ej
〉
, ek

〉
ej

+
[
ej ,
[
ei, e

j
]
−

]
l
+
[
ej , [ei, ej ]l

]
−

)
.
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Here, we have used Lemma B.5.13. Concretely, the identities (B.45) and (B.46). Now,
note that using (B.20) and (B.13),

k∂χ

(
1

k
Υ1
i +

1

k2
Υ2
i

)
= kSei+ : ej

[
ei, e

j
]
− : .

Analogously, using the Courant algebroid axioms,

k∂λ

(
1

k
Υ1
i +

1

k2
Υ2
i

)
= kei +

[
ej ,
[
ei, e

j
]
−

]
l
−
[
ej ,
[
ei, e

j
]
−

]
−

+
(〈
D
〈
ej , [ek, ei]

〉
, ek
〉

+
〈
D
〈[
ek, ei

]
, ej
〉
, ek

〉)
ej

+
〈
D
〈[
ek, ei

]
, ej

〉
, ek

〉
ej .

In summary, using (B.33), (B.43) and the Courant algebroid axioms, we obtain that

[eiΛH0] =
1

k
Υ1
i +

1

k2
Υ2
i

= (χS + λ) ei +
χ

k
: ej

[
ei, e

j
]
− : +

λ

2

([
ej ,
[
ei, e

j
]
−

]
l
−
[
ej
[
ei, e

j
]
−

]
−

)
+

(λ+ T )

2

((〈
D
〈[
ek, ei

]
, ej
〉
, ek

〉
−
〈
D
〈
ej , [ei, ek]

〉
, ek
〉)

ej

+
〈
D
〈[
ek, ei

]
, ej

〉
, ek

〉
ej
)

+
1

k

(
:
[
ei, e

j
]
− (Sej) : + : ej

(
S
[
ei, e

j
]
−

)
:
)

+
2

k2

(
: ej : ek

[
ej ,
[
ei, e

k
]
−

]
−

:: + : ej : ek

[[
ei, e

j
]
− , e

k
]
l

::

+ : ej : ek
[
ek,
[
ej , ei

]
−

]
−

:: + : ej :
[
ei, e

k
]
−

[
ej , ek

]
::

+ : ej : ek
[
ei,
[
ej , ek

]
−

]
l

::
)
.

Before continuing, using (B.14) and (B.30), notice that

: ej : ek

[
ej ,
[
ei, e

k
]
−

]
:: =: ej : ek

[[
ei, e

j
]
− , e

k
]

::,

: ej : ek
[
ek,
[
ej , ei

]
−

]
−

:: =: ek : ej

[[
ek, ei

]
−
, ej

]
−

::,

: ej :
[
ei, e

k
]
−

[
ej , ek

]
− :: =:

[
ei, e

j
]
− : ek

[
ej , e

k
]
−

:: .

So, using Courant algebroid axioms, that S is an odd derivation for the normally ordered
product and (B.15), we arrive at (C.4a). Now, by sesquilinearity and (B.10), we compute

[TwΛei] = −λ [wΛei]

= −λ
(〈[

ej , ej
]
, em

〉
[em, ei]l −

〈[
ej , ej

]
, em

〉
[em, ei]

)
+ λ

(〈
D
〈
ej ,
[
ek, ek

]〉
, ei

〉
ej −

〈
D
〈
ej ,
[
ek, ek

]〉
, ei

〉
ej

+ D
〈
ei,
[
ej , ej

]〉)
+ λχ

〈[
ej , ej

]
, ei
〉
.
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So, we arrive at (C.4c). Since we can exchange the roles played by l and l, it suffices to
check (C.4a) and (C.4c), as we have done, to obtain (C.4b) and (C.4d). Now, note that

[ej , ei] =
〈
ek, [ej , ei]

〉
ek,[

ej , ei
]

=
〈
ek,
[
ej , ei

]〉
ek +

〈
ek,
[
ej , ei

]〉
ek +

[
ej , ei

]
− ,[

ej , ei
]

=
〈
ek,
[
ej , ei

]〉
ek,[

ej , e
i
]

=
〈
ek,
[
ej , e

i
]〉
ek +

〈
ek,
[
ej , e

i
]〉
ek +

[
ej , e

i
]
− ,

for i, j ∈ {1, . . . , n}, which will be useful in the future.

Remark C.2.4. If E = (g, (·|·)) is a quadratic Lie algebra, for any a = al + al ∈ l ⊕ l,

[H0Λal] = − 2

k2

(
: ej : ek

[[
al, e

j
]
− , e

k
]
l

::

+ : ej : ek

[[
al, e

j
]
− , e

k
]
−

:: + :
[
al, e

j
]
− : ek

[
ej , e

k
]
−

::

+ : ej : ek
[
al,
[
ej , ek

]
−

]
l

:: + : ej : ek

[[
ek, al

]
−
, ej

]
−

::

)
+

1

k

(
χ : ej

[
al, e

j
]
− : −2 : ej

(
S
[
al, e

j
]
−

)
: +2T

[
ej ,
[
al, e

j
]
−

]
l

+ λ

([
ej ,
[
al, e

j
]
−

]
l
+
[[
al, e

j
]
− , ej

]
−

))
+ (λ+ 2T + χS) al,[

H0Λal
]

= − 2

k2

(
: ej : ek

[[
al, ej

]
− , ek

]
l

::

+ : ej : ek
[[
al, ej

]
− , ek

]
−

:: + :
[
al, ej

]
− : ek

[
ej , ek

]
− ::

+ : ej : ek

[
al,
[
ej , e

k
]
−

]
l

:: + : ej : ek
[[
ek, al

]
− , e

j
]
−

::

)
+

1

k

(
χ : ej

[
al, ej

]
− : −2 : ej

(
S
[
al, ej

]
−

)
: +2T

[
ej ,
[
al, ej

]
−

]
l

+ λ

([
ej ,
[
al, ej

]
−

]
l
+
[[
al, ej

]
− , e

j
]
−

))
+ (λ+ 2T + χS) al,[

H ′Λal
]

= [H0Λal] +
λ

k
[al, w]− λχ (al|w) ,[

H ′Λal
]

=
[
H0Λal

]
+
λ

k

[
al, w

]
− λχ

(
al|w

)
.

Now, define for each i, j ∈ {1, . . . , n} the locally defined sections

R : = 3

〈[
ej , ej

]
− ,
[
ek, ek

]
−

〉
−
〈[
ej , ek

]
− ,
[
ek, ej

]
−

〉
,

F ij : = tr|l
(
ad[ei,ej ]

)
+
〈
D
〈
ei,
[
ek, e

k
]〉
, ej
〉
−
〈
D
〈
ej ,
[
ek, e

k
]〉
, ei
〉
,

Fij : = tr|l
(

ad[ei,ej ]

)
+
〈
D
〈
ei,
[
ek, ek

]〉
, ej

〉
−
〈
D
〈
ej ,
[
ek, ek

]〉
, ei

〉
.
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Proposition C.2.5. One has

[
H ′ΛJ0

]
= (2λ+ 2T + χS)

J0 −
i

k
S

n∑
j=1

[
ej , ej

]
−


+

i

2k
TSDR+

i

k2
λ

n∑
j=1

n∑
i=1

(
: F ij : ejei :: − : Fij : ejei ::

)
− i

k

(
T +

3

k
λ

) n∑
j=1

n∑
i=1

(
: ei
[[
ej , ej

]
− , ei

]
−

: + : ei

[[
ej , ej

]
− , e

i
]
−

:

)
.

Proof. By the non-commutative Wick formula, it suffices to calculate[
H ′Λ : eiei :

]
=:
[
H ′Λe

i
]
ei : + : ei

[
H ′Λei

]
: +

∫ Λ

0
dΓ
[[
H ′Λe

i
]
Γ
ei
]

= P + I,

where I is the third summand of the right-hand side in the first line. Firstly, we compute

I :=

∫ λ

0
dλ (I1 + I2 + I3 + I4) ,

where
I1 := ∂η

[
AiΓei

]
, I2 := ∂η

[
Bi

Γei
]
,

I3 := ∂η
[
CiΓei

]
, I4 := ∂η

[
Di

Γei
]
,

are given by

Ai : =
χ

k
: ej

[
ei, ej

]
− : − : ej

(
S
[
ei, ej

]
−

)
:

− 2

k2

(
: ej : ek

[[
ei, ej

]
− , ek

]
:: + :

[
ei, ej

]
− : ek

[
ej , ek

]
− ::

+ : ej : ek

[
ei,
[
ej , e

k
]
−

]
l

:: + : ej : ek
[[
ek, e

i
]
− , e

j
]
−

::

)
Bi : =

λ

k

([
ej ,
[
ei, ej

]
−

]
l
+
[[
ei, ej

]
− , e

j
]
−

)
+ T

[
ej ,
[
ei, ej

]
−

]
l
,

Ci : = (λ+ 2T + χS) ei,

Di : = λχ
〈[
ej , e

j
]
, ei
〉

+
λ

k

((〈
em,

[
ek, ek

]〉 〈[
ei, em

]
, ej
〉

+
〈
D
〈
ej ,
[
ek, ek

]〉
, ei
〉

+
〈
D
〈
ek,
[
ei, ej

]〉
, ek
〉)

ej +
(〈
em,

[
ek, ek

]〉 〈[
ei, em

]
, ej
〉

+
〈
D
〈
ek,
[
ei, ej

]〉
, ek
〉
−
〈
D
〈
ej ,
[
ei, ek

]〉
, ek

〉
−
〈
em,

[
ek, ek

]〉 〈[
ei, em

]
, ej
〉
−
〈
D
〈
ej ,
[
ek, ek

]〉
, ei
〉)

ej

+
〈
ek,
[
ej , ej

]〉 [
ei, ek

]
− −D

〈
ei,
[
ej , ej

]〉
.
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We proceed as follows. By antisymmetry of the Λ-bracket, we can write

I1 = −∂η
[
ei−Γ−∇A

i
]

= ∂η
[
eiΓA

i
]

=
1

k

(
I1

1 − 2I2
1

)
− 2

k2

(
I3

1 + I4
1 + I5

1 + I6
1

)
,

where, by the non-commutative Wick formula, the Courant algebroid axioms, (B.14) and
(B.37),

I1
1 : = ∂η

[
eiΓ

(
χ : ej

[
ei, ej

]
− :
)]

= kχ
[
ej , e

j
]
− ,

I2
1 : = ∂η

[
eiΓ : ej

(
S
[
ei, ej

]
−

)
:
]

= k
[
ej , ej

]
−− : ej

[
ei,
[
ei, ej

]
−

]
:,

I3
1 : = ∂η

[
eiΓ : ej : ek

[[
ei, ej

]
− , ek

]
::
]

= k

(
: ek

[[
ej , ej

]
− , ek

]
: − : ej

[[
ek, ej

]
−
, ek

]
:

)
,

I4
1 : = ∂η

[
eiΓ :

[
ei, ej

]
− : ek

[
ej , ek

]
− ::
]

= −2T

〈[
ek, ej

]
−
,
[
ej , ek

]
−

〉
,

I5
1 : = ∂η

[
eiΓ : ej : ek

[
ei,
[
ej , e

k
]
−

]
l

::

]
= k

(
: ek

[
ej ,
[
ej , e

k
]
−

]
l

: + : ek
[
ek,
[
ej , ej

]
−

]
l

:

)
,

I6
1 : = ∂η

[
eiΓ : ej : ek

[[
ek, e

i
]
− , e

j
]
−

::

]
= k : ej

[[
ek, ek

]
−
, ej
]
−

: .

Combining the previous expressions, using the F -term conditions (in particular, Remark
6.3.15 that is equivalent to the weaker variant of the F -term condition (6.27)), then

I1 = T

〈[
ek, ej

]
−
,
[
ej , ek

]
−

〉
+ (χ+ 2S)

[
ei, e

j
]
−

+ : ek

[[
ej , e

j
]
− , e

k
]
−

: + : ek
[[
ej , e

j
]
− , ek

]
−

: − : ek

[
ej ,
[
ej , e

k
]
−

]
l

: .

Using now sesquilinearity, the non-commutative Wick formula and the Courant algebroid
axioms,

I2 = (λ− 2γ)
〈[
ej ,
[
ei, ej

]
−

]
, ei

〉
,

I3 = k (λ− 2γ)
〈
ej , ej

〉
+ χ

[
ej , ej

]
,

I4 = 0.
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In conclusion, we have arrived at the formula

I = λT

〈[
ek, ej

]
−
,
[
ej , ek

]〉
+ λχ

[
ej , ej

]
+
− λ : ek

[
ej ,
[
ej , e

k
]
−

]
l

:

+ 2λS
[
ej , e

j
]
− + λ : ek

[[
ej , e

j
]
− , e

k
]
−

: +λ : ek
[[
ej , e

j
]
− , ek

]
−

: .

Next, we compute

P : = P1 + P2 + P3

in several steps, where

P1 : =: ajej : + : ejaj :,

P2 : =: bjej : + : ejbj :,

P3 : =: cjej : + : ejcj :,

and
cj := λ∂λ

[
H ′Λe

j
]
− λej , cj := λ∂λ [H ′Λej ]− λej ,

bj := (λ+ 2T + χS) ej , bj := (λ+ 2T + χS) ej ,
aj :=

[
H ′Λe

j
]
− bj − cj , aj := [H ′Λej ]− bj − cj .

First, we can compute directly

P1 = − 2

k2
Q+

χ

k
W +

λ

k
X +

2

k
Y − 2

k
Z,

where

Q : = Q′1 +Q′2 +Q′3 +Q′4 +Q′5,

W : =:: ej
[
ei, ej

]
− : ei : − : ei : ej

[
ei, e

j
]
− ::,

X : =: ei
[
ej ,
[
ei, e

j
]
−

]
l

: + : ei
[[
ei, e

j
]
− , ej

]
−

:

+ :
[
ej ,
[
ei, ej

]
−

]
l
ei : + :

[[
ei, ej

]
− , e

j
]
−
ei :,

Y : =: ei
(
T
[
ej ,
[
ei, e

j
]
−

]
l

)
: + :

(
T
[
ej ,
[
ei, ej

]
−

]
l

)
ei :,

Z : =: ei : ej

(
S
[
ei, e

j
]
−

)
:: + :: ej

(
S
[
ei, ej

]
−

)
: ei :,

and

Q′1 : =:: ej : ek
[[
ei, ej

]
− , ek

]
l

:: ei : + :: ej : ek

[
ei,
[
ej , e

k
]
−

]
l

:: ei :,

Q′2 : =: ei : ej : ek

[[
ei, e

j
]
− , e

k
]
l

::: + : ei : ej : ek
[
ei,
[
ej , ek

]
−

]
l

:::,

Q′3 : =: ei :
[
ei, e

j
]
− : ek

[
ej , e

k
]
−

::: + ::
[
ei, ej

]
− : ek

[
ej , ek

]
− :: ei :,

Q′4 : =: ei : ej : ek

[[
ek, ei

]
−
, ej

]
−

::: + :: ej : ek
[[
ei, ej

]
− , ek

]
−

:: ei :,

Q′5 : =: ei : ej : ek

[[
ei, e

j
]
− , e

k
]
−

::: + :: ej : ek
[[
ek, e

i
]
− , e

j
]
−

:: ei : .
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Using Courant algebroid axioms, (B.13), (B.14), (B.20) and (B.29), we obtain that

Q′1 : =:: ej : ek
[
ei,
[
ej , ek

]
−

]
l

:: ei : + :: ek :
[
ei,
[
ej , ek

]
−

]
l
ei :: ej :

+ 2 :: ej
(
T

〈[
ej , e

i
]
− ,
[
ek, e

k
]
−

〉)
: ei :

=: Q1 + 2 :: ej
(
T

〈[
ej , e

i
]
− ,
[
ek, e

k
]
−

〉)
: ei :,

Q′2 : =: ei : ej : ek
[
ei,
[
ej , ek

]
−

]
l

::: + : ek :
[
ei,
[
ej , ek

]
−

]
l

: eje
i :::

+ 2 : ej :

(
T

〈[
ek, e

k
]
−
,
[
ej , e

i
]
−

〉)
ei ::

=: Q2 + 2 : ej :

(
T

〈[
ek, e

k
]
−
,
[
ej , e

i
]
−

〉)
ei ::,

Q′3 : =::
[
ei, ej

]
− : ek

[
ej , ek

]
− :: ei : + : ek :

[
ej , ek

]
− : ei

[
ei, ej

]
− :::

=: Q3,

Q′4 : =:: ej : ek
[[
ei, ej

]
− , ek

]
−

:: ei : + : ej : ek : ei

[[
ei, ej

]
− , ek

]
−

:::

=: Q4,

Q′5 : =:: ej : ek

[[
ei, ej

]
− , e

k
]
−

:: ei : + : ej : ei : ek

[[
ej , e

i
]
− , e

k
]
−

:::

=: Q5.

So, applying Courant algebroid axioms and (B.22), we obtain that

Q = Q1 +Q2 +Q3 +Q4 +Q5

+ 4

(
:: ej

(
T

〈[
ej , e

i
]
− ,
[
ek, e

k
]
−

〉)
: ei : −T 2

〈[
ej , e

j
]
− ,
[
ek, e

k
]
−

〉)
.

We will compute Q1, Q2, Q3, Q4, Q5 independently. First, by Courant algebroid axioms,
(B.16), (B.28), (B.35), (B.36) and since T is an even derivation for the normally ordered
product, we obtain that

Q1 = k
(

::
(
T
〈
ek,
[
ej ,
[
ei, ei

]
−

]〉)
ek : ej :

+ T 2

(〈[
ek, ej

]
−
,
[
ej , ek

]
−

〉
−
〈[
ej , ej

]
− ,
[
ek, ek

]
−

〉))
.

Now, by Courant algebroid axioms, (B.14), (B.15), (B.16), (B.20), (B.29), (B.35), (B.36),
and since T is an even derivation for the normally ordered product, we obtain that

Q2 = k ::
(
T
〈
ek,
[
ej ,
[
ei, ei

]
−

]〉)
ek : ej .

Now, applying Courant algebroid axioms, (B.14), (B.27), (B.28) (B.35) and since T is
an even derivation for the normally ordered product, we obtain that

Q3 = k

(
T 2

〈[
ej , ek

]
− ,
[
ek, ej

]
−

〉
+ ::

(
T
〈[
ej ,
[
ei, ej

]
−

]
, ek

〉)
ek : ei :

)
.
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By the Courant algebroid axioms, (B.14), (B.28) and (B.35), we obtain that

Q4 = kT

(
: ek

[[
ei, ei

]
− , ek

]
−

: − : ej
[[
ek, ej

]
−
, ek

]
−

:

)
.

Finally, by the Courant algebroid axioms, (B.28), (B.31) and (B.35), we obtain that

Q5 = kT

(
: ek

[[
ei, ei

]
− , e

k
]
−

:

)
.

In summary, by the Courant algebroid axioms and (B.13), we obtain that

Q = 4T 2

〈[
ej , ek

]
− ,
[
ek, ej

]
−

〉
− 6T 2

〈[
ej , ej

]
− ,
[
ek, ek

]
−

〉
+ 2 ::

(
T
〈[
ej ,
[
ei, ej

]
−

]
, ek

〉)
ek : ei :

+ 2T

(
: ek

[[
ei, ei

]
− , ek

]
−

: + : ek

[[
ei, ei

]
− , e

k
]
−

: − : ej
[[
ek, ej

]
−
, ek

]
−

:

)
.

We compute now the other terms. By the Courant algebroid axioms, (B.14) and (B.28),

W = −kT
[
ej , ej

]
− .

Now, by the Courant algebroid axioms, (B.14) and (B.20),

X = 2 : ej

[
ek,
[
ek, e

j
]
−

]
l

: + : ei
[[
ei, e

j
]
− , ej

]
−

: + :
[[
ei, ej

]
− , e

j
]
−
ei :

+ 2T
〈
ej ,
[
ek,
[
ej , ek

]
−

]〉
.

Now, applying the Courant algebroid axioms, (B.23) and since T is an even derivation
for the normally ordered product,

Y = T
(

: ei
[
ej ,
[
ei, e

j
]
−

]
l

:
)

+ ::
(
T
〈
ek,
[
ej ,
[
ei, ej

]
−

]〉)
ek : ei :

+ T 2

〈[
ej , ek

]
− ,
[
ek, ej

]
−

〉
.

At last, by the Courant algebroid axioms, (B.15) and since T is an even derivation for the
normally ordered product,

Z = T
(

: ei
[[
ej , ei

]
− , ej

]
:
)

+ 2TS
[
ej , ej

]
− .

In conclusion, by the Courant algebroid axioms, we have arrived at

P1 = T (2S + χ)
[
ej , e

j
]
− + T 2R− λT

〈[
ek, ej

]
−
,
[
ej , ek

]
−

〉
− T

(
: ek

[[
ej , ej

]
− , ek

]
−

: + : ek

[[
ej , ej

]
− , e

k
]
−

:

)
+
λ

k

(
2 : ek

[
ej ,
[
ej , e

k
]
−

]
l

: + : ek
[[
ek, e

j
]
− , ej

]
−

: + :

[[
ek, ej

]
−
, ej
]
−
ek :

)
.
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On the other hand, the calculation of P2 is immediate because S is an odd derivation
for the normally ordered product (so T is an even derivation). Indeed, we have that

P2 = (2λ+ 2T + χS) : ejej : .

To finish, we must compute the last term. We have that

P3 = λχA+
λ

k
B,

where

A : = − : ei
(〈[

ej , ej
]
, ei
〉)

: − :
(〈[

ej , ej
]
, ei
〉)
ei :,

B : = B1 +B′1 +B2 +B′2 +B3 +B′3 +B4 +B′4 −B5 −B′5,

and

B1 : =:
(〈
D
〈
ek,
[
ei, ej

]〉
, ek
〉
ej
)
ei : − : ei

(〈
D
〈
ej , [ei, ek]

〉
, ek
〉
ej

)
:,

B′1 : =: ei
(〈
D
〈[
ek, ei

]
, ej
〉
, ek

〉
ej

)
: − :

(〈
D
〈
ej ,
[
ei, ek

]〉
, ek

〉
ej
)
ei :,

B2 : =: ei
(
D
〈
ei,
[
ej , ej

]〉)
:

− :
(〈
D
〈
ej ,
[
ek, ek

]〉
, ei
〉
ej
)
ei : − : ei

(〈
D
〈
ej ,
[
ek, ek

]〉
, ei

〉
ej
)

:,

B′2 : =: ei
(〈
D
〈
ej ,
[
ek, ek

]〉
, ei

〉
ej

)
: + :

(〈
D
〈
ej ,
[
ek, ek

]〉
, ei
〉
ej

)
ei :

− :
(
D
〈
ei,
[
ej , ej

]〉)
ei :,

B3 : =: ei
(〈
D
〈[
ek, ei

]
, ej

〉
, ek

〉
ej
)

:,

B′3 : =:
(〈
D
〈[
ek, e

i
]
, ej
〉
, ek
〉
ej

)
ei :,

B4 : =: ei
(〈
em,

[
ek, ek

]〉 〈
ej , [em, ei]

〉
ej

)
: + : ei

(〈
em,

[
ek, ek

]〉
〈ej , [em, ei]〉 ej

)
:

+ : ei
(〈
ej ,
[
ek, ek

]〉 [
ej , ei

]
−

)
:,

B′4 : =:
(〈
em,

[
ek, ek

]〉 〈[
ei, em

]
, ej
〉
ej

)
ei : + :

(〈
em,

[
ek, ek

]〉 〈[
ei, em

]
, ej
〉
ej
)
ei :

+ :
(〈
ej ,
[
ek, ek

]〉 [
ei, ej

]
−

)
ei :,

B5 : =: ei
(〈
em,

[
ek, ek

]〉 〈
ej , [em, ei]

〉
ej

)
:,

B′5 : =:
(〈
em,

[
ek, ek

]〉 〈[
ei, em

]
, ej
〉
ej
)
ei : .

First, notice that clearly

A = −
[
ej , ej

]
+
.

Now, by the Courant algebroid axioms, (B.13) and (B.20),

B1 = 2T
〈
D
〈
ek,
[
ej , ej

]〉
, ek
〉
.

193



Supersymmetric Vertex Algebras and Killing Spinors

Analogously,

B′1 = 2T
〈
D
〈
ek,
[
ej , e

j
]〉
, ek

〉
.

Now, by the Courant algebroid axioms, (B.13), (B.14) and (B.20),

B2 = 2 : ei
(
D
〈
ei,
[
ej , ej

]〉)
l

: + : ei
(
D
〈
ei,
[
ej , ej

]〉)
− : −2T

〈
D
〈
ek,
[
ej , ej

]〉
, ek
〉
.

Analogously,

B′2 = −2 :
(
D
〈
ei,
[
ej , ej

]〉)
l
ei : − :

(
D
〈
ei,
[
ej , ej

]〉)
− ei : +2T

〈
D
〈
ek,
[
ej , ej

]〉
, ek

〉
.

Now, by the Courant algebroid axioms, together with (B.10), (B.13), (B.14) and (B.20),

B4 =:
(
D
〈
ei,
[
ej , ej

]〉)
l
ei : − : ei

[
ei,
[
ek, ek

]
l

]
: .

Analogously,

B′4 =:
(
D
〈
ei,
[
ej , ej

]〉)
l
ei : + :

[
ei,
[
ek, ek

]
l

]
ei : .

At last, by the Courant algebroid axioms, (B.13) and (B.20),

B5 = 2T
〈
D
〈
ei,
[
ek, ek

]〉
, ei

〉
+ : ei

[
ei,
[
ek, ek

]
l

]
: − :

(
D
〈
ei,
[
ek, ek

]〉)
l
ei : .

Analogously,

B′5 = 2T
〈
D
〈
ei,
[
ek, ek

]〉
, ei
〉
− :

[
ei,
[
ek, ek

]
l

]
ei : + : ei

(
D
〈
ei,
[
ek, ek

]〉)
l

: .

Consequently, applying (B.40), we arrive at

P3 = −λχ
[
ej , ej

]
+
− λT

〈[
w, ej

]
, ej
〉

+
λ

k

(
: ek [ek, w]l : + :

[
ek, w

]
l
ek : + : ek [ek, w]− : + :

[
ek, w

]
−
ek :

+2T
(〈
D
〈
ei,
[
ek, ek

]〉
, ei

〉
+
〈
D
〈
ei,
[
ek, ek

]〉
, ei
〉)

+ : ei
((
D
〈
ei,
[
ek, ek

]〉)
l
+
(
D
〈
ei,
[
ek, ek

]〉)
−

)
:

− :

((
D
〈
ei,
[
ek, ek

]〉)
l
+
(
D
〈
ei,
[
ek, ek

]〉)
−

)
ei :

+ : ei
(〈
D
〈[
ek, ei

]
, ej

〉
, ek

〉
ej
)

: + :
(〈
D
〈[
ek, e

i
]
, ej
〉
, ek
〉
ej

)
ei :
)
.

In conclusion, we are ready to compute[
H ′Λ : eiei :

]
=:
[
H ′Λe

i
]
ei : + : ei

[
H ′Λei

]
: +

∫ Λ

0
dΓ
[[
H ′Λe

i
]
Γ
ei
]

= I + P1 + P2 + P3
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Indeed, using that T = S2 we get the following[
H ′Λ : eiei :

]
= (2λ+ 2T + χS)

(
: ejej : −S

[
ej , ej

]
−

)
− T

(
: ek

[[
ej , ej

]
− , ek

]
−

: + : ek

[[
ej , ej

]
− , e

k
]
−

:

)
+ T 2R+

λ

k
V,

where

V : =:
[
ek,
[
ej , ej

]
l

]
l
ek : − : ek

[
ek,
[
ej , ej

]
l

]
l

:

+ 3

(
: ek

[
ek,
[
ej , ej

]
−

]
−

: − :
[
ek,
[
ej , ej

]
−

]
−
ek :

)
+ :

[
ek,
[
ej , ej

]]
−
ek : − : ek

[
ek,
[
ej , ej

]]
− :

+ : ek
[[
ek, e

j
]
− , ej

]
−

: + :

[[
ek, ej

]
−
, ej
]
−
ek :

+ 2T
(〈
D
〈
ei,
[
ek, ek

]〉
, ei

〉
+
〈
D
〈
ei,
[
ek, ek

]〉
, ei
〉
−
〈[
w, ej

]
, ej
〉)

+ : ei
((
D
〈
ei,
[
ek, ek

]〉)
l
+
(
D
〈
ei,
[
ek, ek

]〉)
−

)
:

+ :

((
D
〈
ei,
[
ek, ek

]〉)
l
+
(
D
〈
ei,
[
ek, ek

]〉)
−

)
ei :

+ : ei
(〈
D
〈[
ek, ei

]
, ej

〉
, ek

〉
ej
)

: + :
(〈
D
〈[
ek, e

i
]
, ej
〉
, ek
〉)

ei : .

Now, we are going to apply Jacobi identity of Dorfman bracket to the brackets appearing
in the third line above. Using that l and l are involutive and Courant algebroid axioms,[

ek,
[
ej , ej

]]
−

= −
[[
ek, ej

]
−
, ej
]
−

+
(
D
〈
ek,
[
ej , ej

]〉)
−
,[

ek,
[
ej , ej

]]
− =

[[
ek, e

j
]
− , ej

]
−

+
(
D
〈
ek,
[
ej , ej

]〉)
− .

Using the Courant algebroid axioms, (B.13), (B.14), (B.19), (B.20) and Lemma B.5.12,

V = −3

(
: ek

[[
ej , ej

]
− , ek

]
−

: + : ek

[[
ej , ej

]
− , e

k
]
−

:

)
+ :

(〈[[
ek, e

k
]
, ei
]
, ej
〉

+
〈[
ek,
[
ei, ej

]
l

]
, ek
〉

+
〈[[

ei, ej
]
l
, ek
]
, ek
〉)

: ejei ::

− :
(〈[[

ek, ek

]
, ei

]
, ej

〉
+
〈[
ek, [ei, ej ]l

]
, ek

〉
+
〈[

[ei, ej ]l , e
k
]
, ek

〉)
: ejei :: .

Here, notice that〈
D
〈
ek,
[
ei, ej

]〉
, ek
〉

=
〈[
ek,
[
ei, ej

]]
, ek
〉

+
〈[[

ei, ej
]
, ek
]
, ek
〉
,〈

D
〈
ek, [ei, ej ]

〉
, ek

〉
=
〈[
ek, [ei, ej ]

]
, ek

〉
+
〈[

[ei, ej ] , e
k
]
, ek

〉
.

195



Supersymmetric Vertex Algebras and Killing Spinors

As a consequence, we can prove using Courant algebroid axioms that

Fij =
〈[[

ek, ek

]
, ei

]
, ej

〉
+
〈
D
〈

[ei, ej ] , e
k
〉
, ek

〉
. (C.6a)

F ij =
〈[[

ek, e
k
]
, ei
]
, ej
〉

+
〈
D
〈[
ei, ej

]
, ek
〉
, ek
〉
, (C.6b)

In conclusion, we have arrived at the desired formula, which concludes the proof.

C.3 Global Sections from Constant Determinant Atlas

Finally, we will find when the sections J0 and H ′ are global.

Lemma C.3.1. Let
{
fj , f

j
}n
j=1
⊆ l⊕ l be a new isotropic frame, for which there exists

A =
(
Akj

)n
j,k=1

, B =
(
Bk
j

)n
j,k=1

∈ Matn (C∞(M))

matrices for the change of coordinates, such that

fj =

n∑
k=1

Akj ek and f j =

n∑
k=1

Bk
j e
k, for j ∈ {1, . . . , n}.

In addition, suppose that the change of frames has constant determinant, that is,

D detA = 0.

Then, we have that

n∑
j=1

: f jfj :=
n∑
j=1

: ejej : and
n∑
j=1

[
f j , fj

]
− =

n∑
j=1

[
ej , ej

]
− .

In conclusion, the sections (C.1) and (C.3) are global if the change of frames has constant
determinant, and the same happens for the projection of [εj , εj ] to C−.

Proof. This follows by a direct computation. Indeed, we can obtain that

: f jfj : =: ejej : + : Bj
k

(
TAkj

)
: and

[
f j , fj

]
− =

[
ej , ej

]
− +Bj

k

(
DAkj

)
−
,

by the Courant algebroid axioms, (B.10), (B.13), (B.17), (B.19) (B.25) and (B.26). Note
that the identity A−1 = B is satisfied because our frames are isotropic. Now,

: Bj
k

(
TAkj

)
:= tr

(
: A−1 (TA) :

)
and Bj

k

(
DAkj

)
= tr

(
A−1 · DA

)
,

so, since by Jacobi’s formula (see Appendix B.6) this coincides, respectively, with

T log detA =
T detA

detA
and D log detA =

D detA

detA
,

we obtain the identities since T detA = D detA = 0 by hypothesis. So, as a consequence,
both J0 and H ′ are also global, since H ′ is the Λ-bracket between J0 by itself.

Once we have done all these computations, we are ready to return to Section 10.1.
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Mathematics Department. Louvain-la-Neuve, Belgium (2008).

201



Supersymmetric Vertex Algebras and Killing Spinors

[77] S. Odake: Extension of N = 2 superconformal algebra and Calabi–Yau compactifi-
cation, Mod. Phys. Lett. A (1989), Vol. 4, No. 6, 557–68.

[78] S. Picard: Calabi-Yau manifolds with torsion and geometric flows, Complex non-
-Kähler geometry, 57–120, Lecture Notes in Math., 2246, Fond. CIME/CIME
Found. Subser., Springer, Cham 2019.

[79] D. Popovici: Non-Kähler Mirror Symmetry of the Iwasawa Manifold, Int. Math.
Res. Notices 2020 (2018), No. 23, 9471–9538.
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