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Abstract

This thesis consists of three main chapters, and they all revolve around Artin groups.
Proving results for all Artin groups is a serious challenge, so one usually focuses on par-
ticular subclasses. Among the most well understood subfamilies of Artin groups is the
family of right-angled Artin groups (RAAGs shortly). One can define them using sim-
plicial graphs, which determine the group up to isomorphism. They are also interesting
as there are a variety of methods for studying them, coming from di�erent viewpoints,
such as geometry, algebra, and combinatorics. This has resulted in the understanding
of many problems in RAAGs, like the word problem, the spherical growth, intersections
of parabolic subgroups, etc.
In Chapter 2 we focus on the geodesic growth of RAAGs, over link-regular graphs,
and we extend a result in that direction, by providing a formula of the growth over
link-regular graphs without tetrahedra.
In Chapter 3 we work with slightly di�erent groups, the class of twisted right-angled
Artin groups (tRAAGs shortly). They are defined using mixed graphs, which are sim-
plicial graphs where edges are allowed to be directed edges. We find a normal form
for presenting the elements in a tRAAG. If we forget about directions of edges, we
obtain an underlying undirected graph, which we call the näıve graph. Over the näıve
graph, which is simplicial, one can define a RAAG, which corresponds naturally to
our tRAAG. We will discuss some algebraic and geometric similarities and di�erences
between tRAAGs and RAAGs. Using the normal form theorem we are able to conclude
that the spherical and geodesic growth of a tRAAG agrees with the respective growth
of the underlying RAAG.
Chapter 4 has a di�erent theme, and it consists of the study of parabolic subgroups in
even Artin groups. The work is motivated by the corresponding results in RAAGs, and
we generalize some of these results to certain subclasses of even Artin groups.
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them for the time they took to read it in detail and for their comments and suggestions,
ranging from typos to profound insights into further extensions of this work.
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Chapter 1

Introduction and Preliminaries

In this chapter we present the core results of the thesis, and we provide an overview of
the topics that motivate these results. Here is also where we set up the notation and
where we give the most important definitions that we use throughout this dissertation.
We also introduce key concepts and some examples which allow us to give the statements
of the main results.

1.1 Introduction

Artin groups present one of the most celebrated families of groups in contemporary
research, where the interplay from both algebraic and geometric techniques have given
rewarding results. They are also known as Artin–Tits groups, named after Emil Artin,
and Jacques Tits, due to their work on braid groups (in [4]), and on extensions of
Coxeter groups (in [37]) respectively.
One defines Artin groups as finitely presented groups by giving a set S of generators
called Artin generators, and a set of relations (Artin relations) defined for distinct
pairs a, b of elements of S in the form:

abab...¸ ˚˙ ˝
k - factors

= baba...¸ ˚˙ ˝
k - factors

(1.1)

for some k Ø 2, such that any distinct pair a, b can have at most one Artin relation
associated to it.
We allow k = Œ in Equation (1.1), to mean that the corresponding pair a, b has no
Artin relation; in this case we say that the pair a, b is free of relations. We use the
notation (A, S) to mean that A is an Artin group with Artin generators S, which gives
preference to the generating set and it will be useful when defining parabolic subgroups.
Equivalently we can encode the definition for Artin groups on a finite simplicial graph �
(see Definition 1.2.1) whose edges are labeled by integers. The vertices of � present
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CHAPTER 1. INTRODUCTION AND PRELIMINARIES 7

the Artin generators, while an edge joining two vertices a, b, and labeled by k Ø 2,
presents the corresponding Artin relation appearing in Equation (1.1). The graph �
is called the defining graph of the corresponding Artin group, which we denote by A�,
and furthermore we refer to A� as the Artin group based on �
If (A, S) is an Artin group, then adding the relations a

2 = 1 for any a œ S, we obtain
a quotient group W , which is called a Coxeter group. There is a natural quotient
morphism:

p : A ≠æ W defined by p(a) = a for any a œ S, (1.2)
and we refer to (W, S) as the Coxeter group corresponding to the Artin group (A, S).
Coxeter groups are known quite well and they provide a lot of motivation for achieving
analogous results in Artin groups.
Although defining Artin groups is quite easy, understanding them well is di�cult. For
example, the word problem, which asks if a given word on generators represents the
identity, is not solved for the whole class. In general, it is challenging to obtain good
results for all Artin groups, and often one works on certain subfamilies.
Some of the well known classes among Artin groups are:

• free groups, where any two generators are free of relations,
• free abelian groups, where any two generators a, b are related by the commutative

relation ab = ba,
• right-angled Artin groups, where any two generators a, b are either related by a

commutative relation ab = ba, or they are free of relations,
• Artin groups of spherical type, where the corresponding Coxeter group is finite.

So the subclass of RAAGs (short for right-angled Artin groups) is the one where the
relations among Artin generators in Equation (1.1) have k = 2, or k = Œ, i.e. the only
possible relations are commutations. By definition they also include free groups and
free abelian groups.
Using the language of the defining graphs we have that two RAAGs are isomorphic if
and only if they have isomorphic defining graphs (see [19]).
The Coxeter groups corresponding to RAAGs are called right-angled Coxeter groups

(shortly RACGs). In fact, any RAAG can be seen as a finite index subgroup of some
RACG (see the theorem of Section 1 in [17]).
RAAGs and RACGs have attracted much attention in recent years, as they can be
studied from di�erent points of view. They possess algorithmic properties, which will
be used for several combinatorial computations in Chapter 2. One associates to them
a variety of complexes which serve as important tools for many applications (see [10]
for a survey on RAAGs and RACGs).

Another interesting class of groups appearing in Chapter 3 of the thesis is the class of
twisted Artin groups. They are finitely presented and are similarly defined by a canonical
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presentation which looks similar to the one of Artin groups. For any two generators
a, b the corresponding relation is either an Artin relation (as in equation (1.1)), or of
the form:

abab...¸ ˚˙ ˝
(k + 1) - factors

= baba...¸ ˚˙ ˝
(k ≠ 1) - factors

(1.3)

for some k Ø 2. Again, we allow k = Œ and the corresponding generators are free of
relations. Note that for k = 2 in Equation (1.3) we get aba = b, which also can be
written as abab

≠1 = 1, and it expresses the so-called Klein relation (see Example 3.1.1).

The main focus on twisted Artin groups is going to be the subclass of twisted right-angled

Artin groups (tRAAGs shortly). This class is obtained when we get only commutations
or Klein relations between generators, but not both relations for the same pair of
generators.
Similarly to RAAGs, one can define tRAAGs using graphs. In this case the graphs we
use are called mixed graphs, which are like simplicial graphs, but we allow some edges
to be directed edges. The vertices represent the generators of the group, and edges give
rise to the relations. An undirected edge, connecting generators a, b, gives rise to the
commutation ab = ba, while a directed edge with origin at a and terminus at b defines
the relation aba = b. If generators a, b are not connected by an edge, they are free of
relations.
If we forget about directions of edges, we obtain an underlying undirected graph, which
we call the underlying näıve graph, and one can define a RAAG over it, which is called
the underlying RAAG of our tRAAG.
Despite having similar presentations, studying tRAAGs one can notice big di�erences
with RAAGs. For example, one can have isomorphic tRAAGs based on non-isomorphic
mixed graphs (see Example 3.1.3 in Chapter 3). Also one can have torsion in tRAAGs
(see Section 3.6.3), which is not the case in RAAGs.

Both Chapter 2, and Chapter 3 of the thesis deal with the notion of growth in groups.
This topic is fascinating as it connects algebra, geometry, analysis, and combinatorics
to obtain profound results. When we discuss growth in a finitely presented group G we
use a preferred generating set T to express the elements of G. For example, in the case
of Artin groups (A, S) as a preferred generating set serves T = S Û S

≠1.
The spherical growth function counts the number of group elements in a sphere of a given
radius with respect to the word metric (the alphabet used is the preferred generating
set of the group). One can also view this function as counting the group elements on its
Cayley Graph which are a given distance far from the identity element. One important
feature of the spherical growth is that its asymptotic behaviour does not depend on the
generating set of the group and it is quasi-isometry invariant.
Another growth function encountered often in the literature is the standard growth

function. It is defined similarly as the spherical one, but using closed balls instead of
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spheres in the word metric. Its value, for a given number n, is the cumulative sum of
the values of the spherical growth function on integers from 0 to n.
One of the most celebrated results related to growth is Gromov’s theorem on polynomial
growth, which was proved by Gromov (see Section 8 in [23]), and it states that a
finitely generated group has polynomial growth if and only it is virtually nilpotent, i.e.
has a finite index subgroup which is nilpotent. This provides an equivalence between
polynomial standard growth, a geometric property, and virtual nilpotency, an algebraic
property.
The geodesic growth function of a finitely generated group, with respect to a preferred
generating set, counts the number of geodesics (shortest paths) of a given length, start-
ing from the identity vertex in the Cayley graph of the group. This represents the word
growth of the language of geodesics of the group.
To any growth function f : N æ N we can associate a generating growth series, which
is a formal power series of the form

S (z) =
Œÿ

n=0
f(n)zn œ Z[[z]].

The series is called rational if it can be expressed as a quotient of two polynomials with
coe�cients in Z.
The series associated to the spherical and geodesic growth functions are called spherical
and geodesic growth series respectively. They encode geometric information of the
Cayley graph of G (with respect to the generating set X).
Gromov studied the notion of geodesics on hyperbolic groups (see [24]). Theorem 3.4.5
in [21] shows that the language of geodesics of hyperbolic groups, with respect to any
finite generating set, is regular (see Definition 1.2.18) which in particular implies that
the geodesic growth series is rational (Remark 1.2.19). The geodesic growth has been
less studied compared with standard growth, and moreover it is much more sensitive to
the change of generating sets. The asymptotic properties of geodesic growth depend on
the generating set and hence it is less intuitive to make connections with the algebraic
properties of the group.

In Chapter 2 we refer to the dimension of RAAGs which comes from the general defin-
ition of the dimension of Artin groups as in Definition 1.1.1. The main result of that
Chapter is Corollary 2.3.6, where we compute the growth series of RAAGs based on
link-regular graphs (Definition 2.2.2) which do not contain tetrahedra.
Corollary 2.3.6 (Geodesic growth in some 3-dimensional RAAGs). Let � = (V, E)
be a simplicial graph with n vertices, and without tetrahedra. Assume that any vertex
belongs to l edges, and any edge belongs to q triangles. Let A = A� be the RAAG
based on �, and let A(z) denote the geodesic growth series of A with respect to the
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generating set V fi V
≠1. Then we have the equality:

A(z) = 1 + a(n, l, q, z)
b(n, l, q, z) ,

where the polynomials a, b are given as:

a(n, l, q, z) = 2nz[1 + (5 ≠ 2l ≠ 2q)z + (4lq ≠ 6l + 6)z2)], and
b(n, l, q, z) = 1 + (6 ≠ 2n ≠ 2l ≠ 2q)z + (4nl + 4lq + 4qn ≠ 10n ≠ 6l ≠ 2q + 11)z2

+ (12nl + 6 ≠ 8nlq ≠ 12n)z3
.

We see that over link-regular graphs without tetrahedra, the geodesic growth series
is rational and it only depends on the numbers n, l, q. These numbers determine the
clique-polynomial (Definition 2.2.3) of � uniquely (see [5]), hence in our case the growth
series is determined by the clique-polynomial of � and its coe�cients (see also [1]).

With a similar theme in mind, in Chapter 3 we find a normal form theorem for tRAAGs
(see Section 3.4), and to state it we use the notion of reduced sequence of syllables. By
syllable we mean an element g ”= 1 which is a power of a single generator. A sequence of
syllables (g1, . . . , gn) is called reduced if any two members which are powers of the same
generator, cannot be brought in adjacent positions using shu�ings (which are moves
that change the order of syllables, sometimes by a�ecting the sign of the powers). The
most basic examples of shu�ings are ab Ωæ ba when a, b commute, and ab Ωæ ba

≠1

when aba = b.
Theorem 3.4.13 (Normal form theorem for tRAAGs). Let G� be a tRAAG. Each
element g œ G can be expressed uniquely (up to shu�ing) as a product g = g1 · · · gn,
where (g1, . . . , gn) is a reduced sequence of syllables in G�.
The unique reduced sequence representing the identity 1 œ G� is the empty sequence.
An application of the normal form theorem in tRAAGs is the solution of the word prob-
lem in tRAAGs. Moreover, by comparing the normal forms of elements in tRAAGs and
RAAGs we show that the spherical growth and the geodesic growth of a tRAAG agree
with the corresponding growth of the RAAG based on the underlying näıve graph.

When studying Artin groups, objects that come often into play are parabolic subgroups.
Let (A, S) be an Artin group. For X µ S consider the subgroup P generated by X. By
a theorem of Van der Lek in [27] the subgroup P is isomorphic to the Artin group with X

as its set of Artin generators, and the relations the ones induced by the relations in A.
These subgroups P are called standard parabolic subgroups. Their conjugates gPg

≠1,
for some g œ A, are called parabolic subgroups of A. A morphism fl : A æ P is called a
retraction if fl(p) = p for any p œ P .
Using parabolic subgroups, one can define the dimension of an Arting group.
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Definition 1.1.1. The dimension of an Artin group (A, S) is the maximal cardinality
of a subset X ™ S such that the standard parabolic subgroup P generated by X is of
spherical type.

The importance of parabolic subgroups can be explained from their use to study Artin
groups from a geometric viewpoint. There are several simplicial complexes associated
to an Artin group, and usually one uses parabolic subgroups to build them. As a
general example serves the Deligne complex which is the flag complex associated to the
partially ordered set of cosets of standard parabolic subgroups of spherical type (see
[18] and [11]). This complex is used to help deduce results about Artin groups, such
as towards the K(fi, 1)-conjecture (see [11]), or Tits alternative for Artin Groups of
FC-type (see [30]) among other applications.
Another complex associated to Artin groups is the Salvetti complex, which is a flag
complex, and for building it, one uses the standard parabolic subgroups of spherical
type in the corresponding Coxeter group.
Recently, there have been defined complexes using not only the standard parabolic
subgroups and their cosets, but also using the general parabolic subgroups. For ex-
ample, Cumplido et al. [15], 2019, define a complex (called the complex of parabolic
subgroups), associated to the Artin groups of spherical type. This was later generalized
for Artin groups of FC-type in [31], 2021. They use these complexes to show that the
intersection of parabolic subgroups of spherical type in these groups is again a parabolic
subgroup.
It is still an open question, for general Artin groups, whether the set of parabolic
subgroups is stable under intersections. The same problem has a positive answer in the
class of Coxeter groups (see [33] and the references within).
Several articles have dealt with this question for subfamilies of Artin groups. For
example, one gets a positive answer for the case of braid groups, and later generalized to
all Artin groups of spherical type ([15]) using Garside theory. More recently, Cumplido
et al. [14], showed the result for the class of large-type Artin groups.
In Chapter 4 we discuss properties of parabolic subgroups in even Artin groups, where
even Artin groups is a subclass of Artin groups which generalizes RAAGs. In even Artin
groups, the relations coming from Equation (1.1) have k even, or k = Œ, i.e. the only
possible relations among any two Artin generators a, b have the form (ab)l = (ba)l, for
some l œ N (here l = k/2).
Even Artin groups share many properties with RAAGs, and we will use results on the
latter class as a motivation for providing similar results to this new broader class.
In this thesis, we will give some contributions to RAAGs and the family of even Artin
groups. One useful property that even Artin groups possess is the presence of retractions
for any parabolic subgroup.
We also show that the set of parabolic subgroups, in a certain subclass C, is stable
under intersections. The class C consists of those even Artin where for any vertex v

belonging to a triangle in �, all the edges containing v are labeled by 2’s. In particular,
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the class C contains RAAGs, and 2-dimensional even Artin groups.
Theorem 4.3.4 (Intersections of parabolic subgroups). Let G be an even Artin group
belonging to the class C. Then the intersection of any collection of parabolic subgroups
in G is again a parabolic subgroup.
If instead of C in the theorem above, we consider RAAGs (which are contained in C),
we obtain a new proof of the same result for the class of RAAGs.

1.2 Preliminaries

In this part we will give the main definitions and we cite most of the useful results that
we use in the upcoming chapters.

1.2.1 Graphs

Whenever we define classes of groups in this thesis, we use graphs to give a canonical
presentation for the group. There are a range of definitions for graphs, and for most of
our purposes we will use simplicial graphs.

Definition 1.2.1. A simplicial graph � is a pair � = (V, E), where V = V � is a set
whose elements are called vertices, and E = E� ™ {{x, y} | x, y œ V, x ”= y} is a set of
paired distinct vertices, whose elements are called edges.
If e = {x, y} is an edge, then both {x, y} and {y, x} represent it.

An empty graph is a graph that has an empty set of vertices, and thus an empty set of
edges as well.

Definition 1.2.2. Let � = (V, E) be a simplicial graph.
• Two vertices x and y are called adjacent if {x, y} œ E, and in this case x and y

are called the endpoints of the edge e = {x, y}.
• A vertex may belong to no edge, in which case it is not adjacent to any other

vertex; such vertices are called isolated.
• The graph � is called totally disconnected if all vertices are isolated.
• The graph � is called complete if any two distinct vertices form an edge. We call

the complete graph on n vertices an n-clique.

Remark 1.2.3. In simplicial graphs there can be at most one edge between two distinct
vertices. Also, there are no loops (edges whose endpoints are equal).

Definition 1.2.4. Let � = (V, E) be a graph.
• A path p between two vertices x and y is a sequence of pairwise distinct edges

p = (e1, e2, . . . , en), where ei = {zi, zi+1} with z1 = x, zn+1 = y.
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• The graph � is called connected if there is a path between any two distinct vertices.
• The length of the path is the number of edges in the sequence.
• A path between two vertices x and y is called a geodesic if it is a path of shortest

length between x and y.

Definition 1.2.5. Given a graph � = (V, E), the double graph associated to �, denoted
by �[2], is defined as follows. Its vertex set is V �[2] = V Û V

Õ with V = V �, and V
Õ is

a disjoint copy of V . Denote the vertices in V
Õ as {a

Õ | a œ V }. For any edge {a, b}
in � there are exactly four corresponding edges {a, b}, {a

Õ
, b}, {a, b

Õ}, {a
Õ
, b

Õ} in �[2]. See
Figure 1.1 for an example.

c

a b

c

a b

c
Õ

a
Õ

b
Õ

c

a b

c
Õ

a
Õ

b
Õ

Figure 1.1: Construction of the double of a Graph: �, V �[2] and �[2].

The main reason for introducing the double graph is to bring some computations done
for RACGs to RAAGs as well. We will use it in Chapter 2 to give a formula for the
geodesic growth of some RAAGs (see Corollary 2.3.6).

Definition 1.2.6. A mixed graph � = (V, E, D, o, t) consists of a simplicial graph
(V, E), a set of directed edges D ™ E, and two maps

o, t : D ≠æ V.

For an edge e = {x, y} œ D, the maps o, t satisfy o(e) ”= t(e), and o(e), t(e) œ {x, y}.
Refer to o(e), t(e) as the origin and the terminus of edge e respectively.

Notation 1.2.7. Let � = (V, E, D, o, t) be a mixed graph.
(i) If e = {a, b} is an undirected edge, i.e. e œ E \ D, we will write e = [a, b] (note

that also e = [b, a]).
(ii) Instead, if e = {a, b} is a directed edge, i.e. e œ D, we will write e = [o(e), t(e)Í.

In this case, either e = [a, bÍ, or e = [b, aÍ.
Geometrically, we present the cases (i) e = [a, b], and (ii) e = [a, bÍ as follows:
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a b a b

(i) (ii)

Figure 1.2: Types of edges in E�

Since every edge in E = E� has exactly one of the types (i), (ii) as in Figure 1.2, one
can express the set of edges in � as

E� = E� Û
≠æ
E�,

where E� = E \ D consists of undirected edges (type (i)), and
≠æ
E� = D consists of

directed edges (type (ii)).

1.2.2 Artin Groups

Let X = {a1, . . . , an} be a finite set. A Coxeter Matrix M = (mij) over X is a square
symmetrical matrix of order n, with entries in N fi {Œ} and 1’s in the diagonal. In
other words, mii = 1, for all i, and mjk = mkj for any k, j with j ”= k.
M corresponds to a Coxeter graph � via V � = X, and {ai, aj} is an edge in � labeled
by mij, if and only if mij Ø 2 and mij ”= Œ.
One defines Artin Groups via a standard presentation which can be read from the
Coxeter matrix or the Coxeter graph. The presesentation of the Artin Group G�,
based on the graph � is:

G� = Èa1, . . . , an | ’i < j : prod(ai, aj; mij) = prod(aj, ai; mji)Í

where prod(a, b; k) = abab...¸ ˚˙ ˝
k-factors

Remark 1.2.8. If mij = Œ, then there is no edge in the defining graph � joining the
vertices ai, aj. This implies that there is no relation between ai, aj in the presentation.

1.2.3 Twisted Artin groups

Twisted Artin groups (see [13]) represent a generalization of Artin groups. To define
them we use a twisted Coxeter Matrix, which does not need to be symmetric.
Let X = {a1, . . . , an} be a finite set. A twisted Coxeter Matrix T = (tij) over X is a
square matrix of order n, with entries in Nfi {Œ} and 1’s in the diagonal such that for
all 1 Æ j, k Æ n one has |tjk ≠ tkj| œ {0, 2}.

Definition 1.2.9. A twisted Artin group G = GT , based on a twisted Coxeter Matrix
T , is a finitely presented group given by the presentation:

GT = Èa1, . . . , an|’i < j : prod(ai, aj; tij) = prod(aj, ai; tji)Í
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where prod(a, b; k) = abab...¸ ˚˙ ˝
k-factors

All Artin groups are also twisted Artin groups. Another simple example of a twisted
Artin group is the fundamental group of the Klein bottle, given as:

K = Èa, b | aba = bÍ.

As for Artin groups, one can associate a graph � to a twisted Coxeter Matrix T . T

corresponds to a twisted Coxeter graph � via V � = X, and {ai, aj} is an edge in �,
labeled by tij, if and only if tij = tji Ø 2 and tij ”= Œ; or {ai, aj} is a directed edge in
�, labeled by (tij + tji)/2, and directed from ai to aj, if and only if tij ≠ tji = 2;

Example 1.2.10. The following edge:

a b
m

with m Ø 2 corresponds to the relation

abab...¸ ˚˙ ˝
m + 1 factors

= baba...¸ ˚˙ ˝
m ≠ 1 factors

Notice that for m = 2 we obtain the Klein relation.

Definition 1.2.11. The underlying graph of the twisted Artin group, when we treat
the directed edges as regular edges, but we keep the labels, is called the näıve graph.

Any twisted Artin group gives rise to an Artin group over the näıve graph. This will
serve to make some connections between tRAAGs and the corresponding RAAGs over
the näıve graph. Now we provide an example of a twisted Artin group (not a tRAAG),
for the corresponding dihedral case.

Example 1.2.12. Consider the following graph �:

a b
m

with m Ø 2. Corresponding to this graph we get the twisted Artin group:

G� = Èa, b| abab...¸ ˚˙ ˝
m + 1 factors

= baba...¸ ˚˙ ˝
m ≠ 1 factors

Í.

We can classify these groups by distinguishing the parity of m (see also [13] for a
di�erent treatment when m is even).
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(i) If m = 2k + 1 for some positive integer k, then the relation can also be written
as a(ba)k+1

a
≠1 = (ba)k, and substituting s = ba we get the group presentation:

G� = Èa, s|as
k+1

a
≠1 = s

kÍ.

This is an equivalent presentation because a, b ‘æ a, sa
≠1 and a, s ‘æ a, ba give

two morphisms whose compositions are equal the identity morphisms.
This is the Baumslag–Solitar group denoted usually by BS(k + 1, k).

(ii) If m = 2k for some k œ N, then rewrite the relation in the form a(ba)k = (ba)k
a

≠1,
and substitute s = ba to obtain the group presentation:

G� = Èa, s|as
k = s

k
a

≠1Í.

Let Ck be the cyclic group of order k, written in additive notation. Define a
morphism

– : G� æ Ck, a ‘æ 0, s ‘æ 1.

We want to compare G� and K = ker(–). To find a presentation of K we use
the Reidemeister-Schreier procedure (see Appendix A.3) with

G = G� = ÈX, RÍ where X = {a, s}, and R = {as
k
as

≠k}.

The set T = {1, s, s
2
, . . . , s

k≠1} gives a Schreier transversal for K in G.
The set of generators for K is Y = {tx(tx)≠1 | t œ T, x œ X, tx ”œ T} where w is
the representative of w in T . Any t œ T can be written as s

i for 0 Æ i Æ k ≠ 1, so:

tx(tx)≠1 = s
i
x(six)≠1 =

Y
]

[
s

i
a(sia)≠1 if x = a

s
i
s(sis)≠1 if x = s

.

As s
i
a ”œ T for all 0 Æ i Æ k ≠ 1 and sia = s

i we get bi = s
i
as

≠i as generators
of K. On the other hand s

i
s ”œ T if and only if i = k ≠ 1 in which case sk≠1s = 1

in T , which gives bk = s
k as a generator of K. To recap, the set

Y = {bi = s
i
as

≠i
, 0 Æ i Æ k ≠ 1, bk = s

k},

gives a set of generators for K.
To get relations for K, rewrite each trt

≠1 for t œ T and r œ R, using generators
in Y . Write any t œ T as s

i for some 0 Æ i Æ k ≠ 1. The only relation in R

is r = as
k
as

≠k. So, for 0 Æ i Æ k ≠ 1 we obtain:

trt
≠1 = s

i(as
k
as

≠k)s≠i = (si
as

≠i)(si
s

k
s

≠i)(si
as

≠i)(si
s

≠k
s

≠i) = bibkbib
≠1
k .

So, S = {bibkbib
≠1
k | 0 Æ i Æ k ≠ 1} gives the set of relations in K. Ultimately,

the presentation for K is given as:

K = ÈY | SÍ = Èb0, b1, . . . , bk≠1, bk | bibkbib
≠1
k = 1, 0 Æ i Æ k ≠ 1Í.
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In this case our group fits into an exact sequence:

1 ≠æ K
i≠æ G�

–≠æ Ck ≠æ 1.

Moreover K ƒ G�Õ is a tRAAG over the graph �Õ given below, so in this case, the
group G� is virtually a tRAAG.

bk

b0

b1

b2

b3

bk≠1

1.2.4 Languages

Definition 1.2.13. Let S be a set, equipped with a binary operation

· : S ◊ S æ S.

The tuple (S, ·) is called a monoid if the following axioms are satisfied:

• (Associativity) For any a, b, c œ S one has:

(a · b) · c = a · (b · c)

• (Identity) There is an element Á œ S, such that for any a œ S the following
equation holds

a · Á = Á · a = a

One particular example of a monoid, that will be very useful to us, is the free monoid
over a set S denoted by S

ú.

Definition 1.2.14. The free monoid on a set S is the monoid S
ú whose elements are all

the finite sequences (or words) of zero or more elements from S, with word concatenation
as the monoid operation, and with the empty word (unique sequence of zero elements)
denoted by Á as the identity element.
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One way to encounter monoids is in the context of formal languages. In that context
one has an alphabet S which can be any set. The elements of an alphabet are called
its letters. In all our work, alphabets are going to be finite sets. Using the elements of
the alphabet, one obtains words, which can be any finite sequence of letters. We will
denote by S

ú the set of all words over an alphabet S.
To any word w one can associate a number ¸(w), the length of the word, which is the
number of letters it is composed of. For any alphabet, there is a unique word of length 0,
the empty word, denoted by Á.
There is also a way to combine two words, by concatenating them, and form a new
word. In this case, the length of the new word is equal to the sum of the lengths of the
original words. The result of concatenating a word with the empty word is the original
word.

Definition 1.2.15. A language L over a finite set S is any subset of S
ú.

In other words, a language L is a set of words over the alphabet S.
For a given language L over S we have the notion of growth. The growth function,
associated to L is defined as:

‡ = ‡L : N æ N; ‡(n) = ˘{w œ L : ¸(w) = n}.

One defines the growth series associated to L as the formal power series

SL(z) =
Œÿ

n=0
‡(n)zn œ Z[[z]].

Definition 1.2.16. A finite state automaton is a 5-tuple M = (Q, S, q0, A, ”), where S

is a finite alphabet, Q is a finite set of states, q0 œ Q is the start state, A ™ Q is the
set of accepting states, and ” : Q ◊ S æ Q is the transition function.

Let w = a1a2 . . . an be a word with letters in S. An automaton M accepts the word w

if there is a sequence of states t0, t1, . . . , tn in Q with
• t0 = q0,
• ti+1 = ”(ti, ai+1) for any 0 Æ i Æ n ≠ 1, and
• tn œ A.

Definition 1.2.17. Let M = (Q, S, q0, A, ”) be a finite state automaton. Denote
by L(M) the set of all words over S accepted by M , and call it the language accepted

by the automaton M.

Definition 1.2.18. A language L is called regular if there is a finite state automaton
accepting it, i.e. L = L(M) for some finite state automaton M .

Automata will be useful for recognizing subgroups of free groups, in Chapter 4 (see
their connections with digraphs as well, in Appendix A.2).
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Remark 1.2.19. Regular languages have rational growth series.

Example 1.2.20. The language L = {(ab)k|k œ N0} is the language of the finite state
automaton M = (Q = {q0, q1, F}, S = {a, b}, q0, A = {q0}, ”), where

”(q0, a) = q1, ”(q1, b) = q0, and for other combinations ”(q, s) = F.

This example serves to portray the graphical description of an automaton, as given
below:

q0start q1

a

b

1.2.5 Growth in groups

Let G be a finitely generated group, and X a finite monoid generating set for G, that
is, there exists a monoid morphism fi : X

ú æ G that is surjective. An element g œ G is
represented by a word w œ X

ú, if fi(w) = g.
One obtains a length function

| · | : G ≠æ N
for the pair (G, X) as well, by defining

|g| = min
wœXú

{¸(w) : fi(w) = g},

where ¸(w) is the length of w as a word in X
ú.

The spherical growth function, associated to (G, X) is defined as:

‡ = ‡(G,X) : N æ N; ‡(n) = ˘{g œ G : |g| = n}.

One defines the standard growth series associated to (G, X) as the formal power series

S(G,X)(z) =
Œÿ

i=0
‡(n)zn œ Z[[z]].

Similarly, one can define the geodesic growth functions and the geodesic growth series.
A word w œ X

ú is a geodesic if ¸(w) = minuœXú{¸(u) : fi(w) = fi(u)}.
The geodesic growth function, associated to (G, X) is defined as:

fl = fl(G, X) : N æ N; fl(n) = ˘{w œ X
n : w geodesic}.

The geodesic growth series associated to (G, X) is the formal power series

G(G,X)(z) =
Œÿ

i=0
˘{w œ X

n : w geodesic}z
n =

Œÿ

i=0
fl(n)zn œ Z[[z]].
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Remark 1.2.21. One can define the spherical growth and the geodesic growth of a
finitely generated group G, with a finite generating set X, in terms of languages. Indeed,
let G be the language of geodesics in G with respect to the generating set X, and E
a language of elements (one can take a unique representative for any element from the
language of geodesics). Then the spherical growth and the geodesic growth of G are
equal to the growth of languages E , G respectively.



Chapter 2

Geodesic growth of some

3-dimensional RACGs

In this chapter we treat the geodesic growth of RAAGs based on link-regular graphs
without tetrahedra. The work is motivated by [1], where the authors compute the
geodesic growth of RAAGs based on link-regular graphs without triangles. The ap-
proach for these computations is combinatorial in nature. Firstly, we give explicit
formulae for the geodesic growth series of a right-angled Coxeter group, and then using
a result on Cayley graphs we can bring similar formulae also to RAAGs.
This chapter is based on the article [3].

2.1 Introduction

Given a simplicial graph � = (V, E), one associates to it the right-angled Coxeter
group C� defined by the following presentation:

C� = ÈV | v
2 = 1 ’v œ V, uv = vu ’ {u, v} œ EÍ.

One calls V the standard generating set of C�. We can also associate to � the right-

angled Artin group A� given by the presentation:

A� = ÈV | uv = vu ’ {u, v} œ EÍ.

One calls V Û V
≠1 the standard generating set of A�.

The languages of geodesics and shortlex representatives of a RACG with respect to its
standard generating sets are regular [6, 9, 28], and thus the corresponding standard
and geodesic growth series are rational functions. Concrete formulae for the standard
growth series of Coxeter groups, proved without the use of automata theory, can be
found in [32, 36]. Recently, it was shown that the growth rates of the geodesic and the

21
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standard growth functions (i.e. lim n
Ô

sn and lim n
Ô

gn) are either 1 or Perron numbers
(see [26]).
Moreover, it is well understood how the geometry of the defining graph reflects on the
standard growth of C� with respect to V : it only depends on the cliques of � of each
size (see [16, Proposition 17.4.2.] or [32, 36]). For example, in the case of RACGs based
on trees, this implies that the growth only depends on the number of vertices and edges
of the tree.
Geodesic growth is still a very mysterious object compared to the standard growth
and it is not clear which properties of the defining graph are reflected into the geodesic
growth function. In [12], Ciobanu and Kolpakov showed that there exist infinitely many
pairs of non-isomorphic RACGs based on trees with the same geodesic growth series
with respect to the standard generators. These examples were based on co-spectral
defining graphs, but then they gave infinitely many pairs of non-isomorphic RACGs
with co-spectral defining graphs and di�erent geodesic growth series with respect to
the standard generating set.
On the other hand, if the defining graph possesses enough symmetry (the graph is link-
regular), then the main theorem of [1] states that the geodesic growth only depends on
the number of cliques of each size and the isomorphism types of the links of the cliques.
A simplicial graph is link-regular, if the number of elements of the link of a clique only
depends on the size of the clique (See Definition 2.2.2).
For example, if � is a totally disconnected graph with n vertices, then it is link regular,
and C� is a free product of cyclic groups of order 2. It is well-known that

G(C�,V )(z) ≠ 1 = nz

1 ≠ (n ≠ 1)z .

Moreover, in [1] it is computed explicitly the geodesic growth series of right-angled
Coxeter groups based on link-regular graphs with n vertices, vertices of degree l, and
without triangles. For such cases, one obtains the following formula for the growth
series.

G(C�,V )(z) ≠ 1 = nz(1 + (2 ≠ l)z)
1 + (≠n ≠ l + 3)z + (≠2n + 2 + nl)z2 .

Note that if l = 0, one recovers the formula for a totally disconnected graph.
In this chapter we continue to explore the geodesic growth of RACGs based on link-
regular graphs. Our main result is to provide an explicit formula for the geodesic
growth, if the graph does not contain 4-cliques.

Theorem 2.1.1. Let � be a link-regular graph with n vertices, l-regular and let q be
the link-number of an edge (which is the same for any edge), and without 4-cliques.
Then,

G(C�,V )(z) ≠ 1 = a(n, l, q, z)
b(n, l, q, z)

where the polynomials a, b are given as:
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a(n, l, q, z) = nz(1 + (5 ≠ l ≠ q)z + (lq ≠ 3l + 6)z2)

b(n, l, q, z) = 1+(6≠n≠l≠q)z+(nl+lq+qn≠5n≠3l≠q+11)z2+(3nl+6≠nlq≠6n)z3

One can check that if one lets q = 0, then one gets the previous formula for triangle-free
link-regular graphs.

2.2 Definitions and notation

Let � be a finite simplicial graph. For a vertex a in �, define the star of a to be the set:

St(a) = {b œ V � | {a, b} œ E�} fi {a}.

Let ‡ ™ V � be such that the vertices of ‡ span a complete subgraph of �, then ‡ is
called a clique. If ‡ is a clique with k-vertices, then we call it a k-clique. Sometimes we
refer to 3-cliques and 4-cliques by triangles and tetrahedra respectively.
The link of a clique ‡, denoted by Lk(‡), is the set of vertices in V � \ ‡ that are
connected with every vertex in ‡. That is,

Lk(‡) = {v œ V � \ ‡ : {v} fi ‡ spans a clique}.

The star of ‡, denoted by St(‡), is the set of vertices in � that are connected with every
vertex in ‡. That is,

St(‡) = {v œ V � : {v} fi ‡ spans a clique}.

These sets satisfy ‡ fi Lk(‡) = St(‡).

Definition 2.2.1. A graph � is called l-regular, if any vertex belongs to exactly l edges.
In other words | Lk(v)| = l for any vertex v in �. We also use the term regular, when
we do not use l.

We use link-regular graphs, defined below, which possess regularity for cliques of higher
sizes as well.

Definition 2.2.2. A graph � is called link-regular if for any clique ‡ œ �, | Lk(‡)|
depends on |‡| and not on ‡ itself, i.e. if ‡1, ‡2 are cliques with |‡1| = |‡2| then
| Lk(‡1)| = | Lk(‡2)|.

In this chapter we will consider graphs which do not contain tetrahedra. As the graph
does not have k-cliques with k Ø 4 it is link-regular if there are numbers l and q such
that the graph is l-regular, and any edge is contained in q triangles.
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Definition 2.2.3. The f -polynomial associated to �, or the clique-polynomial of �, is
the polynomial

f�(z) =
|V |ÿ

n=0
˘{� ™ � : � is an n-clique}z

n
,

and essentially records the number of cliques of each size.

Theorem 2.2.4 (Main theorem of [1]). Let C� be the RACG based on a link-regular
graph �. The geodesic growth of G is fully determined by the f -polynomial of � and
the set of pairs {(|‡|, | Lk(‡)|) : ‡ a clique in �}.

Remark 2.2.5. As noted in [5], there is a relationship between the sizes of cliques and
the coe�cients of the f -polynomial. So one has that the geodesic growth of a RACG
based on a link-regular graph � is fully determined by the f -polynomial of �.

One can use the notion of the double graph to bring results about geodesic growth of
RACGs also to RAAGs.
Let � = (V, E) be a simplicial graph, and �[2] its double. By definition, |V �[2]| = 2|V �|,
and |E�[2]| = 4|E�|. One has also a projection

fl : �[2] ≠æ �,

which identifies naturally the two copies of the vertices of �[2]. The map fl is 2-to-1 on
vertices and 4-to-1 on edges. Moreover, by the construction of �[2] and the definition
of fl, we get | Lk�[2](v)| = 2| Lk�(fl(v))|, i.e. fl is 2-to-1 on links of vertices.

Lemma 2.2.6. If � is link-regular without tetrahedra, then so is �[2].

Proof. We already have | Lk�[2](v)| = 2| Lk�(fl(v))|.
For any edge e = {u, v} in �[2] consider the edge fl(e) in �, and all the triangles
(fl(u), fl(v), c) over it. Triangles over e = {u, v} are (u, v, w) where w œ fl

≠1(c). This
means that | Lk�[2](e)| = 2| Lk�(fl(e))|.
If there was a tetrahedron {x1, x2, x3, x4} in �[2], then {fl(x1), fl(x2), fl(x3), fl(x4)} would
be a tetrahedron in �. Indeed fl(x1), fl(x2), fl(x3), fl(x4) are all di�erent since {x, x

Õ}
cannot be an edge in �[2], and all the edges of the tetrahedron in {x1, x2, x3, x4} induce
edges for a tetrahedron over fl(x1), fl(x2), fl(x3), fl(x4). Since there are no tetrahedra in
�, we conclude that there are no tetrahedra in �[2].

Remark 2.2.7. An important application of the double graph is provided in [20,
Lemma 2]: one has that the Cayley graph of the RAAG based on � is isomorphic
as an undirected graph to the Cayley graph of the RACG based on �[2].

Using the remark above we get the following:

Corollary 2.2.8. Let G = A� be a RAAG based on a link-regular graph �. The
geodesic growth of G is equal to the geodesic growth of C�[2] .
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2.2.1 Geodesics in RACGs

In this section we give characterizations of geodesics in RACGs. Using Theorem 3.9
in [22], and the characterization of a reduced sequence for graph products, we get the
following result for RACGs.
Theorem 2.2.9. Let C� be a right-angled Coxeter group based on � and V = V � the
standard generating set. Let w = s1 . . . sn be a word over V . Then w is not a geodesic
if and only if there are indices 1 Æ i < j Æ n such that si = sj and [si, sk] = 1 for all k

satisfying i < k < j.
Notation 2.2.10. Let C� be a RACG associated to �, with generating set V = V �.
If w œ V

ú is a word, we denote by Ew the set of geodesics ending in w, and by Ew(z)
the generating growth series of Ew. That is

Ew(z) =
Œÿ

n=0
˘(Ew fl V

n)zn
.

Theorem 2.2.11. Let w1, w2 be words over V and x œ V , such that w1w2x is a
geodesic. Assume bx = xb for all letters b in w2, and x does not commute with any
letter a in w1 (so, w1 is not the empty word in particular). Then:

Ew1w2x = Ew1w2x, and also Ew1w2x(z) = Ew1w2(z) · z.

Proof. Obviously, one has the inclusion Ew1w2x ™ Ew1w2x. To show Ew1w2x ´ Ew1w2x,
we take a geodesic word w œ Ew1w2 . We suppose that wx is not geodesic and derive a
contradiction. As w1w2x is geodesic, there exist a shortest su�x of wx, say w0w1w2x
that is not geodesic. Clearly, w0 is non-empty, and we can write it as yu, with y a letter
and u a word (maybe empty). As yuw1w2x is not geodesic, but every proper subword
is, we get by the Theorem 2.2.9 that x = y and x commutes with every letter of u, w1
and w2 which is the desired contradiction.
Notation 2.2.12. Let A, B be two subsets of a finitely generated free monoid V

ú. If
there is a bijection f : A æ B that is length preserving (i.e. ¸(f(a)) = ¸(a) for all
a œ A) we write A © B.
In particular, if A © B then the corresponding growth series A(z) and B(z) are equal.

For example, with Notation 2.2.10, if a, b œ V commute, then Eab © Eba and Eab(z) =
Eba(z).

2.3 Main Theorem

Throughout the rest of the chapter, � will be a link-regular finite simplicial graph (with
n vertices) which does not contain tetrahedra. We denote by l the number of edges
meeting at any vertex, and q the number of triangles containing a fixed edge. Denote
by G the right-angled Coxeter group C� defined by �, with generating set V = V �.
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Notation 2.3.1. We use �� to denote the set of 3-cliques of �. In the main theorem
we use the following notation:

Ev(z) =
ÿ

aœV �
Ea(z), Ee(z) =

ÿ

(a,b)œ(V �)2

{a,b}œE�

Eab(z), E�(z) =
ÿ

(a,b,c)œ(V �)3

{a,b,c}œ��

Eabc(z).

Theorem 2.3.2. Let � be a link-regular graph with n vertices, l-regular and let q be
the link-number of an edge (which is the same for any edge), and without 4-cliques. Let
G be the corresponding right-angled Coxeter group, and G(z) the geodesic growth series
of G with respect to the standard generators. Then, there are polynomials pv, pe, p�
(given below) such that the following relations hold:

Ev(z) = G(z) ≠ 1, (2.1)
Ee(z) = [G(z) ≠ 1](1 ≠ (n ≠ l ≠ 1)z) ≠ nz, (2.2)
E�(z) = [G(z) ≠ 1]p�(z, n, l, q) ≠ nz + n(l ≠ 2q ≠ 2)z2

, (2.3)
ÿ

(a,b,c,d)œ(V �)4
Eabcd(z) = [G(z) ≠ 1] ≠ p4(n, l, z), (2.4)

and
ÿ

(a,b,c,d)œ(V �)4
Eabcd(z) = [n + l + q ≠ 6]z · E�(z)

+ pe(n, l, q)z2 · Ee(z) + pv(n, l, q)z3 · Ev(z). (2.5)

Note than one can find G(z) by substituting the Equations (2.1),(2.2),(2.3) and (2.4)
into (2.5). Moreover, the polynomials pv, pt, p� are given by:

p�(z, n, l, q) = 1 ≠ (n + l ≠ 2q ≠ 3)z + (2(n ≠ l ≠ 1)(l ≠ q ≠ 1) ≠ l(n ≠ 2l + q))z2
,

pe(n, l, q) = n
2 + l

2 ≠ 2q
2 + nl ≠ 2nq ≠ 2lq ≠ 4n ≠ 6l + 10q + 7,

pv(n, l, q) = (n ≠ l ≠ 1)3 + 2l(n ≠ 2l + q)(n ≠ q ≠ 2) + lq(n ≠ 3l + 3q),
p3(n, l, z) = nz + n(n ≠ 1)z2 + [n(n ≠ 1)(n ≠ 2) + n(n ≠ l ≠ 1)]z3

Remark 2.3.3. Note that the Equations (2.1), (2.2) and (2.4) are obtained by sub-
tracting from G(z) the generating growth series of geodesics on those of length at most
0, 1 and 3 respectively.

Note 2.3.4. Theorem 2.3.2 provides a way to calculate G(z) using a system of linear
equations. The coe�cients of the system are polynomials on z (and n, l, q) of degree
at most 3. Theorem 2.1.1 was obtained by solving this linear system of equations with
the help of Sage.
In the following example we calculate G(z) on a particular family. The general case can
be computed similarly.
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Example 2.3.5. Let us compute the geodesic growth of an infinite family �m, defined
inductively by

�0 = ({a, b, c}, {{a, b}, {a, c}, {b, c}}) = triangle,

�m+1 = �[2]
m = the double of �m.

In terms of (n, l, q) we have (n0, l0, q0) = (3, 2, 1), and therefore, by the double construc-
tion:

(nm, lm, qm) = (3 · 2m
, 2 · 2m

, 2m).

Taking 2m = k and substituting 3k, 2k, k on the polynomials of Theorem 2.3.2 for n, l, q

respectively, we find:

p�(z, 3k, 2k, k) = 2(k ≠ 1)2
z

2 ≠ 3(k ≠ 1)z + 1,

pe(3k, 2k, k) = 7(k ≠ 1)2
,

pv(3k, 2k, k) = (k ≠ 1)3
,

p3(3k, 2k, z) = 3kz + 3k(3k ≠ 1)z2 + [3k(3k ≠ 1)(3k ≠ 2) + 3k(k ≠ 1)]z3
.

Now substitute 3k, 2k, k on the other equations of Theorem 2.3.2 for n, l, q respectively.
Use also the polynomials above, and we can find G(z) as a solution of the following
system:

Ev(z) = G(z) ≠ 1, (2.6)
Ee(z) = (G(z) ≠ 1)[1 ≠ (k ≠ 1)z] ≠ 3kz, (2.7)
E�(z) = (G(z) ≠ 1)[2(k ≠ 1)2

z
2 ≠ 3(k ≠ 1)z + 1] ≠ 3kz ≠ 6kz

2
, (2.8)

ÿ

(a,b,c,d)œ(V �)4
Eabcd(z) = 6(k ≠ 1)zE�(z) + [7(k ≠ 1)2]z2Ee(z) + [(k ≠ 1)3]z3Ev(z), (2.9)

G(z) = 1 + p3(3k, 2k, z) +
ÿ

(a,b,c,d)œ(V �)4
Eabcd(z). (2.10)

Finally, solving for G(z), we find:

G(z) = ≠ 6z
3 + (2k

2 ≠ 7k + 11)z2 ≠ 3(k ≠ 2)z + 1
(z(k ≠ 1) ≠ 1)(2z(k ≠ 1) ≠ 1)(3z(k ≠ 1) ≠ 1) ,

which agrees with the formula provided in Theorem 2.1.1, for (n, l, q) = (3k, 2k, k).
Now using Theorem 2.1.1, and Corollary 2.2.8 we get the following:

Corollary 2.3.6. Let � be a graph as in the hypothesis of Theorem 2.1.1. One can
find the geodesic growth series A(z) for the right-angled Artin group based on � with
respect to the generating set V �fiV �≠1 by substituting 2n, 2l, 2q for n, q, l respectively
in the formula of Theorem 2.1.1 and we get:

A(z) ≠ 1 = a(n, l, q, z)
b(n, l, q, z)
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where the polynomials a, b are given as:

a(n, l, q, z) = 2nz[1 + (5 ≠ 2l ≠ 2q)z + (4lq ≠ 6l + 6)z2)]
b(n, l, q, z) = 1 + (6 ≠ 2n ≠ 2l ≠ 2q)z + (4nl + 4lq + 4qn ≠ 10n ≠ 6l ≠ 2q + 11)z2

+ (12nl + 6 ≠ 8nlq ≠ 12n)z3

2.4 Proof of the main theorem

Throughout this section � is a link-regular graph without tetrahedra. The graph � has
n vertices, the link of each vertex has l vertices, and the link of each edge has q vertices.
Let G = C� be the associated RACG.
Note that there is 1 geodesic word of length 0, n geodesic words of length 1, n(n ≠ 1)
geodesics of length 2. A word of length 3 is geodesic in G if all its 3 letters are di�erent
or if it is of the form aba with b /œ St(a). Thus there are n(n ≠ 1)(n ≠ 2) + n(n ≠ l ≠ 1)
geodesic words of length 3.
With Notation 2.2.10, one can write the geodesic growth series G(z) in any of the
following forms:

G(z) = 1 +
ÿ

aœV �
Ea(z), (2.11)

G(z) = 1 + nz +
ÿ

(a,b)œ(V �)2
Eab(z), (2.12)

G(z) = 1 + nz + n(n ≠ 1)z2 +
ÿ

(a,b,c)œ(V �)3
Eabc(z), (2.13)

G(z) = 1 + nz + n(n ≠ 1)z2 + [n(n ≠ 1)(n ≠ 2) + n(n ≠ l ≠ 1)]z3

+
ÿ

(a,b,c,d)œ(V �)4
Eabcd(z). (2.14)

We get (2.1) and (2.4) of Theorem 2.3.2 from Equations (2.11) and (2.14), respectively.
We derive Equation (2.2) of Theorem 2.3.2 from (2.12) by expanding q

(a,b)œ(V �)2 Eab(z).
Given a word ab œ V

ú, we distinguish three cases: a = b, b œ Lk(a) and when b /œ St(a).
We can describe these cases geometrically as in the Figure 2.1 (omitting the case a = b).

a b

(I)

a b

(II)

Figure 2.1: Configurations of 2 generators.

The case a = b is impossible, since no geodesic ends with aa. In the case when b ”œ St(a)
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we can write Eab = Ea · b. Hence Eab(z) = Ea(z) · z and we have n ≠ l ≠ 1 choices for b.
ÿ

(a,b)œ(V �)2
Eab(z) =

ÿ

aœV �

Q

a
ÿ

bœLk(a)
Eab(z) +

ÿ

b”œSt(a)
Eab(z)

R

b

=
ÿ

aœV �

Q

a
ÿ

bœLk(a)
Eab(z)

R

b +
ÿ

aœV �
(n ≠ l ≠ 1)zEa(z)

= Ee(z) + (n ≠ l ≠ 1)zEv(z). (2.15)
So, from (2.12), (2.11), and (2.15) we get:

Ee(z) = (1 ≠ (n ≠ l ≠ 1)z)[G(z) ≠ 1] ≠ nz

which appears in the main theorem as the Equation (2.2).
We can work similarly to get (2.3) of the main theorem from the Equation (2.13).
Consider the word w = abc. Since we will consider the geodesics that end in w, one
needs w itself to be a geodesic, and this implies that a ”= b and b ”= c. The generators
of the geodesic abc, lie in one of the following disjoint cases:

(I) {a, b} ™ St(c)

(I.1) a œ Lk(b)
(I.2) a ”œ Lk(b)

(II) {a, b} ”™ St(c)

(II.1) a œ Lk(b)
(II.2) a ”œ Lk(b)

We can express these cases using the configurations of generators as in Figure 2.2. In
the first three cases, the generators a, b, c are all distinct, as explained in the respective
cases. The generators in cases (I.1), and (I.2) appear in the defining graph � exactly
as they appear in Figure 2.2. In the case (II.2) one can have a = c thought, and the
way that a, b, c appear in the defining graph �, in cases (II.1) and (II.2), depends on a
subcase study.

a

bc
(I.1)

a

bc
(I.2)

a

bc
(II.1)

a

bc
(II.2)

Figure 2.2: Configurations of 3 generators when a ”= b ”= c. Dashed edges might or
might not appear in the configuration. Two vertices connected by a dashed edge might
be the same vertex in � (e.g. a = c in (II.2)). No two dashed edges can be edges of the
configuration simultaneously.

We can express q
(a,b,c)œ(V �)3 Eabc(z) as a sum over the 4 disjoint subcases given above.

For convenience, we will write q
X , where X is a case, to denote the summation over

all triples (a, b, c) œ (V �)3 satisfying the hypothesis of case X.
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In (I.1) we also have a ”= c, because otherwise we would get abc = aba = a
2
b which

would not be a geodesic. So, in this case the generators a, b, c form a triangle and we
get q

(I.1) Eabc(z) = E�(z).
In (I.2) one gets a ”= c as well, as a = c would imply {a, b} ™ St(a) and hence
a œ St(b) which cannot happen since a ”= b and a ”œ Lk(b). By Theorem 2.2.11 we have
Eabc © Eacb = Eac · b. Now we get Eabc(z) = Eacb(z) = Eac(z) · z, for a fixed b. Starting
by fixing the edge e = {a, c} we get l ≠ 1 ≠ q choices for b, so in this case we have

ÿ

(I.2)
Eabc(z) =

ÿ

aœV

ÿ

cœLk(a)

ÿ

bœLk(c)
b/œLk(a)

Eabc(z)

=
ÿ

aœV

ÿ

cœLk(a)
(l ≠ 1 ≠ q)zEac(z) = (l ≠ 1 ≠ q)zEe(z). (2.16)

In (II.1) once again a ”= c, as a = c would imply {a, b} ”™ St(a) and hence a ”œ St(b)
which cannot happen since a œ Lk(b). We count by first fixing the edge {a, b}, and then
letting c be any vertex di�erent to a and b that does not form a triangle with {a, b}.
One has n≠2≠q choices for c. As both of {a, c}, {b, c} cannot be edges, using Theorem
2.2.11 and considering all the subcases, we get the formula Eabc = Eab · c. Now, arguing
as in (I.2) we get ÿ

(II.1)
Eabc(z) = (n ≠ q ≠ 2)zEe(z).

In (II.2) we count by first fixing the vertex a and then considering the choices when
c = a, c œ Lk(a), and c ”œ St(a). In this case, b /œ St(a) fi {c} and moreover, when
c œ Lk(a) then b is not linked to c.
For c = a we have (n ≠ l ≠ 1) possible choices for b; for c œ Lk(a) we have l · (n ≠ 2l + q)
possible choices for c, b; finally for c /œ St(a) we get (n≠ l ≠1)(n≠ l ≠2) possible choices
for c, b. Using Theorem 2.2.11 we get the formula Eabc = Eab · c = Ea · b · c = Ea · bc, so

ÿ

(II.2)
Eabc(z) =

ÿ

aœV

Q

ccca
ÿ

c=a

ÿ

b/œLk(a)
Eabc(z) +

ÿ

cœLk(a)

ÿ

b/œLk(a)
b/œLk(c)

Eabc(z) +
ÿ

c/œSt(a)

ÿ

b/œLk(a)
b”=c

Eabc(z)

R

dddb

Considering the possibilities, that we found above, for our vertices, this is equal to:
ÿ

aœV

1
(n ≠ l ≠ 1)z2

Ea(z) + l(n ≠ 2l + q)z2
Ea(z) + (n ≠ l ≠ 1)(n ≠ l ≠ 2)z2

Ea(z)
2

.

Putting the parts together, we get the formula:
ÿ

(II.2)
Eabc(z) = [(n ≠ l ≠ 1)2 + l(n ≠ 2l + q)]z2Ev(z)
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Now summing everything up we get:

ÿ

(a,b,c)œ(V �)3
Eabc(z) = E�(z) + (n + l ≠ 2q ≠ 3)zEe(z)

+ [(n ≠ l ≠ 1)2 + l(n ≠ 2l + q)]z2Ev(z) (2.17)

Substituting (2.1),(2.2),(2.13) into (2.17), we get

G(z) ≠ (1 + nz + n(n ≠ 1)z2) = E�(z)
+ z · (n + l ≠ 2q ≠ 3) ((1 ≠ (n ≠ l ≠ 1)z)[G(z) ≠ 1] ≠ nz)
+ z

2 · [(n ≠ l ≠ 1)2 + l(n ≠ 2l + q)](G(z) ≠ 1)

And one gets a formula for E�(z):

E�(z) = (G(z) ≠ 1)[1 ≠ (n + l ≠ 2q ≠ 3)z + (2(n ≠ l ≠ 1)(l ≠ q ≠ 1) ≠ l(n ≠ 2l + q))z2]
≠ nz + n(l ≠ 2q ≠ 2)z2

which appears in the main theorem as Equation (2.3).
To finish the proof, we need to show that (2.5) holds. As in the previous cases, we
proceed to rewrite q

(a,b,c,d)œ(V �)4 Eabcd(z) depending on di�erent cases for the word
abcd. Since we consider the geodesics that end in abcd, we want abcd to be a geodesic
itself, and this implies that a ”= b, b ”= c, and c ”= d.
We distinguish the following disjoint cases:

(I) {a, b, c} ™ St(d)

(I.1) {a, b} ™ St(c)
(I.1.1) a œ Lk(b)
(I.1.2) a ”œ Lk(b)

(I.2) {a, b} ”™ St(c)
(I.2.1) a œ Lk(b)
(I.2.2) a ”œ Lk(b)

(II) {a, b, c} ”™ St(d)

(II.1) {a, b} ™ St(c)
(II.1.1) a œ Lk(b)
(II.1.2) a ”œ Lk(b)

(II.2) {a, b} ”™ St(c)
(II.2.1) a œ Lk(b)
(II.2.2) a ”œ Lk(b)

We can express them geometrically as configurations of 4 points in Figure 2.3. Each
individual figure will be considered in detail, as most of them represent a family of
subcases, and not necessarily an actual configuration of 4 generators in �.
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a

bd

c

(I.1.1)

a

bd

c

(I.1.2)

a

bd

c

(I.2.1)

a

bd

c

(I.2.2)

a

bd

c

(II.1.1)

a

bd

c

(II.1.2)

a

bd

c

(II.2.1)

a

bd

c

(II.2.2)

Figure 2.3: Configurations of 4 generators with a ”= b ”= c ”= d. Dashed edges represent
pairs of vertices that might or might not be in the star of each other (including the
possibility of being equal). In cases (I.2) at least one dashed edge is not an edge in �
(i.e. the vertices are di�erent and do not commute). In cases (II) at least one of the
dashed edges incident to d is not an edge in �. Moreover, in cases (II.2), at least one
of a or b does not form an edge with c.

As above, we will write q
X , where X is one of the cases above, to denote the summation

over all quadruples (a, b, c, d) œ (V �)4 satisfying the hypothesis of case X.
In (I.1.1) any two of the vertices a, b, c, d would commute, so they would have to be
pairwise distinct and hence form a tetrahedron; however in � there are no 4-cliques, so
we get q

(I.1.1) Eabcd(z) = 0.

In (I.1.2), except the pair (a, b) any two other pairs of vertices among a, b, c, d commute,
so all of them have to be pairwise distinct, as otherwise abcd would not be a geodesic.
Fixing the triangle {a, c, d}, we have q ≠ 1 choices for b. Also, for a, b, c, d in this case,
Eabcd © Eacdb = Eacd · b (by Theorem 2.2.11, as b does not commute with a), hence
Eabcd(z) = Eacd(z) · z. Therefore

ÿ

(I.1.2)
Eabcd(z) = (q ≠ 1)zE�(z).

In (I.2.1), the vertex d commutes with any of the letters of the word abcd so it should
be distinct from any of a, b, c. The only equal pair could be (a, c); but a = c implies
{a, b} ”™ St(a) which contradicts the assumption a œ Lk(b). So, once again all the
vertices are pairwise distinct. Fixing the triangle {a, b, d}, we have l ≠ 2 choices for c.
Also, for a, b, c, d in this case, we have Eabcd © Eabdc = Eabd · c, as c does not commute
with at least one of a, b. So, Eabcd(z) = Eabd(z) · z, and now we get

ÿ

(I.2.1)
Eabcd(z) = (l ≠ 2)zE�(z).
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In (I.2.2), as in (I.2.1), the vertex d commutes with any of the letters of the word abcd

so it should be distinct from any of a, b, c. Except the pair (a, c), which could be equal,
any other two vertices among a, b, c, d are di�erent. So {a, d} forms an edge and we start
by fixing it. As, b, c œ Lk(d), and as both b and c do not commute with at least one of
a, d we have Eabcd © Eadbc = Eadb · c = Ead · b · c. Now one gets Eabcd(z) = Ead(z) · z

2.
We need to count the possibilities for b and c; consider the following disjoint subcases
for c:

(1) c = a : Here we have l ≠ 1 ≠ q choices for b.

(2) c œ Lk(a) : Here we have q choices for c. Note that as {a, b} ”™ St(c), we get that
b /œ St(c). Therefore, b is the link of d but b is not in the link of the edge {a, d}
and neither in the link of the edge {c, d}. Note that the Lk({a, d}) fl Lk({c, d}) is
empty, as if not, � will contain a tetrahedron. Therefore, there are l ≠ 2q choices
for b in this subcase.

(3) c ”œ St(a) : we have l ≠ 1 ≠ q choices for c and l ≠ 2 ≠ q choices for b, since on top
we have that b ”= c, as there is no geodesic of the form accd.

At the end one gets

ÿ

(I.2.2)
Eabcd(z) =

ÿ

aœV

ÿ

dœLk(a)

Q

a
ÿ

c=a

Eabcd(z) +
ÿ

cœLk(a)
Eabcd(z) +

ÿ

c/œSt(a)
Eabcd(z)

R

b

which is equal to the sum:
ÿ

aœV

ÿ

dœLk(a)

1
(l ≠ 1 ≠ q)z2

Ead(z) + q(l ≠ 2q)z2
Ead(z) + (l ≠ 1 ≠ q)(l ≠ 2 ≠ q)z2

Ead(z)
2

and as a final expression we get:
ÿ

(I.2.2)
Eabcd(z) = [(l ≠ 1 ≠ q)2 + q(l ≠ 2q)]z2Ee(z).

We now consider the case (II).
In (II.1.1), all the vertices should be distinct, indeed, any pair among a, b, c commute,
so a ”= c, and any of them is distinct from d as one can permute the letters of the
subword abc in abcd. We count by fixing the triangle abc. We have Eabcd = Eabc · d, as
d does not commute with at least one of a, b, c. One gets also Eabcd(z) = Eabc(z) · z.
Since � does not have tetrahedra, there is no condition on d except that d ”œ {a, b, c}.
We have n ≠ 3 choices for d, so we get

ÿ

(II.1.1)
Eabcd(z) = (n ≠ 3)zE�(z).



34 2.4. PROOF OF THE MAIN THEOREM

In (II.1.2), a, b, c are distinct as for a = c the get a œ Lk(b). As abc = acb, the only equal
pair could be (a, d), which will be discussed below. Here we count by first fixing the
edge {a, c} and then considering the di�erent cases for d: d œ {a, c}, d œ Lk({a, c}) or
d /œ St({a, c}). As c commutes with b, b does not commute with at least one of a, c, and
d does not commute with at least one of a, c, b, we have Eabcd © Eacbd = Eacb ·d = Eac ·bd.
Hence, also Eabcd(z) = Eac(z) · z

2. We now count the choices for b, d:

(1) d œ {a, c}: The case d = c is impossible. The case d = a, we have that b œ
Lk(c) \ St(a), and this gives l ≠ 1 ≠ q choices for b.

(2) d œ Lk({a, c}) : there are q choices for d. In this case we have that b œ Lk(c).
Since {a, b, c} ”™ St(d) and d œ Lk({a, c}), we get b /œ Lk(d). Also from the
hypothesis, we get b /œ Lk(a). Therefore b is in Lk(c) \ (Lk({a, d}) fi Lk({c, d})).
Note that the links of two edges in a triangle are disjoint as � has no tetrahedra.
Thus, there are l ≠ 2q choices for b.

(3) d ”œ St({a, c}) : We subdivide this case into two subcases:

(3.1) d œ St(c) : In this case, d is in St(c)\St({a, c}) and there are (l+1)≠(q+2) =
l ≠ q ≠ 1 possibilities for d.
Note that in this case b ”= d since otherwise abcd is not geodesic. Thus we
have that b is in St(c) \ (St({a, c}) fi {d}), and we have l ≠ 2 ≠ q possibilities
for b.

(3.2) d ”œ St(c) : As d œ V \ St(c), we have n ≠ l ≠ 1 choices for d. As b œ
St(c) \ St({a, c}), we have l ≠ 1 ≠ q choices for b.

Ultimately, we get

ÿ

(II.1.2)
Eabcd(z) =

ÿ

aœV

ÿ

cœLk(a)

Q

a
ÿ

dœ{a,c}
Eabcd(z) +

ÿ

dœLk({a,c})
Eabcd(z) +

ÿ

d/œSt({a,c})
Eabcd(z)

R

b

which is equal to the sum:
ÿ

aœV

ÿ

cœLk(a)

Ë
1 · (l ≠ 1 ≠ q)z2

Eac(z) + q(l ≠ 2q)z2
Eac(z) + (l ≠ q ≠ 1)(n ≠ q ≠ 3)z2

Eac(z)
È

and this gives us:
ÿ

(II.1.2)
Eabcd(z) = [(l ≠ 1 ≠ q)(n ≠ q ≠ 2) + q(l ≠ 2q)]z2Ee(z).

In (II.2.1), we start by fixing the edge {a, b} and then considering the di�erent cases
for d: d œ {a, b}, d œ Lk({a, b}) or d /œ St({a, b}). The vertices a, b, c are all di�erent,
as abc = bac. Since {a, b, c} ”™ St(d) we get Eabcd = Eabc · d. Moreover, {a, b} ”™ St(c),
so Eabc = Eab · c. Putting these together, we get Eabcd = Eab · cd, and hence Eabcd(z) =
Eab(z) · z

2. We count the choices for c and d.
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(1) d œ {a, b}: If d = a, we have {a, b} ™ St(d) as a œ Lk(b). Since {a, b, c} ”™ St(d)
we get c ”œ St(d). Thus c can be any vertex outside of St(d), which means n≠ l≠1
choices for c. If d = b, the discussion is analogous and we can take for c any vertex
outside St(b) = St(d) and we have n ≠ l ≠ 1 choices for c yet again.

(2) d œ Lk({a, b}) : Here we have q choices for d. Since {a, b, c} ”™ St(d), c can not be
in Lk(d). Since {a, b} ”™ St(c), c is not in Lk({a, b}). Since a, b, d form a triangle,
and we do not have tetrahedra, these two links are disjoint. There are n ≠ q ≠ l

choices for c.

(3) d ”œ St({a, b}) : Here both c and d are not in St({a, b}) and moreover c ”= d to
have abcd a geodesic. We have d œ V \ St({a, b}) that gives n ≠ q ≠ 2 choices for
d and we have c œ V \ (St({a, b}) fi {d}) that gives n ≠ q ≠ 3 for c.

Ultimately, we get
ÿ

(II.2.1)
Eabcd(z) = [2(n ≠ l ≠ 1) + q(n ≠ q ≠ l) + (n ≠ q ≠ 2)(n ≠ q ≠ 3)]z2Ee(z).

In (II.2.2), we first fix a and then we consider di�erent cases for d: d = a, d œ Lk(a) or
d ”œ St(a). Note that since {a, b, c} ”™ St(d) we have: Eabcd = Eabc · d. Similarly since
{a, b} ”™ St(c) we have Eabc = Eab ·c, and ultimately, since a ”œ Lk(b) we get Eab = Ea ·b.
Putting everything together we get Eabcd = Ea · bcd and hence Eabcd(z) = Ea(z) · z

3.
We count the choices for b, c, d.

(1) d = a : Here we have 1 choice for d. We split this case into the following disjoint
subcases:

(1.1) c = a: this is impossible, since abaa is not a geodesic.
(1.2) c œ Lk(a) : Here we have l choices for c. Since {a, b, c} ”™ St(d), d = a and

c œ Lk(a) = Lk(d), we have b ”œ St(a) = St(d). Further, since {a, b} ”™ St(c)
and a œ Lk(c) it must be that b ”œ Lk(c). In this case, b can be any vertex of
V \ (St(a)fiSt(c)). As | St(a)flSt(c)| = q +2, we have n≠2(l +1)+(q +2) =
n ≠ 2l + q possibilities for b.

(1.3) c ”œ St(a) : Here b ”œ St(a) fi {c}. So we have n ≠ l ≠ 1 choices for c, and
n ≠ l ≠ 2 for b.

Accounting for (1.1), (1.2) and (1.3), for a given vertex a œ V we have
ÿ

c,b,dœ(II.2.2)
d=a

Eabcd(z) = [l(n ≠ 2l + q) + (n ≠ l ≠ 1)(n ≠ l ≠ 2)]z3
Ea(z)

(2) d œ Lk(a) : Here we have l choices for d. We divide now the analysis into the
following disjoint subcases:
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(2.1) c œ {a, d}: The case c = d is impossible. In the case c = a, we have one choice
for c and b can be any vertex of V \(St(a)fiSt(d)). As | St(a)flSt(d)| = q+2,
we have n ≠ 2l + q possibilities for b.

(2.2) c œ Lk({a, d}) : which gives us q choices for c. We have a triangle {a, c, d} in
� and by hypothesis of case (II.2.2), b /œ St(a)fiSt(c)fiSt(d) = Lk(a)fiLk(c)fi
Lk(d). We have that Lk(x)flLk(y) has q elements, for x ”= y, x, y œ {a, c, d}.
As � has no tetrahedra, Lk({a, b, c}) = Lk(a)flLk(c)flLk(d) is empty. Using
the inclusion-exclusion principle, we have n ≠ 3l + 3q choices for b.

(2.3) c ”œ St({a, d}) : we subdivide this case into the following disjoint subcases:
(2.3.1) c = a: This is impossible since c ”œ St({a, d}).
(2.3.2) c œ Lk(a): In this case, necessarily, c ”œ St(d). Here we get l ≠ 1 ≠ q

choices for c. Also b /œ Lk(a) fi Lk(c) and we have n ≠ 2l + q choices for
b.

(2.3.3) c /œ St(a) : We do now again, three subcases:
(2.3.3.1) c = d: This is impossible since c ”œ St({a, d}).
(2.3.3.2) c œ Lk(d): In this case c œ Lk(d) \ St(a) here we get l ≠ 1 ≠ q choices

for c. Also b /œ Lk(a) fi Lk(d) and we have n ≠ 2l + q choices for b.
(2.3.3.3) c /œ St(d) : Here one has |V \ (St(a) fi St(d))| = n ≠ 2l + q choices for

c. Note that since a, d span an edge and b is not star of a in (II.2.2)
we have that b can not be equal to d neither to a. We subdivide this
case into the following disjoint subcases:

(2.3.3.3.1) b = d: impossible.
(2.3.3.3.2) b œ Lk(d): then b œ Lk(d) \ St(a) and we have l ≠ 1 ≠ q choices

for b.
(2.3.3.3.3) b ”œ St(d) : here b ”= c to get a geodesic, and b /œ St(a) fi St(d). We

have n ≠ 2l + q ≠ 1 choices for b.

Accounting for (2.1), (2.2) and (2.3), for a given vertex a œ V we have
ÿ

c,b,dœ(II.2.2)
dœLk(a)

Eabcd(z) = [lq(n ≠ 3l + 3q) + l(n ≠ 2l + q)(n + l ≠ 2q ≠ 3)]z3
Ea(z).

(3) d ”œ St(a):

(3.1) b = d: here we have n ≠ 1 ≠ l choices for d, 1 choice for b. As abcb is a
geodesic, c does not belong to St(b), and we have n ≠ l ≠ 1 choices for c.

(3.2) b ”= d: here we split into these following disjoint cases:
(3.2.1) c = a: here we get 1 choice for c. Since {a, b} ”™ St(c) and c = a we get

b ”œ St(a). One has that b, d are any pair of di�erent vertices of V \St(a),
and they are distinct, thus we have (n ≠ l ≠ 1)(n ≠ l ≠ 2) possibilities for
b and d.
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(3.2.2) c œ Lk(a): here we get l choices for c. The hypothesis of case II.2,
{a, b} ”™ St(c) implies that b ”œ St(c). We consider the following disjoint
subcases:

(3.2.2.1) d = c: which is impossible since abcd is geodesic.
(3.2.2.2) d œ Lk(c): here get | Lk(c)\St(a)| = l ≠1≠ q choices for d. We have

|V \ (St(a) fi St(c))| = n ≠ 2l + q for b.
(3.2.2.3) d ”œ St(c): we get |V \ (St(a) fi St(c))| = n ≠ 2l + q choices for d and

|V \ (St(a) fi St(c) fi {d})| = n ≠ 2l + q ≠ 1 choices for b.
(3.2.3) c ”œ St(a): here for b, c, d we get (n ≠ l ≠ 1)(n ≠ l ≠ 2)(n ≠ l ≠ 3) choices

as b, c, d can be any vertex outside of St(a), b ”= c, c ”= d because abcd is
geodesic, and b ”= d by hypothesis.

Accounting for (3.1) and (3.2), we get
ÿ

c,b,dœ(II.2.2)
d”œSt(a)

Eabcd(z) = [(n≠1≠l)2+(n≠l≠1)(n≠l≠2)2+l(n≠2l+q)(n≠l≠2)]z3
Ea(z)

Ultimately, in case (II.2.2), we get
ÿ

(II.2.2)
Eabcd(z) = [(n ≠ l ≠ 1)3 + 2l(n ≠ 2l + q)(n ≠ q ≠ 2) + lq(n ≠ 3l + 3q)]z3Ev(z).

We finally collect all these cases together, and we conclude that
ÿ

(a,b,c,d)œ(V �)4
Eabcd(z)

is equal to:

(q ≠ 1)zE�(z)
+ (l ≠ 2)zE�(z)
+ [(l ≠ 1 ≠ q)2 + q(l ≠ 2q)]z2Ee(z)
+ (n ≠ 3)zE�(z)
+ [(l ≠ 1 ≠ q)(n ≠ q ≠ 2) + q(l ≠ 2q)]z2Ee(z)
+ [2(n ≠ l ≠ 1) + q(n ≠ q ≠ l) + (n ≠ q ≠ 2)(n ≠ q ≠ 3)]z2Ee(z)
+ [(n ≠ l ≠ 1)3 + 2l(n ≠ 2l + q)(n ≠ q ≠ 2) + lq(n ≠ 3l + 3q)]z3Ev(z)

After grouping similar expressions we can express q
(a,b,c,d)œ(V �)4 Eabcd(z) as:

(n + q + l ≠ 6)z
ÿ

�œ��
E�(z)

+ (l2 + ln + n
2 ≠ 2lq ≠ 2nq ≠ 2q

2 ≠ 6l ≠ 4n + 10q + 7)z2Ee(z)
+ [(n ≠ l ≠ 1)3 + 2l(n ≠ 2l + q)(n ≠ q ≠ 2) + lq(n ≠ 3l + 3q)]z3Ev(z)

Now, summing everything up, we get Equation (2.5) of the main theorem, and ulti-
mately the proof of the theorem.



Chapter 3

Twisted RAAGs

The goal of this chapter is to describe a normal form for elements in a twisted right-
angled Artin group. Using the normal form, we will conclude that a tRAAG has
the same spherical and geodesic growth as the corresponding RAAG based on the
underlying näıve graph, and in the case of spherical growth one gets the same formulas
as in [5]. Moreover we will discuss some algebraic properties that point out di�erences
and similarities with RAAGs.

3.1 Introduction

The topic of this chapter are twisted right-angled Artin groups (tRAAGs shortly). One
defines them using a mixed graph (see Definition 1.2.6), which is a simplicial graph as
in the case of RAAGs, however some edges can be directed edges, as presented in the
following example (see also Example 3.1.3 for other mixed graphs).

Example 3.1.1. Consider the graph consisting of only one directed edge, as below:

� = a b

To this graph we associate a group G� by defining its presentation as:

G� = Èa, b|abab
≠1 = 1Í,

i.e. its generators are the vertices of the graph, while the relations can be read from
the edges. In this case we have only one edge, so we have only one corresponding
relation abab

≠1 = 1. In this case the group G� is the fundamental group K of the Klein
bottle, and for this reason we will call the relation abab

≠1 = 1, the Klein relation.

38
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Let � = (V, E) be a mixed graph as in Definition 1.2.6 of Chapter 1. We give a
presentation for the corresponding tRAAG, denoted by G�. The set of vertices V is
going to serve as the generating set for G�. Now we define the relations using the edges.
Recall that:

E = E� Û
≠æ
E�,

where E� is the set of undirected edges, and
≠æ
E� is the set of directed edges.

If e = {a, b} is an edge in E which belongs to E� we denote it by [a, b], and if it belongs
to

≠æ
E� we denote it by [a, bÍ where a the origin and b the terminus of e. These two types

of edges are represented in the figure below by cases (i) and (ii) respectively.

a b a b

(i) (ii)

We want graph (i) to represent the commutation of a, b, and graph (ii) to represent the
Klein relation. Therefore, we fix the following notation:

(i) [a, b] = aba
≠1

b
≠1, and

(ii) [a, bÍ = abab
≠1

.

Definition 3.1.2. Let � = (V, E) be a mixed graph. Define a group G�, corresponding
to � as

G� = Èv œ V |[a, b] = 1 if [a, b] œ E� , [a, bÍ = 1 if [a, bÍ œ
≠æ
E� Í.

We call G� the twisted right-angled Artin group based on �. And we call �, the defining

graph for G�.

Example 3.1.3 (see [8]). Consider the graphs �1 and �2 as drawn below:

�1 =
a b c

, and �2 =
x y z

Associated to each �i we get a tRAAG, denoted by Gi = G�i , and presented as:

G1 = Èa, b, c | ab = ba, bc = cb
≠1Í,

G2 = Èx, y, z | yx = xy
≠1

, yz = zy
≠1Í.

Consider the map f : G1 æ G2 defined by f(a) = xz
≠1

, f(b) = y, f(c) = z. Then f is a
well-defined morphism of groups because

f(aba
≠1

b
≠1) = (xz

≠1)y(xz
≠1)≠1

y
≠1 = xz

≠1
yzx

≠1
y

≠1

= x(z≠1
yz)x≠1

y
≠1 use yz = zy

≠1

= xy
≠1

x
≠1

y
≠1 use yx = xy

≠1

= 1
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and similarly f(bcbc
≠1) = yzyz

≠1 = 1. In a similar fashion we conclude that the map
g : G2 æ G1 defined by g(x) = ac, f(y) = b, f(z) = c is a well-defined morphism of
groups. Moreover g ¶ f = 1G1 , and f ¶ g = 1G2 which means that G1 ƒ G2.

Remark 3.1.4. The example provided above shows that we can have isomorphic
tRAAGs based on non-isomorphic twisted graphs.

Definition 3.1.5. Let � be a mixed graph and G� the tRAAG over �. Denote by � the
underlying näıve graph of �, and by G� the RAAG over �. We call G�, the underlying

RAAG corresponding to G�.

Remark 3.1.6. The correspondence provided above seems quite natural, as a lot of
geometric properties of G�, agree with the corresponding properties of G�.

Notation 3.1.7. When we talk about languages, words, and growth in tRAAGs, we
will use S = V ÛV

≠1 as our alphabet (or preferred monoid generating set in the context
of groups), where V will always denote the vertex set of the defining graph �.

3.2 Abelianization on tRAAGs

In this part we will characterize the abelianization of tRAAGs. In some cases this
provides a way to distinguish two tRAAGs up to isomorphism.

Definition 3.2.1. Let G be a group.
(i) The commutator subgroup [G, G] is the subgroup of G generated by all commut-

ators, which are the elements of the form [x, y] = xyx
≠1

y
≠1, for x, y in G.

(ii) The abelianization of G is the quotient of the group G by its commutator subgroup
and we denote it by G

ab. Shortly, G
ab = G/[G, G].

In the case of RAAGs the abelianization depends only on the number of vertices on
the graph. Indeed, let � be a graph with |�| = n, and A the RAAG based on �.
Then A

ab = Zn
.

In the case of tRAAGs the situation is a bit di�erent, and it depends on the direction
of the edges as well. To get a better grasp at the situation let us discuss first the notion
of indicabilily.

Definition 3.2.2. A group G is called indicable if G is trivial or if there is a surjective
homomorphism Ï : G ≠æ Z.

RAAGs are indicable. An example of a surjective homomorphism Ï : G ≠æ Z would
be defining Ï(v) = 1 for any generator v œ V �. On the other hand, tRAAGs are not
always indicable. And the following result gives a characterization.

Theorem 3.2.3. A non-trivial tRAAG is indicable if and only if there is a vertex v

which is not the origin of any directed edge.
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Proof. If such v exists, we can define a map from G to Z by sending v to 1 and all the
other vertices to 0. This map respects the relations on all the generators, and therefore
induces a surjective homomorphism. So the group is indicable.
On the other hand, by contradiction, assume that any vertex of our graph is the origin
of at least one directed edge. Assume that there is a morphism Ï : G ≠æ Z. Pick any
vertex a in �, then by assumption there is an oriented edge e = [a, bÍ for some b. The
relation coming from edge e is: aba = b, and this implies 2Ï(a) = 0. This means that Ï

is trivial, as all generators are mapped to 0. In this case the group is not indicable.

Now we go back to the abelianization of tRAAGs. Let � be a directed graph, and G

the tRAAG based on �. Then G
ab can be computed by adding the relations xy = yx

to the presentation of G for all x, y œ V �. If [a, bÍ is a directed edge, we have the
relation abab

≠1 = 1. Since the relation aba
≠1

b
≠1 = 1 is added to the presentation as

well, we get a
2 = 1. This holds for any vertex a when it is the origin of a directed edge.

If we denote by Vo the set of vertices that are the origin of a directed edge, then

G
ab = Z|V �≠Vo| ◊ Z|Vo|

2 .

Since isomorphic groups have isomorphic abelianizations we have the following corollary.

Corollary 3.2.4. Let �1 and �2 be two mixed graphs. If
• |V �1| ”= |V �2|, or
• �1 and �2 have di�erent numbers of vertices which are the origin of a directed

edge,
then the tRAAGs G�1 and G�2 are not isomorphic.

3.3 Overview of graph products

Here we give an overview of graph products, and a normal form for their elements as
appearing in [22]. This will serve as a motivation for the corresponding normal form in
tRAAGs.

Definition 3.3.1. Let � = (V, E) be a simplicial graph, and let Gv be groups, indexed
by v œ V . Define G� by the presentation:

G� := ÈGv, v œ V

--- [Gu, Gv] = 1, ’{u, v} œ EÍ.

Call G� the graph product of groups (Gv)vœV based on the graph �. One refers to the
groups Gv (for v œ V ) as generating groups of G�, and to the graph � as the underlying

graph.

Notation 3.3.2. When representing geometrically the underlying graph � from Defin-
ition 3.3.1, we make the following conventions:
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1. we label its vertex v, by the group Gv, for all v œ V ,
2. if Gv = Z = ÈgÍ for some v œ V , we can label the vertex v by the corresponding

generator g.

Example 3.3.3. Consider the graph � = (V, E) with

V = {1, 2, 3, 4}, E = {{1, 2}, {2, 3}}.

and let G1, G2, G3, G4 be groups. Geometrically we draw � as in case (i) of Figure 3.1,
and we obtain the graph product

G� = ÈG1, G2, G3, G4
--- [G1, G2] = 1, [G2, G3] = 1Í ƒ ((G1 ú G3) ◊ G2) ú G4.

Notice that if Gi = Z = ÈgiÍ, for all 1 Æ i Æ 4, using Notation 3.3.2 we present � as in
case (ii) of Figure 3.1, which defines the graph product

G� = Èg1, g2, g3, g4
--- g1g2 = g2g1, g2g3 = g3g1Í,

and this is the right-angled Artin group G� based on �.

(i): � =

G1

G2 G3

G4

, (ii): � =

g1

g2 g3

g4

Figure 3.1: Geometric presentations of underlying graphs

Note 3.3.4. In fact, the situation occurring in Example 3.3.3 is a general one, because
taking Gv = Z for all v œ V in Definition 3.3.1, then G� is the RAAG based on �, and
denoted by G�. So RAAGs are in particular, graph products.

Remark 3.3.5. With the notation of Definition 3.3.1 we notice that:
(i) if � is complete we get a direct product: G� = ◊

vœV
Gv, and

(ii) if � is totally disconnected we get a free product: G� = ú
vœV

Gv.

Definition 3.3.6. Let G� be the graph product of groups G1, G2, . . . , Gn, and w a
word of G�, written as w = w1w2 . . . wr where each wi is a word on generators of only
one of the generating groups, no wi is the empty word, and wi, wi+1 are not in the same
generating group for all 1 Æ i Æ r ≠ 1. Then:

• the words wi (for 1 Æ i Æ r) are called the syllables of w,
• (w1, w2, . . . , wr) is called a sequence of syllables, representing g = w1 · · · wn as an

element in G�,
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• the syllable length ⁄(w) of w is equal to r, and
• the syllable length ⁄(g) of an element g œ G� is the minimal syllable length of

words representing g, i.e. ⁄(g) = min{⁄(w) | w = g as elements in G�}.

Note 3.3.7. The syllable length has the following basic properties:
• ⁄(1) = 0 for the identity 1 œ G�,
• ⁄(g) = 1 when g ”= 1 belongs to one of the generating groups, and
• ⁄(g) Ø 2 when g does not belong to one of the generating groups.

Definition 3.3.8. Let (w1, w2, . . . , wr) be a sequence of syllables representing an ele-
ment g. For 1 Æ i < j Æ r we will say that the syllables wi and wj can be joined together

if wi and wj belong to the same generating group, and for all k œ {i + 1, . . . , j ≠ 1} one
has wiwk = wkwi.

In this case one can group together wi and wj, so we can present g with less syllables.
Also notice that one has wjwk = wkwj, as both wi, wj belong to the same generating
group.
To develop a normal form for elements in a graph product, we introduce the notion of
reduced sequences of syllables.

Definition 3.3.9. The sequence of syllables (w1, . . . , wr) is called a reduced sequence

in G� if it is either empty, or if wi ”= 1 for all 1 Æ i Æ r and no two syllables of the
sequence can be joined.

Note 3.3.10. The identity element 1 œ G is represented by the empty sequence. We
will adopt the convention to denote the empty sequence by ?.

Definition 3.3.11. Introduce an equivalence relation for reduced sequences, denoted
by ≥=, generated by:

(w1, . . . , wi, wi+1, . . . , wr) ≥= (w1, . . . , wi+1, wi, . . . , wr) ≈∆ [wi, wi+1] = 1 (3.1)

i.e. when wi, wi+1 belong to generating groups whose corresponding vertices are joined
by an edge in �.

Remark 3.3.12. We refer to the relation on Equation (3.1) as shu�ing of syllables or
syllable shu�ing.

Now we can state the normal form theorem for graph products.

Theorem 3.3.13 (Theorem 3.9 in [22]). Let G� be a graph product of the groups
G1, . . . , Gn. Each element g œ G� can be uniquely expressed, up to syllable shu�ing
(i.e. up to the equivalence ≥=), as a product:

g = g1g2 · · · gr

where (g1, g2, . . . , gr) is a reduced sequence of syllables.
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3.4 Normal Form theorem for tRAAGs

Now we describe a normal form for elements of tRAAGs using a similar approach as
for the case of graph products of groups in [22]. See also Section 3.3 of this thesis for
an overview.
With reference to Definition 3.3.1, in the following notation, we adopt a point of view
to consider tRAAGs in an analogous fashion of graph products.

Notation 3.4.1. Let � = (V, E) be a twisted graph, and let G� be the tRAAG based
on �. Treat any vertex v œ V as a generator of an infinite cyclic group Gv; in other
words Gv = ÈvÍ ƒ Z. One refers to the groups Gv (for v œ V ) as generating groups

of G�, and to the graph �, as the underlying twisted graph.
By convention, refer to G� as a twisted graph product of groups (Gv)vœV , based on the
twisted graph �.

Definition 3.4.2. By a sequence of syllables in G� we mean a finite sequence (g1, . . . , gr)
of elements of G�, where each gi belongs to a generating group, i.e. each gi is of the
form v

si
i for some vi œ V � and si œ Z.

Any element g œ G� can be represented as a word w © g1 . . . gr where (g1, . . . , gr) is a
sequence of syllables in G. Here g = g1 · · · gr and we call each gi a syllable of w and
also a syllable of the sequence (g1, . . . , gr).

Example 3.4.3. Let G = Èa, b|abab
≠1 = 1Í. The element g = a

3
ba

≠1
a

2
b

≠1 can be
represented by the word w = a

3
bab

≠1, and (a3
, b, a, b

≠1) is a sequence of syllables.

Remark 3.4.4. Let a, b œ V � be adjacent vertices as in the figure below. The edge
that they belong to, can be either undirected, as in case (i), or directed as in case (ii).

a b a b

(i) (ii)

Let m, n any two integers. Then:
(i) ab = ba implies a

m
b

n = b
n
a

n, and
(ii) ab = ba

≠1 implies a
m

b
n = b

n
a

(≠1)nm.

Notation 3.4.5. If g1 = a
m, and g2 = b

n we are going to write g1g2 = g
Õ
2g

Õ
1, where

(i) g
Õ
1 = a

m = g1, and g
Õ
2 = b

n = g2 if ab = ba, or
(ii) g

Õ
1 = a

(≠1)nm œ {g1, g
≠1
1 }, and g

Õ
2 = b

n = g2 if ab = ba
≠1.

We refer to g1g2 = g
Õ
2g

Õ
1 as syllable shu�ing, as one can shu�e g1 and g2 (up to ’signs

of powers’ in the case of the Klein relation). We also write (g1, g2) Ωæ (gÕ
2, g

Õ
1).

Definition 3.4.6. Let (g1, . . . , gr) be a sequence of syllables with gt = v
st
t with vt œ V �

for all 1 Æ t Æ r.
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1. For 1 Æ i < j Æ r we will say that the syllables gi and gj can be joined together

if vi = vj = v œ V � and for any k œ {i + 1, . . . , j ≠ 1} one has vk œ St(v).
In this case one can group together powers of v appearing in gi and gj, and get
the same element with less syllables.

2. If in the sequence (g1, . . . , gr), the syllables gi, gi+1 are not joined we say that the
syllable length of the word w = g1 . . . gr is equal to r, and denote ⁄(w) = r.

3. For the group element g, its syllable length ⁄(g) is defined as the minimal syllable
length of the words representing it.

Note 3.4.7. The identity element 1 œ G� is represented by the empty sequence. We
will adopt the convention to denote the empty sequence by ?.

Example 3.4.8. The syllable length has the following properties:
• ⁄(1) = 0,
• ⁄(g) = 1 if and only if g ”= 1, and g belongs to a generating group i.e. g = v

m

where v œ V � and m œ Z\{0},
• in all the other cases ⁄(g) Ø 2.

Using Notation 3.4.1, and the shu�ing in Notation 3.4.5, we have a way to use tech-
niques about graph products appearing in [22], also in the case of tRAAGs. The
following definition is the most important one in this chapter.

Definition 3.4.9. We say that the sequence of syllables (g1, . . . , gr) is a reduced se-

quence in G� if either
• (g1, . . . , gr) is the empty sequence ?, or
• if gi ”= 1 for all i, and no two syllables of the sequence (g1, . . . , gr) can be joined.

Definition 3.4.10. Introduce an equivalence relation for reduced sequences, denoted
by ≥=, and generated by:

(g1, . . . , gi≠1, gi, gi+1, gi+2, . . . , gr) ≥= (g1, . . . , gi≠1, g
Õ
i+1, g

Õ
i, gi+2, . . . , gr)

if and only if gi, gi+1 belong to generating groups whose corresponding vertices are
joined by an edge in �, and gigi+1 = g

Õ
i+1g

Õ
i is the syllable shu�ing from Notation 3.4.5.

The sequences that are in the same class of equivalence are called equivalent.

Notation 3.4.11. In terms of shu�ings of positions we denote the equivalence

(g1, . . . , gi≠1, gi, gi+1, gi+2, . . . , gr) ≥= (g1, . . . , gi≠1, g
Õ
i+1, g

Õ
i, gi+2, . . . , gr)

by the notation:

(1, . . . , i ≠ 1, i, i + 1, i + 2, . . . , r) Ωæ (1, . . . , i ≠ 1, i + 1, i, i + 2, . . . , r),

which corresponds to the transposition (i, i + 1) Ωæ (i + 1, i) regarding the positions.
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Now we will provide a notation to express the process of shu�ing of a syllable through
a reduced sequence.
Assume that {v1, . . . , vr} ™ Lk(v) in �, and let (g, g1, . . . , gr) be a reduced sequence,
with g = v

s, gi = v
si
i for 1 Æ i Æ r , and s, s1, . . . , sr are non-zero integers.

We can shu�e the first term of the sequence (g, g1, . . . , gr) to the end. In the process
of shu�ing, the powers of generators might change their sign, and we get a sequence
of the form (gÕ

1, . . . , g
Õ
r, g

Õ); here g
Õ = v

sÕ where s
Õ œ {s, ≠s}, and for any 1 Æ i Æ r we

have g
Õ
i = v

sÕ
i

i with s
Õ
i œ {si, ≠si}.

By Definition 3.4.10 we obtain:

(g, g1, . . . , gr) ≥= (gÕ
1, . . . , g

Õ
r, g

Õ) (3.2)

Using Notation 3.4.11 one can think of the right hand side of Equation (3.2) as the
e�ect of a chain of shu�ing by transpositions (i, i + 1) Ωæ (i + 1, i) for 0 Æ i Æ n ≠ 1,
where position 0 corresponds to g.

Notation 3.4.12. Another way to express the result of shu�ing appearing on the right
hand side of Equation (3.2), using only the sequence appearing on the left hand side of
that equation, is:

(g, g1, . . . , gr) ≥= ((g1, . . . , gr)g
, (g1, . . . , gr)g) (3.3)

where (g1, . . . , gr)g, and (g1, . . . , gr)g are the sub-sequences of (gÕ
1, . . . , g

Õ
r, g

Õ), defined as:

(g1, . . . , gr)g := (gÕ
1, . . . , g

Õ
r)

(g1, . . . , gr)g := (gÕ). (3.4)

Now we introduce the main theorem of the current chapter.

Theorem 3.4.13 (Normal form theorem for tRAAGs). Let G� be a tRAAG. Each
element g œ G can be expressed uniquely (up to shu�ing) as a product g = g1 · · · gn,
where (g1, . . . , gn) is a reduced sequence of syllables in G�.

Proof. Here we present a strategy on the proof of the normal form theorem. The
individual steps appearing in the strategy are proved in the upcoming sections.
The proof has the following two main parts:

• existence of such an expression, and
• uniqueness up to shu�ing of syllables.

Start by writing g as a word w in G�. Moves, which define the equivalence of words in
G�, consist of:
(id) inserting or deleting the identity 1 œ G�,
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(j/s) joining together two syllables gi, gi+1 belonging to the same generating group; or
splitting a syllable into two, and

(sh) shu�ing two syllables gi, gi+1 belonging to adjacent generating groups.
The following list presents the main steps of the proof:

(1) First we define a map fl from sequences of elements in G� to reduced sequences.
The map fl can also be considered as a map from words in G� to reduced sequences.

(2) If fl(w) = (g1, . . . , gr) then w = g1 · · · gr as elements in G�.
(3) If (g1, . . . , gr) is a reduced sequence of syllables, then fl(g1, . . . , gr) = (g1, . . . , gr).
(4) For any word w œ G� the equivalence class of fl(w) is preserved under the opera-

tions (id), (j/s), and (sh).
(5) Use the previous steps to show existence, and uniqueness up to shu�ing of syl-

lables.
• The existence is straightforward, as for g œ G�, we take a word w presenting g

in G�. According to point (1), fl(w) = (g1, . . . , gr) is a reduced sequence, and by
point (2) the element g is represented by fl(w). So there exists a reduced sequence
of syllables, namely (g1, . . . , gr) given by fl(w), such that g = g1 · · · gr.

• To show uniqueness suppose (g1, . . . , gr) and (h1, . . . , hs) are two reduced se-
quences such that the words U = g1 . . . gr and V = h1 . . . hs define the same
element g œ G�, i.e. g1 · · · gr = g = h1 · · · hs.
The goal of uniqueness is to show the equivalence:

(g1, . . . , gr) ≥= (h1, . . . , hs). (ú)

Since U, V present the same element in G�, there is a sequence of words

U0, U1, . . . , Ui, Ui+1, . . . , Un≠1, Un

going from U = U0 to V = Un, where one goes from a member Ui of the sequence,
to the next member Ui+1 by performing one of the moves (id), (j/s), or (sh).
According to (4), one has fl(Ui) ≥= fl(Ui+1). Now, applying (4) several times for
the sequence U0, . . . , Ui, Ui+1, . . . , Un we get fl(U) ≥= fl(V ). From (3), we get the
equalities fl(U) = (g1, . . . , gr), and fl(V ) = (h1, . . . , hs), which means that the
equation (ú) is satisfied. This completes point (5), and hence the proof.

Remark 3.4.14. Step (1) of the strategy above is discussed in Section 3.5 where we
define the map fl. Also see Lemma 3.5.7 for steps (1), (2), and (3). For step (4) see
Lemma 3.5.12, Remark 3.5.13, and see Section 3.7 for the actual proof.
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3.5 The reduction procedure

We introduce a map fl to reduce any sequence of elements (or any word) to a reduced
sequence of syllables.

Remark 3.5.1. In the following definition, the apostrophe is used to note the e�ect of
shu�ing on every step. This e�ect can be read from the graph and from the parity of
the powers of generators. After the definition there is a note providing an alternative
view of the inductive steps.

Definition 3.5.2. Define inductively a map:

fl : {sequences of elements in G�} ≠æ {reduced sequences of syllables in G�}

by defining first the base cases: as

fl(?) = ?, fl(1) = ?, and fl(g) = (g) where g = v
s for some v œ V and s ”= 0 in Z.

Suppose by the induction hypothesis that we have computed:

fl(g1, . . . , gn) = (h1, . . . , hm).

To complete the inductive process, suppose that g = v
s for some v œ V , and s œ Z. We

define fl(g1, . . . , gn, g), by the following procedure:

(I) If g = 1, define:

(i) fl(g1, . . . , gn, g) = (h1, . . . , hm).

(II) If g ”= 1, consider the following cases:

(II.1) There is hj (unique), which shu�es to the end as h
Õ
j, and belongs to the

same generating group as g. Consider two cases:
(ii) If h

Õ
j · g = 1, define fl(g1, . . . , gn, g) = (h1, . . . , hj≠1, h

Õ
j+1, . . . , h

Õ
m)

(iii) If h
Õ
j · g ”= 1, define fl(g1, . . . , gn, g) = (h1, . . . , hj≠1, h

Õ
j+1, . . . , h

Õ
m, (hÕ

jg))
(II.2) Any hj that shu�es to the end, does not belong to the same generating

group as g. Define:
(iv) fl(g1, . . . , gn, g) = (h1, . . . , hm, g)

Remark 3.5.3. The element hj appearing in case (II.1) of Definition 3.5.2 is unique
because (h1, . . . , hm) is reduced. If there were hj and hk shu�ing to the end, and
belonging to the same generating group as g, then they could already be joined in the
sequence (h1, . . . , hm), which would mean that the sequence was not reduced.
Moreover the map fl is well-defined in the sense that its outputs are reduced sequences
of syllables. This is straightforward from the definition of reduced sequences of syllables
and the definition of fl (see part (b) of Lemma 3.5.7).
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Note 3.5.4. Using Notation 3.4.12 we can express conditions (ii), and (iii) of the
inductive step of Definition 3.5.2 as:

(ii) If hj can be shu�ed to the end, and (hj+1, . . . , hm)hj · g = 1, define

fl(g1, . . . , gn, g) = (h1, . . . , hj≠1, (hj+1, . . . , hm)hj )

(iii) If hj belongs to the same generating group as g, it shu�es to the end, but
(hj+1, . . . , hm)hj · g ”= 1, define

fl(g1, . . . , gn, g) = (h1, . . . , hj≠1, (hj+1, . . . , hr)hj , (hj+1, . . . , hm)hj · g)

Naturally, the map fl, can also be seen as a map from words in G�, to reduced sequences
of syllables, as in the following definition.

Definition 3.5.5. If w is a word in G� with syllables w1, . . . , wn and gi are the elements
in Gi representing wi then we define fl(w) = fl(w1 . . . wn) = fl(g1, . . . , gn).

Example 3.5.6. Let G� = Èa, b|ab = ba
≠1Í, and let w = aa

≠3
bb

≠2
a

2. The syllables
of w are: w1 = aa

≠3
, w2 = bb

≠2
, w3 = a

2. The elements representing these syllables
in their respective generating groups are g1 = a

≠2, g2 = b
≠1, and g3 = a

2. Hence we
have fl(w) = fl(g1, g2, g3), and by definition of fl we get fl(g1) = (g1). Since g1, g2 belong
to di�erent generating groups, use case (iv), to obtain fl(g1, g2) = (g1, g2). Finally,
to compute fl(g1, g2, g3) use case (II.1) of definition of fl, as g1 belongs to the same
generating group as g3 and g1 shu�es to the end. Indeed,

g1g2 = a
≠2

b
≠1 = b

≠1
a

2 = g2g
≠1
1 = g

Õ
2g

Õ
1.

Since g
Õ
1g3 = a

2
a

2 = a
4 ”= 1 we use case (iii) in (II.1) to obtain fl(g1, g2, g3) = (gÕ

2, (gÕ
1g3)),

which gives fl(w) = fl(g1, g2, g3) = (b≠1
, a

4). Moreover w = b
≠1

a
4 in G�.

From Definition 3.5.2, we deduce the following properties of fl, given by the lemma
below.

Lemma 3.5.7. The map fl satisfies the following properties:
(a) the map fl is a retraction, i.e. if the sequence (g1, . . . , gn) is reduced then:

fl(g1, . . . , gn) = (g1, . . . , gn).

(b) The sequence fl(g1, . . . , gn) is reduced of syllable length at most n.
(c) If fl(g1, . . . , gn) = (h1, . . . , hm), then g1 · · · gn = h1 · · · hm as group elements in G�.

Proof. We use induction on n, and application of the inductive Definition 3.5.2. The
base cases, i.e. n = 0 and n = 1 follow from the definition of the base cases.
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(a) Assume that (g1, . . . , gn, g) is a reduced sequence of syllables. Then (g1, . . . , gn) is
reduced in particular, so fl(g1, . . . , gn) = (g1, . . . , gn). To compute fl(g1, . . . , gn, g)
one has to go in case (iv) of Definition 3.5.2, as no gi can be joined with g.
Hence fl(g1, . . . , gn, g) = (g1, . . . , gn, g), as desired.

(b) Let ⁄ denote the syllable length. By the base case definition of fl for n = 0
and n = 1, we see that the sequences fl(?) = ? and fl(g1) are reduced and
moreover ⁄(?) = 0, ⁄(fl(g1)) Æ 1. Now assume that fl(g1, . . . , gn) = (h1, . . . , hm)
is reduced with ⁄(fl(g1, . . . , gn)) Æ n.
For n + 1, by Definition 3.5.2, the output of fl(g1, . . . , gn, g) can be:

(i) (h1, . . . , hm), if g = 1
(ii) (h1, . . . , hj≠1, h

Õ
j+1, . . . , h

Õ
m)

(iii) (h1, . . . , hj≠1, h
Õ
j+1, . . . , h

Õ
m, (hÕ

jg))
(iv) (h1, . . . , hm, g) if any hj that shu�es to the end, does not belong to the same

generating group as g,
where in cases (ii), and (iii) there is a unique hj which belongs to the same
generating group as g and it shu�es to the end; moreover (hÕ

jg) = 1 in (ii),
and (hÕ

jg) ”= 1 in (iii).
By the inductive definition of fl the outputs for fl(g1, . . . , gn, g) are still reduced,
and

⁄(fl(g1, . . . , gn, g)) Æ ⁄(fl(g1, . . . , gn)) + 1 Æ n + 1,

where it actually grows only in case (iv). So fl(g1, . . . , gn, g) is reduced of length
at most n + 1, hence (b) holds.

(c) This property holds in the base cases of definition of fl. Assume that for

fl(g1, . . . , gn) = (h1, . . . , hm)

we have g1 · · · gn = h1 · · · hm. Now consider fl(g1, . . . , gn, g) using the inductive
definition of fl.
For g = 1, i.e. case (i), the result is immediate, as fl(g1, . . . , gn, 1) = (h1, . . . , hm),
and g1 · · · gn · 1 = h1 · · · hm. In case (iii) we want to show that

g1 · · · gn · g = h1 · · · · hj≠1 · h
Õ
j+1 · · · · h

Õ
m · (hÕ

jg),

and since g1 · · · gn = h1 · · · hm the result to show becomes:

h1 · · · hm · g = h1 · · · · hj≠1 · h
Õ
j+1 · · · · h

Õ
m · (hÕ

jg),

which is obvious by the setting of case (iii). Similarly we obtain case (ii). For
case (iv) we have fl(g1, . . . , gn, g) = (h1, . . . , hm, g) and here:

g1 · · · gn · g = (g1 · · · gn)g = (h1 · · · hm) · g = h1 · · · hm · g.

As all cases of the definition yield the required result, by induction (c) holds as
well.
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Remark 3.5.8. The definition of fl and the properties presented in Lemma 3.5.7,
present the first 3 steps of the strategy to prove the normal form theorem.

Now we give another property of fl. For a word w = w1 . . . wn and a sequence of
syllables (g1, . . . , gn), we consider wg1 . . . gn as a word, namely w1 . . . wng1 . . . gn, so we
can apply the map fl on it.

Corollary 3.5.9. Let w be a word, and (g1, . . . , gn) be a sequence of syllables. Then:

fl(w, g1, . . . , gn) = fl(fl(w), g1, . . . , gn)

Proof. We proceed by induction on n. Denote fl(w) = (h1, . . . , hr).
For n = 0, fl(fl(w)) = fl(w) as fl is a retraction, and fl(w) is reduced.
Now consider n = 1. We have fl(h1, . . . , hr) = (h1, . . . , hr) because (h1, . . . , hr) is
reduced, which we use on the definition of fl to compute fl(w, g1).

(I) If g1 = 1, then:

(i) fl(w, g1) = fl(w, 1) = (h1, . . . , hr) = fl(h1, . . . , hr, g1)

(II) If g1 ”= 1, consider the following cases:

(II.1) There is hj (unique), which shu�es to the end as h
Õ
j, and belongs to the

same generating group as g1. Consider two cases:
(ii) If h

Õ
j · g1 = 1, we have

fl(w, g1) = (h1, . . . , hj≠1, h
Õ
j+1, . . . , h

Õ
r) = fl(h1, . . . , hr, g1)

(iii) If h
Õ
j · g1 ”= 1, we have

fl(w, g1) = (h1, . . . , hj≠1, h
Õ
j+1, . . . , h

Õ
r, (hÕ

jg1)) = fl(h1, . . . , hr, g1)
(II.2) Any hj that shu�es to the end, does not belong to the same generating

group as g1. We obtain
(iv) fl(w, g1) = (h1, . . . , hr, g1) = fl(h1, . . . , hr, g1).

As we notice, in all cases we have fl(w, g1) = fl(h1, . . . , hr, g1). Since (h1, . . . , hr) = fl(w)
we obtain

fl(w, g1) = fl(fl(w), g1), (3.5)
which proves the case n = 1. For n > 1 we obtain:

fl(w, g1, . . . , gn) = fl(fl(w, g1, . . . , gn≠1), gn) by Equation (3.5)
= fl(fl(fl(w), g1, . . . , gn≠1), gn) by induction hypothesis
= fl(fl(fl(w), g1, . . . , gn≠1, gn)) by Equation (3.5)
= fl(fl(w), g1, . . . , gn≠1, gn) as fl is a retraction
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The next lemma provides a property of the equivalences of sequences of syllables.

Lemma 3.5.10. Let (g1, . . . , gn, g), and (h1, . . . , hn, g
Õ) be equivalent reduced sequences

of syllables, with g and g
Õ in the same generating group. Then g = g

Õ.

Proof. One has
(g1, . . . , gn, g) ≥= (h1, . . . , hn, g

Õ)

so there is a sequence of shu�ings going from the first sequence to the second. Sequences
are reduced, so any syllable gi or hi belonging to the same generating group as g cannot
shu�e to the end (otherwise one could join syllables). Let g = v

s for some v œ V

and some s œ Z. As g shu�es, its power s can change the sign (see Notation 3.4.5),
so g

Õ = g, or g
Õ = g

≠1. Anytime g changes the sign by shu�ing with some gi (or g
≠1
i ),

while going towards the front, it will change the sign by reshu�ing with one of gi, g
≠1
i

while going towards the back. So at the end the sign will be the same, and hence g = g
Õ.

Note that even some gj and gk might shu�e, the parity of their powers does not change,
and if the sign of the power changes, it depends only on the parity of the powers.

By concatenating two words u = u1 . . . un and w = w1 . . . wn we obtain a new word,
expressed as: uw = u1 . . . unw1 . . . wn.

Lemma 3.5.11. If w1, w2 are words in G� that satisfy fl(w1) ≥= fl(w2), then for any
word w in G� we have

fl(w1w) ≥= fl(w2w)

Proof. To prove the result, by Corollary 3.5.9, one can equivalently show:

fl(fl(w1), w) ≥= fl(fl(w2), w).

Let w = (g1, . . . , gn) be expressed by a sequence of syllables.
The reduced sequences fl(w1), and fl(w2) are equivalent, so they have the same length.
Let fl(w1) = (h1, . . . , hr) and fl(w2) = (l1, . . . , lr).
We will proceed by induction on n and r. More precisely, for a fixed r we show that
the case n = 1 is su�cient to get the result for an arbitrary n.
The result is immediate if n = 0. Also it is enough to show the result when w is a
syllable, i.e. n = 1, because for n > 1 we have

fl(fl(w1), g1, . . . , gn) = fl(fl(w1, g1, . . . , gn≠1), gn)
= fl(fl(fl(w1), g1, . . . , gn≠1), gn)

and similarly

fl(fl(w2), g1, . . . , gn) = fl(fl(fl(w2), g1, . . . , gn≠1), gn)
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By the induction hypothesis we have

fl(fl(w1), g1, . . . , gn≠1) ≥= fl(fl(w2), g1, . . . , gn≠1)

so applying the case of n = 1 we have the result.
Therefore to show the result, it amounts to showing

fl(fl(w1), g) ≥= fl(fl(w2), g)

where g is a non-trivial syllable.
The case when r = 0 is trivial. For r = 1 we must have h1 = l1 as they represent the
same element, and in this case the result is also trivial.
Now assume that r > 1.
We have the equations:

fl(fl(w1), g) = fl(h1, . . . , hr, g) and fl(fl(w2), g) = fl(l1, . . . , lr, g).

Now we follow the definition of fl for g ”= 1. If (h1, . . . , hr, g) is reduced (i.e. case (iv) of
Definition 3.5.2), then also (l1, . . . , lr, g) is reduced, because (h1, . . . , hr) ≥= (l1, . . . , lr).
In this case it follows that fl(fl(w1), g) ≥= fl(fl(w2), g).
Now consider case (II.1.). There is a unique hi which shu�es to the end as h

Õ
i and

belongs to the same generating group as g. By equivalence of sequences, it follows that
there is a unique lj which shu�es to the end as l

Õ
j and belongs to the same generating

group as g. We must have h
Õ
i = l

Õ
j as they both are brought to the last position (see

Lemma 3.5.10).
If h

Õ
ig = 1 then l

Õ
jg = 1, so we obtain:

fl(fl(w1), g) = (h1, . . . , hi≠1, h
Õ
i+1, . . . , h

Õ
r) and fl(fl(w2), g) = (l1, . . . , lj≠1, l

Õ
j+1, . . . , h

Õ
r)

which are equivalent.
If h

Õ
ig ”= 1 then also l

Õ
jg ”= 1, and in fact h

Õ
ig = l

Õ
jg so we obtain:

fl(fl(w1), g) = (h1, . . . , hi≠1, h
Õ
i+1, . . . , h

Õ
r, h

Õ
ig),

and
fl(fl(w2), g) = (l1, . . . , lj≠1, l

Õ
j+1, . . . , h

Õ
r, l

Õ
jg),

which are again equivalent.

Lemma 3.5.12. The map fl satisfies also the following properties:
(d) fl(g1, . . . , gk, 1, gk+1, . . . , gn) = fl(g1, . . . , gk, gk+1, . . . , gn)
(E) If gi, gi+1 belong to the same generating group, then:

fl(g1, . . . , gi≠1, gi, gi+1) = fl(g1, . . . , gi≠1, gigi+1).
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(F) If gi, gi+1 shu�e and gigi+1 = g
Õ
i+1g

Õ
i, then:

fl(g1, . . . , gi≠1, gi, gi+1) ≥= fl(g1, . . . , gi≠1, g
Õ
i+1, g

Õ
i).

Proof. We present the proof of (E) and (F) later in Section 3.7.

(d) We have the equality:

fl(g1, . . . , gk, 1) = fl(g1, . . . , gk)

by definition of fl. Now from Corollary 3.5.9 we obtain:

fl(g1, . . . , gk, 1, gk+1, . . . , gn) = fl(fl(g1, . . . , gk, 1), gk+1, . . . , gn)
= fl(fl(g1, . . . , gk), gk+1, . . . , gn)
= fl(g1, . . . , gn)

Remark 3.5.13. Assuming that (E), and (F) are proved, Corollary 3.5.9 implies
(e) If gi, gi+1 belong to the same generating group, then:

fl(g1, . . . , gi≠1, gi, gi+1, gi+2, . . . , gn) = fl(g1, . . . , gi≠1, gigi+1, gi+2, . . . , gn).
Using also Lemma 3.5.11 we obtain:

(f) If gi, gi+1 shu�e and gigi+1 = g
Õ
i+1gi, then:

fl(g1, . . . , gi≠1, gi, gi+1, gi+2, . . . , gn) ≥= fl(g1, . . . , gi≠1, g
Õ
i+1, g

Õ
i, gi+2, . . . , gn).

Remark 3.5.14. Properties (d), (e), (f) imply that for w œ G�, the equivalence class
of fl(w) is preserved under the operations (id), (j/s), and (sh). This shows step (4) of
the strategy for proving the normal form theorem.

3.6 Applications of the normal form theorem

Let G = G� be the tRAAG based on a mixed graph � = (V, E). For applications of
the normal form we choose S a monoid generating set of G as

S = V Û V
≠1 = {v, v

≠1 | v œ V }.

Notation 3.6.1. We will denote by l(w) the length of a word w with respect to S; and
by |g| the length of the element g œ G with respect to S.

3.6.1 The word problem

In a group G with a monoid generating set S the word problem consists of determining
weather or not a given word w over S represents the identity 1 œ G.
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Lemma 3.6.2. Properties (a) - (f) of the map fl imply:

w1 = w2 in G� ≈∆ fl(w1) ≥= fl(w2).

Proof. The equivalence class of fl(w) is preserved under the operations (id), (j/s), (sh).
This means that if w1 = w2 in G�, then fl(w1) ≥= fl(w2).
For the other direction, write fl(w1) = (g1, . . . , gr), and fl(w2) = (h1, . . . , hs), and assume
that fl(w1) ≥= fl(w2). Then r = s and one can perform only shu�ings to go from one
sequence to the other, hence g1 · · · gr = h1 · · · hr. Property (c) implies w1 = g1 · · · gr,
and w2 = h1 · · · hr as group elements, so w1 = w2 in G�.

As a corollary of the normal form theorem for tRAAGs we get the following:

Corollary 3.6.3. In the class of tRAAGs the word problem is solvable.

Proof. Let w be a word in G�. Then w = 1 in G� ≈∆ fl(w) = ?.

3.6.2 Growth in tRAAGs

One of the aforementioned applications of the normal form theorem is to compare the
spherical and the geodesic growth of tRAAGs with the respective growth of RAAGs.
As a first result, we show that reduced sequences of syllables represent geodesics. Recall
that S = V Û V

≠1 is our monoid generating set.

Lemma 3.6.4. Let (g1, . . . , gr) be a reduced sequence of syllables, with gi = v
si
i , where

for all 1 Æ i Æ r we have vi œ V , and si œ Z \ {0}. Put g = g1 · · · gr. Then

|g| =
rÿ

i=1
|si|.

Moreover, the word g1 . . . gr is a geodesic.

Proof. By considering all cases of Definition 3.5.2 we conclude that l(w) Ø l(fl(w)), for
any word w in G�.
Let w be a word of minimal length, representing g, and consider fl(w) = (h1, . . . , hs).
Now we have two reduced sequences representing the same element g, so we obtain

(g1, . . . , gr) ≥= (h1, . . . , hs)

By the properties of fl, one gets r = s and g1 · · · gr = h1 · · · hr as elements. Moreover as
words, both (g1, . . . , gr), and (h1, . . . , hr) have equal length qr

i=1 |si|, because one goes
from one to the other using shu�ings (which preserve the length). Now,

|g| = l(w) Ø l(fl(w)) = l(h1 . . . hr) =
rÿ

i=1
|si|.
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The word g1 . . . gr represents g, so obviously, we also have:

|g| Æ
rÿ

i=1
|si|,

as required.
Since the length of the word w = g1 . . . gr is equal to qr

i=1 |si| which is equal to the
length of the element g = g1 · · · gr we conclude that the length of the word w was
already minimal, and hence it is a geodesic.

Remark 3.6.5. The lemma above can also be expressed as

|g| =
rÿ

i=1
|gi|.

Now we state one of the main applications of the normal form theorem on this chapter.

Theorem 3.6.6. The spherical and the geodesic growth of a tRAAG over � agrees
with the corresponding growth of the RAAG based on the underlying näıve graph �.

Proof. Let G� be the tRAAG based on �, and G� the corresponding RAAG based on
the underlying näıve graph �. Both � and � have the same set of vertices V . Put an
order on V by labeling the vertices with {1, 2, . . . , n}. By the normal forms in both
groups, each element has a geodesic representative with a reduced sequence of syllables,
which is unique up to shu�ing. If for any g in G� we choose a representative with the
minimal lexicographic order we notice that g viewed as an element of G� has the same
representative (which is of minimal order as well, because any shu�ing that can be done
in G�, has a corresponding shu�ing in G�). So there is a bijection (not a morphism in
general)

i : G� ≠æ G�

which preserves the syllable length. This implies the same spherical growth.
Let w be a geodesic word representing the element g in G�, with the minimal lexico-
graphic order. So we can express the elements with the same generators S = V Û V

≠1.
For the geodesic growth, assume w1 and w2 are geodesics in G� representing the same
element g. Then fl(w1) ≥= fl(w2). As w1 is a geodesic, the reduction procedure to arrive
at fl(w1) (which also represents g) does not shorten the length, so we can go only through
cases (iii) and (iv) of Definition 3.5.2 (moreover in case (iii) the signs of the powers of
the last syllable have to agree). So to go from w1 to fl(w1) in G we use only shu�ings.
Similarly for going from w2 to fl(w2). Since fl(w1) ≥= fl(w2) we use shu�ings to go from
fl(w1) to fl(w2). Ultimately, one can go from w1 to w2 only by using shu�ings. The
same is true for for any two geodesics in G� representing the same element. The set
of geodesics representing an element is finite, and the shu�ings that we can use are
determined by � in both groups, therefore the sets of geodesics for any given element
are in bijection, and hence we get the same geodesic growths.
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3.6.3 Torsion

Twisted RAAGs have a lot of similarities with RAAGs, especially when we consider
their geometric and combinatorial nature. However, when we work on their algebraic
properties, we notice many remarkable di�erences. One was pointed out by indicability,
and another one is the presence of torsion, as illustrated by the following example.

Example 3.6.7. Consider the graph � = (V, E), in Figure 3.2, representing a triangle
with V = {a, b, c}, and E = {[a, bÍ, [b, cÍ, [c, aÍ}.

a b

c

Figure 3.2: Triangle graph �

The corresponding tRAAG to the graph � has the presentation:

G� = Èa, b, c|aba = b, bcb = c, cac = aÍ.

By the normal form theorem, any element g œ G� can be represented as g = a
m

b
n
c

p

for some m, n, p in Z.
Suppose we have two elements gi = a

mib
nic

pi for some mi, ni, pi in Z for i œ {1, 2}. The
way to express g1g2 in the normal form would be:

g3 = g1g2 = a
m3b

n3c
p3 ,

with m3 = m1 + (≠1)n1m2, n3 = n1 + (≠1)p1n2, p3 = p2 + (≠1)m2p1.
If we choose (m1, n1, p1) = (m2, n2, p2), and all of them odd then we get g

2 = 1. This
means that there is torsion in these groups.

Remark 3.6.8. Let g œ G. If g has torsion then the vertices in the support of g (those
vertices that are used to express g in the normal form) form a clique. Indeed, by the
normal form theorem, any two vertices in g have to be connected (otherwise we cannot
bring together the corresponding syllables).

Theorem 3.6.9. G has torsion if and only if there is a clique C in � whose vertices
form a closed cycle.

Proof. If there is such a clique C then we have torsion. One can pick g œ G to be
the product of elements in this cycle in an order given by the cycle (in the case of the
triangle above we have the product g = abc, with g

2 = 1).
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For the converse, assume that any clique in � does not form a closed cycle, and there
is g œ G which has torsion. By Remark 3.6.8, we know that the support of g lies in
a clique C with |C| Ø 3. Assume that g has the minimal number of elements in the
support among the elements which have torsion. By assumption the clique C does not
form a closed cycle, nor does any of its sub-cliques. So, there is a vertex v in C which
is not the origin of any directed edges. By Theorem 3.2.3 one has a map Ï : C ≠æ Z
with Ï(v) = 1, and Ï(vÕ) = 0 for v

Õ œ C \ {v}, so Ï(g) ”= 0, and hence g cannot have
torsion.

3.7 Shu�ing property of fl

Before proving cases (E) and (F) of Lemma 3.5.12, we discuss the following 2 lemmas.

Lemma 3.7.1. Let v1, v2, v3 be vertices of a triangle, and g1 = v
m
1 , g2 = v

n
2 , g3 = v

p
3

for m, n, p œ Z. In the product g1g2g3 consider the following two ways of shu�ing,
which bring g3 (or g

≠1
3 ) to the front:

(I) Shu�e first (g2, g3) to get (gÕ
3, g

Õ
2) and then shu�e (g1, g

Õ
3) to bring the power of

v3 in front.
(I) Shu�e first (g1, g2) to get (gÕ

2, g
Õ
1) and then perform the shu�ing of case (I) to the

sequence (gÕ
2, g

Õ
1, g3).

In terms of shu�ing of positions one can express the cases above as:

(I) (1, 2, 3) ≠æ (1, 3, 2) ≠æ (3, 1, 2)
(II) (1, 2, 3) ≠æ (2, 1, 3) ≠æ (2, 3, 1) ≠æ (3, 2, 1)

In both cases the power of v3 in the front is the same.

Proof. Shu�ing might a�ect the sign of the power, which depends on the parity of
the power of the other shu�ing element. In both cases (I) and (II) the third syllable
shu�es twice to the left among powers of v1 and v2, whose parity is the same in both
cases, so the e�ect in the power of v3 is the same.

Now we provide a generalization of the lemma above.

Lemma 3.7.2. Suppose that the sequence (h1, . . . , hr) is reduced. Assume that there
are indices 1 Æ j < k Æ r such that hj, hk shu�e to the end. Shu�ing first with hj

to the end of the sequence and then with hk as given in diagram (I) below in terms of
positions:

(I) (1, . . . , j ≠ 1, j, j + 1, . . . , k ≠ 1, k, k + 1, . . . , r)
≠æ (1, . . . , j ≠ 1, j + 1, . . . , k ≠ 1, k, k + 1, . . . , r, j)
≠æ (1, . . . , j ≠ 1, j + 1, . . . , k ≠ 1, k + 1, . . . , r, j, k)
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of first shu�ing to the end with hk and then with hj as in:

(II) (1, . . . , j ≠ 1, j, j + 1, . . . , k ≠ 1, k, k + 1, . . . , r)
≠æ (1, . . . , j ≠ 1, j, j + 1, . . . , k ≠ 1, k + 1, . . . , r, k)
≠æ (1, . . . , j ≠ 1, j + 1, . . . , k ≠ 1, k + 1, . . . , r, j, k)

results on identical reduced sequences.

Proof. Let h1, . . . , hr be powers of vertices v1, . . . , vr respectively. Since the sequence
(h1, . . . , hr) is reduced, and both vj and vk shu�e to the end we have:

{vj+1, . . . , vr} ™ Lk(vj) and {vk+1, . . . , vr} ™ Lk(vk).

Now we can draw an approximate näıve underlying graph for the vertices {vj, . . . , vr}.
We say approximate, because some vertices could be equal, and there can be edges
between some vertices; the only edges that we have for sure are the ones between vj,
vk to vertices in Lk(vj) and Lk(vk) respectively, as drawn in Figure 3.3 below.

vj

vj+1
vj+2

vk

vk+1
vk+2

vr

Figure 3.3: Partial näıve graph

Shu�ing first hj to the end, and then hk as described by (I) we obtain:

(h1, . . . , hr) ≥= (h1, . . . , hj≠1, h
Õ
j+1, . . . , h

Õ
r, h

Õ
j)

≥= (h1, . . . , hj≠1, h
Õ
j+1, . . . , h

Õ
k≠1, h

ÕÕ
k+1, . . . , h

ÕÕ
r , h

ÕÕ
j , h

ÕÕ
k) (3.6)

Instead, shu�ing first hk to the end, and then hj as described by (II) we obtain:

(h1, . . . , hr) ≥= (h1, . . . , hk≠1, h
Õ
k+1, . . . , h

Õ
r, h

Õ
k)

≥= (h1, . . . , hj≠1, h
Õ
j+1, . . . , h

Õ
k≠1, h

ÕÕ
k+1, . . . , h

ÕÕ
r , h

ÕÕ
j , h

ÕÕ
k) (3.7)

Now we look closely at the sequences in equations (3.6) and (3.7). Notice see that the
elements with indices 1, . . . , j ≠ 1 in both equations are not e�ected by shu�ing, so
they remain the same.
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The elements with indices j+1, . . . , k≠1 are a�ected in both equations only by shu�ing
with hj (or h

≠1
j ), so this part is equal to (hÕ

j+1, . . . , h
Õ
k≠1) for both expressions. Here

after the syllable hj shu�es with (hj+1, . . . , hk≠1) it might change the sign of its power,
and we denote it by h

Õ
j.

The elements with indices k + 1, . . . , r are a�ected twice by shu�ing, and the e�ect
is not on the same order, so let us discuss by induction the equality of terms of both
sequences in Equations (3.6) and (3.7) with indices k + 1, . . . , r.
First look at h

ÕÕ
k+1 in both equations which is obtained by bringing the syllable with

index k + 1 in the front, from the expression h
Õ
ihkhk+1.

Since vj, vk, vk+1 form a triangle, we are left with the same syllable in front, no matter
which one of two orders of shu�ing we perform (by Lemma 3.7.1). The same procedure
applied to other h

ÕÕ
i yields the corresponding equality.

Since both sequences represent the same element we also have that the last two elements
agree. As desired.

To prove cases (E) and (F) of Lemma 3.5.12, it is enough to show that

fl(g1, . . . , gi≠1, gi, gi+1) ≥= fl(g1, . . . , gi≠1, g
Õ
i+1, g

Õ
i) (3.8)

for the following two cases:

(I) gi, gi+1 are powers of the same generator.

(II) gi, gi+1 are powers of adjacent generators.

Remark 3.7.3. Case (I) here will imply property (E), i.e. in case (I) we will show that
if gi, gi+1 are powers of the same generator, then:

fl(g1, . . . , gi≠1, gi, gi+1) = fl(g1, . . . , gi≠1, gigi+1)

Consider case (I). Here the relation gigi+1 = g
Õ
i+1g

Õ
i and the fact that gi, gi+1 are powers

of the same generator implies g
Õ
i = gi and g

Õ
i+1 = gi. When one of gi, gi+1 is 1 then the

result follows by applying property (d) of Lemma 3.5.12. Also the case when gi, gi+1
are equal is trivial, so assume that none of them are the identity and they are di�erent.
Assume fl(g1, . . . , gi≠1) = (h1, . . . , hr), and distinguish the following subcases:

(I.1) There is a unique hj which shu�es as h
Õ
j to the end of (h1, . . . , hr) and is in the

same generating group as gi.

(I.2) Any hj which shu�es to the end of (h1, . . . , hr) is on a di�erent generating group
of gi.

Note that in case (I.1) both hj, gi are in the same vertex group, so h
Õ
jgi is a power of a

generator. Now let us consider two subcases.
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(I.1.1) If h
Õ
jgi = 1 then fl(g1, . . . , gi≠1, gi) = (h1, . . . hj≠1, h

Õ
j+1, . . . , h

Õ
r). Using this we

get:

fl(g1, . . . , gi≠1, gi, gi+1) = fl(h1, . . . , hj≠1, h
Õ
j+1, . . . , h

Õ
r, gi+1)

= (h1, . . . , hj≠1, h
Õ
j+1, . . . , h

Õ
r, gi+1)

as no other hi which can shu�e to the end can be in the same vertex group as
gi+1, because gi and gi+1 belong to the same generating group, and the sequence
h1, . . . , hr is reduced. We must have h

Õ
jgi+1 ”= 1, because gi ”= gi+1, and also

h
Õ
jgi+1gi = gi+1 ”= 1, which implies:

fl(g1, . . . , gi≠1, gi+1, gi) = fl(h1, . . . , hr, gi+1, gi)
= fl(fl(h1, . . . , hr, gi+1), gi)
= fl(h1, . . . , hj≠1, h

Õ
j+1, . . . , h

Õ
r, (hÕ

jgi+1), gi)
= (h1, . . . , hj≠1, h

Õ
j+1, . . . , h

Õ
r, (hÕ

jgi+1gi))
= (h1, . . . , hj≠1, h

Õ
j+1, . . . , h

Õ
r, (hÕ

jgigi+1))
= (h1, . . . , hj≠1, h

Õ
j+1, . . . , h

Õ
r, gi+1).

So, we got fl(g1, . . . , gi≠1, gi, gi+1) = fl(g1, . . . , gi≠1, gi+1, gi)

(I.1.2) h
Õ
jgi ”= 1 but h

Õ
j, and gi are in the same vertex group. In this case we have

fl(g1, . . . , gi≠1, gi) = (h1, . . . hj≠1, h
Õ
j+1, . . . , h

Õ
r, h

Õ
jgi). (3.9)

Now the right hand side of Equation (3.9) is reduced. By applying Corollary
3.5.9 several times, we obtain:

fl(g1, . . . , gi≠1, gi, gi+1) = fl(fl(g1, . . . , gi≠1, gi), gi+1)
= fl(h1, . . . , hj≠1, h

Õ
j+1, . . . , h

Õ
r, h

Õ
jgi, gi+1)

= (h1, . . . , hj≠1, h
Õ
j+1, . . . , h

Õ
r, (hÕ

jgigi+1))
= (h1, . . . , hj≠1, h

Õ
j+1, . . . , h

Õ
r, (hÕ

jgi+1gi))
= fl(h1, . . . , hj≠1, h

Õ
j+1, . . . , h

Õ
r, (hÕ

jgi+1), gi)
= fl(fl(h1, . . . , hj≠1, h

Õ
j+1, . . . , h

Õ
r, (hÕ

jgi+1)), gi)
= fl(h1, . . . , hr, gi+1, gi)

because gi and gi+1 commute as they both are powers of the same generator.
Now fl(g1, . . . , gi≠1, gi, gi+1) = fl(h1, . . . , hr, gi+1, gi) = fl(g1, . . . , gi≠1, gi+1, gi), as
desired.

In case (I.2) gi is in a di�erent generating group from any hj which can be shu�ed to
the end, so we have:

fl(g1, . . . , gi≠1, gi) = (h1, . . . , hr, gi). (3.10)
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The right hand side of Equation (3.10) is reduced, so if gi+1 = g
≠1
i then by the definition

of fl (case (ii)) we obtain:

fl(g1, . . . , gi≠1, gi, gi+1) = fl(h1, . . . , hr, gi, gi+1)
= (h1, . . . , hr)
= fl(h1, . . . , hr, gi+1, gi)
= fl(g1, . . . , gi≠1, gi+1, gi),

because also (h1, . . . , hr, gi+1) is reduced.
So assume that gi+1 ”= g

≠1
i . Then again by the definition of fl (case (iii)) we have:

fl(g1, . . . , gi≠1, gi, gi+1) = (h1, . . . , hr, gigi+1)
= (h1, . . . , hr, gi+1gi)
= fl(h1, . . . , hr, gi+1, gi)
= fl(g1, . . . , gi≠1, gi+1, gi)

because gi, gi+1 commute.

Remark 3.7.4. Note that in all subcases of (I) we also have:

fl(g1, . . . , gi≠1, gi, gi+1) = fl(g1, . . . , gi≠1, gigi+1),

which ultimately implies property (E) of Lemma 3.5.12.

Now consider case (II). Here gi and gi+1 belong to adjacent generating groups, hence
they shu�e. Let fl(g1, . . . , gi≠1) = (h1, . . . , hr). Recall that we want to show:

fl(g1, . . . , gi≠1, gi, gi+1) ≥= fl(g1, . . . , gi≠1, g
Õ
i+1, g

Õ
i),

where gi, gi+1 shu�e and gigi+1 = g
Õ
i+1gi (property (F) of Lemma 3.5.12).

Remark 3.7.5. Consider the sequence (h1, . . . , hr) above, and suppose that there are
two distinct indices j, k (for example j < k), such that both hj, hk shu�e to the end
of the sequence (h1, . . . , hr), and hj, hk belong to the same generating groups as gi, gi+1
respectively. By Lemma 3.7.2, no matter which one of two ways of shu�ing we choose,
we obtain the following equivalence of sequences:

(h1, . . . , hr) ≥= (h1, . . . , hj≠1, h
Õ
j+1, . . . , h

Õ
k≠1, h

ÕÕ
k+1, . . . , h

ÕÕ
r , h

ÕÕ
j , h

ÕÕ
k).

By Corollary 3.5.9 and Lemma 3.5.11, to prove that

fl(g1, . . . , gi≠1, gi, gi+1) ≥= fl(g1, . . . , gi≠1, g
Õ
i+1, g

Õ
i)

it is enough to prove the case when j = r ≠ 1, and k = r, i.e. we can equivalently (up
to renaming the variables) show the equivalence:

fl(h1, . . . , hr≠2, hr≠1, hr, gi, gi+1) ≥= fl(h1, . . . , hr≠2, hr≠1, hr, g
Õ
i+1, g

Õ
i)
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where hr≠1 and hr are in the same generating groups as gi and gi+1 respectively.
In fact the part fl(h1, . . . , hr≠2) = (h1, . . . , hr≠2) does not interfere with the calculations,
so it is enough to show that

fl(h1, h2, g1, g2) ≥= fl(h1, h2, g
Õ
1, g

Õ
1)

where h1 and h2 are in the same generating groups as g1, and g2 respectively.

As before, put:
fl(g1, . . . , gi≠1) = (h1, . . . , hr),

and distinguish the following two cases for fl(g1, . . . , gi≠1, gi):

(II.1) There is a unique hj which shu�es as h
Õ
j to the end of (h1, . . . , hr) and is in the

same generating group as gi.

(II.2) Any hj which shu�es to the end of (h1, . . . , hr) is on a di�erent generating group
of gi.

In case (II.1) h
Õ
j and gi are in the same generating group, so h

Õ
jgi is a power of a

generator. Now consider two subcases for (II.1) as follows:

(II.1.1) h
Õ
jgi = 1. By definition of fl we obtain:

fl(g1, . . . , gi≠1, gi) = (h1, . . . , hj≠1, h
Õ
j+1, . . . , h

Õ
r).

Now we have:

fl(g1, . . . , gi, gi+1) = fl(fl(g1, . . . , gi≠1, gi), gi+1)
= fl(h1, . . . , hj≠1, h

Õ
j+1, . . . , h

Õ
r, gi+1)

We know that (h1, . . . , hj≠1, h
Õ
j+1, . . . , h

Õ
r) is reduced. Now we distinguish two

cases for computing fl(h1, . . . , hj≠1, h
Õ
j+1, . . . , h

Õ
r, gi+1):

(II.1.1.1) A unique element from the sequence (h1, . . . , hj≠1, h
Õ
j+1, . . . , h

Õ
r) shu�es to the

end, and is in the same generating group as gi+1. Here the element that shu�es
to the end, can have an index smaller than j, or greater than j. It cannot be
equal to j because hj and gi were on the same generating group, but gi and
gi+1 are on di�erent generating groups.
Suppose that the element shu�ing to the end is of the form h

Õ
k with j < k Æ r,

because the other case k < j becomes analogous by trying to show:

fl(g1, . . . , g
Õ
i+1, g

Õ
i) ≥= fl(g1, . . . , gi, gi+1)

This is the case when we can use Remark 3.7.5. And it is enough to prove
that

fl(h1, h2, g1, g2) ≥= fl(h1, h2, g
Õ
2, g

Õ
1)
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where h1, h2 stand for hj, hk respectively, and g1, g2 stand for gi, gi+1 respect-
ively.
So far we have h

Õ
1g1 = 1. Now we ultimately distinguish 2 cases:

(a) h
Õ
2g2 = 1. In this case:

fl(h1, h2, g1, g2) = fl(fl(h1, h2, g1), g2)
= fl(hÕ

2, g2)
= ?

Now let us compute fl(h1, h2, g
Õ
2, g

Õ
1).

fl(h1, h2, g
Õ
2, g

Õ
1) = fl(fl(h1, h2, g

Õ
2), g

Õ
1)

= fl(fl(h1, h2g
Õ
2), g

Õ
1)

= fl(fl(h1, 1), g
Õ
1)

= fl(h1, g
Õ
1)

= ?

Here we had h
Õ
1g1 = 1, and h

Õ
2g2 = 1, where h1h2 = h

Õ
2h

Õ
1. So h

Õ
1 = g

≠1
1 ,

and h
Õ
2 = g

≠1
2 . Now g

Õ
2g

Õ
1 = g1g2 = h

Õ≠1
1 h

Õ≠1
2 = h

≠1
2 h

≠1
1 , so h2g

Õ
2 = 1, and

h1g
Õ
1 = 1, as we have used them.

(b) h
Õ
2g2 ”= 1. In this case:

fl(h1, h2, g1, g2) = fl(fl(h1, h2, g1), g2)
= fl(hÕ

2, g2)
= (hÕ

2g2)

and the right hand side is reduced. Now let us compute fl(h1, h2, g
Õ
2, g

Õ
1).

fl(h1, h2, g
Õ
2, g

Õ
1) = fl(fl(h1, h2, g

Õ
2), g

Õ
1)

= fl(fl(h1, h2g
Õ
2), g

Õ
1)

= fl(h1, h2g
Õ
2, g

Õ
1)

= (hÕ
2g2)

Here we had h
Õ
1g1 = 1, and h

Õ
2g2 ”= 1, where h1h2 = h

Õ
2h

Õ
1. So h

Õ
1 = g

≠1
1 .

Now g
Õ
2g

Õ
1 = g1g2 = h

Õ≠1
1 g2 which implies h

Õ
1g

Õ
2g

Õ
1 = g2, so shu�ing h1 past

h2g
Õ
2 we obtain:

h1(h2g
Õ
2) = h

Õ
2(hÕ

1g
Õ
2) = h

Õ
2(g2g

Õ≠1
1 )

as we have used them.
(II.1.1.2) Any of the syllables of the sequence (h1, . . . , hj≠1, h

Õ
j+1, . . . , h

Õ
r) which shu�es

to the end, is in a di�erent generating group from gi+1. Here we get:

fl(g1, . . . , gi, gi+1) = fl(fl(g1, . . . , gi≠1, gi), gi+1)
= fl(h1, . . . , hj≠1, h

Õ
j+1, . . . , h

Õ
r, gi+1)

= (h1, . . . , hj≠1, h
Õ
j+1, . . . , h

Õ
r, gi+1).
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Now we compute fl(g1, . . . , g
Õ
i+1, g

Õ
i):

fl(g1, . . . , g
Õ
i+1, g

Õ
i) = fl(fl(g1, . . . , gi≠1, g

Õ
i+1), g

Õ
i)

= fl(h1, . . . , hr, g
Õ
i+1)

= (h1, . . . , hj≠1, h
Õ
j+1, . . . , h

Õ
r, gi+1)

because hj shu�es to the end, and as it arrives in front of gi+1 is denoted by
h

Õ
j and it is equal to g

≠1
i . So h

Õ
jg

Õ
i+1 = g

≠1
i g

Õ
i+1 = gi+1g

Õ≠1
i , and g

Õ≠1
i g

Õ
i = 1.

(II.1.2) h
Õ
jgi ”= 1 but h

Õ
j, and gi are in the same vertex group. Now we have

fl(g1, . . . , gi) = (h1, . . . , hj≠1, h
Õ
j+1, . . . , h

Õ
r, h

Õ
jgi).

Using the equation above we have:

fl(g1, . . . , gi, gi+1) = fl(fl(g1, . . . , gi≠1, gi), gi+1)
= fl(h1, . . . , hj≠1, h

Õ
j+1, . . . , h

Õ
r, h

Õ
jgi, gi+1)

We know that (h1, . . . , hj≠1, h
Õ
j+1, . . . , h

Õ
r, h

Õ
jgi) is reduced. Now we distinguish

two cases for computing fl(h1, . . . , hj≠1, h
Õ
j+1, . . . , h

Õ
r, h

Õ
jgi, gi+1):

(II.1.2.1) A unique element from the sequence (h1, . . . , hj≠1, h
Õ
j+1, . . . , h

Õ
r) shu�es to the

end, and is in the same generating group as gi+1. Here the element that shu�es
to the end, can have an index smaller than j, or greater than j. It cannot be
equal to j because hj and gi were on the same generating group, but gi and
gi+1 are on di�erent generating groups.
Suppose that the element shu�ing to the end is of the form h

Õ
k with j < k Æ r,

because the other case k < j becomes analogous by trying to show:

fl(g1, . . . , g
Õ
i+1, g

Õ
i) ≥= fl(g1, . . . , gi, gi+1)

This is the case when we can use Remark 3.7.5. And it is enough to prove
that

fl(h1, h2, g1, g2) ≥= fl(h1, h2, g
Õ
2, g

Õ
1)

where h1, h2 stand for hj, hk respectively, and g1, g2 stand for gi, gi+1 respect-
ively. So far we have h

Õ
1g1 ”= 1, and therefore:

fl(h1, h2, g1, g2) = fl(fl(h1, h2, g1), g2)
= fl(hÕ

2, h
Õ
1g1, g2)

Now we ultimately distinguish 2 cases:
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(a) h
ÕÕ
2g2 = 1, where h

ÕÕ
2 is obtained by shu�ing h

Õ
2 past h

Õ
1g1, where the part

in front of h
ÕÕ
2 is now (hÕ

1g1)Õ. In this case:

fl(h1, h2, g1, g2) = fl(hÕ
2, h

Õ
1g1, g2) = (hÕ

1g1)Õ

Now we compute
fl(h1, h2, g

Õ
2, g

Õ
1) = h1g

Õ
1

Here we have these calculations: h1h2 = h
Õ
2h

Õ
1. Then h

Õ
2(hÕ

1g1) = h1(h2g1).
Since h2 = g2 or h2 = g

≠1
2 we have h2g1 = g

Õ
1h

ÕÕ
2, with h

ÕÕ
2 = g

≠1
2 by

assumption. Hence (hÕ
1g1)Õ = h1g

Õ
1. Also, from h2g1 = g

Õ
1h

ÕÕ
2 we get

h2g
Õ
2g

Õ
1 = (h2g1)g2 = g

Õ
1(hÕÕ

2g2) = g
Õ
1, hence h2g

Õ
2 = 1. So both expres-

sions above are equal.
(b) h

ÕÕ
2g2 ”= 1, where h

ÕÕ
2 is obtained by shu�ing h

Õ
2 past h

Õ
1g1. In this case:

fl(h1, h2, g1, g2) = fl(hÕ
2, h

Õ
1g1, g2) = (hÕ

1g1)Õ
, h

ÕÕ
2g2

Now we also compute

fl(h1, h2, g
Õ
2, g

Õ
1) = fl(h1, h2g

Õ
2, g

Õ
1) = (h2g

Õ
2)Õ

, h
ÕÕ
1g

Õ
1

Here we have these calculations: h1h2 = h
Õ
2h

Õ
1, g1g2 = g

Õ
2g

Õ
1, h

Õ
2(hÕ

1g1) =
(hÕ

1g1)Õ
h

ÕÕ
2, and h1(h2g

Õ
2) = (h2g

Õ
2)Õ

h
ÕÕ
1. Multiplying the third and the fourth

by g2, and g
Õ
1 respectively, and using the first two equalities we get that

both expressions are congruent.
(II.1.2.2) Any of the elements from the sequence (h1, . . . , hj≠1, h

Õ
j+1, . . . , h

Õ
r) which can

shu�e to the end, is in a di�erent generating group from gi+1. Here we get:

fl(g1, . . . , gi, gi+1) = fl(fl(g1, . . . , gi≠1, gi), gi+1)
= fl(h1, . . . , hj≠1, h

Õ
j+1, . . . , h

Õ
r, h

Õ
jgi, gi+1)

= (h1, . . . , hj≠1, h
Õ
j+1, . . . , h

Õ
r, h

Õ
jgi, gi+1).

Also

fl(g1, . . . , g
Õ
i+1, g

Õ
i) = fl(fl(g1, . . . , gi≠1, g

Õ
i+1), g

Õ
i)

= fl(h1, . . . , hr, g
Õ
i+1, g

Õ
i)

= (h1, . . . , hj≠1, h
Õ
j+1, . . . , h

Õ
r, (gÕ

i+1)Õ
, h

ÕÕ
j g

Õ
i)

where h
Õ
jg

Õ
i+1 = (gÕ

i+1)Õ
h

ÕÕ
j .

As h
Õ
jgigi+1 = h

Õ
jg

Õ
i+1g

Õ
i = (gÕ

i+1)Õ
h

ÕÕ
j g

Õ
i we conclude that both expressions are

congruent.

In case (II.2) we have the following equation:

fl(g1, . . . , gi≠1, gi) = (h1, . . . , hr, gi). (3.11)
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We also assume that there is no hk which shu�es to the end and is on the same
generating group as gi+1. Otherwise by analogy we could consider it as a subcase of
(II.1) by trying to show the equivalence:

fl(g1, . . . , gi≠1, g
Õ
i+1, g

Õ
i) ≥= fl(g1, . . . , gi≠1, gi, gi+1).

Under the assumptions above, we obtain:

fl(g1, . . . , gi≠1, gi, gi+1) = (h1, . . . , hr, gi, gi+1)
≥= (h1, . . . , hr, g

Õ
i+1, g

Õ
i)

= fl(g1, . . . , gi≠1, g
Õ
i+1, g

Õ
i).



Chapter 4

Parabolic subgroups in even Artin

groups

In this chapter we discuss properties of parabolic subgroups in even Artin groups.
We will especially focus on intersections of parabolic subgroups, and whether these
intersections are again parabolic subgroups. Using Bass-Serre theory we show that the
set of parabolic subgroups in a certain subclass C (defined in Section 4.3) is stable under
intersections.

4.1 Introduction

Let G = G� be an Artin group based on a labeled graph � = (V, E). Let S µ V

and consider the induced graph �Õ = (S, E
Õ), where E

Õ is the set of labeled edges in E

whose endpoints lie in S. Let GS be the subgroup of G generated by the vertices of S.
Then by a theorem of Van der Lek in [27] the subgroup GS is isomorphic to the Artin
group G�Õ .

Definition 4.1.1. The subgroups of G of the form GS for S µ V are called standard

parabolic subgroups. Their conjugates gGSg
≠1, for some g œ G, are called parabolic

subgroups of G. A parabolic subgroup P = gGSg
≠1 is called of type S as it is a

conjugate of the standard parabolic GS, and sometimes we will also say that P is a
parabolic subgroup over S.

One core question about parabolic subgroups in Artin Groups is the following:
Question 1. Given an Artin group G, is the set of parabolic subgroups in G stable
under intersections?
If we limit ourselves to standard parabolic subgroups, Question 1 has a positive answer
(see [27]), and for any S, T µ V one has the equality:

GS fl GT = GSflT .

68
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However, Question 1 is still open for Artin groups. The same problem has a positive
answer in the class of Coxeter groups (see [33] and the references within).
In the introduction of Chapter 1 we expressed the importance of parabolic subgroups
and we mentioned some subclasses of Artin groups where Question 1 has a positive
answer. Among those subclasses is the class of RAAGs.
In this chapter we study parabolic subgroups of even Artin groups (motivated by [2]
for graph products and the case of RAAGs in particular). We also provide a subclass C
of even Artin groups, where Question 1 has a positive answer.

Remark 4.1.2. Throughout the chapter we use the letter V to mean the vertex set of
the defining graph �.

4.2 Retractions and parabolic subgroups

In this section we present retractions, and we show that any parabolic subgroup of an
even Artin group is a retract.

Definition 4.2.1. Let G be a group and H a subgroup in G. Call H a retract of G if
there is a group morphism fl : G æ H with fl(h) = h for any h œ H. The morphism fl

is called a retraction.

Let � = (E, V ) be a simplicial graph labeled with even natural numbers, or Œ, and
let G = G� be the corresponding Artin group based on �. We call G an even Artin
group, and from now on we work with these groups.

Definition 4.2.2. In even Artin groups one has a retraction flS : G� ≠æ GS for
any S ™ V , defined on the generators of G� as:

fl(s) = s for s œ S, and fl(v) = 1 for v œ V \ S.

Any parabolic subgroup K = fGSf
≠1, with f œ G is a retract of G, with the retraction:

flK = fl
f
S : G ≠æ K = fGSf

≠1 defined by fl
f
S(g) := fflS(f≠1

gf)f≠1 for all g œ G.

Retractions of the type above make sense only on even Artin groups, as explained in
the following example.

Example 4.2.3. Consider the odd Artin group G� = Èa, b | aba = babÍ. For S = {a},
we cannot have a retraction of the form flS : G� ≠æ GS defined on the generators a, b

as fl(a) = a, fl(b) = 1. This would not induce a morphism of groups as aba = bab in G�,
but flS(aba) = a

2, and flS(bab) = a. Nevertheless, there are retractions fl : G� ≠æ GS,
for example, defining fl(a) = fl(b) = a induces a well defined retraction.
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Moreover, there are cases of Artin groups where we do not have any retractions. One
such case is given in the following example.

Remark 4.2.4. Consider the graph � given below:

� =
a

3
b

3
c

The corresponding Artin group is presented as:

G� = Èa, b, c | aba = bab, bcb = cbcÍ.

Let S = {a, c}, and assume that there was a retraction fl : G� æ GS. As fl is surjective,
it induces a surjective morphism fl : G

ab
� æ G

ab
S in abelianizations. However G

ab
� ƒ Z

while G
ab
S ƒ Z2, and one cannot have a surjective morphism from Z to Z2.

Having retractions for all parabolic subgroups in even Artin groups, will prove to be a
very useful property for simplifying many problems.
In the following lemma we present an application of retractions to deduce a known
result (see [27]) on intersections of standard parabolic subgroups in even Artin groups.

Lemma 4.2.5. Let G = G� be an even Artin group, and A, B ™ V . The following
equality holds:

GA fl GB = GAflB.

Proof. Let flA, and flB be the corresponding retractions for GA, and GB respectively.
Consider the compositions flA ¶ flB and flB ¶ flA. When applying them to elements of V

we notice that they coincide, and moreover, both of them coincide with flAflB. So one
has a commutative diagram of retractions, in the form:

flA ¶ flB = flB ¶ flA = flAflB. (4.1)

As GAflB µ GA and GAflB µ GB one has GAflB µ GA fl GB.
To show the other inclusion GA fl GB µ GAflB, pick an element x œ GA fl GB. One
has x œ GA and x œ GB, so flA(x) = flB(x) = x. Now using Equation (4.1) we obtain:

flAflB(x) = (flA ¶ flB)(x) = flA(flB(x)) = flA(x) = x.

As flAflB is a retraction, we have x œ GAflB, as required.

Now we present another application of retractions regarding the proper inclusions of
parabolic subgroups.

Lemma 4.2.6. Let G = G� be an even Artin group with A, B ™ V and g, h œ G.
Then gGAg

≠1 ( hGBh
≠1 implies A ( B.
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Proof. One can write the proper inclusion gGAg
≠1 ( hGBg

≠1
h

≠1 in the equivalent
form fGAf

≠1 ( GB, for f = h
≠1

g.
Applying flB we obtain:

fGAf
≠1 = flB(fGAf

≠1) = flB(f)GAflBflB(f)≠1 ( GB.

So, the proper inclusion fGAf
≠1 ( GB is equivalent to the proper inclusion

flB(f)GAflBflB(f)≠1 ( GB,

which after conjugating by flB(f)≠1 becomes equivalent to GAflB ( GB, and this implies
that A fl B ( B.
Instead, applying flA to fGAf

≠1 ( GB we obtain

GA = flA(f)GAflA(f)≠1 = flA(fGAf
≠1) ™ flA(GB) = GAflB.

The inclusion GA ™ GAflB implies A ™ A fl B.
Ultimately A ™ A fl B ( B, which means that A ( B, as required.

Now we characterize the intersection of two parabolic subgroups in even Artin groups.
Once again, we will make use of retractions.

Lemma 4.2.7. Let G = G� be an even Artin group. The intersection of any two
parabolic subgroups H, K can be expressed as an intersection of two parabolic subgroups
over the same set, i.e.

H fl K = g1GSg
≠1
1 fl g2GSg

≠1
2 ,

for some g1, g2 œ G, and some S ™ V .

Proof. Denote H = fGAf
≠1 and K = gGBg

≠1 for some A, B ™ V , and some f, g œ G.
As one has the equality

fGAf
≠1 fl gGBg

≠1 = f [GA fl (f≠1
g)GB(f≠1

g)≠1]f≠1
,

and since f(X fl Y )f≠1 = (fXf
≠1) fl (fY f

≠1) for any sets X, Y ™ G, we can assume
that f = 1, i.e. it is su�cient to show the result for H = GA and K = gGBg

≠1.
Now the goal is to express P = GA fl gGBg

≠1 as an intersection of parabolic subgroups
over the same set.
Using P ™ GA, and GA fl GB = GAflB (see Lemma 4.2.5) we obtain:

P = flA(P ) = flA(GA fl gGBg
≠1) ™ flA(GA) fl flA(gGBg

≠1)
= GA fl flA(g)flA(GB)flA(g≠1)
= flA(g)GAflBflA(g)≠1

.
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Setting g1 = flA(g) and A fl B = B
Õ we can write the inclusion above as P ™ g1GBÕg

≠1
1 ,

and we notice that g1GBÕg
≠1
1 ™ GA. Also, P = GA fl gGBg

≠1, so we have

P = (GA fl gGBg
≠1) fl g1GBÕg

≠1
1 = gGBg

≠1 fl (GA fl g1GBÕg
≠1
1 )

= gGBg
≠1 fl g1GBÕg

≠1
1 ,

where B
Õ ™ B. Now, to show the result, it is su�cient to show that P

Õ = g
≠1

Pg is an
intersection of parabolic subgroups over the same set. This new subgroup is given as:

P
Õ = GB fl hGBÕh

≠1

for h = g
≠1

g1.
Applying the same procedure as for P above, we obtain:

P
Õ = flB(P Õ) = flB(GB fl hGBÕh

≠1)
™ flB(GB) fl flB(hGBÕh

≠1)
= flB(h)GBflBÕflB(h)≠1

= flB(h)GBÕflB(h)≠1
.

Setting h1 = flB(h) œ GB we express the inclusion above as P
Õ ™ h1GBÕh

≠1
1 ™ GB.

Putting together P
Õ = GB fl hGBÕh

≠1 and P
Õ ™ h1GBÕh

≠1
1 we have:

P
Õ = (GB fl hGBÕh

≠1) fl h1GBÕh
≠1
1 = hGBÕh

≠1 fl (GB fl h1GBÕh
≠1
1 ),

which ultimately yields:
P

Õ = hGBÕh
≠1 fl h1GBÕh

≠1
1 ,

which expresses P
Õ as an intersection of two parabolic subgroups over B

Õ = A fl B.

Remark 4.2.8. Note that, following the proof above we have:

fGAf
≠1 fl gGBg

≠1 = f
Õ
GAflBf

Õ≠1 fl g
Õ
GAflBg

Õ≠1

for some f
Õ
, g

Õ œ G.

From now on we can substitute the intersection of two parabolic subgroups with the
intersection of two parabolic subgroups over the same set.
As an immediate corollary of Lemma 4.2.7 we get the following:

Corollary 4.2.9. Let G = G� be an even Artin group. If the intersection GA flgGAg
≠1

is a parabolic subgroup for any g œ G, and any A ™ V , then the intersection of any
two parabolic subgroups is a parabolic subgroup.

In the next proposition we use the notion of the link on a graph (which appears in
Section 2.2). For our even labeled graph � = (V, E) and for x œ V , we denote the link
of x in � by Lk(x) and define it as:

Lk(x) = {v œ V | {x, v} œ E}.
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Proposition 4.2.10. Let G = G� be an even Artin group based on � = (V, E), and
let A µ V and g œ G. Suppose that GA figGAg

≠1 is not contained in a proper parabolic
subgroup of G and that GA fl gGAg

≠1 is not contained in a parabolic subgroup over a
proper subset of A. Then for all x œ V \ A, one has Lk(x) ´ A.

Proof. Consider P = GA flgGAg
≠1. Assume by contradiction that there is an x œ V \A

with the property Lk(x) ”´ A.
If GV \{x} = gGV \{x}, then g œ GV \{x}. This means that both GA and gGAg

≠1 are
parabolic subgroups in GV \{x}, and hence GA fi gGAg

≠1 is contained in the proper
parabolic subgroup GV \{x} of G. This contradicts the assumptions of the proposition,
so suppose that GV \{x} ”= gGV \{x}. Using Bass-Serre theory (see Appendix A.1), one
has a splitting of G as:

G = GSt(x) úGLk(x) GV \{x}. (4.2)

Consider the Bass-Serre tree T corresponding to this splitting. There are two types
of vertices in T : left cosets of GSt(x), and left cosets of GV \{x} in G. Only vertices
of di�erent type can be adjacent in T . The group G acts naturally on T , without
edge inversions. Moreover, the vertex stabilizers correspond to conjugates of GSt(x) and
conjugates of GV \{x} for the respective type of vertices, while the edge stabilizers are
conjugates of GLk(x).
In the tree T , both GV \{x} and gGV \{x}, are distinct vertices of the same type. Their
stabilizers are GV \{x}, and gGV \{x}g

≠1 respectively. As we are on a tree, there is a
unique geodesic p in T connecting GV \{x} and gGV \{x}.
Now for our parabolic subgroups GA and gGAg

≠1 we have:

GA ™ GV \{x}, gGAg
≠1 ™ gGV \{x}g

≠1
,

which means that they stabilize the vertices labeld by GV \{x} and gGV \{x} respectively.
The intersection GA fl gGAg

≠1 stabilizes the geodesic p connecting those vertices, and
hence it stabilizes any edge belonging to p. Since stabilizers of edges in T are conjugates
of GLk(x), we have:

P = GA fl gGAg
≠1 ™ hGLk(x)h

≠1

for some h œ G. Now one can write P as:

P = GA fl gGAg
≠1 fl hGLk(x)h

≠1 = (GA fl hGLk(x)h
≠1) fl (gGAg

≠1 fl hGLk(x)h
≠1) (4.3)

By Lemma 4.2.7, one can express GA fl hGLk(x)h
≠1 as an intersection of two parabolic

subgroups over Lk(x)flA ( A (because Lk(x) ”´ A). This means that P = GAflgGAg
≠1

is contained in a parabolic subgroup over a proper subset of A, again contradicting the
assumption of the proposition.
As in both cases our assumption brings us to a contradiction with our hypothesis, we
get that Lk(x) ´ A for all x œ V \ A.
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Remark 4.2.11. In Equation 4.3 one can express P as an intersection of 4 para-
bolic subgroups over Lk(x) fl A. Indeed, by Theorem 4.2.7, both (GA fl hGLk(x)h

≠1)
and (gGAg

≠1 flhGLk(x)h
≠1) can be expressed as intersections of two parabolic subgroups

over Lk(x) fl A.

In the following sections we proceed to find some subclasses of even Artin groups where
arbitrary intersections of parabolic subgroups are parabolic subgroups.

4.3 Main Theorem

In this section we work on a certain subclass C and we prove that the set of parabolic
subgroups in C is closed under intersections.

Definition 4.3.1. Let C be the class of those even Artin groups G� where � is finite,
and for any v œ V that belongs in a triangle in �, all the edges having an endpoint in v

are labeld by 2’s.

Notice that RAAGs belong in C. Another family that belongs in C is the class of 2-
dimensional even Artin group (i.e. even Artin groups that do not contain triangles).
In particular, any triangle in �, with G� in C, has all of its edges labeled by 2’s.

Definition 4.3.2. An Artin group G� is of FC type if for any subset S ™ V which
spans a complete subgraph, the parabolic subgroup GS is of spherical type.

Remark 4.3.3. The class C is a subclass of even Artin groups of FC type, as all the
edges of any triangle in C are labeled by 2’s, which means that complete subgraphs
generate free abelian groups, hence of spherical type (see also Lemma 3.1 in [7], which
states that in even Artin groups of FC type, triangles have at least two edges labeled
by 2’s).

Before stating the main theorem, we give the following result, which is a special case
of the main theorem, and will be proved in Section 4.4.
Result (Lemma 4.4.1). Let G = G� be an even Artin group based on � = (V, E).
Let A µ V with GA a free subgroup, V \ A = {x}, and Lk(x) = A. Then for any g œ G

the intersection P = GA fl gGAg
≠1 is a parabolic subgroup.

Theorem 4.3.4. Let G = G� be an even Artin group belonging to the class C. Then the
intersections P = GA flgGAg

≠1 are parabolic subgroups for any g œ G, and any A ™ V .

Proof. Recall that � is finite for G� in C. Therefore, we can use induction on n = |V |,
and m = |A|. If GA = G� then for any g œ G we obtain P = GA, which is a parabolic
subgroup. Hence, we can assume that GA is a proper subgroup.
If n = 1 then G� ƒ Z, and the result is obvious. The result also holds for any �
when m = 1, because intersections of parabolic subgroups of spherical type in FC
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type Artin groups are again parabolic subgroups (see [31]); moreover, using the same
reference, we have the result when n = 2 as the proper parabolic subgroups are of
spherical type.
Now assume that n > 2, and m Ø 2.
The case when there is x œ V \ A with the property Lk(x) ”∏ A gives two subcases:

1. If gGV \{x} = GV \{x} then both GA, gGAg
≠1 are parabolic subgroups in GV \{x}.

By induction on n the intersection P = GA fl gGAg
≠1 is a parabolic subgroup in

GV \{x}, and hence it is a parabolic subgroup in G� as well.
2. If gGV \{x} ”= GV \{x} by the discussion after the splitting in Equation (4.2), we can

express P as an intersection of 4 parabolic subgroups over Lk(x) fl A ( A (i.e.
proper subsets of A). By induction on m, we get that P is a parabolic subgroup.

Now consider the case where any x œ V \ A satisfies Lk(x) ´ A. Suppose that V \ A

has k disjoint connected components.
Here we proceed by induction on k. Suppose that k = 1, and let C1 be the only
connected component.
If |C1| = 1 then V \ A = {x} and Lk(x) = A. The case when GA is free is the result
stated above (Lemma 4.4.1). Instead, if GA is not free, there is an edge {a, b} in � for
a pair of vertices a, b in A. As (a, b, x) form a triangle, by definition of our class C, we
have that x commutes with A (all the edges having x as an endpoint are labeled by
2’s). Hence GA fl gGAg

≠1 = GA.
Now consider |C1| > 1. Since any x œ V \ A satisfies Lk(x) ´ A we have that any
vertex a œ A forms an edge with any vertex c œ C1. Moreover, C1 is connected, so
every vertex c œ C1 belongs to an edge in C1. Hence, any vertex a œ A belongs to a
triangle, the other two vertices of which lie in C1 = V \ A. Since all triangles in C are
labeled by 2’s, we have:

G = GA ◊ GV \A.

The direct product above implies that gGA = GAg, and the result follows as:

GA fl gGAg
≠1 = GA fl GA = GA.

Now assume k > 1.
If at least one of the connected components C1, . . . , Ck is not a singleton, we follow the
same procedure as when k = 1 and |C1| > 1, to deduce that:

G = GA ◊ G�≠A,

and the result follows as earlier. We get the same splitting if GA is not free as any other
vertex in V \ A would belong to a triangle.
Finally assume that all the connected components are singletons, i.e. Ci = {xi} for
some xi œ V \ A for all 1 Æ i Æ k, and GA free. Choose one x œ V \ A. Then we have
a splitting:

G = GAfi{x} úGA GV \{x}
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and consider the Bass-Serre tree T corresponding to this splitting.
Consider the edges GA and gGA on T . If GA = gGA, then GA fl gGAg

≠1 = GA, so as-
sume that they are di�erent. When GA ”= gGA, there is a unique geodesic p connecting
them. Let GA, g1GA, . . . , gnGA, gGA be the labels of the geodesic p.
By the construction of T , one has either g

≠1
i gi+1 œ GAfi{x} or g

≠1
i gi+1 œ GV \{x}, for

any i = 0, . . . , n where g0 = 1 and gn+1 = g.
The intersection GA fl gGAg

≠1 stabilizes the endpoints of the geodesic p, hence it sta-
bilizes the whole p. As the stabilizer of a geodesic is the intersection of stabilizers of its
edges, we have the equality

GA fl gGAg
≠1 = GA fl g1GAg

≠1
1 fl . . . fl gnGAg

≠1
n fl gGAg

≠1
.

The intersections giGAg
≠1
i fl gi+1GAg

≠1
i+1 can be expressed as:

giGAg
≠1
i fl gi+1GAg

≠1
i+1 = gi[GA fl g

Õ
iGAg

Õ≠1
i ]g≠1

i ,

where g
Õ
i = g

≠1
i gi+1 is either in GAfi{x}, or in GV \{x}.

If g
Õ
i is in GAfi{x} then by the case we discuss in Section 4.4 (Lemma 4.4.1) we obtain:

GA fl g
Õ
iGAg

Õ≠1
i = GSi

for some Si ™ A.
On the other hand, if g

Õ
i is in GV \{x} then by induction on n we know that the intersec-

tions GA fl g
Õ
iGAg

Õ≠1
i are parabolic subgroups in GV \{x}, and hence parabolic subgroups

in G. Moreover one can express these intersections (by applying flA) as

GA fl g
Õ
iGAg

Õ≠1
i = aiGSia

≠1
i

for Si ™ A, and ai œ A.
If for at least one of the intersecting pairs we get Si ( A, then GA fl gGAg

≠1 could
be expressed as an intersection of parabolic subgroups over a proper subset of A, and
hence by induction on m this case is proved.
Otherwise, we get Si = A for all i, and hence:

GA fl gGAg
≠1 = GA fl g1GAg

≠1
1 fl . . . fl gnGAg

≠1
n = GA.

In all the cases the intersection is again a parabolic subgroup.

Using induction and Theorem 4.3.4, we obtain the following corollary.

Corollary 4.3.5. Let n œ N , and P1, . . . , Pn be parabolic subgroups in C. Then the
intersection

P1 fl . . . fl Pn,

is a parabolic subgroup in C.
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So any finite intersection of parabolic subgroups in C is again a parabolic subgroup in C.
One can extend this result to arbitrary intersections. We follow the strategy of Section
10 in [15] for the proof of this result, stated in the following corollary.

Corollary 4.3.6. Let G = G� be an even Artin group belonging to the class C. Then
any arbitrary intersection of parabolic subgroups in G is a parabolic subgroup.

Proof. Let P be the set of parabolic subgroups in G. The set P is countable, as any
parabolic subgroup can be defined as gGSg

≠1 for S ™ V and g œ G. We have finitely
many such subsets S (as � is finite for G� œ C), and countably many elements g œ G

(as G is finitely presented), so there are countably many parabolic subgroups in G.
For an arbitrary indexing set I, we want to show that:

Q =
‹

iœI,PiœP

Pi

is a parabolic subgroup in C.
If I is finite, the claim follows from Corollary 4.3.5. So, we can assume that the indexing
set I is countable, and we can index its elements by natural numbers. Write:

‹

iœI

Pi =
‹

nœN

Q

a
‹

iÆn

Pi

R

b ,

and set Qn = u
iÆn Pi. We know that Qn is a parabolic subgroup for any n. Moreover

we have a chain of parabolic subgroups:

Q1 ´ Q2 ´ Q3 ´ · · ·

where the intersection of all members Qi of the chain above is equal to Q. We cannot
have an infinite chain of nested distinct parabolic subgroups. Indeed, using Lemma
4.2.6 we have that gGAg

≠1 ( hGAh
≠1 implies A ( B. Hence there are at most |V | + 1

distinct parabolic subgroups in the chain above.
Ultimately, Q is an intersection of at most |V | + 1 parabolic subgroups and hence it is
a parabolic subgroup.

4.4 Particular free subgroups

Now we want to see if in our class C, the intersection P = GA fl gGAg
≠1 is parabolic,

when V \ A = {x}, Lk(x) = A and GA is free. This is the only missing piece in the
proof of Theorem 4.3.4

Lemma 4.4.1. Let G = G� be an even Artin group based on � = (V, E). Let A µ V

with GA free and V \ A = {x}. Then for any g œ G the intersection P = GA fl gGAg
≠1

is a parabolic subgroup.
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Before giving a proof for the lemma above, we compute the kernel of the the retraction
map fl{x} without assuming that GA is free.
Denote the retraction map fl{x} by fl and let K = ker(fl). We use the Reidemeister-
Schreier procedure (see Appendix A.3, and Example 1.2.12) to obtain a presentation
of K. Our setting is:

G = G� = ÈV, RÍ where V = A Û {x}, and R = even Artin relations in G.

So we have a map:
fl : G� æ Z, ’a œ A : a ‘æ 0, x ‘æ 1,

with K = ker(fl).
The set T = {x

i | i œ Z} gives a Schreier transversal for K in G.
The set of generators for K is Y = {tv(tv)≠1 | t œ T, v œ V, tv ”œ T} where w is the
representative of w in T .
Any t œ T can be written as x

i for i œ Z, so:

tv(tv)≠1 = x
i
v(xiv)≠1 =

Y
]

[
x

i
x(xix)≠1 if v = x

x
i
a(xia)≠1 if v = a œ A

.

As x
i
x œ T for all i œ Z the first line of the cases above does not produce any generators.

On the other hand x
i
a ”œ T for all a œ A and all i œ Z. Moreover xia = x

i in T . Hence
the second lines above, for any a œ A, gives si,a = x

i
ax

≠i as a generator of K.
Ultimately, the set

Y = {si,a = x
i
ax

≠i | a œ A, i œ Z},

gives a set of generators for K.
To get relations for K, rewrite each trt

≠1 for t œ T and r œ R, using generators in Y .
Write any t œ T as x

i for some i œ Z. We divide the relations in R in two types:
(i) relations involving only elements of A. Suppose a, b œ A satisfy r = (ab)m(ba)≠m,
(ii) relations involving x. Suppose a œ A and x satisfy r = (ax)n(xa)≠n.

In case (i) we have trt
≠1 = x

i((ab)m(ba)≠m)x≠i. Introducing x
i
x

≠i between letters, and
recalling that si,a = x

i
ax

≠i we obtain:

trt
≠1 = (si,asi,b)m(si,bsi,a)≠m (4.4)

which is an even Artin relation, for the pair si,a, si,b for all i œ Z, with the same label
as the Artin relation for the pair a, b.
In case (ii) we have trt

≠1 = x
i((ax)n(xa)≠n)x≠i. Again we put x

i
x

≠i between letters,
and use si,a = x

i
ax

≠i to obtain:

trt
≠1 = si,asi+1,a . . . si+n≠1,a(si+1,asi+2,a . . . si+n,a)≠1

. (4.5)
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This looks messier, so let us illustrate the commutative case (ax = xa) for inspiration.
We have r = ax(xa)≠1 (i.e. n = 1 above), now for some i œ Z and t = x

i we obtain:

trt
≠1 = x

i(axa
≠1

x
≠1)x≠i = (xi

ax
≠i)(xi

xx
≠i)(xi

a
≠1

x
≠i)(xi

x
≠1

x
≠i)

= (xi
ax

≠i)x(xi
a

≠1
x

≠i)x≠1

= (xi
ax

≠i)(xi+1
a

≠1
x

≠i≠1)
= (xi

ax
≠i)(xi+1

ax
≠(i+1))≠1

= si,as
≠1
i+1,a.

To recap, the presentation for K is given as:

K = ÈY | SÍ,

where Y = {si,a = x
i
ax

≠i | a œ A, i œ Z}, and the relations are described as below:
(i) if a, b œ A satisfy (ab)m = (ba)m, then for all i œ Z: (si,asi,b)m = (si,bsi,a)m

(ii) if a œ A and x satisfy (ax)n = (xa)n then for all i œ Z:
si,asi+1,a . . . si+n≠1,a = si+1,asi+2,a . . . si+n,a.

So far, the presentation for K has infinitely many generators, and some of the relations
do not seem like something we know. However there is a silver lining, expressed by the
following lemma.

Lemma 4.4.2. If G is even Artin group of FC type, then so is the kernel K.

Proof. Look at type (ii) relations: if a œ A and x satisfy (ax)n = (xa)n then ’i œ Z we
have si,asi+1,a . . . si+n≠1,a = si+1,asi+2,a . . . si+n,a. It is enough to use the generators:

s0,a, s1,a, . . . , sn≠1,a,

as the other generators si,a are obtained recursively by them. Indeed, setting:

‡a = s0,as1,a · · · sn≠1,a,

we obtain:
sl,a = ‡

≠q
a sr,a‡

q
a, (4.6)

where l = n · q + r with 0 Æ r < n.
Since x is linked to any a œ A by a label 2ka, we see that it is enough to use only the
generating set:

Y1 = {sj,a = x
j
ax

≠j | a œ A, 0 Æ j Æ ka ≠ 1 in Z},

which is finite. Now, with the new generating set, the relations in case (ii) are vanished.
Now we only consider the relations in case (i) assuming that G is even Artin group of
FC type. The condition of being FC type implies that in any triangle in �, there are
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at least two edges labeled by 2’s. Let us build a simplicial graph �1 (to represent K as
an Artin group) where the vertex set is Y1 and now we define the edges using relations
of case (i).
Consider these two cases:

(1) if a, b œ A are linked by an edge labeled by m with m Ø 4, put an edge with
label m for the pair s0,a, s0,b in �1 as well. This is because (a, b, x) is a triangle
so 2ka = 2kb = 2, which means that the generators in Y1 corresponding to a, b

are s0,a, s0,b respectively.
(2) If a, b œ A commute, since (x, a, b) form a triangle, only one of the labels 2ka, 2kb

can be bigger than 2. Assume 2ka Ø 4. The generators in Y1 corresponding to a

are si,a with 0 Æ i Æ ka ≠1, and there is only one (namely s0,b) corresponding to b.
Now put edges with labels equal to 2 for the pairs si,a, s0,b for all 0 Æ i Æ ka ≠ 1.
This comes from s0,b = si,b, ’i œ Z prior to vanishing the non-necessary generators.

We notice that all the edges in �1 are labeled by even numbers, and whenever we put
a triangle, at least 2 edges were labeled by 2’s. Hence K is represented by �1 and it is
an even Artin group of FC type as well, and its presentation K = ÈY1 | EÍ can be read
from the graph �1. Here E denotes the relations from (1) and (2), or equivalently, as
seen from the labeled edges in �1.

Remark 4.4.3. Both parabolic subgroups GA, and gGAg
≠1 lie in K. We want to

use this to calculate GA fl gGAg
≠1 in K and then see how the intersection looks like

in G�. One obstacle appearing here is that g is not necessarily in K, so we cannot
interpret GA fl gGAg

≠1 as an intersection of parabolic subgroups in K.

Since the relations in K come from the relations between elements of A, we obtain
immediately the following corollary.

Corollary 4.4.4. If GA is free, then the kernel K is free as well, on q
aœA ka generators,

where 2ka is the label of the edge in � for the pair x, a with a œ A.

Remark 4.4.5. The case when K is free is more helpful for computing intersections
(usage of Stallings foldings, see [35], and [25]). So will assume that GA is free in the
rest of the section.

Proof of Lemma 4.4.1. Let fl(g) = x
j for some j œ Z, and write g = (gx

≠j)xj = hx
j,

where h = gx
≠j œ K.

Now we can write gGAg
≠1 as:

hx
j
GAx

≠j
h

≠1 = hÈsj,a | a œ AÍh≠1
, (4.7)

where sj,a is a generator of K (coming from the Reidemeister-Schreier procedure), and
for any a œ A, we have s0,a = a.
Define m œ Z+ to be the least common multiple of all ka for a œ A, where 2ka is the
label of the edge between x and a in �. Distinguish these two cases:
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1. The number j appearing in Equation (4.7) satisfies j ”œ mZ. This means that
there is an a œ A, such that ka - j, which implies that sj,a is not a conjugate
of s0,a (coming from Equation (4.6)). Consider Q = flA(gGAg

≠1). One notices
that

Q = flA(h)Ès0,a | a œ A, ka|jÍflA(h)≠1
.

Since there is at least on ka with ka - j, we conclude that the set

{s0,a | a œ A, ka|j},

is a proper subset of A. Moreover P = GA fl gGAg
≠1 satisfies P µ Q, so P =

P flQ, which is going to be an intersection of parabolic subgroups where the set of
generators of parabolic subgroups is a proper subset of A, so again by induction
we conclude that P is parabolic.

2. The number j satisfies j œ mZ, which implies that sj,a is a conjugate of s0,a. Here
one can express P = GA fl gGAg

≠1 as:

P = GA fl hÈsj,a | a œ AÍh≠1 = GA fl hÈ‡≠qa
a s0,a‡

qa
a | a œ AÍh≠1

,

where j = m · qa.
If j = 0 then g œ K and hence GA fl gGAg

≠1 is an intersection of parabolic
subgroups in K which is a free group, so GA fl gGAg

≠1 would be a parabolic
subgroup. From now on assume that j ”= 0.
Express the set A as a disjoint union A = B Û C such that any b œ B is linked
to x by a label greater than 2, and any c œ C is linked to x by a label equal to 2.
To consider the intersection above, for combinatorial simplicity, we take an iso-
morphism Ï : K æ K, which fixes every generator in K, except s1,b for b œ B,
and we ask that Ï(‡b) = s1,b where ‡b = s0,bs1,b · · · skb≠1,b.
Now computing the intersection P = GA flhÈ‡≠qa

a s0,a‡
qa
a | a œ AÍh≠1 is equivalent

to computing

P = GA0 fl hÈs≠qb
1,b s0,bs

qb
1,b, s0,c | b œ B, c œ CÍh≠1

,

where A0 = {s0,a | a œ A} = A, because s0,a = a. Note that h might change when
we apply Ï but we use the same letter. Similarly we identify B with B0 and C

with C0

Finally, we arrive at the place where we compute intersections of subgroups in free
groups. See Appendix A.2 for an overview (see [35], and [25] for further details).
To each of the subgroups GA0 and hÈs≠qb

1,b s0,bs
qb
1,b, s0,c | b œ B, c œ CÍh≠1 as fi-

nitely generated subgroups of a free group K we associate an Y1-digraph whose
language recognizes the respective subgroup. Here Y1 is the generating set of K

(as described in Lemma 4.4.2). We use foldings and then take the product of
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digraphs to obtain an Y1-digraph which recognizes the intersection of subgroups.
See Appendix A.2 for the procedure of the construction.
Assume h is a reduced word in K. If h œ GA0 then the intersection is GC0 ; so
assume that h ”œ GA0 . Let h0 be the maximal su�x of h belonging to C0; note
that, h0 can be empty. Write h as h = h1h0 with reduced h1, h0. The part h0
can be folded in the digraph among the elements of C0, so we can assume that
h = h1.
Now assume that h1 ends with a letter not belonging to B1 = {s1,b | b œ B}. In
this case there are no more possible foldings. Since we assumed that h ”œ A0 the
intersection graph for GA0 and hÈs≠qb

1,b s0,bs
qb
1,b, s0,c | b œ B, c œ CÍh≠1 gives a trivial

intersection.
Lastly assume that h1 ends with a letter belonging to B1. Here we can do foldings
(if the signs disagree) only in a single branch, and if we cannot do folding there,
we get a trivial intersection. Let us say that h1 ends in b

t
1, with t · qb < 0. Now

if |t| < |qb| or |t| > |qb| we get a trivial intersection. In the case |t| = |qb| we
can get nontrivial intersection if and only if h1b

≠t
1 belongs to A0, and this gives a

parabolic, actually Gb0 .
In all the cases we treated we obtained a parabolic subgroup. This implies the
result of the Lemma.



Appendix A

Appendix - Specific preliminaries

Here we discuss about Bass-Serre theory, Stalling graphs, and RS procedure.

A.1 Bass-Serre Theory

Bass–Serre theory is a standard tool in geometric group theory which analyzes the
algebraic structure of groups acting by automorphisms on simplicial trees.
Graphs of groups, are the basic objects of Bass–Serre theory, and the notion of the
fundamental group of a graph of groups is used to relate group actions on trees with
decomposing groups as iterated applications of the operations of free product with
amalgamation and HNN extension.
Here we will state the fundamental theorem of Bass-Serre theory, and we refer to [34]
for the notation and proofs. Notice that the notion of a graph here is di�erent.

Definition A.1.1 (Graphs in Serre’s formalism). A graph A = (V, E, o, t, )̄ consists of
a vertex set V , an edge set E, an edge reversal map ¯: E æ E, e ‘æ e with e ”= e and
e = e for any e œ E, and an extremities map (o, t) : E æ V ◊ V , e ‘æ (o(e), t(e)) with
o(e) = t(e).

One calls the vertex o(e) the origin of e, the vertex t(e) is called the terminus of e, and
e is called the formal inverse of edge e.
Here we allow multiple edges and loops (i.e. edges e with o(e) = t(e))
An orientation on the A is a partition of E into two disjoint subsets E

+, and E
≠ so

that for every edge e one has

|E+ fl {e, e}| = 1 = |E≠ fl {e, e}|.

Definition A.1.2 (Graph of groups). A graph of groups A = (A, G ) consists of a
connected graph A = (V, E, o, t, )̄, and two families of groups G = (GV , GE) with an
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assignment of a vertex group Gv from the family GV to every vertex v œ V , and an edge
group Ge from the family GE to every edge e œ E, such that:

• For every edge e œ E we have Ge = Ge,

• For all e œ E, there are boundary monomorphisms –e : Ge æ Go(e).

Let T be a spanning tree of A = (V, E, o, t, )̄, i.e. a maximal sub-tree in A. Now we
define one of the key concepts in Bass-Serre theory.
Definition A.1.3. The fundamental group of a graph of groups A = (A, G ) with
respect to T , is the group fi = fi(A , G , T ) given by the presentation:

fi :=
K

Gv, v œ V

e, e œ E

e–e(g)e = –e(g), ’e œ E, ’g œ Ge

ee = 1, ’e œ E

e = 1, ’e œ T

L

.

This definition does not depend on the choice of the spanning tree, as one gets iso-
morphic groups.
Remark A.1.4 (A piece of the fundamental theorem). If G is the fundamental group of
a graph of groups, then G acts without inversion of edges on a tree T (called Bass-Serre
tree). We will see that free products with amalgamation can be seen as fundamental
groups of graph of groups, and we will explain how the tree T looks like.

Consider a graph of groups A with a single edge e, which is not a loop, together with
its formal inverse e

≠1 with two distinct endpoints u = o(e) and v = t(e). Take H = Gu

and K = Gv as vertex groups, and C = Ge as an edge group, as in the figure below:

A = H KC

Let also – = –e : C ≠æ H and Ê = Êe : C ≠æ K be the boundary monomorphisms.
Then T = A is a spanning tree in A and the fundamental group fi = fi(A , G , T ) is
isomorphic to the amalgamated free product:

G = H úC K = (H ú K)/È–e(c) = Êe(c) | c œ CÍ.

In this case the Bass-Serre tree T can be described as:

V T = {gH | g œ G} Û {gK | g œ G}.

Two vertices fH and gK are adjacent in T if there is k œ K such that fH = gkH, or
equivalently if there is h œ H such that gK = fhK.
The G-stabilizer of the vertex fH is equal to fHf

≠1, and the G-stabilizer of the vertex
gK is equal to gKg

≠1.
For an edge [fH, fhK] of T its G-stabilizer is equal to fh–(C)h≠1

f
≠1

This is important for our splittings of Artin groups which will appear in Chapter 4.
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Remark A.1.5. If (G, S) is an Artin groups with A, B ™ S such that S = A fi B then

G = GA úGAflB GB

where GD represents the parabolic subgroup with generating set D ™ S.

A.2 Stallings’ foldings

Here we present an algorithm for computing the intersection of two subgroups of a free
group. It is an application of the folded graphs technique (we follow Section 9 in [25]).

Definition A.2.1. Let X be a finite alphabet. By an X-digraph we mean a combinat-
orial graph � where every edge e has an arrow (or direction) and is labeled by a letter
from X, denoted µ(e).
Here we allow loops as well. For an edge e denote by o(e), t(e) its origin and terminus
respectively. If o(e) = t(e) then e is a loop.

Given an X-digraph �, one can turn it into an oriented graph with labels in X Û X
≠1,

by adding formal edges e
≠1 for any edge e œ E�. The label of e

≠1 is µ(e)≠1, and the
endpoints are given as o(e≠1) = t(e), and t(e≠1) = o(e). Denote the new graph by �̂.
Using �̂, define a path p in � as a sequence e1, . . . , en of edges in �̂ with t(ei) = o(ei+1)
for all 1 Æ i Æ n ≠ 1. Define o(p) = o(e1), and t(p) = t(en). Moreover the path p has a
label µ(p) = µ(e1) · · · µ(en) and we can regard it as a word on the alphabet X Û X

≠1.
For a vertex v in �, the single term sequence p = v is a path with o(p) = t(p) = v

and µ(p) = 1 (the empty word). A path p in an X-digraph � is called reduced if p does
not contain subpaths of the form e, e

≠1 or e
≠1

, e for e œ E�̂.

Definition A.2.2. Let � be an X-digraph, and v œ V �. Define the language of � with

respect to v to be:

L(�, v) = {µ(p) | p is a reduced path in � with o(p) = t(p)}.

Definition A.2.3. The X-digraph � is called folded, if for each vertex v œ V �, and
each letter x œ X there is at most one edge in E� with origin v and label x and at
most one edge with terminus v and label x.

There is a natural procedure to fold any X-digraph, one just looks at edges with the
same label and the same origin (or the same terminus) and glues them together. For a
folded X-digraph � and a vertex v œ V �, all the words of L(�, v) are freely reduced.
One can see a connection with finite state automata (see Section 1.2.4). Indeed, we
regard the pair (�̂, v) as an automaton M over the alphabet X ÛX

≠1. Vertices represent
states and edges represent transitions. The initial state is unique, given by v, which
also defines the unique accepting state. If � is folded, then M is deterministic.
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Remark A.2.4. If H is a finitely generated subgroup of F (X), then there is a finite
folded connected X-digraph � and a vertex v such that L(�, v) = H.
Indeed, assume H = Èh1, . . . , hmÍ with each hi freely reduced over X Û X

≠1. Define an
X-digraph �1 as a wedge of m circles at a vertex v1, where the i-th circle is subdivided
into |hi| edges which are directed and labeled by X Û X

≠1 such that the label of the
path hi, read from v1 to v1 is the word hi Now fold the graph �1 to obtain a graph �
with a distinguished vertex v (corresponding to v1) along the folding.

Definition A.2.5 (Product-graph). Let �1 and �2 be X-digraphs. The product-graph
� = �1 ◊�2 is an X-digraph, with vertex set V � = V �1 ◊V �2. For a pair of vertices
u = (u1, u2), v = (v1, v2) in V � and a letter x œ X introduce an edge e in E� labeled
by x, with origin in u and terminus in v if and only if there are edges ei œ E�i labeled
by x with origin in ui and terminus in vi for i œ {1, 2}.

Lemma A.2.6. Let �1 and �2 be folded X-digraphs. Let Hi = L(�i, vi) for some
vertices vi œ V �i and i œ {1, 2}. Let v = (v1, v2) œ V (�1 ◊ �2). Then � = �1 ◊ �2
is a folded X-digraph, and L(�, v) = H1 fl H2.

A.3 Reidemeister-Schreier procedure

There are examples in the thesis where we need to find a presentation for a subgroup
of a group, and usually the situation for us will be the following:

• we have a finitely presented group G,
• there is a surjective morphism fl : G æ C where C is a cyclic group,

and we want to find a presentation for K = ker(fl).
There is an algorithm, called the Reidemeister-Schreier procedure that, given a present-
ation of a group G and enough suitable information about a subgroup H of G, yields a
presentation of the subgroup H. For this topic we give [29] as the main reference.

Definition A.3.1. Let F = F (X) be a free group with basis X and H a subgroup of
F . A Schreier transversal for H in F , is a subset T of F which is a right transversal i.e.

• the union fi
tœT

Ht is equal to F , and

• Ht1 ”= Ht2 as for t1 ”= t2 in T ,
and furthermore any prefix of any element of T belongs to T as well.

In [29], the procedure is as follows:
• the group G is given by a presentation ÈX | RÍ.
• fi : F (X) æ G is the canonical epimorphism from the free group F = F (X)

onto G.
• T is a Schreier transversal for fi

≠1(H) in F (X).
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• The map ¯: F æ T maps w œ F to its coset representative w œ T .
then Y = {tx(tx)≠1 | t œ T, x œ X, tx ”œ T} gives a set of generators for H.
Furthermore, there is a map · : F (X) æ F (Y ) (see [29]); the map · rewrites each
word w œ fi

≠1(H) in terms of generators of Y . Define

S = {·(trt
≠1) | t œ T, r œ R}.

Then ÈY, SÍ is a presentation for our subgroup H.

Remark A.3.2. In our examples we refer to T as Schreier transversal for H in G.
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[14] Maŕıa Cumplido, Alexandre Martin and Nicolas Vaskou. ‘Parabolic subgroups of
large-type Artin groups’. In: arXiv preprint arXiv:2012.02693 (2020).
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