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Many special thanks to Llúıs Vena (Universitat Politècnica de Catalunya)
for very valuable and insightful comments throughout this research.

I am also deeply grateful to Fernando Chamizo, Javier Cilleruelo and
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Finally, I would like to thank Xuding Zhu for his valuable comments and
also all the anonymous referees for their constructive feedback.

2



Contents

1 Introducción 5

1.1 Coloración de mapas, problemas de planificación y flujos de
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Chapter 1

Introducción

En este caṕıtulo, introducimos y motivamos los resultados que constituyen
esta tesis doctoral. Comenzamos con algunos resultados clásicos para intro-
ducir diferentes formas de colorear grafos, y luego describimos el contenido
de cada caṕıtulo siguiente. Los caṕıtulos 3, 4 y 5 de esta tesis son trabajos ya
publicados o en proceso de revisión por pares en diferentes revistas [11–13].

1.1 Coloración de mapas, problemas de plani-

ficación y flujos de tráfico

Como se relata en [7], en 1852 el matemático Francis Guthrie observó que,
utilizando sólo cuatro colores, pod́ıa colorear un mapa de los condados de
Inglaterra de forma que los condados vecinos recibieran colores diferentes.
Esto le llevó a conjeturar lo que ahora es el conocido teorema de los cuatro
colores, a saber, que todo mapa se puede colorear, usando a lo sumo cuatro
colores, de forma que cualquier par de territorios limı́trofes tenga colores
distintos. Francis Guthrie intentó sin éxito demostrar su conjetura. Su her-
mano Frederick, también matemático, compartió la conjetura con Augustus
De Morgan, quien era su profesor en ese momento. De Morgan planteó el
problema a William Rowan Hamilton (Cf. figura 1.1), quien aparentemente
no mostró mucho interés en el problema. Décadas más tarde, en 1878, en
una reunión de la Sociedad Matemática de Londres, Arthur Cayley reanimó
el problema de los cuatro colores preguntando si hab́ıa sido resuelto. El
propio Cayley no consiguió resolverlo [16]. Finalmente, tras varias pruebas
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falsas (y falsas refutaciones) a lo largo del siguiente siglo desde su formu-
lación, la conjetura fue finalmente confirmada en 1976 por Appel y Haken [2].
Aunque esta prueba fue controvertida en su momento debido a su uso de
ordenadores, en la actualidad es generalmente aceptada.

El bello y paradigmático teorema de los cuatro colores proporciona una
excelente motivación para recordar los fundamentos de la teoŕıa de grafos.

Un grafo G es un par (V,E), donde V es un conjunto, cuyos elementos
se llaman los vértices de G, y E es un conjunto de pares de elementos de V ,
es decir, subconjuntos de V de cardinalidad 2, llamados las aristas de G.
Podemos denotar el conjunto de todos los pares de elementos de V por

(
V
2

)
,

y escribir por tanto E ⊂
(
V
2

)
. De dos vértices que forman una arista, se dice

que están “unidos por una arista”, o que son “adyacentes”, o “vecinos” en
G. A lo largo de esta tesis, a menos que se indique lo contrario, asumimos
que V es finito, que ningún vértice es adyacente a śı mismo, que no hay
aristas múltiples (es decir, no más de una arista entre dos vértices), y que G
es no-dirigido (es decir, las aristas no tienen orientación). Las cardinalidades
|V | y |E| se llaman el orden y el tamaño de G respectivamente.

El teorema de los cuatro colores se formula fácilmente en términos de
grafos. El conjunto de regiones de un mapa puede representarse como un
grafo que tiene un vértice para cada región y una arista para cada par de
regiones limı́trofes (i.e. que comparten una parte de su frontera). Este grafo
se dibuja en el plano, dibujando un vértice en cada región y dibujando las
aristas como curvas que van desde cada vértice hasta el vértice de cada
región adyacente, a través de la parte compartida de la frontera (Cf. las
figuras 1.2 y 1.3). Un tal grafo, llamado grafo plano (o grafo planar), se
caracteriza por esta posibilidad de dibujarlo en un plano sin que se cruce
ninguna arista con otra. El teorema afirma que los vértices de todo grafo
plano pueden ser coloreados con a lo sumo cuatro colores de manera que no
haya dos vértices adyacentes que reciban el mismo color (Cf. figura 1.4).

De este modo, llegamos a la noción clásica de coloración de grafos, que
formulamos de la siguiente manera.

Definición 1.1 (k-coloración de grafos). Sea G un grafo, y sea k un entero
positivo. Una k-coloración de G es una función f : V (G)→

{
0, 1, . . . , k−1

}
tal que para toda arista xy ∈ E(G) se tiene f(x) 6= f(y).
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Fig. 1.1: Carta de De Morgan a Hamilton. (Wikimedia Commons. Dominio público)
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Fig. 1.2: Mapa simplificado de Alemania. (Wikimedia Commons. Dominio público)

Fig. 1.3: Grafo asociado al mapa de Alemania. (Wikimedia Commons. Dominio público)
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Fig. 1.4: Coloración óptima del grafo. (Wikimedia Commons. Dominio público)

Obviamente, siempre es posible colorear G con k =
∣∣V ∣∣ colores distintos.

Una pregunta natural es entonces, dado un grafo G, cuál es el número
mı́nimo k tal que G admite una k-coloración. Dicho número óptimo es el
número cromático (“ordinario”, o “clásico”) de G.

Aqúı y en el resto de la tesis, denotamos por N el conjunto de enteros
positivos.

Definición 1.2. Sea G un grafo. Definimos el número cromático de G,
denotado por χ(G), como sigue:

χ(G) := min
{
k ∈ N : G admite una k-coloración

}
.

Aśı pues, el teorema de los cuatro colores es el hecho que para todo grafo
plano G (i.e. un grafo que puede dibujarse en un plano sin cruces de aristas)
se tiene χ(G) ≤ 4.

El problema de determinar χ(G) para un grafo general G es altamente
no-trivial, y se sabe que es dif́ıcil también desde el punto de vista computa-
cional. Ilustramos el concepto en algunos casos sencillos, en las figuras 1.5,
1.6 y 1.7.

Otra motivación para el estudio de coloraciones de grafos, que conduce
a un refinamiento del número cromático clásico, es el problema de la pro-
gramación óptima de reuniones.
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Fig. 1.5: El grafo completo K5. En general, el grafo completo Kn (n ∈ N)
es el grafo de orden n con E =

(
V
2

)
. (Wikimedia Commons. Dominio público)

Fig. 1.6: El ciclo (o grafo ćıclico) C5. Para ciclos Cn con n ≥ 3 entero,
tenemos χ(Cn) = 2 si n es par, y χ(Cn) = 3 si n es impar. (Wikimedia Commons.

Dominio público)
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Fig. 1.7: El grafo de Petersen K(5, 2). Es un caso particular de grafo
de Kneser K(n, k), para enteros positivos n, k con n ≥ 2k. Los vértices
de K(n, k) son los k-conjuntos (i.e. subconjuntos de cardinalidad k) del

conjunto [n] :=
{

1, 2, . . . , n
}

, es decir V (K(n, k)) =
(

[n]
k

)
. Dos tales vértices

son vecinos en este grafo si los subconjuntos correspondientes son disjuntos.
El número cromático del grafo de Kneser es χ(K(n, k)) = n− 2k+ 2, como
establece un célebre teorema de Lovász. (Wikimedia Commons. Public Domain)

Siguiendo un ejemplo de [59], supongamos que hay que programar cinco
reuniones de comités, cada una de 1 hora de duración. Si dos comités
distintos tienen un miembro en común, no pueden reunirse al mismo tiempo.
Podemos preguntar por la longitud del intervalo de tiempo más corto en el
que se pueden programar todas las reuniones. Sea G el grafo cuyos vértices
son los comités, y en el cual dos vértices son adyacentes si los comités corres-
pondientes no pueden reunirse simultáneamente. Aśı, el grafo G representa
los conflictos de programación.

La solución obvia a este problema es que la longitud del intervalo de
tiempo más corto viene dada por χ(G). Supongamos que dicho grafo es el 5-
ciclo, es decir G = C5 (representado en la figura 1.6). Dado que χ(C5) = 3,
la programación puede hacerse en 3 horas. Podemos preguntarnos si la
programación se puede mejorar (i.e. acortar). Y efectivamente, se puede
mejorar: la programación se puede hacer en 2,5 horas si permitimos que un
comité se reúna durante media hora, y más tarde reanude su reunión durante
la media hora restante, tras una interrupción. Aśı, es posible acortar el
tiempo total de programación si permitimos que las reuniones se dividan
en fracciones. El tiempo más corto necesario para programar las reuniones
cuando se permiten tales divisiones no es el número cromático clásico χ(G),
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Fig. 1.8: Una (3, 1)-coloración y una (6, 2)-coloración de C5. (GTBacchus, CC

BY-SA 3.0, Wikimedia Commons)

sino el número cromático fraccionario, definido formalmente a continuación,
y denotado por χf (G). En el ejemplo del 5-ciclo se puede ver, en efecto,
que χf (C5) = 2, 5 (véase la figura 1.9), lo cual muestra que χf (G) puede ser
estrictamente menor que χ(G).

Este ejemplo ilustra el hecho que la noción de coloración de grafos puede
ser refinada de maneras muy útiles. El refinamiento ilustrado en el anterior
párrafo, conocido como coloración fraccionada, es una noción central en el
desarrollo de la llamada teoŕıa fraccionaria de grafos, tratada por Schei-
nerman y Ullman en [59] y por Berge en [5]. Según [59, §3.11], la primera
publicación en la que aparece el número cromático fraccionario es [36].

Definición 1.3. (Cf. [59, §3.1]) Sea G un grafo. Una b-coloración de G
es una asignación, a cada vértice de G, de un conjunto de b colores, de
modo que los vértices adyacentes reciban conjuntos disjuntos de colores.
Decimos que G tiene una (d, b)-coloración si G tiene una b-coloración en la
que los colores se extraen de una paleta de d ≥ 1 colores; es decir, si hay
una función f : V (G) 7→

(
[d]
b

)
tal que para cada arista xy ∈ E(G) tenemos

f(x) ∩ f(y) = ∅.

Las figuras 1.8 y 1.9 muestran ejempos de una (3, 1)-coloración y de una
(6, 2)-coloración, aśı como una (5, 2)-coloración (realmente fraccionada).

Definición 1.4. (Número cromático fraccionario) Sea G un grafo. Defini-
mos el número b-cromático de G por la fórmula

χb(G) := min
{
d ∈ N : G admite una (d, b)-coloración

}
.

(Nótese que χ1(G) = χ(G).) Definimos entonces el número cromático frac-
cionario χf (G) como sigue:

χf (G) := lim
b→∞

χb(G)

b
= inf

b

χb(G)

b
.
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Fig. 1.9: Una (5, 2)-coloración de C5. (GTBacchus, CC BY-SA 3.0, Wikimedia Commons)

La convergencia de la sucesión
{χn(G)

n

}
n≥1

está garantizada por un lema

básico de subaditividad (Cf. [59, Apéndice A.4]), ya que siempre tenemos
χa+b(G) ≤ χa(G) + χb(G). De hecho, se puede ver [59] que para todo grafo
G no vaćıo (es decir, con E(G) 6= ∅) hay un número entero positivo b tal
que χf (G) = χb(G)/b ≥ 2.

La determinación de χf (G) para un grafo general G también es de alta
complejidad (como la de χ(G)). No obstante, para la amplia clase de grafos
G que son vértice-transitivos,1 se sabe que

χf (G) =
|V (G)|
α(G)

,

donde α(G) es el número de independencia2 de G. En particular, los ci-
clos son vértice-transitivos y α(C2m+1) = m, y se deduce que χf (C2m+1) =
2 + m−1. Además, los grafos de Kneser K(n, k) (para n, k enteros posi-
tivos con n ≥ 2k; Cf. figura 1.7) también son vértice-transitivos, y tenemos
α(K(n, k)) =

(
n−1
k−1

)
y χf (K(n, k)) = n/k.

Alternativamente, la coloración de un grafo G en el sentido clásico puede
verse como un problema de programación lineal entera, en el que se asignan
pesos 0 ó 1 a los conjuntos independientes en G, de forma que cada vértice
pertenezca a conjuntos independientes cuyo peso total sea al menos 1 y la
suma de los pesos de todos los conjuntos independientes esté minimizada.
Desde este punto de vista, la coloración fraccionada es una relajación lineal
de este problema de optimización: el número cromático fraccionario χf (G)

1Un grafo es vértice-transitivo si su grupo de automorfismos actúa transitivamente
sobre su conjunto de vértices.

2Un conjunto independiente enG es un conjunto A ⊂ V (G) tal que cada par de vértices
u, v en A cumple uv /∈ E(G). El número de independencia de G es la cardinalidad máxima
de un conjunto independiente en G.
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es el menor número real x para el cual existe una asignación de pesos no
negativos a conjuntos independientes en G, tal que la suma de los pesos es
x y cada vértice pertenece a conjuntos independientes cuyo peso total es al
menos 1. Es bien sabido que siempre se alcanza el mı́nimo x en cuestión, y
que χf (G) es siempre un número racional positivo [59].

Se puede demostrar (Cf. [64]) que el número cromático fraccionario es
también equivalente a la siguiente definición, que utiliza la teoŕıa de la me-
dida.

Definición 1.5 (Número cromático fraccionario con teoŕıa de la medida).
Para cualquier grafo G, tenemos χf (G) := inf

{
r > 0 : para cada vértice v

existe un conjunto medible Av ⊆ [0, 1) con medida de Lebesgue µ(Av) ≥ 1/r,
tal que para cada uv ∈ E(G), Au ∩ Av = ∅

}
.

Esta definición, al situar la coloración fraccionada en el contexto de
conjuntos medibles en un intervalo, indica un marco general que abre la
puerta a nuevas nociones de coloración de grafos.

En [62], [64], Zhu propuso una tal noción nueva, llamada coloración
circular. Esta noción utiliza intervalos abiertos en el grupo circular T =
R/Z. Podemos ver T como el intervalo [0, 1) con la operación de suma
módulo 1. Tenemos entonces la siguiente definición.

Definición 1.6 (Número cromático circular). Sea G un grafo. El número
cromático circular de G se define como sigue: χc(G) := inf

{
r > 0 : para

cada vértice x existe un intervalo abierto Ax ⊆ T con µ(Ax) ≥ 1/r tal que
para toda arista xy ∈ E(G) se tiene Ax ∩ Ay = ∅

}
.

El número cromático circular también puede considerarse en términos de
programación de reuniones. En efecto, este número es la longitud mı́nima t
de tiempo total necesario para llevar a cabo una planificación de reuniones de
comités, donde todas las reuniones deben durar 1 hora ininterrumpida, pero
viendo esta hora módulo t, es decir, permitiendo que una reunión ocupe la
unión de dos intervalos de tiempo (0, a)∪(b, t) (con 0 < a < b y a+t−b = 1),
a saber, un intervalo al principio del periodo de reuniones y otro al final.
Esta noción, diferente de la coloración clásica de grafos, es especialmente
adecuada para los problemas de programación con condiciones periódicas. El
siguiente ejemplo [64] es instructivo. Consideremos el problema de organizar
un sistema de semáforos para regular de forma óptima el tráfico de veh́ıculos
en un cruce de carreteras. Un periodo completo de tráfico es un intervalo de
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tiempo durante el cual cada flujo de tráfico posible debe tener un turno de
luz verde, siendo cada uno de estos turnos de igual duración, tomando esta
duración de longitud 1. Este sistema se modeliza fácilmente mediante un
grafo G, cada uno de cuyos vértices representa un flujo de tráfico, con cada
arista representando un par de flujos de tráfico que son incompatibles, es
decir, cuyos intervalos de luz verde no deben solaparse. El problema consiste
en encontrar la duración mı́nima de un periodo completo de tráfico en este
cruce vial.

Una solución que podemos dar a este problema es dividir V (G) en un
número mı́nimo k de conjuntos independientes I1, I2, ..., Ik y asignar interva-
los de tiempo unitarios sucesivos a cada conjunto independiente, obteniendo
aśı un periodo de tráfico completo de duración total k = χ(G). A primera
vista, el problema queda aśı resuelto. Sin embargo, si el grafo satisface la
desigualdad estricta χc(G) < χ(G), entonces esta solución no será óptima,
y las coloraciones circulares (que utilizan la periodicidad adicional) darán
una solución estrictamente mejor (Cf. Sección 4 en [28]). En particular, un
resultado de Guichard [30] muestra que si un grafo G es n-cŕıtico3, y tiene
circunferencia4 al menos n+ 1, entonces χc(G) < χ(G).

Se puede dar una definición equivalente de χc(G) que es más similar a la
de coloraciones clásicas (Definición 1.1), utilizando la siguiente noción [64].

Definición 1.7 (Coloración r-circular). Sea G un grafo y r ≥ 1 un número
real. Una r-coloración circular de G es una función f : V (G) → [0, r) tal
que para cada arista xy ∈ E(G) tenemos 1 ≤

∣∣f(x)−f(y)
∣∣ ≤ r−1. Podemos

entonces definir el número cromático circular de G como sigue:

χc(G) := inf
{
r ≥ 1 : G admite una r-coloración circular

}
.

Obsérvese que si f es una k-coloración deG en el sentido clásico, entonces
f es también una k-coloración circular de G, y por tanto χc(G) ≤ χ(G).
Por otro lado, para una r-coloración circular g : V (G) → [0, r), siendo
s = max{g(x) : x ∈ V (G)}, podemos ver g como una (s + 1)-coloración
clásica de G. Como s < r, se deduce el conocido resultado siguiente.

3Un grafo G es n-cŕıtico si χ(G) = n y χ(G− v) = n− 1 para cualquier vértice v de
G, donde G − v denota el grafo G al cual se retira el vértice v y todas las aristas que
contienen a v.

4La circunferencia de un grafo es la longitud de su ciclo simple más corto.
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Teorema 1.8. Para cualquier grafo G tenemos

χ(G)− 1 < χc(G) ≤ χ(G), (1.1)

en particular χ(G) = dχc(G)e.

Esto demuestra que χc(G) contiene más información sobre la estructura
de G que χ(G), de modo que el número cromático circular puede utilizarse
para cuantificar lo lejos que está G de poder colorearse con menos de χ(G)
colores. En este sentido, se puede ver el parámetro χc(G) como un refi-
namiento de χ(G).

En los Caṕıtulos 3 y 4 de esta tesis, introducimos nuevas nociones de
coloración de grafos que conducen a refinamientos adicionales de χc(G) y
χf (G), dando lugar a nuevos números cromáticos con propiedades intere-
santes. Detallamos los principales contenidos de estos caṕıtulos en las dos
secciones siguientes.

1.2 Coloración de grafos mediante traslaciones

en el ćırculo: el número girocromático

Históricamente, la primera definición del número cromático circular fue dada
por Vince en 1988 [61], con el nombre de número cromático estelar (en
relación con grafos estelares). Esta noción se puede formular en un entorno
discreto como sigue.

Definición 1.9 (Número cromático estelar). Sean 1 ≤ b ≤ d enteros y sea
G un grafo. Una (d, b)-?-coloración de G es una función f : V (G)→ [d] tal
que para cada arista xy tenemos

b ≤ |f(x)− f(y)| ≤ d− b.

Definimos el número cromático estelar de G por la fórmula

χ?(G) := inf
{d
b

: G admite una (d, b)-?-coloración
}
.

Entre las principales propiedades básicas del número cromático estelar,
destacamos dos hechos: primero, como demostró el propio Vince [61], el
infimum en la definición de χ?(G) se alcanza para todo grafo G, y es por
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tanto un mı́nimo; segundo, el hecho (consecuencia del anterior) que χ?(G)
es siempre un número racional (Cf. Vince [61] y Bondy–Hell [8]). 5

Posteriormente, Zhu [62], [64] observó que su número cromático circular
es efectivamente igual al número cromático estelar.

Lema 1.10 (Zhu). Para todo grafo G tenemos χ?(G) = χc(G).

Incluimos la breve prueba aqúı.

Prueba. Supongamos que f es una (d, b)-?-coloración de G. Definamos la
función g : V (G) → [0, d/b) tal que g(x) := f(x)/b. Para cada arista xy
de G tenemos 1 ≤ |g(x)− g(y)| ≤ d

b
− 1, por lo que toda (d, b)-?-coloración

de G corresponde a una (d/b)-coloración circular de G. Por otro lado, si
g es una (d/b)-coloración circular de G, entonces f(x) := bb · g(x)c es una
(d, b)-?-coloración de G.

A partir de las definiciones de χf (G) y χc(G) en términos de coloraciones
(d, b) y (d, b)-?, vemos sin dificultad las siguientes desigualdades.

Lema 1.11. Todo grafo G satisface χf (G) ≤ χc(G) ≤ χ(G).

Ambas desigualdades pueden ser estrictas, y la diferencia entre χf (G) y
χc(G) puede ser arbitrariamente grande. Por ejemplo, como mencionamos
anteriormente, el grafo de Kneser G = K(n, k) (n ≥ 2k) cumple χ(G) =
n− 2k + 2 y χf (G) = n

k
, y se sabe también [18] que χc(G) = χ(G).

El punto de partida del Caṕıtulo 3 fue el trabajo de Avila y Candela [3],
que incluye aplicaciones combinatorias de herramientas centrales de la teoŕıa
ergódica. Estas aplicaciones condujeron a un nuevo parámetro cromático
para grafos, que se encuentra entre el número cromático circular y el frac-
cionario. El propósito de este caṕıtulo es estudiar este nuevo parámetro,
que llamamos número girocromático. Este número es el rećıproco de la can-
tidad natural definida a continuación, donde T denota como de costumbre
el grupo circular R/Z.

Definición 1.12 (Avila-Candela, 2016). Sea G un grafo. Decimos que un
conjunto de Borel A ⊆ T es una T-base de coloración para G si existe un

5Existen otras descripciones equivalentes del número cromático estelar, en términos
de homomorfismos hacia cierta clase de grafos [8], que también implican fácilmente la
racionalidad de χ?(G).
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mapeo f : V (G) → T tal que para cada arista xy de G tenemos
(
A +

f(x)
)
∩
(
A + f(y)

)
= ∅. Decimos entonces que (A, f) es una T-coloración

(o T-girocoloración) de G. Definimos

σT(G) := sup{µT(A) : A es una T-base de coloración para G}, (1.2)

donde µT denota la medida de probabilidad de Haar sobre T.

Definición 1.13 (Número girocromático). Para cualquier grafo G definimos
χg(G) := 1/σT(G).

Nótese que la noción σT(G) se generaliza fácilmente sustituyendo T por
cualquier grupo abeliano compacto Z. Para cualquier grupo de este tipo,
dotado de una medida de probabilidad de Haar µZ , podemos definir en
efecto

σZ(G) := sup{µZ(A) : A es una Z-base de coloración para G}, (1.3)

siendo obvia la extensión de la noción de T-base a la de Z-base.

Una observación básica sobre el número girocromático es la siguiente.

Proposición 1.14. Todo grafo finito G satisface χf (G) ≤ χg(G) ≤ χc(G).

Prueba. Para la primera desigualdad, supongamos que (A, f) con A ⊆ T
Borel es una T-coloración de G. Entonces también es una coloración frac-
cionada de G con Ax := A + f(x) para cada vértice x (como mencionamos
anteriormente, solemos identificar T con el intervalo [0, 1) dotado de la ope-
ración de suma módulo 1). Para la segunda desigualdad, si existe una colo-
ración por intervalos abiertos (que son conjuntos de Borel) Ax, todos de la
misma longitud, entonces es obviamente una T-coloración ya que cada inter-
valo abierto Ax puede verse como una traslación de un único intervalo A (de
modo que Ax =: A+ f(x) satisface Ax ∩Ay = ∅ para toda xy ∈ E(G)).

Informalmente, digamos que la coloración circular asigna arcos (interva-
los en el ćırculo) a los vértices de G, mientras que la coloración fraccionada
les asigna conjuntos de Borel en [0, 1). Una T-girocoloración es más estricta
que la coloración fraccionada ya que a los vértices les debe asignar copias
giradas de un mismo subconjunto de Borel; por otro lado es más flexible
que la coloración circular, ya que el subconjunto de Borel asignado a los
vértices no tiene por qué ser un arco.
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Una de las motivaciones que condujeron a este nuevo parámetro de co-
loración de grafos es una versión de un problema paradigmático en la com-
binatoria aritmética. El problema general consiste en determinar el mayor
tamaño que puede tener un subconjunto de un grupo abeliano si se exige que
este conjunto no contenga soluciones a ecuaciones lineales prescritas. En la
versión particular en cuestión, tratada en [3], se consideran números enteros
c1, c2, . . . , cd no nulos y multiplicativamente independientes6, se fija un grafo
G cualquiera con conjunto de vértices V = [d], y se pregunta entonces cuál
es el mayor tamaño (medida de Haar) que puede tener un subconjunto de T
si exigimos que este conjunto evite las soluciones de las ecuaciones lineales
ci x1 = cj x2 para toda arista ij en G. En otras palabras, preguntamos cuál
es el valor de

dG,ci := sup
{
µT(A) : A ⊂ T, ∀ ij ∈ E(G), ∀x1, x2 ∈ A, ci x1 6= cj x2

}
.

En [3], se demuestra que dG,ci = σT(G).

En el Caṕıtulo 3, demostramos que la definición del número girocromático,
al igual que los números cromáticos circulares y fraccionarios, es robusta, en
el sentido de que puede ser reformulada de varias formas que son equiva-
lentes. Por ejemplo, la definición a través de T-bases de coloración tiene la
siguiente variante equivalente en ámbito discreto.

Teorema 1.15. Sea G un grafo. Entonces σZN (G) ≤ σT(G) para cada
N ∈ N, y tenemos

σT(G) = sup
N∈N

σZN (G) = lim
N→∞

σZN (G).

Esto da lugar a la siguiente reformulación.

Corolario 1.16. El número girocromático de un grafo G es igual al infimum
de los números N/K para los cuales existe un conjunto A ∈

(ZN
K

)
y una

función f : V (G)→ ZN tal que (A+f(u))∩ (A+f(v)) = ∅ para cada arista
uv ∈ E(G).

Recordemos el hecho, bien conocido, que la coloración clásica, la colo-
ración circular y la coloración fraccionada de grafos pueden definirse uti-
lizando homomorfismos hacia ciertas clases de grafos: grafos completos

6Esto significa simplemente que si cλ1
1 · c

λ2
2 · · · c

λd

d = 1 con λi ∈ Z, entonces λi = 0
para cada i
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(cliques), cliques circulares, y grafos de Kneser, respectivamente. Demostramos
que el número girocromático también sigue este patrón: en efecto, se puede
definir en términos de homomorfismos a grafos circulantes. 7

Teorema 1.17. El número girocromático de un grafo G es igual a

inf
N∈N,S⊆ZN
G→C(N,S)

χf (C(N,S)) = inf
N∈N,S⊆ZN
G→C(N,S)

N

α (C(N,S))
,

es decir, es igual al infimum de los números cromáticos fraccionarios de los
grafos circulantes que admiten un homomorfismo desde G.

Otra caracteŕıstica notable del número girocromático es que se puede
definir de forma equivalente utilizando toros de dimensión arbitrariamente
alta.

Teorema 1.18. Para todo grafo G, para todo d ∈ N se cumple

σT(G) = σTd(G).

Este resultado implica que la variante discreta de la definición (dada
por el Teorema 1.15) es equivalente a la versión donde se consideran to-
dos los grupos abelianos finitos en lugar de solamente los grupos ZN (Cf.
Corolarios 3.10 y 3.11). Esto muestra una cierta universalidad del número
girocromático. Obsérvese que (como se detalla en el Caṕıtulo 3) el propio
número cromático fraccionario se puede considerar de una forma similar,
pero abarcando todos los grupos finitos (no solo los abelianos). De este
modo, el número girocromático puede verse como una versión del número
cromático fraccionario restringida a los grupos abelianos.

Entre otros resultados sobre el número girocromático, damos la siguiente
construcción de grafos que satisfacen las desigualdades estrictas χf (G) <
χg(G) < χc(G).

Teorema 1.19. Existe una sucesión de grafos (Gk)k∈N\{1} tal que χf (Gk) <
χg(Gk) < χc(Gk) = k + 2, y con limk→∞ χg(Gk) = 2.

7Un grafo circulante G = C(n, S) es un grafo de Cayley sobre el grupo ćıclico V (G) =
Zn, generado por un conjunto S ⊂ Zn, que suponemos simétrico (es decir, S = −S); aśı,
dos vértices a, b ∈ Zn son adyacentes si y sólo si a− b ∈ S (equivalentemente b− a ∈ S).
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Por último, demostramos que, de forma un tanto sorprendente, no es
siempre posible alcanzar el supremum en la definición (1.2), lo cual implica
también que no siempre se alcanza el infimum en la definición discreta dada
por el Teorema 1.17. Esto conduce al problema abierto de si existe un
grafo finito G tal que el número girocromático de G no sea racional. Pro-
ponemos este y otros problemas abiertos, entre otras observaciones finales
en el caṕıtulo.

Consideramos que estos resultados aportan pruebas convincentes de que
el número girocromático es un parámetro natural y robusto, de utilidad para
profundizar y afinar nuestra comprensión de la estructura de los grafos.

1.3 Números cromáticos torales de grafos

En el Caṕıtulo 3 introducimos el número girocromático de un grafo G, y
varios resultados en dicho caṕıtulo muestran que χg(G) contiene más infor-
mación que los números cromáticos fraccionario y circular. En particular,
demostramos que se cumple χf (G) ≤ χg(G) ≤ χc(G) para cualquier grafo
G, y que estas desigualdades pueden ser estrictas. También se demuestra
que el número girocromático tiene cierta universalidad en el sentido de que
el supremum en su definición original puede extenderse a conjuntos de Borel
en un toro de dimensión finita arbitraria, sin cambiar el valor de χg(G). Es
decir que para cualquier r ∈ N tenemos

χg(G) = inf{1/µTr(A) : A es una Tr-base de coloración de G}. (1.4)

Sin embargo, el número girocromático es más “escurridizo” que el número
cromático circular χc(G), ya que también se demostró en el Caṕıtulo 3 que
el infimum en la definición original (es decir en (1.4) con r = 1) no siempre
se alcanza, y aún no sabemos si χg(G) es siempre racional. Peor aún, no
sabemos si siempre hay al menos una dimensión finita r tal que el infimum
se alcanza en esta dimensión.

Esto aporta motivación para estudiar nociones de coloración intermedias,
que también refinan χc(G) pero que son anaĺıticamente más manejables que
el número girocromático. Este es el objetivo principal del Caṕıtulo 4.

Un candidato natural para un refinamiento más manejable de χc(G) con-
siste en colorear el grafo con traslaciones de una caja en el toro d-dimensional
Td. Podemos ver este toro como [0, 1]d con operación de suma mod 1 en cada
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coordenada. Por una caja abierta en Td entendemos un producto cartesiano
de la forma I1 × · · · × Id ⊂ Td donde Ij es un intervalo abierto (conjunto
conexo abierto) en T para cada j ∈ [d]. El correspondiente refinamiento del
número cromático circular se define entonces como sigue.

Definición 1.20. Sea G un grafo. Para cada d ∈ N, definimos el número
cromático d-toral de G, denotado por χcd(G), por la fórmula

χcd(G) = inf
{

1/µTd(R) : R ⊂ Td una caja abierta, G es R-coloreable
}
,

(1.5)
donde, para un subconjunto A de un grupo abeliano Z, decimos que un grafo
G es A-coloreable si existe un mapeo f : V (G) → Z tal que

(
A + f(x)

)
∩(

A + f(y)
)

= ∅ para cada arista xy ∈ E(G). (Podemos decir entonces que
f es un mapeo de coloración de G por A.)

El número cromático 1-toral es el número cromático circular habitual.
Demostramos en el Caṕıtulo 4 que se da la siguiente sucesión de desigual-
dades para cualquier número entero positivo d:

χf (G) ≤ χg(G) ≤ χcd+1(G) ≤ χcd(G) ≤ χ(G). (1.6)

También se demuestra que el infimum en (1.5) siempre se alcanza y es
racional, igual que ocurre con χc(G):

Teorema 1.21. Sea G un grafo de orden n, y sea d ∈ N. Entonces, para
cada i ∈ [d] hay enteros ri ≤ si en [n] tales que G es coloreable por la caja
R =

∏
i en[d](0,

ri
si

) en Td y se tiene χcd(G) = 1
µTd (R)

= s1···sd
r1···rd

.

Notemos que para todo grafo G, se deduce de (1.6) que la sucesión decre-
ciente (χcd(G))d∈N debe converger, y podemos preguntarnos entonces cuán
rápida es esta convergencia, e incluso si la sucesión siempre se vuelve con-
stante a partir de cierto punto. Resolvemos estas preguntas con el siguiente
resultado.

Proposición 1.22. Sea G un grafo, y sea d = blog2(χ(G))c. Entonces,
para cada d′ ≥ d tenemos χcd′ (G) = χcd(G).

También podemos preguntarnos cómo vaŕıa χcd(G) para un d fijo y G
variable. En particular, podemos preguntarnos si para cada d fijo existe
un grafo G tal que χcd+1(G) < χcd(G); una respuesta positiva indicaŕıa que
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cada número χcd(G) contiene información sobre G que permite distinguir
este número de los demás χcd′ (G), d′ > d. En otras palabras, esto indicaŕıa
que los grafos separan los números cromáticos torales.

Nótese que, dada la Proposición 1.22, podemos definir razonablemente
lo que llamaremos la dimensión de estabilización de un grafo G para los
números cromáticos torales, a saber, el menor número entero d con la
propiedad de que χcd′ (G) = χcd(G) para todo d′ ≥ d. Denotando la di-
mensión de estabilización de G por d∗(G), la Proposición 1.22 implica que
d∗ ≤ blog2(|G|)c, y podemos preguntarnos cuán precisa es esta cota superior.
Demostramos que esta cota es precisa módulo una constante multiplicativa,
mediante el siguiente resultado, que también muestra que existen efectiva-
mente grafos que separan los números cromáticos torales.

Teorema 1.23. Para cada d ∈ N existe un grafo G de orden n = 5d que
satisface d∗(G) = d = log5(n).

Por último, al final del Caṕıtulo 4 relacionamos el número χcd(G) con
el número cromático ordinario χ(G), a través de una desigualdad que ge-
neraliza la conocida desigualdad (1.1), y que relaciona este tema con pro-
blemas conocidos de recubrimientos del toro Td por cajas abiertas (Cf. la
Proposición 4.21).

1.4 El problema de Motzkin en el ćırculo

El último caṕıtulo de esta tesis está dedicado a un proyecto que surgió du-
rante la investigación sobre el número girocromático. El proyecto concierne
a un problema bastante conocido en la teoŕıa combinatoria de números, que
fue planteado por T. S. Motzkin en los años 1970.

El problema de Motzkin pregunta cuán grande puede ser un conjunto de
números enteros si no contiene ningún par de elementos cuya diferencia se
encuentre en un conjunto prescrito de “diferencias prohibidas”. Más precisa-
mente, dado un subconjunto no vaćıo D del conjunto de enteros positivos N,
digamos que un conjunto A ⊂ Z es D-huidizo si para cada a, a′ ∈ A tenemos
|a−a′| /∈ D, es decir, si el conjunto de diferencias A−A = {a−a′ : a, a′ ∈ A}
es disjunto de D. Sea A(N) la cardinalidad |A ∩ [−N,N ]|, y sea δ̄(A) la

densidad superior de A, es decir δ̄(A) = lim supN→∞
A(N)
2N+1

. El problema de
Motzkin plantea determinar o estimar la mayor densidad superior que puede
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tener un conjunto D-huidizo, es decir, la siguiente cantidad, que llamamos
la densidad de Motzkin de D:

MdZ(D) := sup{δ̄(A) : A subconjunto D-huidizo de Z}. (1.7)

Cantor y Gordon publicaron el primer art́ıculo sobre el problema de
Motzkin [14], demostrando varios resultados interesantes, en particular una
solución completa para el caso de a lo sumo dos diferencias prohibidas (es
decir, para |D| ≤ 2). Desde entonces, el problema general ha motivado
muchos trabajos y se han abordado varios casos especiales adicionales (como
se detalla en el Caṕıtulo 5). Aún aśı, el problema general sigue sin solución
completa.

El problema de Motzkin constituye todo un tema dentro de la teoŕıa
combinatoria de números, que tiene interesantes conexiones con otros pro-
blemas conocidos, entre ellos el problema del número cromático fraccionario
de los llamados grafos de distancia, o la conocida conjetura del corredor
solitario.

El problema de Motzkin también puede verse como un caso particular de
una cuestión más amplia, que puede plantearse también en cualquier grupo
abeliano compacto Z: dado un conjunto no vaćıo D ⊂ Z, denotando por µZ

la medida de probabilidad de Haar sobre Z, esta cuestión pide determinar
o estimar la cantidad

MdZ(D) := sup{µZ(A) : A ⊂ Z de Borel con (A− A) ∩D = ∅}. (1.8)

Un caso especialmente natural de esta cuestión concierne al grupo circular
Z = T. Este caso es el principal objeto de estudio del Caṕıtulo 5. Conside-
ramos T como el intervalo [0, 1] con operación de suma módulo 1 (como
de costumbre), y consideraremos un conjunto finito D = {t1, . . . , tr} de
diferencias no-nulas prohibidas, viendo D como un conjunto de números
reales en (0, 1).

El enfoque de este problema en el Caṕıtulo 5 combina herramientas de
teoŕıa de grafos, teoŕıa ergódica y geometŕıa de números.

Un primer ejemplo de la aplicabilidad de la teoŕıa ergódica se da en
el caso en que el conjunto D ∪ {1} es linealmente independiente sobre Q.
Resulta entonces que podemos aplicar una versión de la importante herra-
mienta de teoŕıa ergódica conocida como el lema de Rokhlin. Este resultado
se puede describir informalmente como una herramienta que permite apro-
ximar, con precisión arbitraria, una acción no-periódica de un grupo sobre
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un espacio de probabilidad (e.g. las iteraciones de una rotación irracional
del ćırculo), aproximando por estructuras, llamadas torres, que son casi
periódicas y son mucho más sencillas de analizar (damos la formulación
precisa en la sección 5.2). Mediante una aplicación de esta herramienta,
para acciones libres de Zr que preservan la medida, obtenemos la solución
MdT(D) = 1/2 en este caso. Esto motiva la exploración de la aplicabilidad
del lema de Rokhlin (y sus diversas extensiones) al caso más general del pro-
blema de Motzkin en T, donde D ∪ {1} puede ser linealmente dependiente
sobre Q. De hecho, extensiones conocidas del lema de Rokhlin, aplicables a
acciones libres de cocientes de Zr, demuestran ser efectivamente relevantes
para este problema. En particular mostramos que, gracias a estas exten-
siones, el problema de determinar MdT(D) puede ser transferido a un pro-
blema similar en el entorno discreto del grupo abeliano finitamente generado
Zr/Λ, donde Λ es el núcleo del homomorfismo Zr → T, n 7→ n1t1+· · ·+nrtr.
En este entorno discreto, la densidad de Motzkin se puede definir utilizando
sucesiones de Følner; véase la Definición 5.8. Tenemos entonces el siguiente
resultado.

Teorema 1.24. Sea D = {t1, . . . , tr} ⊂ T, sea Λ el núcleo del homomor-
fismo Zr → T, n 7→ n1t1 + · · ·+nrtr, y sea E la imagen de la base estándar
de Rr en el cociente Zr/Λ. Entonces MdT(D) = MdZr/Λ(E).

De hecho, la versatilidad de dichas extensiones del lema de Rokhlin nos
permite demostrar una versión de este teorema que es válida para grupos
abelianos compactos más generalmente; véase el Teorema 5.9.

El Teorema 1.24 es útil como primer paso para determinar MdT(D),
ya que la densidad de Motzkin correspondiente en el entorno discreto (es
decir MdZr/Λ(E)) se puede a menudo determinar más fácilmente. En el
Caṕıtulo 5 aplicamos esta estrategia para r ≤ 2, obteniendo las soluciones
que se resumen a continuación, en particular una fórmula exacta dada en el
Teorema 1.25.

Las técnicas de la teoŕıa de grafos y de la geometŕıa de los números en-
tran en escena en relación con el caso del problema en el cual, en lugar de
que D∪{1} sea linealmente independiente sobre Q, suponemos al contrario
que D ⊂ Q. En efecto, este caso se reduce al problema de determinar el
número de independencia de un grafo circulante que llamamos grafo cir-
culante asociado. Más precisamente, suponiendo que cada elemento de D
es de la forma ti = ai/bi con enteros positivos coprimos ai < bi, entonces
el subgrupo 〈D〉 ≤ T es isomorfo a ZN con N = lcm(b1, . . . , br). El grafo



CHAPTER 1. INTRODUCCIÓN 26

circulante asociado es el grafo circulante conexo G con conjunto de vértices
ZN (visto como el conjunto de enteros [0, N − 1] con suma módulo N), con
saltos d1, . . . , dr donde di = aiN/bi. Es decir que x, y ∈ ZN forman una
arista en G si y sólo si x − y = di o −di mod N para algún i ∈ [r]. La

ratio de independencia de G es el número α(G)
N

, donde α(G) es el número
de independencia de G. Como consecuencia directa del Teorema 1.24, obte-
nemos MdT(D) = MdZN ({d1, . . . , dr}) = α(G)

N
. El análisis de la cantidad

MdZN ({d1, . . . , dr}) conduce naturalmente a la geometŕıa de números, por
su relación (desarrollada en el Caṕıtulo 5) con el ret́ıculo Λ mencionado
anteriormente (que en este caso racional es un ret́ıculo de rango r).

Cabe señalar que si d1, . . . , dr son enteros fijos, entonces, cuando N →
∞, los cocientes α(G)

N
convergen a MdZ({d1, . . . , dr}), es decir a la densidad

de Motzkin de D en los enteros. En este sentido, se puede ver que el
problema de Motzkin en T subsume el problema original en Z.

Tras una breve solución del caso r = 1 (véase la Proposición 5.15), el
resto del Caṕıtulo 5 se centra en el caso r = 2. Distinguimos dos sub-casos.
El primer caso es aquel en el que al menos un elemento de D es un número
irracional. Aqúı obtenemos la siguiente solución exacta:

Teorema 1.25. Sea D = {t1, t2} ⊂ (0, 1) con D ⊂ Q. Si D ∪{1} es lineal-
mente independiente sobre Q, entonces MdT(D) = 1/2. En caso contrario,
siendo m0,m1,m2 enteros no todos nulos tales que m0 = m1t1 + m2t2 y
gcd(m0,m1,m2) = 1, tenemos

MdT(D) =
bk/2c
k

, donde k = |m1|+ |m2|. (1.9)

Tras este resultado, nos concentramos en el segundo caso, en el cual
ambos elementos de D son racionales. Esto equivale a determinar la ra-
tio de independencia de los grafos circulantes con dos saltos. Como men-
cionamos anteriormente, estudiamos este problema utilizando herramientas
de la geometŕıa de números. En particular, obtenemos la siguiente esti-
mación, asintóticamente exacta. Recordemos que la circunferencia impar
de un grafo G es la longitud mı́nima de un ciclo de longitud impar en G.

Teorema 1.26. Sea D = {t1, t2} ⊂ Q ∩ (0, 1). Sea G el grafo circulante
asociado, y sea N el orden de G. Si G es bipartito, entonces MdT(D) =
α(G)
N

= 1
2
. En caso contrario, denotando por k sea la circunferencia impar

de G, tenemos

k−1
2k
≥ MdT(D) = α(G)

N
≥ k−1

2k
− 3√

N
. (1.10)
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La ratio de independencia de un grafo circulante G es igual al rećıproco
de su número cromático fraccionario χf (G). Por lo tanto (1.10) nos da
también una estimación asintótica para el número cromático fraccionario de
un grafo circulante conexo G de orden N con 2 saltos y circunferencia impar
k, a saber 2k

k−1
≤ χf (G) ≤ 2k

k−1
+ 27√

N
.

Por último, también estudiamos la cuestión de la precisión de las cotas en
(1.10) para N fijo (no sólo cuando N →∞). En particular, proporcionamos
la siguiente familia infinita de ejemplos de grafos circulantes de 2 saltos cuya
ratio de independencia alcanza la cota inferior en (1.10), módulo un múltiplo
constante absoluto de 1/

√
N :

Proposición 1.27. Sea d ∈ N impar, sea N = 2d(d + 1), y sea G =
Cay(ZN , {d, d + 1}). Entonces α(G) = d2, y G tiene circunferencia k =
2d+ 1, con lo cual α(G) =

⌊
k−1
2k
N
⌋
− d−1

2
.

También construimos una familia infinita de ejemplos que alcanzan la cota
superior en (1.10) (Cf. Proposition 5.29).

Al final del caṕıtulo discutimos posibles direcciones futuras de estudio
del problema de Motzkin en grupos abelianos compactos.

1.5 Resumen y conclusiones

Los resultados presentados en esta tesis contribuyen a la teoŕıa de grafos y
a la teoŕıa combinatoria de números, mediante el desarrollo de conexiones
(establecidas recientemente) entre temas en estas áreas y herramientas cen-
trales de teoŕıa ergódica y geometŕıa de números.

Respecto de la teoŕıa de grafos, la tesis contribuye al tema de coloración
con nuevas nociones que refinan los números cromáticos fraccionarios y cir-
culares. En particular, formalizamos y estudiamos el nuevo concepto de
girocoloración de grafos. Nuestros resultados muestran que esta noción y
su número cromático relacionado (el número girocromático), son conceptos
naturales y robustos con propiedades interesantes. Los aspectos anaĺıticos
no triviales del número girocromático también nos condujeron a otra noción
de coloración natural y más manejable, en la que los vértices de un grafo G
se colorean por traslaciones de una caja en el toro de dimensión d, refinando
el número cromático circular mediante el número cromático d-toral, y es-
tableciendo conexiones con problemas conocidos relativos a recubrimientos
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de toros. Los diversos resultados que obtuvimos sobre los números giro-
cromáticos y d-torales también conducen a problemas abiertos que motivan
futuras pesquisas.

En cuanto a la teoŕıa combinatoria de números, la tesis contribuye al
tema del problema de Motzkin, una cuestión muy natural y conocida en
este ámbito, que se viene estudiando desde los años 1970. Mientras que los
numerosos trabajos anteriores sobre este problema se centraron en el entorno
original de los números enteros, y trataron varios casos especiales del pro-
blema con técnicas muy espećıficas a cada caso, en esta tesis adoptamos un
enfoque amplio del problema general, estudiándolo en otros grupos abelianos
y relacionándolo con herramientas de la teoŕıa ergódica (como el lema de
Rokhlin) y de la geometŕıa de los números. Ilustramos esto considerando
el análogo del problema de Motzkin en el grupo circular (que subsume el
problema original), obteniendo en particular una solución exacta cuando el
conjunto de diferencias prohibidas tiene dos elementos, al menos uno de los
cuales es irracional. En el caso en que las diferencias prohibidas sean to-
das racionales, el enfoque geométrico que utilizamos conduce a estimaciones
asintóticamente exactas de la ratio de independencia de un grafo circulante
de 2 saltos, en términos de la circunferencia impar del grafo, abriendo intere-
santes perspectivas de estudios similares para grafos circulantes de d saltos
con d > 2.



Chapter 2

Introduction

In this chapter, we introduce and motivate the results that constitute this
doctoral thesis. We begin with some classical results to introduce different
ways of coloring graphs, then we describe the contents of each subsequent
chapter. Chapters 3, 4 and 5 in this thesis are works that have already been
published, or are being refereed in various journals [11–13].

2.1 Coloring maps, scheduling problems and

traffic flows

As recounted in [7], in 1852 mathematician Francis Guthrie observed that,
using only four colors, he could color a map of the counties of England so
that neighboring counties received different colors. This led him to conjec-
ture what is now the well-known four color theorem, i.e., that every map can
be colored using at most four colors so that every pair of adjacent regions
is colored differently. Francis Guthrie tried unsuccessfully to prove his con-
jecture. His brother Frederick, also a mathematician, shared the conjecture
with Augustus De Morgan, who was his teacher at the time. De Morgan
posed the problem to William Rowan Hamilton (figure 2.1), who was ap-
parently not interested in the question. Decades later, in 1878, at a meeting
of the London Mathematical Society, Arthur Cayley revived the four color
problem by asking if it had been solved. Cayley himself failed to find a solu-
tion [16]. Finally, after several false proofs (and false disproofs) throughout
the next century since its formulation, the conjecture was finally confirmed

29



CHAPTER 2. INTRODUCTION 30

in 1976 by Appel and Haken [2]. Although this proof was controversial at
the time due to its use of computer based algorithms, it is now generally
accepted.

The beautiful and paradigmatic four color theorem provides excellent
motivation for recalling the basics of graph theory.

A graph G is a pair (V,E), where V is a set, whose elements are called
the vertices of G, and E is a set of pairs of elements of V , i.e. subsets of
V of cardinality 2, called the edges of G. We may denote the set of all
pairs of elements of V by

(
V
2

)
, and thus write E ⊂

(
V
2

)
. Two vertices in

an edge are said to be “joined by an edge”, or “adjacent”, or “neighbors”
in G. Throughout this thesis, unless stated otherwise, we assume that V
is finite, that G is loopless (i.e. no vertex is adjacent to itself), that there
are no multiple edges (i.e. not more than one edge between two vertices),
and that G is undirected (i.e. there is no orientation on the edge set). The
cardinalities |V | and |E| are called the order and the size of G respectively.

The four color theorem is easily formulated in terms of graphs. The
regions of a map can be represented by a graph that has a vertex for each
region and an edge for every pair of regions that share part of their boundary.
This graph is drawn in the plane by drawing one vertex inside each region
and drawing the edges as curves from one region’s vertex (across a shared
boundary part) to an adjacent region’s vertex (Cf. figures 2.2 and 2.3). This
kind of graph, called planar graphs, are characterized by this possibility of
drawing them in a plane with no pair of edges crossing each other. The
theorem states that the vertices of every planar graph can be colored with
at most four colors so that no two adjacent vertices receive the same color
(figure 2.4). We are thus led to the classical notion of graph coloring, which
we formulate as follows.

Definition 2.1 (k-coloring of a graph). Let G be a graph and let k be a
positive integer. A k-coloring of G is a function f : V (G) 7→

{
0, 1, . . . , k−1

}
such that for every edge xy ∈ E(G) we have f(x) 6= f(y).

Obviously, it is always possible to color G with k =
∣∣V ∣∣ distinct colors.

A natural question is then, given a graph G, what is the minimum number k
such that G admits a k-coloring. Such an optimal number is the (“ordinary”,
or “classical”) chromatic number of G.

Here, and in the rest of the thesis, we denote by N the set of positive
integers.
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Fig. 2.1: Letter of De Morgan to Hamilton. (Wikimedia Commons. Public Domain)
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Fig. 2.2: Simplified map of Germany. (Wikimedia Commons. Public Domain)

Fig. 2.3: Associated graph for Germany. (Wikimedia Commons. Public Domain)
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Fig. 2.4: Optimally colored graph. (Wikimedia Commons. Public Domain)

Definition 2.2. Let G be a graph. The chromatic number of G is denoted
by χ(G) and defined by

χ(G) := min
{
k ∈ N : G admits a k-coloring

}
.

Thus, the four color theorem can be phrased as the fact that for every
planar graph G we have χ(G) ≤ 4.

The problem of determining χ(G) for a general graph G is far from tri-
vial, and it is well-known to be hard also from a computational point of view.
We illustrate the concept in some simple special cases with figures 2.5, 2.6
and 2.7.

Another motivation for the study of graph colorings, which leads to a
refinement of the classical chromatic number, is the problem of optimal
scheduling. Following an example from [59], let us suppose that there are
five committee meetings to be scheduled, each meeting being 1 hour long.
If two different committees have a member in common, they cannot meet
at the same time. We may ask for the length of the shortest time interval in
which all the committees can be scheduled. Let G be the graph with vertex
set consisting of the committees, each committee being represented by one
vertex, two vertices being adjacent if their respective committees cannot
meet simultaneously. Thus the graph G captures the scheduling conflicts.
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Fig. 2.5: The complete graphK5. In general, the complete graphKn (n ∈ N)
is the graph of order n with E =

(
V
2

)
. (Wikimedia Commons. Public Domain)

Fig. 2.6: The cycle (or cyclic graph) C5. For cycles Cn, with n ≥ 3 an
integer, we have χ(Cn) = 2 if n is even, and χ(Cn) = 3 if n is odd. (Wikimedia

Commons. Public Domain)
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Fig. 2.7: The Petersen graph K(5, 2). This is a special case of Kneser graphs
K(n, k), for positive integers n, k satisfying n ≥ 2k. The vertices of K(n, k)
are the k-subsets (subsets of cardinality k) of the set [n] :=

{
1, 2, . . . , n

}
,

i.e. V (K(n, k)) =
(

[n]
k

)
. Two such vertices are neighbors if their correspon-

ding subsets are disjoint. The chromatic number of the Kneser graph is
χ(K(n, k)) = n − 2k + 2, as was famously established by Lovász. (Wikimedia

Commons. Public Domain)

The obvious answer to the above scheduling problem is that the length
of the shortest time interval is given by χ(G). Suppose that such a graph
is the 5-cycle G = C5. Since χ(C5) = 3, the scheduling can be done in 3
hours. We may wonder if this schedule can be improved. And indeed it
can! The scheduling can be made in 2.5 hours if we allow a committee to
meet for half an hour, and later resume its meeting for the remaining half
hour, after some interruption. Thus, it becomes possible to improve (i.e.
shorten) the total scheduling time if we allow the meetings to be divided
into fractions. The shortest length of time needed to schedule committees
when such divisions are allowed is not the classical chromatic number χ(G),
but rather the fractional chromatic number, defined formally below, and
denoted by χf (G). In the example of the 5-cycle it can indeed be seen that
χf (C5) = 2.5 (see figure 2.9), which shows that χf (G) can be strictly less
than χ(G).

This improvement is a first illustration of the fact that the notion of
graph coloring can be refined in very useful ways. The refinement illustrated
above, known as fractional coloring, is a central notion in the development of
so-called fractional graph theory, treated by Scheinerman and Ullman [59],
and by Berge in [5]. According to [59, §3.11], the first publication in which
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Fig. 2.8: A (3, 1)-coloring and a (6, 2)-coloring of C5. (GTBacchus, CC BY-SA 3.0,

Wikimedia Commons)

Fig. 2.9: A (5, 2)-coloring of C5. (GTBacchus, CC BY-SA 3.0, Wikimedia Commons)

the fractional chromatic number appears is [36].

Definition 2.3. (Cf. [59, §3.1]) Let G be a graph. A b-fold coloring of G
is an assignment, to each vertex of G, of a set of b colors, so that adjacent
vertices receive disjoint sets of colors. We say that G has a (d, b)-coloring
if G has a b-fold coloring in which the colors are drawn from a palette of
d ≥ 1 colors; i.e., there is a function f : V (G) 7→

(
[d]
b

)
such that for every

edge xy ∈ E(G) we have f(x) ∩ f(y) = ∅.

Figures 2.8 and 2.9 show examples of a (3, 1)-coloring, a (6, 2)-coloring
and a (properly fractional) (5, 2)-coloring.

Definition 2.4. (Fractional chromatic number) Let G be a graph. We
define the b-fold chromatic number of G by

χb(G) := min
{
d : G admits a (d, b)-coloring

}
.

(Note that χ1(G) = χ(G).) We then define the fractional chromatic number
χf (G) as follows:

χf (G) := lim
b→∞

χb(G)

b
= inf

b

χb(G)

b
.
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The convergence of the sequence
{χn(G)

n

}
n≥1

is guaranteed by a stan-

dard subadditivity lemma (Cf. [59], Appendix A.4), since we always have
χa+b(G) ≤ χa(G) + χb(G). In fact, it can be seen [59] that for every non-
empty graph G (i.e. with E(G) 6= ∅) there is a positive integer b such that
χf (G) = χb(G)/b ≥ 2.

Determining χf (G) for a general graph G is also hard (as for χ(G)), but
for the wide class of vertex-transitive1 graphs it is known that

χf (G) =
|V (G)|
α(G)

where α(G) is the independence number 2 of G. In particular, cycles are
vertex-transitive and α(C2m+1) = m, and it follows that χf (C2m+1) =
2 + m−1. Additionally, Kneser graphs K(n, k) (for positive integers n, k
satisfying n ≥ 2k; Cf. figure 2.7) are also vertex-transitive and we have
α(K(n, k)) =

(
n−1
k−1

)
and χf (K(n, k)) = n/k.

Alternatively, coloring a graph G in the classical sense can be viewed
as an integer linear programming problem, where independent sets in G
are assigned weights 0 or 1 in such a way that every vertex belongs to
independent sets whose total weight is (at least) 1 and the sum of the
weights of all independent sets is minimized. From this viewpoint, fractional
coloring is a linear relaxation of this optimization problem: the fractional
chromatic number χf (G) is the smallest real number x for which there is
an assignment of non-negative weights to independent sets in G such that
the sum of their weights is x and each vertex belongs to independent sets
whose total weight is at least 1. It is well known that the minimum is always
attained and χf (G) is always a positive rational number [59].

This alternative view of the fractional chromatic number can be shown
(Cf. [64]) to be equivalent to the following definition using measure theory.

Definition 2.5 (Fractional chromatic number, measure-theoretic version).
For any graph G, we have χf (G) := inf

{
r > 0 : for each vertex v there is a

measurable set Av ⊆ [0, 1) with Lebesgue measure µ(Av) ≥ 1/r so that for
every uv ∈ E(G) we have Au ∩ Av = ∅

}
.

1A graph is vertex-transitive if its automorphism group acts transitively on its vertices.
2An independent set A in G is a subset of V (G) such that every pair of vertices

u, v ∈ A satisfies uv /∈ E(G). The independence number of G is the maximum cardinality
of independent subsets in G.
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By casting fractional coloring in the context of measurable subsets in an
interval, this definition also suggests a general framework which opens the
door to further refinements of graph coloring.

In [62], [64], Zhu proposed a different notion of graph coloring called
circular coloring. This uses open intervals in the circle group T = R/Z. We
may view T as [0, 1) with addition modulo 1, and we then have the following
definition.

Definition 2.6 (Circular chromatic number). Let G be a graph. The cir-
cular chromatic number of G is χc(G) := inf

{
r > 0 : for each vertex x there

is an open interval Ax ⊆ T with µ(Ax) ≥ 1/r so that for every xy ∈ E(G)
we have Ax ∩ Ay = ∅

}
.

The circular chromatic number can also be viewed in terms of scheduling.
Indeed, it is the minimum length t of total time needed to carry out a ses-
sion of committee meetings in which all meetings must last 1 uninterrupted
hour but viewed modulo t, i.e. we allow meetings also to occupy a union of
two time intervals (0, a) ∪ (b, t) (with 0 < a < b < t and a+ t− b = 1), one
interval at the beginning of the sessions and the other at the end. This dif-
ferent notion of graph coloring is especially suitable for scheduling problems
with periodic conditions. The following example (Zhu, [64]) is instructive.
Consider the problem of organizing a system of traffic lights to regulate
optimally the traffic of vehicles at a road intersection. A complete traffic
period is a time interval during which every possible traffic flow must have
a turn of green light, with every such turn being of equal duration, taken
to be of unit length. This system is easily modeled by a graph G, each of
whose vertices represents a traffic flow, with an edge representing a pair of
traffic flows which are incompatible, i.e. whose green light intervals must
not overlap. The problem consists in finding the minimum time length of a
complete traffic period in this road intersection.

One solution that we can give to this traffic problem is by partitioning
V (G) into a minimum number k of independent sets I1, I2, ..., Ik and assign-
ing successive unit time intervals to each independent set, thus obtaining
a complete traffic period of total duration k = χ(G). At first sight, the
problem is thus solved. However, if the graph satisfies the strict inequality
χc(G) < χ(G) then this solution will not be optimal, and circular colorings
(exploiting the additional periodicity) will yield a strictly better solution
(Cf. Section 4 in [28]). In particular, a result by Guichard [30] shows that if
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a graph G is n-critical3, and has girth4 at least n+ 1, then χc(G) < χ(G).

An equivalent definition of χc(G) can be given that is more analogous to
that of the classical k-colorings (Definition 2.1), using the following notion
[64].

Definition 2.7 (r-circular coloring). Let G be a graph and r ≥ 1 a real
number. An r-circular coloring of G is a function f : V (G) 7→ [0, r) such
that for every edge xy ∈ E(G) we have 1 ≤

∣∣f(x)− f(y)
∣∣ ≤ r − 1. We can

then define the circular chromatic number of G as

χc(G) := inf
{
r : G admits an r-circular coloring

}
.

Note that if f is a k-coloring of G in the classical sense, then f is also a k-
circular coloring of G, and therefore χc(G) ≤ χ(G). On the other hand, for
an r-circular coloring g : V (G) 7→ [0, r), letting s = max{g(x) : x ∈ V (G)},
we can view g as an (s+1)-coloring of G. As s < r we deduce the following.

Theorem 2.8. For any finite simple graph G we have

χ(G)− 1 < χc(G) ≤ χ(G), (2.1)

in particular χ(G) = dχc(G)e.

This shows that χc(G) carries more information about the structure of
G than χ(G), so that the circular chromatic number can be used to quantify
how far G is from being colorable with less than χ(G) colors. In this sense,
χc(G) can be seen as a refinement of χ(G).

In Chapters 3 and 4 of this thesis, we introduce new coloring notions
which lead to further refinements of χc(G) and χf (G), yielding new chro-
matic numbers with interesting properties. We detail the main contents of
these chapters in the following two sections.

2.2 Coloring graphs by translates in the cir-

cle: the gyrochromatic number

Historically, the first definition of the circular chromatic number was given
by Vince in 1988 [61], with the name star chromatic number. This notion

3A graph G is n-critical if χ(G) = n and χ(G− v) = n− 1 for any vertex v of G.
4The girth of a graph is the length of a shortest cycle contained in the graph.
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is formulated in a discrete setting as follows.

Definition 2.9 (Star chromatic number). Let 1 ≤ b ≤ d be integers and
let G be a graph. A (d, b)-?-coloring of G is a function f : V (G)→ [d] such
that for every edge xy we have

b ≤ |f(x)− f(y)| ≤ d− b (d ≥ 2b).

We define the star chromatic number of G as

χ?(G) := inf
{d
b

: G admits a (d, b)-?-coloring
}
.

Among the main basic properties of the star chromatic number χ?(G),
we highlight two facts: firstly [61], the infimum in the definition of χ?(G) is
attained for every graph G, and is therefore a minimum; secondly, the fact
(consequence of the previous one) that χ?(G) is always a rational number
(Cf. Vince [61] and Bondy & Hell [8]). 5

It was later observed by Zhu [62], [64] that his circular chromatic number
is indeed equal to the star chromatic number.

Lemma 2.10 (Zhu). For every graph G we have χ?(G) = χc(G).

Let us include the short proof.

Proof. Suppose f is a (d, b)-?-coloring of G. Let us define the function
g : V (G) 7→ [0, d/b) such that g(x) := f(x)/b. For every edge xy of G we
have 1 ≤ |g(x)− g(y)| ≤ d

b
− 1, thus every (d, b)-?-coloring of G corresponds

to a (d/b)-circular coloring of G. On the other hand, if g is a (d/b)-circular
coloring of G, then f(x) := bb · g(x)c is a (d, b)-?-coloring of G.

From the definitions of χf (G) and χc(G) in terms of (d, b) and (d, b)-?
colorings, we easily see the following inequalities.

Lemma 2.11. Every graph G satisfies χf (G) ≤ χc(G) ≤ χ(G).

5There are other equivalent descriptions of this chromatic number, in terms of homo-
morphisms into a certain class of graphs [8], which also implies easily the rationality of
χ?(G).
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Both inequalities in this lemma can be strict, and the gap between χf (G)
and χ(G) can be arbitrarily large. For example, as mentioned previously,
the Kneser graph G = K(n, k) (n ≥ 2k) satisfies χ(G) = n − 2k + 2 and
χf (G) = n

k
, and it is also known [18] that χc(G) = χ(G).

The starting point of Chapter 3 is the work by Avila and Candela [3],
which included combinatorial applications of central tools from ergodic theo-
ry. These applications led to a new chromatic parameter for graphs, which
lies between the circular and fractional chromatic numbers. The purpose
of this chapter is to study this new parameter, which we refer to as the
gyrochromatic number χg(G) of a graph G. This number is the reciprocal of
the natural quantity defined as follows, where T denotes as usual the circle
group R/Z.

Definition 2.12 (Avila-Candela, 2016). Let G a finite graph. We say that a
Borel set A ⊆ T is a T-coloring base forG if there exists a map f : V (G)→ T
such that for every edge xy of G we have

(
A+ f(x)

)
∩
(
A+ f(y)

)
= ∅. We

say that (A, f) is a T-coloring (or T-gyrocoloring) of G. We then define

σT(G) := sup{µT(A) : A a T-coloring base for G}, (2.2)

where µT denotes the Haar probability measure on T.

Definition 2.13 (Gyrochromatic number). For any graph G we define
χg(G) := 1

σT(G)
.

Note that the notion σT(G) is easily generalized by replacing T with
any compact abelian group Z. For any such group, equipped with a Haar
probability measure µZ , we can indeed define

σZ(G) := sup{µZ(A) : A is a Borel Z-coloring base for G}, (2.3)

where the extension of the notion of T-coloring base to a Z-base is clear.

A first basic observation on the gyrochromatic number is the following.

Proposition 2.14. Every finite graph G satisfies χf (G) ≤ χg(G) ≤ χc(G).

Proof. For the first inequality, suppose that (A, f) with Borel A ⊆ T is a
T-coloring of G. Then this is also a fractional coloring of G with Ax :=
A + f(x) for each vertex x (as mentioned earlier, we usually identify T
with the interval [0, 1) equipped with addition modulo 1). For the second
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inequality, if there is a coloring by open intervals (these are Borel sets) Ax,
all of the same length, then this is clearly a T-coloring since every open
interval Ax can be viewed as a translate of a single interval A (so that
Ax =: A+ f(x) satisfies Ax ∩ Ay = ∅ for all the edges xy).

Informally speaking, circular coloring assigns vertices of G to arcs (in-
tervals in the circle) and fractional coloring assigns vertices of G to Borel
subsets. A T-gyrocoloring is tighter than a fractional coloring since vertices
must be assigned gyrated copies of a single Borel subset, and it is looser
than circular coloring since this Borel subset need not be an arc.

One of the motivations that led to this new graph parameter is a version
of the general problem, central to arithmetic combinatorics, which consists
in determining the greatest size that a subset of an abelian group can have
without containing solutions to a prescribed set of linear equations. In the
version in question, considered in [3], we let c1, c2, . . . , cd be multiplicatively
independent non-zero integers,6 we let G be any graph with vertex set V =
[d], and we then ask what is the greatest size (Haar measure) that a subset of
T can have if we require that this set avoid solutions to the linear equations
ci x1 = cj x2 for edges ij in G. In other words, we ask what is the quantity

dG,ci := sup
{
µT(A) : A ⊂ T, ∀ ij ∈ E(G), ∀x1, x2 ∈ A, ci x1 6= cj x2

}
.

It is proved in [3] that dG,ci = σT(G).

In Chapter 3 it is shown that the definition of the gyrochromatic number,
like the circular and fractional chromatic numbers, is robust, in the sense
that it can be reformulated in several equivalent ways. For example, the
definition through coloring T-bases yields the following equivalent variant
in a discrete setting.

Theorem 2.15. Let G be a graph. Then we have σZN (G) ≤ σT(G) for every
N ∈ N and σT(G) = supN∈N σZN (G) = limN→∞ σZN (G).

This yields the following reformulation.

Corollary 2.16. The gyrochromatic number of a graph G is equal to the
infimum of numbers N/K for which there exists a set A ∈

(ZN
K

)
and a

function f : V (G) → ZN such that (A + f(u)) ∩ (A + f(v)) = ∅ for every
edge uv ∈ E(G).

6This simply means that if cλ1
1 · c

λ2
2 · · · c

λd

d = 1 with λi ∈ Z, then λi = 0 for every i.
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Recall the well-known fact that classical coloring, circular coloring and
fractional coloring of graphs can be defined by using homomorphisms to
certain classes of graphs: cliques, circular cliques and Kneser graphs respec-
tively. We show that the gyrochromatic number also follows this pattern:
it can be defined in terms of homomorphisms to circulant graphs. 7

Theorem 2.17. The gyrochromatic number of a graph G is equal to

inf
N∈N,S⊆ZN
G→C(N,S)

χf (C(N,S)) = inf
N∈N,S⊆ZN
G→C(N,S)

N

α (C(N,S))
,

i.e., is equal to the infimum of the fractional chromatic numbers of the cir-
culant graphs that admit a homomorphism from G.

Another notable feature of the gyrochromatic number is that it can be
defined equivalently using tori of arbitrarily high dimension.

Theorem 2.18. For every finite simple graph G and every d ∈ N, we have

σT(G) = σTd(G).

This result implies that the discrete variant of the definition (given by
Theorem 2.15) remains equivalent when all finite abelian groups are con-
sidered, instead of the groups ZN only (Cf. Corollaries 3.10 and 3.11). This
establishes a certain universality of the gyrochromatic number. Note also
that (as detailed in Chapter 3) the fractional chromatic number itself can
be cast in a similar way but taking into account all finite (not necessarily
abelian) groups. This way, the gyrochromatic number can be viewed as a
version of the fractional chromatic number restricted to abelian groups.

Among other results that we prove on the gyrochromatic number, there
are constructions of graphs satisfying the strict inequalities χf (G) < χg(G) <
χc(G).

Theorem 2.19. There exists a sequence of graphs (Gk)k∈N\{1} such that
χf (Gk) < χg(Gk) < χc(Gk) = k + 2 and with limk→∞ χg(Gk) = 2.

7A circulant graph G = C(n, S) is a Cayley graph over the cyclic group V (G) = Zn,
generated by a set S ⊂ Zn, which we assume to be symmetric (i.e. S = −S); thus vertices
a, b ∈ Zn are adjacent if and only if a− b ∈ S (equivalently b− a ∈ S).
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Last but not least, we show that, somewhat surprisingly, the supremum
in the definition (2.2) need not be attained, which also implies that the
infimum in the discrete variant given by Theorem 2.17 need not be attained
either. This leads to the open problem of whether there exists a finite graph
G such that the gyrochromatic number of G is not rational. Other open
problems are proposed among our final remarks in the chapter.

We deem these results to be convincing evidence that the gyrochromatic
number is a natural and robust parameter, which is likely to be useful to
obtain a finer understanding of the structure of graphs.

2.3 On toral chromatic numbers of graphs

In Chapter 3 we introduced the gyrochromatic number of a graph G, and
several results obtained in that chapter show that χg(G) carries more infor-
mation than the fractional and circular chromatic numbers. In particular
we showed that χf (G) ≤ χg(G) ≤ χc(G) is satisfied for any finite graph,
and that these inequalities can be strict. The gyrochromatic number is also
shown to have a certain universality in the sense that the infimum can be
extended to Borel sets in a finite higher dimensional torus equipped with
its Haar probability measure without changing the value of χg(G), that is,
for every fixed r ∈ N we have

χg(G) = inf{1/µTr(A) : A is a Tr-coloring base for G}. (2.4)

However, the gyrochromatic number is more “elusive” than the circular
chromatic number χc(G), since it is also proved in Chapter 3 that the infi-
mum in the original definition (i.e. (2.4) for r = 1) is not always attained,
and we do not yet know whether χg(G) is always rational. Even worse, we
do not know whether there is always at least some finite dimension r such
that the infimum is attained in this dimension.

This motivates the study of intermediate colorings, also refining χc(G)
but being analytically more tractable than the gyrochromatic number. This
is the main objective of Chapter 4.

A natural candidate for a more manageable refinement of χc(G) consists
in coloring the graph with translates of a box in the d-dimensional torus Td.
We may view the d-torus as [0, 1]d with addition mod 1 in each coordinate.
By an open box in Td we mean a Cartesian product of the form I1 × · · · ×
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Id ⊂ Td where Ij is an open interval (open connected set) in T for every
j ∈ [d]. The corresponding refinement of the circular chromatic number is
then defined as follows.

Definition 2.20 (d-toral chromatic number). Let G be a graph. For each
d ∈ N, we define the d-toral chromatic number of G, denoted by χcd(G), by
the formula

χcd(G) = inf
{
µTd(R)−1 : R ⊂ Td an open box such that G is R-colorable

}
(2.5)

where, for a subset A of an abelian group Z, we say that a graph G is A-
colorable if there is a map ϕ : V (G)→ Z such that

(
A+ϕ(x)

)
∩
(
A+ϕ(y)

)
=

∅ for every edge xy ∈ E(G). (We may also say that ϕ is a coloring map of
G by A).

The 1-toral chromatic number is the usual circular chromatic number.
We show in Chapter 4 that the following hierarchy is satisfied for any positive
integer d:

χf (G) ≤ χg(G) ≤ χcd+1(G) ≤ χcd(G) ≤ χ(G). (2.6)

It is also shown that the infimum in (2.5) is always attained and rational,
as is the case for χc(G):

Theorem 2.21. Let G be a graph of order n and let d ∈ N. Then for each
i ∈ [d] there are integers ri ≤ si in [n] such that G is colorable by the box
R =

∏
i∈[d](0,

ri
si

) in Td and χcd(G) = 1
µTd (R)

= s1···sd
r1···rd

.

Note that for every given graph G, by (2.6) the decreasing sequence
(χcd(G))d∈N must converge, and we may then ask how fast it does so, and
even whether it always becomes constant eventually. This is answered as
follows.

Proposition 2.22. Let G be a graph, and let d = blog2(χ(G))c. Then for
every d′ ≥ d we have χcd′ (G) = χcd(G).

One may also wonder how χcd(G) varies for a fixed d and varying G. In
particular we may ask whether for every fixed d there are graphs G for which
χcd+1(G) < χcd(G); a positive answer here would indicate that each number
χcd(G) carries certain information about G that can make it differ from
other such numbers χcd′ (G), d′ > d, in other words, that graphs separate
the toral chromatic numbers.
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Note that by Proposition 2.22 we can meaningfully define what we shall
call the stabilization dimension of a graph G for the toral chromatic num-
bers, namely the least integer d with the property that χcd′ (G) = χcd(G)
for all d′ ≥ d. Denoting the stabilization dimension of G by d∗(G), we have
d∗ ≤ blog2(|G|)c by Proposition 2.22, and we may ask how accurate this
upper bound is. We prove that this bound is sharp up to a multiplicative
constant, with the following result, which also shows that graphs do indeed
separate the toral chromatic numbers.

Theorem 2.23. For each d ∈ N there exists a graph G of order n = 5d

satisfying d∗(G) = d = log5(n).

Finally, at the end of Chapter 4 we relate the number χcd(G) to the ordi-
nary chromatic number χ(G), via an inequality which generalizes the well-
known inequality (2.1), and uses box-coverings of the d-torus (see Proposi-
tion 4.21).

2.4 On Motzkin’s problem in the circle

The last chapter of this thesis is devoted to a project which arose while
the research on the gyrochromatic number was in progress. The project
concerns a well-known problem in combinatorial number theory which was
posed by T. S. Motzkin in the 1970s.

Motzkin’s problem asks how large a set of integers can be if it does not
contain any pair of elements whose difference lies in a prescribed set. More
precisely, given a non-empty subset D of the set of positive integers N, let us
say that a set A ⊂ Z is D-avoiding if for every a, a′ ∈ A we have |a−a′| /∈ D,
in other words if the difference set A − A = {a − a′ : a, a′ ∈ A} is disjoint
from D. Let A(N) denote the cardinality |A∩ [−N,N ]|, and let δ̄(A) denote

the upper density of A, namely δ̄(A) = lim supN→∞
A(N)
2N+1

. Motzkin asked
to determine or estimate the greatest upper density that a D-avoiding set
can have, namely the following quantity, which we call the Motzkin density
of D:

MdZ(D) := sup{δ̄(A) : A is a D-avoiding subset of Z}. (2.7)

Cantor and Gordon published the first paper on Motzkin’s problem [14],
proving several interesting results, including a full solution for the case of
at most two forbidden differences (i.e. for |D| ≤ 2). Since then, the general
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problem has motivated many works and several additional special cases have
been addressed (as detailed in Chapter 5), but the problem is still open.

Motzkin’s problem constitutes a topic within combinatorial number the-
ory that has interesting connections with other well-known problems, in-
cluding the fractional chromatic number of distance graphs, or the famous
lonely runner conjecture.

Motzkin’s problem can also be seen as a particular case of a wider ques-
tion which can be asked in any compact abelian group Z: given a non-empty
set D ⊂ Z, letting µZ denote the Haar probability measure on Z, this ques-
tion asks to determine or estimate the quantity

MdZ(D) := sup{µZ(A) : A ⊂ Z a Borel set with (A− A) ∩D = ∅}. (2.8)

A particularly natural case of this question concerns the circle group Z = T.
This case is the main object of study in Chapter 5. We shall view T, as
usual, as the interval [0, 1] with addition modulo 1, and consider a finite set
D = {t1, . . . , tr} of non-zero missing differences, viewing D as a set of real
numbers in (0, 1).

The approach to this problem in Chapter 5 combines tools from graph
theory, ergodic theory, and the geometry of numbers.

A first illustration of the applicability of ergodic theory in this chapter is
given by focusing on the case where the set D ∪ {1} is linearly independent
over Q. It then turns out that we may apply a version of the important
ergodic theoretic tool known as Rokhlin’s lemma. This result can be de-
scribed informally as a tool that enables a non-periodic group-action on a
probability space (e.g. an iterated irrational rotation of the circle) to be
approximated, with arbitrary precision, by structures called towers, which
are almost periodic and are much easier to analyze (we give the precise
formulations in Section 5.2). By a simple application of this tool for free
measure-preserving actions of Zr, we obtain the solution MdT(D) = 1/2 in
this case. This motivates the exploration of the applicability of Rokhlin’s
lemma (and its various extensions) to the more general case of Motzkin’s
problem in T where D ∪ {1} can be linearly dependent over Q. And in-
deed, known extensions of Rokhlin’s lemma, applicable to free actions of
quotients of Zr, are shown to be relevant to this problem. In particular we
show that, via these extensions, the problem of determining MdT(D) can
be transferred to a similar problem in the discrete setting of the finitely
generated abelian group Zr/Λ, where Λ is the kernel of the homomorphism
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Zr → T, n 7→ n1t1 + · · · + nrtr. In this discrete setting, Motzkin densities
can be defined using Følner sequences; see Definition 5.8. We then have the
following result.

Theorem 2.24. Let D = {t1, . . . , tr} ⊂ T, let Λ be the kernel of the homo-
morphism Zr → T, n 7→ n1t1 + · · · + nrtr, and let E be the image of the
standard basis of Rr in the quotient Zr/Λ. Then MdT(D) = MdZr/Λ(E).

In fact, the versatility of these extensions of Rokhlin’s lemma enable us
to prove a version of this theorem that is valid for compact abelian groups
more generally; see Theorem 5.9.

Theorem 2.24 is useful as a first step for determining MdT(D), since the
corresponding Motzkin density in the discrete setting, i.e. MdZr/Λ(E), can
often be simpler to determine. In Chapter 5 we pursue this approach for
r ≤ 2, obtaining the solutions summarized below, notably the exact formula
in Theorem 2.25.

The techniques from graph theory and the geometry of numbers enter
the picture in relation to the case of the problem in which, instead of D∪{1}
being linearly independent over Q, we assume on the contrary that D ⊂ Q.
Indeed, this case reduces to the problem of determining the independence
ratio of a circulant graph which we call the associated circulant graph. More
precisely, supposing that each element of D is of the form ti = ai/bi with
coprime positive integers ai < bi, then the subgroup 〈D〉 ≤ T is isomorphic
to ZN with N = lcm(b1, . . . , br). The associated circulant graph is the con-
nected circulant graph G with vertex set ZN (viewed as the set of integers
[0, N−1] with addition modulo N) with jumps d1, . . . , dr where di = aiN/bi.
Thus x, y ∈ ZN form an edge in G if and only if x − y = di or −di mod
N for some i ∈ [r]. The independence ratio of G is α(G)

N
, where α(G) is

the independence number of G (i.e. the maximal cardinality of an inde-
pendent set in G). As a straightforward consequence of Theorem 2.24 we

have MdT(D) = MdZN ({d1, . . . , dr}) = α(G)
N

. The analysis of the quantities
MdZN ({d1, . . . , dr}) leads to the geometry of numbers through the relation
(developed in Chapter 5) with the lattice Λ mentioned above (which is of
full rank r in this rational case).

It is worth noting that if d1, . . . , dr are fixed integers then, as N → ∞,
the ratios α(G)

N
converge to MdZ({d1, . . . , dr}), and in this sense Motzkin’s

problem in T can be seen to subsume the original problem in Z (for finitely
many missing differences).
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After a brief solution of the case r = 1 (see Proposition 5.15), the rest of
Chapter 5 focuses on the case r = 2. We distinguish two sub-cases. The first
case is the one in which at least one element of D is an irrational number.
Here we obtain the following exact solution:

Theorem 2.25. Let D = {t1, t2} ⊂ (0, 1) with D 6⊂ Q. If D∪{1} is linearly
independent over Q, then MdT(D) = 1/2. Otherwise, letting m0,m1,m2 be
integers not all zero such that m0 = m1t1 +m2t2 and gcd(m0,m1,m2) = 1,
we have

MdT(D) =
bk/2c
k

, where k = |m1|+ |m2|. (2.9)

We then focus on the second case, in which both elements of D are ra-
tional. This is equivalent to determining the independence ratio of circulant
graphs with two jumps. As mentioned above, we study this problem using
tools from the geometry of numbers. In particular we obtain the following
asymptotically sharp estimate. Recall that the odd girth of a graph G is the
length of a shortest odd cycle in G.

Theorem 2.26. Let D = {t1, t2} ⊂ Q ∩ (0, 1). Let G be the associated
circulant graph, and let N be the order of G. If G is bipartite then MdT(D) =
α(G)
N

= 1
2
. Otherwise, letting k be the odd girth of G, we have

k−1
2k
≥ MdT(D) = α(G)

N
≥ k−1

2k
− 3√

N
. (2.10)

The independence ratio of a circulant graph G is equal to the reciprocal
of its fractional chromatic number χf (G). Therefore (2.10) yields also an
asymptotically sharp estimate for the fractional chromatic number of a con-
nected circulant graph G of order N with 2 jumps and odd girth k, namely
2k
k−1
≤ χf (G) ≤ 2k

k−1
+ 27√

N
.

Finally, we also study the question of the sharpness of the bounds in
(2.10) for fixed N (not just as N → ∞). In particular, we provide the
following infinite family of examples of 2-jump circulant graphs whose inde-
pendence ratios attain the lower bound in (2.10) up to the absolute constant
multiple of 1/

√
N :

Proposition 2.27. Let d ∈ N be odd, let N = 2d(d + 1), and let G =
Cay(ZN , {d, d + 1}). Then α(G) = d2, and G has girth k = 2d + 1, so
α(G) =

⌊
k−1
2k
N
⌋
− d−1

2
.
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We also provide an infinite family of examples attaining the upper bound
in (2.10) (see Proposition 5.29).

At the end of the chapter we discuss possible future directions of study
of Motzkin’s problem in compact abelian groups.

2.5 Summary and conclusions

The results presented in this thesis make contributions to graph theory and
combinatorial number theory through the exploration of recently emerged
connections between topics in these areas and central tools and techniques
from ergodic theory and the geometry of numbers.

Concerning graph theory, the thesis contributes to the topic of graph
coloring with new notions that refine the fractional and circular chromatic
numbers. In particular, we formalize and study the new concept of a gy-
rocoloring of graphs. Our results show that this notion, and its related
chromatic parameter (the gyrochromatic number), are natural and robust
concepts with interesting properties. The non-trivial analytic aspects of the
gyrochromatic number also led us to another natural and more tractable
coloring notion, in which the vertices of a graph G are colored by translates
of a box in the d-dimensional torus, refining the circular chromatic number
by means of the d-toral chromatic numbers, and establishing connections
with known problems concerning box-coverings of tori. The various results
we obtained on the gyrochromatic and toral chromatic numbers also lead to
open problems motivating future research.

Concerning combinatorial number theory, the thesis contributes to the
topic of Motzkin’s problem, a very natural question in this area that has
been studied since the 1970s. While the many previous works on this pro-
blem focused on the original integer setting, and treated various special
cases of the problem with very specific techniques, in this thesis we take
a broad approach to the general problem by studying it in other abelian
groups and relating it with tools from ergodic theory (such as Rokhlin’s
lemma) and from the geometry of numbers. We illustrate this by study-
ing the analogue of Motzkin’s problem in the circle group, showing that
this subsumes the original problem from the integer setting, and obtaining,
among other results, an exact solution when the set of forbidden differences
has two elements, with at least one of them being irrational. In the case of
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the forbidden differences being all rational, the geometric approach that we
use leads to asymptotically tight estimates of the independence ratio of a
2-jump circulant graph in terms of the graph’s odd girth, opening interes-
ting prospects for analogous studies of d-jump circulant graphs with d > 2.



Chapter 3

Coloring graphs by translates
in the circle

The work constituting this chapter was made in collaboration with Pablo
Candela, Robert Hancock, Adam Kabela, Daniel Král’, Ander Lamaison
and Llúıs Vena. The contents of the chapter were published in in European
Journal of Combinatorics in 2021; see [11].

3.1 Introduction

Graph coloring is one of the most studied topics in graph theory. In order
to refine the basic notion of the chromatic number of a graph, various non-
integral relaxations were introduced, in particular, to capture how close a
graph is to being colorable with fewer colors. Among them, the two most
intensively studied notions are the circular chromatic number and the frac-
tional chromatic number. We build on the work of Avila and Candela [3]
who introduced a notion of a coloring base of a graph in relation to applica-
tions of their new proof of a generalization of Rokhlin’s lemma; this notion
leads to a chromatic parameter of a graph which lies between the circular
and fractional chromatic numbers. The purpose of the present article is to
introduce this parameter, which we refer to as the gyrochromatic number of
a graph, in the context of graph coloring.

We begin by recalling the notions of circular and fractional colorings and
fixing some notation. All graphs in this paper are finite and simple. If G

52
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is a graph, then V (G) and E(G) are its vertex and edge sets, and |G| is
the number of its vertices. The chromatic number χ(G) of a graph G is the
smallest integer k for which there exists a mapping f : V (G) → [k] such
that f(u) 6= f(v) for every edge uv of G; we use [k] to denote the set of the
first k positive integers. The circular chromatic number χc(G) of a graph
G is the smallest real z for which there exists a mapping f : V (G)→ [0, z)
such that 1 ≤ |f(v) − f(u)| ≤ z − 1 for every edge uv (it can be shown
that the minimum is always attained). The mapping f can be viewed as a
mapping of the vertices of G to unit-length arcs of a circle of circumference
z such that adjacent vertices are mapped to internally disjoint arcs. We
remark that there are several equivalent definitions of the circular chromatic
number [64], e.g., through homomorphisms to particular graphs or through
balancing edge-orientations. In relation to the chromatic number, it is not
hard to show that every graph G satisfies the following:

χ(G)− 1 < χc(G) ≤ χ(G),

in particular χ(G) = dχc(G)e. The circular chromatic number was intro-
duced by Vince [61] in the late 1980s and has been the main subject of
many papers since then; we refer to the survey by Zhu [64] for a detailed
exposition.

Coloring vertices of a graph G can be viewed as an integer program such
that independent sets in G are assigned weights zero and one in such a
way that every vertex belongs to independent sets whose total weight is (at
least) one and the sum of the weights of all independent sets is minimized.
Fractional coloring is a linear relaxation of this optimization problem: the
fractional chromatic number χf (G) is the smallest real z for which there is
an assignment of non-negative weights to independent sets in G such that
the sum of their weights is z and each vertex belongs to independent sets
whose total weight is at least one (it can be shown that the minimum is
always attained). Equivalently, χf (G) can be defined as the smallest real
z such that each vertex v of G can be assigned a Borel subset of [0, z)
of measure one in such a way that adjacent vertices are assigned disjoint
subsets. It can be shown that the circular chromatic number lies between
the fractional chromatic number and chromatic number for every graph G:

χf (G) ≤ χc(G) ≤ χ(G).

Both inequalities can be strict, and the gap between the fractional chromatic
number and chromatic number (and so the circular chromatic number) can
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be arbitrarily large. For instance, the chromatic number of Kneser graphs
can be arbitrarily large and their fractional chromatic number arbitrarily
close to two. We recall that the Kneser graph K(n, k) has

(
n
k

)
vertices that

are viewed as corresponding to k-element subsets of [n]; two vertices are
adjacent if the corresponding subsets are disjoint. The chromatic number
of K(n, k) is n− 2k+ 2 (if n ≥ 2k) by the famous result of Lovász [51], and
their fractional chromatic number is known to be equal to n/k. We refer to
the book by Scheinerman and Ullman [59] for further results on fractional
coloring and fractional graph parameters in general.

We next recall the notion of a coloring base of a graph introduced in [3,
Definition 3.8], which is the starting point for the present discussion. Let G
be a graph and Z be an abelian group. A set A ⊆ Z is a coloring Z-base
for G if there exists a function f : V (G) → A such that the sets A + f(u)
and A+ f(v) are disjoint for every edge uv of G; we write just coloring base
if Z is clear from the context. For a topological group Z equipped with a
Haar probability measure µ, we define

σZ(G) = sup{µ(A) : A is a Borel coloring Z-base for G}. (3.1)

This notion is related to results in ergodic theory, and we refer the reader
to [3] for the exposition of this relation. We will be particularly interested in
the group T = R/Z and the groups ZN = Z/NZ for N ∈ N. The former can
be viewed as given by the unit interval [0, 1] with 0 and 1 identified and the
usual Borel measure, and the latter is simply {0, . . . , N − 1} with addition
modulo N equipped with the uniform discrete probability measure.

The notion of a coloring base resembles equivalent definitions of circular
and fractional chromatic number, which can be cast using the group T
as follows. The circular chromatic number of a graph G is the inverse of
the maximum µ(A) where A is a connected coloring T-base for G (here,
connected means as a subset of T). The fractional chromatic number of
a graph G is the inverse of the maximum z such that each vertex of G
can be assigned a Borel subset of T with measure z and adjacent vertices
are assigned disjoint subsets. Informally speaking, circular coloring assigns
vertices of G to arcs and fractional coloring assigns vertices of G to Borel
subsets. A coloring T-base is tighter than fractional coloring since vertices
must be assigned rotational copies of the same Borel subset, and it is looser
than circular coloring since the Borel subset assigned to vertices need not be
an arc. This leads us to the following definition: the gyrochromatic number
χg(G) of a graph G is the inverse of σT(G). The equivalent definitions
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of the circular and fractional chromatic numbers given above yield that
the gyrochromatic number of every graph G lies between its fractional and
circular chromatic numbers:

χf (G) ≤ χg(G) ≤ χc(G). (3.2)

Similarly to the notions of the fractional and circular chromatic number,
the definition of the gyrochromatic number of a graph is robust in the sense
that it can be cast in several different ways. In Section 3.2, we show that the
definition through coloring T-bases is equivalent to its discrete variant using
ZN -bases (cf. Corollary 3.3). Coloring, circular coloring and fractional co-
loring of a graph can be defined by using homomorphisms to special classes
of graphs: cliques, circular cliques and Kneser graphs. This holds also for
the gyrochromatic number of a graph, which can be defined in terms of
homomorphisms to circulant graphs (cf. Theorem 3.4). More interestingly,
in Section 3.4 we prove that the definition stays the same when considering
higher-dimensional-torus analogues of T (cf. Theorem 3.9), which implies
that the discrete variant of the definition is the same when all finite abelian
groups are considered instead of the groups ZN only (cf. Corollaries 3.10
and 3.11). We note that the fractional chromatic number can be cast in a
similar way but taking into account all finite (not necessarily abelian) groups
(see the discussion after Corollary 3.11), i.e., the gyrochromatic number can
be viewed as an analogue of the fractional chromatic number restricted to
abelian groups. We believe that these properties show that the gyrochro-
matic number of a graph is a natural and robust parameter, which is likely
to play an important role in providing a more detailed understanding of the
structure of graphs whose circular and fractional chromatic numbers differ.

In addition to presenting several equivalent definitions of the gyrochro-
matic number in Sections 3.2 and 3.4, we also establish some of its basic
properties and in particular construct graphs with gyrochromatic number
strictly between the circular and fractional chromatic numbers (cf. Theo-
rem 3.12). Finally, in Section 3.6 we show that, somewhat surprisingly, the
supremum in the definition (3.1) need not be attained, which also implies
that the infimum in its discrete variant (as given in Corollary 3.3) need not
be attained.
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3.2 Equivalent definitions

In this section, we present alternative definitions of the gyrochromatic num-
ber, and show that these are equivalent to the original definition stated in
Section 3.1. We begin by giving another definition, which is analogous to
circular coloring and provides the notion of a gyrocoloring. If z is a non-
negative real, a z-gyrocoloring of a graph G is a mapping g from V (G) to
Borel subsets of [0, z) such that the measure of each of g(u), u ∈ V (G), is
one, the sets g(u) and g(v) are disjoint for every edge uv, and the sets g(u)
and g(v) are rotationally equivalent for any two vertices u and v of G, i.e.,
there exists x ∈ [0, z) such that

g(u) = (g(v) + x) mod z = {(y + x) mod z : y ∈ g(v)}.

The gyrochromatic number of G is the infimum of all z such that G has
a z-gyrocoloring. The equivalence of this definition to the one given in
Section 3.1 is rather easy to see. For completeness, we include a short
proof.

Proposition 3.1. Let G be a graph. For every positive real z, the graph G
has a z-gyrocoloring if and only if G has a coloring T-base of measure z−1.

Proof. Fix a graphG and a positive real z. Suppose that g is a z-gyrocoloring.
Fix a vertex v0 of G and let xv ∈ [0, z) be such that g(v) = (g(v0) + xv)
mod z; in particular, xv0 = 0. The set

{x/z : x ∈ g(v0)}

is a coloring T-base; this can be seen by setting the function f from the
definition of a coloring base to be f(v) = g(v)/z.

For the other direction, let A be a coloring T-base of measure z−1, and
let f be the function from the definition of a coloring base. We can now
define a z-gyrocoloring of the graph G as follows:

g(v) = {(x+ f(v)) · z mod z : x ∈ A}

for every vertex v ∈ V (G).

We next turn our attention to definitions where the equivalence is more
complicated to see, and start with showing that the discrete and Borel
variants of the definition of the gyrochromatic number are equivalent.
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Theorem 3.2. Let G be a graph. It holds that σZN (G) ≤ σT(G) for every
N ∈ N and

σT(G) = sup
N∈N

σZN (G) = lim
N→∞

σZN (G).

Proof. Fix a graph G. If A is a coloring ZN -base for G, then the set⋃
x∈A

[
x− 1

N
,
x

N

)
is a coloring T-base. Hence, σT(G) ≥ σZN (G) for every N ∈ N. We therefore
have

σT(G) ≥ sup
N∈N

σZN (G) ≥ lim sup
N→∞

σZN (G).

We now prove that
lim
N→∞

σZN (G) = σT(G),

which will complete the proof.

Choose any ε > 0 and let A be a coloring T-base such that µ(A) ≥
σT(G) − ε. We may assume without loss of generality that µ(A) > 0. Let
f : V (G) → T be a mapping such that A + f(u) and A + f(v) are disjoint
for every edge uv of the graph G.

Since the measure µ is regular, there exists a closed set B ⊆ A such that
µ(A \B) < ε. For m ∈ N, let Bm := B +

[−1
m
, 1
m

]
; note that

B =
⋂
m∈N

Bm and lim
m→∞

µ(Bm) = µ(B).

Hence, there exists an integerm such that µ(Bm\B) < ε, whence µ(Bm4A) ≤
µ(Bm4B) + µ(B4A) < 2ε; fix such m for the rest of the proof. Note that
the measure of Bm is at least µ(A)− 2ε ≥ σT(G)− 3ε.

Choose N ∈ N such that m/N ≤ ε and define f ′(v) = bNf(v)c/N ;
here and in what follows, multiplications such as Nf(v) mean that f(v) is
viewed as an element of [0, 1] and is multiplied in R by N . Since the sets
A + f(u) and Bm + f(u) differ on a set of measure at most 2ε for every
vertex u ∈ V (G), the measure of the intersection Bm + f(u) and Bm + f(v)
is at most 4ε for every edge uv of G. Since the set Bm has at most m/2
connected components, i.e., Bm viewed as a subset of a circle consists of
at most m/2 closed arcs, the measure of the intersection Bm + f ′(u) and
Bm + f ′(v) is at most 4ε + m/N . Choose z ∈ T randomly according to µ
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and define a set A(z) ⊆ ZN to be the set containing all i ∈ {0, . . . , N − 1}
such that z + i/N ∈ Bm and

z + i/N 6∈ Bm + f ′(v)− f ′(u)

for every edge uv of G. The probability that a particular i satisfies that
z + i/N ∈ Bm is equal to the measure of Bm. The probability that z + i/N
is both in Bm and in Bm + f ′(v)− f ′(u) for a particular edge uv is equal to
the measure of the intersection of Bm + f ′(u) and Bm + f ′(v), which is at
most 4ε+m/N . Hence, the probability that i is included in the set A(z) is
at least

µ(A)− 2ε− (4ε+m/N)|E(G)| ≥ µ(A)− 2ε− 5ε|E(G)|.

The expected size of A(z) is therefore at least

N(µ(A)− 2ε− 5ε|E(G)|).

Fix z such that the size of A(z) is at least the expected size.

We next show that A(z) is a coloring ZN -base for G. Consider the
function f ′′ : V (G) → ZN defined as f ′′(v) = Nf ′(v) and observe that the
sets A(z) + f ′′(u) and A(z) + f ′′(v) are disjoint for every edge uv. Indeed,
if the intersection of A(z) + f ′′(u) and A(z) + f ′′(v) were non-empty, there
would exist i, j ∈ A(z) such that i+ f ′′(u) = j + f ′′(v), which would imply
that z+i/N ∈ Bm and z+j/N ∈ Bm; since z+i/N = z+j/N+f ′(v)−f ′(u),
it would then follow that z + i/N ∈ Bm + f ′(v) − f ′(u), contradicting the
definition of A(z). Hence A(z) is a coloring ZN -base for G, so σZN (G) ≥
|A(z)|
N

= µ(A)− 2ε− 5ε|E(G)|.
We have thus proved that for all N sufficiently large (depending on ε)

we have
σT(G) ≥ σZN (G) ≥ σT(G)− 3ε− 5ε|E(G)|.

Since the choice of ε > 0 was arbitrary, we deduce that

σT(G) = lim
N→∞

σZN (G)

and the result follows.

Theorem 3.2 yields the following.
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Corollary 3.3. The gyrochromatic number of a graph G is equal to the
infimum of N/K for which there exists a K-element set A ⊆ ZN and a
function f : V (G) → ZN such that A + f(u) and A + f(v) are disjoint for
every edge uv of G.

We next turn our attention to a definition through homomorphisms to
circulant graphs. Fix an integer N and a set S ⊆ ZN such that S = −S and
0 6∈ S; the circulant graph C(N,S) is the graph with vertex set ZN such
that two vertices i and j of C(N,S) are adjacent if j−i ∈ S. If G and H are
two graphs, we say that G is homomorphic to H if there exists a mapping
h : V (G) → V (H) such that h(u)h(v) is an edge of H for every edge uv of
G. The mapping h is a homomorphism from G to H. If G is homomorphic
to H, we also write G→ H and say that H admits a homomorphism from
G.

Theorem 3.4. The gyrochromatic number of a graph G is equal to

inf
N∈N,S⊆ZN
G→C(N,S)

χf (C(N,S)) = inf
N∈N,S⊆ZN
G→C(N,S)

N

α (C(N,S))
,

i.e., is equal to the infimum of the fractional chromatic numbers of the cir-
culant graphs that admit a homomorphism from G.

Proof. We will show that the following holds for every N ∈ N:

σZN (G) = max
S⊆ZN

G→C(N,S)

α (C(N,S))

N
. (3.3)

Since the graph C(N,S) is vertex transitive for every choice of S, it holds
that the fractional chromatic number of C(N,S) is equal to N/α (C(N,S)).
In particular, the statement of the theorem will follow from (3.3) and The-
orem 3.2.

Fix N ∈ N. We prove the equality in (3.3) as two inequalities, starting
with showing that

σZN (G) ≤ max
S⊆ZN

G→C(N,S)

α (C(N,S))

N
.

Let A be a coloring ZN -base for G and let f : V (G) → ZN be such that
A+f(u) and A+f(v) are disjoint for every edge uv of G. We define the set S
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as the set containing f(u)−f(v) and f(v)−f(u) for every edge uv. We claim
that the set A is independent in the circulant graph C(N,S): if A was not
independent, then there would exist i, j ∈ A such that i = j+f(v)−f(u) for
an edge uv, which would imply that the sets A+ f(u) and A+ f(v) are not
disjoint (i+f(u) would be their common element). Hence, the independence
number of C(N,S) is at least |A|. Since it holds that the vertices f(u) and
f(v) of C(N,S) are adjacent for every edge uv of G, the mapping f is a
homomorphism from G to C(N,S) and the inequality follows.

We next prove that

σZN (G) ≥ max
S⊆ZN

G→C(N,S)

α (C(N,S))

N
.

Fix a set S ⊆ ZN such that there exists a homomorphism f : V (G) → ZN
from G to the circulant graph C(N,S), and let A be an independent set
of C(N,S) of size α(C(N,S)). We claim that A is a coloring ZN -base for
G. To establish this, it is enough to show that A + f(u) and A + f(v) are
disjoint for every edge uv of G. Since A is an independent set in G, the sets
A and A+ x are disjoint for every x ∈ S. Consider an edge uv of G. Since
f is a homomorphism from G to C(N,S), it follows that f(v) − f(u) ∈ S,
in particular, the sets A and A + f(v) − f(u) are disjoint. Hence, the sets
A + f(u) and A + f(v) are disjoint. We conclude that A is a coloring
ZN -base.

We remark that in Section 3.4 we establish a more general statement than
that of Theorem 3.4; circulant graphs are Cayley graphs of the (abelian)
group ZN and we will show that the gyrochromatic number of a graph G is
equal to the infimum of the fractional chromatic numbers of Cayley graphs
of finite abelian groups that admit a homomorphism from G (cf. Corol-
lary 3.11). We remark that the fractional chromatic number of G is equal
to the minimum of the fractional chromatic numbers of Cayley graphs of
finite groups that admit a homomorphism from G (see the discussion after
Corollary 3.11).
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3.3 Simple properties

In this section, we establish several simple properties of the gyrochromatic
number; some of them will be used within our arguments later in the paper.
We start with two properties related to products of graphs. Recall that the
Cartesian product G2H of two graphs G and H is the graph with vertex set
V (G)×V (H) such that two vertices (v, v′) and (w,w′) of G2H are adjacent
if either v = w and v′w′ is an edge of H or v′ = w′ and vw is an edge of
G. Similarly to the chromatic number and the circular chromatic number,
the gyrochromatic number is also preserved by the Cartesian product of a
graph with itself.

Proposition 3.5. For every graph G, it holds that χg(G) = χg(G2G).

Proof. We show that A ⊆ T is a coloring base for G if and only if it is a
coloring base for G2G. If A is a coloring base for G2G, then it is clearly
a coloring base for G. Hence, we focus on proving the reverse implication.
Let A be a coloring T-base for G and f : V (G)→ T such that A+ f(v) and
A + f(w) are disjoint for any edge vw of G. We define g : V (G)2 → T by
setting g(v, v′) to be f(v) + f(v′), and show that if (v, v′) and (w,w′) are
adjacent in G2G, then A+ g(v, v′) and A+ g(w,w′) are disjoint.

Suppose that (v, v′) and (w,w′) are adjacent. It holds that either v = w
or v′ = w′. In the former case, v′ and w′ are adjacent in G and so A+ f(v′)
and A + f(w′) are disjoint. Consequently, A + g(v, v′) = A + f(v) + f(v′)
and A+ g(w,w′) = A+ f(w) + f(w′) = A+ f(v) + f(w′) are disjoint. Since
the case v′ = w′ is symmetric, A is a coloring base for the graph G2G.

Proposition 3.5 does not generalize to Cartesian products of distinct
graphs, however the following holds.

Proposition 3.6. For any two graphs G and H, it holds that χg(G2H) =
χg(G ∪H), where G ∪H is the disjoint union of G and H.

Proof. Since G2H is a component of the graph (G∪H)2(G∪H), it holds
that χg(G2H) ≤ χg(G∪H) by Proposition 3.5. On the other hand, both G
and H are subgraphs of G2H, which implies that if A ⊆ T is a coloring base
for G2H, then it is also a coloring base of G∪H. Indeed, if f : V (G2H)→
T is a function such that A + f(v) and A + f(w) are disjoint for any edge
vw of G2H, then its restriction to the copies of G and H in G2H witness
that A is a coloring base for G ∪H. Hence, χg(G ∪H) ≤ χg(G2H).
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In the next two paragraphs, we give an example of two (small) graphs
G and H such that χg(G2H) > max{χg(G), χg(H)}, which is equivalent to
χg(G∪H) > max{χg(G), χg(H)} by Proposition 3.6. The two graphs G and
H that we identify will also satisfy that χf (G∪H) < χg(G∪H) < χc(G∪H);
examples of connected graphs for which both inequalities are strict are given
in Theorem 3.12.

Recall that the lexicographic product G[G′] of graphs G and G′ is the
graph whose vertex set is V (G)× V (G′) and two vertices (v, v′) and (w,w′)
are adjacent if either vw is an edge of G or v = w and v′w′ is an edge
of G′. Consider graphs G = K5 and H = K2[C5] and note that they
both are circulant graphs (the graph K2[C5] is isomorphic to the circulant
graph C(10, S) for S = {1, 3, 4, 5, 6, 7, 9}), and therefore their gyrochromatic
number is equal to their fractional chromatic number, which is five for each
of them. Clearly χ(G) = χc(G) = 5. Moreover, since the complement of
H is the union of two disjoint copies of C5, we can see that χ(H) = 6, and
also (since this complement is therefore disconnected) that χc(H) = χ(H)
by [64, Corollary 3.1]. We next observe that α(G2H) ≤ 9: since G is a
clique of size five, the independence number of G2H is the maximum total
number of vertices assembled from five pairwise disjoint independent sets of
H. As α(H) = 2 and H is not 5-colorable, the maximum number of vertices
of H contained in five (disjoint) independent sets of H is at most 9. We
conclude that α(G2H) ≤ 9, which implies that χf (G2H) ≥ 50/9.

Since χg(G2H) ≥ 50/9, Proposition 3.6 yields that χg(G∪H) ≥ 50/9 >
max{χg(G), χg(H)} = max{χf (K5), χf (H)} = 5. On the other hand, ob-
serve that G ∪ H admits a 40/7-gyrocoloring. The structure of such a
coloring is outlined in Figure 3.1. Namely, consider the set [0, 1

2
) ∪ [15

14
, 22

14
)

and assign its five copies shifted by 0, 1
2
, 29

14
, 36

14
and 58

14
to the vertices of G,

its five copies shifted by 8i
7

for i = 0, 1, 2, 3, 4 to the vertices of one copy of
C5 in H and its five copies shifted by 8i+4

7
for i = 0, . . . , 4 to the vertices

of the other copy of C5 in H. Furthermore, recalling the fractional and
circular chromatic numbers of G and H, we get that χf (G ∪ H) = 5 and
χc(G ∪H) = 6 which yields that χf (G ∪H) < χg(G ∪H) < χc(G ∪H).

Considering lexicographic products, Gao and Zhu [28] showed that if
χf (G) = χc(G), then χc(G[H]) = χc(G) χ(H). In particular, χc(Kk[H]) =
k χ(H). Recall that ifH is a circulant graph, then χf (Kk[H]) = χg(Kk[H]) =
k χf [H]. Hence, if H satisfies χf (H) < χ(H), then Kk[H] is an example of
a graph such that the gyrochromatic and circular chromatic numbers differ;
the graph K2[C5] discussed above is a particular case of this more general
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Fig. 3.1: Outline of the gyrocoloring of K5 ∪K2[C5]. The five sets depicted
on the left-hand side correspond to the vertices of K5 (the sets are pairwise
disjoint). The middle correspond to the vertices of induced C5, and similarly
the right-hand side correspond to the other C5 (the union of the sets in the
middle is disjoint from the union of the sets on the right).

argument.

We conclude this section with a lemma, which can be used to prove a
lower bound on the gyrochromatic number of a graph that is larger than the
fractional chromatic number. The lemma in particular yields an example
of a graph such that its gyrochromatic number is strictly larger than its
fractional chromatic number: consider the line graph G of the Petersen
graph and note that ω(G) = χf (G) = 3 and χ(G) = 4.

Lemma 3.7. Let G be an n-vertex graph. If ω(G) < χ(G), then χg(G) ≥
n
n−1

ω(G).

Proof. Let k = ω(H) and let v1, . . . , vk be vertices of a clique with k vertices
in G. Suppose that A is a coloring T-base for G with measure δ > 0. Finally,
let f : V (G)→ T be such that A+ f(u) and A+ f(v) are disjoint for every
edge uv of G. In particular, the sets A + f(v1), . . . , A + f(vk) are pairwise
disjoint.

For x ∈ T and i ∈ [k], define Vi(x) ⊆ V (G) as the set of vertices v such
that x + f(vi) ∈ A + f(v). Since the element x + f(vi) is contained in the
set A+f(v) for every v ∈ Vi(x), each of the sets Vi(x) is an independent set
in G. In addition, the sets V1(x), . . . , Vk(x) are pairwise disjoint for every
x ∈ T. Indeed, if a vertex v were contained in Vi(x) and Vj(x), i 6= j,
i, j ∈ [k], then both x+ f(vi) and x+ f(vj) would be contained in A+ f(v);
this would imply that the element x−f(v)+f(vi)+f(vj) is contained both
in A + f(vi) and A + f(vj), which contradicts that the sets A + f(vi) and
A+ f(vj) are disjoint.
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Since the graph G is not k-colorable, the union V1(x) ∪ · · · ∪ Vk(x) does
not contain all vertices of G for any x ∈ T. Hence, for every x ∈ T we have

|V1(x) ∪ · · · ∪ Vk(x)| =
k∑
i=1

|Vi(x)| ≤ n− 1,

which implies that
∫
T
∑k

i=1 |Vi(x)| dx ≤ n− 1. On the other hand it holds
that ∫

T

k∑
i=1

|Vi(x)| dx =
∑

v∈V (G)

k∑
i=1

µ (A+ f(v)− f(vi)) = knδ.

It follows that δ is at most n−1
kn

. We conclude that σT(G) ≤ n−1
kn

, which
yields that the gyrochromatic number of G is at least n

n−1
k.

3.4 Universality

In this section, we show that a higher-dimensional-torus analogue of the gy-
rochromatic number is equal to the (one-dimensional) gyrochromatic num-
ber and use this result to prove a generalization of Theorem 3.4 to all finite
abelian groups. As the first step towards this result, we observe that the
proof of Theorem 3.2 readily translates to higher dimensions; we formulate
the corresponding statement as a lemma.

Lemma 3.8. Let d be any positive integer. For every graph G, it holds that

σTd(G) = sup
N∈N

σZdN (G) = lim
N→∞

σZdN (G).

We next state and prove the main theorem of this section.

Theorem 3.9. Let d be any positive integer. For every graph G, it holds
that

σT(G) = σTd(G).

Proof. Fix an integer d ≥ 2 and a graph G. Observe that if A is a coloring
T-base for G, then A× Td−1 is a coloring Td-base for G; this implies that

σT(G) ≤ σTd(G).
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The rest of the proof is devoted to establishing the reverse inequality. Choose
ε > 0 arbitrarily and note that by Lemma 3.8, for all N ∈ N sufficiently
large we have

σZdN (G) ≥ σTd(G)− ε. (3.4)

For any such N , since the group ZdN is finite, there exists a coloring ZdN -base
A for G with σZdN (G) ·Nd elements. Next choose an integer k ∈ N such that

1−ε ≤
(

k
k+2

)d
and let N be large enough so that there are at least d distinct

primes between (k+1)N and (k+2)N (the Prime Number Theorem implies
that this holds for every N sufficiently large); let P1, . . . , Pd be such primes.

Define A′ to be the subset of ZP1 × · · · × ZPd such that

A′ = {(x1 + y1N, . . . , xd + ydN) : (x1, . . . , xd) ∈ A and y1, . . . , yd ∈ [k]}.

Let f : V (G) → ZdN be the function such that A + f(u) and A + f(v) are
disjoint for every edge uv of G. Observe that A′+f(u) and A′+f(v) are also
disjoint for every edge uv of G when f(u) and f(v) are viewed as elements of
ZP1×· · ·×ZPd (here we use in particular that each of the primes P1, . . . , Pd
is at least (k + 1)N , so that no addition needs to be done modulo Pi). Let
M = P1P2 · · ·Pd and define a mapping g : ZM → ZP1 × · · · × ZPd as

g(x) = (x mod P1, . . . , x mod Pd).

Since P1, . . . , Pd are distinct primes, the mapping g is an isomorphism of
the groups ZM and ZP1 × · · · × ZPd , in particular, g is a bijection.

We establish that the set A′′ = g−1(A′) is a coloring ZM -base for G. To
do so, consider the function f ′′ : V (G)→ ZM defined as f ′′(v) = g−1(f(v)),
v ∈ V (G). Since g is an isomorphism of ZM and ZP1 × · · · × ZPd , it holds
that A′′+f ′′(u) and A′′+f ′′(v) are disjoint for every edge uv of G. It follows
that A′′ is a coloring ZM -base for G, which implies that

σZM (G) ≥ |A
′′|

M
=
kd|A|
M

≥ kd|A|
(k + 2)dNd

≥ (1− ε)σZdN (G). (3.5)

The inequalities (3.4) and (3.5) yield that

σZM (G) ≥ (1− ε) (σTd(G)− ε) ≥ σTd(G)− 2ε.

Since the choice of ε was arbitrary, it follows that σZM (G) is at least σTd(G)
for every sufficiently large M . Theorem 3.2 now implies that σT(G) ≥
σTd(G), which completes the proof of the theorem.
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Theorem 3.9 yields the following corollary.

Corollary 3.10. For every graph G, it holds that

σT(G) = sup
Z
σZ(G)

where the supremum is taken over all finite abelian groups Z.

Proof. Fix a graph G. Since every ZN , N ∈ N, is a finite abelian group,
Theorem 3.2 yields that the supremum given in the statement is at least
σT(G). To establish the corollary, we need to show that σT(G) ≥ σZ(G) for
every finite abelian group Z.

Fix a finite abelian group Z; without loss of generality, we may assume
that Z is ZM1×· · ·×ZMd

. Let A be a coloring Z-base with σZ(G)|Z| elements
and let f : V (G) → Z be a function such that A + f(u) and A + f(v) are
disjoint for every edge uv of G. Let N be the least common multiple of
M1, . . . ,Md, and let π denote the natural homomorphism ZdN → Z, defined
by (x1, . . . , xd) 7→ (x1N/M1, . . . , xdN/Md). It is then easy to see that the
preimage AN := π−1(A) is a coloring ZdN -base, with corresponding map
f ′ : V → ZdN where for each vertex v we let f ′(v) be any preimage of
f(v) under π. We deduce that σZdN (G) ≥ σZ(G). By Lemma 3.8 and

Theorem 3.9, we get that σT(G) = σTd(G) ≥ σZdN (G) ≥ σZ(G), and the
result follows.

We conclude this section with a generalization of Theorem 3.4 to finite
abelian groups. Recall that if Z is an abelian group and S is a subset of
Z such that S = −S and 0 6∈ S, the Cayley graph C(Z, S) is the graph
with vertex set Z such that two vertices x and y of C(Z, S) are adjacent if
y − x ∈ S.

Corollary 3.11. The gyrochromatic number of a graph G is equal to

inf
Z,S⊆Z

G→C(Z,S)

χf (C(Z, S)) = inf
Z,S⊆Z

G→C(Z,S)

|Z|
α (C(Z, S))

(3.6)

where the infimum is taken over all finite abelian groups Z.

Proof. The reasoning given in the proof of Theorem 3.4 yields that the
following holds for every abelian group Z:

σZ(G) = max
S⊆Z

G→C(Z,S)

α (C(Z, S))

|Z|
. (3.7)
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Since every Cayley graph is vertex-transitive, it holds for every abelian group
Z and every S ⊆ Z:

χf (C(Z, S)) = max
S⊆Z

G→C(Z,S)

α (C(Z, S))

|Z|
. (3.8)

The corollary now follows from (3.7), (3.8) and Corollary 3.10.

We remark that if finite abelian groups Z in the infimum in (3.6) are
replaced with all finite groups (with generating set S not containing the
identity and satisfying S = S−1), then the infimum is equal to the frac-
tional chromatic number and is always attained. Indeed, it is well-known
that the fractional chromatic number of a graph G is equal to the minimum
fractional chromatic number of a Kneser graph that admits a homomor-
phism from G. Sabidussi’s theorem [58] states that every vertex transitive
graph (in particular, every Kneser graph) is a retract of (hence is homomor-
phically equivalent to) a Cayley graph, cf. [33, Theorem 3.1]. Hence, the
gyrochromatic number can be viewed as a variant of the fractional chromatic
number restricted to abelian groups.

3.5 Relation to circular and fractional colo-

rings

We now identify graphs such that their gyrochromatic number is strictly
between their fractional and circular chromatic numbers, and the difference
with the latter number can be arbitrarily large.

Theorem 3.12. There exists a sequence of graphs (Gk)k∈N\{1} such that
χf (Gk) < χg(Gk) ≤ χc(Gk) = k + 2 and

lim
k→∞

χg(Gk) = 2.

Proof. We set Gk to be the Kneser graph K(2k3 + k, k3). Since the circular
chromatic number and the chromatic number coincide for Kneser graphs [17,
18,49], it follows that the circular chromatic number χc(Gk) is equal to k+2.
Recall that the fractional chromatic number of Gk is 2k3+k

k3 = 2 + k−2, in
particular, the limit of the fractional chromatic numbers of Gk is two.
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We next show that the gyrochromatic numbers of the graphs Gk converge
and their limit is also two. Since it holds that χf (Gk) ≤ χg(Gk) for every
graph Gk, the limit (assuming that it exists) must be at least two. For

the upper bound, consider the Cayley graph Hk = C(Z2k3+k
2 , S) with the

generating set S consisting of those x ∈ Z2k3+k
2 that have exactly 2k3 entries

equal to one. The graph Hk admits a homomorphism from Gk: indeed, each
vertex of K(2k3 + k, k3) corresponds to a k3-element subset of [2k3 + k] and
we map it to the characteristic vector of this set. This mapping is indeed a
homomorphism from Gk to Hk since two vertices of Gk = K(2k3 +k, k3) are
adjacent if and only if their corresponding sets are disjoint, which happens
if and only if the difference of their characteristic vectors (modulo two) has
exactly 2k3 entries equal to one. Corollary 3.11 implies that

lim sup
k→∞

χg(Gk) ≤ lim sup
k→∞

|Hk|
α(Hk)

.

We next show that the right limit is at most two.

Let Ik ⊆ V (Hk) be the set of those elements of Hk with fewer than k3

entries equal to one. Since Ik is an independent set in Hk, it follows that

α(Hk) ≥ |Ik| =
k3−1∑
i=0

(
2k3 + k

i

)
= 22k3+k ·

(
1

2
+ o(1)

)
,

which implies that

lim sup
k→∞

|Hk|
α(Hk)

≤ lim
k→∞

22k3+k

|Ik|
= 2.

We conclude that the sequence χg(Gk) converges and its limit is equal to
two.

To complete the proof of the theorem, we need to show that χf (Gk) <
χg(Gk). To do so, it suffices to show that χf (Gk) < χf (Gk2Gk). Indeed,
if we show this, then by Proposition 3.5 and the fact that the fractional
chromatic number of every graph is at most its gyrochromatic number, we
will have χf (Gk) < χf (Gk2Gk) ≤ χg(Gk2Gk) = χg(Gk), as required.

Since the graphs Gk and Gk2Gk are vertex-transitive, it holds that

χf (Gk) =
|Gk|
α(Gk)

and χf (Gk2Gk) =
|Gk2Gk|
α(Gk2Gk)

=
|Gk|2

α(Gk2Gk)
.
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Hence, it is enough to show that α(Gk2Gk) < |Gk|α(Gk). The Erdős-Ko-

Rado Theorem yields that α(Gk) =
(

2k3+k−1
k3−1

)
and that for every independent

set of Gk of this size, there exists x ∈ [2k3 + k] such that the vertices of the

independent set correspond to the
(

2k3+k−1
k3−1

)
k3-element subsets of [2k3 + k]

containing x. In particular, any two independent sets of the maximum
cardinality in Gk have a non-empty intersection (here we use that k ≥ 2).

Suppose that the graph Gk2Gk has an independent set of size |Gk|α(Gk),
and let I be such an independent set. For every vertex v of Gk, the set
Iv = {w : (v, w) ∈ I} is an independent set in Gk (by definition of the
Cartesian product). Since the set I contains |Gk|α(Gk) elements and |Iv| ≤
α(Gk) for every vertex v ∈ V (Gk), we obtain that |Iv| = α(Gk) for every
v ∈ V (Gk). Let v and v′ be two adjacent vertices of Gk. It follows from the
previous paragraph that Iv and I ′v have a common vertex w, i.e., the set I
contains both (v, w) and (v′, w), which contradicts that I is an independent
set. Hence, the graph Gk2Gk has no independent set of size |Gk|α(Gk), i.e.
α(Gk2Gk) < |Gk|α(Gk). This finishes the proof of the theorem.

Theorem 3.12 immediately implies that the gap between the gyrochro-
matic number and the circular chromatic number can be arbitrarily large
and there exists a graph such that its gyrochromatic number is strictly be-
tween its fractional and its circular chromatic numbers.

Corollary 3.13. For every k ∈ N, there exists a graph G such that χf (G) <
χg(G) ≤ χc(G)− k.

3.6 Existence of optimal gyrocoloring

In this section, we establish the existence of a graph G such that there is no
coloring T-base for G of measure σT(G), i.e., the supremum in (3.1) is not
attained. In other words, there exists a graph G with no χg(G)-gyrocoloring.

Let G5 be the graph with vertex set Z2
5 and two vertices (i, j) and (i′, j′)

adjacent if i′−i ∈ {2, 3} or j′−j ∈ {2, 3} (calculations modulo five). In other
words, G5 is the Cayley graph on Z2

5 with generating set Z2
5 \ {−1, 0, 1}2.

Proposition 3.15 and Theorem 3.19, which we will prove in this section,
yield that G5 has no coloring T-base with measure σT(G5).

We begin by analyzing the structure of independent sets of G5.
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Proposition 3.14. The independence number of G5 is four and the only
independent sets of size four are the following 25 sets:

Iv = {v, v + (0, 1), v + (1, 0), v + (1, 1)}

where v ∈ Z2
5.

Proof. Let X be an independent set in G5 and let (i, j) ∈ Z2
5 be any vertex

of G5 contained in X. Observe that the set X contains in addition to the
vertex (i, j) at most one of the vertices (i−1, j) and (i+1, j), at most one of
the vertices (i, j− 1) and (i, j+ 1), at most one of the vertices (i− 1, j− 1),
(i−1, j+1), (i+1, j−1) and (i+1, j+1), and no other vertex. In particular,
the set X has size at most four. If the set X has size four, we can assume
by symmetry that X contains the vertex (i + 1, j) from the first pair and
the vertex (i, j + 1) from the second pair. If X contains the vertices (i, j),
(i+ 1, j) and (i, j + 1), then the only vertex from the last quadruple that it
can contain is (i+ 1, j + 1). Hence, X = Iv for v = (i, j).

We next compute σT(G5). We remark that the construction of the colo-
ring Z2

5-base for G5 presented in the proof of the next proposition yields a
coloring T2-base with measure 4/25.

Proposition 3.15. It holds that σT(G5) = 4/25.

Proof. Since α(G5) = 4, it follows that χf (G5) ≥ 25/4, which implies that
σT(G5) ≤ 4/25. On the other hand, the set A = {(0, 0), (0, 1), (1, 0), (1, 1)}
is a coloring Z2

5-base for G5: indeed, the sets A+v and A+w are disjoint for
every edge vw of G5. Hence, σZ2

5
(G5) ≥ 4/25, which yields that σT(G5) ≥

4/25 by Corollary 3.10.

We next show that every coloring T-base of G5 of measure 4/25 must have
a very particular structure. In what follows, we will write X ∼= Y if two sets
X and Y differ on a null set.

Lemma 3.16. Let A ⊆ T be a coloring T-base of the graph G5 and let
f : V (G5) → T be such that A + f(v) and A + f(w) are disjoint for every
edge vw; let Bv, v ∈ V (G5) be the set A+f(v). If the measure of A is 4/25,
then there exist disjoint measurable subsets Ci,j, (i, j) ∈ Z2

5, such that

Bi,j
∼= Ci,j ∪ Ci+1,j ∪ Ci,j+1 ∪ Ci+1,j+1

for every (i, j) ∈ Z2
5, and the measure of each set Ci,j, (i, j) ∈ Z2

5, is 1/25.
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Proof. Let I be the set containing all independent sets of vertices of G5.
For each I ∈ I, we define the following measurable subset of T:

DI = {x ∈ T : x ∈ A+ f(v) if and only if v ∈ I}.

Observe that every x ∈ T belongs to DI for some I ∈ I: indeed, the set
containing the vertices v such that x ∈ A + f(v) is independent (note that
∅ ∈ I). Hence, the sets DI , I ∈ I, partition T. We also have from the
definition of DI that

A+ f(v) =
⋃

I∈I:I3v

DI , (3.9)

and it follows that
∑

I∈I |I| · µ(DI) =
∑

v∈V (G5) µ(A + f(v)). On the other

hand, since the measure of A is 4/25, we have
∑

v∈V (G5) µ(A + f(v)) = 4.
Hence, using Proposition 4.15, we have

4 =
∑
I∈I

|I| · µ(DI) = 4
∑

I∈I:|I|=4

µ(DI) +
∑

I∈I:|I|<4

|I| · µ(DI).

This implies that µ(DI) = 0 for all I ∈ I with |I| < 4 (using
∑

I∈I µ(DI) =
1). Setting

Ci,j = D{(i−1,j−1),(i−1,j),(i,j−1),(i,j)},

we have by (4.17) that Bi,j
∼= Ci,j ∪ Ci+1,j ∪ Ci,j+1 ∪ Ci+1,j+1 for every

(i, j) ∈ Z2
5. To complete the proof, we need to show each set Ci,j has

measure 1/25.

Recalling the notation Iv from Proposition 4.15, let M be the matrix
with rows and columns indexed by the elements of Z2

5 such that M(i,j),(i′,j′)

is one if (i, j) ∈ I(i′,j′) and zero otherwise. Further, let x be the vector with
entries indexed by the elements of Z2

5 such that x(i′,j′) is the measure of
DI(i′,j′)

. Observe (using (4.17) and that µ(DI) = 0 for |I| < 4) that Mx is

the vector with all entries equal to 4/25. We next show that the matrix M
is invertible. This would imply that the vector x with all entries equal to
1/25 is the only vector such that Mx is the vector with all entries equal to
4/25, which would complete the proof.

Assume that the matrix M is singular, i.e., there exists a non-zero vector
x such that Mx is the zero vector. The entries of x can be interpreted as
numbers on the toroidal 5 × 5 grid such that each of the 25 quadruples of
entries forming a square sums to zero; a “square” stands here for a translate
of {(0, 0), (1, 0), (0, 1), (1, 1)} in the grid.
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We can assume that the first row of the grid is α, β1, . . . , β4 and the first
column is α, γ1, . . . , γ4, which yields that the numbers are assigned to the
grid as follows.

α β1 β2 β3 β4

γ1 −α− β1 − γ1 +α− β2 + γ1 −α− β3 − γ1 +α− β4 + γ1

γ2 +α + β1 − γ2 −α + β2 + γ2 +α + β3 − γ2 −α + β4 + γ2

γ3 −α− β1 − γ3 +α− β2 + γ3 −α− β3 − γ3 +α− β4 + γ3

γ4 +α + β1 − γ4 −α + β2 + γ4 +α + β3 − γ4 −α + β4 + γ4

Since there is a square containing β1, β2, α+ β1 − γ4 and −α+ β2 + γ4, we
obtain β1 = −β2. By considering other squares wrapping around, we obtain
that β1 = −β2 = β3 = −β4, γ1 = −γ2 = γ3 = −γ4 and β4 = −γ4. Hence,
the table can be rewritten as follows.

α β1 −β1 β1 −β1

−β1 −α +α −α +α
+β1 +α −α +α −α
−β1 −α +α −α +α
+β1 +α −α +α −α

Considering two of the squares containing the entry α in the top left corner,
we obtain 2(α + β1) = 0 and 2(α − β1) = 0. Hence α = β1 = 0, i.e.,
the vector x is zero. We conclude that the matrix M is invertible, which
completes the proof.

We are now ready to prove the main lemma of this section. To simplify
our notation, we will understand the subscripts indexing sets Bi,j and Ci,j in
Lemma 3.16 as pairs (i, j) ∈ Z2

5, which allows us to perform addition as with
the elements of Z2

5, e.g., C(0,1)+(1,2) is the set C(1,3) = C1,3. In addition, we
write tv→w for f(w)− f(v), when A is a coloring T-base and f : V (G)→ T
is a function such that A + f(v) and A + f(w) are disjoint for every edge
vw.

Lemma 3.17. Let A ⊆ T be a coloring T-base of the graph G5 with measure
4/25 and let Ci,j ⊆ T, (i, j) ∈ Z2

5, be the sets as in Lemma 3.16. For every
v ∈ Z2

5 and w ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}, it holds that

Cv+w + tv→v+(1,0)
∼= Cv+w+(1,0) (3.10)

Cv+w + tv→v+(0,1)
∼= Cv+w+(0,1). (3.11)
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B0,0 B1,0

B0,1 B1,1

C0,0 C1,0 C2,0

C0,1 C1,1 C2,1

C0,2 C1,2 C2,2

C0,0 C1,0 C2,0 C3,0

C0,1 C1,1 C2,1 C3,1

t1,0 t1,0

t2,0

Fig. 3.2: Visualization of the notation used in the proof of Lemma 3.17 and
the equalities (3.12), (3.13) and (3.14).

Proof. By symmetry, we will assume that v = (0, 0) in our presentation with
the exception of equality (3.15), which we formulate in the general setting.
Throughout the proof, we write Bi,j ⊆ T for the sets as in Lemma 3.16; to
simplify our notation, we also write ti,j for t(0,0)→(i,j).

Our first goal is to prove the following weaker statement, which is also
visualized in Figure 3.2.

(C0,0 ∪ C0,1) + t1,0 ∼= C1,0 ∪ C1,1 (3.12)

(C1,0 ∪ C1,1) + t1,0 ∼= C2,0 ∪ C2,1 (3.13)

Since the vertices (0, 0) and (2, 0) are adjacent, the sets B0,0 and B2,0 =
B0,0 + t2,0 are disjoint, and so are these sets shifted by t1,0, i.e., the sets
B0,0 + t1,0 = B1,0 and B0,0 + t2,0 + t1,0 = B1,0 + t2,0. In particular, the
intersection of C2,0 ∪ C2,1 ⊆ B1,0 and (C1,0 ∪ C1,1) + t2,0 ⊆ B1,0 + t2,0 is
empty. Since both C2,0 ∪C2,1 and (C1,0 ∪C1,1) + t2,0 are subsets of B2,0 and
the measure of each of them is half of the measure of B2,0, it follows that
the sets (C1,0 ∪C1,1) + t2,0 and B2,0 \ (C2,0 ∪C2,1) = C3,0 ∪C3,1 are the same
(up to a null set), i.e.,

(C1,0 ∪ C1,1) + t2,0 ∼= C3,0 ∪ C3,1. (3.14)

We formulate (3.14) for an arbitrary vertex v since we need the statement
later:

(Cv+(1,0) ∪ Cv+(1,1)) + tv→v+(2,0)
∼= Cv+(3,0) ∪ Cv+(3,1). (3.15)
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We next apply (3.15) with v = (1, 0) and v = (3, 0) as follows:

(C2,0 ∪ C2,1)− t(0,0)→(1,0) = (C2,0 ∪ C2,1) + t(1,0)→(0,0)

= (C2,0 ∪ C2,1) + t(1,0)→(3,0) + t(3,0)→(0,0)

∼= (C4,0 ∪ C4,1) + t(3,0)→(0,0)

∼= C1,0 ∪ C1,1,

which proves (3.13). Since both the sets (C0,0 ∪C0,1 ∪C1,0 ∪C1,1) + t1,0 and
C1,0∪C1,1∪C2,0∪C2,1 are equal to B1,0, in particular, they are the same set,
and all sets Ci,j, (i, j) ∈ Z2

5, are disjoint, the equality (3.12) also follows.

An argument symmetric to the one used to prove (3.12) and (3.13) yields
the following.

(C0,0 ∪ C1,0) + t0,1 ∼= C0,1 ∪ C1,1 (3.16)

(C0,1 ∪ C1,1) + t0,1 ∼= C0,2 ∪ C1,2 (3.17)

Next suppose for a contradiction that the intersection of C0,0 + t1,0 and
C1,1 has positive measure, and let X be the set C0,0 ∩ (C1,1 − t1,0). The
equality (3.17) implies that X + t1,0 + t0,1 is a subset of C0,2 ∪C1,2 (up to a
null set). On the other hand X+ t0,1 ⊆ C0,0 + t0,1 is a subset of C0,1∪C1,1 by
(3.16), and this is a subset of B0,0, hence (X+t0,1)+t1,0 ⊆ B0,0 +t1,0 = B1,0.
However B1,0

∼= C1,0∪C1,1∪C2,0∪C2,1 has null intersection with C0,2∪C1,2.
We have thus deduced that X + t1,0 + t0,1 is included (up to a null set)
in the null set B1,0 ∩ (C0,2 ∪ C1,2), which contradicts the assumption that
X + t0,1 + t1,0 has positive measure. We conclude that the intersection of
C0,0 + t1,0 and C1,1 is null. Since all the sets C0,0, C0,1, C1,0 and C1,1 have
the same measure, the equality (3.12) implies that

C0,0 + t1,0 ∼= C1,0 and C0,1 + t1,0 ∼= C1,1. (3.18)

A symmetric argument implies that

C0,0 + t0,1 ∼= C0,1 and C1,0 + t0,1 ∼= C1,1. (3.19)

We now prove that the intersection of the sets C1,1 + t0,1 and C0,2 is
null. Assume the contrary, i.e., the set X = C1,1 ∩ (C0,2 − t0,1) has positive
measure. The equality (3.15) applied with v = (0, 1) implies that

(C1,1 ∪ C1,2) + t(0,1)→(2,1)
∼= C3,1 ∪ C3,2.
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Since it holds that B0,1 + t(0,1)→(2,1) = B2,1, we get that

(C0,1 ∪ C1,1 ∪ C0,2 ∪ C1,2) + t(0,1)→(2,1)
∼= C2,1 ∪ C3,1 ∪ C2,2 ∪ C3,2.

Since all the sets Ci,j are disjoint, it follows that

(C0,1 ∪ C0,2) + t(0,1)→(2,1)
∼= C2,1 ∪ C2,2.

Since X + t0,1 is a subset of C0,2, we obtain that

X+t2,1 = X+t0,1+t(0,1)→(2,1) ⊆ C0,2+t(0,1)→(2,1) ⊆ C2,1∪C2,2 ⊆ B1,1. (3.20)

On the other hand, it holds that X ⊆ C1,1 ⊆ B1,1. Hence, the intersection
of the sets B1,1 and B1,1 + t2,1 contains the set X + t2,1, in particular, it has
positive measure. However, this is impossible because B1,1 = B0,0 + t1,1 and
B1,1 + t2,1 = B2,1 + t1,1 and the sets B0,0 and B2,1 are disjoint. We conclude
that the intersection of sets C1,1 + t0,1 and C0,2 is null. Using (3.17), we
obtain that

C0,1 + t0,1 ∼= C0,2 and C1,1 + t0,1 ∼= C1,2,

and a symmetric argument yields that

C1,0 + t1,0 ∼= C2,0 and C1,1 + t1,0 ∼= C2,1.

The proof is now complete.

Our next step is to deduce that the elements tv→w can be replaced by
integer combinations of the elements t(0,0)→(1,0) and t(0,0)→(0,1).

Lemma 3.18. Let A ⊆ T be a coloring T-base of the graph G5 with measure
4/25 and let Ci,j ⊆ T, (i, j) ∈ Z2

5, be the sets as in Lemma 3.16. It holds
that

Ci mod 5, j mod 5
∼= C0,0 + it(0,0)→(1,0) + jt(0,0)→(0,1)

for any two non-negative integers i and j.

Proof. We proceed by induction on i+j ∈ Z; all calculations with subscripts
are done modulo five throughout the proof. The base of the induction is
the case i + j ∈ {0, 1}, which is implied by Lemma 3.17. For the rest of
the proof fix i and j. By symmetry, we may assume that j > 0. Applying
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Lemma 3.17 with v = (0, 0), (1, 0), . . . , (i, 0), (i, 1), . . . , (i, j − 1), we obtain
the following.

Ci,j−1
∼= C0,0 + t(0,0)→(1,0) + · · ·+ t(i−1,0)→(i,0) + t(i,0)→(i,1) + · · ·

· · ·+ t(i,j−2)→(i,j−1) (3.21)

Ci,j ∼= C0,1 + t(0,0)→(1,0) + · · ·+ t(i−1,0)→(i,0) + t(i,0)→(i,1) + · · ·
· · ·+ t(i,j−2)→(i,j−1) (3.22)

Since C0,1
∼= C0,0 + t(0,0)→(0,1) by Lemma 3.17, we conclude using (3.21) and

(3.22) that
Ci,j ∼= Ci,j−1 + t(0,0)→(0,1). (3.23)

On the other hand, the induction yields

Ci,j−1
∼= C0,0 + it(0,0)→(1,0) + (j − 1)t(0,0)→(0,1),

which combines with (3.23) to imply

Ci,j ∼= C0,0 + it(0,0)→(1,0) + jt(0,0)→(0,1).

We are now ready to prove the main theorem of this section.

Theorem 3.19. The graph G5 has no coloring T-base with measure 4/25.

Proof. Suppose that there exists a coloring T-base A ⊆ T with measure
4/25, and let Ci,j ⊆ T, (i, j) ∈ Z2

5, be the sets as in Lemma 3.16. Further, let
τ = t(0,0)→(1,0) and τ ′ = t(0,0)→(0,1). By Lemma 3.18 we have C0,0

∼= C0,0+5τn
and C0,0

∼= C0,0 + 5τ ′n for any integer n. If 5τ were irrational, then the
measure of C0,0 would be either zero or one. Therefore, 5τ is rational.
Similarly, 5τ ′ is rational. It follows that both τ and τ ′ are also rational. Let
p, q, r, p′, q′, r′ be non-negative integers such that

τ =
p

5rq
and τ ′ =

p′

5r′q′
,

p and 5rq are coprime, p′ and 5r
′
q′ are coprime, and neither q nor q′ is

divisible by five. By symmetry, we may assume that r ≤ r′. Let k be an
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integer such that 5r
′−rp and kp′ are congruent modulo 5r

′
; note that such k

exists since p′ and 5r
′

are coprime. Next observe that

qτ =
5r
′−rp

5r′
and kq′τ ′ =

kp′

5r′
=

5r
′−rp

5r′
mod 1. (3.24)

By Lemma 3.18, we obtain that

C0,0 + qτ ∼= C0,0 + qt(0,0)→(1,0)
∼= Cq mod 5, 0

C0,0 + kq′τ ′ ∼= C0,0 + kq′t(0,0)→(0,1)
∼= C0, kq′ mod 5.

Since q mod 5 6= 0 and the sets Ci,j are disjoint sets of measure 1/25 by
Lemma 3.16, we obtain that the intersection of the sets C0,0+qτ ∼= Cq mod 5, 0

and C0,0 + kq′τ ′ ∼= C0, kq′ mod 5 is null. However, qτ and kq′τ ′ is the same
element of T by (3.24), i.e., C0,0 + qτ ∼= C0,0 + kq′τ ′. This contradicts our
assumption on the existence of a coloring T-base with measure 4/25.

3.7 Conclusion

We finish with giving three open problems that we find particularly inter-
esting and briefly mentioning a relation of the gyrochromatic number to
another graph parameter, the ultimate independence ratio of a graph. The
independence ratio i(G) of a graph G is the ratio α(G)/|V (G)|; the ultimate
independence ratio I(G), which was introduced in [35], is the limit of the
independence ratios of Cartesian powers of G:

I(G) = lim
k→∞

α(Gk)

|V (Gk)|
,

where Gk is the Cartesian product of k copies of G. The inverse of this
quantity is the ultimate fractional chromatic number χF (G) of a graph G
and the following holds [32,63]:

χF (G) =
1

I(G)
= lim

k→∞
χf (G

k).

Zhu [63, p. 236] related the ultimate fractional chromatic number to colo-
ring bases of abelian groups (though he used different terminology), via the
following inequality:

I(G) ≥ sup
{

α(H)
|V (H)|

∣∣G→ H,H is a Cayley graph on a finite abelian group
}
.
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(This inequality can be seen combining the fact that I(G) ≥ I(H) when-

ever G → H (see [32, Theorem 2.1]), together with I(H) = α(H)
|V (H)| when H

is a Cayley graph on an abelian group (see [32, Section 5])). Using Corol-
lary 3.11, we conclude that χF (G) ≤ χg(G). Hence, we obtain that the
following holds for every graph G:

χf (G) ≤ χF (G) ≤ χg(G) ≤ χc(G) ≤ χ(G).

It seems plausible that χF (G) and χg(G) differ for some graphs G, and it
would be interesting to give examples of such graphs.

Question 3.20. Construct a (connected) graph G such that χF (G) < χg(G).

We finish with two problems on the gyrochromatic number and its re-
lation to fractional and circular chromatic numbers, which we believe to be
of particular interest.

Question 3.21. Does there exist a function f : R → R such that χg(G) ≤
f(χf (G)) for every graph G?

Question 3.22. Does there exist a finite graph G such that the gyrochro-
matic number of G is not rational?

Observe that a function f in Question 3.21 exists for all graphs G if and
only if it exists for Kneser graphs, i.e., such a function f exists if and only
if the gyrochromatic number of Kneser graph K(m,n) is at most f(m/n).

Also note that Theorem 3.12 implies that the circular chromatic num-
ber of a graph cannot be upper bounded by a function of its gyrochromatic
number, i.e., a function f as in Question 3.21 does not exist for the gy-
rochromatic and the circular chromatic number.

In Section 3.6, we have constructed a graph G such that there is no
coloring T-base for G of measure σT(G), i.e. the supremum in 3.1 is not
attained. However, the constructed graph G has a coloring T2-base with
measure χg(G)−1 (see Proposition 3.15 and the remark before it), which
leads to the following problem.

Question 3.23. Does there exist for every graph G an integer d such that
G has a Td-coloring base with measure χg(G)−1?

These questions strongly motivate the study of intermediate coloring no-
tions, between χg(G) and χc(G), which refine the latter number but whose
analysis is more tractable than that of the former number. A natural can-
didate of such a refinement is introduced in the next chapter.



Chapter 4

On toral chromatic numbers of
graphs

The content of this chapter is the result of joint work with Pablo Candela
and Llúıs Vena. The corresponding preprint [13] is currently being refereed
for publication.

4.1 Introduction

The wide topic of graph coloring, central to graph theory, has been enriched
by the study of various refinements of the concept of the chromatic number
of a graph. One such refinement, the star chromatic number, was introduced
by Vince in the 1980s [61], and was later shown by Zhu to be equivalent to
another variant defined using the circle group [62], which led to the name
circular chromatic number for this notion (see [64]).

Let us view the circle group T = R/Z as the interval [0, 1] with addition
modulo 1, and for x ∈ T let us denote by |x|T the distance from x to the
nearest integer. Then, given a graph G, which will be assumed to be finite
and simple throughout this paper, the circular chromatic number of G is
denoted by χc(G) and defined as the infimum of real numbers r such there
is a map ϕ from the vertex set V (G) to T satisfying |ϕ(u) − ϕ(v)|T ≥ 1/r
for every edge uv ∈ E(G).

For a subset A of an abelian group Z, we say that a graph G is A-
colorable (or colorable by A) if there is a map ϕ : V (G) → Z such that

79
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A + ϕ(x)

)
∩
(
A + ϕ(y)

)
= ∅ for every edge xy ∈ E(G); we then also say

that ϕ is a coloring map of G by A, and that A is a coloring base in Z for
G. Then χc(G) can be defined equivalently in terms of coloring G by open
intervals (0, `) ⊂ T:

χc(G) = inf
{

1/` : G is colorable by (0, `)
}
. (4.1)

Among the main basic properties of the circular chromatic number, there is
the fact that the infimum in (4.1) is attained for every G, and is therefore a
minimum, and also the fact that χc(G) is always a rational number. These
properties follow immediately from results of Vince [61, Theorem 3], proved
using a compactness argument in a continuous setting.

As with other central graph-coloring notions, the circular chromatic
number can be described in terms of homomorphisms into a certain class
of graphs. More precisely, denoting by |G| the order of the graph G, it was
proved by Bondy and Hell in [8] that

χc(G) = min
{
s/r : r, s ∈ N, s ≤ |G|,∃ homomorphism G→ Gr

s

}
, (4.2)

for the class of circular graphs Gs
r, i.e. the Cayley graphs Cay(Zs, {r, r +

1, . . . , s− r}), where Zs denotes the group of integers with addition modulo
s (see also [33, Theorem 4.20]). Formula (4.2) also implies immediately the
rationality of χc(G), in a more elementary way than the above-mentioned
analytic argument of Vince.

Another notable property of the circular chromatic number consists in
the following sharp bounds describing the relation between χc(G) and the
classical chromatic number χ(G) [61, Theorem 4], showing in particular that
χc(G) carries more information about the structure of G than χ(G), so that
χc(G) can be used to quantify how far G is from being colorable with less
than χ(G) colors:

χ(G)− 1 < χc(G) ≤ χ(G). (4.3)

Recently, a new refinement of the circular chromatic number was introduced
in [11], called the gyrochromatic number and denoted by χg(G). In this
refinement, the set used as a coloring base in (4.1) is not required to be
an interval, it can be any Borel set A ⊂ T of Haar probability measure
µT(A) = `. More precisely,

χg(G) := inf
{

1/µT(A) : G is colorable by the Borel set A ⊂ T
}
. (4.4)
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Several results obtained in [11] show that χg(G) carries interesting informa-
tion about the graph G, refining both the circular chromatic number χc(G)
and the fractional chromatic number χf (G) (in particular we always have
χf (G) ≤ χg(G) ≤ χc(G), and these inequalities can be strict; see [11, Corol-
lary 14]). The gyrochromatic number is also shown to have a certain univer-
sality, in the sense that the infimum in (4.4) can be extended to Borel sets
in a torus of arbitrary finite dimension (equipped with its Haar probability
measure) without changing the value of χg(G). More precisely, for every
positive integer r, letting µTr denote the Haar probability measure on the
torus Tr, we have (see [11, Theorem 10])

χg(G) = inf{1/µTr(A) : A ⊂ Tr Borel such that G is A-colorable}. (4.5)

On the other hand, the number χg(G) is more elusive than χc(G), in the
sense that, unlike for χc(G), the infimum in (4.4) is not always attained
(see [11, Theorem 20]), and we do not yet know whether χg(G) is always
rational (see [11, Problem 3], 3.22), nor do we know whether there is always
at least some dimension r ∈ N such that the infimum in (4.5) is attained
in this dimension (see [11, Problem 4], 3.23). These questions motivate the
study of intermediate coloring notions, between χg(G) and χc(G), which
refine the latter number but whose analysis is more tractable than that of
the former number.

In this paper we study a natural candidate for such a refinement of
χc(G), which consists in coloring the graph with translates of a box (or
hyperrectangle) in the d-dimensional torus Td (viewing the latter as [0, 1]d

with addition mod 1 in each coordinate).

By an open box in Td we mean a Cartesian product of the form I1×· · ·×
Id ⊂ Td where Ij is an open interval (open connected set) in T for every
j ∈ [d]. The corresponding refinement of the circular chromatic number is
then defined as follows.

Definition 4.1 (d-toral chromatic number). Let G be a graph. For each
d ∈ N, we define the d-toral chromatic number of G, denoted by χcd(G), by
the formula

χcd(G) = inf
{

1/µTd(R) : R an open box in Td, G is R-colorable
}
. (4.6)

The 1-toral chromatic number is the circular chromatic number. Note also
that by (4.5) we have χg(G) ≤ χcd(G) for every d. Moreover, since for every
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open box R ⊂ Td the set R×T is an open box with µTd+1(R×T) = µTd(R),
it is readily seen that χcd+1(G) ≤ χcd(G) for every d. Hence the following
inequalities hold for any positive integer d:

χf (G) ≤ χg(G) ≤ χcd+1(G) ≤ χcd(G) ≤ χ(G). (4.7)

The following questions arise. Firstly, whether the infimum in (4.6) is always
attained and rational, as is the case for χc(G). Secondly, for every given
graph G, since by (4.7) the decreasing sequence (χcd(G))d∈N must converge,
we may ask how fast it does so, and even whether it always becomes constant
eventually. Thirdly, looking instead at how χcd(G) varies for a fixed d and
varying G, we may ask whether there are graphs G for which χcd+1(G) <
χcd(G); a positive answer here would indicate that each number χcd(G)
carries certain information about G that can make it differ from other such
numbers χcd′ (G), d′ > d, in other words, that graphs separate the toral
chromatic numbers.

In Section 4.2 we answer positively the first question above, proving the
following result.

Theorem 4.2. Let G be a graph of order n and let d be a positive integer.
Then for each i ∈ [d] there are integers ri ≤ si in [n] such that G is colorable
by the box R =

∏
i∈[d](0,

ri
si

) in Td and χcd(G) = 1
µTd (R)

= s1···sd
r1···rd

.

Our proof of this theorem extends the original analytic ideas from [61] work-
ing in the infinite setting of Td.

For any s = (s1, . . . , sd) ∈ Nd and any r = (r1, . . . , rd) ∈
∏

i∈[d][si], let

us define Gr
s to be the Cayley graph Cay

(
Zs1 × · · · × Zsd , (R−R)c

)
, where

R is the box
∏

i∈[d][0, ri − 1] in Zs1 × · · · × Zsd , where R − R denotes the

difference set {x− x′ : x, x′ ∈ R}, and where Xc denotes the complement of
a set X. Thus x, y form an edge in Gr

s if and only if the difference x− y is
not in R−R.

We note that Theorem 4.2 can be equivalently stated as the following
result, which provides an expression of χcd(G) in terms of homomorphisms
from G into the class of graphs Gr

s, thus generalizing (4.2); we discuss this
equivalence in Remark 4.10.

Proposition 4.3. Let d ∈ N. Then for any finite graph G of order n we
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have

χcd(G) = min
{s1 · · · sd
r1 · · · rd

: s ∈ [n]d, r ∈
∏
i∈[d]

[si],

there is a homomorphism G→ Gr
s

}
. (4.8)

In Section 4.3 we prove the following fact, concerning the second question
mentioned above.

Proposition 4.4. Let G be a graph, and let d = blog2(χ(G))c. Then for
every d′ ≥ d we have χcd′ (G) = χcd(G).

This result justifies the definition of what we might call the stabilization
dimension of a graph G for the toral chromatic numbers, namely the least
integer d with the property that χcd′ (G) = χcd(G) for all d′ ≥ d. Denoting
the stabilization dimension of G by d∗(G), we have d∗ ≤ blog2(|G|)c by
Proposition 4.4, and we may ask how accurate this upper bound is. In
Section 4.4, we prove the following result, which tells that this bound is
sharp up to a multiplicative constant. This result also answers positively
the third question above, showing that graphs do indeed separate the toral
chromatic numbers.

Theorem 4.5. For each d ∈ N there exists a graph G of order n = 5d

satisfying d∗(G) = d = log5(n).

Finally, in Section 4.5 we relate the number χcd(G) to the classical chromatic
number χ(G), via an inequality that generalizes the well-known inequality
(4.3); see Proposition 4.21 and (4.39). This generalization is related to a
problem of optimal coverings of the torus Td by translates of a given box, an
appealing combinatorial problem which has been treated previously in the
special case of cubes in several works [25, 26, 54], but whose exact solution
remains unknown in dimension d ≥ 3.
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4.2 Attainability and rationality of the d-toral

chromatic number

Throughout the sequel we equip [0, 1]d with the topology induced by the
standard topology on Rd. In this section we prove Theorem 4.2. We begin
with the following topological result.

Lemma 4.6. Let

L :=
{
` ∈ [0, 1]d : ∃ϕ : V (G)→ Td,

∀xy ∈ E(G), ∃ i ∈ [d], |ϕ(x)i − ϕ(y)i|T ≥ `i
}
. (4.9)

Then L is a closed (hence compact) subset of [0, 1]d.

The relevance of this set L to proving Theorem 4.2 can be seen as follows:
for any ` ∈ [0, 1]d, letting R = (0, `1) × · · · × (0, `d), a map ϕ : V (G) →
Td satisfies the condition in (4.9) if and only if ϕ(x) − ϕ(y) 6∈ R − R =∏

i∈[d](−`i, `i) ⊂ Td, which holds if and only if (ϕ(x) +R)∩ (ϕ(y) +R) = ∅.
Hence

` ∈ L ⇐⇒ G is R-colorable, with R =
∏
i∈[d]

(0, `i). (4.10)

Proof of Lemma 4.6. We suppose that (`(n))n∈N is a sequence in L converg-
ing to `∗, and we show that `∗ ∈ L.

By definition of L, for each n there exists ϕn : V (G)→ Td, which we can
view as a point in the compact space (Td)V (G), such that for every edge xy ∈
E(G) there exists i = i(n, xy) ∈ [d] such that |ϕn(x)i − ϕn(y)i|T ≥ `

(n)
i . By

compactness of (Td)V (G) there exists a subsequence (`(m))m∈I⊂N of (`(n))n∈N
such that the points ϕm converge to some point ϕ∗ ∈ (Td)V (G), which means
that for every x ∈ V (G) and every i ∈ [d] we have ϕm(x)i → ϕ∗(x)i as
m→∞. Moreover, by passing to further subsequences finitely many times,
we can also ensure that for each xy ∈ E(G) the map n 7→ i(n, xy) is constant.
More precisely, by passing to a further subsequence for each edge of G
(using each time that d is finite) we can obtain a subsequence (`(r))r∈J⊂I of
(`(m))m∈I⊂N such that the following properties hold:

1. `(r) → `∗ in [0, 1]d as r →∞.
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2. ϕr → ϕ∗ in (Td)V (G) as r →∞.

3. ∀xy ∈ E(G), ∃ i ∈ [d] such that ∀ r ∈ J , |ϕr(x)i − ϕr(y)i|T ≥ `
(r)
i .

Combining these properties and letting r → ∞, we deduce that for every
edge xy ∈ E(G) there exists i ∈ [d] such that |ϕ∗(x)i − ϕ∗(y)i|T ≥ `∗i , so `∗

is in L as required.

We can now prove the first part of Theorem 4.2.

Theorem 4.7. Let G be a graph and let d ∈ N. Then there exists an open
box R =

∏
i∈[d](0, `i) ⊂ [0, 1]d such that G is R-colorable and χcd(G) =

1
µTd (R)

.

Proof. Consider the function π : L→ R, ` 7→
∏

i∈d `i. By (4.10) we have

1

χcd(G)
= sup

`∈L
π(`).

The function π is continuous, and by Lemma 4.6 the set L is compact, so
π attains its supremum at some point ` = (`1, . . . , `d) ∈ L. This supremum
π(`) is the measure of the corresponding box R =

∏
i∈[d](0, `i), and G is

R-colorable since ` ∈ L.

We now turn to proving that χcd(G) is a rational number. The proof is
inspired by arguments in [64] and uses the following directed graphs associ-
ated with any given coloring of G by a box. We denote the elements of the
standard basis of Rd as usual by ei, for i ∈ [d].

Definition 4.8 (Digraphs of a box-coloring). Let G be a graph and let
ϕ : V (G)→ Td be a coloring of G by an open box R ⊂ Td. For each i ∈ [d]
we define a directed graph Di = Di(G) as follows: the vertex set V (Di) is
V (G), and there is an arc (i.e. directed edge) −→xy from x to y if the following
condition holds:

xy ∈ E(G) and ∀ ε > 0, µTd [(R + ϕ(x) + εei) ∩ (R + ϕ(y))] > 0. (4.11)

The measure-theoretic condition in (4.11) tells us that the box R + ϕ(y) is
contiguous with, and successive to, the box R+ϕ(x), in the direction of ei.
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Lemma 4.9. Let G be a graph, let ϕ : V (G) → Td be a coloring of G
by an open box R ⊂ Td, and suppose that Di(G) is acyclic. Then there
exists a coloring ϕ′ : V (G) → Td of G by an open box R′ ⊂ Td such that
µTd(R

′) > µTd(R).

Proof. For each vertex x, define the level Li(x) to be the length of a longest
directed path in Di(G) ending at x. Such a path exists since Di(G) is
acyclic. Let x′ be a vertex with maximum level. Then the box R + ϕ(x′)
can be shifted in the direction of ei by a positive distance without violating
the condition that adjacent vertices receive disjoint translates of R; indeed,
otherwise we could find y ∈ V (G) such that x, y satisfy (4.11), and thus we
would have a directed edge −→xy contradicting the maximality of Li(x). After
this shift of the box R+ϕ(x′), the vertex x′ becomes an isolated vertex in the
digraph Di(G). By repeating this process, we obtain a new d-toral coloring
ϕ′ : V (G) → Td such that the corresponding digraph D′i has no arcs. In
particular, we can replace R by a box R′ obtained from R by multiplying
the length in the ei-direction by a factor s > 1, and still have that ϕ′ colors
G with R′. Then we have µTd(R

′) = sµTd(R) > µTd(R).

We can now complete the proof of our first main result.

Proof of Theorem 4.2. Let R =
∏

i∈[d](0, `i) be an open box given by The-
orem 4.7 with corresponding coloring map ϕ. It follows from Lemma 4.9
that for every i ∈ [d] the digraph Di corresponding to this coloring contains
a directed cycle (x0, x1, ..., xsi−1, x0), where clearly si ≤ n. This means that
the boxes R+ ϕ(xj), j ∈ [0, si − 1] have the property that their projections
to the ei-axis (which is isomorphic to T) form a chain of consecutive con-
tiguous intervals winding around this axis ri times, for some positive integer
ri. Since the length of this ei-axis is 1, and these intervals all have equal
length `i, we deduce that si`i = ri, and the result follows.

Remark 4.10. The equivalence of Theorem 4.2 and Proposition 4.3 is readily
seen by noting that the coloring ofG by the boxR in Td given in Theorem 4.2
can clearly be discretized to obtain a coloring by R′ :=

∏
i∈[d][0, ri−1] in the

group
∏

i∈[d] Zsi , and that such a coloring by R′ yields a homomorphism G→
Gr

s; and vice versa, any such homomorphism can be viewed as a coloring
by a box of adequate measure in Td. Let us mention that Proposition
4.3 can be proved directly, working purely in a finite setting, by extending
the arguments of Bondy and Hell from [8]. In particular, the proof of [8,
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Proposition 2] can be extended from their setting of a single cyclic group
Zs to the present setting of Zs1 × · · · × Zsd . Indeed, supposing that s >
|G|, that proof consists in a compression argument whereby a certain set
S of points of Zs is deleted and the remaining points are compressed into
a shorter cyclic group in a way that is shown to yield a better circular
coloring. This can be carried out similarly here in each component Zsi ,
i ∈ [d] that has si > |G|, by deleting not points but entire cosets of the
subgroup Zs1 × · · · × Zsi−1

× {0} × Zsi+1
× · · · × Zsd . We omit the details,

as the resulting argument is in fact essentially a discrete analogue of the
compression carried out in the proof of Lemma 4.9. We chose to argue in
the continuous setting of Td as this setting will also be more convenient for
the proofs in the following sections.

4.3 On the stabilization dimension

Recall that the stabilization dimension of G for the toral chromatic numbers,
which we denoted by d∗(G), is the least d ∈ N such that χcd′ (G) = χcd(G)
for all d′ ≥ d. The logarithmic upper bound for d∗(G) mentioned in the
introduction (Proposition 4.4) is a consequence of the following lemma.

Lemma 4.11. Let G be a graph and let d ∈ N be a positive integer such
that χcd(G) < χcd−1(G). Then χcd(G) ≥ 2d.

Proof. Let R = (0, `1) × · · · × (0, `d) be an open box in Td such that G is
R-colorable and µTd(R) = 1/χcd(G) (as guaranteed by Theorem 4.7). Our
assumption χcd(G) < χcd−1(G) implies that `i ≤ 1/2 for all i ∈ [d]. Indeed,
if `i > 1/2 for some i, then the difference set R−R in Td has i-th coordinate-
projection covering all of T. For every edge xy ∈ E(G), the coloring map
ϕ : V (G) → Td satisfies R − R 63 ϕ(x) − ϕ(y) (since by definition of
the coloring we have (ϕ(x) + R) ∩ (ϕ(y) + R) = ∅). Then there must be
j ∈ [d] \ {i} such that R−R 63 ϕ(x)j −ϕ(y)j. This implies that if we define
the new box R′ from R by increasing `i to 1, then G is also R′-colorable with
coloring map ϕ. Then, letting π(i) denote the projection Td 7→ Td−1 which
deletes the i-th coordinate, we see that the open box R′′ = π(i)(R′) and map
ϕ′ = π(i) ◦ϕ form an R′′-coloring of G, with µTd−1(R′′) = µTd(R

′) ≥ µTd(R),
so χcd(G) ≥ χcd−1(G), which contradicts our assumption. Hence `i ≤ 1/2
for all i ∈ [d], so µTd(R) ≤ 2−d, and the result follows.
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Combining Lemma 4.11 with the inequality χcd(G) ≤ χ(G) immediately
implies Proposition 4.4.

4.4 Graphs that separate the toral chromatic

numbers

In this section we produce a family of graphs {Gd : d ∈ N} such that
χcd(Gd) < χcd−1(Gd) for every d, thus providing examples of graphs that
separate the toral chromatic numbers for different dimensions.

For each d ∈ N, the graph Gd is a Cayley graph defined as follows. Let
us view the cyclic group Z5 := Z/5Z as the set of integers {0, 1, 2, 3, 4} with
addition mod 5, let Qd be the set {0, 1}d ⊂ Zd5, and let Cd be the difference
set Qd −Qd = {−1, 0, 1}d mod 5 in Zd5. The graph Gd is the Cayley graph
Cay(Zd5, Sd) with generating set Sd = Zd5 \ Cd. Equivalently

V (Gd) := Zd5, E(Gd) =
{
xy : x, y ∈ Zd5, |xi − yi|5 ≥ 2 for some i ∈ [d]

}
,

(4.12)
where |n|5 = min{|n− 5m| : m ∈ Z}. The r-toral chromatic number of Gd

for r ≥ d is easily determined.

Lemma 4.12. The Cayley graph Gd = Cay
(
Zd5, Zd5 \ {−1, 0, 1}d

)
satisfies

∀ r ≥ d, χcr(Gd) = χg(Gd) = χf (Gd) = (5/2)d. (4.13)

Proof. Note that a subset I of the vertex set Zd5 is independent if and only
if I−I ⊂ Cd. Therefore I is independent if and only if for every x, y ∈ I we
have max{|xi− yi|5 : i ∈ [d]} ≤ 1, and it follows that I must be included in
a translate w+Qd for some w ∈ Zd5. Hence these translates are precisely the
maximum independent sets in Gd. In particular, the independence number
of Gd is

α(Gd) = 2d. (4.14)

Hence, since Gd has order 5d and is vertex-transitive (as a Cayley graph), we
have χf (Gd) = 5d/α(G) = 5d/2d. This immediately implies that χcd(Gd) ≥
5d/2d (by (4.7)). To see that χcd(Gd) = 5d/2d, note that with the cube
Q′ = (0, 2/5)d ⊂ Td, and the homomorphism ϕ : Zd5 → Td embedding Zd5
as the subgroup 1

5
· Zd5 ⊂ Td, we have a coloring of Gd by Q′. Indeed, since

Cd = Qd − Qd, if xy is an edge then (x + Qd) ∩ (y + Qd) = ∅ (otherwise
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x − y would be in Cd and not in Sd, contradicting that xy is an edge), so
(ϕ(x)+Q′)∩(ϕ(y)+Q′) = ∅. Therefore χcd(Gd) ≤ 5d/2d. We conclude that
χf (Gd) = χg(Gd) = χcd(Gd) = 5d/2d. This gives the case r = d of (4.13).
The case r ≥ d follows, since χf (Gd) ≤ χcr(Gd) ≤ χcd(Gd) for r ≥ d.

The main result of this section is the following.

Theorem 4.13. Fix any d ∈ N. Then, for every integer r ∈ [0, d− 1] there
is no Borel set A ⊂ Tr such that Gd is A-colorable and µTr(A) = 1/χcd(Gd).

This theorem, combined with the fact that by Theorem 4.7 the supremum
1/χcd−1(Gd) is attained as the measure of some box R ⊂ Td−1 such that
Gd is R-colorable, implies that χcd−1(Gd) > χcd(Gd), as claimed at the
beginning of this section. In particular, this together with (4.13) implies
that d∗(Gd) = d, which implies Theorem 4.5. Note also that, since by
Theorem 4.2 the numbers χcd−1(Gd), χcd(Gd) are rationals of denominator
at most |Gd|d = 5d

2
, we have in fact

χcd−1(Gd) ≥ χcd(Gd) + 5−2d2

. (4.15)

Remark 4.14. Theorem 4.13 is stronger than necessary to deduce Theorem
4.5, since it tells us not just that no coloring box in any dimension r < d
attains the measure 1/χcd(Gd), but that in fact no Borel coloring set in any
dimension r < d attains this measure either. We prove this stronger result
because it is also of interest concerning the gyrochromatic number, since it
tells us that χg(Gd) is not attained on any torus of dimension less than d,
i.e., the infimum in (4.5) is not attained for any r < d. As mentioned in the
introduction, in [11, Problem 4] the question is posed of whether for each
graph G there exists a finite dimension r for which the infimum in (4.5) is
attained. It follows from Theorem 4.13 that such a dimension, if it exists,
can be arbitrarily large depending on G. If one only aims to separate the
toral chromatic numbers (i.e. just prove that χcd(Gd) < χcd−1(Gd)) then
some parts of the argument that follows can be simplified; see Remark 4.20.

To prove Theorem 4.13, we need to show that no Borel set in Tr that is
a coloring base for Gd can have measure 2d/5d (this being the value of
χcd(Gd) by Lemma 4.12). To do this, we shall generalize the main argu-
ment from [11, §6]. This task will occupy the rest of this section, and can
be outlined as follows. The assumption that the coloring base has measure
2d/5d (which equals the inverse of the fractional chromatic number), and
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the fact that there are exactly 5d maximal independent sets of size 2d (see
Proposition 4.15) implies that the fractional coloring is unique (i.e. the asso-
ciated linear program has a unique solution when viewed in terms of Borel
colorings; see Proposition 4.16). This in turn implies that such a coloring
can be further decomposed into smaller 5d coloring sets (with the property
that each original coloring set is a union of these smaller sets), in such a
way that the group Zd5 can be viewed as acting on the family of these sets
(see Lemma 4.17 and Lemma 4.18). Finally, using Lemma 4.19 to polish
some possible measure-theoretic rough edges, we conclude that Zd5 should
be a subgroup of Td−1, leading to a contradiction. Thus, in summary, the
extremal assumption that there is a coloring base of measure 2d/5d forces
the coloring group (in this case Td−1) to include Zd5 as a subgroup.

We begin by describing the structure of maximum independent sets of
Gd. From (the proof of) Lemma 4.12, the following proposition follows
clearly.

Proposition 4.15. The only independent sets of maximal size 2d in Gd are
the following 5d sets:

Iv = v +Qd,

where v ∈ Zd5 and Qd := {0, 1}d ⊂ Zd5.

Next we show that if there existed a coloring base in Tr for Gd of measure
2d/5d, then this base would have a very special structure, which will later
be used to obtain a contradiction, implying that such a base cannot exist.

From now on we will use the notation from [11] and write X ∼= Y if
two sets X and Y differ on a null set. Also, from now on in this section we
abbreviate the notation for the Haar measure µTr to µ.

Lemma 4.16. Let A ⊆ Tr be a Borel coloring base of the graph Gd and let
f : V (Gd)→ Tr be such that A + f(v) and A + f(w) are disjoint for every
vw ∈ E(Gd); for each v ∈ V (Gd) let Bv = A+f(v) ⊂ Tr. If µ(A) = (2/5)d,
then there exist disjoint measurable sets Cv ⊂ Tr, v ∈ Zd5, such that for
every v ∈ Zd5 we have

Bv
∼=
⋃
w∈Qd

Cv+w (4.16)

and for each v ∈ Zd5 we have µ(Cv) = 1/5d.
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Proof. Let I be the set containing all independent sets of vertices of Gd.
For each I ∈ I, we define the following measurable subset of Tr:

DI = {x ∈ Tr : x ∈ A+ f(v) if and only if v ∈ I} =

=
(⋃
v∈I

A+ f(v)
)
\
(⋃
v 6∈I

A+ f(v)
)
.

Observe that every x ∈ Tr belongs to DI for some I ∈ I. Indeed, the set
containing the vertices v such that x ∈ A+ f(v) is an independent set I, by
definition of A being a coloring base for Gd, and then x ∈ DI (note that we
may have I = ∅, which we also consider to be an independent set). Since
the sets DI , I ∈ I are pairwise disjoint by definition, we conclude that these
sets partition Tr. We also have from the definition of DI that

A+ f(v) =
⋃

I∈I:I3v

DI , (4.17)

and it follows that
∑

v∈V (Gd) µ(A + f(v)) =
∑

I∈I |I| · µ(DI). On the

other hand, since the measure of A is 2d/5d and Gd has order 5d, we have∑
v∈V (G) µ(A + f(v)) = 2d. The last two equalities combined with the fact

that α(Gd) = 2d (by Proposition 4.15) imply that

2d =
∑
I∈I

|I| · µ(DI) = 2d
∑

I∈I:|I|=2d

µ(DI) +
∑

I∈I:|I|<2d

|I| · µ(DI).

This implies, using
∑

I∈I µ(DI) = 1, that

2d = 2d
(

1−
∑
I∈I

µ(DI) +
∑

I∈I:|I|=2d

µ(DI)
)

+
∑

I∈I:|I|<2d

|I| · µ(DI)

= 2d − 2d
∑

I∈I:|I|<2d

µ(DI) +
∑

I∈I:|I|<2d

|I| · µ(DI)

= 2d +
∑

I∈I:|I|<2d

(|I| − 2d) · µ(DI),

which implies that µ(DI) = 0 for all I ∈ I with |I| < 2d. Set

Cv := Dv−Qd .

By (4.17) and the fact (given by Proposition 4.15) that the only maximal
independent sets in Gd are the translates of Qd, we have Bv

∼=
⋃
w∈Qd Cv+w
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for every v ∈ Zd5. To complete the proof, we need to show each set Cv has
measure 1/5d.

Recalling the notation Iv used in Proposition 4.15, let M be the 5d × 5d

matrix with rows and columns indexed by the elements of Zd5 such that
Mu,v = 1 if u ∈ Iv and Mu,v = 0 otherwise. Let x ∈ RZd5 be the vector
with entries indexed by the elements of Zd5 such that xv = µ(DIv). Observe
(using (4.17) and that µ(DI) = 0 for |I| < 2d) that Mx is the vector with all
entries equal to µ(A) = (2/5)d. Let x′ ∈ RZd5 be the vector with all entries
equal to 1/5d, and observe that Mx′ also has all entries equal to (2/5)d.
Therefore, if we show that the matrix M is invertible, then we will have
x = x′, which will complete the proof.

We now show that the matrix M is invertible. Let us assume that x
is a vector such that Mx = 0, and let us prove that x must be the zero
vector. The 5d entries of x can be interpreted as an assignment of real
numbers to the points of the grid Zd5 such that each of the 2d-tuples of
entries corresponding to a translate of Qd in Zd5 sum to zero. It therefore
suffices to prove the following claim for each d ∈ Z≥0:

if x ∈ RZd5 satisfies
∑

w∈v+Qd

xw = 0 for every v ∈ Zd5, then x = 0. (4.18)

We prove this claim by induction on d. The case d = 0 is trivial. Fix d > 0.
For j ∈ [0, 4] let Sj = {v ∈ Zd5 : vd = j}. Observe that for every j, for every
v ∈ Sj we have ∑

w∈(v+Qd)∩Sj

xw = 0.

Indeed, by the assumption (4.18) for d, and splitting the sum
∑

w∈v+Qd
xw

into two parts using the hyperplanes Sj and Sj+1 mod 5, we have∑
w∈(v+Qd)∩Sj

xw = −
∑

w∈(v+Qd)∩Sj+1 mod 5

xw.

Concatenating these equalities as j cycles through Z5, we end up deducing
that ∑

v∈(w+Qd)∩Sj

xv = −
∑

v∈(w+Qd)∩Sj

xv,

which confirms that
∑

w∈(v+Qd)∩Sj xw = 0.

We have thus shown that for every j, the restriction of x to the (d − 1)-
dimensional hyperplane Sj is a vector such that its coordinates inside any
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translate of Qd ∩ Sj is 0, that is, this restriction satisfies (4.18) for d − 1
(identifying Sj with Zd−1

5 the natural way). By induction, this implies that
x restricted to Sj is the 0-vector. Since this holds for every j, we deduce
that x is the 0 vector. This shows that the matrix M is invertible, which
completes the proof.

We now prove the main lemma of this section. We will view the subscripts
indexing the sets Bv and Cv in Lemma 4.16 as d-tuples (i1, i2, . . . , id) ∈ Zd5,
which allows us to perform addition as with the elements of Zd5. If A is
a coloring base in Tr for Gd and f : V (Gd) → Tr is a function such that
A + f(v) and A + f(w) are disjoint for every edge vw, we write tv→w for
f(w)−f(v). We also use the standard notation ei to denote the vector with
j-th coordinate equal to 1 if j = i and equal to 0 otherwise.

Lemma 4.17. With the notation and assumptions from Lemma 4.16, we
have

∀ i ∈ [d], ∀ v ∈ Zd5, ∀w ∈ Qd, Cv+w + tv→v+ei
∼= Cv+w+ei . (4.19)

Proof. We first note that Lemma 4.17 is equivalent to the following claim:

∀S ⊆ [d], ∀ ε ∈ {0, 1}S, ∀ v ∈ Zd5,
⊔

w∈Qd:
w|S=ε

Cv+w + tv→v+ei
∼=
⊔

w∈Qd:
w|S=ε

Cv+w+ei .

(4.20)
Indeed, this claim implies the lemma since (4.19) is the special case of (4.20)
with S = [d]. The opposite implication is also clear, since from (4.19) we
can deduce (4.20) by taking appropriate unions.

To prove (4.20), first note that the case S = ∅ holds by definition of
tv→v+ei , since by (4.16) we have

⊔
w∈Qd Cv+w

∼= Bv. Let us now show that if
we prove the case |S| = 1 then the full claim (4.20) follows by induction on
|S|.

Suppose that |S| > 1, fix any ε ∈ {0, 1}S, and assume by induction that
(4.20) holds for every S ′ ( S and every ε′ ∈ {0, 1}S′ . Note that there exist
S1, S2 ( S such that S = S1 t S2 (this requires |S| > 1). Then, using the
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inductive hypothesis, we have ⊔
w∈Qd:
w|S=ε

Cv+w + tv→v+ei

=
( ⊔

w∈Qd:
w|S1

=ε|S1

Cv+w + tv→v+ei

)
∩
( ⊔

w′∈Qd:
w′|S2

=ε|S2

Cv+w′ + tv→v+ei

)
∼=
( ⊔

w∈Qd:
w|S1

=ε|S1

Cv+w+ei

)
∩
( ⊔

w′∈Qd:
w′|S2

=ε|S2

Cv+w′+ei

)

=
⊔

w∈Qd:
w|S=ε

Cv+w+ei ,

which proves (4.20) for S, ε. Hence it suffices to prove the case |S| = 1 of
(4.20).

Fix i ∈ [d]. We prove (4.20) for |S| = 1 by separating the case S = {i}
from the case S = {j}, j 6= i.

To prove the case S = {i}, we want to show that

for ε ∈ {0, 1}, ∀ v ∈ Zd5,
⊔

w∈Qd:wi=ε

Cv+w + tv→v+ei
∼=

⊔
w∈Qd:wi=ε

Cv+w+ei .

(4.21)

Since v and v − 2ei are neighbours in Gd, we have (Bv + tv→v−2ei) ∩ Bv =
Bv−2ei∩Bv = ∅. This implies that for every v′ we have (Bv′+tv→v−2ei)∩Bv′ =
∅, since Bv′ = Bv + tv→v′ . In particular, taking v′ = v − ei we have

(Bv−ei + tv→v−2ei) ∩Bv−ei = ∅. (4.22)

Note that from (4.16) we clearly have both⊔
w∈Qd:wi=0

Cv+w =
⊔

w∈Qd:wi=1

C[v−ei]+w ⊂ Bv−ei and

⊔
w∈Qd:wi=0

Cv−ei+w ⊂ Bv−ei .

Combining this with (4.22), we deduce that the two sets
(⊔

w∈Qd:wi=0Cv+w

)
+

tv→v−2ei and
⊔
w∈Qd:wi=0Cv−ei+w are disjoint. The latter set is one half of
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Bv−2ei , indeed

Bv−2ei =
⊔

w∈Qd:wi=1

C[v−2ei]+w t
⊔

w∈Qd:wi=0

C[v−2ei]+w

=
⊔

w∈Qd:wi=0

Cv−ei+w t
⊔

w∈Qd:wi=0

C[v−2ei]+w.

Hence
(⊔

w∈Qd:wi=0 Cv−w
)

+ tv→v−2ei must be the other half of Bv−2ei (using
that Bv + tv→v−2ei = Bv−2ei). It follows that

for ε ∈ {0, 1},∀ v ∈ Zd5,
⊔

w∈Qd:wi=ε

Cv+w + tv→v−2ei
∼=

⊔
w∈Qd:wi=ε

Cv−2ei+w.

(4.23)
We now deduce (4.21) by applying (4.23) with v, then with v − 2ei, and
then using that Bv + tv→v+ei = Bv + tv→v−4ei = Bv + tv→v−2ei + tv−2ei→v−4ei .

Now we treat the case S = {j} with j 6= i, namely

for ε ∈ {0, 1}, ∀ v ∈ Zd5,
⊔

w∈Qd:wj=ε

Cv+w + tv→v+ei
∼=

⊔
w∈Qd:wj=ε

Cv+w+ei .

(4.24)
It suffices to prove that

∀ v ∈ Zd5, ∀w, u ∈ Qd with wj = 0 and uj = 1; (Cv+w+tv→v+ei)∩Cv+u+ei
∼= ∅.

(4.25)
Indeed this would imply the case ε = 0 of (4.24), and the case ε = 1 then
follows easily (using the partition of Bv into two halves yielded by (4.24)).

To prove (4.25), note first that since v+ 2ej, v+ ei are neighbours in G,
we have

(Bv+2ej + tv+2ej→v+ei) ∩Bv+2ej = ∅.

This implies that also (Bv+ej + tv+2ej→v+ei) ∩ Bv+ej = ∅. Then, since
Cv+w+ej , Cv+u+ej are both subsets of Bv+ej (up to a null set), we have that
Cv+u+ej +tv+2ej→v+ei ⊂ Bv+ej +tv+2ej→v+ei is disjoint from Cv+w+ej ⊂ Bv+ej .
Moreover, since Cv+u+ej is also a subset of Bv+2ej (since uj = 1), and
Bv+2ej + tv+2ej→v+ei = Bv+2ej + tv+2ej→v + tv→v+ei , we have

Cv+u+ej + tv+2ej→v+ei = Cv+u+ej + tv+2ej→v + tv→v+ei .
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Thus we have proved the following:

∀ v ∈ Zd5, ∀w, u ∈ Qd with wj = 0, uj = 1,

(Cv+u+ej + tv+2ej→v + tv→v+ei) ∩ Cv+w+ej = ∅. (4.26)

Suppose for a contradiction that (4.25) fails, i.e.

∃ v′ ∈ Zd5, u′, w′ ∈ Qd, w
′
j = 0, u′j = 1, with

µ
(
(Cv′+w′ + tv′→v′+ei) ∩ Cv′+u′+ei

)
> 0. (4.27)

We now distinguish three exhaustive cases according to possible values of
u′i, w

′
i, and obtain a contradiction in each of these cases.

Case 1 : u′i = 1, w′i ∈ {0, 1}.
In this case we shall contradict (4.26) from (4.27). To that end let us
decompose the set Cv′+w′ in (4.27) using (4.23). We apply (4.23) with the
index i in that formula set to be j, and with v = v′ + 2ej, ε = 0, thus
obtaining ⊔

w∈Qd:wj=0

Cv′+2ej+w + tv′+2ej→v′ =
⊔

w∈Qd:wj=0

Cv′+w.

Since Cv′+w′ is among the sets in the union on the right side here (as w′j = 0),
and since we can write v′ + 2ej + w as v′ + z + ej for z = w + ej ∈ Qd with
zj = 1 (since wj = 0), we deduce that the sets Az := Cv′+w′ ∩ (Cv′+z+ej +
tv′+2ej→v′), z ∈ Qd with zj = 1, form a partition of Cv′+w′ (up to a null set).
Hence the sets Az+tv′→v′+ei form a partition of Cv′+w′+tv′→v′+ei . Therefore,
by (4.27), for some z ∈ Qd with zj = 1 we must have

µ
(
(Az + tv′→v′+ei) ∩ Cv′+u′+ei

)
> 0. (4.28)

Then (4.28) contradicts (4.26), by setting u, v, w in the latter formula to be
z, v′, u′ − ei − ej in the former formula respectively (noting that w is then
in Q with wj = 0 as it should, since u′i = u′j = 1, and noting also that
uj = zj = 1).

Case 2 : u′i = 0, w′i = 1.

In this case

Cv′+w′+ tv′→v′+ei ⊂
⊔
w∈Qd:wi=1Cv′+w+ tv′→v′+ei

by (4.21)∼=
⊔
w∈Qd:wi=1 Cv′+ei+w,
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which is disjoint from Cv′+u′+ei ⊂
⊔
w∈Qd:wi=0Cv′+ei+w, since the last two

unions form two disjoint halves of Bv′+ei . Therefore (4.25) holds with u, v, w
equal to u′, v′, w′ respectively, which contradicts (4.27).

Case 3 : u′i = 0, w′i = 0.

Recall that we are assuming from (4.27) that

µ
(
(Cv′+w′ + tv′→v′+ei) ∩ Cv′+u′+ei

)
> 0

with u′j = 1, w′j = 0, for a contradiction. Let D = Cv′+w′ ∩ (Cv′+u′+ei −
tv′→v′+ei), thus by assumption µ(D) > 0. By setting the index i in (4.21)
to be j here (recalling that we have proved (4.21) already for every i ∈ [d]),
we have

∀ ε ∈ {0, 1},
⊔

u∈Qd:uj=ε

Cv′+u + tv′→v′+ej
∼=

⊔
u∈Qd:uj=ε

Cv′+u+ej . (4.29)

Similarly, by applying (4.21) with index i we have⊔
u∈Qd:ui=0

Cv′+u+ei + tv′→v′+ei
∼=

⊔
u∈Qd:ui=0

Cv′+u+2ei . (4.30)

Now, as D + tv′→v′+ei ⊂ Cv′+u′+ei , we have (D + tv′→v′+ei) + tv′→v′+ej ⊂
Cv′+u′+ei + tv′→v′+ej , and by (4.29) with ε = 1 (using also the assumption
that u′j = 1) this last set is included in

⊔
u∈Qd:uj=1Cv′+u+ej up to a null set.

Hence, up to a null set we have

(D + tv′→v′+ei) + tv′→v′+ej ⊂
⊔

u∈Qd:uj=1

Cv′+u+ej . (4.31)

On the other hand, by (4.29) with ε = 0 we have

D + tv′→v′+ej ⊂
⊔

u∈Qd:uj=0

Cv′+u+ej ,

and this union is included in Bv′ , whence D + tv′→v′+ej ⊂ Bv′ up to a null
set. Thus

D + tv′→v′+ej + tv′→v′+ei ⊂ Bv′ + tv′→v′+ei = Bv′+ei .

This implies by (4.31) that Bv′+ei has intersection of positive measure with⊔
u∈Qd:uj=1 Cv′+u+ej ⊂ Bv′+2ej . But this is impossible since Bv′+ei∩Bv′+2ej =

∅ (as v′+ ei and v′+ 2ej are neighbours in Gd). This completes the proof of
this last case involved in (4.25), and thus completes the proof of Lemma 4.17.
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Our next step is to deduce that the elements tv→w can be replaced by integer
combinations of just d such elements.

Lemma 4.18. Let (Cv)v∈Zd5 be the collection of subsets of Tr in Lemma 4.17.

For each i ∈ [d] let ti = t0→ei. Then for every vertex v = (v1, . . . , vd) ∈ Zd5,
we have

Cv ∼= C0 + v1t1 + · · ·+ vdtd.

Proof. We argue by induction on |v| := v1 +· · ·+vd ∈ Z (identifying Zd5 with
[0, 4]d the natural way). All calculations with subscripts are made modulo
5 throughout the proof. The cases |v| ∈ {0, 1} are implied by Lemma 4.17.
Let us therefore fix v with |v| > 1, which implies that vk > 0 for some k.

There is a path v(1), . . . , v(`) in the lattice graph on Zd such that v(1) = 0,
v(`) = v, |v(i)| < |v| for i < `, v(i+1) = v(i) + ej for some j = j(i) ∈ [d], for
every i ∈ [` − 1], and v = v(`−1) + ek. Applying (4.19) along this path, we
have

Cv(`−1)
∼= C0 + tv(1)→v(2)

+ · · ·+ tv(`−2)→v(`−1)
, (4.32)

Cv ∼= Cek + tv(1)→v(2)
+ · · ·+ tv(`−2)→v(`−1)

. (4.33)

Since Cek = C0 + t0→ek by (4.19), the last two equations above imply that

Cv ∼= Cv(`−1)
+ t0→ek = Cv−ek + t0→ek = Cv−ek + tk. (4.34)

By induction on |v|, we have Cv(`−1)
= C0 +v1t1 + · · ·+(vk−1)tk+ · · ·+vdtd.

Combining the last two equations, the result follows.

We need one more lemma before we can complete the proof of Theorem 4.13.
For a measurable set C ⊂ Tr, we say that an element p ∈ Tr is a period of C
if µTr

(
C∆(C+p)

)
= 0, where ∆ here denotes the symmetric difference. We

say that p is a rational element if all its coordinates are rational numbers
(when p is viewed as a point in [0, 1]r).

Lemma 4.19. Let C be a Borel subset of Tr, let p ∈ Tr be a period of C,
and suppose that p is not rational. Then there exists a continuous surjective
homomorphism φ : Tr → Ts for some s ∈ [0, r−1], and a Borel set C ′ ⊂ Ts
such that µ(C∆φ−1C ′) = 0.

Proof. For k ∈ Zr and x ∈ Tr, we denote by k ·x the element k1x1+· · ·+krxr
in T, and we denote by Z · p the subgroup {np : n ∈ Z} of Tr.
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By Kronecker’s theorem [9, Ch. VII, Proposition 7], the subgroup Z · p
is dense in the closed subgroup

V = (p⊥)⊥ := {x ∈ Tr : for all k ∈ Zr such that k · p = 0, we have k · x = 0}

≤ Tr.
We have that V (as a compact abelian Lie group) is isomorphic to Tr′ ⊕ Z
for some r′ ≤ r and some finite abelian group Z, and r′ ≥ 1 (otherwise p has
only rational coordinates). Let φ : Tr → Tr/V be the natural quotient map,
a continuous surjective homomorphism with kernel V , and let Q denote the
quotient Tr/V , a compact connected abelian Lie group, which is isomorphic
to Ts for some s. We have s < r since r′ ≥ 1.

By the quotient integral formula [23, Theorem 1.5.2], for any Borel set
B and the Haar measures µQ, µV on Q and V respectively, we have

µTr(B) =

∫
Q

µt
(
B ∩ φ−1(t)

)
dµQ(t),

where µt denotes the Haar measure on φ−1(t) defined by µV (A−x) for every
Borel set A ⊂ φ−1(t) and some x ∈ φ−1(t).

In particular, we have µTr(C) =
∫
Q
µt
(
C ∩φ−1(t)

)
dµQ(t). Let C1 be the

Borel set obtained from C by removing all points belonging to cosets φ−1(t)
in which C is null, i.e. 1C1(x) = 1C(x)1(µt

(
C ∩ φ−1(φ(x))

)
> 0). Using

the quotient integral formula, we see that µ(C∆C1) = 0. In particular, the
element p is also a period of C1.

Let B1 = C1 + Z · p. Then by the period property and the fact that
countable unions of null sets are null, we have µTr(C1∆B1) = 0. We shall
now prove that

µTr
(
B1∆(C1 + V )

)
= 0. (4.35)

This will complete the proof, since then on one hand we will have

0 ≤ µTr
(
C∆(C1+V )

)
≤ µTr

(
C∆C1

)
+µTr

(
C1∆B1

)
+µTr

(
B1∆(C1+V )

)
= 0,

and on the other hand C1 +V = φ−1(C ′) for the Borel set C ′ = φ(C1 +V ) ⊂
Q (that C ′ is Borel follows from [41, Theorems (15.1) and (12.17)]).

To prove (4.35), since the left side is µTr
(
(C1 +V )\B1

)
, by the quotient

integral formula it suffices to prove that for every ε > 0, for all t ∈ Q with
µt
(
C1 ∩ φ−1(t)

)
> 0 we have

µt
(
B1 ∩ φ−1(t)

)
≥ (1− ε) µt

(
(C1 + V ) ∩ φ−1(t)

)
. (4.36)
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To prove this, note first that µt
(
B1 ∩ φ−1(t)

)
> 0 if and only if µt

(
C1 ∩

φ−1(t)
)
> 0, whence for any such t there exists ct ∈ C1 ∩ φ−1(t) which is a

Lebesgue density point of C1∩φ−1(t) (relative to the Haar measure µt). The
fact that ct ∈ C1∩φ−1(t) implies that µt

(
(C1+V )∩φ−1(t)

)
= µt

(
ct+V

)
= 1,

so we have to show that µt
(
B1 ∩ φ−1(t)

)
≥ (1− ε).

For any (small) open ball J centered on 0 in (the identity component of)
V , we have

µt
(
B1 ∩ φ−1(t)

)
=

1

µV (J)

∫
V

µt
(
B1 ∩ (ct + y + J)

)
dµV (y). (4.37)

Moreover, for every integer n, we have

µt
(
B1 ∩ (ct + y + J)

)
≥ µt

(
(C1 + np) ∩ (ct + y + J)

)
= µt

(
C1 ∩ (ct + y − np+ J)

)
≥ µt

(
C1 ∩ (ct + J)

)
− µt

(
(ct + J)∆(ct + y − np+ J)

)
= µt

(
C1 ∩ (ct + J)

)
− µV

(
J∆(y − np+ J)

)
.

Since ct is a density point, for some ball J we have µt
(
C1 ∩ (ct + J)

)
≥

(1−ε/2)µV (J). Then, for this J , the density of Z ·p in V implies that there
is n such that np is sufficiently close to y to ensure that µV

(
J∆(y−np+J)

)
<

ε
2
µV (J). It follows that

µV
(
B1 ∩ (ct + y + J)

)
≥ (1− ε)µV (J).

Using this in (4.37), we deduce that µV
(
B1 ∩ φ−1(t)

)
≥ (1− ε), and (4.36)

follows.

We shall now obtain the contradiction completing the proof of the main
result.

Proof of Theorem 4.13. Suppose for a contradiction that for some r < d
there is a Borel set A ⊂ Tr of measure 1/χcd(G) such that G is A-colorable.
Assume without loss of generality that r is the minimal dimension in [d−1]
for which this holds.

Let ti, i ∈ [d] be the elements of Tr obtained in Lemma 4.18, and let
C be the set C0 in that lemma. Note that ti 6= 0 for each i, otherwise
A ∩ (A+ 2ti) = A 6= ∅, contradicting that A is a coloring base (since 0 and
2ei form an edge in Gd). Then the element pi := 5ti is a non-zero period of
the set C for each i ∈ [d].
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We claim that each element ti is rational. Indeed, suppose for a contra-
diction that for some i the element ti is not rational. Then pi is not rational
either. By Lemma 4.19, it follows that there is a Borel set C ′ ⊂ Tr−1 such
that µTr−1(C ′) = µTr(C) and G is C ′-colorable, contradicting the minimality
of r.

Thus ti is a non-zero rational element of Tr for each i ∈ [d], and then we
can write the finite order of ti in the form 5αini with αi the non-negative
integer such that gcd(ni, 5) = 1. Let t′i = niti. Then we have C0 + t′i =
C(0,...,0,ni mod 5,0,...,0). Note that ni 6= 0 mod 5. Note also that t′i has order
5αi .

We claim that for some j ∈ [d] there are integers λi, i ∈ [d]\{j} such that
t′j =

∑
i∈[d]\{j} λit

′
i mod 1. To see this, note first that by the identification

of Tr with [0, 1]r that we are using, each element t′i is viewed as an element
in [0, 1]r with coordinates that are all integer multiples of 5−αi . Since d is
greater than the dimension of the vector space Qr, these elements t′1, . . . , t

′
d

are linearly dependent over Q. It follows that there are integers c1, . . . , cd
not all zero with gcd(c1, . . . , cd) = 1 such that c1t

′
1 + · · · + cdt

′
d = 0 in Qd.

Since the integers ci are coprime, not all of them can be divisible by 5, so
there exists j ∈ [d] such that gcd(cj, 5

αj) = 1. Hence there are non-zero
integers a, b such that acj + b5αj = 1. Then

0 = a(c1t
′
1 + · · ·+ cdt

′
d) = ac1t

′
1 + · · ·+ acjt

′
j + · · ·+ acdt

′
d

= ac1t
′
1 + · · ·+ t′j − b5αj t′j + · · ·+ acdt

′
d

= ac1t
′
1 + · · ·+ t′j + · · ·+ ac′dt

′
d mod 1,

the last equality holding because all coordinates of t′j are integer multiples
of 5−αj , so that b5αj t′j = 0 mod 1. Letting λi = −ac′i, our claim follows.

We deduce the following (with calculations in the subscripts all made
mod 5):

C(λ1n1,...,λj−1nj−1,0,λj+1nj+1,...,λdnd) = C0+
∑

i∈[d]\{j}

λit
′
i = C0+t′j = C(0,...,0,nj ,0,...,0).

This implies that nj = 0 mod 5, which is impossible since gcd(nj, 5) =
1.

Remark 4.20. If we want to prove just that χcd(Gd) < χcd−1(Gd), instead of
the stronger Theorem 4.13, then there is a shorter way to finish the above
proof, using the box structure of R. Indeed, note that up to Lemma 4.18 all
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the results work if we assume that B is an open box R. Then, let C = C0

and pi := 5ti as above, and observe that, since these elements are periods
of C for each i ∈ [d], and since the box R is the union of translates of C,
it follows that the pi are also periods of R for each i. Moreover, we can
suppose that R is a proper box in Tr in the sense that all side-lengths of
R are strictly less than 1 (otherwise we can reduce dimensions by deleting
the dimensions corresponding to side-lengths equal to 1, as in the proof of
Lemma 4.11). However, a proper box in Tr does not have periods other
than 0, so 5ti = 0 mod 1 for each i. Hence t1, . . . , td are elements of the
subgroup 1

5
· Zr5 ≤ Tr and therefore cannot be independent over Z, whence

there is v = (v1, . . . , vd) ∈ [0, 4]d with coordinates not all zero such that
v1t1 + · · ·+ vdtd = 0 mod 1. But then C0 = Cv, with 0 6= v, a contradiction.

4.5 Upper bound for χ(G) in terms of χcd(G)

using box coverings of Td

Recall that from (4.3) we have the strict upper bound

χ(G) < χc(G) + 1. (4.38)

In this section we extend this to a similar upper bound for χ(G) in terms
of χcd(G), phrased in terms of optimal coverings of the torus by translates
of a given box. To state the result we use the following terminology.

Given d ∈ N and ` = (`1, . . . , `d) ∈ (0, 1]d, let R = R(`) :=
∏

i∈[d](0, `i),

and let R denote the closure of R, that is R =
∏

i∈[d][0, `i]. We shall say

that a set A ⊂ Td is an `-covering of Td if A + R = Td. If R is non-empty
then the compactness of Td implies that there exist finite `-coverings. We
then define

Md(`) := min{|A| : A is an `-covering of Td}.

We can now state the main result of this section.

Proposition 4.21. For every d ∈ N and every finite graph G we have

χ(G) ≤ min
`∈Rd:χ

cd
(G)=(`1···`d)−1

Md(`). (4.39)
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This implies the following upper bound for χ(G) in terms of χcd(G)

χ(G) ≤ χcd(G) · min
`∈Rd:χ

cd
(G)=(`1···`d)−1

Md(`)`1 · · · `d. (4.40)

Note that for d = 1 we have M1(`) = d1/`e < 1 + 1/`, so in this case (4.40)
implies (4.38).

To prove Proposition 4.21 we use the following simple fact.

Lemma 4.22. If A is an `-covering of Td, then letting R′ = R′(`) :=∏
i∈[d][0, `i), we have A+R′ = Td.

Proof. Fix any x ∈ Td. By the covering assumption, for each n ∈ N there
is a point a(n) ∈ A such that x + 1

n
(1, . . . , 1) ∈ a(n) + R. Since we can

suppose that A is finite, by passing to a subsequence if necessary we can
assume that a(n) is the same point a ∈ A for all n > n0, and thus assume
that x + 1

n
(1, . . . , 1) ∈ a + R for all n > n0. Then for each i ∈ [d] we

have xi + 1
n
∈ ai + [0, `i] for all n > n0, which implies in the limit that

xi ∈ ai + [0, `i), whence x ∈ a+R′.

Proof of Proposition 4.21. Fix any ` ∈ (0, 1]d such that χcd(G) = (`1 · · · `d)−1,
let ϕ : V (G)→ Td be a coloring map for G by the open box R(`), and let A
be an `-covering of Td. Let c : V (G)→ A be a map that sends each vertex v
to an element a ∈ A such that ϕ(v) ∈ a+R′ with R′ =

∏
i∈[d][0, `i) (such an

element a exists by Lemma 4.22). We prove that c is a coloring of G, which
will imply (4.39) by taking the minimum. If c(u) = c(v) then ϕ(u) and ϕ(v)
are in the same box a+R′, so |ϕ(u)i − ϕ(v)i|T < `i for every i ∈ [d], which
by definition of the d-toral coloring ϕ implies that uv 6∈ E(G). This shows
that each set c−1({a}), a ∈ A is an independent set, so c is a coloring as
claimed.

Proposition 4.21 motivates the search for good upper bounds for the quanti-
ties Md(`). In the case `1 = · · · = `d, this is a known combinatorial problem
of finding optimal coverings of Td by translates of a cube, a problem related
to information theory which was studied in particular in [26]. The problem
is still open, in the sense that an exact formula for Md(`) in the cube case
is still unknown (see a discussion on this in [26, Section 6]). As far as we
know, the problem of optimal coverings of Td by boxes has not been treated
in the literature previously (though certain cases in dimension 2 have been
used, see for instance [48]).
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Question 4.23. Give an exact formula for Md(`) in terms of the compo-
nents `i of `, i ∈ [d].

We do not embark on trying to solve this problem completely in this chapter.
Instead we shall complete this section by proving related results.

To begin with, the simple observation that the grid

A =
{( i1
d1/`1e

, . . . ,
id
d1/`de

)
: (i1, . . . , id) ∈

d∏
j=1

[
0, d1/`ie − 1

]}
is an `-covering of Td yields the following upper bound

Md(`) ≤
∏
i∈[d]

d 1
`i
e. (4.41)

Let us establish a lower bound for Md(`) in terms of the d projections of `
to Td−1.

Proposition 4.24. For each ` ∈ (0, 1)d and i ∈ [d],
let `(i) := (`1, . . . , `i−1, `i+1, . . . , `d) ∈ (0, 1]d−1. Let M∗

d (`) := min{n|∀i, n `i ≥
Md−1(`(i))} = maxi∈[d]

⌈
Md−1(`(i))/`i

⌉
. Then

Md(`) ≥M∗
d (`). (4.42)

Proof. Let A be an `-covering of Td. By Proposition 4.22 we have A+R′ =
Td, where R′ =

∏d
i=1[0, `i). For each i ∈ [d] and t ∈ [0, 1], we define the slit

Xi,t =
{

(x1, . . . , xd) ∈ Td | xi ∈ (t, t+ `i]
}
. (4.43)

For each t, since A + R′ covers the set {x : xi = t + `i}, there must be at
least Md−1(`1, . . . , `i−1, `i+1, . . . , `d) points a ∈ A such that a+R′∩{x : xi =
t+ `i} 6= ∅, so we must have |A ∩Xi,t| ≥Md−1(`(i)).

Assume first that `i is a rational number equal to ki/ni for each i ∈ [d],
and consider the ki-fold covering of Td by the ni slits Xi,j/ni , j ∈ [ni]. We
then have

ki|A| =
∑
a∈A

∑
j∈[ni]

1Xi,j/ni (a) =
∑
j∈[ni]

|A ∩Xi,t|

≥ niMd−1(`1, . . . , `i−1, `i+1, . . . , `d),

that is |A| `i ≥Md−1(`(i)). Since this holds for all i we deduce |A| ≥M∗
d (`),

and (4.42) follows in this case where ` ∈ Qd. The result when `i is a
positive real number (not necessarily rational) now follows by approximating
`i arbitrarily closely by rational numbers we obtain number.
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Observe that when the box is a square [0, ε]d, i.e. ` = (ε, . . . , ε), from (4.42)
and an induction on the dimension we recover the following lower bound
from [26, Theorem 2]:

Md(`) ≥ dε−1dε−1d. . . dε−1eee · · · e,

where there are d applications of the ceiling function.

For d = 2, the following exact formula is obtained by generalizing [26,
Theorem 3].

Proposition 4.25. For every ` ∈ (0, 1]2 we have

M2(`) = M∗
2 (`) = max{ d 1

`1
d 1
`2
ee, dd 1

`1
e 1
`2
e }.

Proof. Consider the line y = d 1
`1
ex in T2, which wraps around T in the

second coordinate d 1
`1
e-many times. Place M∗

2 (`) equally spaced centers
of boxes [0, `1] × [0, `2] along this line. Fix any a ∈ T. We show that
the boxes cover the line Xa = {(x, y) : x = a}, which implies the result.
Consider the slit X1,a (using the notation from (4.43)). The projections
to the x-axis T × {0} of the equally spaced centers give equally spaced
points on this axis, so the distance between two consecutive such projections
is 1/M∗

2 (`). Therefore in the slit X1,a (of x-width `1) there are at least
b`1M

∗
2 (`)c ≥ M1(`2) = d1/`2e centers of these boxes. Observe that if two

projected centers in T× {0} are consecutive then they are also consecutive
along the line y = d 1

`1
ex itself, and their projections to {0} × T are also

consecutive and distanced on this line by at most

d1/`1e/M∗
2 (`) ≤ d1/`1e/(M1(`1)/`2) = `2. (4.44)

It follows that the non-empty intersections of these boxes with Xa form
segments of length `2 which leave no gap between any two consecutive of
them (by (4.44)). These segments thus cover Xa, and the result follows.

We close this section with the following upper bound for Md(`) which applies
the greedy algorithm, inspired by a similar application in [54].

Proposition 4.26. For each i ∈ [d], let `i = ai/bi ∈ (0, 1), with ai, bi
coprime positive integers. Then Md(`) ≤ 1

`1···`d

(
1 +

∑
i∈[d] log (`ib)

)
, where

b = lcm(b1, . . . , bd).
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This is easily seen to improve markedly on the simple bound (4.41), for
instance by considering the diagonal case `i = ` for all i ∈ [d].

Proof. As before, let R′ =
∏

i∈[d][0, `i). Let G denote the subgroup of Td

isomorphic to Zdb . Let R̃ = R′ ∩ G. Applying [50, Theorem 4], there is a

set A ⊂ G that is an `-covering and satisfies |A| ≤ 1+log |R̃|
|R̃| bd = 1

µTd (R)
(1 +

log |R̃|). The result now follows since |R̃| = a1

b1
b · · · ad

bd
b.



Chapter 5

On Motzkin’s problem in the
circle

This chapter is the result of a collaboration with Pablo Candela, Juanjo
Rué and Oriol Serra. The contents were the object of an invited publication
in Proceedings of the Steklov Institute of Mathematics, for a special issue
in 2021 commemorating the 130-th birth anniversary of Ivan Matveevich
Vinogradov; see [12].

5.1 Introduction

Many interesting developments in combinatorial number theory are related
to the general problem of determining how large a subset of an abelian
group can be if the set avoids certain prescribed configurations. Famous
examples include Szemerédi’s theorem, where the configurations in question
are arithmetic progressions in sets of integers. Another notable problem of
this kind, posed by T. S. Motzkin, asks how large a set of integers can be if it
does not contain any pair of elements whose difference lies in a prescribed set.
More precisely, given a non-empty subset D of the set of positive integers
N, let us say that a set A ⊂ Z is D-avoiding if for every a, a′ ∈ A we have
|a−a′| /∈ D, in other words if the difference set A−A = {a−a′ : a, a′ ∈ A}
is disjoint from D. Let A(N) denote the cardinality |A ∩ [−N,N ]|, and

let δ̄(A) denote the upper density of A, namely δ̄(A) = lim supN→∞
A(N)
2N+1

.
Then, Motzkin’s problem (posed originally for sets A ⊂ N in an unpublished
problem collection; see [14]) consists in determining the following quantity,

107
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sometimes called the Motzkin density of D:

MdZ(D) := sup{δ̄(A) : A is a D-avoiding subset of Z}. (5.1)

The first publication on Motzkin’s problem is the paper [14] by Cantor and
Gordon. Their results include a full solution for |D| ≤ 2. This involves
proving that the elements of D can be assumed to be coprime, then proving
that MdZ(D) = 1/2 for |D| = 1, and then proving the following formula for
D = {d1, d2} with gcd(d1, d2) = 1:

MdZ(D) =
bd1+d2

2
c

d1 + d2

. (5.2)

Motzkin’s problem is still open in general. In the decades since the initial
paper [14], the problem has motivated many works, and various special cases
have been addressed; see for instance [31, 34, 47, 55–57]. The problem also
has interesting relations with other well-known topics in combinatorics and
number theory, such as the fractional chromatic number of distance graphs,
or the lonely runner conjecture; see for example [46] and the references
therein.

There is an analogue of Motzkin’s problem for any compact abelian
group Z. Namely, given a non-empty set D ⊂ Z, letting µ denote the
Haar probability measure on Z, the problem is to determine or estimate the
quantity

MdZ(D) := sup{µ(A) : A ⊂ Z a Borel set with (A− A) ∩D = ∅}. (5.3)

In particular, a hitherto unexplored yet natural analogue of Motzkin’s prob-
lem consists in taking Z to be the circle group T = R/Z, which we shall
view as the interval [0, 1] with addition modulo 1, letting D be a set of real
numbers in (0, 1). In this paper we make a first treatment of this problem
for D a finite set {t1, . . . , tr}.

In Section 5.2 we make some observations on the problem for general
r ∈ N, showing in particular that it can be approached using tools from er-
godic theory. We illustrate this first in the “extreme” case where D∪{1} is
linearly independent over Q, applying the version of Rokhlin’s lemma for free
measure-preserving actions of Zr to prove that in this case MdT(D) = 1/2;
see Theorem 5.7. (Different applications of Rokhlin’s lemma in combinato-
rial number theory have been given recently in [3, 27].) The general case,
where D ∪ {1} may be linearly dependent over Q, can be approached using
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more general versions of Rokhlin’s lemma which are applicable to free ac-
tions of quotients of Zr. In particular, the problem of determining MdT(D)
can thus be transferred to a similar problem in the discrete setting of the
finitely generated abelian group Zr/Λ, where Λ is the kernel of the homo-
morphism Zr → T, n 7→ n1t1 + · · ·+nrtr. In this setting, a natural notion of
Motzkin density can be defined using Følner sequences; see Definition 5.8.
We then have the following result.

Theorem 5.1. Let D = {t1, . . . , tr} ⊂ T, let Λ be the kernel of the homo-
morphism Zr → T, n 7→ n1t1 + · · · + nrtr, and let E be the image of the
standard basis of Rr in the quotient Zr/Λ. Then MdT(D) = MdZr/Λ(E).

This result also holds for more general compact abelian groups; see Theorem
5.9.

Theorem 5.1 can be used as a first step in an approach towards deter-
mining MdT(D), since the corresponding Motzkin density in the discrete
setting, i.e. MdZr/Λ(E), can often be simpler to determine. In this paper we
pursue this approach for r ≤ 2.

Another notable special case of the problem, at the other extreme from
D ∪ {1} being linearly independent over Q, is the case in which D ⊂ Q.
This reduces to the problem of determining the independence ratio of a
circulant graph which we call the associated circulant graph. More pre-
cisely, supposing that each element of D is of the form ti = ai/bi with
coprime positive integers ai < bi, then the subgroup 〈D〉 ≤ T is isomor-
phic to ZN with N = lcm(b1, . . . , br). The associated circulant graph is the
(undirected) connected circulant graph G with vertex set ZN (viewed as the
set of integers [0, N − 1] with addition modulo N) with jumps d1, . . . , dr
where di = aiN/bi. Thus x, y ∈ ZN form an edge in G if and only if
x − y = di or −di mod N for some i ∈ [r]. Equivalently G is the Cayley
graph on ZN with generating set {di,−di : i ∈ [r]}, which we shall denote

by G = Cay(ZN , {d1, . . . , dr}). The independence ratio of G is α(G)
N

, where
α(G) is the independence number of G, i.e. the maximal cardinality of an
independent (or stable) set in G. As a straightforward consequence of The-

orem 5.1 we have MdT(D) = MdZN ({d1, . . . , dr}) = α(G)
N

; see Lemma 5.13.
Let us mention also that if d1, . . . , dr are fixed integers then, as N → ∞,
the ratios α(G)

N
converge to MdZ({d1, . . . , dr}), and in this sense Motzkin’s

problem in T can be seen to subsume the original problem in Z for finitely
many missing differences; we detail this in Remark 5.14.
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Circulant graphs are extensively treated in the combinatorics and com-
puter science literature (in the latter they are also known as multiple-loop
networks or chordal rings); see for instance [6, 10, 21, 29, 38]. However,
these works study mostly other parameters than the independence ratio.
Works determining the independence ratio of certain circulant graphs in-
clude [28,43].

After these remarks on the problem for general r, and a brief solution for
r = 1 (see Proposition 5.15), we close Section 5.2 and focus on the problem
for r = 2 for the rest of the paper. We then distinguish two cases.

In Section 5.3 we treat the case in which at least one element of D is
irrational. Here we obtain the following exact solution (see Theorem 5.17).

Theorem 5.2. Let D = {t1, t2} ⊂ (0, 1) with D 6⊂ Q. If D∪{1} is linearly
independent over Q, then MdT(D) = 1/2. Otherwise, letting m0,m1,m2 be
integers not all zero such that m0 = m1t1 +m2t2 and gcd(m0,m1,m2) = 1,
we have

MdT(D) =
bk/2c
k

, where k = |m1|+ |m2|. (5.4)

In Section 5.4, we focus on the case in which both elements of D are rational.
This is equivalent to determining the independence ratio of circulant graphs
with two jumps. We study this problem using mainly tools from the geom-
etry of numbers. The usefulness of such tools for the analysis of circulant
graphs is well-known (see for instance [10,22,52]), though apparently before
the present work these tools had not been used to study the independence
ratio.

The independence ratio of a circulant graph G is easily seen to be 1/2
when G is bipartite, so we can assume that G contains odd cycles. The
so-called “no-homomorphism lemma” from [1] yields an upper bound for
α(G)
N

of the form k−1
2k

, where k is the odd girth of G, i.e. the smallest length
of an odd cycle in G (see Lemma 5.18). It is then natural to examine how

accurate this upper bound is as an estimate for α(G)
N

. In particular, the
odd girth is always one of the successive minima, relative to the `1-norm,
of a 2-dimensional lattice naturally associated with G; see Lemma 5.24
(the lattice in question is just the lattice Λ from Theorem 5.1 applied in
this special case). This expression of the odd girth makes the estimate k−1

2k

relatively easy to compute; see Remark 5.28, where an algorithm is outlined.
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Regarding the accuracy of this estimate for α(G)
N

, we obtain the following
result, showing that the estimate is asymptotically sharp.1

Theorem 5.3. Let D = {t1, t2} ⊂ Q ∩ (0, 1). Let G be the associated
circulant graph, and let N be the order of G. If G is bipartite then MdT(D) =
α(G)
N

= 1
2
. Otherwise, letting k be the odd girth of G, we have

k−1
2k
≥ MdT(D) = α(G)

N
≥ k−1

2k
− 3√

N
. (5.5)

This is obtained as an immediate consequence of an equivalent estimate for
the independence number of connected circulant graphs with two jumps,
given in Theorem 5.22.

The independence ratio of a circulant graph G is equal to the reciprocal
of its fractional chromatic number χf (G). Therefore (5.5) yields also an
asymptotically sharp estimate for the fractional chromatic number of a con-
nected circulant graph G of order N with 2 jumps and odd girth k, namely
2k
k−1
≤ χf (G) ≤ 2k

k−1
+ 27√

N
.

We also study the question of the sharpness of the bounds in (5.5) for
fixed N , not just as N → ∞. In Proposition 5.21 we provide an infinite
family of examples of 2-jump circulant graphs whose independence ratios
attain the lower bound in (5.5) up to the absolute constant multiplying
1/
√
N . In Proposition 5.29 we give an infinite family of examples attaining

the upper bound in (5.5) (see also Remark 5.20).

Finally, we note that the odd-girth notion enables a unification of solu-
tions to Motzkin’s problem for two missing differences across various set-
tings, in the non-bipartite case. For example, Theorem 5.3 can be seen to
imply the formula (5.2) of Cantor and Gordon, by expressing this formula in
terms of the odd girth of the corresponding distance graph Cay(Z, {d1, d2}),
and viewing the corresponding Motzkin density as the limit of independence
ratios of circulant graphs Cay(ZN , {d1, d2}). In Section 5.5 we detail such
connections and discuss some questions for further research.

1See [19] for hardness results on estimating the independence number of general cir-
culant graphs.
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5.2 On the problem for a general finite set

D

In this section we make some initial observations on the problem of deter-
mining MdT(D) for finite D, illustrating especially how tools from ergodic
theory can be applied to the problem. In particular we shall use Rokhlin’s
lemma for free actions of finitely generated abelian groups, which we state
below after recalling some terminology.

Definition 5.4. A measure-preserving action of a countable discrete group
Γ on a proba- bility space (X,X , µ) is a map f : Γ × X → X such that
for every g ∈ Γ there is a measure-preserving map fg : X → X, with fidΓ

being the identity map, and such that for every g, h ∈ Γ and x ∈ X we have
fg h(x) = fg(fh(x)). We say that such an action is free if for every g, h ∈ Γ
with g 6= h we have µ({x ∈ X : fg(x) = fh(x)}) = 0.

Definition 5.5. Let f be a measure-preserving action of a countable dis-
crete group Γ on a probability space (X,X , µ), and let K ⊂ Γ. If B ∈ X
is such that the sets fg(B), g ∈ K are pairwise disjoint, then the union⋃
g∈K fg(B) is called a K-tower for f with base B.

A subset K of an abelian group Γ is said to tile Γ if there exists C ⊂ Γ such
that we have the partition Γ =

⊔
c∈C K+c. The version of Rokhlin’s lemma

that we shall use is the following special case of [53, p. 58, Theorem 5].

Lemma 5.6. Let Γ be a finitely generated abelian group and let f be a free
measure-preserving action of Γ on a standard probability space (X,X , µ).
Let K ⊂ Γ be a finite set that tiles Γ. Then for every ε > 0 there exists a
K-tower for f of measure at least 1− ε.

As a first simple example of the use of this lemma in this context, let us
treat swiftly the case of Motzkin’s problem in T where D ∪ {1} is linearly
independent over Q.
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5.2.1 The case of linear independence of D ∪ {1} over
Q

In this subsection we prove the following result.

Theorem 5.7. Let D be a finite subset of (0, 1) such that D∪{1} is linearly
independent over Q. Then MdT(D) = 1

2
. Moreover, no D-avoiding Borel

set A ⊂ T satisfies µ(A) = 1
2
.

In the proof we use the special case of Lemma 5.6 for free actions of Zr,
which was given in [20, Theorem 3.1] and independently in [40, Theorem 1].

Proof. Let D = {t1, . . . , tr}. Clearly MdT(D) ≤ 1
2
. Fix any ε > 0 and any

odd N ∈ N.

The translations by the elements t1, . . . , tr ∈ D generate a measure-
preserving action f of Zr on T, namely f(n, x) = x + n1t1 + · · · + nrtr
mod 1. It follows from the linear independence of D ∪ {1} over Q that this
action is free. By Lemma 5.6 there is a Borel set B ⊂ T that is the base of
a [0, N)r-tower for f of Haar probability at least 1− ε.

Let A =
⊔

j1,...,jr ∈ [0,N−2]: j1+···+jr is even

B + j1t1 + · · ·+ jrtr.

It is readily seen that (A+ ti) ∩ A = ∅ for each i ∈ [r], so A is D-avoiding.
Moreover, since the translates of B in the tower have equal measure at
least (1 − ε)/N r, and since A consists of (N − 1)r/2 of these sets, we have
µ(A) ≥ ((N − 1)r/2)(1 − ε)/N r ≥ (1 − ε)(1 − 1/N)r/2. Letting N → ∞
and ε→ 0, we deduce that MdT(D) ≥ 1

2
, so MdT(D) = 1

2
.

To see that the supremum 1/2 cannot be attained, suppose for a con-
tradiction that A ⊂ T is a measurable D-avoiding set with µ(A) = 1/2.
Since A + t1 ⊂ Ac := T \ A and µ(A + t1) = 1/2 = µ(Ac), we have
µ
(
(A + t1)∆Ac) = 0. Hence µ

(
(A + 2t1)∆(A + t1)c) = 0. By the triangle

inequality µ
(
(A+ 2t1)∆A) ≤ µ

(
(A+ 2t1)∆(A+ t1)c) +µ

(
(A+ t1)c∆A) = 0.

Hence A is an invariant set of measure 1/2 for the map x 7→ x + 2t1, con-
tradicting the fact that, since t1 is irrational, this map is ergodic.
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5.2.2 Transference to finitely generated abelian groups

Given a compact abelian group Z, and D = {t1, . . . , tr} ⊂ Z, we consider
the lattice

Λ = {n ∈ Zr : n1t1 + · · ·+ nrtr = 0}, (5.6)

that is, the kernel of the homomorphism Zr → Z, n 7→ n1t1 + · · · + nrtr.
The finitely generated abelian group Zr/Λ then has a free action f on Z,
well-defined by

f(n+ Λ, x) = x+ (n1 + u1)t1 + · · ·+ (nr + ur)tr, for any u ∈ Λ. (5.7)

The main idea in the proof of Theorem 5.7 is that the Rokhlin lemma enables
the problem of determining MdT(D) to be transferred to a discrete setting,
where it can be easier to solve. The transference part of this approach can
be carried out more generally. We establish this in Theorem 5.9 below, for a
general finite set D, and not just for T but for any compact abelian group Z
such that (Z, µ) is a standard probability space, so that Lemma 5.6 can be
applied withX = Z and X the Borel σ-algebra on Z. This applicability holds
if Z is metrizable (as (Z,X ) is then a standard Borel space [41, (4.2),(12.5)]).
To avoid further technicalities, we shall assume that Z is metrizable.

Our transference result (Theorem 5.9 below) expresses the Motzkin den-
sity MdZ(D) as an analogous quantity in Zr/Λ. To detail this, we first des-
cribe a natural notion of Motzkin density in any finitely generated abelian
group Γ.

For any set X we denote by P<∞(X) the set of all finite subsets of X.
Recall that a sequence (FN)N∈N of sets in P<∞(Γ) is a Følner sequence if

for every g ∈ Γ we have lim
N→∞

|FN∆(g + FN)|
|FN |

= 0. (5.8)

Definition 5.8. Let Γ be a finitely generated abelian group and let E ⊂ Γ.
Let

φE : P<∞(Γ)→ Z≥0, S 7→ max{ |A| : A ⊂ S, (A− A) ∩ E = ∅ }.

Then we define

MdΓ(E) := lim
N→∞

φE(FN)

|FN |
, for any Følner sequence (FN)N∈N in Γ. (5.9)
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Note that the function φE is monotone relative to inclusion, subadditive
relative to unions, and Γ-invariant. It follows by known results that the
limit in (5.9) exists and is independent of the choice of Følner sequence
(see [45, Theorem 6.1] or [24, Proposition 2.2]).

A Følner sequence (FN)N∈N in Γ is a tiling Følner sequence if FN tiles Γ
for every N ∈ N. Such a sequence can be obtained using the fundamental
result that there is a group isomorphism ϑ : Zd × Γ′ → Γ for some finite
group Γ′ and d ∈ Z≥0. Indeed we can then take (for instance)

FN = ϑ
(
[−N,N ]d × Γ′

)
. (5.10)

A definition of Motzkin density in Γ can also be formulated using the notion
of upper density relative to a fixed Følner sequence (see Definition 5.10
and (5.15)); the resulting definition, alternative to (5.9), is a more direct
extension of the original one used in (5.1) if we use the sequence given by
(5.10). Later in this section we show that for finite sets E this definition
agrees with (5.9) (see Lemma 5.11). We shall use mainly the definition of
Motzkin density given in (5.9), as it is more convenient for our arguments.

We can now state the transference result.

Theorem 5.9. Let Z be a compact metrizable abelian group, let D =
{t1, . . . , tr} ⊂ Z, let Λ be the kernel of the homomorphism Zr → Z, n 7→
n1t1 + · · · + nrtr, and let E be the image of the standard basis of Rr in the
quotient Zr/Λ. Then MdZ(D) = MdZr/Λ(E).

Proof. Let Γ = Zr/Λ, let (FN)N∈N be a tiling Følner sequence in Γ, and let
us denote the elements of E by e′1, . . . , e

′
r. It follows from (5.8) that

∀ δ > 0, ∃N0, ∀N ≥ N0, ∀ i ∈ [r], |(FN + e′i) \ FN | ≤ δ|FN |. (5.11)

We first prove that
MdZ(D) ≥ MdΓ(E). (5.12)

Fix any ε > 0. By (5.9) and (5.11), we can fix N such that the following

properties hold: firstly there is an E-avoiding set A′ ⊂ FN satisfying |A′|
|FN |
≥

MdΓ(E)− ε
4
, and secondly for each i ∈ [r] we have |(FN +e′i)\FN | ≤ ε

4r
|FN |.

Let A′′ = {g ∈ A′ : g +E ⊂ FN}. We have A′ \A′′ ⊂ {g ∈ FN : g +E 6⊂
FN} ⊂

⋃
i∈[r] FN \(FN−e′i). This together with the properties above implies

|A′′|
|FN |
≥ MdΓ(E)− ε

2
.
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By Lemma 5.6 applied to the action f defined in (5.7), there is a base
B ⊂ Z of an FN -tower for f of measure at least 1− ε

2
. Let A =

⊔
g∈A′′ fg(B).

For every i ∈ [r], the set A + ti =
⊔
g′∈A′′ fg′+e′i(B) is disjoint from A

(otherwise, since A′′ + e′i ⊂ FN , the tower property implies that g′ + e′i = g
for some g, g′ ∈ A′′, contradicting that A′′ is E-avoiding). Hence MdZ(D) ≥
µ(A) = |A′′|µ(B) ≥ |FN |(MdΓ(E) − ε

2
)

1− ε
2

|FN |
≥ MdΓ(E) − ε. This yields

(5.12) by letting ε→ 0.

We now prove that
MdZ(D) ≤ MdΓ(E). (5.13)

Fix any D-avoiding Borel set A ⊂ Z, and any ε > 0. By (5.9) and (5.11),
we can fix N such that firstly |(FN + e′i) \ FN | ≤ ε

2r
|FN | for every i ∈ [r],

and secondly

every E-avoiding set S ⊂ FN satisfies
|S|
|FN |

≤ MdΓ(E) +
ε

2
. (5.14)

By Lemma 5.6, there is a base B ⊂ Z of an FN -tower for f of measure at least
1− ε

2
. We claim that there is a partition of B into non-empty measurable sets

Bj, j ∈ [M ], such that there is a set A′ ⊂ A (which is therefore D-avoiding)
with µ(A′) ≥ µ(A) − ε

2
, and with the property that for every j ∈ [M ]

there is Sj ⊂ FN such that A′ is of the form A′ =
⊔
j∈[M ]

⊔
g∈Sj fg(Bj).

Before we prove this claim, let us explain how it yields (5.13). The D-
avoiding property of A′ implies that each set Sj is E-avoiding. Indeed,
otherwise there would be j ∈ [M ] and i ∈ [r] such that there is g′ ∈ Sj with
g′ + e′i ∈ Sj. But then the form of A′ implies that fg′+e′i(Bj) ⊂ A′ (since
g := g′ + e′i ∈ Sj) and fg′+e′i(Bj) = fg′(Bj) + ti ⊂ A′ + ti (since g′ ∈ Sj), so
A′ ∩ (A′ + ti) ⊃ fg′+e′i(Bj) 6= ∅, contradicting that A′ is D-avoiding. Hence

each Sj is indeed E-avoiding. By (5.14) we then have
|Sj |
|FN |
≤ MdΓ(E) + ε

2

for all j ∈ [M ]. Then, using
∑

j∈[M ] µ(Bj)|FN | = µ
(⊔

g∈FN fg(B)
)
≤ 1, we

have µ(A′) ≤
∑

j∈[M ] |Sj|µ(Bj) ≤ MdΓ(E) + ε
2
, so µ(A) ≤ MdΓ(E) + ε, and

(5.13) follows by letting ε→ 0.

We now prove the claim by finding the desired partition of B and the set
A′. For every g ∈ FN , we have the partition B(g) = {Bg,0, Bg,1} of B with
atoms Bg,1 := B ∩ f−1

g (A) and Bg,0 := B \ Bg,1. The desired partition is
the common refinement (or supremum) of these partitions, i.e. the partition
of B whose atoms are all the non-empty intersections of the atoms of B(g)

as g ranges in FN . Let B1, . . . , BM be the atoms in this partition. Let
A′ :=

⊔
g∈FN [A ∩ fg(B)] ⊂ A. Since the FN -tower with base B has measure
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at least 1− ε
2
, we have µ(A \ A′) ≤ ε

2
. Since A′ =

⊔
g∈FN fg(Bg,1), and each

set Bg,1 is a union of some of the atoms Bj, it follows that A′ is a union of
some of the atoms of the partition {fg(Bj) : j ∈ [M ], g ∈ FN}. Hence for
every j ∈ [M ] there is a set Sj ⊂ FN such that A′ =

⊔
j∈[M ]

⊔
g∈Sj fg(Bj).

This proves the claim and completes the proof.

To close this subsection, let us detail the other natural definition of the
Motzkin density of a finite set in a finitely generated abelian group, as
announced earlier. We do this in Lemma 5.11 below. This is not used in
later sections of this paper, but it can be used for instance in an alternative
proof of Theorem 5.9; see Remark 5.12.

Definition 5.10. Let Γ be a finitely generated abelian group. Given any
set A ⊂ Γ, and any Følner sequence F = (FN)N∈N in Γ, the upper density

of A relative to F is defined by δF(A) := lim supN→∞
|A∩FN |
|FN |

.

Lemma 5.11. Let Γ be a finitely generated abelian group, let F be a tiling
Følner sequence in Γ, and let E be a finite subset of Γ. Then

MdΓ(E) = sup{δF(A) : A ⊂ Γ, (A− A) ∩ E = ∅}. (5.15)

Proof. It is easily checked from the definitions that MdΓ(E) ≥ δF(A) for
every E-avoiding set A ⊂ Γ, so MdΓ(E) ≥ sup{δF(A) : A ⊂ Γ, (A−A)∩E =
∅}. We now prove that

MdΓ(E) ≤ sup{δF(A) : A ⊂ Γ, (A− A) ∩ E = ∅}. (5.16)

Let F1, F2, . . . be the sets in F , and fix any ε > 0. By (5.9), for all N

sufficiently large we have φE(FN )
|FN |

≥ MdΓ(E) − ε
2
, so there is an E-avoiding

set S ⊂ FN with |S|
|FN |
≥ MdΓ(E)− ε

2
. Since E is finite, it follows from (5.8)

that for all N sufficiently large we also have |(FN + t) \ FN | ≤ ε
2|E| |FN | for

each t ∈ E. Let us now fix N with the previous two properties. The set
S ′ := {g ∈ S : g +E ⊂ FN} satisfies S \ S ′ ⊂

⋃
t∈E FN \ (FN − t), so |S′|

|FN |
≥

|S|
|FN |
− ε

2
≥ MdΓ(E)−ε. By assumption there is a tiling Γ =

⊔
c∈C c+FN . It is

then easily checked that A := C+S ′ is E-avoiding. Therefore it now suffices
to prove that δF(A) ≥ |S′|

|FN |
, since then MdΓ(E) ≤ δF(A) + ε, and (5.16)

follows by taking the supremum and letting ε → 0. For each N ′ ∈ N, let
C ′ = {c ∈ C : c+FN ⊂ FN ′}. Then |FN ′∩A| ≥ |FN ′∩(C ′+S ′)| = |S′|

|FN |
|C ′+

FN | = |S′|
|FN |

(|FN ′ | − |FN ′ \ (C ′ + FN)|). Moreover, letting T = FN − FN , we
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have FN ′ \(C ′+FN) ⊂ FN ′ \(T+FN ′). Indeed, if g ∈ FN ′ \(C ′+FN) then by
the tiling we have g = c+x for some c ∈ C, x ∈ FN , and by the definition of
C ′ we have c+x′ 6∈ FN ′ for some x′ ∈ FN ; so g+x′−x 6∈ FN ′ . Thus we deduce
that

|FN′∩A|
|FN′ |

≥ |S′|
|FN |

(
1− |FN′\(T+FN′ )|

|FN′ |

)
. Applying now (5.8) with variable N ′

and every g ∈ T , we deduce that δF(A) = lim supN ′→∞
|FN′∩A|
|FN′ |

≥ |S′|
|FN |

, as

required.

Remark 5.12. Using (5.15), the anonymous referee provided an alternative
proof of (5.13) (the second half of the proof of Theorem 5.9) by applying the
pointwise ergodic theorem for actions of finitely generated abelian groups.
We gratefully include the argument here.

Let E ⊂ Γ = Zr/Λ as defined in Theorem 5.9, let f be the action of Γ
on Z, and let F be the tiling Følner sequence given by (5.10). Let A ⊂ Z
be a Borel set with µ(A) > MdΓ(E). We will find a point x ∈ Z such that
Ax := {g ∈ Γ : fg(x) ∈ A} satisfies δF(Ax) ≥ µ(A). Thus we will have
δF(Ax) > MdΓ(E), implying by (5.15) that Ax is not E-avoiding, so that
there are distinct elements a, b ∈ Ax with a− b ∈ E. Then fa(x), fb(x) ∈ A,
which implies that A−A contains the element fa(x)− fb(x) = fa−b(0) ∈ D,
so A is not D-avoiding. Hence MdZ(D) ≤ MdΓ(E).

To find the set Ax, we apply the pointwise ergodic theorem for finitely
generated abelian groups with the action f (for instance as a special case
of [44, Theorem 1.2], noting that F clearly has the required property of being
tempered). Thus we deduce that the averages x 7→ 1

|FN |
∑

g∈FN 1A(fg(x))

converge pointwise almost everywhere to an f -invariant function 1A ∈ L1(µ).
We have

∫
1A dµ =

∫
1A dµ = µ(A), and it follows that the set of points

x ∈ Z with 1A(x) ≥ µ(A) has positive Haar measure. Therefore there
exists x ∈ Z at which the limit of these averages is at least µ(A). Hence
δF(Ax) ≥ µ(A).

5.2.3 The case D ⊂ Q: the independence ratio of cir-
culant graphs

Let us formalize the remarks, made in the introduction, about the general
rational case D ⊂ Q in the circle group.

Lemma 5.13. Let D = {t1, . . . , tr} ⊂ (0, 1), where for each i ∈ [r] we have
ti = ai/bi with 1 ≤ ai < bi and gcd(ai, bi) = 1. Let N = lcm(b1, . . . , br), and
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let G be the connected circulant graph on ZN with jumps d1, . . . , dr where
di = Nti. Then MdT(D) = α(G)

N
.

Proof. The connectedness of G is equivalent to the elements d1, . . . , dr gener-
ating the full group ZN , which is equivalent to gcd(d1, . . . , dr, N) = 1, which
in turn is equivalent to gcd(N

b1
, . . . , N

br
, N) = 1 by our assumptions. This last

equality can be seen to hold using the identity lcm(b1, . . . , br) = b1···br
gcd(π1,...,πr)

where πi =
∏

j∈[r]\{i} bj for i ∈ [r].

Using the notation in Theorem 5.9, we have MdT(D) = MdZr/Λ(E).
Letting ψ denote the homomorphism Zr → T, n 7→ n1t1 + · · ·+nrtr, by the
first isomorphism theorem we have Zr/Λ ∼= ψ(Zr). Denoting by 1

N
· ZN the

subgroup of T of order N , we have ψ(Zr) = 1
N
· ZN , and ψ(e′i) = ti = di

N

for i ∈ [r]. It follows that MdZr/Λ(E) = Md 1
N
·ZN (D) = MdZN ({d1, . . . , dr}).

This last quantity equals α(G)
N

. Hence MdT(D) = α(G)
N

.

Remark 5.14. Lemma 5.13 shows that Motzkin’s problem in T subsumes the
problem of determining the independence ratio of circulant graphs. Solving
the latter problem in turn yields a solution to Motzkin’s original problem in
Z for finitely many missing differences. This follows from the fact that for
any finite set D ⊂ N, identifying ZN with the integer interval FN = [−N

2
, N

2
]

with addition mod N , we see that limN→∞MdZN (D) = MdZ(D). Indeed,

this can be seen from (5.9) noting that limN→∞
φD(FN )
|FN |

− MdZN (D) = 0,

and it can also be seen from previous work: by [43, Theorem 4.1] the limit
limN→∞MdZN (D) equals the reciprocal of the fractional chromatic number
of the graph Cay(Z, D); this reciprocal in turn equals MdZ(D) [47, Theorem
1].

5.2.4 The case |D| = 1

Proposition 5.15. For D = {t} with t ∈ (0, 1) we have

MdT(D) =

{
1/2, t 6∈ Q
bN/2c /N, t = d

N
, gcd(d,N) = 1.

Proof. The case t 6∈ Q follows from Theorem 5.7. For t = d
N

with coprime
integers d,N , we have by Lemma 5.13 that MdT(D) is the independence ra-
tio of an N -cycle. This ratio is easily seen to equal bN/2c /N by identifying
the cycle’s vertex set with [0, N − 1], where x, y ∈ [0, N − 1] form an edge
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if and only if |x− y| = 1 mod N , and noting that {0, 2, . . . , 2(bN/2c − 1)}
is a stable set of maximal cardinality in this cycle.

5.3 The case |D| = 2, D 6⊂ Q

In this section we suppose that D = {t1, t2} ⊂ (0, 1) where t1, t2 are not
both rational, and we prove Theorem 5.2. Theorem 5.7 already covers the
case in which 1, t1, t2 are linearly independent over Q, in other words, the
case in which the lattice Λ from (5.6) is trivial (i.e. Λ = {0}). The case
in which Λ has full rank 2 corresponds to D ⊂ Q (treated in the next
section). Therefore, here it only remains to address the case in which Λ has
rank 1, that is, where Λ is a non-trivial cyclic subgroup of Z2. We begin
by describing this subgroup more explicitly in terms of the assumption in
Theorem 5.2.

Lemma 5.16. Let t1, t2 ∈ (0, 1) such that {t1, t2} 6⊂ Q and 1, t1, t2 are
linearly dependent over Q. Let Λ be the kernel of the homomorphism Z2 →
T, (n1, n2) 7→ n1t1 + n2t2, and let m1,m2 ∈ Z. Then (m1,m2) generates Λ
if and only if there is m0 ∈ Z such that

(m0,m1,m2) ∈ Z3\{0}, m0 = m1t1+m2t2 and gcd(m0,m1,m2) = 1.
(5.17)

Proof. If (m1,m2) generates Λ (i.e. Λ = Z(m1,m2)) then in particular
(m1,m2) ∈ Λ, so there is m0 ∈ Z such that m0 = m1t1 + m2t2 (and
clearly m1,m2 cannot be both 0 since Λ is non-trivial); moreover g :=
gcd(m0,m1,m2) must be 1, as otherwise (m1

g
, m2

g
) would be an element of

Λ\Z(m1,m2), contradicting that (m1,m2) generates Λ. Hence (5.17) holds.

To see the converse, note first that if (5.17) holds then (m1,m2) ∈ Λ,
so Z(m1,m2) ⊂ Λ and it only remains to prove the opposite inclusion.
For this, it suffices to prove that every m′ = (m′0,m

′
1,m

′
2) ∈ Z3 satisfying

m′0 = m′1t1 + m′2t2 is an integer multiple of m = (m0,m1,m2). If one of
t1, t2 is rational, say t1 ∈ Q, then since of t2 6∈ Q we must have m2 =
m′2 = 0, so m′0/m

′
1 = t1 = m0/m1 and the claim is then clear. Let us

therefore assume that t1, t2 are both irrational. We have by assumption{
m0 = m1t1 +m2t2
m′0 = m′1t1 +m′2t2

. Note that none of m1,m
′
1 is zero, otherwise t2 ∈ Q.

Multiplying the first equation by m′1, the second one by m1, and subtracting,
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we deduce thatm′0m1−m0m
′
1 = (m1m

′
2−m′1m2)t2. Since t2 6∈ Q, this implies

m1m
′
2 = m′1m2 and m′0m1 = m0m

′
1. The former equation implies that

(m1,m2), (m′1,m
′
2) are linearly dependent over Q. Hence there are coprime

non-zero integers a, b such that a(m1,m2) = b(m′1,m
′
2). Using this in the

system of equations above yields am0 = am1t1 + am2t2 = bm′1t1 + bm′2t2 =
bm′0, so am = bm′. This combined with gcd(a, b) = gcd(m0,m1,m2) = 1
implies |b| = 1, so m′ is indeed in Zm.

In view of Lemma 5.16 and Theorem 5.9, to complete the proof of Theorem
5.2 it now suffices to prove the following result.

Theorem 5.17. Let Λ be a cyclic subgroup of Z2 generated by an element
(m1,m2) ∈ Z2 \ {0}. Let E be the image of the standard basis {e1, e2} in
the quotient Z2/Λ. Then

MdZ2/Λ(E) = bk/2c/k, where k = |m1|+ |m2|. (5.18)

The basic idea of the proof is that the (undirected) Cayley graph
Cay(Z2/Λ, E) can be decomposed by partitioning Z2/Λ into translates of a
cycle of length k in the graph, so that MdZ2/Λ(E) is then easily shown to
equal the independence ratio of this cycle.

Proof. We can assume without loss of generality that m1 ≥ 0 and m2 > 0.

Let R denote the set Z(1,−1) + [0, k − 1] × {0} = {(n1, n2) ∈ Z2 :
n1 +n2 ∈ [0, k−1]}. It is easily checked that R is a fundamental domain for
the action of Λ on Z2. For this proof we identify Z2/Λ as a group with R
equipped with addition mod Λ (i.e. addition in Z2 composed with reduction
mod Λ into R), and we identify E with {e1, e2} ⊂ R.

Let G be the Cayley graph on R with generating set E, i.e. with uv being
an edge in G if and only if v − u ∈ {e1,−e1, e2,−e2} (where the operations
are in R). Let C = C1 ∪ C2 ⊂ R where C1 = {(0, i) : i ∈ [0,m2 − 1]}
and C2 = {(i,m2 − 1) : i ∈ [m1]} (if m1 = 0 then C2 = ∅). Note that the
subgraph of G induced by C (denoted by G[C]) is a k-cycle. Note also that
R =

⊔
n∈Z C + n(1,−1).

We now prove that MdZ2/Λ(E) is the independence ratio of G[C], i.e.
bk/2c
k

. For N ∈ N let FN =
⊔N
n=−N C + n(1,−1). It is easily seen that

(FN)N∈N is a Følner sequence in R.

To see that MdZ2/Λ(E) ≥ bk/2c
k

, let S be a stable subset of C of maximal
size (thus |S| = bk/2c) and note that S is E-avoiding. Let A :=

⊔
n∈Z S +
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n(1,−1) = S + Z(1,−1). We claim that A is E-avoiding. Indeed, suppose
for a contradiction that there is x ∈ A with x+ ei ∈ A for i = 1 or 2. Since
A is invariant under translation by elements of Z(1,−1), we can suppose
that x ∈ S. If x + e1 ∈ A, then we must have x + e1 ∈ S ∪ (S + (1,−1)).
This implies that (S+e1)∩ [S∪ (S+(1,−1))] 6= ∅, which implies that S−S
contains e1 or e2, which is impossible since S is E-avoiding. If x + e2 ∈ A,
then x+ e2 ∈ S ∪ (S − (1,−1)), but then (S + e2)∩ [S ∪ (S − (1,−1))] 6= ∅,
which similarly contradicts that S is E-avoiding. This proves our claim.
Now note that |A∩FN ||FN |

= |S|
|C| = bk/2c

k
for all N . Hence by (5.9) we have

MdZ2/Λ(E) ≥ bk/2c
k

.

To see that MdZ2/Λ(E) ≤ bk/2c
k

, note that for any ε > 0, by (5.9), for

some N ∈ N there exists an E-avoiding set A ⊂ FN such that |A|
|FN |

≥
MdZ2/Λ(E) − ε. We also have |A|

|FN |
= 1

(2N+1)k

∑N
n=−N |(C + n(1,−1)) ∩ A|.

Now each set A∩ (C + n(1,−1)) is a stable set in (a translate of) the cycle

G[C], so this set has size at most bk/2c. We deduce that |A|
|FN |
≤ bk/2c

k
, so

MdZ2/Λ(E) ≤ bk/2c
k

+ ε and the desired inequality follows letting ε→ 0.

5.4 |D| = 2, D ⊂ Q: the independence ratio

of 2-jump circulant graphs

When both elements of D are rational, it follows from Lemma 5.13 that
MdT(D) is the independence ratio of a connected circulant graph with
two jumps. Thus, throughout this section we let G be a circulant graph
Cay(ZN , {d1, d2}) with gcd(N, d1, d2) = 1. Our aim is to determine α(G).

It is well-known (and easily seen) that in this situation if G is bipartite
then α(G) = N

2
. If G is not bipartite then it contains an odd cycle. Recall

that the odd girth of G is then defined to be the smallest length of an odd
cycle in G. We then have the following upper bound for α(G).

Lemma 5.18 (Odd-girth bound). Let G be a circulant graph of order N
and odd girth k. Then

α(G) ≤
⌊
k−1
2k
N
⌋
. (5.19)

This is an immediate consequence of the “no homomorphism lemma” of
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Albertson and Collins, which we recall here; see [1, Theorem 2] and also [33,
Lemma 3.3].

Lemma 5.19. Let G be a vertex transitive graph and let H be a subgraph
of G. Then α(G)/|V (G)| ≤ α(H)/|V (H)|.

Remark 5.20. The odd-girth bound (5.19) is attained in many cases. Note
first that if G is 2-regular (i.e. every vertex in G has two neighbours) then
d1 equals d2 or −d2, that is, there is just one jump of odd order N , so α(G)
attains the odd-girth bound bN/2c in this case. If G is 3-regular (which
occurs only if N is even and one of the jumps is N/2) then it can be seen
that the odd-girth bound is attained as well, using for instance [37, Corollary
2.27]. Therefore, from now on we assume that G is 4-regular. Among 4-
regular connected circulant graphs, examples attaining the odd-girth bound
include those given by Gao and Zhu in [28, Theorem 7], which have jumps
1 and d2, with d2 sufficiently small compared to N . We establish a different
family of examples in Proposition 5.29 below.

The following result provides an infinite family of examples of 2-jump circu-
lant graphs with independence number strictly below the odd-girth bound.

Proposition 5.21. Let d ∈ N be odd, let N = 2d(d + 1), and let G =
Cay(ZN , {d, d + 1}). Then α(G) = d2, and G has girth k = 2d + 1, so
α(G) =

⌊
k−1
2k
N
⌋
− d−1

2
.

Proof. We first prove that G has girth 2d + 1. Every cycle in G can be
translated in ZN to obtain a cycle C of same length starting from 0. To
every such cycle C there correspond integers a, b such that a(d+1) + bd = 0
mod N and such that the length of the cycle is |a| + |b|. Supposing first
that a(d+ 1) + bd = cN for a non-zero integer c, we have 2d(d+ 1) = N ≤
|cN | < (|a|+ |b|)(d+ 1), so |a|+ |b| > 2d and therefore the cycle has length
at least 2d+ 1. Note that this length is achieved by the cycle in which first
the element d is added d+ 1 times to 0, and then the element d+ 1 is added
d times to reach N . The remaining possibility is that a(d + 1) + bd = 0.
Then |a|(d + 1) = |b|d ≥ lcm(d, d + 1), and this least common multiple is
d(d + 1) (since d, d + 1 are coprime), so we deduce |a| ≥ d and |b| ≥ d + 1,
so |a|+ |b| ≥ 2d+ 1.

Next, note that
⌊
k−1
2k
N
⌋

=
⌊2d2(d+1)

2d+1

⌋
=
⌊
d2 + d2

2d+1

⌋
= d2 +

⌊
d2

2d+1

⌋
, and

d−1
2

(2d+ 1) = d2 − d+1
2

, so d2

2d+1
= d−1

2
+ d+1

2(2d+1)
, so

⌊
d2

2d+1

⌋
= d−1

2
.
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Finally, we prove that α(G) = d2. To this end, let ϕ denote the homo-
morphism ϕ : Z2 → ZN , (x, y) 7→ x(d+ 1) + yd mod N , and let Λ = kerϕ.
Let R denote the fundamental domain [0, 2d−1]× [0, d] ⊂ Z2 equipped with
Z2-addition mod Λ, and note that ϕ restricts to an isomorphism R→ ZN , so
we may identify G with the Cayley graph Cay(R, {e1, e2}). Let H denote the
subgroup [0, 2d−1]×{0} of R. It is easily seen that for every stable set S of
G, each of the d+1 cosets of H contains at most d elements of S. A stable set
S ′ of size d2 can be constructed by letting S0 = {(2i, 0) : i ∈ [0, d− 1]} ⊂ H
and then letting S ′ = ϕ

(⊔
j∈[0,d−1] S0 + j(1, 1) mod Λ

)
. Hence α(G) ≥ d2.

Now let S ⊂ R be any maximum stable set in G. Since |S| ≥ d2, the
average number of points of S per coset of H is greater than d−1, so there is
a coset of H whose intersection with S has size d and is therefore a translate
of the above set S0. Hence we may assume (translating if necessary) that
H ∩ S = S0. It follows that S ∩ (H + e2) ⊂ (S0 + e2)c and also, using
that −e2 = (d, d) mod Λ, that S ∩ (H − e2) = S ∩ (H + (d, d)) ⊂ (S0 +
(d, d))c = (S0 + (1, d))c, where the last equality follows from the invariance
S0 = S0 + 2e1. Therefore S \H is a stable set of the subgraph of G induced
by S \

(
H∪(S0 +e2)∪(S0 +(1, d))

)
. In this induced subgraph, every vertical

line is a path of even length d−1, which contains at most (d−1)/2 elements
of S. Therefore |S| ≤ d+ 2d(d− 1)/2 = d2, so α(G) = d2.

Proposition 5.21 shows that for a connected circulant graph
G = Cay(ZN , {d1, d2}) the independence number α(G) can go below the
odd-girth bound by as much as a constant multiple of

√
N . We will show

that this is the correct order of magnitude for how large the difference
between these two quantities can be. Thus, in particular, the odd-girth
bound is an estimate for α(G) that is asymptotically tight as N increases.
We will establish this by proving the following result, which immediately
yields Theorem 5.3.

Theorem 5.22. Let G = Cay(ZN , {d1, d2}) with 〈d1, d2〉 = ZN . If G is
bipartite then α(G) = N/2. Otherwise, letting k denote the odd girth of G,
we have ⌊

k−1
2k
N
⌋
≥ α(G) ≥

⌈
k−1
2k
N − 3

√
N
⌉
. (5.20)

By Remark 5.20 there are arbitrarily large N for which the upper bound
in (5.20) is sharp, and by Proposition 5.21 there are also arbitrarily large
N for which the lower bound in (5.20) is sharp up to the absolute constant
multiplying

√
N .
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To prove Theorem 5.22 we shall use the following full-rank lattice natu-
rally associated with G:

Λ = {x ∈ Z2 : x1d1 + x2d2 = 0 mod N}, (5.21)

that is, the lattice Λ is the kernel of the homomorphism

ϕ : Z2 → ZN , (x1, x2) 7→ x1d1 + x2d2 mod N. (5.22)

Since we suppose that 〈d1, d2〉 = ZN , we have that ϕ is surjective. Note
that ϕ is also a graph homomorphism Cay(Z2, {e1, e2})→ G.

The lattice Λ is useful to analyze cycles in G. In particular, short cycles
are related to the successive minima λ1, λ2 of Λ relative to the `1-norm,
namely (see [15])

λ1 = min{ρ : dim
(
Span(Bρ∩Λ)

)
≥ 1}, λ2 = min{ρ : dim

(
Span(Bρ∩Λ)

)
≥ 2}

(5.23)
where Bρ is the ball in R2 centered at the origin and of radius ρ relative to
the `1-norm.

Remark 5.23. The lattice in (5.21) is a special case of the lattice in (5.6).
These objects, as well as the role played by short cycles in the case of two
missing differences, are some ideas unifying the various cases of Motzkin’s
problem treated in this paper. We say more about this in Section 5.5.

The following lemma shows that we can always select a convenient basis
for Λ.

Lemma 5.24. Let G = Cay(ZN , {d1, d2}) with 〈d1, d2〉 = ZN , and let λ1, λ2

be the successive minima defined in (5.23). Then there exist u, v ∈ Λ with
the following properties:

1. {u, v} is a basis of Λ such that ‖u‖1 = λ1, ‖v‖1 = λ2.

2. If G has odd girth k, then k ∈ {λ1, λ2}.

Proof. Property (i) is a standard result (see [15, p. 204, Lemma 1]).

To see property (ii), note first that λ1, λ2 are both lengths of cycles in G.
Indeed, given any w ∈ Z2 let P (w) denote the path in Z2 that starts at the
origin, then adds e1 = (1, 0) if w1 > 0 (resp. −e1 if w1 < 0) until it reaches
(w1, 0) and then adds e2 = (0, 1) if w2 > 0 (resp. −e2 if w2 < 0) until it
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ends at w. Note that if w is u or v, then the map ϕ from (5.22) is injective
on P (w) \ {w}, so that ϕ(P (w)) is indeed a cycle in G of length ‖w‖1 = λi.
Indeed, suppose for a contradiction that there exist x, y ∈ P (w) \ {w} with
ϕ(x) = ϕ(y) and ‖x‖1 < ‖y‖1. Then y−x ∈ Λ \ {0} would have ‖y−x‖1 <
‖w‖1 ≤ λ2, so y − x would be in the span of u (by [15, p. 204, Lemma 1]).
Hence ‖w‖1 > ‖u‖1, so w must be v. Then v − (y − x) = w − (y − x) is an
element of Λ \ {0} of `1-norm less than ‖w‖1 = λ2, so it is also in the span
of u. This contradicts the linear independence of u, v.

If G has odd girth k, then by translating we find a k-cycle C = (x0 =
0, x1, . . . , xk = 0) inG. We can then construct a walk C̃ = (x̃0 = 0, x̃1, . . . , x̃k)
in Cay(Z2, {e1, e2}) such that ϕ(C̃) = C (in particular ϕ restricted to
C̃\{x̃k} is bijective onto C). Note that x̃k is in Λ and cannot be 0, since oth-
erwise k would be even. Hence ‖x̃k‖1 ≥ λ1, and so k ≥ λ1. If λ1 is odd, then
we must have k = λ1, since by the previous paragraph λ1 is the length of an
odd cycle in G, and k is the minimal such length. If λ1 is even, then λ2 must
be odd. Indeed, otherwise for every cycle C = (x0 = 0, x1, . . . , xn−1, xn = 0)
in G, for the walk C̃ = (x̃0 = 0, x̃1, . . . , x̃n) in Z2 satisfying ϕ(C̃) = C,
we have that x̃n ∈ Λ, so x̃n is an integer combination of u, v and therefore
‖x̃n‖1 would be even. This would imply that every cycle in G has even
length, contradicting that G has odd cycles. Since k cannot be the even
number λ1 and is at least the `1-norm of some non-zero element in Λ, we
have k ≥ λ2, whence k = λ2 (since λ2 is an odd-cycle length). This proves
property (ii).

We shall use the basis {u, v} to estimate α(G). We begin by reformulating
the bipartite case in terms of the minima from (5.23).

Lemma 5.25. We have α(G) = N/2 if and only if λ1 and λ2 are both even.

Proof. We first prove the backward implication. If λ1 and λ2 are both even,
then, as noted in the proof of Lemma 5.24, the graph G has no odd cycles,
so it is bipartite and therefore α(G) = N/2.

For the forward implication, note that if one of λ1, λ2 is odd then G
has odd girth k ∈ {λ1, λ2} by Lemma 5.24, so by Lemma 5.19 we have
α(G) ≤ k−1

2k
N < N/2.

Thus, to prove Theorem 5.22 (more precisely (5.20) therein) we can assume
that at least one of u, v has odd `1-norm.
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Let P denote the parallelogram determined by u, v:

P := [0, 1)2 · (u, v) := {αu+ βv : α, β ∈ [0, 1)}.

By standard results, the Lebesgue measure of P is the absolute value of
det ( u1 v1

u2 v2
), which is also equal to the index |Z2/Λ|, which equals N by the

first isomorphism theorem and the surjectivity of ϕ. Moreover, since P is
also a fundamental domain for Z2/Λ, we have that |P ∩Z2| is also equal to
|Z2/Λ|, so

|P ∩ Z2| = N. (5.24)

The following result tells us that for each i ∈ {1, 2} we can always partition
a large subset of ZN into useful translates of a cycle of length λi.

Lemma 5.26. Let G = Cay(ZN , {d1, d2}) be 4-regular with 〈d1, d2〉 = ZN ,
let Λ be the associated lattice from (5.21), and let λ1, λ2 be the successive
minima of Λ relative to the `1-norm. Then for each i ∈ {1, 2} there exists a
λi-cycle Ci in G and ε1, ε2 ∈ {1,−1} such that we have the following union
of pairwise disjoint translates of Ci in ZN :

b N
λi
c−2⊔

t=0

(
Ci + t(ε1d1 + ε2d2)

)
. (5.25)

The idea of the proof is that there is a lattice path in Z2 which represents a
λi-cycle and has the property that, modulo Λ, one can tile a large subset of
P ∩ Z2 with certain translates of this path. The images of these translates
under ϕ then yield (5.25).

Proof. Let {u, v} be the basis of Λ provided by Lemma 5.24. We prove
(5.25) for i = 1; the proof for i = 2 is similar. Note that the operations
of permuting d1, d2 and changing their sign all yield isomorphisms of G,
and that the conclusion of the lemma is not affected by these operations.
It follows that, by performing such operations if necessary, we can assume
that u has both coordinates non-negative and the angle from u to v is in
(π, 2π) (i.e. det ( u1 v1

u2 v2
) < 0). In the resulting more specific situation, we can

prove (5.25) with ε1 = −ε2 = 1, as follows.

We first settle the case in which one of u1, u2 is 0. If u1 = 0, then
u2 = λ1 is the order of d2 in ZN . We then set C1 to be the cycle 〈d2〉. By
Minkowski’s second theorem [15, p. 203, (12)] we have λ1λ2 ≤ 2N , and each
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λi is at least 3 (otherwise G is not 4-regular). Hence λi < N , so in particular
C1 is a proper subgroup of ZN . Since 〈d1, d2〉 = ZN , the cosets of the form
C1 + td1, t ≥ 0 cover ZN . Then the smallest t ∈ N such that td1 ∈ C1 is
t = N/λ1 (in particular d1 6∈ C1). Hence (5.25) holds with t up to N/λ1− 1
in this case, as a particular way to write the partition of ZN into cosets of
C1. A similar argument yields (5.25) when u2 = 0.

We assume from now on that u1, u2 > 0.
Let C̃1 = (x(1) = 0, x(2), . . . , x(λ1) = u − e2) be the lattice path in Z2 of
length λ1 which starts at the origin, ends at u − e2, and stays as close as
possible to the line Ru while staying below this line (i.e. x

(j)
2 ≤ u2

u1
x

(j)
1 for all

j ∈ [λ1]). We can describe C̃1 inductively as follows, using the fact that the

vertical distance to Ru from a point x(j) below Ru is u2

u1
x

(j)
1 − x

(j)
2 :

x(1) = 0, and for j ∈ [λ1 − 1], x(j+1) =

{
x(j) + e1,

u2

u1
x

(j)
1 − x

(j)
2 ∈ [0, 1)

x(j) + e2,
u2

u1
x

(j)
1 − x

(j)
2 ≥ 1

.

(5.26)
We now estimate the greatest positive integer s such that the homomorphism
ϕ from (5.22) is injective on

⋃s
t=0 C̃1 + t(1,−1). First note that, for every

s ∈ N, there is no pair of points in this union differing by a non-zero multiple
of u. Indeed, supposing that x ∈ C̃1 + i(1,−1) and y ∈ C̃1 + j(1,−1) for
j ≥ i, then y cannot be x+u (let alone being x+ru for any integer r > 1), for
we have y2 ≤ u2−1−j, while x2 +u2 ≥ u2−i, so x2 +u2−y2 ≥ j−i+1 > 0.
Therefore ϕ is injective on

⋃s
t=0 C̃1 + t(1,−1) if and only if no pair of points

in this union differ by an element of the form au + bv with a, b ∈ Z and
b 6= 0. A sufficient condition for this to hold is that every point in the
union lies strictly above the line v + Ru. To ensure that this condition
holds, it suffices to ensure that no point of C̃1 + (s,−s) lies on or below
the line v + Ru. Let z denote the point in C̃1 most distant from Ru in the
direction of (1,−1), i.e. the point that maximizes the Euclidean length of
the line segment parallel to (1,−1) joining the point to the line Ru. Then
the above condition holds if we set s = bσc − 1 where σ, η are the unique
real solutions to z + σ(1,−1) = v + ηu. (We are unable to guarantee that
the condition still holds with s = bσc, because if σ happens to be an integer
then z + (σ,−σ) = v + ηu is on the line v + Ru and then we are unable to
ensure that ϕ is injective as desired.)

Note that z is a point in C̃1 maximizing the vertical distance to Ru, i.e.
u2

u1
z1 − z2 = h := maxj∈[λ1]

u2

u1
x

(j)
1 − x

(j)
2 . By (5.26), if the vertical distance

from x(j) to Ru is at least 1, then from x(j+1) the distance is smaller than
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that from x(j). Hence the maximum h occurs at z = x(j+1) where x(j) has
vertical distance d to Ru which is maximal subject to being less than 1.
Thus d ≤ maxj∈[0,u1−1]{j u2

u1
} = 1− gcd(u1,u2)

u1
, so h = d+ u2

u1
≤ u1+u2−gcd(u1,u2)

u1
.

We therefore have σ ≥ σ′ where (0,−u1+u2−gcd{u1,u2}
u1

) + σ′(1,−1) ∈ v + Ru.

We obtain (using λ1 = u1+u2, N = u2v1−u1v2) that σ′ = N
λ1
−1+ gcd(u1,u2)

λ1
>

N
λ1
−1. Hence, setting s = bσc−1 ≥ bN

λ1
c−2, we conclude that ϕ is injective

on the set S :=
⋃s
t=0

(
C̃1 + t(1,−1)

)
. It is easily seen from (5.26) that the

translates of C̃1 forming S are pairwise disjoint, so by injectivity of ϕ the
images of these translates under ϕ are also pairwise disjoint. Letting C1 be
the cycle ϕ(C̃1) in G, we deduce (5.25) in this case, which completes the
proof.

Using the tiling by cycles in Lemma 5.26, we can form large independent sets
in G by carefully choosing a maximal independent subset in each translate
of Ci in (5.25) except the last translate. This yields the following result.

Proposition 5.27. Let G = Cay(ZN , {d1, d2}) be 4-regular with 〈d1, d2〉 =
ZN , let Λ be the associated lattice from (5.21), and let λ1, λ2 be the successive
minima of Λ relative to the `1-norm. Then

α(G) ≥ max
i∈{1,2}

(⌊
N
λi

⌋
− 2
) ⌊

λi
2

⌋
. (5.27)

Proof. Let
⊔s
t=0Ci + t(ε1d1 + ε2d2) be the partition in (5.25), with s =

bN
λi
c − 2. Let B be the independent subset of Ci of maximal size obtained

by starting from 0 and picking one of every two successive elements, stopping
once we have picked bλ1

2
c elements. Let A :=

⊔s−1
t=0 B + t(ε1d1 + ε2d2). It

suffices to prove that A is stable, as then α(G) ≥ |A| ≥ sbλi
2
c. We prove

this for i = 1; the proof for i = 2 is similar. By initial operations similar to
those in the previous proof, we may assume that ε1 = −ε2 = 1, u1, u2 ≥ 0,
and det ( u1 v1

u2 v2
) < 0.

Suppose for a contradiction that vertices x, y ∈ A form an edge in G.
Since B is stable, these vertices must lie in distinct translates of C1. Shifting
and relabeling, we can suppose that x ∈ B and y ∈ B+ t′(d1− d2) for some
t′ ∈ [1, s− 1].

We claim that t′ = 1. To see this let C̃1 be the Z2-path described in
(5.26), and note that since ϕ is bijective on

⊔s
t=0 C̃1 + t(1,−1), there are

unique x̃ ∈ C̃1 and ỹ ∈ C̃1 +t′(1,−1) with ϕ(x̃) = x, ϕ(ỹ) = y. The distance
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in G between x and y (i.e. the length of a shortest path from x to y in G)
is ‖ỹ − x̃‖`1/Λ := minz∈Λ ‖ỹ − x̃ − z‖1. Since x, y are neighbours in G, this
distance is 1, so there is z ∈ Λ and w ∈ {±e1,±e2} such that ỹ = x̃+w+ z.
If t′ ≥ 2 then this cannot happen with z being just a multiple of u, so z must
be of the form n1u + n2v for n1 ∈ Z and n2 ∈ N. But then ỹ − w = x̃ + z
lies on or below the line v + Ru, which is impossible by construction of s
since t′ ≤ s− 1. This proves our claim.

Since t′ = 1, we have ỹ ∈ C̃1 + (1,−1), and since ỹ = x̃+w+ z, we have
that C̃1 + (1,−1) overlaps mod Λ with C̃1 + w. By construction of C̃1, this
requires w to be e1 or −e2 (since C̃1− e1 and C̃1 + e2 clearly do not overlap
with C̃1 +(1,−1)). We deduce that y = ϕ(x̃+w+z) equals x+d1 or x−d2.
Since y = b+ d1 − d2 for some b ∈ B, we deduce that b = x+ d2 or x− d1,
so x, b are elements of B adjacent in G, contradicting that B is stable. This
proves that A is stable and completes the proof.

Since the odd girth k of G is in {λ1, λ2}, from (5.27) we deduce immediately
that

α(G) ≥
(⌊

N
k

⌋
− 2
)
k−1

2
. (5.28)

The lower bound here may seem to be close to the odd-girth bound, but
the two bounds can in fact differ by as much as a fraction of N , when k
is proportional to N . However, combining (5.27) with Minkowski’s second
theorem, we can now prove the main result of this section, Theorem 5.22,
which ensures that the odd-girth bound itself is close to α(G).

Proof of Theorem 5.22. By (5.19), it suffices to prove the lower bound for
α(G) in (5.20). As noted in Remark 5.20, if G is d-regular with d < 4 and
has odd girth k, then we already know that α(G) = bk−1

2k
Nc, so (5.20) holds

in these cases. We therefore assume from now on that G is 4-regular.

Suppose first that k = λ1. Then by Minkowski’s second theorem we have

k ≤
√
λ1λ2 ≤

√
2N. (5.29)

Therefore, in this case by (5.27) we have

α(G) ≥
(⌊

N
k

⌋
− 2
)
k−1

2
>
(
N
k
− 3
)
k−1

2
≥ k−1

2k
N − 3

2
k + 3

2
≥ k−1

2k
N − 3

√
N.

Supposing instead that k = λ2 > λ1, then by minimality of k and the fact
that λ1 is the length of a cycle in G, we have that λ1 must be even, so
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λ1 ≥ 4 (since G is 4-regular). By Minkowski’s second theorem again we
have λ1 ≤

√
2N . Then by (5.27) we have (using that 2k ≤ λ1λ2/2 ≤ N)

α(G) ≥
(⌊

N
λ1

⌋
−2
)
λ1

2
> N

2
− 3

2
λ1 ≥ k−1

2k
N + N

2k
− 3

2

√
2N ≥ k−1

2k
N −3

√
N.

Remark 5.28. As mentioned above, from (5.20) we immediately deduce
the asymptotically sharp estimate (5.5). To compute the main term k−1

2k

in this estimate, it suffices to find the vectors u, v from Lemma 5.24. This
can be done using the Lagrange-Gauss reduction algorithm for the `1-norm
[39], starting from any basis u′, v′ for Λ (for instance u′ = (d2

g
,−d1

g
), v′ =

(Na,Nb) where g = gcd(d1, d2) and a, b ∈ Z satisfy ad1

g
+ bd2

g
= 1).

To finish this section, we consider the problem of determining for which
4-regular circulant graphs with 2 jumps the independence number matches
the odd-girth bound. We do not solve this problem fully, but we provide
the following family of such graphs, which is naturally described in terms of
the associated lattice, and which differs significantly from the family given
by Gao and Zhu in [28, Theorem 7].

Proposition 5.29. Let G = Cay(ZN , {d1, d2}) be 4-regular with 〈d1, d2〉 =
ZN , and suppose that G has odd girth k. Let w be the basis element in
{u, v} such that ‖w‖1 = k. If some coordinate of w is 0, then α(G) equals
the odd-girth bound k−1

2k
N .

Note that by permuting d1 and d2 if necessary, we can assume that w1 = 0,
so that w = (0, k). In this case the subgroup 〈d2〉 ≤ ZN constitutes a k-cycle
C in G (and in particular k divides N). Let w′ ∈ {u, v} \ {w}. As noted in
the proof of Lemma 5.26, we have the partition

ZN =

w′1−1⊔
t=0

(C + td1),

with w′1 = N/k. In particular w′1d1 ∈ C, so there is j ∈
[
− k−1

2
, k−1

2

]
which

is the integer with least absolute value such that w′1d1 + jd2 = 0 mod N .
Then, since ‖w′‖1 is the other smallest length of a non-trivial cycle in G, it
follows that w′2 = j.

Proof of Proposition 5.29. We first observe that the following claim implies
the conclusion of the proposition.

Claim: There is a walk p0, p1, . . . , pw′1
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in Cay(Zk, {1,−1}) starting at 0 and ending at w′2. (5.30)

Indeed, if (5.30) holds then we can construct a set A ⊂ ZN that is stable in G
and has |A| = k−1

2k
N , as follows. The set A0 = {0, 2d2, 4d2, . . . , (k− 3)d2} ⊂

C is stable in G and has size k−1
2

(which is maximal subject to being a stable
set included in C). Then, letting p0, p1, . . . , pw′1 be a walk as described in

(5.30), the following set is stable of size N
k
k−1

2
:

A =

w′1−1⊔
t=0

A0 + td1 + ptd2.

We now prove the claim (5.30), by distinguishing two cases according to the
parity of ‖w′‖1.

Suppose that ‖w′‖1 is odd. Then w′1 + |w′2| = ‖w′‖1 ≥ k. Then N
k

=
w′1 ≥ k − |w′2|.

We can then see that there is a walk as claimed in (5.30), as follows. Since
w′1 − (k − |w′2|) is non-negative even, we can start the walk by alternating
+1 and −1, setting p0 = 0, p1 = 1, p2 = 0, and so on up to pw′1−(k−|w′2|) = 0.
From here the walk becomes monotonic, adding only +1s (resp. −1s) to end
at pw′1 = k− |w′2| ≡ w′2 mod k if w′2 ∈ [−k−1

2
, 0) (resp. pw′1 = −(k− |w′2|) ≡

w′2 mod k if w′2 ∈ [0, k−1
2

]).

Suppose now that ‖w′‖1 is even. We claim that w′1 ≥ |w′2|. Indeed,
otherwise the number w′1 + k − |w′2| is less than k, is odd (since it equals
k + ‖w′‖1 − 2|w′2|), and is positive (since |w′2| ≤ k−1

2
). On the other hand

this number is the length of an odd cycle in G. Indeed, since w′ ∈ Λ, we
have sw′1d1 + |w′2|d2 = 0 mod N for some s ∈ {1,−1}. Hence, since d2 has
order k, we have −sw′1d1 + (k − |w′2|)d2 = 0 mod N , which indeed implies
the existence of a cycle of length w′1 + k − |w′2|. This proves our claim.
Since w′1 ≥ |w′2|, we have that w′1 − |w′2| = ‖w′‖1 − 2|w′2| is non-negative
even. We can then construct a walk as claimed in (5.30) as follows. We
start again by alternating +1 and −1, setting p0 = 0, p1 = 1, p2 = 0, and
so on up to pw′1−|w′2| = 0. From here the path goes monotonically again,

to end at pw′1 = w′2 (adding only +1s if w′2 ∈ [0, k−1
2

] and only −1s if

w′2 ∈ [−k−1
2
, 0)).
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5.5 Final remarks

As mentioned in the introduction and explained in Remark 5.14, Motzkin’s
problem in T can be seen to subsume (in its rational caseD ⊂ Q) the original
problem in Z for finite D. At the end of the introduction we mentioned
a more specific instance of this, namely that the asymptotic solution to
the case of two rational missing differences in T (i.e. Theorem 5.3) implies
the classical solution (5.2) of Cantor and Gordon, namely MdZ({d1, d2}) =
b(d1+d2)/2c

d1+d2
for any coprime positive integers d1, d2. Let us detail this.

As explained in Remark 5.14, we have MdZN ({d1, d2})→ MdZ({d1, d2})
as N → ∞. It is easily seen that if d1, d2 are both odd then, for N even,
the circulant graph GN := Cay(ZN , {d1, d2}) is bipartite, while if d1, d2

have different parity then for large N the graph GN has odd girth d1 + d2.
Hence in all cases Theorem 5.3 indeed yields formula (5.2) in the limit. In
particular, in the non-bipartite case, formula (5.2) can be written in terms
of the odd girth k of Cay(Z, {d1, d2}), namely MdZ({d1, d2}) = k−1

2k
.

Formula (5.4) from Theorem 5.2 can also be phrased in terms of the
odd girth of an associated graph, namely the uncountable Cayley graph
G = Cay(T, {t1, t2}). Under the assumptions of Theorem 5.2, it can be
seen that if m1,m2 have equal parity then G is bipartite (since then every
element of the associated lattice Λ is a multiple of (m1,m2) by Lemma 5.16
and therefore has even `1-norm, which implies that every cycle in G is even),
and otherwise G has odd girth k = |m1| + |m2|, so that formula (5.4) can
be written MdT({t1, t2}) = k−1

2k
.

These connections suggest that there may be a more fundamental result,
phrased in terms of the odd girth of a more general type of Cayley graph,
which would imply all the above results in the case |D| = 2, thus shedding
more light on the above connections.

It would be interesting to explore Motzkin’s problem further, in at least
two directions that would extend the main results of this paper.

One direction consists in considering more general compact or finite
abelian groups. In this paper we have focused on the circle group, but
some of our main results extend readily to more general compact abelian
groups Z. For instance, the conclusion MdT(D) = 1/2 in Theorem 5.7 is
extended to MdZ(D) = 1/2 by a similar argument using Rokhlin’s lemma
if the assumption of linear independence over Q is replaced by the trivial-
ity of the lattice Λ from (5.6). Theorem 5.3 can also be formulated more
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generally, whenever t1, t2 generate a finite subgroup Z′ of Z, as the esti-
mate k−1

2k
≥ MdZ({t1, t2}) ≥ k−1

2k
− 3√

N
where N is the order of Z′ and k

is the odd girth of Cay(Z′, {t1, t2}) (assuming this graph is not bipartite).
Let us mention also that there are previous results in combinatorics which
can be viewed as determining Motzkin densities in other complex cases not
addressed in this paper. There is for example the main result from the pa-
per [42] by Kleitman, which can be phrased as follows (we are grateful to
the anonymous referee for mentioning this).

Theorem 5.30 (Kleitman 1966). Let k, n ∈ N with 2k ≤ n. Let G = Zn2 ,
and let

D = {(x1, . . . , xn) ∈ G : #{j : xj = 1} > 2k}.

Then MdG(D) = 1
2n

∑k
i=0

(
n
i

)
.

A second natural direction of further research is to address the problem in
T for finite sets D of cardinality at least 3. Here the transference result
and tiling arguments in sections 5.2–5.4 may constitute useful elements for
a general approach. A particularly appealing question in this direction is
whether, and in what form, the asymptotically sharp estimate (5.5) can be
refined and extended to circulant graphs with more than 2 jumps.
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[52] J. Marklof, A. Strömbergsson, Diameters of random circulant graphs,
Combinatorica 33 (2013), no. 4, 429–466.

[53] D. S. Ornstein, B. Weiss, Entropy and isomorphism theorems for ac-
tions of amenable groups, J. Analyse Math. 48 (1987), 1–141.
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