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“Logic issues in tautologies, mathematics in identities, philosophy in definitions; all trivial,
but all part of the vital work of clarifying and organising our thought”

Frank P. Ramsey

“Probability is the most important concept in modern science, especially as nobody has the
slightest notion what it means”

Bertrand Russell



Abstract

This thesis addresses different questions concerning probability, partial differential
equations, fluid mechanics and some aspects of economic theory. We try to answer
whether some events in these fields are “typical”, how different probability settings
modify their likelihood and how some probability techniques can give us informa-
tion about expected values of important magnitudes or help us to construct deter-
ministic realizations. The thesis is divided into two parts.

In the first part we study monochromatic random waves. First, in Chapter 2 we
study monochromatic random waves on the Euclidean space defined by Gaussian
variables whose variances tend to zero sufficiently fast. This has the effect that the
Fourier transform of the monochromatic wave is an absolutely continuous measure
on the sphere with a suitably smooth density, which connects the problem with the
scattering regime of monochromatic waves. In this setting, we compute the asymp-
totic distribution of the nodal components of random monochromatic waves show-
ing that the behavior changes dramatically with respect to the standard theory.

Second, in Chapter 3 we consider Gaussian random monochromatic waves u on
the plane depending on a real parameter s that is directly related to the regular-
ity of its Fourier transform. Specifically, the Fourier transform of u is f do, where
do is the Hausdorff measure on the unit circle and the density f is a function on
the circle that, roughly speaking, has exactly s — 1 derivatives in L? almost surely.
When s = 0, one recovers the standard setting for random waves with a translation-
invariant covariance-kernel. The main thrust of this chapter is to explore the connec-
tion between the regularity parameter s and the asymptotic behavior of the number
N(Vu,R) of critical points that are contained in the disk of radius R > 1. A key
step of the proof of this result is the obtention of precise asymptotic expansions for
certain Neumann series of Bessel functions. When the regularity parameter is s > 5,
we show that in fact N(Vu, R) grows like the diameter with probability 1, albeit the
ratio is not a universal constant but a random variable.

Finally, in Chapter 4 we construct deterministic solutions to the Helmholtz equa-
tion in IR™ which behave accordingly to the Random Wave Model. We then find
the number of their nodal domains, their nodal volume (Yau’s conjecture) and the
topologies and nesting trees of their nodal set in growing balls around the origin.
The proof of the pseudo-random behavior of the functions under consideration hinges
on a de-randomization technique pioneered by Bourgain and proceeds via comput-
ing their LP-norms. The study of their nodal set relies on its stability properties and
on the evaluation of their doubling index, in an average sense.

In the second part of this thesis we study the probability techniques applied to
two different fields: fluid mechanics and economic theory. First, in Chapter 5 we
show that, with probability 1, a random Beltrami field exhibits chaotic regions that
coexist with invariant tori of complicated topologies. The motivation to consider
this question, which arises in the study of stationary Euler flows in dimension 3, is
V.I. Arnold’s 1965 speculation that a typical Beltrami field exhibits the same com-
plexity as the restriction to an energy hypersurface of a generic Hamiltonian sys-
tem with two degrees of freedom. The proof hinges on the obtention of asymptotic
bounds for the number of horseshoes, zeros, and knotted invariant tori and peri-
odic trajectories that a Gaussian random Beltrami field exhibits, which we obtain
through a nontrivial extension of the Nazarov-Sodin theory for Gaussian random
monochromatic waves and the application of different tools from the theory of dy-
namical systems, including KAM theory, Melnikov analysis and hyperbolicity. Our



results hold both in the case of Beltrami fields on R® and of high-frequency Beltrami
fields on the 3-torus.

The second chapter in this part deals with social choice theory, a branch of the-
oretical economics. The Condorcet Jury Theorem or the Miracle of Aggregation are
frequently invoked to ensure the competence of some aggregate decision-making
processes. In Chapter 6 we explore an estimation of the prior probability of the the-
sis predicted by the theorem (if there are enough voters, majority rule is a competent
decision procedure). We use tools from measure theory to conclude that, prima fa-
cie, it will fail almost surely. To update this prior either more evidence in favor of
competence would be needed or a modification of the decision rule. Following the
latter, we investigate how to obtain an almost sure competent information aggre-
gation mechanism for almost any evidence on voter competence (including the less
tavorable ones). To do so, we substitute simple majority rule by weighted majority
rule based on some weights correlated with epistemic rationality such that every
voter is guaranteed a minimal weight equal to one.



Resumen y conclusiones

Esta tesis aborda diferentes cuestiones relacionadas con la probabilidad, ecuaciones
en derivadas parciales, mecénica de fluidos y algunos aspectos de la teorfa econémica.
Intentamos responder si algunos eventos en estos campos son <tipicos>, como difer-
entes configuraciones modifican su probabilidad y cémo algunas técnicas proba-
bilisticas pueden darnos informacién sobre valores esperados de magnitudes im-
portantes o ayudarnos a construir realizaciones deterministas. La tesis estd dividida
en dos partes.

En la primera parte estudiamos ondas aleatorias monocromaéticas. Primero, en
el Capitulo 2 estudiamos ondas monocromaticas aleatorias en el espacio euclideo
definido por variables gaussianas cuyas varianzas tienden a cero lo suficientemente
rapido. Esto tiene el efecto de que la transformada de Fourier de la onda es una
medida absolutamente continua sobre la esfera con una densidad con la suavidad
adecuada, lo que conecta el problema con el régimen de dispersion de las ondas
monocromdticas. En esta configuracién, calculamos la distribuciéon asintética de
las componentes nodales de las ondas monocromaéticas aleatorias mostrando que
el comportamiento cambia drasticamente con respecto a la teoria estdndar.

En segundo lugar, en el Capitulo 3 consideramos ondas monocromaéticas aleato-
rias gaussianas u en el plano dependiendo de un parametro real s que esta directa-
mente relacionado con la regularidad de su transformada de Fourier. En concreto,
la transformada de Fourier de u es fdo, donde do es la medida de Hausdorff en
la circunferencia unidad y la densidad f es una funcién en la circunferencia que, en
términos generales, tiene exactamente s — 1+ derivadas en L? casi seguro. Cuando
s = 0, se recupera la configuracion estdndar para ondas aleatorias con una funcién
de covarianza invariante ante traslaciones. El objetivo principal de este capitulo
es explorar la conexién entre el pardmetro de regularidad s y el comportamiento
asint6tico del nimero N(Vu, R) de puntos criticos que estdn contenidos en el disco
de radio R > 1. Un paso clave de la demostracién de este resultado es la obtencién
de expansiones asintdticas precisas para ciertas series de Neumann de funciones de
Bessel. Cuando el pardmetro de regularidad es s > 5, mostramos que de hecho
N(Vu,R) crece como el didmetro con probabilidad 1, aunque la relacién no es una
constante universal sino una variable aleatoria.

Finalmente, en el Capitulo 4 construimos soluciones deterministas a la ecuacion
de Helmholtz en R que se comportan de acuerdo con el <Random Wave Model>.
Luego encontramos el ntiimero de sus dominios nodales, su volumen nodal (conje-
tura de Yau) y las topologias y estructuras de arbol de su conjunto nodal en bolas
crecientes alrededor del origen. La demostraciéon del comportamiento pseudoaleato-
rio de las funciones bajo consideracién depende de una técnica de desaleatorizaciéon
iniciada por Bourgain y se realiza mediante el cdlculo de sus normas L. El estudio
de su conjunto nodal se basa en sus propiedades de estabilidad y en la evaluacién
de su «doubling index>, en un sentido promedio.

En la segunda parte de esta tesis estudiamos las técnicas de probabilidad apli-
cadas a dos campos diferentes: la mecanica de fluidos y la teoria econémica. Primero,
en el Capitulo 5 mostramos que, con probabilidad 1, un campo de Beltrami aleatorio
exhibe regiones cadticas que coexisten con toros invariantes de topologias compli-
cadas. La motivaciéon para considerar esta pregunta, que surge en el estudio de
flujos estacionarios de Euler en dimension 3, es la especulacion de Arnold de 1965
de que un campo tipico de Beltrami exhibe la misma complejidad que la restriccion a
una energfa hipersuperficie de un sistema hamiltoniano genérico con dos grados de
libertad. La prueba depende de la obtencién de limites asintéticos para el nimero



de herraduras, ceros y toros invariantes anudados y trayectorias periédicas que un
campo de Beltrami aleatorio gaussiano posee. Esto lo obtenemos a través de una ex-
tension no trivial de la teoria de Nazarov-Sodin para ondas monocromaticas aleato-
rias gaussianas y la aplicacién de diferentes herramientas de la teorfa de sistemas
dindmicos, incluyendo la teoria KAM teoria, andlisis de Melnikov e hiperbolicidad.
Nuestros resultados son vélidos tanto en el caso de los campos de Beltrami en R3
como en el de campos de Beltrami de alta frecuencia en el 3-toro.

El segundo capitulo de esta parte trata sobre la teoria de la elecciéon social, una
rama de la economia tedrica. El teorema del jurado de Condorcet o el milagro de
la agregacion se invocan con frecuencia para garantizar la competencia de algunos
procesos de toma de decisiones. En el Capitulo 6 exploramos una estimacién de la
probabilidad previa de la tesis predicha por el teorema (si hay suficientes votantes,
la regla de la mayoria simple es un procedimiento de decisién competente). Usamos
herramientas de la teoria de la medida para concluir que, prima facie, esto fallara casi
con seguridad. Para actualizar esta probabilidad apriori (en el sentido bayesiano) se
necesitarian mds evidencias a favor de la competencia o una modificacién de la regla
de decisién. Siguiendo esto tltimo, investigamos cémo obtener un mecanismo de
agregacion de informacién (casi seguro) competente para casi cualquier evidencia
sobre la competencia de los votantes (incluidas las menos favorables). Para ello,
sustituimos la regla de la mayoria simple por la regla de la mayoria ponderada
basada en unos pesos correlacionados con la racionalidad epistémica de manera que
a cada votante se le garantiza un peso minimo igual a uno.
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Chapter 1

Preliminaries and main results of
the thesis

1.1 Preliminaries

1.1.1 Random monochromatic waves asymptotics

On the euclidean space IR", we can define monochromatic waves as solutions to the
Helmbholtz equation on R" (n > 2):

Au+u=20. (1.1)

The Helmholtz equation is an ubiquitous differential equation in theoretical physics
which appears in other partial differential equations (for instance, heat, wave and
Schrodinger’s equation). It is known that any polynomially bounded solution to this
equation is the Fourier transform of a distribution supported on the unit sphere 5" 1.
More specifically, let us assume that u is a solution to the Helmholtz equation satis-

fying
/ (x) ™ Nu(x)Pdx < oo, (1.2)
where (x) := (1 + x2)2 is the Japanese bracket, for some N > 0 and p € [1,c0). It is

standard that then u is a tempered distribution, see [Rud73, Example 7.12]. This is
satisfied if, for instance, u is polynomially bounded. Thus, for a test function ¢,

(1, 9) = (u,9) = —(u,89) = (&, (|| ~ 1)) = 0.

Thus, if supp ¢ C U C (5" 1)¢ where U is an open set, then

(1,¢) = (@,(|x|* = 1)¢) =0

for the smooth test function ¢ == ¢/ (1 — ||-||*). Therefore, supp # C §"~1. Similarly
for the inverse transform . By the inversion theorem,

u= (),
so u is the Fourier transform of a distribution supported on the sphere " 1.

Thus, the way one constructs monochromatic random waves is the following
[CS19]. One starts with a real-valued orthonormal basis of spherical harmonics
on §"~!, which we denote by Y;,,. Hence Y}, is an eigenfunction of the spherical
Laplacian with eigenvalue I(I + n — 2), the index [ is a nonnegative integer and m
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2l+n—2 (l+n—2

ranges from 1 to the multiplicity d; := 77555 (""" ") of the corresponding eigen-

value.

To consider a monochromatic random wave, one now takes

co 4

= Z Z il AIm Ylm(g) ’ (1.3&)
1=0m=1

where a5, are independent random variables of zero mean, and defines u as the
Fourier transform of f do, where do is the area measure of the unit sphere g1 je.,

u=(fdoy.
This is tantamount to setting (see Proposition 2.3)
" (0] d n_ x
u(x) = (2m):2 Z Z (|x|) h+’2‘—1(|1|) (1.3b)
=0 m=1 X

Note that u is real-valued if the random variables 4;,, are. The statistical information
of the field u is encapsulated in the covariance kernel K(x,y) = E (u(x)u(y)). It
is also known that we can approximate any monochromatic wave u (not necessarily
satisfying (1.2)) on compact subsets in the C'-topology by truncated sums of the RHS
of (1.3b).

® S [ [ e ]
NS A S
FIGURE 1.1: Nodal set (black) of a random plane wave by D. Belyaev.
Nodal domains are in white and green, depending on the sign of the

function. Critical points are also shown. Local extrema are painted in
red and blue.

The set of points where the function u vanishes is called the nodal set. It is like the
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“skeleton” of the function, it allows us to understand several aspects of the function.
Thus, in this thesis we want to investigate some of its characteristics as the num-
ber of the nodal domains, the connected components of R"\u~!(0), the “volume”
of their nodal set and also its topology. The latter is a key factor in many physical
properties, e.g., in Newtonian gravitation, Maxwell electromagnetic theory or quan-
tum mechanics [EPS18]. In quantum mechanics, the nodal set of the phase function
indicates the region of the space where the particle is less likely to be. See also Figure
1.3.

The breakthrough work of F. Nazarov and M. Sodin help us to understand the
nodal set of monochromatic random waves. The Nazarov-Sodin theory, whose orig-
inal motivation was to understand the nodal set of random spherical harmonics of
large order [NS09], has been significantly extended to derive asymptotic laws for the
distribution of the zero set of smooth Gaussian functions of several variables. The
primary examples are the restriction to large balls of translation-invariant Gaussian
functions on R” and various Gaussian ensembles of large-degree polynomials on
the sphere or on the torus. In this setting, one assumes that the random variables
aj,, are independent standard Gaussians (i.e., of zero mean and unit variance). Thus,
one does have translational invariance, i.e., K(x,y) = K(x —y). Indeed, a straight-
forward computation [CS19] shows that the covariance kernel reduces to

Jia(lx—yl)

lx —yl2 !

up to a multiplicative constant. We can also see that our random field is isotropic
(i.e., invariant under rotations) as K(x,y) = K(|x — y|).

Let us denote by N, (R) (resp., Ni,(R; [£])) the number of connected components
of the nodal set #~!(0) that are contained in the ball centered at the origin of radius R
(resp., and diffeomorphic to X). Here X is any smooth, closed, orientable hypersur-
face ¥ C R". It is obvious from the definition that N, (R; [£]) only depends on the
diffeomorphism class [X] of the hypersurface. The central known results concern-
ing the asymptotic distribution of the nodal components of monochromatic random
waves in R” can then be summarized as follows (see also [GW16; KW18; CS19] for
related results):

Theorem 1.1.1. Suppose that the random variables ay,, in (1.3) are independent standard
Gaussian variables. Then:

(i) Nazarov-Sodin’s estimate for the number of nodal components [NS16]: there is a con-
stant v > 0 such that
P(lmlN“R):u>:1.
R—oo R"

(i) Sarnak-Wigman’s positive probability bound for the number of nodal sets of fixed
topology [SW19]: for each smooth, closed, orientable hypersurface > C IR" there exists
a constant v([X]) > 0, depending only on the diffeomorphism class of X, such that

. NLI(R;[Z]) . -
IP( lim —n —V([Z])) =1.

R—o0

In other words, this theorem asserts that, if a;,, are independent standard Gaus-
sians, the number of nodal components contained in a large ball is almost surely
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proportional to the volume. This volumetric growth rate holds even if one only con-
siders nodal components of a fixed (compact) topology.

(A) Nodal set for a monochromatic wave in (B) Nodal set for a monochromatic wave with
R by A. Barnett “smooth” density, see Figure 2.1.

FIGURE 1.2: Nodal set for functions from R3 to R.

In Figure 1.1 it has been represented the nodal set and critical points of a planar
random wave. As we can see, the number of critical points gives an upper bound to
the number of nodal domains inside a given ball. This is clear as compact nodal do-
mains must contain at least one maximum or minimum. We can also study the nodal
set in higher dimensions, see Figure 1.2. The picture on the left could be a nodal set of
a “typical” random wave and on the right, the nodal set of a monochromatic wave
which is the Fourier transform of a smooth enough density on the sphere. As we
can see, the pattern is completely different. The reason, as we will show, lies in the
regularity of the density on the sphere. In Lemma 2.4.1 and Proposition 3.2.2 with
Remark 3.2.1 we will show the connection between this regularity on the sphere and
the decay of the variances. In Appendix 2.A we will show the link between this
regularity on the sphere and the decay at infinity of u.

The Random Wave Model

Monochromatic waves can be defined on manifolds too. Given a compact Rieman-
nian manifold (M, g) without boundary of dimension m, let A, be the Laplace-
Beltrami operator. There exists an orthonormal basis for L?(M, g) consisting of
eigenfunctions { f). }$*,

Agfr, +Aifa, =0, (1.4)

with 0 = A1 < A; < ... listed taking into account multiplicity and A; — co. Quantum
chaos is concerned with the behaviour of f, in the high-energy limit, i.e. A — oo.
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Berry [Ber77; Ber83] conjectured that “generic” Laplace eigenfunctions on nega-
tively curved manifolds can be modelled! in the high-energy limit by monochro-
matic waves as above, that is, an isotropic Gaussian field 1 with covariance function

E[u(x)u(y)] = /S emitevilag(p) = me, (1.5)

where ¢ is the uniform measure on the m — 1-dimensional sphere, J5(-) is the A-
th Bessel function with A := (m —2)/2 and C,, > 0 is some constant such that

E[|u(x)[?] = 1. This is known as the Random Wave Model (RWM) and it is sup-
ported by a large amount of numerical evidence, [HR92].

r
“"{» "{ f

e D

i~ ] o~

(A) Vortex lines are shown in a periodic

cubic cell. (B) The trefoil knot.

FIGURE 1.3: Tangled and knotted vortex filaments in random quan-
tum high-energy eigenfunctions, [TD16].

Noticeably, the RWM provides a general framework to heuristically describe the
zero set or nodal set of Laplace eigenfunctions. In particular, it provides insight into
the number of their nodal domains, the connected components of M\ f, *(0), and
the volume of their nodal set and also on its topology. More precisely, let us denote
by N'(f1) the number of connected components of M\ f;*(0) (nodal domains) and
by V(fy) == H" 1({x € M : fy(x) = 0}) the nodal volume of f, where H"1(-)
is the Hausdorff measure. Then the RWM together with the work of Nazarov and
Sodin [NS16], suggests that “typically”, under some conditions,

N (fr) = ensA™2(1 + 0peo(1)), (1.6)

where cy;s is known as the Nazarov and Sodin constant, see Theorem 1.1.1. Similarly,
the RWM together with the Kac-Rice formula suggests that “typically”, under some
conditions,

V(fA) = C/\l/z(l +0A500(1))- (1.7)

Importantly, (1.7) agrees with Yau’s conjecture [Yau82], which predicts V(f)) =
A2 The said conjecture is known for real-analytic manifolds thanks to the work
of Donnelly-Fefferman [DF88]. In the smooth case, the lower bound was recently

1For a precise statement, see [Ing21; ABM18]. The idea is that, for a fixed x, f/\/(expx(u / /\]1/2))
should behave like a random monochromatic wave as long as the geodesics on (M, g) are chaotic.



20 Chapter 1. Preliminaries and main results of the thesis

proved by Logunov and Malinnikova [Log18a; Log18b; LM18] together with a poly-
nomial upper bound.

This suggests the following questions:

* As we see in Figure 1.8, the nodal set is very different if one modifies the reg-
ularity of the density on the sphere. Can we understand, in a deterministic
and probability setting, the nodal set if the density on the sphere is smooth
enough? The answer is affirmative and this will be considered in Chapter 2
which is based on [EPSR22a]:

- A. Enciso, D. Peralta-Salas, and A . Romaniega. “Asymptotics for the
nodal components of non-identically distributed monochromatic random
waves”. In: International Mathematics Research Notices 2022.1 (2022), pp.
773-799.

¢ As we will see in detail in Chapter 2, the behavior of random monochromatic
waves changes dramatically between the Nazarov-Sodin case of Theorem 1.1.1
and the case of a smooth density of the sphere (see Theorem 1.2.1). Can we say
something about the intermediate and other regions where the density is not
so smooth or even less smooth than the Nazarov-Sodin case? We will treat
this question in Chapter 3 for waves on the plane considering expected values.
This is based on the article (submitted for publication) [EPSR21]:

- Enciso, A., Peralta-Salas, D. and Romaniega, A.,2021. Critical point asymp-
totics for Gaussian random waves with densities of any Sobolev regularity. In:
arXiv preprint arXiv:2107.03363.

A different approach for the technical (but crucial) computation of the Neu-
mann series is given in [Rom22a]:

— Romaniega, A., 2022. Integral representations and asymptotic expansions for
second type Neumann series of Bessel functions of the first kind.

¢ Theorem 1.1.1 says that, almost surely, monochromatic waves will have con-
nected components of the nodal set with every topology and a given constant
for the volumetric growth, but, can we find deterministic realizations of this?
That is, can we find particular solutions of the Helmholtz equation satisfying
these properties? The proof of the theorem is non-constructive and when we
have a “good” understanding of the nodal set these monochromatic waves do
not satisfy the thesis of the theorem (see Theorem 2.3.1). Hence, the answer is
not trivial, but in Chapter 4 we will give an affirmative answer and connect it
to Berry’s and Yau'’s conjecture based on the article [RS22]:

- Romaniega, A. and Sartori, A., 2020. Nodal set of monochromatic waves sat-
isfying the Random Wave Model. In: Journal of Differential Equations 333C
(2022), pp. 1-54.

1.1.2 Fluid mechanics

Beltrami fields, that is, eigenfunctions of the curl operator satisfying?

curlu =V Au=Au (1.8)

2Now u is a vector field, not a function.
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on RR? or on the flat torus T® for some nonzero constant A, are a classical family of
stationary solutions to the Euler equation in three dimensions. Indeed, from Euler
equations for an ideal fluid

aj%—(u-V)u:—Vp,

ot
V-u=0.

If the flow is stationary and we define the Bernoulli function B := p + 1 ||u/|* and
the vorticity w := curl i, then

uAw=VB,
V-u=0.

1
because of the vector identity (1 - V)u = EV ul®* = u A (V Au).

Thus, Beltrami fields are solutions if we assume B is constant. This assumption
is motivated by the fact that if B has regular level surfaces, one should expect a
“laminar” behavior, see [AK21, Proposition 1.5] and below. As a critical point of B
at x, VB(x) = 0, occurs for a nonvanishing velocity iff V A u(x) = ¢(x)u(x) for
some real number ¢(x) depending on x, this suggests the introduction of force-free
fields where V A u = ¢u for some function ¢. By definition, ¢ is a first integral of the
field u. Indeed,

VE-u=V-(Eu)=0,

where the first inequality comes from the fact that u is incompressible and the second
from the definition of {. Hence, every compact connected component of a regular
level surface of ¢ is a torus provided u does not have zeros . Therefore, the complex
behavior is expected when ¢ = A, a constant. More specifically,

Proposition 1.1.2 (Corollary 1.8, [AK21]). If a steady analytic flow has a trajectory that is
not contained in any analytic (singular) surface, then the flow is defined by a Beltrami field.

Nevertheless, the full significance of Beltrami fields in the context of ideal flu-
ids in equilibrium was unveiled by V.I. Arnold in his influential work on stationary
Euler flows. Indeed, Arnold’s structure theorem [Arn65; Arn66] ensures that, un-
der suitable technical assumptions, a smooth stationary solution to the 3D Euler
equation is either integrable or a Beltrami field. In the language of fluid mechanics,
an integrable flow is usually called laminar, so complex dynamics (as expected in
Lagrangian turbulence) can only appear in a fluid in equilibrium through Beltrami
fields.

This connection between Lagrangian turbulence and Beltrami fields is so direct
that physicists have even coined the term “Beltramization” to describe the experi-
mentally observed phenomenon that the velocity field and its curl (i.e., the vorticity)
tend to align in turbulent regions of low dissipation (see e.g. [FPS01; MRD+06]).

Motivated by Hénon’s numerical studies of ABC flows [Hen66], which are the
easiest examples of Beltrami fields, Arnold suggested [Arn65; Arn66] that Beltrami
fields exhibit the same complexity as the restriction to an energy level of a typical
mechanical system with two degrees of freedom. To put it differently, a typical Bel-
trami field should then exhibit chaotic regions coexisting with a positive measure set
of invariant tori of complicated topology. For instance, from [Arn65]:
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FIGURE 1.4: Arnold’s structure theorem: regions fibered by invariant
tori, (a) and invariant annuli (b).

11 est probable que les écoulements tels que rot v = Av, A = Cte, ont des
lignes de courant a la topologie compliquée. De telles complications in-
terviennent en mécanique céleste [Arn(9, Fig. 6]. La topologie des lignes
de courant des écoulements stationnaires des fluides visqueux peut étre
semblable a celle de [Arn09, Fig. 6].

Although specific instances of chaotic ABC flows in the nearly integrable regime
have been known for a long time [ZKL+93], Arnold’s speculation is wide open. A
major step towards the proof of this claim was developed by Alberto Enciso and
Daniel Peralta-Salas. They constructed Beltrami fields on R® with periodic orbits
and invariant tori (possibly with homoclinic intersections [ELPS20] inside) of arbi-
trary knotted topology [EPS12; EPS15]. In fluid mechanics, these periodic orbits
and invariant tori are usually called vortex lines and vortex tubes, respectively, and
in fact the existence of vortex lines of any topology had also been conjectured by
Arnold in the same papers. More precisely,

Theorem 1.1.3 ([EPS12; EPS15]). Let S C R3 be a finite union of closed curves and tubes
pairwise disjoint, but possibly knotted and linked and let A be any nonzero real number. Then
one can deform S by a smooth diffeomorphism ® of R?, arbitrarily close to the identity in any
C™ norm, such that ®(S) is a set of vortex lines and tubes of a Beltrami field u that satisfies
the equation curlu = Au in R3, and moreover, u falls off at infinity as |u(x)| < C|x|™*
(sharp decay).

Furthermore, these vortex structures are structurally stable: if v, where divv =
V-v=0,isa Cr-close enough field for k > 5, then it will also have these set of lines
and tubes up to a diffeomorphism.

These results also hold [EPSL17] in the case of Beltrami fields on T2, which, con-
trary to what happens in the case of R3 (by the sharp decay they cannot be square-
integrable), have finite energy; this is important for applications because R* and T®
are the two main settings in which mathematical fluid mechanics is studied. The
main drawback of the approach they developed to prove these results is that, while
they managed to construct structurally stable Beltrami fields exhibiting complex be-
havior, the method of proof provides no information whatsoever about to what ex-
tent complex behavior is typical for Beltrami fields.

This suggests the following questions:
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(A) A knotted vortex tube of water obtained in the
Irvine Lab at the University of Chicago. Figure cour-
tesy of William Irvine.

(B) Reconstruction of the vortex core and flow field
from raw 3D data for the trefoil knot, [KI13; KSI14].

FIGURE 1.5: Experimental realizations of a trefoil knot.

¢ How typical these vortex structures are? Does chaos coexist with the invariant
tori? How “large” are the latter? See Figure 1.6 for a particular illustration.

 Can we prove similar results on the torus T? as the frequency goes to infinity?

The answer to both questions is affirmative, establishing Arnold’s view of com-
plexity in Beltrami fields, and it will be considered in Chapter 5 which is based
on the article (submitted for publication) [EPSR20]:

- Enciso, A., Peralta-Salas, D. and Romaniega, A., 2020. Beltrami fields ex-
hibit knots and chaos almost surely. In: arXiv preprint arXiv:2006.15033.

Similar techniques can also be used in the context of Hamiltonian mechanics and are
explored in the article (submitted for publication) [EPSR22b]:
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FIGURE 1.6: The Poincaré map of a perturbed Hamiltonian system in

two dimensions. Some invariant tori remain undestroyed. The figure

also shows stable fixed points separated by unstable fixed points and
their “homoclinic tangle” ([JS98] based on Arnold and Avez, 1968).

e Enciso, A., Peralta-Salas, D. and Romaniega, A., 2022. Non-integrability and
chaos for natural Hamiltonian systems with a random potential. In: arXiv preprint
arXiv:2204.05964.

1.1.3 Social Choice Theory

Social choice theory is a branch of theoretical economics which studies how individ-
ual preferences can be aggregated into social preferences or more directly into social
decisions. Usually, this has to be done in a way compatible with the fulfillment of
a variety of desirable properties. The most famous result in this area is Arrow’s im-
possibility theorem which tells us that, if there are more than two options, there is no
social aggregation mechanism satisfying some “natural” or desirable conditions, see
[MCWG95, Chapter 21] for details.

Some ideas of this theorem are captured in Condorcet’s paradox, noted by the
Marquis de Condorcet in the late 18th century. Assume there are three options,
O1,0,,0;5 and three voters vy, v2,v3. If the i-th voter (strictly) prefers O; to Oy for
j # k, we write

Oj =i Ok.

Can simple majority rule give us a social preference relation >¢ua? That is, if we
define that O; is socially preferred to O, i.e., O; >social Ok, if more than half of the
voters prefer O; than Oy, does >qia1 is well-behaved? Not necessarily. For instance,
if we have:

* O1 =102 =1 O3,
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® O3 >3 01 =2 0y,

* Oy =303 =304,

then one can easily check that >4 fails to be transitive: O >gocia1 O2, O2 > social O3
and O3 >4ocial O1. Thus, in this simple case we do not even have transitivity, i.e., we
do not have rational preferences.

Remark 1.1.1. “Rational preferences” is a technical term, but in a similar fashion as
a Dutch book argument we can see some “irrational” implications of this. If our
(strict) preferences were not transitive, as in the example above, and starting with
O; (assuming it is a good now), we would sell O; + J13 to obtain in return Oz where
013 > 0 is some amount of some divisible good (say the numéraire). This is because
Oj is strictly preferred to O;. Proceeding similarly with the other two relations we
will end up with O; again but without 413 + d320 + 621 > 0. In N steps (with N
large enough), we would have acted “locally rational”, but this would be clearly
seen as “globally irrational” because it would mean losing almost everything. In
election processes the implications are paradoxical too. In a two-stage election, the
winner will depend on the way the two stages are structured. That is, if we vote first
between O; and O; and then the final option is chosen between the first winner and
the remaining Oy for i # j # k # i, then, choosing i, j, k appropriately we can make
every option win (if we want O; to win, simply set Oy = O)). That is, if we want O
to win, we choose between O, and O3 first.

But Condorcet also discovered an interesting result in social choice theory. Back
in 1785 he published a result to show how voting could be useful to efficiently aggre-
gate the private information of a group of agents. The result holds when we face a di-
chotomous choice between A and B which has a correct option, say A. For instance,
the group of agents can be a jury which has to decide if the defendant is guilty in a
criminal trial. Each agent is assumed to be more competent than a coin toss and their
choices are assumed to be independent from each other. In this setting, Condorcet
showed that if votes are aggregated using simple majority rule (A wins if its number
of votes is greater than the number of votes of B with an odd number of voters),
the probability of choosing the right option increases to one as the number of voters
goes to infinity. Thus, we can efficiently aggregate information: if the voters are slightly
competent, we can produce an (almost) perfectly competent decision procedure, i.e.,
the probability of being right is as close as one as we want if there are enough voters.
This is the Condorcet Jury Theorem (CJT). More precisely, the i-th voter is a random
variable X; over {0, 1} with probability of choosing A equaltoP (X; =1) =p > 1/2
and, obviously, the probability of choosing Bis P (X; =0) =1 — p < 1/2. Thus, if
voters are i.i.d. random variables and the aggregation procedure is simple majority
rule, i.e., A is chosen if

X >

M-

Il
—_

E/

1

where 1 is an odd number which represents the number of voters, then

. ! n
lim IP (;‘ X; > 2) =1. (1.9)

If we consider a similar setting, but now most of the voters are no better than chance,
ie., p = 1/2, except for a group of informed voters such that p = 1, then (1.9) holds
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too. The idea is simple, most of the voters behave like noise that cancels out (because
p = 1/2) and the informed group introduces a “bias” toward the right choice. More
precisely, the result follows from the Weak Law of Large Numbers (WLLN). This
second case is sometimes known in the literature as Wisdom of Crowds (WoC) or
Miracle of Aggregation (MoA).

In general, we can ask whether (1.9) happens for an arbitrary distribution of
voter competence, i.e., for a general sequence of probabilities {p;}?°, where p; =
P (X; =1) (now voters are not necessarily identical). This is usually called the
asymptotic CJT for independent voters. The cases considered above were:

e Condorcet: p; = 1/2+ ¢ wheree € (0,1/2] Vi € N.

* MoA: given n voters, p; = 1/2 for (1 —¢)n and p; = 1 for € - n voters where
g€ (0,1]).2

We will denote by C; the subset of [0,1]* or [0, 1]V, i.e., the space of sequences with
elements in [0,1] such that (1.9) holds for independent voters. We will say that a
sequence of probabilities satisfies the Condorcet Jury Property (CJP) if (1.9) holds,
i.e., the thesis of the CJT holds. This generalizes the case considered by Condorcet
of p; = 1/2 + . C; is an infinite set, i.e., there are an infinite number of sequences
satisfying the CJP. This was proved in [BP98], where a complete characterization of
the CJP was given.

Weighted majority rule

Let w := (w; € R);-, be some weights. Now, to each voter we associate the random
variable

+1 ifitvotes A,
X; = (1.10)

—1 ifitvotes B.

Weighted majority rule implies that the social choice function is sign(X¥) being in-
different between the two if X} = 0 where

Xy =Y wiX;. (1.11)

The larger the weight (ceteris paribus), the greater the influence of the voter. The
previous case of simple majority rule is recovered if w; = w; V i, j. Notice that if we
assigned X = 0 for the wrong option, the weights would be irrelevant in that case,
so we have to consider the symmetric case X € {—1,1}.

Weighted majority rules have been widely explored in the literature. For in-
stance, in [NP82] it is shown that, under some assumptions, weighted majority rule
is the optimal decision rule for dichotomous choices and that the weights are given
by

w; = W(p;) := log <1pl> . (1.12)
Obviously, W : [0,1] — R and, in particular, lim, ,o W(p) = —ccand lim,_,; W(p) =
co. Also, W(p) < 0 for p < 1/2. See Figure 1.7 for more details. Some intuitions of

3To simplify the exposition we have assumed that ¢ - 7 is an integer, but we should write e,n =
le- n], ie., take the integer part.
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this result were unveiled by Nobel-prize winner Lloyd Shapely and Bernard Grof-
man, [SG84]. Considering the non-asymptotic CJT, suppose we have voters with
competences (0.9, 0.9, 0.6, 0.6, 0.6). We have several options:

¢ Under expert rule, w; = 0 only fori = 2,3,4,5,

5
P (Ewixi > o) =009.

i=1

¢ Under simple majority rule, w; = 1fori =1,2,3,4,5,

5
P (Z w; X; > 0) ~ 0.877,
i=1

which improves the mean competence, but it is below expert rule.

¢ Under weighted majority rule, w; = 1/3fori =1,2andw; = 1/9fori = 3,4,5,

5
P (Z w; X; > 0> ~ 0.927,

i=1

which improves the previous results.

This result might be counterintuitive, since we are assigning nonzero weights to
the less competent but, nevertheless, improving the total probability with respect
to the expert rule case. This result is clearer if we note that these less competent
members can break the tie if the two most competent individuals disagree. The use

of weights (1.12) was considered an important result by the aforementioned authors.
They conclude [SG84]:

While the results of this essay seem particularly appropriate to analysis
of the problem of "information pooling’, in which the task is to weigh
the advice of ‘experts” or to reconcile ‘expert” and ‘non-expert” conflict-
ing opinion; we believe Theorem II [this is (1.12)] to be of considerable
general importance for democratic theory.

In that sense, we will also consider the CJT for a weighted majority rule and how
probable it is now the CJT when weights are included. Nevertheless, we will explore
a different kind of weights: they will be strictly positive, bounded from below and
above and subject to some stochastic error. They will be of the form w = w; + ¢
where w; is a deterministic function depending on p and ¢ the error. See Figure
1.7 for a comparison between w,; and V. We use w, instead of VV because, although
mathematically optimal, they can be problematic in a real life situation. In particular,
as we said, W(p) < 0 for p < 1/2. This has the effect of, for p; < 1/2,

W(pi)Xi = W(p)| (=X;) = [W(pi)|Xi = W(1 - pi)X;

andnow P (X; =1) =P (X; = —1) = 1 — p; > 1/2. This is equivalent to reversing
the outcome of the vote for these particular voters. To avoid this, we will only con-
sider weights in an interval of the form [1, W] for some W > 1, i.e., no voter loses,
formally, its weight on the election. In the same manner, we will also assume there
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FIGURE 1.7: Comparison of optimal weights and bounded weights.

is an error of measurement, so weights are not perfectly correlated to competence.
As we said, real weights, w, will be the sum of deterministic weights, w;(p), plus a
random error, &.

This motivates the following:

* Nevertheless, we can ask how “large” this set C; is compared with its comple-

ment (that is, the set of sequences where the CJP does not hold). In Chapter
6 we conclude that the answer is, a priori, zero, i.e., the prior probability or
measure of the CJP set is zero.

As the prior probability or measure of this set is zero, can we modify the ag-
gregation mechanism (following the weighted majority rule described above)
so that the probability of the thesis of the CJT goes to one? The answer is also
affirmative and it is given in Chapter 6, which is based on the article [Rom22b]:

- Romaniega, A., 2022. On the probability of the Condorcet Jury Theorem or the
Miracle of Aggregation. In: Mathematical Social Sciences,

10.1016/j.mathsocsci.2022.06.002.

Some aspects of the latter work are inspired by our previous work in theoreti-
cal physics [RRT19]:

- Rodriguez, M. A, Romaniega, A. and Tempesta, P., 2019. A new class of
entropic information measures, formal group theory and information geometry.
In: Proceedings of the Royal Society A 475.2222 (2019), p. 20180633.

1.2 Main results

We now present the central results of this thesis. To ease the exposition, we analyze
each chapter separately.
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1.2.1 The results of Chapter 2

In this chapter we study monochromatic random waves on IR"” defined by Gaussian
variables whose variances tend to zero sufficiently fast. That is, we consider

o d

f(‘:) = Z Z il Aim Ylm(‘:)/

[=0m=1

where a;,,, are independent random variables, and we define u as the Fourier trans-
form of fdS, where dS is the area measure of the unit sphere $"!. Instead of con-
sidering a;,, ~ N(0,1) as in the standard Nazarov-Sodin theory, we would like to

consider the case where
2
ﬂlm ~ N(O, (Tl )

are independent Gaussian variables of zero mean but distinct variances 07 and they
tend to zero fast enough. This has the effect that the Fourier transform of the monochro-
matic wave is an absolutely continuous measure on the sphere with a suitably smooth
density, which connects the problem with the scattering regime of monochromatic
waves. In this setting, we compute the asymptotic distribution of the nodal compo-
nents of random monochromatic waves, showing that the number of nodal compo-
nents contained in a large ball Bg grows asymptotically like R/ 7t with probability
pn > 0, and is bounded uniformly in R with probability 1 — p,, (which is positive if
and only if n > 3). In the latter case, we show the existence of a unique noncompact
nodal component. More precisely, we show in Theorem 1.2.1 that:

Theorem 1.2.1. Suppose that the random variables ay,, are independent Gaussians N'(0, 07),
where the variances satisfy

(1+1)>" 207 < oo (1.13)

agk

1=0

for some s > 2. Then f € H®(S""1) almost surely, so in particular ||u]| < oo (see

Chapter 2 for its definition). Furthermore:

(i) There exists some probability p,, with po = 1 and p, € (0,1) if n > 3, such that

(im0 1),

R—oo R 7T
]P< lim NL,(R) < oo> =1-p,.
R—o0

(ii) If ¥ C R" is a smooth, compact, orientable hypersurface, then

p( Jm MED 1)y, izl = 5",
P Jim Nu(R () <o) =1, (%) = [,
P Jim N (R [2]) < o) =1 3] £ (5]

The basic idea is that, with probability 1, the density f is an H*(S"~!)-smooth

function (and, as s > ™2, of class C3 by the Sobolev embedding theorem) with
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nondegenerate zeros, and that the probability p, that f does not vanish is strictly
positive. When f € H*(S"!) does not vanish, it is not hard to prove using asymp-
totic expansions that the number of nodal components contained in a large ball B
grows as the radius, and that all but a uniformly bounded number of them are dif-
feomorphic to a sphere. When the zero set of f is regular and nonempty, one can
show that the number of nodal components on IR" is bounded. However, the anal-
ysis is considerably subtler because it hinges on the stability of certain noncompact
components of the nodal set that locally look like a helicoid. With this understand-
ing of the deterministic case and using some technical probability results, we can
arrive at Theorem 1.2.1.

It is natural to wonder which kind of asymptotic laws may arise from more gen-
eral randomizations of the function f. As a first step in this direction, we state next a
“stability result”, that is, sufficient conditions for the asymptotics of Theorems 1.1.1
and 1.2.1 to hold for more general probability measures on the space of functions f
(or u).

Theorem 1.2.2. Suppose that there is a nonnegative integer ly and reals My, and oy, such
that the random variables ay,, in (1.3), which we assume to be independent, follow any prob-
ability distribution on the line (absolutely continuous with respect to the Lebesgue measure)
for 1 < ly and Gaussian distributions N (M, 07,) for | > ly. Then:

(i) The results of Theorem 1.1.1 hold, with the same constant v, if

o & M2 —1)2
D e T

(ii) The results of Theorem 1.2.1 hold if there are constants oy satisfying (2.2) such that

& M;, (01 — 01w )?
Z 2 >, 2y < .
I=Iy m=0 (07 +at,) 0101m

These conditions are by no means obvious a priori, but the proof is based on
an elementary idea: if two probability measures y and i (on the space of functions
on the sphere, which one can identify with a space of sequences RN) are equiva-
lent (i.e., mutually absolutely continuous), then these measures have the same zero-
probability events. The aforementioned sufficient conditions are then derived by
imposing that one of these measures correspond to the Nazarov-Sodin distribution
or to the distributions considered in Theorem 1.2.1 together with a technical lemma
due to Kakutani.

1.2.2 The results of Chapter 3

As in the previous chapter, here we also consider Gaussian random monochromatic
waves u but we restrict our attention to the plane. Furthermore, in this chapter we
will focus on critical points. The connection is clear because the number of critical
points gives an upper bound for the number of (compact) nodal components, see
Figure 1.1 for an illustration.

As we saw in Section 1.1.1, when u is polynomially bounded, the Helmholtz
equation simply means that u is the Fourier transform of a distribution supported
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on the unit circle, which we identify with T := R/27Z via the map

E(¢) := (cos¢,sin¢) . (1.14)

As we know, solutions to the Helmholtz equation are necessarily analytic, but their
Fourier transforms do not have any a priori regularity properties. The main thrust of
this chapter is to understand the connection between the distribution of the critical
points of 1, defined as in (3.3), and the regularity of the density f. To this end, we
consider the usual ansatz for random plane waves, (1.3), and tweak it by introducing
a real parameter s € R to control the regularity of f:

u(x) =Y a 1|7 Jy(r). (1.15)
170

Here the real and imaginary part of 4; are independent standard Gaussian random
variables subject to the constraint a; = (—1)'a_; (which makes u real valued), (r,6) €
R* x T are the polar coordinates. This is equivalent to taking the Gaussian random
density

- 1 il —s il
f(¢) = an[:_(:]z ap|1] %™ (1.16)
and then defining u through the formula (3.3), which must be understood in the
sense of distributions. The real parameter s is directly related to the regularity of its
Fourier transform. Specifically, the Fourier transform of u is f do, where do is the
Hausdorff measure on the unit circle and the density f is a function on the circle

that, roughly speaking, has exactly s — 3 derivatives in L2 almost surely. i.e., for any
6>0,

_1 _1
fe [HT A M\ETHT) | 0 B 2(T)\By 2 (1)
with probability 1; see Proposition 3.2.2 for details.

Thus, understanding the asymptotics of critical points depending on s helps us
to understand what happens in between the Nazarov-Sodin theory, which ensures
that the number of nodal components of u contained in Bg grows as

N(u,R) ~ voR?

almost surely for some constant vy > 0 (Theorem 1.1.1), and the results proven in
Theorem 1.2.1
N(u,R) ~ VR

almost surely for s > 4, with v, := 1/7t. This is because when s = 0, one recovers
the classical setting for random waves with a translation-invariant covariance-kernel
and if s is large enough, one recovers the setting of the previous chapter.

With that in mind, in this chapter we will prove the following theorem:

Theorem 1.2.3. For any real s, the following statements hold:
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(i) There exist explicit positive constants x(s), R, K5 such that the expected number of
critical points of the Gaussian random function u satisfies

(K(S)Rz if s<3,

- RZ . _3

Sviex T o=
EN(Vu,R) ~ { x(s)R26-2) if 3 <s<3,

s _5

RsR logR if s=3,

x(s)R if s>3.

it is only Lipschitz at s = L. Furthermore, In the region s € (3,3

continuously on s. More precisely, x(s) is a C* function of s € (—o0,3) U
)
constant x(s) is also C*.

It can be seen more graphically in the following picture, Figure 1.8.

EN(Vu,R) ~ r(s)R®)

15L
PAGIRY
/,’ ‘\
I O L 5(s)
/’// 1.0 ‘\l e(s)
""" - \
1
| N([f1)
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: / T
|
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FIGURE 1.8: Consider the asymptotic behavior of EN(Vu,R) ~
k(s)R¢®) proved in Theorem 3.1.1. In red, we have plotted the ex-
ponent e(s) as a function of s € R\{3, 3}. Logarithmic effects appear
at the endpoints s = 3/2 and s = 5/2. In blue, we have plotted x(s)
in the region where the asymptotic growth is volumetric, s < 3. The
maximum of x(s) in this region is attained at s = 0 and that «(s) is
not continuously differentiable at s = 1/2. The reader can find a plot
of k(s) in the range s € (3, 3) in Figure 3.3, cf. Section 3.4. Note that
k(s) = EN(|f|")/m by Theorem 3.1.3.

That is, we show that the expectation EN(Vu, R) grows like the area of the disk
when the regularity is low enough (s < 3) and like the diameter when the regularity
is high enough (s > 3), and that the corresponding exponent changes according to a
linear interpolation law in the intermediate regime. The transitions occurring at the
endpoint cases involve the square root of the logarithm of the radius. Interestingly,

the highest asymptotic growth rate occurs only in the classical translation-invariant
setting, s = 0.
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The basic idea of the proof is to use the Kac-Rice formula to compute the ex-
pected values. The coefficients that appear in the Kac—Rice integral formula involve,
via the variance matrix of Vu, weighted series of Bessel functions of the form

[ee]

Ty () = Y U2 [ (r) Jiame (r), 1.17)

=1

where m and m’ are certain integers. J ;v is sometimes called in the literature
a second type Neumann series. It is clear that the way each term J;.,(7) Jion (7)
contributes to the sum for r > 1 and I > 1 will depend on whether the “angular
frequency” I is much larger than r, much smaller than r, or roughly of the same size;
moreover, the effect of each group of angular frequencies will have a different rela-
tive weight in the sum depending on the power s appearing in I~%. More precisely,
a key step of the proof is to establish the following technical result, which controls
the asymptotic behavior of Js v (7):

Lemma 1.2.4. For any pair of nonnegative integers m, m" and any real s, the large-r asymp-
totic behavior of Ty m 15

k75/7’”/7’”,(7') = Cg,mfm’ 7_25 + 0(7_25) Z_f S < %/
I ‘ _
Tsynant (1) = €y o;gr +0(r™) if s=%andm—m'iseven,
3 4 o 7
c —c*sin(2r — ¢
Tsmm (1) = e’ r( ) +o(rt) if s= Sand m —m' is odd,
5 6 7
c —cosin(2r — ¢
s7s,m,m/(r) _ s,m—m' s ; ( m+m’) —1—0(1’71) lf s> %

with some explicit constants.

When the regularity parameter is s > 5, we show that in fact N(Vu, R) grows
like the diameter with probability 1, albeit the ratio is not a universal constant but a
random variable. We can do this using the methods of Chapter 2, which enables us
to understand the asymptotic behavior of the number of critical points (not only of
its expectation value) in greater detail. Specifically, one can prove the following;:

Theorem 1.2.5. Ifs > 5,
N /
(i Ry~ MU

with probability 1. In particular, N(Vu, R) grows linearly almost surely.

Here the random variable N(|f|) :=#{¢ € T : |f(¢)|' = 0} (which is at least 2
almost surely) denotes the number of critical points of the (non-Gaussian) random
function |f|. In particular, the asymptotic growth of N(Vu, R) is linear with proba-
bility 1, albeit the ratio is not a universal constant but a random variable. In view of
Theorem 1.2.3, a consequence of this asymptotic formula is an explicit formula for
the expectation EN(|f|") whens > 5.

1.2.3 The results of Chapter 4

Sometimes we want some deterministic realizations of function satisfying, e.g., The-
orem 1.1.1. The theorem ensures they exist, but it does not give a way to obtain
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them. Notice that this does not happen for Theorem 1.2.1, as the proof is based on
deterministic results, so we understand the deterministic and the random part.

We are only aware of one instance when the RWM can be deterministically im-
plemented to obtain information about the nodal set: Bourgain [Boul4] showed
that certain eigenfunctions on the flat two dimensional torus behave accordingly to
the RWM and deduced (1.6). Subsequently, Buckley and Wigman [BW16] extended
Bourgain’s work to “generic” toral eigenfunctions and Sartori [Sar20] proved a small
scales version of (1.6).

In Chapter 4, we construct deterministic solutions to (1.4) on R” which satisfy
the RWM, in the sense of Bourgain [Boul4], in growing balls around the origin. We
then use the RWM to study their nodal set, deduce the analogue of (1.6), (1.7) and
also find the asymptotic number of nodal domains belonging to a fixed topological
class. More precisely, let m > 2 and {r, },>1 C $" ! be a sequence of vectors linearly
independent over Q such that they are not all contained in a hyperplane. We define
a class of functions*

L

m| | ane((rn,-)) (1.18)
n|<N

INEf=

with domain R™, a, are complex numbers such that |a,| = 1, e(+) := ¢¥™ and (-, -)
is the inner product in R”. Moreover, we require 4, = a_, so that f is real valued,
asr_y := —ry for n > 0. Differentiating:

Af = —4r%f,

thus, f is a solution of the Helmholtz equation in IR”. Moreover, the high-energy limit
of f is equivalent to its behavior in B(R) = B(R,0), the ball of radius R centered at
the origin, as R — oo. Indeed, rescaling f to fr := f(R:), then

Afr = —4*R%f.
Thus (271R)? plays precisely the role of A of Section 1.1.1. By compactness, we as-

sume that y1, converges to some probability measure y as N — co.

Then, we prove results of the following form:

Theorem 1.2.6. Let f be as in (1.18), then we have

Hm h?jzp VOlB(R) ens(p)| =0, (1.19)

where cns(p) is the Nazarov-Sodin constant of the field F, and y as in (4.1.2).

Note that this kind of double limits gives us the deterministic realizations we are
looking for. Indeed, the statement is equivalent to: given some ¢ > 0, then there
exist some Ny = Ny(e¢, m) such that all N > Ny the following holds: there exists
some Ry = Ry(N, e, m) such that R > Ry, we have

N(fn,R)

m —cns(pn)| <e, (1.20)

“We now use f for the function on the Euclidean space, not on the sphere. We have that f = (fodo),
where fj is a linear combination of Dirac deltas at different points. This agrees with Remark 3.2.1.
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that is, it satisfies the Nazarov-Sodin growth with a constant as close as we want to
cns(p). Note that f is the Fourier transform of a linear combination of Dirac deltas on
§"~1 which agrees with Remark 3.2.1: the distribution on the sphere is less regular
that the ones of Chapter 2, as expected.

The question of whether we can take the limit of N first will be analyzed in Sec-
tion 4.7. In Chapter 4 we give analogous results for nodal sets with a given topology,
nesting trees and nodal volume.

These results appear to be new for m > 2 (the study of the nodal volume also for
m = 2) and they present new difficulties such as the existence of long and narrow
nodal domains and the possible concentration of the nodal set in small portions of
space. We overcome the far from trivial difficulties using precise bounds on the aver-
age doubling index, an estimate of the growth rate introduced by Donnelly-Fefferman
[DE88] (see Section 4.2.3), using recent ideas of Chanillo, Logunov, Malinnikova and
Mangoub, [CLM+20]. In particular, our proofs show how integrability properties of
the doubling index allow to extrapolate information about the zero set of Laplace
eigenfunctions from the RWM. Furthermore, our new approach (based on the weak
convergence of probability measures on C® spaces, Section 4.2.2, and Thom’s Iso-
topy Theorem 4.2.11) gives us an answer to previous questions raised by Wigman
and Kulberg, see Section 4.7.2.

1.2.4 The results of Chapter 5

Our objective in this chapter is to establish Arnold’s view of complexity in Beltrami
tields. To do so, the key new tool is a theory of random Beltrami fields, which we
develop there in order to estimate the probability that a Beltrami field exhibits certain
complex dynamics. In particular, we will show that:

Theorem 1.2.7. With probability 1, a Gaussian random Beltrami field on R® exhibits in-
finitely many horseshoes coexisting with an infinite volume of ergodic invariant tori of each
isotopy type. Moreover, the set of periodic orbits contains all knot types.

The result we prove (see Theorem 5.6.2) is in fact considerably stronger: we do
not only prescribe the topology of the periodic orbits and the invariant tori we count,
but also other important dynamical quantities. Specifically, in the case of periodic
orbits we have control over the periods (which we can pick in a certain interval
(T, T2)) and the maximal Lyapunov exponents (which we can also pick in an inter-
val (A1, A2)). In the case of the ergodic invariant tori, we can control the associated
arithmetic and nondegeneracy conditions. Details are provided in Section 5.6.

The blueprint for this is the Nazarov-Sodin theory for Gaussian random monochro-
matic waves. Heuristically, the basic idea is that a Beltrami field satisfying (1.8) can
be thought of as a vector-valued monochromatic wave; however, the vector-valued
nature of the solutions and the fact that we aim to control much more sophisti-
cated geometric objects introduces essential new difficulties from the very begin-
ning. Without getting technicalities at this stage, let us point out that this is related
to analytic difficulties arising from the fact that we are dealing with quantities that
are rather geometrically nontrivial. If one considers a simpler quantity such as the
number of zeros of a Gaussian random Beltrami field, one can obtain an asymptotic
distribution law similar to that of the nodal components of a random monochromatic
wave, whose corresponding asymptotic constant can even be computed explicitly:
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Theorem 1.2.8. With probability 1, the number of zeros of a Gaussian random Beltrami
field satisfies

Ni(R) ', .
’BR| a.s.

as R — oo. The constant is explicitly given by some integral such that

V% = 0.00872538... , (1.21)

On the torus we have similar results. A Beltrami field on the flat 3-torus T® :=
(R/27Z)3 (or, equivalently, on the cube of IR® of side length 27t with periodic bound-
ary conditions) is a vector field on T? satisfying the eigenvalue equation

curlv = Av

for some real number A # 0. It is well-known (see e.g. [ELPS17]) that the spectrum
of the curl operator on the 3-torus consists of the numbers of the form A = +|k]|
for some vector with integer coefficients k € Z3. Restricting our attention to the
case of positive eigenvalues for the sake of concreteness, one can therefore label
the eigenvalue by a positive integer L such that Ay = L!/2. The Beltrami fields
corresponding to the eigenvalue A; must obviously be of the form

uL — Z VkL ezk-xl
keZ;

for some vectors VkL € C3, where VkL = ka to ensure that the Beltrami field is real-
valued. Starting from this formula, in Section 5.7 we define the Gaussian ensemble of
random Beltrami fields u* of frequency A, which we parametrize by L. The natural
length scale of the problem is /2. We can summarize our results as follows:

Theorem 1.2.9. Let us denote by (u') the parametric Gaussian ensemble of random Bel-
trami fields on T3, where L ranges over the set of admissible integers. Consider any con-
tractible closed curve <y and any contractible embedded torus T in T3. Then:

(i) With a probability tending to 1 as L — oo, the field ul exhibits an arbitrarily large
number of approximately distributed horseshoes, zeros, periodic orbits isotopic to 7y
and ergodic invariant tori isotopic to T .

Furthermore, the probability that the topological entropy of the field grows at least
as L'/? and that there are infinitely many ergodic invariant tori of u® isotopic to T
also tends to 1.

(ii) The expected volume of the ergodic invariant tori of ul isotopic to T is uniformly
bounded from below, and the expected number of horseshoes and periodic orbits isotopic
to -y is at least of order L3/2.

In the case of zeros, the asymptotic expectation is explicit, with v* given by (5.1.3):

z

. ENJ;
Jim 75 = (2m)*v".

Note that, again, the asymptotic information that we obtain is perfectly aligned
with Arnold’s view of complex behavior in typical Beltrami fields. As in the case
of IR3, the result we prove in Section 5.7 is actually stronger in the sense that we have
control over important dynamical quantities (which now depend strongly on L) de-
scribing the flow near the above invariant tori and periodic orbits.
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1.2.5 The results of Chapter 6

In order to “measure” the set C;, we need to define a measure on that space. Let us
start with an example on IR2. In the square [0, 1]*> we “measure” a subset A using the
measure on R? U=AXA= H%z:l A, that is, p is the area. We could use this measure
for some probability events as follows. For instance, if we define X = Xj + Xj,
X; ~ Bernoulli(p;) and p; are unknown, then {[E[X]| < 1} has measure 1/2 w.r.t. u.
Indeed, E[X]| = p1 + p2 < 1 and by basic geometry

w{(x,y) €012/ x+y <1} = %,

In the same fashion, we can see that the measure of {E[X] < 2} is1las pj,p» <1
and, similarly, the measure of {IEE[X] > 2} is 0. We then say that the event {[E[X] <
2} happens almost surely or p—almost surely and {[E[X] > 2} does not happen
pu—almost surely (y-a.s.). In this setting, we can think of u as a “meta-probability
measure”, it assigns probabilities (or measures) to some events of the parameters of
the probability distributions of some random variables of our interest. Note that if
we chose a different y, the associated measure of each event would probably change.
In order to measure the set C;, we need to define a measure on [0, I]N, the space of
sequences with elements in [0,1], as p, € [0,1] and the parameters of the problem
are {p» }5_;. A natural measure to consider is

w=TIA (1.22)

It is well-defined by Kolmogorov’s Extension Theorem. This measure has the prop-
erty of being centered in the sense that the mean value (first moment) of A is

1
/[0,1] xdA(x) = 5. (1.23)

However, we are going to consider more general “centered” measures than the one
in (1.22), i.e., a larger class. Before the precise definition, we need to introduce the
concept of distances and divergences of probability measures, say d. These objects
tell us, in a sense to be precise in Section 6.1, how different two distinct y and p/
assign measures to an arbitrary set A. If d(y, 4') = 0, the measures are identical
and if d increases, so does the discrepancy for some sets. There are several ways
of doing so, but two of the most important examples are the total variation dis-
tance (the statistical distance) and the Kullback-Leibler divergence (associated to
the Shannon-Boltzmann entropy). In fact, we are going to consider a larger set, that
will be denoted by D and which will be defined precisely in Remark 6.3.2. To ease
the exposition here, it can be understood that d below is either the total variation
distance or the Kullback-Leibler divergence. We are ready to define the concept of
centered measures.

Definition 1.2.1. A probability measure yu = [ vy, on [0,1]N will be centered if there
exists a probability measure on [0,1], vy, such that v, < vy V n > 1 (see Section 6.1 for
notation),

1
d = — 1.24
/M x dup(x) = 5 (1.24)
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and
Y d(vy,v) < 0. (1.25)

withd € D.

The idea is simple, the measure p is not too far (in the sense that the sum of
distances or divergences does not go to infinity) from a product measure [ ;" vo
of identical measures on [0, 1] and these measures have mean 1/2. This generalizes
(1.22) in two ways. First, the measures of the product are not necessarily identical.
We allow the measure to be a “perturbation” of yg., Second, the measure vy is not
necessarily the Lebesgue measure, but a measure with mean 1/2, i.e., we only need
this measure to have the same first moment as the Lebesgue measure on [0, 1]. For
instance, we can have atomic measures, i.e., vo({x}) > 0 for some x. This is not
allowed in the standard Lebesgue measure, as every single point has measure zero.
In particular, we will denote € := 1p({1}), that is, there is a probability €; such that
each voter is going to vote for the correct option almost surely as in the MoA. More
generally, we define €1_,,1 := g ([1 —€o,1]). In fact, the condition of the MoA is
satisfied in the following sense:

Proposition 1.2.10. Let y a centered measure, 0 < g9 < 1/2,0 < & < €1_¢,1 and 6 > 0
as small as we want. Then, 3 N € IN such that

wo({1<i<n/p;e[l—¢eyl1]} >en)>1-6 Vn>=N.

where py = [T vo and

i (lim mH1<i<n/pi €1 —el]}| > 5) =1

n—oo

In particular, if eg = O then the same holds with p; = 1 and €1_¢,1 = €1

This means that the event that a proportion € > 0 of voters is well-informed or
almost well-informed will be reached if the population 7 is greater than a (finite) N
with probability as close as one as we want. These voters will vote for the correct
option with probability greater than 1 — &g with gy as small as we want or even zero.
Despite this fact, the CJP will not hold almost surely. It is important to note that as
we have a complete characterization, we are not saying that the hypothesis of the
theorem (CJT) will not hold, but that the thesis (CJP) will not hold. The latter implies
the former but the former implies the latter only if the conditions are necessary too.
More precisely:

Theorem 1.2.11. Almost surely independent Condorcet Jury Theorem does not hold for a
centered measure y, that is:
u(Cr) = 0. (1.26)

Remark 1.2.2. Actually, we can prove a stronger result, see Theorem 6.4.1, 6.4.3.

Therefore, Theorem 6.2.2 implies that for any measure y = [];,_; v, where the v,
assign probability to both sides {p < 1/2} and {p > 1/2} “fairly”, then y is going
to assign measure zero to the CJP, i.e., the CJP will not hold almost surely. Hence,
if following a Bayesian approach we want to estimate the prior probability (the prob-
ability before any evidence is collected) of the CJP, we will arrive at the conclusion
that the CJP fails almost surely. That is, if we try to measure the applicability of the
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CJP according to a symmetrically balanced distribution (in particular, with no bias
toward incompetence) without considering any evidence on voters competence, we
arrive at the result that the CJT does not hold almost surely. Prior (or a priori in
this case) probabilities are the baseline from which probabilities are updated when
evidence is collected. So, in this setting, we would need strong evidence of voter
competence to expect that the CJT can be applied.

But not everything is lost. We can try to modify the aggregation procedures to
achieve a competent mechanism. The natural idea is the consideration of a weighted
majority rule, i.e., we define:

n
w .
X,1 = ZwiXi,
i=1

where now X; € {—1,1} and w; € R (in principle, they could be negative, but we
will not consider that case here). The larger the weight (ceteris paribus), the greater
the influence of the voter. Weighted majority rule implies that the social choice func-
tion is sign(XY) being indifferent between the two if X¥ = 0. The previous case of
simple majority rule is recovered if w; = w; V i, j. The next step would be to obtain,
for some positive integer k and constants «, § > 0,

w=a+Bpt+e, (1.27)

i.e., competence is positively correlated with the weight we assign but the associa-
tion is not perfect, there is an stochastic error e. In Theorem 6.5.2 we show that if
(1.27) is good enough, the CJT will hold almost surely for “almost” every measure
u, even if they are strongly biased toward p = 0, i.e., we are not only considering
centered measures but the less favorable case of measures representing voters far
from competence. In other words, we are not estimating the prior probability but
the probability given almost any evidence on voters competence. This gives some
evidence for trying to include epistemic weights in the decision procedure if we are
interested in choosing the correct option.






Part1

Asymptotics for monochromatic
waves






Chapter 2

Asymptotics for the nodal
components of non-identically
distributed monochromatic
random waves

2.1 Introduction

As we saw in (1.3a), (1.3b) on R” monochromatic random waves are defined using a
set {a;, }1 m of ii.d. random variables with distribution A/(0, 1). Our objective in this
chapter is to understand the asymptotic distribution of the nodal set of u when the
random variables a;,,, which we will no longer assume to be identically distributed,
have different distribution laws. One obvious motivation to consider this problem
is that the Helmholtz equation (1.1) plays a central role in Physics, particularly in
quantum mechanics and electromagnetic theory via scattering problems and in sta-
tionary solutions of the 3D Euler equation through Beltrami fields [CKK98; EPS15;
RS79]. In these contexts (which are clearly different from the study of high energy
eigenfunctions on a compact manifold and from problems in percolation theory),
one is interested in solutions with the sharp decay at infinity, which is captured by
imposing that the Agmon-Hoérmander seminorm

1

1 2

ul|| ;= limsu —/ uzdx>
el m sup (R BRI |

is finite. As we recall in Appendix 2.A, the decay properties of u are closely re-
lated to the regularity of the function f above; indeed, it is a classical result of Her-
glotz [Hor15, Theorem 7.1.28] that |||u||| < oo if and only if u is the Fourier transform
of a measure of the form f dS with || f{|2(gn-1) < co.

However, it is easy to see that, when a;,, ~ AN (0,1) are standard Gaussians, f
is almost surely not in L?(S"~!) by the law of large numbers. This means that this
choice of random variables is very well suited to the study of random eigenfunctions
on a compact manifold, as it is known since Nazarov and Sodin’s breakthrough pa-
per on spherical harmonics [NS09], but precisely for this reason, it cannot capture
the features of random solutions to non-compact problems in the scattering regime
(i.e., with finite Agmon-Hormander seminorm). Hence one would like to consider,

at least, the case where
a1 ~ N(0,07)
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are independent Gaussian variables of zero mean but distinct variances o?. The fall-
off (or growth) of the covariance o; as | — oo is directly related to the expected
regularity of f; indeed, the easiest calculation in this direction is that the expected
value of the H*(5"~!) norm of f is

E(|I 31y = Y di(1+1)¥07 . 2.1)
=0

Since d; = c,I""2 + O(I"~3) for large I, a convenient way of stating our main result
is as follows:

Theorem 2.1.1. Suppose that the random variables ay,, in (1.3) are independent Gaussians
N(0,07), where the variances satisfy

(1+ D)7 202 < 0 (2.2)

e

1=0

for some s > "33 Then f € H*(S"~1) almost surely, so in particular ||u|| < co. Further-
more:

(i) There exists some probability p,, with py = 1 and p, € (0,1) if n > 3, such that

. Nu(R) 1Y _
P(%ﬂﬂo R _n>_p"'

]P( lim N,(R) < oo) =1—py.
R—o00

(ii) If ¥ C R" is a smooth, compact, orientable hypersurface, then

p( im ME 1) ), iz] = (",
P Jim N (R [2]) < ) =1, F1x] = (1],
p( Jim Ny (R []) < 20 ) =1 5] £ (5]

Remark 2.1.1. In plain words, this theorem says that, when the variances satisfy the
convergence condition (2.2), the asymptotic distribution is completely different from
that of the Nazarov-Sodin regime: the number of nodal components diffeomorphic
to a sphere that are contained in a large ball grows like the radius with probability p,
and stays uniformly bounded with probability 1 — p,,. The number of non-spherical
nodal components stays uniformly bounded almost surely. One can also study the
nesting graph of the nodal structure, see [SW19; BMW19] for a definition. In the
setting of Theorem 2.1.1, with probability p,, the nesting graph is a tree with degree
2 internal vertices, and the number of other trees is bounded almost surely.

Remark 2.1.2. Arguing as in Lemma 2.4.2 using (2.12), it is easy to show that the
covariance kernel of our random field is

E 2 > |di| ( x > ]z+g—:(IXDIz+7—1(|y\)’
(e () u( ) Z |S” 1| P |x’ M |x‘271 |y|—71
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where P, is the Legendre polynomial of degree [ in n dimensions. Therefore, our
random field is isotropic (i.e., invariant under rotations) but not translation-invariant,
in general. In the case when ¢; = 1 for all /, one does have translational invariance;
indeed, a straightforward computation [CS19] shows that the covariance kernel re-

duces to
Jia(lx—yl)
[ —yl5!
up to a multiplicative constant.
To offer some perspective into the ideas behind Theorem 2.1.1, it is convenient to

start by recalling the gist of the proof of the first part of Theorem 1.1.1. Nazarov and
Sodin start off with a clever (non-probabilistic) “sandwich estimate” of the form

(1_r>” J Nealr) g, o NulR) <1+ ) f Nl 4 %ul0) g,

R rh R" R rh

R—r BR+V

where T u(y) := u(x + y) is a translation of u and M, (r) denotes the number of crit-
ical points of the restriction u|p,. Now one can exploit the fact that, in the particular
case when a;,, are independent standard Gaussians, u is a Gaussian random function
with translation-invariant distribution, which is the setting that the Nazarov-Sodin
theory applies to. Moreover, its spectral measure (which is simply dS, the normal-
ized area measure on "~ 1) has no atoms. Therefore, a theorem of Grenander, Fomin
and Maruyama and the Kac-Rice bound respectively imply that the action of shifts
on u is ergodic and that the expected value of 0N, (r) is of order r"~1. By taking limits
1 < r < R, this readily implies the existence of limg_, N, (R)/R". The fact that
this limit is positive then follows from the sandwich estimate and the existence of
a (non-random) solution with a structurally stable compact nodal set. Let us stress
that the whole theory hinges on the fact that a;,, are Gaussians of the same vari-
ance, as this is crucially employed both to connect the problem with the theory of
Gaussian random functions and to show that one can compute limits using ergodic
theory. The second item in Theorem 1.1.1 uses that, in fact, one can prescribe the
topology of a robust nodal component [EPS13].

It should then come as no surprise that the proof of Theorem 2.1.1 is based on
entirely different principles. The basic idea is that, with probability 1, in the setting
of Theorem 2.1.1 the density f is an Hs(Snfl)-smooth function (and, as s > "T*'S, of
class C® by the Sobolev embedding theorem) with nondegenerate zeros, and that the
probability p, that f does not vanish is strictly positive. When f € H*(S""1) does
not vanish, it is not hard to prove using asymptotic expansions that the number of
nodal components contained in a large ball Bg grows as the radius, and that all but
a uniformly bounded number of them are diffeomorphic to a sphere. When the zero
set of f is regular and nonempty, one can show that the number of nodal components
onR" is bounded. However, the analysis is considerably subtler because it hinges on
the stability of certain noncompact components of the nodal set that locally look like
a helicoid. Putting these facts together, one heuristically arrives at Theorem 2.1.1.

It is worth mentioning that the regularity effect that we have striven to capture
is completely different from the use of frequency-dependent weights considered by
Rivera in the context of random Gaussian fields on compact manifolds [Riv19] (see
also [FLL15] for frequency-dependent weights in the context of random algebraic
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hypersurfaces). Indeed, Rivera’s central result is that the Nazarov-Sodin asymp-
totics still holds, with different constants, for series of the form

L
F(x):= Y A% acec(x),
k=1

where L > 1, (e, Ay) are the eigenfunctions and eigenvalues of the Laplacian on a
compact n-manifold, s € (0, %) and a; ~ N(0,1). In contrast, we are interested in
regimes with a different asymptotic behavior that correspond to a scattering situa-
tion on R".

It is natural to wonder which kind of asymptotic laws may arise from more gen-
eral randomizations of the function f. As a first step in this direction, we state next a
“stability result”, that is, sufficient conditions for the asymptotics of Theorems 1.1.1
and 2.1.1 to hold for more general probability measures on the space of functions f
(or u). These conditions are by no means obvious a priori, but the proof is based on
an elementary idea: if two probability measures y and i (on the space of functions
on the sphere, which one can identify with a space of sequences RN) are equiva-
lent (i.e., mutually absolutely continuous), then these measures have the same zero-
probability events. The aforementioned sufficient conditions are then derived by
imposing that one of these measures correspond to the Nazarov-Sodin distribution
or to the distributions considered in Theorem 2.1.1.

Theorem 2.1.2. Suppose that there is a nonnegative integer lo and reals M, and oy, such
that the random variables ay,, in (1.3), which we assume to be independent, follow any prob-
ability distribution on the line (absolutely continuous with respect to the Lebesgue measure)
for | < ly and Gaussian distributions N (M;m,afm) forl > ly. Then:

(i) The results of Theorem 1.1.1 hold, with the same constant v, if

oo d MZ o 2
Z Z - Im_ (o1m — 1) < .
=ty m=0 | %im +1 Flm

(ii) The results of Theorem 2.1.1 hold if there are constants oy satisfying (2.2) such that

o M? (07 — Op)?
Im ! Im
Z Z [( + 0101m :| <

)
== L(of +o1,)

2.2 The Fourier transform of H°-smooth densities on the sphere

Our goal in this section is to obtain sharp asymptotic expansions for the Fourier
transform -
u:=fds

of measures of the form f dS, where for the time being we can think of the integrable
function f : "~ — C simply as a series of spherical harmonics:

(o] dl

f(g) = l;:) Zlflm Ylm(g)-
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It is well known that, for any real s, the H*(S"~!) norm of f can then be computed
as

o d
sy = 2 Y (LD fiml*-
( ) I=0m=1

We want u to be real-valued, so we impose that

flm = ilalm

with a;,, € R. The real and imaginary parts of f are then respectively given by the
terms where [ is even and odd:

4 l
fr(S) :=ZZ Z_:l(—l)fﬂszzm(C),
4 -1
A@) =Y Y (=1) 7 4 Yim(2).
I'odd m=1

To analyze u, we shall start by recalling the explicit formula for the Fourier trans-
form of a spherical harmonic, which we borrow from [CS19]. For the benefit of the
reader, we include a short proof that only employs classical formulas for special
functions, instead of the theory of point pair invariants and zonal spherical func-
tions. For the ease of notation, here and in what follows we set

AN=—=—-—1.

N =

Also, throughout we will often denote the radial and angular parts of x by

r:=|x| € R", 9::ﬁ€‘5”_1.

Proposition 2.2.1. The Fourier transform of the measure Yy, dS is

T d5(x) = (270) (—i)! Yi <||) ]1|A|(‘A') 23)

where ], is the Bessel function of the first kind.

Proof. By the Funk-Hecke formula [AH12, Theorem 2.22], we have

Yin dS(x) = c1(r)Yin(6) , (2.4)
where )
a(r) = 8772 / B, )2 dt. 2.5)

Here P}, is the Legendre polynomial. In turn, this last integral can be calculated
using the formula [AH12, Proposition 2.26]:

1 ) . _ i\l T(n=1 1 )
/ e*lh’ Pln<t) (1 o t2>T3 df = ( 17’3 2 ) / eflt1/<1 o t2>l+/\f% dt.
-1

-1 2T (
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The proposition then follows in view of the well-known integral representation of
the Bessel function,

Ju (2) = 5)/ e i (1 — 2)* 2 dt, (2.6)
O

While the obtention of an asymptotic expansion for the Fourier transform of the
measure f dS hinges on the analysis of oscillatory integrals, it is convenient to em-
ploy the structure of the problem to obtain sharper results. This will be done by
exploiting the expansion in spherical harmonics and then using asymptotics with
uniform constants directly for Bessel functions. It is worth pointing out that, by
blindly following the general approach to asymptotic expansions (e.g., [H6r15, The-
orem 7.7.14]), one would need f € H*(S" 1) with s > ¥ (without considering
derivatives), while the approach we take here will lower th1s number to s > 2.

Let us denote by

i -Vu, Wu::Vu—ﬂx
x|

the radial and angular parts of the gradient. The covariant derivative on the unit
sphere will be denoted by V.

e 71 . 5
Proposition 2.2.2. If f € H*(S" ') with s > "3, then

U= 2(2r212 [fr(6) cos(r —ro) + fi(0) sin(r —ro) + &1(r)],
oru = 2(277?2[ fr(0) sin(r —ro) + f1(6) cos(r —ro) + &2(r)],
Yu= 2(277?2 [Vsfr(6) cos(r —r0) 4+ Vs fi(6) sin(r —ro) + &(r)],

where 1o := Z(n — 1) and the errors are bounded as

Cllf I ers (s
[E1(x)] + [ VE()] + [Ex(2)] + E3(x)] < ff:(S)

Proof. By Proposition 2.2.1, u is given by the series

u(x) = Y2 Y fa, Y d5(x)

- e
( ZZ A1 Yim (0) e (r) -

Let us now recall the following uniform bound for a Bessel function [Kral4, Theorem
4], valid foralla« > 0O and z > O:

i ‘ 0.(z)z7%/2, (2.7)
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where |6, (z)| < 1. Setting

202m)' T & & 7l
uy(x) := ( & Z A1 Y1 (0) cos <r — 19— 2)
ro2 1=0m=1
2(27)"
= ( n;)l [fr(0) cos(r —ro) + fi(6) sin(r —ro)]
r 2
it then follows that .
r 2
Ei1(x) := u(x) —ug(x
1(3) i o () ()]
can be estimated as
C oo 4

|<91 Z Z l+1 |almHYlm< )|

Using the Cauchy-Schwarz inequality, we then infer
oo dj 1/2 , 4 1/2
awl< SR (L k) (L)
1=0 m=1 m=1
The addition theorem [AH12, Theorem 2.9] ensures that, at any point on the sphere,
d
Y Yinl® = cin (2.8)

m=1

with an explicit constant bounded as c,; < C(I + 1)"~2. This then allows us to write

C¢ +1 12
&) < S Y (+D)} 2|alm| .
1=0

Applying Cauchy-Schwarz again we obtain

0 1/2 0 1/2
é; < Ez 1 l n—2s+2 & 1 l 2s 2 < E;
&))< - Y (1+1) Yo Y (LD [ap] < Sy

1=0 1=0 m=1
as claimed.

Let us now compute the radial derivative of u. We start by noting that

oo
oru = (2m) 2 Z Z [Ylm ]HTAA(V)] .

Since

ar<]l+A(7)> _ Jixa-a(r) —(1+2A) Jixa(r) (2.9)

A A PA+

and this formula depends solely on Bessel functions, one can now use again the
uniform estimate (2.7) to derive, with the same reasoning as above, that the error

n—1
v 2

E(x) = W [0yu(x) — 1y (x)]
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is bounded as

C
&2(x)] <l fll ey -

The bound for the angular part of the gradient can be estimated using the same
argument and the formula

Pl 00

d
= TA+ Z Z lmVSYlm ]l+A()

N\

the only difference being that instead of the addition formula (2.8) one has to use
that

d
Z ’vSYlm‘z =I(l+n—=2)cy.
m=1

To prove this, it is enough to note that, by (2.8),
d; d; d;
0=A2scin =85 Y_ Y5, =2 Vi AsYi +2 Y [VsYp|?
m=1 m=1 m=1

and use the eigenvalue equation AgY},, = —I(I +n — 2)Y},,. Using now that
X
V& =& p + &3,

the estimate for V&; follows from the previous bounds. The proposition is then
proved. O]

2.3 Nodal sets of non-random monochromatic waves

We recall that the nodal set of a function F : M — IR", where M is a manifold, is
reqular if the derivative (DF), : T,M — R™ has maximal rank for all x € F~1(0).
We say that a codimension one compact submanifold S of R" is a graph over the
sphere of radius R centered at the origin if it can be written in spherical coordinates

(r,0) € (0,00) x §" 1 as
S={(r,0):r=R+G(),0e5" "}

for some smooth function G : §"~! — (=R, o). In particular, S is diffeomorphic to
gl

Theorem 2.3.1. Let f € H*(S" 1) with s > ™2 and denote by u the Fourier transform of
fds. Then:

(i) Suppose that f does not vanish on S"~. Then the nodal set u=1(0) has countably
many connected components

= S,
k=1

and for all large enough k, Sy is a graph over a sphere centered at the origin and is
contained in the annulus kit — ¢ < |x| < k7t + c for some constant ¢ depending on f.
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Furthermore,
lim Hk:S CBrp 1
R—o0 R 7T

(ii) Suppose that the zero set f~1(0) is a nonempty regular subset of the sphere. Then
there is a large enough R such that u=1(0)\Bg is connected.

Proof. By Proposition 2.2.2, u can then be written as

202m) "

u="l (U4 &), (2.10)
2

r

where
U := fr(0) cos(r —ro) + fi(6) sin(r —ro),

and we have the bound
&1+ |VE| < C/r. (2.11)

It is clear that the zero sets of u and of U + &; coincide, so we shall next study the
latter.

Let us begin with the first case. Since f does not vanish, its modulus and phase
functions, defined as _
f(8) =:[f(8)] ),

are of class H*(S"~1), and U can be equivalently written as

U= |f(0)| cos[r —ry —O(0)].

As mingcg.1 |f(0)] > 0, the zero set of U is given, in polar coordinates and for
certain kg € Z, by

u0) = t,

k>ko
where
U= {(r,6) ERF x§1 7 = ©(6) + (k+ "7}
Obviously
i e U CBRY 1
R—o0 R T

For large k, the component U of the zero set is nondegenerate because

min |9, U(x)| = min, |f(6)] > 0.

In view of the bound (2.11), Thom’s isotopy theorem (see e.g. [EPS13, Theorem 3.1])
then ensures that, outside a certain large compact set K containing the origin, the
nodal set u~1(0) can be written as

u N (O\K = |J S,

k=ko
where each connected component Sy is of the form

Sk = P (Uy),
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where @y is a smooth diffeomorphism of R" with ||®y —id||corny < C/k. As the
number of nodal components of u contained in K is finite because the function u is
analytic, the first statement follows.

Let us now pass to the second statement. We can use again the decomposi-
tion (2.10) and study the zero set of U in this case. Since

u=(0) = {(r,0) : fr(6) cos(r —ro) = — f1(6) sin(r —ro)},
one has, on U~1(0),
(0,U)* = [~ fr(8) sin(r —ro) + fi(8) cos(r —r0)]* = f1(0)* + fr(6)?,
50 VU|y;-1(g) can vanish at most at the points (r,68) € U~'(0) such that f(6) = 0.

To show that VU is nonzero also at those points, it is enough to notice that

VU — Vsfr(0) cos(r — o) + Vs f1(0) sin(r —rp) /

r

so YU # 0 at any point (r,0) with f(6) = 0 because the set f ~1(0) is regular (so the
vectors Vsfr(0) and Vsfi(6) are linearly independent). Therefore, one concludes
that the zero set of U is regular, and in fact

|vu|u—1(_€,€) 2 c>0

for some small € > 0 because the function U is periodic on r. One can now use an
analog of Thom'’s isotopy theorem for noncompact sets [EPS13, Theorem 3.1] with
the bound (2.11) to obtain that, for any large enough R, there exists a diffeomorphism
®dr of R", with

HCDR — idHCO(]Rn) < C/R,

such that
u~(0)\Br = @r[U'(0)\Bg].

Therefore, it only remains to analyze what U~1(0) looks like, outside a large ball.
We claim that U~1(0)\Bg is a connected set. Indeed, when the point (r,0) € U~1(0)
is such that f(0) # 0, it follows from the proof of the first assertion of the statement
that U~1(0) is locally a graph over a sphere centered at the origin. When f(0) = 0,
U~1(0) is locally a sort of helicoid. To see this, we can take advantage of the fact that
f£71(0) is a regular set to introduce local coordinates (y1, ..., Y,_1) in a neighborhood
of the point 6 in §"~! such that y; := fg and y» := f;. Hence, defining functions
p(y1,y2) and ¢(y1,y2) as ,

1 +iy2 =1pe?,

we readily obtain that one can write
U =pcos(r—ry—¢)

locally with respect to the coordinates (y1,...,¥,—1) and for all large enough r. In
this conical sector, the zero set of U then consists of the codimension 2 conical set
p = 0 and the helicoidal hypersurface

7T
T:ro+¢+z.
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FIGURE 2.1: Local structure of the zero set u 1 (0) when f has regular
Zeros.

Both kinds of local description of U~!(0) obviously cover the whole zero set and
show that it is connected. For the benefit of the reader, we have included Figure 2.1
with an illustration of what this nodal set looks like in three dimensions. U

2027) "7
is close to U in the C'*1(R") norm, so [EPS13, Theorem 3.1] then ensures that ||®; —
id||ci(gny < C/k. This immediately yields asymptotic formulas for the area of each

nodal component Sk.

Remark 2.3.1. If s > %*’21 for some integer / > 1, one can conclude that

u

2.4 Proof of Theorem 2.1.1

Let us start by introducing some notation associated with the probabilistic setting
described in (1.3). We denote by Pj,, the probability distribution of the random
variable a;,,,, which we are assuming to be a normal distribution of the form A/ (0, 0?).
By Kolmogorov’s extension theorem, the associated probability measure in RN is
the product measure that we will denote by P, := [];2, H‘Z:l P;,,. The associated
measures on the space of distributions on §"~! and on IR" are respectively given by
the pushed forward measures IP Fi= f«P; and P := u,IP,, which we view as maps

oo 4

frwoe Qo Y Y iay,(w) V() € D'(S"),
I=0m=1
and
L& & N JepaD
1=0 m=1 ' 2
where )y C Q) is a set of measure zero.

An important first observation is that, with the probability distribution we are
considering, f is an H*-smooth function with probability 1:

Lemma 2.4.1. The function f satisfying (1.3), (2.2) is of class H*(S"~1) almost surely.
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Proof. The hypothesis (2.1) implies that, for any L > 0, the expected value of the
finite sum is bounded by a uniform constant:

I=0m=1

L d L
E (2 Y a%m(z+1)25> =Y diot(1+1)* < C.
1=0

The monotone convergence theorem then ensures that

oo
E(17 Vo) (L 1ol + %) <C,

I=0m=1

which implies that P¢(H*(8"" 1)) = 1. O

The next result we need is that, again with probability 1, f~1(0) is a regular level
set:

Lemma 2.4.2. The zero set of f is regular almost surely. Furthermore, if n = 2, almost
surely f does not vanish.

Proof. Let us consider the vector field on the sphere h(0,A) := Vsfr(6) — AVsfi(0)
for A € R. If we take local coordinates (y1,...,Y,—1) around a point 6 € §"1 the
components of / in this local chart are given by

hi(0,A) == 1/&10y, fr(0) — A/ 8710y, f1(6) (2.13)
withl1 <j<n—-1,as

Vsfo = Yy fa Ve (2.14)

where e; is the unit vector in our coordinates. Recall that, by Lemma 2.4.1, f €
C3(8"~1) almost surely.

In order to show that (fg, f1, h) is a non-degenerate Gaussian vector field, we first
analyze the probabilistic structure of f and its derivatives, for which we need to com-
pute the covariance matrix of (fr, fi, Vsfr, Vsfi). We recall that a non-degenerate
Gaussian vector field means that the determinant of its covariance matrix is positive
definite everywhere.

First, the covariance between fr (or derivatives of fr) and f; (or derivatives of fi)
is zero because they depend on different independent coefficients, even and odd !
respectively. Second, since the Gaussian coefficients have zero mean, the expected
values of f, and Vgf, are zero, where f, denotes either fr or f;. For the covariance
kernel of f,, notice thatif 6,6’ € S"~1 we have

(o]

E (f(0)f(0) = Y.  ofcuPn(6-6), (2.15)

[=0,parity=a

where P, is the Legendre polynomial of degree [ in n dimensions, c;, was defined
in (2.8) and the notation parity = 2 means that the sum is restricted to even [ ifa = R
and to odd [ if 4 = I. From the kernel (2.15) we can deduce the variance of f,,

[ee]

E (fﬂ(e)fﬂ(g)) = Z Ulzcln € (0/ +0°) ’

=0, parity=a
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which is independent of 6 and finite by our hypothesis on o;.

Let us now prove that f, and its derivatives are independent. Indeed, the covari-
ance between the function and a derivative reads as

o]

E(fi(02,fu(0) = Y. ofc,P,(0-010-9,0 =0,
[=0,parity=a 0'=0

where we have used that 6 is a point on the unit sphere and hence 6 - § = 1. We also
claim that the derivatives are independent. To prove it, we assume that the vector
fields {d,, } are orthogonal, i.e., g;; = 0if 1 < i < j < n — 1, where g;; is the induced
metric on $"~!. This can be accomplished, for instance, by taking hyperspherical
coordinates. If ¢’/ denotes the inverse matrix of gij, we have

IE( giiayifa(e) gffayjfa(9)> =
= e fei X oRew [PL(6-6)2,0-2,6 + Pli(0-8') (3,0-0') (9-3,8)]

[=0,parity=a 0—0'
1 o
= Z alzclnPl’n(l)(ain)z(Sijf = 51] Z UIZClnPl,n(l) (216)
[=0,parity=a &i [=0,parity=a

where in the second and third equalities we have used the orthogonality condition
of the coordinate system and the definition of the metric

8ij = 9y0 - 9y, 0.

As before, this covariance matrix is strictly positive definite, independent of the
point and finite. The finiteness follows from the differential equation satisfied by
Py,

3-n n1 dP,
(=) [0 % Ee2 | 1040 - 2R 0,

which allows us to compute P}, (1) = % Using (2.14) we conclude that the
covariance matrix of (fg, f1, Vs fr, Vs f1) is diagonal and positive definite.

We are now ready to prove that (fg, fi, ) is a non-degenerate Gaussian vector
field. To see this, first notice that the computations above imply that fr, f; and their
derivatives are independent as they are uncorrelated (i.e., their covariance matrix
vanishes), which ensures that the Gaussian vector field (fg, f1, %) has zero mean (as
linear combinations of independent Gaussian random variables are still Gaussian,
our field is Gaussian). Also, the local expression (2.13) also ensures that

E (fr(x)h(x)) = E (fi(x)h(x)) = 0.
By (2.16),

E (hi((?, )\)hj(e,/\)) = 51‘]‘ ( Z Ulzclnplln(l) + )\2 Z Ulzclnpl/n(l)>
[=0,parity= even [=0,parity= odd

=: (51‘]'(0'12{ + )\20'12).
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We can now use suitable generalizations of Bulinskaya’s lemma [AW09, Proposition
6.11] to conclude that

Ps({30,A: £(0) =0, h(6,A) = 0}) =0.

Indeed, (fr, f1, h) is a non-degenerate Gaussian vector field going from an n-dimensional
space to R"*! and it is C?(S"~1) almost surely. As the covariance matrix determi-
nant, detX(A), attains its minimum value at A = 0, independent of 6 and strictly
positive, the density of (fr, fi, /1) at zero is bounded for all values of 6, A, i.e.,

exp (—3xTZ(A)” Ly
p(x,A) = - ( 1 )
VT detE (0]

< p(0,0) < oo.

This shows that the zero set of f is regular almost surely as Vsfr and Vsfi are lin-
early independent at f~1(0).

When n = 2, the same argument applied to the Gaussian vector field (fr, f1)
shows that

P({30: £(6) = 0}) =0,

so with probability 1 the function f does not vanish, and the lemma follows. O

In the next lemma we compute the probability that f does not vanish and that f
has a nonempty regular zero set:

Lemma 2.4.3. The probability that the function f does not vanish on S"~ ' is py := 1 if
n = 2and p, € (0,1) if n > 3. Moreover, with probability 1 — p,, the zero set f~1(0) is
regular and nonempty.

Proof. Given any function fy € H*(S""!), whose coefficients for the expansion in
spherical harmonics we will denote by a? , and any € > 0, we claim that

Pr({Ilf = follgssr1) < €}) >0. (2.17)

To prove this, we start by noting that we can take some L, depending on €, such that

o 4
(ZZ’“W ap, [P (1 +1)% < 2>>0,

which is obvious because fy € H*(S""!) and f is in H*(S"!) almost surely by
Lemma 2.4.1. (2.17) then follows because

Pr({I1f = follr(sny < €}) =
o L .
(Z Z |€l1m _alm l+1)25 ) P, <Z Z |alm alm l+1)25 2) > 0.

For all n > 2, it then suffices to take fp := 1 to conclude that

pn:=P¢({f >0}) >0

1t remains to consider the case Vs fi = 0 but Vg fg # 0 at some point of f ~1(0), but we can discard
this event by the same reasoning applied to the easier case (f, f1, Vs f1).
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indeed, by Lemma 2.4.2 one knows that p» = 1. Likewise, when n > 3, one can take
any smooth function fy whose zero set is regular and nonempty to conclude, by the
implicit function theorem, that

1= pu=Ps({min|f] =0}) >0

Notice that this argument does not work when n = 2 because, as f is complex-
valued, the rank of V fy on £, (0) must be 2 to apply the implicit function theorem.
Finally, by Lemma 2.4.2, the nodal set is regular almost surely, so the lemma follows.

O

We are now ready to complete the proof of Theorem 2.1.1. Lemma 2.4.1 ensures
that f € H%(S"~1) almost surely. Furthermore, by Lemma 2.4.3, with probability p,,
f does not vanish, so in this case Theorem 2.3.1 ensures that the nodal set of u has
R/ 7+ 0(R) components diffeomorphic to 5" ! contained in Bg and only O(1) com-
ponents that are not diffeomorphic to $"~!. Also by Lemma 2.4.3, with probability
1 — py the zero set f~1(0) is regular and nonempty, so Theorem 2.3.1 ensures that
Ny (R) = O(1). The theorem is then proved.

2.5 Proof of Theorem 2.1.2

Let us denote by y the probability measure on RN defined by the random variables
a1, which we now assume to be absolutely continuous with respect to the Lebesgue
measure for | < Iy and Gaussian distributions N (M;,,,, 0'111’12) for | > ly. We denote
by PY and IP, the probability measures defined by random variables aj;,, ~ N(0,1)
and aj,, ~ N(0,07) as in Theorem 2.1.1, respectively.

To prove the theorem it is enough to show that in the first (respectively, second)
case, the measures y and IPY (respectively, IP,) are mutually absolutely continuous.
Kakutani’s dichotomy theorem, Proposition 2.21 in [DPZ14], ensures that, in the first
case, these measures are mutually absolutely continuous if and only if the Radon-
Nikodym derivative of the measures satisfies

oo d 0 d 1/2
Him 0
[111 / (dll’8> P > 0 (2.18)

I=0m=1"—"%

(being always < 1). Since, for [ > I,

Aptim (x) = 1 2 Gomy,?

—e? 201m?2
AP olm® ’
one has
1/2 _ 2 1/2 M2
e d ® ,%,ﬁ 20—1 _ Im
/ ( ‘ulgl) dPY = (27urlm)_1/2/ e s Tdx = (m 2) e 4doin®
—o \ dIPY S 1+ colm

Minus the logarithm of the product (2.18) for I > Iy is then given by the series

(o] dl

C:=) ) s

iil 1+ olm?
I=lo m— 14+4Ulm 2 /5 ~200m

m=
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As both terms are necessarily positive and using that a sequence a,, > 1 satisfies

Y loga, <co ifandonlyif Y (a,—1)<oo,

n=1 n=1

we then infer that that necessary and sufficient condition for C < oo (or, equivalently,
for the product (2.18) to be nonzero) is that

oo d MZ o 2
Z Z . Im_ (o1 — 1) < .
=ty m=0 | Tim +1 Tlm

Likewise, y# and P, are mutually absolutely continuous if (2.18) holds with IPY re-
placed by IP,, which amounts to

o d M2 ((7— 2

I I Ulm)
3 Y |ty + T oo,
I=ly m=0 [C1Im

Theorem 2.1.2 then follows.

Remark 2.5.1. When the probability measure y is a general Gaussian measure (not
necessarily a product), the Feldman-Hajek theorem [DPZ14, Theorem 2.25] charac-
terizes when y and P, (or IPY) are mutually absolutely continuous in terms of the
mean and covariance operator of . However, the resulting condition is not very
illustrative and we have opted not to include it. Nevertheless, this means that the
results can be extended to coefficients which are not necessarily independent. Also,
similar considerations using Kakutani’s theorem can be applied to a product mea-
sure whose coefficients are not normal variables.

APPENDICES

2.A The decay of u in terms of the regularity of f

Standard arguments from the theory of distributions ensure that any polynomially
bounded solution to the Helmholtz equation

Au+u=20

on R” can be written as the Fourier transform of a distribution supported on the unit
sphere. The fundamental result that connects the decay of the solution u with the
regularity of its Fourier transform is a classical result of Herglotz [Hor15, Theorem
7.1.28]. In order to state it, let us denote by

2 1 2
ull|* :=limsup — [ u(x)"dx
Julf? :=timsup [
the Agmon-Hoérmander seminorm of a function u on R".

Theorem 2.A.1 (Herglotz). A solution to the Helmholtz equation satisfies the decay con-
dition
llaelll < e
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if and only if there is a function f € L*>(S"~!) such that
u=fds. (2.19)

Furthermore, this decay estimate is sharp in the sense that there is a universal constant such
that

1
clulll < 1 fllzgnry < Cllul]-

An immediate consequence of this result is that the derivatives of any function of
the form (2.19) with f € L2(S"~!) have the same decay at infinity. Indeed, for any k,

[[V¥5u]| < Clle iz < Cllf iz, (2.20)

and in general this is obviously sharp because Au = —u.
However, it is not hard to see that higher regularity of f translates into decay
rates of the angular derivatives of u. In order to state this result, let us denote by

dou = ag ) ..ag::u

n—1

for a multi-index « and (¢;) jy

for simplicity, hyper-spherical coordinates on the
sphere 5"~ 1.

Proposition 2.A.2. A solution to the Helmholtz equation u = fdS with f € L*(S"1)
satisfies
[ dall < oo

ifand only if 9, f € L?(S"~1).

Proof. Using Proposition 2.2.1 together with the fact that d,Y,, is again an spherical
harmonic with the same eigenvalue, it is straightforward to show that

aau :m/

so the result follows from Herglotz’s theorem. U

Remark 2.A.1. Roughly speaking, Herglotz’s theorem asserts that a solution u to
the Helmholtz equation on R"” can decay at most as |x|*"771, on average, and that
this sharp decay rate is attained if and only if f is in L?(S"~!). Furthermore, this
proposition says that the k" angular derivatives of u can decay at the same rate
\x|_%, and that this sharp rate is attained in an L?-averaged sense if and only if the

kh derivatives of f are in L2(S"1).

The case when f is of lower regularity than L?, for instance f € H¥(S"~1) for
a positive integer k, can be partly understood with a similar reasoning. In this case,
one can write

k
f=Y Lif
=0
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with f; € L%(S*1) and L; a differential operator on §"~1 of order j with smooth
coefficients. Furthermore,

k
1f (1) = 2 Ml sy -
j=0
Therefore, integrating by parts in the distributional formula

ux)= [ F@dse),
one easily obtains that

1 u(x)?

2
R o, T e ™ S Ml

However one should note that, contrary to what happens in the previous results of
this Appendix, these are not the only solutions to the Helmholtz equation with this
decay rate. This is evidenced, e.g., by the solutions whose Fourier transform is

i1(z) =6%(jg -1).



Chapter 3

Critical point asymptotics for
Gaussian random waves with
densities of any Sobolev regularity

3.1 Introduction

In this chapter we are concerned with asymptotic laws for the number of critical
points (i.e., the zeros of the gradient). We consider this question in the context of
Gaussian random monochromatic waves on the plane, which are solutions to the
Helmholtz equation on R?,

Au+u=0. (3.1)

Asis well known, the study of critical points is a central topic in spectral theory [Yau82;
Yau93; JN99; BLS20] (and, in general, in the geometric study of solutions to differen-
tial equations [Wal50; Ale87; AM92; EPS18]), both in the deterministic and random
settings. This is partly because they are very closely related to the geometry of the
nodal components.

As we saw in Chapter 1, when u is polynomially bounded, the Helmholtz equa-
tion simply means that u is the Fourier transform of a distribution supported on the
unit circle, which we identify with T := IR /27Z via the map

E(¢) := (cos ¢, sin¢). (3.2)

Solutions to the Helmholtz equation are necessarily analytic, but their Fourier trans-
forms do not have any a priori regularity properties. There are some connections,
though, between the regularity of the Fourier transform and the decay rate of u at
infinity. Most important is the classical result of Herglotz ensuring that u has the
sharp fall-off at infinity (which is as \x|_% in a space-averaged sense) if and only if
one can write

u(x) = [ e ED f(p)dg 63

with some square-integrable density f, and that in this case the norm || f{| 2 (1) quan-
titatively captures the decay rate of u. For details and generalizations, see e.g. [EPSR22a,
Appendix A].

The main thrust of this chapter is to understand the connection between the dis-
tribution of the critical points of 1, defined as in (3.3), and the regularity of the den-
sity f. To this end, we consider the usual ansatz for random plane waves [CS19;
SW19] and tweak it by introducing a real parameter s € R to control the regularity
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of f: ‘

u(x) ==Y a 1|75 Jy(r) . (3.4)

10
Here the real and imaginary part of 4; are independent standard Gaussian random
variables subject to the constraint a; = (—1)'a_; (which makes u real valued), (r,0) €
R x T are the polar coordinates. This is equivalent to taking the Gaussian random
density
1 . s
f9) = 5 D wlil e (35)
20

and then defining u through the formula (3.3), which must be understood in the
sense of distributions.

Of course, the rationale behind this definition is that {|I|~5¢/?},_ is an orthonor-
mal basis of the Sobolev space H*(T) of functions with zero mean and s deriva-
tives in L2, which reduces to the space of square-integrable functions of zero mean
when s = 0. The covariance kernel of u is translation-invariant when s = 0, so the
Nazarov-Sodin theory is applicable in this case (see Remark 3.4.1 for details), but
this is not the case for nonzero s. One should note that the proofs work verbatim if
one replaces the weight |I|~° by a more general expression such as

o=0c = l"+p-s1(l), (3.6)

where the function p_;_1(t) is an arbitrary classical symbol of order —s — 1 (which
does not necessarily vanish at 0). The resulting constants, however, depend on the
specific sequence 7.

It is not hard to see that the parameter s describes the regularity of the density in
the sense that f has exactly s — J derivatives in L2 almost surely, as measured using
Sobolev or Besov spaces. Specifically, one can show that, for any § > 0,

fe [ o mnme ()] n (B2 (1)\By 2 ()]

with probability 1; see Proposition 3.2.2 for details.

Our main result provides an asymptotic estimate for the growth of the expected
number of critical points contained in a disk of large radius R, which we denote by

N(Vu,R) :=#{x € Bg: Vu(x) =0},

as a function of the regularity parameter s. It is elementary that this quantity is an
upper bound for the expected number of nodal components contained in Bg. With
the usual ansatz for random plane waves, it is well known that N(Vu, R) grows
asymptotically like the area of the disk; more precisely [BCW19], when s = 0 one
has

EN(Vu,R) ~ x(0) R?,

where x(0) := 1/(2+/3) and where the notation g(R) ~ Q(R) means that the quo-
tient 4(R)/Q(R) tends to 1 as R — co.

We should mention from the onset that the effect of changing the regularity pa-
rameter s can be quite drastic, as one should not expect that the number of critical
points grows like the area in all regularity regimes. To illustrate this, recall that,
when s = 0, the Nazarov-Sodin theory ensures the number of nodal components
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of u contained in Bg grows as
N(u,R) ~ 1yR?

almost surely for some constant vy > 0. In contrast, the results proven in [EPSR22a]
show that
N(u,R) ~ R

almost surely for s > 4, with v, := 1/7. Understanding the asymptotic behavior
of the number of nodal components in other regimes is an extremely challenging
open problem. Consequently, our main objective in this chapter is to analyze the
intriguing transitions between distinct asymptotic regimes in the simpler case of
critical points.

In the case of critical points, it is also natural to wonder about the asymptotic
growth in the case of very negative regularities s < 0. Recall that, by the Faber-
Krahn inequality, the number of nodal components of a solution to the Helmholtz
equation contained in By is at most cR?, where c is a universal constant. However,
the number of critical points is not bounded a priori: in Appendix 3.A we show
that, given any continuous function p : R™ — R, there exists a solution to the
Helmholtz equation on R? having at least p(R) nondegenerate critical points in Bg,
for all R > 1. Thus, one could in principle expect the average number of critical
points in a large ball R to have a fast growth in R for small enough regularities.

Our main result provides a satisfactory, and quite surprising, answer to both
questions. It turns out that the growth of the expected number of critical points is
like the square of the radius for s < 3, linear for s > 3, and the corresponding
exponent changes according to a linear interpolation law in the intermediate regime
3 < s < 3. The transitions occurring at the endpoint cases involve not only a power
law, but also the square root of the logarithm of the radius. Furthermore, the highest
asymptotic growth of the expected number of critical points is attained exactly for
s = 0, that is, in the usual setting of random plane waves.

Theorem 3.1.1. For any real s, the following statements hold:

(i) There exist explicit positive constants K(S),K% K5 such that the expected number of
critical points of the Gaussian random function u satisfies

,

3
2
EN(Vu,R) ~ S k(s)R¥=(72) if 3 <s<3,

A
=
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(ii) In the region where the growth of EN (Vu, R) is volumetric, the constant x(s) depends
continuously on s. More precisely, x(s) is a C* function of s € (—oo, 1) U (%, 2] but

72 272
it is only Lipschitz at s = % Furthermore, x(s) is strictly increasing on (—o0,0),
strictly decreasing on (0, %), and tends to 0 as s — —coand as s — %7. In the region

s € (3,3) U (3, ) the constant «(s) is also C*.
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EN(Vu,R) ~ r(s)R®)
157
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FIGURE 3.1: Consider the asymptotic behavior of EN(Vu,R) ~
x(s)R¢) proved in Theorem 3.1.1. In red, we have plotted the ex-
ponent e(s) as a function of s € R\{3, 3}. Logarithmic effects appear
at the endpoints s = 3/2 and s = 5/2. In blue, we have plotted x(s)
in the region where the asymptotic growth is volumetric, s < 3. The
maximum of x(s) in this region is attained at s = 0 and that «(s) is
not continuously differentiable at s = 1/2. The reader can find a plot
of x(s) in the range s € (3, 3) in Figure 3.3, cf. Section 3.4. Note that
k(s) = EN(|f|")/ 7 by Theorem 3.1.3.

Figure 3.1 summarizes Theorem 3.1.1 in a more visual way. The fact that the
highest asymptotic growth for the number of critical points occurs precisely in the
translation-invariant case s = 0 is somewhat surprising. Naively one could ex-
pect that rougher density functions, which feature wilder oscillations, would exhibit

more critical points. Theorem 3.1.1 shows that, strictly speaking, this is only the case
for regularities s > 0.

Let us now discuss the proof of Theorem 3.1.1. The asymptotic analysis of N(V, R)
hinges on the celebrated Kac-Rice counting formula, which, under suitable technical
hypotheses, expresses the expected number of zeros of a random field (in this case,
the gradient Vu) has in terms of a multivariate integral. As is well known, this for-
mula has been used profusely in the literature [EF16; NS16; BCW19; BMW19], and
in particular lies at the heart of the computation of EN(Vu, R) for s = 0 and of the
finer asymptotics bounds for the expected number of extrema and saddle points and

for higher order correlations obtained in [BCW19] also in the translation-invariant
case s = 0.

The coefficients that appear in the Kac—Rice integral formula involve, via the
variance matrix of Vu, weighted series of Bessel functions of the form

«7s,m,m’(r) = Z l_ZS]ler(r) Jivm (7’) ’ (3.7)
I=1

where m and m’ are certain integers. J; s is sometimes called in the literature
a second type Neumann series. It is clear that the way each term J;.,,(7) Jj 1 (7)
contributes to the sum for » > 1 and [ > 1 will depend on whether the “angular
frequency” I is much larger than r, much smaller than 7, or roughly of the same size;
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moreover, the effect of each group of angular frequencies will have a different rela-
tive weight in the sum depending on the power s appearing in I=%. More precisely,
a key step of the proof is to establish the following technical result, which controls
the asymptotic behavior of Js  y (7):

Lemma 3.1.2. For any pair of nonnegative integers m, m’' and any real s, the large-r asymp-
totic behavior of Js mm' 15

‘%,m,m’(r) = Cg,mfm’ r—Zs + 0(},—25) lf s < %,
I ) .
o (1) = Co orgr +0(r™) if s=%andm—m'iseven,
3 4 o 7
c —c*sin(2r — ¢
Tsymm (1) = mnt r( ) +o(rt) if s=2landm—m'isodd,
5 6 o 7
c —c2sin(2r — ¢
js,m,m’(”) — s,m—m’ s : ( m+m’) —1—0(7’71) lf s> %

with some explicit constants that will be defined later on.

Ultimately, the different asymptotic regimes that the expectation of N(Vu, R) can
exhibit can be traced back to the asymptotic behavior of functions of the form (3.7).
One should note that, in general, the highly oscillatory nature of summands in (1.17)
makes the analysis of the asymptotic behavior of 7; , » () rather subtle. An excep-
tion to this general fact is precisely the case s = 0, where all the associated series can
be computed exactly using that the covariance kernel of u is translation-invariant
(or, equivalently, the addition formula for Bessel functions); this makes it much eas-
ier to analyze the corresponding asymptotic behavior of EN(Vu, R). To illustrate
this fact, in the very short Appendix 3.B we carry out the analysis of the translation
invariant case s = 0.

In the particular case of smooth enough density functions, one can use the meth-
ods of our previous chapter to understand the asymptotic behavior of the number
of critical points (not only of its expectation value) in greater detail. Specifically, one
can prove the following;:

Theorem 3.1.3. Ifs > 5,
!/
N(Vi,R) ~ N(lzf')R

with probability 1. In particular, N(Vu, R) grows linearly almost surely.

Here the random variable N(|f|") := #{¢ € T : |f(¢)|' = 0} (which is at least 2
almost surely) denotes the number of critical points of the (non-Gaussian) random
function |f|. In particular, the asymptotic growth of N(Vu, R) is linear with proba-
bility 1, albeit the ratio is not a universal constant but a random variable. In view of
Theorem 3.1.1, a consequence of this asymptotic formula is an explicit formula for
the expectation EN(|f|") when s > 5.

The chapter is organized as follows. In Section 3.2, we start by showing the re-
lation between the parameter s and the regularity of the random function u. Sec-
tions 3.3, 3.4 and 3.5 are respectively devoted to the proofs of Lemma 3.1.2 and
Theorems 3.1.1 and 3.1.3. We have divided each of these sections into a number
of subsections to emphasize the main ideas of each proof. The chapter concludes
with two Appendices. In Appendix 3.A, we construct solutions to the Helmholtz
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equation on the plane for which the number of nondegenerate critical points con-
tained in Br grows arbitrarily fast as R — co. In Appendix 3.B, we revisit the
translation-invariant case (s = 0) and explain the key simplifications that appear
in this extremely important case.

3.2 Almost sure regularity of the random density function

Our objective in the section is to show that, with probability 1, the Gaussian ran-
dom function f, defined in (3.5), has exactly s — 5 derlvatlves in L2, measured using
suitable Sobolev or Besov spaces.

To prove the main result we will need the following version of the strong law of
large numbers for sequences of random variables that are labeled by two integers:

Lemma 3.2.1. Let {Ky}}_; be a sequence of positive integers such that

K
liminf M

> 0.
M—00 Z%le Ky

If{bny:1<k <Ky, N>1}areiid. random variables with mean y, then

I%IE;OK*D’M—

almost surely.

Proof. The strong law of large numbers ensures that

Z Zka— (3.8)
M N=1k=

converges to 0 almost surely as M — oo, with Qp = 2%121 Ky. Thus, from the
identity

Qm-1 1 W
Sm= S —|— — bpmr —
M O M- QM ; Mk
and the fact that Qp—1/Qum < 1 we obtain

limpeo(|Sm| + [Sm—1])
Liminfy_eo %

lim sup =0

M—o0

Km
— Y by —ul <
Ko k; Mg — 1

almost surely. Notice that we have used the assumption liminfy;_; % > 0. The
lemma then follows. 0

We are now ready to prove the main result of this section. Here and in what
follows, we shall use the notation ¢ = Q or ¢ < Q when there exists a constant C
(independent of the large parameter under consideration) such that Q/C < ¢ < CQ
or g < CQ, respectively.
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Proposition 3.2.2. For each 6 > 0, the Gaussian random function (3.5) satisfies

f e [rAmpmHm)] n (B2 m)\Bs 2 ()]
almost surely.

Proof. Let us recall that the H?(T) norm of the function f defined in (3.5) is
e = X a7,
|=—00

To analyze this quantity, consider the set of integers Ay := {I : 2V7! <1 < 2N} and
the subsequences

2M_1
Z |al|212¢7—25 _ ’a ‘2_|_2 Z Z 120 25’& |2 |a0|2_|_ Z 2N (20—2s) Z ‘al|2~
[=—(2M—1) N=1leAy N=1 leAn

Since |An| ~ 2N,
Aml 2™ 1
YN AN 2M 2

is bounded away from zero. Hence one can apply Lemma 3.2.1 to infer that

1
m Z |Fll|2—>1
I

eAN

almost surely as N — co. Therefore, with probability 1,

oM _1 M
1
E : ‘al|212¢7—25 ~ |LZ ’2+ } : ZN (20—2s+1) } : |al’2 ~ |a0|2_|_ } : 2N(20—25+1) )
I=—(2M-1) AN IEAN N=1

This shows that, with probability 1, || f|| ge(T) < oo if and only if <s — 3

The estimate for the Besov norm follows from an analogous reasoning using that

"f|‘235m(1) = sup Y PP [q.

1<N<o JeAy
[

Remark 3.2.1. The result and the proof remain valid in higher dimensions with mi-
nor modifications. Specifically, let {Y},, : 1 < m < d;, 0 < I < oo} be an orthonor-
mal basis of spherical harmonics on the unit (n — 1)-dimensional sphere 5" 1, with
Agn 1Yy + 1(1 +n —2)Y), = 0. Consider the Gaussian random function

o d

= Z Z lisilalelmOC),
I=1m=1

where a;,, are independent standard Gaussian variables and s € R. Then

fe[m e e )] 0[BT (8 BT )]
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almost surely.

To spell out the details, the proof in higher dimension starts with the formula
o 4
1 arigrry = 30 3 g [2272.
I=1m=1
Since d; = c,[" 2 + O(I"3), the set
An = {(,m): 2Nt < 2V, 1 <m <d}

satisfies |An| ~ 2N("=1) Lemma 3.2.1 then ensures

m Z |alm|2

(l,m) EAN

converges to 1 almost surely as N — oo, and the result follows from the same argu-
ment as above. Obviously, the result also remains valid if one replaces the weight I°
by another quantity w; ~ I°.

3.3 Asymptotics for weighted Bessel series

In this section we shall prove Lemma 3.1.2. In view of the well-known asymptotics

Ji(r) = (2> : cos (r - (21+41)71> +or

7tr

for Bessel functions, it is easy to check that the series
~.7s,m,m’ (1’) = Z l_ZS]l+m’ (1’) ]l+m(r) . (39)
1=1

is locally uniformly convergent by the standard bound [OLB+10, (10.14.4)]

1’l

We are interested in the effect of the parameters s € R and m’, m € Z.

In view of the well-known integral representation formula [OLB+10, (10.9.2)] for
Bessel functions of integer order,

1 T .
]1(7’) / ezrsmx—zlx dx,
-7

T 2¢

one can write

1 &,
L7s,m,m/(7’) = Hgl 2 g)”(i’). (310)

Here we have set A; :=1/r,

T T .,
Qa(r) = / / elrea (xy)—i(m'x—my) 4. dy,
—7TJ =TT
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and the phase function is
Par(x,y) == Ay — x) +sinx —siny.

Notice that we have used that J; is real valued, and hence J; = J,.

A straightforward application of the stationary phase formula [Hor15, Theorem
7.7.5] gives the following asymptotic formula for g,. Here and in what follows, we
will use the notation

F(A) = /1= A2 — darccos A, p=m+m, vi=m—m.

Also, we will use the notation O, (r¥) to emphasize that a certain quantity of order
r~¥ is not bounded uniformly with respect to the parameter p.

Lemma 3.3.1. Suppose that A # 1. For v > 1, one then has

47t [cos (varccos A) + sin (27f(A) — u arccos A _
a(r) = [cos ( 3|1_A2(|1/j;() H )]+OA(7 2y

where the error term is not bounded uniformy for large A or for A close to 1.

Proof. For A # 1, the phase function ¢, (x,y) has four critical points
{(x;,y1) Yt := {(£arccos A, + arccos ) }

with the same Hessian:

2 oy FV1I=A2 0
Veoa(xiyi) = < 0 it )

The stationary phase method [H6r15, Theorem 7.7.5] then yields

27 4 Liro i(my;—x;m’) i 1 1 —
r) = — e4 ip Yi—xim )eWPA(xu%) —+ O 3 2
) =75 1;' | det V2, (xi, i) | A
_ 4t [cos (varccos A) + sin (211;{()\) — parccos \)] L0, (r2),
|1 — A2
as claimed. In this formula, 0; is the signature of the matrix qu) A (X, 4). ]

Therefore, the asymptotic analysis of ¢, () becomes problematic when A is close
to 1 (because in this case the phase function presents degenerate or “almost degen-
erate” critical points) and when A is large (because the error terms are not uniformly
bounded in this case). Consequently, we will fix a small parameter § > 0 and con-
sider smooth cutoff functions [0,00) — [0, 1] such that

0 ifA>1-6
A) = !
Xom(A) {1 ifA<1—26,

oy {0 A<1Es,
MarlW =99 A > 1420,

Xmed(/\) =1- Xsm()\) - Xlar(/\) .
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We can then split Js ,, (1) as

Tt () (1411 + TII)

a2

with

I:=) Xsm(A)) l’2sgA[(r) , MI:=) Xmeda(M) l’2sgA[(r) , M=) X (M) l’zsgm (r).
=1 =1 I=1

Note that I only involves frequencies smaller than (1 — J)r, I involves frequencies
close to 1 (more precisely, in the interval (1 —25)r < I < (1+ 26)r), and IIl involves
frequencies larger than (1 + J)r.

3.3.1 The small frequency region

In view of the asymptotic expansion for g, (r) proved in Lemma 3.3.1, it is natural to
consider the closely related quantities

cos(varccos Ay)

4 & _
U= — Y xsm(A)AE
=1

(1-A2)12 7
po AT & _0sSIn(2r f(A;) — parccos A;)
"= = l;xsm(mml (=)
Lemma 3.3.1 obviously implies
I=r214+1") +0s(r>71). (3.11)

Let us start by analyzing the large r behavior of I’ when s < %:

Lemma 3.3.2. Forr >> 1 and some n > 0 depending on s,

4712225717 (1-25) 1 - . 1
T(1-s-5)T(1-s+%) +0(62) +Os(r ") ifs <3,

I'= {47 cos () logr + Os(1) ifs = 1 and v is even,

2% sin (Z|v]) + Os(r~1) + O(82) ifs = % and v is odd.

Proof. Let us start with the case s < 0. The basic observation here is that, as the

function
A —2s

h(A) = 47 Xsm(A) Vi

cos (v arccos A )

is Holder continuous,

S| =

(1=0)r 1-6 .
z; h(/\l):/o R(A) dA + Os(r )

by standard results about the convergence of Riemann sums for integrands of bounded
variation. If s < 0, the result then follows from the formula

(3.12)

/1 A2 cos (varccos A) A — 2% (1 — 2s)
0 V1—A2 Fr(1—-s—%5Tr(1-s+}%)
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and the estimate arcsin 1 — arcsin(1 — §) = O(6'/2).

For s € (0,1), the integrand is an unbounded function in L], , so the argument
does not apply. Let us take a small constant € such that, for simplicity of notation, er
is an integer, and write

erl 1(15)

I=er

Obviously, as |h(A)| & A2 for small A, and fl D/ A =25g) a r~1A; %, we conclude
that

€
I, — / h(A) dA‘ <2 gl
0

To estimate I, we use that

(1-0)r

1’2_/615;7(2») dA = l; /(;Z)/r[h()\l) —h(A)]dA :%

for some A} € (l%, %) Therefore, as |W'(A)| S A2,

671725

1-6
1'2—/ h(A)dA’,g —,

where the constant in S depends on 4.

Putting together the estimates for I} and I, with € ~ r~2, we obtain
1-5 . 1 .
T — / h(A)dA + Og(r*~3) = / () dA + Os(r°~3) + 0(6'/2) .
0 0

Using again the formula (3.12), this proves the lemma when s € (0, 3).
Let us now pass to the case s = 3. We start by assuming that the integer v is odd,
so that cos (%) = 0. Since
cos (varccos A;) = cos % + Avsin % +0(A?), (3.13)
it turns out that the corresponding integrand is differentiable at A = 0 in this case,

so the same arguments as in the case s < 0 show

(1-0)r
ar + 05(7’_1) .

" Xsm(A;) 47T cos (varccos A;) — 4 /1 % Xsm(A) cos (varccos A)

= A (1—AF)1/2 V1—A2

The result then follows from the formula

1 cos (varccos M) T . (T
/0 Wiy dA_ESIH(E|V|)'
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To conclude, consider the case when s = % and v is even. Obviously, by (3.13),

(1§)r s (varccos ;)  cos 7

4 1 (1-0)r
j S - E /\l 5 1,
r r =1

where the constant in < depends on d. The leading contribution of this sum is there-
fore given by the harmonic series, which satisfies

(175)1’ Xsm()\l)

(1-0)r r/2 1
) XemM) _yo 1 =logr+O(1).
= ™ =l g !
This completes the proof of the lemma. O]

Now we pass to analyzing the contribution of the second term, I”. As this term
is somewhat oscillating due to the presence of the large parameter r in the argument
of a sine, it makes sense to expect this term should be subdominant.

Lemma 3.3.3. There exists some 7 > 0, depending on s, such that
I — Os(r=1) ifs < %/
—4mlog?2sin (2r — ) + Os(r 1) ifs= 3.

Proof. We start with the case s < 3. Let B € (0,1) be some constant that we will

specify later and write

1 e ‘ 1 (1=0)r ]
I =Tm | 3 h(A) eI 4 2 30 h(A) 2T | < Tm(I +17),
=1 l:"rﬁ“

with h(A) 1= 47T sm(A)A~ZeikarccosA(q )\2)_%. As s < 1, the first term can be
easily estimated as

oo 1 —(1-25)(1-p)
LABS P Z Al Sr .
=1

By hypothesis, the RHS is " for some # > 0.

To estimate 1), decompose the interval ([r#], (1 — &)r] as the union of N disjoint
intervals of the form (I,, I, + A,]. We assume that /,, are integers and that the lengths
of the intervals satisfy A, ~ 17 for some 7y € (0, B). This implies that N ~ r!1~7.

The basic idea is that, with this choice of the scales, one can expect that the func-
tion i will be approximately constant in each interval but the phase of the complex
exponential will oscillate rapidly. This will lead to cancellations. To make this idea
precise, suppose that A — A; € (0, A, /r) and write

f(A) = f(Ay,) — (A= Ay,) arccos(Ay,) + Ru(A), (3.14)

where the function R, (A) plays the role of an error term. Differentiating this identity
with respect to A, and noticing that f’(A) = — arccos A, one immediately obtains that
the bound |R},(A)| < |A — Ay| holds uniformly in 7. As a consequence of this, setting



3.3. Asymptotics for weighted Bessel series 73

L :=r(A — A;,), one infers that

d

Y (h(A)eﬂfW))' < B (A)] + [r(A)2rR} (A)] S rB-D=Y 4 p(FDao

where
ap = min{0, —2s}, a1 :=min{1, —2s}.

As usual, the constant in S depends on ¢.

By the mean value theorem, observing that R, (Aln) = 0, one then has from Equa-
tion (3.14) that

Li+Ay
Z (h(Al)einf(Az) — h(A )eizrf(Aln)giZf’(Al,z)L)
I=l,+1

< pB-D@-1)+27-1 4 (- +37-1

with < depending on 4. As the implicit constants are uniform in n and there are
N = r!=7 intervals, this implies

1 N ) Ay ,
1/2/ = ; ; h(/\ln)elzrf(/\ln) LZOeIZf (Aln)L _|_ Oé<r(ﬁ_1)({xl_l)+7_l _|_ r(ﬁ_l)“0+27_1) .

The leading contribution is therefore

1 _ p—2iarccos(Ay, ) (r"+1)

al 2rf(A,) N i2f (A )L _ L o 2rf(x;,) 1
— In In In
) " h(Ay,)e ) e . Z h(Ay,)e

n=1 L=0

142 arcsin(Ay, )

the constant in < depending on . Note that the denominator is bounded from below
because A < 1—§. Thus, choosing v € (0, 3) and B sufficiently close to 1 (depending

on 7y and s), we conclude that
’I ‘ <y -1

for some 1’ > 0.
Let us now pass to the case s = 3. Arguing as above, one can pick some B close

to, but smaller than, 1 such that

(1=07)r i _
y Xsm (A7) sin (er(Alz) parccosA;) Os(r1)
I(1—A2)172

I=[r#]

for some 77 > 0. For the sum going from [ = 1 to |[rf|, we can disregard the (1 —
A%)1/2 term because

) [sin er( 1) — parccos Ay)  sin (2rf(A;) — parccosAy) || Ll Al o 2128
Z AIZ)l/Z o i ~ E PIRN r .
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The identity

sin (2rf(A;) — parccos A;) = sin (Zr - %) cos (Zr(f(Al) —1)4+u (g — arccos Al))

1 cos (2,, _ %) sin (Zr(f()u) —1)4+u (g — arccos )\l))

enables us to write

Lrg sin (2rf(A;) — parccos A;) . . ﬂpt) "] cos (2r(f(M) = 1) + u (5 —arccos A;))

= l 2/ [

@) I”*] sin (2r(f()\l) —-1)+pu (% - arCCOS/\l)) '

1

+ cos (Zr -

The asymptotic expansions

FA)—1= —”7)‘ FO(V), T~ arccos A = A+ O()

ensure that
T 2
2r(f(M) — 1)+ (E — arccosAl> = —ml +rO(A7).

The quantity rO(A?) is of order 12 ~! whenever I < rF". Fixing some g’ € (0,1), we

therefore have

7 f(A1) —1) + p (5 —arccos Ay)) Ll cos(ml)  r*O(A})
; T =L\

= —log2+O(r~ min{ﬁl’Z*%,}) .

Here we have used that

Similarly,
rZ: sin (2r(f(A;) — 1) —il—y (5 —arccos A;)) _ L;:J rO(l)\lz) _o(PF1).
=1 =1

It only remains to consider the sum from [r#'] to |r? |, where we can also assume
that xsm(A;) = 1. To this end, we define the function

B % ei(Zr(f(/\;)fl)ij(%farccos)x,)) B U’Zﬁ{ e i(mTl+e(ALr))
N l B l
:(rﬁ

1=[r"] 1=[r#]
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To show this sum goes to zero as r — co, we are going to exploit the cancellations of
consecutive terms. For this, let us define

Dok := @(Agkr1,7) — @(A2k, 7)
T T
=2r(f(Ay) — 1)+ (E - arCCOS/\zk) - |:2r<f(/\2k+1) —-1)+u <E — arccos A2k+1>] — 7.

More explicitly,

B = 2/ 427 (2k 1) 4kt ) arccos () (k-4 ot 2) avecos (5 ) <

By the mean value theorem, there exists some A, € (2kr~!, (2k + 1)r~!) such that

l
[ Agi| < )ﬂr—Zarccos)\* + %(1 _Az),l/z‘ F1< ’

for [r#'] < I < |rP]. This enables us to estimate Q as

’Q’ _ LrﬁZJ:/2 eizr(f()\zk)—1)+y(%—arcc05/\2k) (21k _ Zek_l—’A_Zkl>
k=[rf'1/2
2 1o ,
< ) (kz—l—r>§rﬁ + P71,
k=[rf'1/2

Let us finally consider the case s > 1:
Lemma 3.3.4. Ifs > %, there exists some 7 > 0 depending on s such that

_ i ﬂ o 1-2s . T — 4r —1—7
I[=—0(29) (cos > (2 1) sin —— > + Os(r ).

tr

Here ( is the Riemann’s zeta function.

Proof. Let us use again the integral formula for Bessel functions to write

Jiem (1) Jim (7) 4712/ / (sinx—siny) p=i((+m')x=(+m)y) gy dy

Applying the stationary phase argument [Hor15, Theorem 7.7.5] with phase function
sinx — siny and amplitude e~{((+")x=(+m)y) one readily obtains the asymptotic
expansion

cos (3mv) —sin (3 (27l + 7ty — 4r))
mr

]l+m’(r)]l+m(r) = + R](T’) ’

where the error term satisfies the pointwise bound

14
RIS 5
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Now, pick some B € (0, 1) and write

rf] (1-9)r
Z ]l+m’ ]H—m ) + Z Xsm()‘l)lizs]l—o—m’(r)]l+m(r) =L+,

=1 =[]

Then
s | cos (37tv) —sin (3 (27l + 7ty — 4r))
L = Zl [ p— + Ry(r)
i (cos (37v) —sin (3 (271l + mtp — 4r)) LR
mr

=1
where the error term is bounded as

i

Zl ZSR]

=1

R| = 3 214 2 <2 (14 PO

This decay is smaller than 1 if B < I. Expanding the sine, the above series can be
computed in closed form in terms of the zeta function:

I = %Q(ZS) [cos <;m/> — (21_25 — 1) sin (; (rtu —47))] +0(r2 +rﬁ(5_25)_2).

To control the remaining term, we use that s > 1 and the bound for g, proved in
Lemma 3.3.1 to write

(1=9)r 1 —o)r
L] < Z Xsm(A) 1™ ng)” ; Z Z ]2 <7 B(2s—1)—1
=[rf] I=[rF] l [7P]
As usual, the constant in < depends on 6. The lemma then follows. O

3.3.2 Intermediate frequency region

Our next goal is to derive bounds for the term

[ (14-26)r]

= Z Ximed )\l l 25/ / plr(sinx— smy) i(my—m'x) dxdy
I=[(1-26)r]

The difficulty here is that one cannot apply the standard stationary phase method as
we did above because the critical points of the phase function

¢1(x,y) == Ay — x) +sinx — siny

are either degenerate or not uniformly non-degenerate. The main result is the fol-
lowing;:

Lemma 3.3.5. For any real s and all large enough r (depending on ),

| < Coz 7%,
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where C is independent of .

Proof. Since

1
pi(xy) = (1= A)(x —y) = (' =) + O(") + O(y),
when1—26 <A <14 26andd < 1, an elementary calculation shows that

Vi (x,y)| = c

whenever |x| + |y| > 1006'/2, where c is a positive constant that depends on 4.
Therefore, take some x(t) be a smooth nonnegative function that is equal to 1 for
|t| < 1006'/% and 0 for |t| > 2006'/2. The non-stationary phase lemma then shows
that

[(1426)r] ' o ) ' )
I = E Xmed()\l) )\1—25 /]RZ ezl(y—x)ezr(smx—smy)ez(my—m x) X(x) X(y) dx dy

I=[(1=20)r]
coincides with II modulo an exponentially small error. More precisely,
I —r 21| < Conr ™
for any N and some constant depending on N and é.
To estimate II', let us start by defining z := y — x and writing
r(1+25)
=y xm«ﬂAﬂ;HQs/1eﬂ%”@mwfﬂfgnwedWPM”VHM”XQ/—Z)xcodde-
1=r(1-26) R?
A first step is to consider the sum
r(1425)

Z Xmed(Al) /\l—Zseilz
I=r(1-26)

N |-

S(r,z) :=

and to relate it to its continuous counterpart
oo .
F(r,z) = / Xmed (M) A" %™ dA
—o0

Note that it is not a priori obvious that F(r,z) converges to S(r,z) as r — co because,
intuitively speaking, the sum is formally obtained by discretizing the integral with
a “grid” of length 1/r, and r > 1 is precisely the frequency at which the integrand
oscillates.

We proceed as follows. Firstly, write

eir/\lz

r(1426)  p41 [

S(r,z) —F(r,z) = ) /A

Afstmed (/\l) (
I=r(1-26)

o eerz)

+ (Xmed(AZ)Afzs — Xmed(/\)/\_zs)eimz} A

1
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and note that ; ) ;
eilz M+l eilz
—— / eM dA = h(z) —
A r

with ,
ie* +z—1

. .
The function & is smooth at the origin; in fact, i(z) = O(z). As moreover
5—1
s

|Xmed (Al))\fzs - Xmed()\))\izs‘ 5 (315)

if A € [A;, A; + 1] and |A — 1| < 26, one obtains that the error
R(r,z):=S(r,z) — F(r,z) — h(z)S(r, 2)

is bounded as
[R(r,z)| <

7

<0

with C a constant independent of z and é.
Since z will eventually be small, the fact that

F(r,z) + R(r,z)
1—h(z)

S(r,z) =

shows in which sense S(r,z) and F(r,z) are related. The reader can check that, had
we argued as in (3.15), we would have obtained an error estimate of the form Cz,
which is useless for our purposes.

One can thus write

= I +11,.

The bound for R(r,z) and the fact that x(t) is supported in |t| < 2005/ immedi-
ately implies
| < C9,

where the constant does not depend on é.

To analyze 11}, one cannot directly apply the stationary phase formula to the
integral over IR® because the critical set of the phase has dimension 1. Instead, let us
define

- ir(Az+sin(y—z)) —2s im’zw
Hiry)=r [ e imea (1) A2 I E e

Then, the phase function ¢,(A,z) := Az + sin(y — z) has a unique critical point in
the support of the integrand, (A*,z*) := (cosy,0), and its Hessian is

Vi (V.2 = ( ? —siil(w > '



3.3. Asymptotics for weighted Bessel series 79

The stationary phase formula [Hor15, Theorem 7.7.6] then ensures that, if r is large
enough (depending on 9)
[H(ry)l<C

with a constant independent of . Plugging this estimate into I} and using again
that x(t) is supported in || < 2006'/2, one finds

o 1
| < /_Oox(y) |H(r,y)|dy < Cé2

with a constant independent of §. Putting all the estimates together, the lemma is
proven. U

3.3.3 Large frequency region

The last lemma of this section shows that the contribution of the large frequencies is
exponentially small:

Lemma 3.3.6. Forany N, || < v=N for all large enough r (depending on 6).

Proof. Let us now use [ as the large parameter in the formula for g, (r), which
amounts to writing

g (1) :/ / ¢!l #x (¥y) g=i(m'x—my) dx dy
—7T J—T7T

with . .
. sinx — sin
Palxy) =y —x+ Ty
If A > 1+, itis clear that
IV@r(x,y)| = cs

for all x,y € [—r, 7], where ¢; is a positive constant that only depends on é. There-
fore, the non-stationary phase lemma [Hor15, Theorem 7.7.1] ensures that g, (r) is
an exponentially small function of /, meaning that for any N’ there exists a constant C
(depending on ¢ and N’) such that

g, (1) < ClI N
This immediately implies that
m| < Yy xSy
I=(140)r
for any N, as claimed. O

3.3.4 Asymptotics for series with derivatives of Bessel functions

The results we have derived above readily yield the asymptotic bounds for weighted
sums of Bessel functions that we will crucially need in the next section. Specifically,
Lemma 3.1.2 follows immediately by adding the estimates derived in the previous
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subsections and letting § — 0. The explicit constants in the lemma are:

B 225711 (1 — 25) o log2
= ’ 7T
w T T—s— DI —s+3) S -
2= lcos (ﬂ) = 7L (2s) cos (7) ’
v 2 )7 6 . -1 125
7_[‘1/’ CS,V =T g(zs)(l 2 )’
3 :=27'sin (T) , o = %

One should observe that, to estimate the expected number of critical points of the
random monochromatic wave (3.4), we will also need asymptotic information about
series with derivatives of Bessel functions. This follows easily as a byproduct of
Lemma 3.1.2 using the well-known recurrence relations

_ Jia(r) = Ji1a(7)
2

+ Ji2(r) = 2Ji(r)
1 .

4

Ji) () = 12l

In the following lengthly corollary of Lemma 3.1.2 we record the asymptotic formu-
las that we will need later on:

Corollary 3.3.7. The following estimates hold:

(2570 (1-2s)r =2 -
( s)r +0(7" 25)

- I(1-s)> 2
YR = B 4 o(r ) fo=1
=1 2 21-25_1) gin 2r+1 .
e )sin2r) | oty g s
) 0(1,725) ifS < 31
A TGVAGERelGa ifs =13
— 1-25_1) cos(2r s
1=1 (2 1)m (2r)e(2s) | o(r/1) ifs>1,
r 1_ —2s _ .
) 4(\/2%1"75;)27_5) +o(r 25) ifs < %;
Y IR = o) ifs =3,
I=1 7(2s)(1— (2% -1) sin2r — .
(=@ 21)sin2) | 1) s> 1
r 1_ —2s _ .
o —fﬁri?zr—s)ﬂ(r %) ifs <3,
Y IEROMY () = § ~E 1 o) o=
1=1 7(2s)((217%-1) sin2r+1 _ .
SRR EE) o1y s> b,
. 0(1,—25) ifS < %,
YO () = 4 00 fo=2
=1 _ (217 1) cos(2r){ (2s) +o(r 1) ifs>1
tr 2’
3 22-5(2—-25)(4—25)T (1—25)r 2 o . 1
N - e +o(r =) ifs <3,
D R G fs=2
st §(25)((21725_1) sin(2r)+1) —|—0(}’_1) lfS > 1
tr 2
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3.4 Proof of Theorem 3.1.1

We are now ready to present the proof of the main theorem, which will consist of a
number of steps. Recall that we defined the random function u as

4 1|75 if1#0
= oy e'l? , 0= | ’ 3.16
u Zl:ﬂz 1" Ji(r) 1 {0 0. (3.16)

It will be apparent from the proof that the argument remains valid for much more
general choices of 07, for example of the form (3.6). Of course, the value of the con-
stants x(s), & 3, K5 one gets depends on the specific choice of o;.

3.4.1 A Kac-Rice formula

Our first objective is to derive an explicit, if hard to analyze, Kac—Rice type formula
for the expected number of critical points of the Gaussian random function u.

In this subsection, we shall denote by

_( ogu(r,0) _( epu(r,0) 0,u(r,0)
Du(r,0) = ( B(:u(r,Q) ) ’ Du(r,0) = ( Biju(r,G) H:u(r,e) )

the derivative and Hessian of u in polar coordinates. To apply the Kac-Rice expecta-
tion formula, let us start by showing that Du(r, 6) has a non-degenerate distribution:

Lemma 3.4.1. The variance of the Gaussian random variable Du(r, 6) is

_ (AL PR (r)? 0 _( Zul) 0
Var[Du(r,0)] = < - 0 l 45 175 (r)? ) o ( 11) Too(r) ) .

Proof. To compute the matrix
Var[Du(r,0)] := E[Du(r,0) ® Du(r,0)],

recall the expression (3.16) for u(r,0) and take advantage of the fact that u(r,0) is
real valued to write

E[0,u(r,0)%] = E[0,u(r,0) 9,u(r,0)] = Y Y E(ajay) 1| =*|I'| 2" (r) ]/ (r).
1£01'#£0

By the definition of the random variables 4;,
IE(Q[TZI) = 251/1/ ,

SO one obtains
E[9,u(r,0)] _421%1
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The same argument yields

E[0,u(r,0) dgu(r,0)] = E[dgu(r,0) d,u(r,0)]
= L X Eaap) il)l| |0y () i ()

10120
=2y 1I|"®](r) J](r) =0
10
by parity, and
E[dgu(r,0)*] =4Y_ 1> %](r)>.
=1
This easily implies that Var[Du(r, 6)] is a strictly positive matrix for all (7, 6). O

Remark 3.4.1. The same computation as above shows that the covariance kernel of
the random function (3.16) is

K(r,0;7',0") := E[u(r,0) u i 172 T(r) (1) cos[L(6 — 6')].
=1

The covariance kernel is therefore invariant under rotations but, in general, not un-
der translation. An exception to this general fact is the case s = 0. Indeed, it is well
known that the covariance kernel of

U:=u-+ \/an ]()(1’).

is K(x;x") = 2Jo(|x — ¥'|) by Graf’s Addition Theorem. The corresponding spectral
measure in this case is the Hausdorff measure on the unit circle. Observe that u will
give the same asymptotics as u for s = 0 because, as we saw in Lemma 3.1.2, fors = 0
the series of Bessel functions is asymptotically of order 1 but the term Jo(r)? decays
like r~!. By Lemma 3.4.2, their covariances Y, are then asymptotically equivalent.
Note we have chosen to omit the term [ = 0 in u for simplicity, especially when this
term contributes to the asymptotic expansion (that is, for s > 1 in Lemma 3.1.2).

Lemma 3.4.2. The expected value of the number of critical points of the random monochro-
matic wave (3.4) is

ou R _/R/ )2%213@)—2%222( ) + 2321/ 201 (1) Za3(r) — Za3(r)2
R (27)2 /41 (r) S22 (r)

1,2
e 22F gz dr,
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where
() = Lt - EE )
() =4 LR 0 )+ ERL R SO,
- SR
San(r) = 4 Y 1) — 2 (S () () 2

Lt 2 ]i(r)?

N
Il
—_

Proof. As Du(r,0) is a non-degenerate Gaussian random variable by Lemma 3.4.1,
the Kac—Rice integral formula in polar coordinates [AW09, Proposition 6.6] ensures
that

E (N(Vi, R)) = /B (R)IE{]detDzu(r,Hﬂ | Du(r,0) = 0} ppuire)(0)drde  (3.17)

where pp,(9) : R? — [0,00) denotes the probability distribution function of the
R2-valued random variable Du(r, ).

Next, let us reduce the computation of the conditional expectation to that of an
ordinary expectation by introducing a new random variable {(r, 0). Just like D?u(r,6),
{(r,0) will take values in the space of 2 X 2 symmetric matrices, which we shall
henceforth identify with IR® by labeling the matrix components of a symmetric ma-

trix as
7= ( % Z > : (3.18)

Specifically, let us set
7(r,8) :== D?u(r,0) — B(r,0)Du(r,0), (3.19)

where the linear operator B(r,0) (which we can regard as a 3 x 2 matrix after iden-
tifying D?u(r, ) with a 3-component vector) is chosen so that the covariance matrix
of Du(r,0) and {(r,0) is 0:

B(r,6) := E(D?u(r,8) ® Du(r,8)) [E(Du(r,8) ® Du(r,0))] "
Indeed, one can plug (3.19) in the formula for E({(r,0) @ Du(r,0)) and check that
E(¢(r,0) ® Du(r,0)) =0.

As Du(r,0) and ((r,0) are jointly a Gaussian vector with zero mean, this condition
ensures that they are independent random variables. This enables us to write the
above conditional expectation as

E{|det D*u(r,0)| | Du(r,0) = 0} = E{|det[{(r,0) + B(r,0)Du(r,0)]| | Du(r,0) =0}
=E|det(r,0)].
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Let now us compute the covariance matrix of (7, 8). Since the variance matrix of
Du(r, ) is independent of 6, let us simply write Var Du(r), and similarly with other
rotation-invariant quantities. One then has

Var (r) = Var D*u(r) — Cov(D*u, Du)(r) - Var Du(r) ' - Cov(D?u, Du)(r) " (3.20)

Arguing as in Lemma 3.4.1 and using that we have identified D?u(r,0) with a 3-
component vector, one finds that

Var D?u(r) := E[D?u(r,0) ® D*u(r,6)]

is given by the 3 x 3 matrix

4y ()2 0 42 PEL(n)]] (r)
Var D?u(r) = 0 450 127250 (r)? 0 :
—AY 2 PR ()] (r) 0 Ay =) (r)?
Similarly,
0 —4 Y2 PR (n)](r)
Cov(D?u, Du)(r) = | 452, 22],(r)]/(r) 0 (3.21)
0 402 PRI ()] (r)

Combining these formulas, we derive that

211(1") 0 213(1’)
X(r) :=Var{(r,0) = ( 0 Yoo (r) 0 ) ,
213(1’) 0 233(1’)

(3.22)

where ¥ () are defined as in the statement of the lemma.

Let us now consider the Cholesky decomposition of this matrix:
%(r) = M(r) ' M(r),

where the matrix M(r) is given by

211(r) 0 721;1(;()?)
M(T’) = 0 222(7’) 0
0 0 Y33(r) — Z{fl((rr))z

As the matrix X.(7) is positive definite and {(r, 0) is a Gaussian random variable with
zero mean and variance X(r), one then infers that the 3-component random variable

Z(r,0) :=(r,0) "M(r)*

is Gaussian, has zero mean and its variance matrix is the identity. It is thus straight-
forward that

E|det{(r,0)] = /R Nyys = vl peir e (v) dy

:/ms

1

e 2|Z|2

(27)3

22%13(r) — 250 (1) + 2371 \/Z1l(r)233(r) — X13(r)? dz,
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where
I )
o) (Y) = (271)3/2(det X(r))1/2

is the probability density distribution of the random variable {(r,0) and we have
used the change of variables

Y =t MZl, Y2 =: \/;(7)22' B \?%Zl TyEel) Z21131((r7))223

and the fact that the Jacobian determinant is det M(r) = (detX(r))2. The lemma fol-
lows using that the probabability density function of the Gaussian random variable
Du(r,0) is

1

PDu(rp)(0) = —
pur) 2714/ 2q1(r) Xo2(7)

as a consequence of the formula for Var Du(r,0) computed in Lemma 3.4.1 and of
the fact that the density function of an R¥-valued Gaussian random variable Y with
zero mean and variance matrix X is

(3.23)

py(y) == (27) "3 (det)2e V=Y,

3.4.2 Some technical lemmas

In the next subsections, we will discuss the behavior of the formula for the expected
number of critical points that we have computed in Lemma 3.4.2 above. The analysis
will strongly depend on the value of the parameter s. In the computations, we will
use several technical lemmas repeatedly, often without further mention.

Lemma 3.4.3. Given constants of the form ay(r) = dp(r) + €p(r), with 1 < j,k <m,

el gz =
]Rm m

Proof. It stems from the elementary estimate

ef%|2|2d2+o< max \€jk(7)\>~

1<) k<m

Z aj(7)zzx

1<) k<m

Z ﬁjk(7’>Z]‘Zk

1<) k<m

Z ajk(V)Z]'Zk

1<j,k<m

2
- < |7 max EAGIE

E ﬁjk(i’)Z]‘Zk

1<) k<m

O

Lemma 3.4.4. Let g : [1,00) — (0,00) be a continuous function with [~ q(r)dr = co.
Then, for r > 1 and any fixed ro,

[ otatnar=o( [ gty .

Proof. Consider any € > 0 and assume, without any loss of generality, thato(q(r")) >
0. By definition, there is some R, such that 0(q(r)) < eq(r) for all r > R.. Now set
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Q(r) := fr:) q(r") dr" and write

Q) Q) Q(r)
C. eflggq(r’)dr’ B
Son T om oW
as r — oo, since Q(r) — co. Letting € — 0, the result follows. O

The following lemma will be very useful in the analysis of the asymptotic behav-
ior of the number of critical points of u:

Lemma 3.4.5. Consider a positive smooth rt-periodic function P and constants a > 0 and
b € R. Ifa = 0, we also assume that b > 0. Then, for R > 1,

a+1(1o b
/NR r*(logr)? P(r) dr ~ Rn(zgl—i—gl])z)/o P(r)dr.

Proof. Let us define | := |R/ 7| and write R = J7r + Ry, with 0 < R; < 7. We can
then write

R J-1 7T(j+1) t]+Rq
/ r*(logr)? P(r) dr = Y. / ‘ r*(logr)? P(r) dr + r*(logr)? P(r) dr.
JTT

j=1 T ]

The second term is obviously bounded as

7TI+R1 b
/ r*(logr)” P(r)dr

< R*(logR)"
]

To estimate the first term, let
7T
B:= / P(r)dr.
0
As the function r*(log r)? is increasing for large enough r, we have
N\ a \1b m(+1) a b : a : b
B(7tj)*[log(7j)]” < /m, r*(logr)” P(r) dr < B[7e(j +1)]*[log (7 (j +1))]

if j is larger that a certain integer J,,. With 7 = 0,1, we can use the following
asymptotic formula, which is an easy consequence of the Euler-Maclaurin formula,

= (] + 1 — 1) log((J +7—-1))]"  R*'(logR)"

I (xG+)og(e(+ )] ~ B oD

to derive the formula of the statement. Here we have used that 7] = R+ O(1) and
that the integral over r € [, 7], ] is obviously bounded independently of R. O

Before discussing the behavior of EN(Vu, R) in the different regularity regimes,
one should note that the integral appearing in Lemma 3.4.2 is remarkably hard to
analyze. We will be able to obtain much more convenient integral representations
by means of the following lemma:
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Lemma 3.4.6. Let A, B, C be real constants. Then

i 2 [ 1—a(t)cos iP(t
2
/ ‘Azl—I-Bzz—f—ZCzlzg,‘iwzd _;/0 ()tZ 2 ()dt,

where
O(t) := arg ((1 —2iBt) (1 — 2iAt +4C*#?)) ,

a(t) = (1+ 4B~ [(1+4C22)% + 4A282) 5

Proof. Defining the matrix

one can write the above integral as

ich

Q:= /‘A21+BZZ+2C2123\73/2¢1 /|z Mz|( )3/211.

The results about Gaussian integrals involving an absolute value function derived
in [LWQ9, Theorem 2.1] therefore ensure that

2 [ det(I — 2itM)~z + det(I +2itM) 2 | dt
==/ |1i- a.
7T Jo 2 2

Now a straightforward computation yields the formula in the statement. g

3.4.3 The case s < %

We are ready to compute the asymptotics for the number of critical points when
1

s < 5!
2

Lemma 3.4.7. Ifs < %,

. EN(Vu,R)
fim gz =)
with .
1 [1-25  , i
K(S) = E \/ﬁ - 8 _ 4s (Zl — 22) + 2123 W dZ . (324)

Proof. Let us compute the matrix X(r). From Equation (3.22) and the asymptotic
formulas for sums of Bessel functions recorded in Corollary 3.3.7, it follows that

X(r) =Z(r) + R(r),
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where the leading contribution is

225731 (5 — 28) 142 0 r (% —s)r¥ %
I (3—s)° s V7l (3 —5)
. I(s—s)r—=
¥0(r) := 0 —\/ZEI" G 0
r (§ —s)r¥ % ar (l —s)r %
2 0 2
V7l (3 —s) 2\/nl (3 —5)

and the error is bounded as
Rik(r) = o(1)E5(r).

Here and in what follows, 0(1) denotes a quantity that tends to zero as r — oo.

Let us define

I(r,z) == |23Z13(r) — 25%00 (1) + 2321 \/211 (r)Za3(r) — Lq3(r)? (3.25)

and note that, by the formula for %(r) and the asymptotics for weighted sums of
Bessel functions presented in Corollary 3.3.7,

1 o\ 172
\/Zn(r)233(r) — Byp(r)2 ~ 2B VA (2 ) (F ( T (Sg)f(53)3 : )> '

Likewise, the quantity
o(r) = Zq1(r)Za(r) (3.26)

satisfies the asymptotic bound

o(r) ~

Finally, the integral

~}p
Z(r):

1 e
= W /]R3 I(z,r)Wdz (3.27)

can be then estimated, as a consequence of Lemmas 3.4.3 and 3.4.6 and of the pre-
ceding asymptotic bounds, as

where «(s) is defined as in the statement. Thus, the integral formula in Lemma 3.4.2
ensures that

R
EN(Vu,R) ~ 2/ Kk(s)rdr = x(s) R*.
0
O
In the next lemma, we analyze the behavior of the positive constant «(s) (which

is written simply as «(s) in the statement of Theorem 3.1.1), for s < 1. The key idea
is to obtain an easier characterization of this constant as a one-dimensional integral.
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0.4

0.3r

0.1F

-10 -8 -6 -4 -2 0

FIGURE 3.2: «(s) for s < 3.

Interestingly, the global maximum of x(s) is attained at s = 0, that is, in the classical
case of random waves with a translation-invariant covariance kernel. In Figure 3.2
we have plotted x(s) for the first region of s < 1/2 using the next lemma.

Lemma 3.4.8. The function «(s) is smooth, strictly increasing on's € (—o0,0), and strictly
decreasing on (0, 3). Furthermore,

. _ /21 . _
111?7 K(s) = \/;7_[, SEIPOOK(S) =0.

55
Proof. The limiting values can be computed directly from the formula for x(s). In-

deed, the (somewhat surprising) fact that x(s) — 0 as s — —oo is obvious in view of
Equation (3.24), and as is the limit

1 2
. z1z3| e~ 2l \/51
lim x(s :/ | ——mdz =z —.
B R T R

To analyze the behavior of x(s) for intermediate values of s, we use Lemma 3.4.6
to rewrite (3.24) as

dt

2 [®1—a(st)cosid(s,t)
K(S) - > :
T Jo t

with
V2(4 —2s)
[(1—25)t6 + (8(2 —5)2 4+ 6(1 — 5)12)?]

2% (—6s +iy/1 — 25t + 6
D(s, t) := arg <4+ ( 5(11—25)2 il )>

a(s,t) :=

1/47
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Note that
dsa(s,t) = 4s 312 (16(2 —s)> 4+ t4 +12(1 — 5)1?) .
2v2 (( 25)t6 + (8(2 _S)2+6(1—s)t2)2)
ds tan D (s, t) = 363 (—4s + 12 + 8)
2@(8(2 52+ 6(1—s)2)>
because

V1 —2st3
8(2—5)2+6(1—9)t?

d(s,t) = arctan ( > = arctan tan (s, t).

Using that the polynomials appearing on the numerators are all positive for t > 0
and s < 1, it follows that «’(s)/s < 0 for all s € (—00,0) U (0, 3). The result then
follows. l

Remark 3.4.2. In the case s = 0, where x(s) attains its maximum, we recover the
well-known asymptotic formula (see Appendix 3.B) for the expected number of crit-
ical points:

=0,2886...

) ’z% + 2422321 — z%‘ oLl ] 1
i e
where we have used that for s = 0 the integral above becomes

1— 2 o 2
2 /°° V-2 4312416 4312416 i 1

£2 23

3.4.4 The cases = %

We shall next show that, in spite of the appearance of logarithmic terms in the for-

mulas, the asymptotic behavior in the case s = 3 coincides with the limit as s — %Jr

of the formula derived in Lemma 3.4.7.

N(Vu,R) ~ \E}TRZ.

Proof. From Equation (3.22) and Corollary 3.3.7, we infer that in the case s = %, we
can write

Lemma 3.4.9. Fors = 1,

X(r) = Z(r) + R(r)

where

8
3
=] 0 = 0
4
3
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and the error is bounded as R;;(r) = Z?]-(r) 0(1). Therefore,

VER() () — Zia(r)? ~ 51 /Blogr

Likewise, the function o(r) defined in (3.26) satisfies

16logr
a(r) ~ nzg :

Plugging these formulas in (3.27), we obtain

e 212 dz 2 r

I(T’) \/67'[(27[)3/2 3 7-[2

3.4.5 The case % <s< %

We shall next show that, in the regime 3 < s < 3, the expected number of critical
points contained in a large disk also grows like the area. The associated proportion-
ality constant, which we denote by «(s), turns out to be smooth on (—o0, 1) U (3, 3)

but only continuous at s = %

Lemma 3.4.10. For 1 < s < 3, then EN(Vu, R) ~ x(s)R* with

1
Kx(s) =\ T

Proof. By Equation (3.22) and Corollary 3.3.7, (r) = £%(r) + R(r) with

225—31,4—251-'(5_25) 0 2 251-' (% S)
L T ]
0(4) — T(3—s
= 0 VAT —5) ’
AT (3 - s) ) £ (4 1) (2)
V/1tl'(3 —s) rir (45 — 2) sin(2r) + 49)

and R;; = Z?j(r) 0(1). Therefore, as 4 —4s < 3 —2s,

N

Similarly, and using the same notation as in the last two subsections,

471—255(25)1*(3 _ 25) ((45 — 2) sin(21’) + 45) ‘

o(r) ~ (2 —s)?

One can then plug these formulas in (3.27) to find

r 2-25 (1 —2-25) (3 — 25) ezl
Z(r)~ T (14 (1 —21-2%)sin2r) \/ (4 —2s) /]Rs 173 (zn)s/zdz'
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As 21725 < 1, this immediately implies

]EN(Vu,R) -~ 4\/22s (1—2*25)(3_25) /0R1+( ,

dr.
- (4 — 25) 1—21-%)gin2r "
As . 1
T
= 2
/0 1+bsin2rdr V1 —p2 (3.28)
for all |b| < 1, the formula of the statement now follows using Lemma 3.4.5. O

Remark 3.4.3. It follows from Lemmas 3.4.7, 3.4.9 and 3.4.10 that x(s) € C®((—o0, 3) U
(3,3]), and that «(s) is Lipschitz at s = § but not C'. It also follows that

sgrpook(s) = sl_l)r; k(s) =0.

3.4.6 The cases =

NIWw

Here we shall see that the expected number of critical points contained in a ball of
large radius does not grow like the area of the ball any longer:

_3
Lemma 3.4.11. If s = 5,

1 R?
IEN(Vu,R)NE\/@.

Proof. The argument is essentially as before. Using Corollary 3.3.7 and Equation (3.22),
one can write (r) = ¢%(r) + R(r), with

4r 0 41‘;g !
1
2(r) 1= — 0 % 0
4logr 0 7(3)
r 4r + 3rsin2r
and Rj; = Z?]-(r) o(r%). Hence, keeping track of the errors using Lemmas 3.4.3-3.4.4
as before,
2 | 7¢(3)
_ 2.5, 15\
VEN) () ~ Dl ~ 2 \/ 3sin2r 14
47(3)logr(3sin2r+4
o(r) ~ GV IogrOsin2r +4)
This readily implies
I(r) ~ s v7 ,
Vd1ogr T (3sin2r +4)
so Lemma 3.4.2 ensures that the expected number of critical points satisfies
2V7 (R 1 r
EN R) ~ dr.
(VuR)~ =5 /n 4+3sin2r flogr
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K(s)
10+

O 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 g
1.6 1.8 2.0 2.2 24

FIGURE 3.3: x(s) for s € (3,3).

The asymptotic behavior of this integral is

R 1 " R? /” 1 gy — R?
x 4+3sin2r  /logr 27t\/logR Jo 4+ 3sin2r 2,/7logR
by Lemma 3.4.5, so the result follows. ]
3.4.7 The case % <s< ;
The analysis of the large R asymptotics presents no new difficulties:
Lemma 3.4.12. For 3 <s < %, EN(Vu,R) ~ x(s)R2~ with
K(S) B 225+%r%—s / dr
T m¥2(7-2s)T 2)sin(2r) 4 45) \/45 — (45 — 8)sin(2r)
See Figure 3.3.
Proof. Arguing as before, one finds that £(r) = £%(r) + R(r) with
7.(225731—*(5725)7.4725 237255(25—2) (23725—3 sin2r—5)
1 [(3—s)> 0 r((21-25—1) sin2r—1)
0/, _ + 20722272 1) 7(25-2)
z (7’) o 0 T (BB A)rsin2rtr 0
25-257(25—-2) (2% —35sin2r—5) 0 242 (272 1) (2s)

r((21-%—1)sin2r—1) r((21-%—1)sin2r—1)

and R;; = Z?j (r)o(1). This readily leads to the expression

() ~ (2tr) Y I
VT (3 —s) ((45 —2)sin(2r) +4%) \| {(2s —2) (45 — (4° — 8) sin(2r))
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which implies

4(274) -2
N(V”’R)”ﬁr@—s)\/ [2s—2)

5
r2—*s

R
. /0 (& —2)sin(2r) + &) (& — (& —8)sin(2)) -

Applying Lemma 3.4.5 once again, one obtains the desired formula. O

34.8 The cases = 3

The next lemma shows that at this regularity level, there is another transition in the
asymptotic behavior of the expected number of critical points of u:

Lemma 3.4.13. Ifs = 3, EN(Vu,R) NKsR\/IOgRZUlth

31 dr
~ 0.497339.
\/ / (16 4+ 15sin2r)y/4 — 3sin2r

Proof. Arguing as before, one find that £(r) = £°(r) + R(r) with

At
[S116;}

4logr 0 ¢(3)(12sin2r +19)
r r(15sin2r + 16)
1 7¢(3)
¥O(r) ==
") s 0 4r — 3rsin2r 0
2(3)(12sin2r +19) 31¢(5)
r(15sin2r + 16) 64r + 60r sin 2r

and Rj(r) = Z?j(r) 0(1). This eventually yields the asymptotic formula

72\l (3) (16 + 15sin2r)\/4 — 3sin2r

which implies

31 V1ogr
N(Vu,R) / dr
\/ (16 4+ 15sin2r)y/4 — 3sin2r

by Lemmas 3.4.2 and 3.4.4. Lemma 3.4.5 then yields the desired asymptotic behavior.
O

3.49 The cases > g

In this regime, the proof goes as before, showing that the expected number of critical
points contained in a large ball grows asymptotically like the radius. However, the
explicit formulas one obtains for the proportionality constant are extremely cumber-
some.
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Lemma 3.4.14. For s > 3, there exists an explicit constant x(s) > 0 such that

N(Vu,R) ~ x(s)R.

Proof. As in the previous cases, let us write £(r) = £%(r) + R with R;; = Z%(R) (1)
and

25-257(25—2) (232 —3sin2r—5)

) Zn(r) ( 0 ) @ %-T)sin2r—1
0, _ * 26725 (22725 1) ¢(25-2)
2(r) = 0 T T B A)sinar il 0

25-257(25—2) (232 —3sin2r—5)
(21-25—1)sin2r—1

24-2s (2—25 71)€(25)
(21-25—1) sin2r—1

0

Here

4(25% — 1) cos?(2r)Z(2s — 2)?

Yq1(r) == 40(2s — 4) ((25723 - 1) sin 27 + 1) + {(2s) ((2172s — 1) sin2r — 1)

Note that all the nonzero matrix components are exactly of order 1/r. While this fact
does not make the problem any harder from a conceptual point of view, it leads to
cumbersome expressions for the various quantities appearing in the equations.

Specifically, it is not hard to show that

167(2s —2)¢(2s) ((2'* — 1) sin2r —1) ((2°°% —1) sin2r + 1)
r? '

o(r) ~ =

Plugging this formula in the expression for I(r,z), one finds that

Z(r) ~ / |Az3 + BZZ—|—2C2122]( )3/2 d

where the constants

NI

1
wim (025 = 2)5(25)[14(1 = 2'7*) sin2][1 + (2% — 1) sin 2r]|
5—23"2543sin2r
1—(1-21"2)sin2r’
22725 -1
)1 + (232 —1)sin2r’

A:=a27%7(2s —2)

B:=a2%%7(2s -2

lxzfsfl
T 1+ (1—2%)sin2r

X [(1 —272)7(25 — 4)Z(25) [1+(1 — 21 72) sin 27][1 + (—14-2°7%) sin 27]

1
2

+ (25— 2)2[—(1—27%) (1 — 22°2)2 cos? 2r — 272(237% — 3sin2r — 5)5]2}

are smooth functions of sin 2r.

Lemma 3.4.6 then shows that



96 Chapter 3. Critical point asymptotics

for some explicit smooth function of the form

F(s,sin2r) = — 2

2 /°° 1 —a(t,s,sin2r) cos 3®(t,s,sin 2r) ”
7T JO

Since

ST

a(t,s,sin2r) = [(1+4B22) [(1+4C%272 +44%2] | * <1
for all » and all £ > 0, it stems that
F(s,sin2r)> 0.
Lemmas 3.4.2, 3.4.4 and 3.4.5 then ensure that
EN(Vu,R) ~ «x(s)R

with -
K(s) 1= 2/ F(s,sin2r)dr.
0

O

One can now read the asymptotic behavior of EN(Vu, R) in any regularity regime
from the lemmas that we have established in this section. Theorem 3.1.1 is therefore
proven.

3.5 Asymptotics for the number of critical points in the high
regularity case

This section is devoted to the proof of Theorem 3.1.3. As all along this chapter, we
shall take the definition (3.16) for the Gaussian random function u.

3.5.1 Some non-probabilistic lemmas

Before presenting the proof of this theorem, we need to prove a few auxiliary results
that do not use the fact that # and f are random functions. Specifically, these lemmas
concern solutions to the Helmholtz equation on R? of the form

o(x) i= [ e ED g(g) g

where ¢ € H™(T) for a certain real m and the standard embedding E : T — R? is
given by (3.2).

We start by recalling the following result on the asymptotic behavior of v, which
we proved in [EPSR22a, Proposition 2.2 and Remark 3.2]. In what follows, we will
denote the real and imaginary parts of a function g by gr and gj, respectively.
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Lemma 3.5.1. If m > 9/2, for r > 1 one has

D= (87-()2 [gl( ) Sll’l( )+gR( ) COS(T— %) +R1} ’

r

8t

30 = <r> [91(0) cos(r — %) — gw(0) sin(r — T) + Ra]

Ll

3u0 = (%) [(6) sintr — 1) + k(6) costr — )+ Ra],

where the errors are bounded as

—_

IR1|+ |VR1| + [V2Ri| + |Ra| + | Rs| S =

<

The following theorem provides very precise asymptotic information about the
critical points of v:

Lemma 3.5.2. Assume that m > 9/2, that g does not vanish on T, and that all the critical
points of |g| are non-degenerate. If ¢p* is a critical point of |g|, then for each large enough
positive integer n there exists a critical point (1}, 05) of v such that

* * r* 1
|4) _6n|+‘nn+%+arg8(¢) n‘ga

Conversely, if (r*,0*) is a critical point of v, there is some critical point ¢* of |g| such that

1
<
9 -0l S

Proof. Let us consider the function

Vi=Re [g(0) 73] = gi(6) sin(r — F) + gr(0) cos(r — ),

whose critical points (7*,6*) are the solutions to the equations
Im [¢(0")e " "$)] =0,  Re[g/(6")e "] =0.

Writing ¢ = |¢|e'"88, an elementary calculation shows that (r*,6*) is a critical point
of V if and only if r* = arg g(6*) + § + 7tn for some integer n and Re[g(6*)g’(6*)] =
0. As g does not vanish on T, the latter condition simply means that 6* is a critical
point of |g|. Furthermore, the Hessian of V at the critical points is

R 5(6°)] 13(6%)|(arg 8)'(6")
DV, 67) = (-1) <|g<9*>|(arg Y67 1gl”(6%) - [3(6)[(arg g (6* >]2>'

Therefore,
det D2V(r*,6) = —|(6")[g]"(6") # 0 (3.29)

because the critical points of |g| are, by hypothesis, nondegenerate.

Let us now consider the function

1

F(r,8) := DV(r,8) — <8rn> “Do(r,0),
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where DV := (9,V,0yV). Lemma 3.5.1 ensures that

[F(r,0)] + [DE(r,0)] S

S| =

As the critical points of V are uniformly non-degenerate by (3.29), Thom'’s isotopy
theorem (as stated, e.g., in [EPS13]) ensures that v has a critical point at a distance
at most C/n to each of the critical points (r*,6*) of V as described above, provided
that n is large enough. Furthermore, the asymptotic formulas for Dv presented in
Lemma 3.5.1 guarantee that all critical points of v that are far enough from the origin
must be of this form. The lemma is then proven. O

3.5.2 Proof of Theorem 3.1.3

As s > 5, Proposition 3.2.2 ensures that f € H® (T) almost surely for some s’ > 2.
Therefore, if one can prove that, with probability 1, f does not vanish on T and
all the critical points of |f| are nondegenerate, Theorem 3.1.3 will follow as an easy
consequence of Lemma 3.5.2.

Proving the first part of this assertion is completely standard, but the second part
is quite harder. In both cases, the proof relies on Bulinskaya’s lemma, which one can
state as follows [AW(Q9, Proposition 6.11]:

Lemma 3.5.3 (Bulinskaya). Let Y : T — R? be a random function that is of class C'(T)
almost surely. Uniformly for ¢ € T, assume that the random variable Y (¢) has a probability
density py g) : R? — [0, 00) that is bounded in some fixed neighborhood of the origin. Then

P{Y(¢) =0 forsomep € T} =0.

Armed with Bulinskaya’s lemma, it is easy to show that, almost surely, f does
not vanish:

Lemma 3.5.4. With probability 1, f does not vanish on T.

Proof. By the definition of u, cf. Equations (3.16) and (3.5), Y(¢) := (fr(¢), fi
a Gaussian random field Y : T — R? with zero mean. The covariance of Y (
be computed just as in Lemma 3.4.1, obtaining the nondegenerate matrix

)) is

an

(¢
¢)

» 5 » 7.[722 172 0
Var Y(¢) = E[Y(¢) @ Y(¢)] = 1>0,even _ _s)::z.
() =BT (e V@) = (T Bl L0
Therefore, Y (¢) has a bounded probability density function
exp(—dy-zly)
Pm))(y = 27(detX)1/2

on IR? because ¥ is a nondegenerate matrix. Lemma 3.5.3 then ensures that Y does
not vanish with probability 1. As the zeros of Y and f obviously coincide, the lemma
follows. O]

The crux of the proof of Theorem 3.1.3 is to show that the critical points of |f]|
are nondegenerate. This is not direct because |f| is not a Gaussian variable, and
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showing that it has a bounded probability density requires some work. The main
ingredient of the proof is the estimate we present in the following lemma. The proof
is somewhat involved, so we have relegated it to the next subsection in order to
streamline the presentation of the proof of Theorem 3.1.3. To state the auxiliary
result, we will write points in R® as

7 = (Z/,Z”) c IR4 % IRZ
with 2’ := (21,22, 23,24) and 2" := (25, 2¢).

Lemma 3.5.5. Consider the nonnegative rational function on R® given by

(z5 — z123)? N [(z5 — z123)% + 25 (2124 + 25 — 26)

2 6
) Z

Qz) == |2+ (3.30)

For any constant ¢ > 0,

e_CQ(Z) /
sup /Rz;idz < 0.

2
1 Z
|z <5 2

Assuming for the moment that this technical lemma holds, proving that the crit-
ical points of | f| are nondegenerate almost surely is straightforward:

Lemma 3.5.6. With probability 1, all the critical points of | f| are nondegenerate.

Proof. Let us start by noting that

FIIfI=3(fP) =Ref f = fefa + fifi -

Differentiating this identity, we obtain

FHF"+ (F1)? =Re f 7+ |f P = frfid + AT+ (f)* + (F)*

Therefore, all the critical points of | f| are nondegenerate if and only if

Y= (fefk + AR+ AR+ ()P + () T — R?
does not vanish.

AsY € C%(T) almost surely because s > 5, in order to apply Bulinskaya’s lemma
we only need to show that Y(¢) has a probability density that is bounded in a neigh-
borhood of the origin. The random variable Y (¢) is obviously not Gaussian, so in
order to compute its density we need to argue in an indirect way.

The starting point is the fact that the 2-jet of f,

Z:=(fRfufofi fRA)

defines a Gaussian random variable Z : T — R® with zero mean. Its variance

Var Z(¢) := E[Z(¢) © Z(¢)],

which does not depend on ¢, can be computed from the definition

1 ‘
(@) = o Y darll] e
27T %
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by arguing just as in the proof of Lemma 3.4.1. It turns out that Var Z(¢) = X, where
Y is the 6 x 6 matrix

ap 0 0 0 —bo 0
0 a 0 0 0 —b1
s_| 0 0 b o 0 o
o 0 0 0 b O 0 ’
—bo 0 0 0 Co 0
0O - 0 0 O c1
where
_22 Titom s = 22 +2ml+2m Ci = _22 +2m1+2m
and we have set 0; := |I|7° for | # 0 and 0p := 0. We have chosen to write this

formula in terms of 07 so that it is apparent that the result only uses the asymptotic
properties of the sequence 0;. Note that these sums are all convergent because s > 5.

The determinant of X is
detX = bobq (b(z) — HoCo) (b% — LZ1C1) .

As a;c; > bl-2 strictly by the Cauchy-Schwartz inequality, the matrix X is invertible.
Therefore, for each ¢ € T, the probability density distribution of Z(¢) is given by
the Gaussian function

g(z) := (271)3(detZ) "z 2572 € C¥(RY).

Consider now the map H : R® — R® given by
H(z) = (21,22, 23, 25,2123 + 2224, 2125 + 2226 + 23 + 23) - (3.31)

This map is invertible outside the hyperplane {z, = 0}, with inverse

2
1 Z5 — 72123 (z5 —z123)%  z1za+ 25 — 26
H (Z) =\ 21,22,23, ———, 24, — 3 - s
Z Z5 22
and its corresponding Jacobian determinant is det VH !(z) —z,2. Therefore,

the probability density distribution of the random variable H[Z(¢)] is obtained by
pulling back with the map H the probability distribution of Z(¢):

PHz(p)(2) = | det VH ! (2)| g[H 1 (2)] = (271) (detT) 2z,% %), (3.32)

with Qu(z) := 1H 1(z) - Z1H 1(2).

Now let H : R — R? denote the last two components of the map (3.31), that is,

H(z) := (2123 + 2224, 2125 + 2026 + 23 + 23) -

As the random variables Y (¢) and Z(¢) are related by

Y(¢) = H[Z(¢)],
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it then follows from (3.32) that the density of Y(¢) is given by the marginal distribu-
tion
Py(p) (") = o PHIZ(9) (z)dz'.

Now notice that the function Q(z) defined in (3.30) is simply

As the matrix X is positive definite, therefore there is a positive constant ¢ > 0 such
that

—cQ(z)
11 < e d / .

Lemma 3.5.5 then ensures that sup . -1 Py (z") < 1. Lemma 3.5.3 then guarantees

that the random function Y does not vanish on T almost surely, and the theorem
follows. O

Theorem 3.1.3 is then proven, modulo the proof of Lemma 3.5.5, which we will
address next.

3.5.3 Proof of the main technical lemma

Let us now present the proof of Lemma 3.5.5. To make the exposition clearer, we will
divide the proof in three steps.

The integral T

The first step is to rewrite the integral

e_CQ(Z)
I:= / dz'
R¢ Z3

in a more convenient way. For this, let us set

2123 — 25

0= 2z1Z23 — Z5, T:
Z2

The map z’ — (0, T,23,2z4) is invertible outside the hyperplane zz = 0 and the set
T = 0. In terms of these variables, the integral reads as

e_CQl
I = ——dodtdzzdzy
Ré |0z3|
with
2 2
— 2[4 (0 + 2s) (242 2L (@ +2s)
Q Qz+z4[ T ) | TP B —
2 2., .2 2 2
Qy:%+#+i+<ﬂT+? %»-+Gj%>. (3.33)
3
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As Q1 is a second order polynomial in z4, one can explicitly integrate in this variable,

obtaining
Z") \/7/ e dodtdzs,
R3 \/sz +12(0 4 25)2

with

2 24 .2 2 2
2,2, ¢ T23(T° + 25 — 26) > <Q+Z5>
Qri=zmtrs 2 <(Z§Qz +12(0 +25)2)1/2 " 3 '

Let us now consider polar coordinates (o, «) € R™ x T, defined as
Z3 =:0COSK, T=:0sln«.

Still denoting by Q> the expression of (3.33) in these variables, and similarly with the
other functions Q;, we get

2

2 2 _ . 2
Q= %CSCZDC + (M) sec?a + 02 + <U(U 26)51nac> .
o o 0

This enables us to write

I = \/7/ /Zn/ \/Q — - dodado.

a+ (0 + z5)2sin? o

As |2""] < 1, the denominator is nonzero for |g| > 1, so one obviously has

21 —CQ3
dU’chdQ<// dadg<1.
/112\[ 11/ / \/Q cos?

o+ (0+ z5)2sin’ &

We can then write

27 Qs -
1<1+/ / / dodado—=1+1.  (334)
\/Q cos?a + (0 + z5)? sin® &

The case z5 = 0

Let us start by assuming that z5 = 0, so that

. 1 21 oo p—cQs 1 21 poo p—co?—co 20%(0?—26)” sin® & cos’
1:/ / / 7d(7d¢de<2/ / / dodado.
1Jo Joo ol 0Jo Jow 0

The integral in ¢ can be computed in terms of the incomplete Gamma function

(A x) ::/ thletdt,
X

obtaining
- 27w oo
I< / / e_wzF[O, co?(0? — z¢)* sin® a cos® a] do du .
0 —0o0
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Then the bound
1
I'0,x) <log <2—|— x> ,

valid for all x > 0, immediately implies that

27T 1
1</ / | (2 )dd <1 (335
oP 8\t co?(02 —1/2)?sin® a cos? a cdasl (33)

IZ(J‘<

when z5 = 0.

The case z5 # 0

In view of the estimate (3.35), from now on, we shall assume that Z5N7é 0. Let us now
define the new variable ¢ := —¢/z5, in terms of which the integral I reads as

1/|Z5‘ 27T [ee] e—CQ4
/ / dU’ dadp.
1/ |zs| 0 S (0,

Here we have used that

\/QZ cos?a + (0 +z5)2sin*a = |z5] S(6, )

with

S(0,a) := \/@2 cos?a + (6 —1)2sin’«

and Q4 is defined as

2(42 2
o4 (0% —z )
Qu:=02+ M sin? & cos? a.

z25(0, )2
Let us fix some small € > 0 and define the sets
Mo :={(0,«):|0| <€, |sina| <€}, Mp:={(6,a):|6—1] <€, |cosa| < €}.

Since S(0,«) 2 1 for (6,a) ¢ MU M;j (not uniformly in €), let us consider the set
1 1
My = ((—,) X T) \(MoU My)
|x5] " |x5]

and split the above integral as

L e
Mo 0 M] 0 MZ 0

To estimate Iy, observe that M, consists of two connected components, which
are contained in |§| < € and either |a| < Ce or |« — 71| < Ce, respectively. It is
easy to see that both contributions to the integral are of the same size, so we will just
consider the first. To analyze it, let us use the bound

5(0,a) 2 /8% + a2,
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which clearly holds for (,«) € /\/lar , to write

ION/—e/ /SQ, dodadd

dodad.

~ [e / / Vo2 + N
Once can now introduce a new set of polar coordinates
0 =:rcosp, x =:rsinf,

which yields

- Ce 21 foo )
105/ / / e dodBdr <1.
o Jo Jo

An analogous argument for M, where [§ — 1| < € and either ¢ — J| < Ce or
la — 2| < Ce, shows that
L S1.
It only remains to bound L. As S(§,&) > (6) on My, where (x) := (1+x 2)1 is
the Japanese bracket, we can write

2
1/|zs| 27T oo 2 o (ePzg) 2 2
N/ / / e e 25<g T e d do

1/‘Z5|
2
1/|zs|  pm/2 oo ] —co —CLT ZLT 262) sin? a cos? & B
/ / / siaw) do dadg.
1/|zs|

As cos’asin’a = }sin’(2a) and sina > a for |x| < %, the integral in a can be

estimated as

e e duo

/4 _ 172(17 —z, ) sm2 2 -1
_2/71 C 6 (2a) di < <0’(0’~ ~Z6)> ,
z55(0)

where 5(4) == ¢ + (1 — §)?. Here we have used that for ¢ > 0

/7‘(/4 e*CZXde _ \/EEI'f (%)
0 2c

2
m/2 fcgég 262) sin? & cos? & n/2 —c” (‘7 Zg) sin?(2a)
/ 25(00) docg/ %)
0

S

where Erf is the error function. Since |z¢| < 3, this yields
1/|zs| fca _ -1
G
1/]2s] 255(8)

1255(0)|
- dod
/ / (Z+02)k (P + (0 T 25)2 + 0%(07 — 2212 77

e*CU'
< dodo.
/71/0 (@ + (g 252+ 02(02 —1/2)2)172 7710
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where we have used that if zs = ap

(5)° _pP+(p+32) _@+20+2
02 + 23 p? + 22 a?+1

for some C > 0 and for all 2 € R. To integrate in o, we need that

1 1
N (e

1 (\/E\/(a—z)a+b+2—u+2) (ﬂ\/a(a+2)+b+2+a+2)
ﬁlog( a2 +2b ) '

Using that |z5| <  we conclude

2
(ﬁ\/zwﬁ 4t 2113+ 5)
d
202 (1 —202)*

1}5/ e log o
0

Thus, we obtain the bound N
L <1,

~

from the fact that the logarithmic singularities at ¢ = 0 and o = 1/+/2 are integrable.
Lemma 3.5.5 in then proven.

APPENDICES

3.A Monochromatic waves with many nondegenerate criti-
cal points

In this Appendix we aim to prove that there exist solutions to the Helmholtz equa-
tion
Av+v=0

on the plane with many isolated critical points. Specifically, let
N*(Vo,R) := {x € Bg : Vo(x) =0, det V*v(x) # 0}

be the number of nondegenerate critical points of v contained in the ball of radius R.
One can then prove the following:

Proposition 3.A.1. Given any continuous function p : R? :— R*, there exists a solution
to the Helmholtz equation on R? such that

N*(Vv,R) > p(R)

forall R > 1.

Proof. Without any loss of generality, let us assume that the function p is increasing.
Take a set of distinct points {x; }xeny C R? without any accumulation points such
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that
#{k € N :x; € Bg} > p(R+ 1) (3.36)

forall R > %. At each point xy, consider the number

1. .
g = 8m1n{1,j€ﬂ1\1r{€{k} ES —xj]} ,

which is positive because the set {xy }ren does not have any accumulation points.

The function vy (x) := Jo(|x — x|) satisfies the Helmholtz equation on the plane
and xj is a nondegenerate maximum of vy (in fact, D?vi(x;) = —%I). Therefore,
the implicit function theorem ensures that there exists some €, > 0 such that any
function v with [|vx — 0| c2(p(x, 2r,)) < €k has a nondegenerate local maximum inside
the ball B(xy, 7). Notice that B(xy, 2r¢) N B(x;,2rj) = Qif k # j.

The better-than-uniform global approximation theorem for the Helmholtz equa-
tion [EPS13, Lemma 7.2] ensures that there exists a solution v to the Helmholtz equa-

tion on IR? such that

0% — vllc2(B(x,2n) <1.

k€N €k

One then infers that v has a nondegenerate critical point in each disk B(xy, 7). The
property (3.36) then ensures that N*(Vo, R) > p(R) for all R > 1, as claimed. O

Remark 3.A.1. The result and the proof remain valid in higher dimensions. The only
modification is that, on R", one must define vy (x) := |x — xk|1_%]%_1(|x — xk|)-

Remark 3.A.2. The function v may not be polynomially bounded at infinity, so v
does not need to have a Fourier transform. In particular, it does not need to be the
Fourier transform of a distribution supported on the unit sphere.

3.B The translation-invariant case

In this Appendix we shall see why the evaluation of the Kac-Rice integral that gives
the asymptotic behavior of EN(Vu, R) (cf. Lemma 3.4.2) is so much easier in the
translation-invariant case (that is, when s = 0 following Remark 3.4.1).

In the translation-invariant case, it is easy to work directly in Cartesian coordi-
nates, instead of using polar coordinates. This is because all one needs to know
about u in order to apply the Kac-Rice formula are expectation values of the form
E[0%u(x) 0Pu(x)], where &, B are multiindices of order at most 2. These quantities
can be computed exactly using that, as discussed in Remark 3.4.1, for s = 0 the
covariance kernel is (up to a normalizing constant)

K(x,#') = Jollx =) = [ €0 do(e). (337)

Indeed, taking derivatives in this expression one finds that

E[ou(x) #Pu(x)] = i [ g2eFao(c).
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The last integral can be computed in closed form because [Fol01]

(o (‘ y

These formulas readily show that E[dju djju] = 0, so Vi and V?u are independent
Gaussian random functions, and that the covariance matrices of the first and second
derivatives of u are

1 (301
Var Vu(x) = -1, VarVZu(x):§ 010
103

Again, we have regarded V2u as a 3-component vector. By the Kac-Rice formula,
these expressions are enough to show

z = x(0)R? (3.38)

EN(Vu, R) = 7R? 4 +2vauzn -4
(Vi,R) =m /}R3 87T (27)3/2

as in Remark 3.4.2.

In polar coordinates, one sees essentially the same simplifications. The point is
that it suffices to differentiate the addition formula

g(r,7,0) (\/1’2 2 —2rr' cos6) Zel]l "Ycos 10,

where € := 2 — ¢, is Neumann’s factor, to compute in closed form all the sums
appearing in the Kac-Rice formula (Lemma 3.4.2). Incidentally, the addition formula
is equivalent to the assertion that the covariance matrix of u is (3.37), written in polar
coordinates. For example,

Zel]l 2=g(r,r,0) =1,
Y. euli(r)? = 3,a,(r,7,0) = &
1=0

Y- (i) = — 53 (r,7,0) =
=0

T
4’

ad 4 + 3r

;611411(1’)2 = agg(r, r,0) = (—g) .

These formulas are exact and easy to obtain, as one does not need to carry out the
hard frequency analysis that constitutes the core of this chapter. Of course, one can
plug the values of these sums in Lemma 3.4.2 to readily recover the formula (3.38)
for the expected number of critical points.






Chapter 4

Nodal set of monochromatic waves
satisfying the Random Wave model

4.1 Introduction

In this chapter we explore the connection between the RWM (and Yau’s conjecture)
and Helmholtz’s, see Section 1.1.1. We are only aware of one instance when the
RWM can be deterministically implemented to obtain information about the nodal
set: Bourgain [Boul4] showed that certain eigenfunctions on the flat two dimen-
sional torus behave accordingly to the RWM and deduced (1.6). Subsequently, Buck-
ley and Wigman [BW16] extended Bourgain’s work to “generic” toral eigenfunctions
and A. Sartori [Sar20] proved a small scales version of (1.6).

Here, we construct deterministic solutions to (1.4) on R” which satisfy the RWM,
in the sense of Bourgain [Boul4], in growing balls around the origin. We then use
the RWM to study their nodal set, deduce the analogue of (1.6), (1.7) and also find
the asymptotic number of nodal domains belonging to a fixed topological class and
with a nesting tree configuration. These results appear to be new for m > 2 (the
study of the nodal volume also for m = 2) and they present new difficulties such as
the existence of long and narrow nodal domains and the possible concentration of
the nodal set in small portions of space. We overcome the far from trivial difficulties
using precise bounds on the average doubling index, an estimate of the growth rate
introduced by Donnelly-Fefferman [DF88] (see Section 4.2.3), using recent ideas of
Chanillo, Logunov, Malinnikova and Mangoub, [CLM+20]. In particular, our proofs
show how integrability properties of the doubling index allow to extrapolate infor-
mation about the zero set of Laplace eigenfunctions from the RWM. Furthermore,
our new approach (based on the weak convergence of probability measures on C°
spaces, Section 4.2.2, and Thom'’s Isotopy Theorem 4.2.11) gives us an answer to
previous questions raised by Wigman and Kulberg, see Section 4.7.2.

41.1 The eigenfunctions

Let m > 2 be a positive integer, "1 C R™ be unit sphere and {r,,},>1 C S" ! bea
sequence of vectors linearly independent over Q such that they are not all contained
in a hyperplane!, we will give some properties and examples of such sequences in

1 As it will be discusses later, this is a technical, but necessary requirement for our construction to
be non-degenerate.
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Section 4.1.5 below. The functions we study are
1

AN ane((tn,-)) (4.1.1)
[n|<N

N=f=

with domain R™, a,, are complex numbers such that |a,| = 1, e(+) = €™ and (-, )
is the inner product in R”. Moreover, we require 4, = a_, so that f is real valued,
asr_, = —r, forn > 0.

Differentiating term by term, we see that
Af = —4r%f,

thus, f is a solution of the Helmholtz equation in R™. Moreover, the high-energy limit
of f is equivalent to its behaviour in B(R) = B(R,0), the ball of radius R centred at
the origin, as R — oo. Indeed, rescaling f to fr := f(R-), then

AfR = —47'[2R2fR.

Thus (271R)? plays precisely the role of A of Section 1.1.1.

The functions in (4.1.1) do not satisfy any boundary condition, so the spectrum is
continuous; however, following Berry [Ber83], they can be adapted to satisfy either
Dirichlet or Neumann boundary conditions on a straight line. It is plausible that our
arguments work also in the boundary-adapted case with minor adjustments, but we
do not pursue this here. Moreover, we have assumed for the sake of simplicity that
|a,| = 1, but more general coefficients could be considered.

Finally, it will be important to keep track of the position of the set r := {r, },,>1
through the following probability measure supported on "~

1
e N Y. 6 4.1.2)

[n|<N

where J,, is the Dirac distribution supported at r,,. Since the set of probability mea-
sures on $" ! equipped with the weak* topology is compact (as a standard diagonal
argument shows), up to passing to a subsequence, from now on we assume that y,
converges to some probability measure y as N — co.

4.1.2 Statement of main results, the nodal set of f

Let R > 1 and denote by N (f, R) the number of nodal domains of f in the ball of
radius R centred at 0 which do not intersect dB(R), the boundary of B(R), and let
V(f,R) = H" x € B(R) : f(x) = 0}. Moreover, given a probability measure u
on S letcng (1) be the Nazarov-Sodin constant, see Section 4.2.4 below. Then, for
the functions f as in (4.1.1) we prove the following asymptotic statements:

Theorem 4.1.1. Let f be as in (4.1.1), then we have

o N(f,R) _
m hr;j;}p VoI B(R) ens(u)| =0, (4.1.3)

where cys (i) is the Nazarov-Sodin constant of the field F,.
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Remark 4.1.2. Note that this kind of double limits gives us the deterministic realiza-
tions we are looking for. Indeed, the statement is equivalent to: given some ¢ > 0,
then there exist some Ny = Ny(¢, m) such that all N > Nj the following holds: there
exists some Ry = Ry(N, ¢, m) such that R > Ry, we have

,R
OB ) < 419

that is, it satisfies the Nazarov-Sodin growth with a constant as close as we want to
cns(p). The question of whether we can take the limit of N first will be analyzed in
Section 4.7.

Theorem 4.1.3. Let f be as in (4.1.1), then we have

lim lim sup
N—=oo R o

m _ C(y)‘ _o, (4.1.5)

for some (explicit) constant c(u) > 0.

Remark 4.1.4. Note that, rescaling fr = f(R-), then Theorem 4.1.3 gives

YiUrl) cl(y)’ =0

lim limsup
N—oo R

R

for some constant ¢; (i) > 0, in accordance with (1.7) if (2tR)? = A.

One of the main new ingredient in the proof of Theorem 4.1.1 is, in the terminol-
ogy of Nazarov and Sodin [NS16], the semi-local behaviour of the nodal domains
count of f, that is, we have the following;:

Proposition 4.1.5. Let f be asin (4.1.1), R > W > 1. Then, we have

N(f,R) 1 . N
vol B(R) ~ vol B(W) ( )N(sz(x/W))dx+O(W D) + O (RA212).
B(R

For m = 2, Proposition 4.1.5 follows from the bound V(f,R) < R™, see for
example Section 4.2.3 below, which implies that most nodal domains have diameter
at most O(1). However, for m > 2, this argument does not rule out the existence of
many long and narrow nodal domains. Following the recent preprint of Chanillo,
Logunov, Malinnikova and Mangoubi [CLM+20], f should grow fast around such
nodal domains and this can be estimated in terms of the doubling index of f, see
Section 4.2.3 below. The proof of Proposition 4.1.5 then relies on precise estimates on
the average growth of f, which we obtain in Section 4.4.2. Using the aforementioned
estimates, we are also able to show that there is no concentration of nodal volume of
f in small portion of the space. That is, we prove the following proposition which
will be one of the main ingredients in the proof of Theorem 4.1.3:

Proposition 4.1.6. Let F, be as (4.1.6), then for some (fixed) « > 0 there exists Ry =
Ro(N, W, a) such that for all R > R, we have

][ V(f,B(x, W))l+adx < wr(ta) o p(m=1)(1+a)* 4 ON,W,a(R_A_S/Z)/
B(R)

where the constant in the S-notation is independent of N.
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4.1.3 De-randomisation

In this section we make precise in which sense f satisfies the RWM. We first need
to introduce some notation: let R > W > 1 be some parameters, where R is much
larger than W, and let F,wrn = Fy be the restriction of f to B(x, W), the ball of
radius W centred at x € B(R), that is,

1
Fi(y) = T P ane(ry - x)e (ry - y) (4.1.6)

fory € B(W) and x € B(R). Here, we show that, as we sample x uniformly in
B(R), the ensemble {Fy }cp(r) approximates, arbitrarily close, the centred stationary
Gaussian field with spectral measure y. We denoted the said field by F,, and collect
the relevant background in Section 4.2.1 below.

To quantify the distance between F, and F,, given some integers > 0Oand W > 1,
we consider their pushforward probability measures (see Section 4.1.8 below) on the
space of (probability) measures on C*(B(W)), the class of s continuously differen-
tiable functions on B(W). Since the space of probability measure on C°(B(W)) is
metrizable via the Prokhorov metric dp, we define the distance between F, and F, as
the distance between their pushforward measures. More precisely, given to random
fields F, F' defined on two, possibly different, probability spaces with measures P
and P/, we write dp(F, F') := dp(F.IP, F[IP'), where F.P is the pushforward proba-
bility measure. We collect the relevant background in Section 4.2.2 below.

With this notation, we prove the following:

Theorem 4.1.7. Let f and F, be as in (4.1.1) and (4.1.6) respectively, W > 1, and
s 2 0. Then we have
lim limsupdp(Fy, F,) =0,

N—=oo R oo

where the convergence is with respect to the C*(B(W)) topology.

One of the main ingredients in the proof of Theorem 4.1.7 will be the computation
of the LP-norms of F, and from these deduce its Gaussian behaviour. In particular,
in Proposition 4.3.3 we will show that

; 2p _ (Zp)!
VO]B(R) /B(R) |Fx(y)| dx = p1or (1 +0N,R—>oo(1)),

uniformly for y € B(W), that is, F, has (asymptotically) real Gaussian moments.

4.14 Topologies and nesting trees

In this section we present a strengthening of Theorem 4.1.1 in that we study nodal
domains restricted to a particular topological class or nesting tree. First, we need
to introduce some definitions following [SW19]. Let ¥ C R be a smooth, closed,
boundaryless, orientable submanifold and denote by [X] its diffeomorphism class,
that is, >’ ~ X if and only if there exists a diffeomorphism ® such that ® (X) = %/,
and let H(m — 1) be the set of diffeomorphism types [X]. Moreover, since V(R) :=
£71(0) N B(R) is a smooth m — 1-dimensional manifold (if the zero set is regular), we
can decompose V(R) into its connected components V(R) = Uce¢(f.r) ¢, Where we
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ignore components which intersect 0B(R). Similarly, we can decompose B(R)\V(R) =
Uxed(f;r) @ as an union of connected components. We define the tree X(f; R) where
the vertices are « € A(f, R) and there is an edge between a,a’ € A(f; R) if the share
an (unique) common boundary ¢ € C(f;R). Let 7 be the set of finite rooted trees.

We define N'(f, S, R) where S = {[X4]}gens C H(m — 1) as the number of nodal
components of f in B(R), which do not intersect dB(R) and diffeomorphic to some
Y € S. Given T € T, we define N'(f, T, R) similarly. With this notation, we prove
the following:

Theorem 4.1.8. Let f be asin (4.1.1),S C H(m — 1) and T € T, then we have
N(f,S,R)

lim lim — =

Aim 1R sup |~ (R) C(S,y)‘ 0
N N(f,T,R)

lim limsup |—=——+- — ¢(1 =

Noooo lR S:: vol B(R) e(T.p)| =0

for some constants ¢(S, i) and ¢(T, u).

We observe that Theorem 4.1.1 follows from Theorem 4.1.8 choosing S = H(n —
1). Therefore, we only need to prove Theorem 4.1.8.

4.1.5 Examples and properties of the r,,’s

In this section, we give two examples of sequences {r,} C S"~! being Q-linearly
independent.

Example 4.1.9. For m = 2, identifying S' with R/Z =~ [0, 1], we may take a sequence
of rational numbers {b, } in (1,¢) then log b, = r, is linearly independent over Q by
Baker’s theorem [Bak66]. For m > 2, we may take a vector the first co-ordinate of
which is log by,.

Example 4.1.10. For S§m—1 we can construct the sequence as follows. Let r be a
point on §"-1 and define S; = Smfl\@m, the span with algebraic coefficients of
r1. As we are removing a countable set from an uncountable set, S; is non-empty,
in fact, uncountable, thus we may choose any r, € S;. For a general n > 2, let
Sn = $,-1\Qr,_1 and r, € S,,. By induction, bearing in mind that for sets A4, B, C,
(A\B)\C = A\(B U C), the sequence is rational independent and, by construction,
we can also choose the 7,,’s such that they uniformly distribute over $”~!. In partic-
ular, we may choose a sequence of r,, such that y, weak™ converges to the Lebesgue
measure on "1,

In particular, Example 4.1.10 shows that if we chose the r;,, uniformly at random
from S"~1, then the rational independence assumption would hold almost surely.
This implies that our assumptions are somehow “generic”. Finally, we will repeat-
edly use the following consequence of the Q-linear independence of the vectors {r, }:
by a compactness argument, forany N > 1and T > 1 there exists some ¢y = (N, T)
such that forany t < T

|tny + oo + 1| > ¥(N, T) >0, (4.1.7)

for all |n1| < N,...,|n:] < N, unless t is even and, up to permuting the indices,

Tny = —Tnyy ey Ty g = —Tn,-
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4.1.6 Plan of the proofs

Proof of Theorem 4.1.7, Section 4.3. The proof of Theorem 4.1.7 follows from an applica-
tion of Bourgain’s de-randomisation: roughly speaking, the linear independence of
the sequence {r, } implies asymptotic independence of the waves e((ry, x)) under the
uniform measure in B(R), thus the asymptotic Gaussian behaviour of F; as in (4.1.6)
is expected from the Central Limit Theorem, although we cannot directly apply the
CLT as our waves are not independent.

To make this intuition precise, following Bourgain, we introduce an additional
parameter K > 1 and consider an auxiliary function:

e ::;Ec[(zwr( TE= N ] (1) (y) @1

where the ¥ € I, C S~ for k € K are appropriately chosen points and the I; form
a particular subset of a partition of the sphere, see (4.3.3). First, in Lemma 4.3.1,
using asymptotic results for Bessel functions, we show that ¢, is, on average, a good
approximation of Fy as the number of ¥ grows, that is,

][ ||47x - FXH%S(B(W)) dx = 0(1) as K,R — Q.

The advance in passing to ¢y is that we isolate the contribution of the “wave-packets”

1
by = ARG Y ane(ry - Rx);

rn€ly

this allows us to show, see Lemma 4.3.2, that the b;s are asymptotically (as N,R —
00) i.i.d. complex standard Gaussian random variables. Thus, we can “approximate”
¢y in the C*(B(W)) topology by the random field

KFuc(y) = X pr(li)ese (¢y) (4.1.9)

with the ¢x i.i.d. complex standard Gaussian random variables and xx a normalizing
factor, see (4.3.21). Finally, we let K go to infinity so that the field F,, will “converge”
to F,. We observe that passing to ¢ gives a stronger statement than Theorem 4.1.7
because ¢, and F, are defined on the same probability space and are C° close in 12,
not just with respect to the Prokhorov distance.

Proof of Theorem 4.1.8, Sections 4.4 and 4.5. We discuss the proof of the (simpler)
Theorem 4.1.1. The starting point is Proposition 4.1.5:

N(er) 1 1

As mentioned in the introduction, to prove (4.1.10), we need to discard the possibil-
ity of long and narrow nodal components of f which intersect many balls B(x, W).
Following the recent preprint of Chanillo, Logunov, Malinnikova and Mangoubi
[CLM+20], f has to grow very fast in balls around such nodal domains, this can
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be quantified using the doubling index? of f in a ball B(x, W):

SUPp(x2w) £l L1

mf(B(x,W)) = ]OgW .
X,

In Lemma 4.4.5, we show that 91¢(x, W) is not too big in an appropriate average
sense. Therefore long and narrow nodal domains are “rare” and contribute only to
the error term in (4.1.10). This will be the content of Section 4.4.

Next, we show that Theorem 4.1.7 together with the stability of the nodal set
(Proposition 4.5.2) imply that

N(F, W) -5 N'(F,,W) asN,R — co, (4.1.11)

where the convergence is in distribution. Thanks to the Faber-Krahn inequality
[Cha84, Chapter 4], see also [Man08, Theorem 1.5],

sup N (F, W) S W™,
X

thus, uniform integrability or Portmanteau Theorem, together with (4.1.10) and (4.1.11)
give

][ N (Ee, W)dx = E[N (F,, W)](1+0(1)) asN,R — . (4.1.12)
B(R)

This is proved in Proposition 4.5.1. Finally, we evaluate the right hand side of (4.1.12)
using the work of Nazarov-Sodin [NS16], thus concluding the proof of Theorem
4.1.1.

Proof of Theorem 4.1.3, Section 4.6. The proof of Theorem 4.1.3 follows the same
strategy as the proof of Theorem 4.1.1, with the additional difficulty that V(F,) may
be unbounded in the supremum norm. To circumvent this problem, and thus apply
the uniform integrability theorem, we show in Proposition 4.1.6 that V(Fy, W) is uni-
formly integrable. The proof relies on the estimate on 91¢(x, W) which we obtained
in Section 4.4.2. Once Proposition 4.1.6 is proved, the proof of Theorem 4.1.3 follows
step by step the proof of Theorem 4.1.1.

Finally in Section 4.7 we collect some final comments and in the appendix some
proofs for completeness.

4.1.7 Related work

De-randomisation. Ingremeau and Rivera [IR20] applied the technique on Lagrangian
states, that is, functions of the form f,(x) = a(x)e®®)/" The authors show that
the long time evolution by the semiclassical Schrodinger operator of (a wide family
of) Lagrangian states on a negatively curved compact manifold satisfy the RWM
in a sense similar to Theorem 4.1.7. Thus, they provide a family of functions on
negatively curved manifolds satisfying the RWM.

%In the literature, the doubling index is usually denote by N or A Since this would clash with the
N in (4.1.1) or the NV of nodal domains, we opted for 9(-). We will slightly modify the definition later.
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Nodal domains. The study of N for Gaussian fields started with the breakthrough
work of Nazarov and Sodin [NS09; NS16]. They found the asymptotic law of the
expected number for nodal domains of a stationary Gaussian field in growing balls,
provided its spectral measure satisfies certain (simple) properties, importantly the
spectral measure should not have atoms. That is, given a (nice) Gaussian field with
spectral measure j, there exists some constant cys(p) > 0 such that

. N(F,R)
1%1_130 WH(R)) = cns (i), (4.1.13)

where the convergence is a.s. and in L.

As far as deterministic results about A are concerned, Ghosh, Reznikov and Sar-
nak [GRS17; GRS13], assuming the appropriate Lindelof hypothesis, showed that
N (-) grows at least like a power of the eigenvalue for individual Hecke-Maass
eigenfunctions. Jang and Jung [JJ18] obtained unconditional results for individ-
ual Hecke-Maass eigenfunctions of arithmetic triangle groups. Jung and Zelditch
[JZ16] proved, generalising the geometric argument in [GRS17; GRS13], that N/ (-)
tends to infinity, for most eigenfunctions on certain negatively curved manifolds,
and Zelditch [Zel16] gave a logarithmic lower bound. Finally, Ingremeau [Ing18]
gave examples of eigenfunctions with A/(-) — co on unbounded negatively-curved
manifolds.

Topological classes. Sarnak and Wigman [SW19] and Sarnak and Canzani [CS19]
proved the analogous result of (4.1.13) for N'(F,, T,R) and N (F,, H,R), again, for
spectral measures with no atoms. For deterministic results, Enciso and Peralta-Salas
[EPS13] proved the existence of functions g (in the more general setting of elliptic
equations and non-necessarily compact components) such that A'(g, H,R) > 0 and
this property is valid even if we perturb ¢ in a C¥ norm. This is the key element to
prove the positivity of the constants c¢(H, j) of the analogous result of (4.1.13). It is
also worth mentioning that Enciso and Peralta-Salas’ techniques can be applied to
solve another problem raised by M. Berry [Ber(01] related to the existence of (com-
plex) eigenfunctions of a quantum system whose nodal set has components with
arbitrarily complicated linked and knotted structure, [EHPS18]. Furthermore, some-
how related techniques for the construction of specific structurally stable examples
applied to dynamical systems play a fundamental role in an extension of Nazarov-
Sodin’s theory to Beltrami fields. These fields are (vector-valued) eigenfunctions of
the curl (instead of the Laplacian treated here) and they are a key element in fluid
dynamics; turbulence can only appear in a fluid in equilibrium through Beltrami
fields. This extension allows one to stablish V. I. Arnold’s long standing conjec-
ture on the complexity of Beltrami fields (i.e., a typical Beltrami field should exhibit
chaotic regions coexisting with a positive measure set of invariant tori of compli-
cated topology), see [EPSR20].

4.1.8 Notation

We will use the standard notation < to denote < C, where the constant can change
its value between equations, and m > 2 will be a positive integer which denotes
the dimension of the space and A = (m — 2)/2. Moreover, given a large parameter
R > 1, we denote by B(R) the ball of radius R in R and by B(R) its closure. Given
some r > 0 and a ball B, we denote by rB the concentric ball with r-times the radius.
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We write

1

B{i)h(x)dx = VolB(R)/B(R)h(x)dx = /B(R)h(x)dvolR(x)

where volg for the uniform probability measure on B(R). Furthermore, we denote
by (Q),IP) an abstract probability space where every random object is defined and,
given a probability measure y on 5" ~!, we denote by F, the centred, stationary Gaus-
sian field with spectral measure y, see Section 4.2.1 for more details.

Given two measurable spaces (Y, X) and (X, F), ameasurable mapping ¢: ¥ — X
and a measure u on Y, the pushforward of p, denoted by gy, is

g-n(B)=n (37'(B))

for B € F. Note that g,y is well-defined as g is measurable. Finally, given some
function ¢ : R” — R and a set A C R, we denote by g| 4 the restriction of g to A.

4.2 Preliminaries

4.2.1 Gaussian fields background

We briefly collect some definitions about Gaussian fields (on R™). For us, a (real-
valued) Gaussian field F is a continuous map F : R" x () — R for some probability
space (), such that all finite dimensional distributions (F(x3,-),...F(x,-)) are mul-
tivariate Gaussian. We say that F is centred if E[F|] = 0 and stationary if its law is
invariant under translations x — x 4 7 for T € R™. In this script, every Gaussian
field is both centred and stationary. Then, the covariance function of F is

E[F(x) - F(y)] = E[F(x —y) - F(0)].

Since the covariance is positive definite, by Bochner’s theorem, it is the Fourier trans-
form of some measure y on R™. So we have

EFFW)] = [ e((x—y,2))du(2).

The measure y is called the spectral measure of F and, since F is real-valued, it satisfies
u(—=I) = u(I) for any (measurable) subset I C IR™, thatis, y is a symmetric measure.
By Kolmogorov theorem, y fully determines F, so we simply write F = F,.

4.2.2 Weak convergence of probability measures in the C® space.

Let S = C*(V) be the space of s-times, s > 0 integer, continuously differentiable
functions on V, a compact set of R™. In this section we review the conditions to en-
sure that a sequence of probability measures {1, } on S converges weakly to another
probability measure, y, see also [Bil13, Chapter 7] for s = 0.

First, since S is a separable metric space, Prokhorov’s Theorem [Bil13, Chapters
5 and 6] implies that P(S), the space of probability measures on S, is metrizable via
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the Lévy—Prokhorov metric. This is defined as follows: for a subset B C S, let denoted
by B, the e-neighbourhood of B, that is,

Bie:={peS[3qeB, |lp—qllc <e}

The Lévy—Prokhorov metric dp : P(S) x P(S) — [0, +0) is defined for two probability
measures ¢ and v as:

dp(pu,v) := inf {u(B) < v(Bye) +¢ v(B) < u(Bye) +eVB € S}. (4.2.1)

e>0

It is well-known [Pri93, Claim below Lemma 2] and [Wil86] that if the finite di-
mensional distributions of some sequence X,, taking values on S converge to some
random variable X, thatis forall yq,...,y; € V

(X (Y1), oo Xu (1)) =5 (X (Y1), ooy X(11)) @S —> 00 (4.2.2)

where the convergence is in distribution, and the sequence {(X,).[P} is tight, then
(Xn)+«P converges to (X).IP in P(S) equipped with the metric dp. A set of probability
measured IT on S is tight if for any € > 0 there exists a compact subset Q. C S such
that, for all measures v € I, v(Q,) > 1 —e.

A characterization of tightness in P(S) is given in the next lemma, which can be
seen as a probabilistic version of Arzela-Ascoli Theorem. Let us define the modulus
of continuity of a function g € S as:

wg(d) = sup {lg(y) — g} (4.2.3)
ly—y'l|<o

We then have following lemma [Pri93, Lemma 1]:

Lemma 4.2.1. A sequence {}i,,} of probability measures on S is tight if and only if

i) For some y € V and € > 0 there exists M > 0 such that, uniformly in #:

max pi,(g: |D*g(y)| > M) <e

laf<s

ii) For all multi-index « such that |a| = s and ¢ > 0, we have

lim lim sup p,, (g : wpeg(d) =€) = 0.

=0 peo

Finally, we will need the following result of uniform integrability [Bil13, Theorem
3.5].

Lemma 4.2.2. Let X, a sequence of random variables such that X, i> X (i.e., in
distribution). Suppose that there exists some a > 0 such that E[|X,|'*%] < C < o
for some C > 0, uniformly for all n > 1. Then,

EX, — EX.
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4.2.3 Doubling index

Following and Donnelly-Fefferman [DF88] and Logunov and Malinnikova [Log18a;
Log18b; LM18], given a function & : R" — R, we define the doubling index of h in B
as

su h
SUP,p 1] +1 (4.2.4)

PlB) = o8 p T

with ¢, := 2y/m. The doubling index gives a bound on the nodal volume of f, as
in (4.1.1), thanks to the following result [DF88, Proposition 6.7] and [LM19, Lemma
2.6.1].

Lemma 4.2.3. Let B C R™ be the unit ball, suppose that / : 3B — R is an harmonic
function, that is, Ah = 0, then

V(h,1/2) < Mu(B).
Applying Lemma 4.2.4 to the lift ii(x, t) := f(x)e*™ : R""1 — R, we obtain the
following;:

Lemma 4.2.4. Let f be as (4.1.1) and r > 1 be some parameter, then

V(f,B(r)) - r "1 < Np(BBr)) +

Proof. First, we observe that the function h(x,t) := f(x)e*™ is harmonic in a ball
B(+/2r) D B(r) x [—r,7] and that

H"™ Yx € B(r) : f(x) =0} x2r < H™{(x,t) € B(V/2r) : h(x,t) = 0}

Therefore, rescaling B(1/2r) to a ball of radius one, the lemma follows from Lemma
4.2.3, upon noticing that

V(f, B(r)r ™" S+ 9N(f, B(er))

for any ¢ > 21/2 and that the supremum norm is scale invariant. 0

In particular, we can control the doubling index of f using the well-known Nazarov-
Turan Lemma, see [Naz93] and [FM06] for the multi-dimensional version:

Lemma 4.2.5. Let g(x) = 2]121 aje(¢; - x) for x € R™ and ¢y, ...¢; distinct frequencies,
moreover let B C R" be a ball and I C B be a measurable subset. Then there exist
absolute constants ¢q, c»; > 0 so that

B\
sup|gl < (m) sup lg|
B I

Combining Lemma 4.2.5 with Lemma 4.2.4, we obtain the following:

Lemma 4.2.6. Let f be as (4.1.1) and » > 0 be some parameter, then

V(f,B(r)) - r " <N+,
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Finally, to study the nodal domains of f, we will to use the doubling index to
control the growth of f in sets which might not be balls. That is, we will need the
following lemma [LM19]:

Lemma 4.2.7 (Remez type inequality). Let B be the unit ball in R™ and suppose
that & : 2B — R ia an harmonic function. Then there exist constants c¢1,c, > 0,
independent of /i, such that

|B| M, (2B)
sup ] < sup [i] (|E|)
B E

for any set E C B of positive measure.

Using the harmonic lift & of f as in Lemma 4.2.4 and rescaling, we deduce the
following:

Lemma 4.2.8. Let B(r) C R be a ball of radius r > 0 and f be as in (4.1.1) then there
exist constants ¢, ¢ > 0, such that

‘B(T‘)‘ Cz(mf(B(ZV))+V)
supf| < sup /] (
o e \E®)

for any set E(r) C B(r) of positive measure.

4.2.4 Additional Tools

In this section we extend for our purposes the work of Nazarov-Sodin [NS16] and
Sarnak-Wigman [SW19] to the case of a possibly atomic symmetric spectral measure
and give a sufficient condition for the positivity of the constants cys(+), ¢(T, ) and
c(H,-) appearing in Theorems 4.1.7 and 4.1.8. For dimension two and for nodal
domains, this was done in [KW18, Proposition 1.1], see also Section 4.7.2 below for
some additional results. The proof essentially follows [NS16], we reproduce some
details for completeness.

S

Given a probability measure p on "1 and an integer s > 1, let F Lﬁ(y) , the
closure in the Fréchet topology of C° compact convergence of the Fourier transform
of Hermitian functions #: R” — C with [ |h|?>dyu < co. Then, bearing in mind the
notation in section 4.1.4, we have the following:

Theorem 4.2.9. Let i be symmetric probability measure on S”~ 1. Let S € H(m — 1)
and T € T. Then, there exist constants c(S, ), c(T, i) such that

E[N (E,, -, R)] = vol B(R)(c(-, ) + 0, (1))

as R — oo. The constant ¢(S, i) will be positive if there is a function Fy with a regular
(i.e., the gradient doesn’t vanish) connected component in S contained in B(r) for

=73, . .
somer > 0and Fy € F Lg(p) , similarly for c(T, p).

The last condition means that Fy can be approximated in C*(K), for K any com-
pact set, by functions in FL% (u).
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Proof. Letr > 0, we define:

N(G,-, 1)
vol B(r) ’

Y3 (G) = NVIO(IGBJ(;)R) ,

P2(G) =
where NZ(G, -, R) denotes de number of nodal domains intersecting the boundary
of S(R). Since F, is translation invariant by Bochner’s Theorem, Wiener’s Ergodic
Theorem [NS16, Section 6] implies3 that

1 -
— D1, )d P2 2.
VOIB(R)/B(R) 2(7,-) do — B R — oo (4.2.5)
a.s. and in L!, where 7,G := G(- + v) for v € R™. Moreover, ®? is invariant under
T, E[®2] = E[®?] and similarly for ¥2.

Thanks to the integral-geometric sandwich ([NS16, Lemma 1]), and following
the proof of [NS16, Theorem 1], see also the proof of Proposition 4.1.5, we have that
(4.2.5) implies that the limit

.. N(G,,R)
c(Grovp) = im B R)

exists a.s. and in L'. Note that it is not a constant but a random variable, thus
letting c(-, u) = E (c(FH, . ;4)) , the first statement of the theorem follows from the
L! convergence. Let us now consider the positivity of the constants. From (4.2.5)
and the integral-geometric sandwich, we have

E(@7) <c(-p) <E(®}) +E(¥7).

Thus, in order to prove that c(-,4) > 0, thanks to Chebyshev’s inequality, it is
enough to show that

P({F, € C°(R™) : N(F,,S,r) > 1}) > 0. (4.2.6)

Let Fy be as in the statement of the theorem, by [NS16, Appendix A.7, A.12] for s = 0
and [EPSR20, Proposition 3.8] for general s, F is in the support of the measure on
the space of C*® functions of our random field F,, that is, for any compact set K C R™
and each ¢ > 0,

P({F, € C(R?) : |F, — Follcs(x) < €}) > 0. (4.2.7)

Now, as the connected component of Fj in S is regular by hypothesis, we can apply
Thom’s Isotopy, Theorem 4.2.11 below, to conclude that if

IF = Follesxy <6, (4.2.8)

where the connected component of Fj is in the interior of K, then F also has a
connected component diffeomorphic to S. Finally (4.2.6) follows from (4.2.7), tak-
ing ¢ = 6 in (4.2.8). We can proceed similarly for nesting trees and conclude the
proof. U

3We can apply the Ergodic Theorem, despite our field might not be ergodic (by Fomin-Grenander-
Maruyama Theorem, see, e.g., [NS16], as  might have atoms) because we only need the translational
invariance.
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Example 4.2.10. If y = 0,1, the Lebesgue measure on the sphere, then it is enough

C
to show Fj is a solution to the Helmholtz equation as this set equals F L%(c)  [CS19,
Proposition 6]. However, in this case, the construction of the particular functions for
topological classes gives Fy as a (finite) sum of the form [EPS13; CS19]

L d n
Fo(x) = 2m)2 Y. Y a Yim <x> W
1

so by [EPSR22a, Proposition 2.1] or by Herglotz Theorem [H6r15, Theorem 7.1.28]
and the rapid decay of Bessel functions, Fy € F L(c). For instance, the example
mentioned above could be the spherical Bessel functions

n X .
A = [ ¢

| x|2

where C, is as in (1.5). They are radial solutions to the Helmholtz equation, so the
nodal sets are spheres with the radii the zeros of J» 1 (|x|). See Figure 4.1 for the case
of n = 2. This proves cns(0y,—1) = c(H(m —1),05,1) > 0as c(oy,_1,{[S"!]}) >
0. See also [NS16, Condition (p4), Appendix C] for sufficient conditions to ensure
cns(¢) > 0 and [IR18] for an explicit lower bound together with some numerical
estimates

The stability property of the nodal set used above is given by the following the-
orem.

Theorem 4.2.11 (Compact Thom’s Isotopy Theorem). Let V be an domain in R" and
leth:V — R beaC® map. Consider a (compact) connected component L CC V
(i.e., which is compactly embedded in V) of the zero set h~!(0) and suppose that:

|Vh|L’ > 0.

Then, given any ¢ > 0 and p > 1, there exists some U CC V neighbourhood of L
and 6 > 0 such that for any smooth function g : U — R™ with

1= &llcruy <0

one can transform L by a diffeomorphism ® of R™ so that ®(L) is the intersection of
the zero set g~ 1(0) with U. The diffeomorphism ® only differs from the identity in
a proper subset of U (i.e., a subset C U) and satisfies ||® — id||cprn) < &

The proof follows from [EPS13, Theorem 3.1], we reproduce some details for
completeness.

Proof. We have to construct a domain U and find some # > 0 such that the compo-
nent of h~1(B(0,7)) connected with L is contained in U and infy; || Vk|| > 0. For this
purpose, let us define the following vector field:

~Vh(x)
X(x) :=
) IVh(x)]|?

which is well defined if the gradient does not vanish. Denote by ¢, the associated
flow, that is, the solution to 9;¢'(x) = X(¢'(x)). Considering the derivative with
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respect to time, if i(x) = 0 then h(¢'(x)) = t, and
1
ag' (x)| = [|X (o' = = 429

By compactness and regularity of the connected component, | Vh|.|| € [c¢,C], with
¢ > 0. Since ¢(t,x) := ¢'(x) is a smooth map, if we define H : R x L as H(t,x) =
|Vh(g(t, x))||, then H™(c — 6,00) is an open set of R x L, for any § > 0, and it
includes {0} x L. By compactness and the product topology, there exists a finite
number of #; > 0, UF open sets of L (induced topology) such that

IVR(o(t,x))[| > a1

fort € (—t;,t;), x € UF and ¢; := c — 6. If we define n := }min{t; c;d}, where
d = dist(L,dV), then we claim that U := L.,/ is the desired neighbourhood.

Indeed, if y is the component of 1~ (B(0,7)) connected with L, then y = ¢ (x) with
7' < n,x € Lsoby (4.2.9) and Lagrange Theorem

Iyl = llg" () —xl < 1,

1

hence, y € B(x,1/¢1) C U. Furthermore, if y € U, thenV v € 0V
ly—oll = lx—o| = |ly—x[| =d—-d/2>0,

where y € B(x,1/c1) and 17/c1 < d/2 by definition. O

4.3 Bourgain’s de-randomisation, proof of Theorem 4.1.7.

The content of this section follows closely the proofs in [Boul4; BW16] to extend the
ideas from T? to R™.

4.3.1 The function ¢,

Letm > 2be fixed, R > W > 1beinsection 4.1.1. Using hyperspherical coordinates,
that is, writing x € §"~! as x = G(0) where

G(0) := (cos 70y, sin 716, cos 710y, ..., sin 7107 - - - sin 716,,_» sin 2716,, 1)

such that G| (gq)n1 is a diffeomorphism onto §m—1\S', where S’ is a set of measure
zero, we identify sm—1 with [0, 1]”1*1. Now, let K > 1 be a (large) parameter and
divide [0,1]"! into K™~! cubes and use hyper-spherical coordinates to divide the
sphere into K”~! regions which we call I;. Let {¥} C S"~! be the “centres "of
such regions (centre is defined again picking the centre in [0, 1]”1*1 and projecting
onto the sphere using hyper-spherical coordinates). Finally, pick another parameter
0 > 0 and let K to be the set of k’s such that k € K if and only if

tr(I) > 0. (4.3.1)
We will need the following two simple properties of this partition:

Claim 4.3.1. We have the following:
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1) Yrex tr(It) =1 = Yy pir(I) = 1+ O(0K™ 1)
ii) Ifry € Iy, then ||ry — || = O(K™).

Proof. i) follows from the fact that there are at most K1 elements in the comple-
ment of K. ii) follows from the fact that G| ;j»-1 is a smooth function so it is Lips-

chitz and, writing G(6;) = 7k, we have

1G(8) — G(0k)|| < Cq |6 — 6]l -
]

As r, = —r_,, in order to count only one these points, we define K+ as the set
of k € K such that (¢*); > 0 with j := maxi<i<{({¥); # 0}, where ({¥); denotes the
i-th component of ¥. Note that, by definition,

ONS < 2N, (I) = #{|n| <N /ra € [k} - 00 as N — oo. (4.3.2)

Finally, we define the auxiliary function, as in (4.1.8)

MW:Z[

kel

; . 1/2 k.
(2Nﬂr(1k))1/2 rnze;k Eln€<1’n x)] ]’lr(Ik) e (g y) . (4.3.3)

The next lemma shows that ¢, is, on average, a good approximation of Fy.

Lemma 4.3.1. Let F, and ¢, be as in (4.1.6) and (4.3.3) respectively, R > W > 1
and K,8 > 0 be as in Section 4.3.1 with § < K~"*! s > 0 be some integer and
I = |% +1]. Then, we have

2 s m m— — A
fwr%mmwgwwm(x1+WK§@+%mAWw,
B(R)
Proof. Using Sobolev’s Embedding Theorem, we bound the C*(B(W)) norm by the

H**!(B(W)) norm, and rescaling to a ball or radius one, we obtain

][HFRx ¢Rx”cs EEDY ][HDOC(FRX_QDRX)H%Z(B(W))dx
B(1) ‘“KSHB(l)

where D* is the multi-variable derivative. If & = 0, denoting S" 1 := S" 1\ {J,cxc I
and rescaling the ball of radius W to a ball of radius 1, we have

F 1= ) sy d SW f s L anel(rn, R ({ra, W) [P

B(1) sy st

+wwm(f | N) Y2 ane((r, Rx)) (e ((ra, Wy)) — e (&5, W) ) |2,
ke rn€lx

1
(4.3.4)
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To evaluate the integrals in (4.3.4), we will need the following claim:

1 n=n'
7[ €(<7’n - rn/,Rx>)dx = {C ]A+1(27'CR ||7’n — i’nrH) " ?é n/ = 5,,[,”/ —+ ON(R_A_3/2>
B(1) (R rn = rw|)A

(4.3.5)

Indeed, by the Fourier Transform of spherical harmonics [EPSR22a, Proposition 2.1]:

Yiel)do = (2m)% (i)', (é,) Jualldl) - p om=2 0 5

Ggm—1 |x|A 2

where [ is the index associated with the eigenvalue and |, represents the Bessel func-
tion of first order and index a. Setting I = 0 in (4.3.6) and using polar coordinates:

1
o2 (1) m/2Ja(r2mlx)) o Ja(27|x])
/B(l) Y'dy = (27 )/0 r dr . (4.3.7)

’x|A ’x|A+1

Moreover, by the standard asymptotic expansion of Bessel functions [Wat95, Chap-

ter 7]:
Ju(z) = \/% cos <z - % - Z) +0.(z7%¥?) (4.3.8)

Thus, for n # n’, using (4.3.7) and (4.3.8), and bearing in mind (4.1.7), (4.3.5) follows
upon noticing that

Jas1 (7R 1 = rl]) = O (R [lra = 1)) 7V2) = On(R7V2).

In order to bound the first term of the RHS of (4.3.4), we expand the square, use
Fubini and (4.3.5) to obtain

=2 dy][dx Y. Y awawe((ra—rw, Rx))e ((ra —rw, Wy)) =

ra€St Ly, esmt

Wﬂ’l
= — d a,|?> + On R-A-3/2 apaye ({r, — vy, Wy)),
2N o, I, O )Z i e =1 V)
(4.3.9)
with 7, # r, in the second summand. Since |a,| = 1, bearing in mind (4.3.1) and
using Claim 4.3.1, we can bound (4.3.9) by
RHS(4.3.9) < WK™~ (1 n ON(R_A‘3/2)> . (4.3.10)

For the second summand of the RHS of (4.3.4) we proceed similarly, taking into
account Claim 4.3.1, we have

144

e (4w, Wy)) —e (&5 W)l) < [|ra =24 Wl < -
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Thus, expanding the square and using Fubini and (4.3.5), we can bound the second
term on the right hand side of (4.3.4) as

f 1N F ane(r Re)) (e (W) = (€5 W0) ) ) Pt 5

rn€ly
SEON T e (2w | T el sl
X (2N) it (e (o, W) — e (@5 W) ) (e (rs W) —e (65, W) )|
< W2K72(1+ On(R™A73/2)). (4.3.11)

All in all, using (4.3.10) and (4.3.11), we obtain

][ | (Frx — 4’Rx)||L2 dx S W (5Km71 =+ W2K72> (1 + ON(R7A73/2)> .
B(1)

For a # 0, observe that if we differentiate with respect to x,

D*(e(y, x)) = (27i) (ﬁy) ¢

Thus,
D*(e ((ra, Wy))) = 2rtW) e ((r,, Wy)) Hrﬁfi-

Also,

| Da (€(<rn,Wy>) —e ((C", Wy>)) | = (27W)lel

[T~ [T (i - ro W) ‘ .

Now, adding and subtracting [T (¢¥)* and using the triangle inequality, gives:

az _H gk o;

=1

1Dk (e (W) e (185, W9) ) | < (22W) lal(

m
FTTEH" | [1—e (&~ rwi), )
i=1
Since |e'* — €| < |x — y|, we bound the last expression by:
Wihal+1
el (7k — k_ <
W (]g rn]+w]g ) < — (4.3.12)

Hence, following a similar argument as in the case « = 0, combined with (4.3.12),
we conclude that

/3(1) ID* (Fry — dra) [ T2 (1)) dx S W2 (51<’”—1 + WZK_2> (1 + ON(R—A—3/2))

finishing the proof. O
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4.3.2 Gaussian moments

Let us define:

1
—_—— ape(ry - Rx).
AN ()7 &,

We are going to show that the pseudo-random vector (by)rex approximates a Gaus-
sian vector (c)kei, where ¢y are i.i.d. complex standard Gaussian random variables
subject to ¢y = c_k. More specifically, we prove the following quantitative lemma:

bk(x) =

Lemma 4.3.2. Let N > 1, R > 0, by be as above and KT, K, § be as in Section 4.3.1.
Moreover, let D > 1 be some large parameter and fix two sets of positive integers
{sk tkexc+ and {tx rexc+ such that Y s; + fr < D, then we have

—E = OD((S_lN_l) + ON,D(R_A_WZ).

I1 o

keK+

kek+

£ | Iyt
B(R)

Proof. For cy, first note that the independence properties of the Gaussian variables cj
(which have zero mean) imply that E(cic) = 0if k' & {k, —k}. When k' = k one
has

E[lee|*] = E[(Re(ck))’] + E[(Im(ck))’] = 1,

and when k' = —k,
E[(ck)?] = E[(Re(cx))?] — E[(Im(ck))?] 4 2i B[(Re(ck)) (Im(ck))] = 0.

Therefore,
E(Ckry) = 5kk" (4313)

Thus by independence and a similar calculation for [E [c,t(" C_Zk] ,

E

1 c,tféf("] = 1 E[ciat] = TT dnaset (4.3.14)

ke ket ket

For the moments of by, we can prove the following:

Claim 4.3.2. Fork € KT we have

f 18] = s (s 0, (@0)°1)) 0o (x2-2).
B(R)

Proof of Claim 4.3.2. We have that:

Sk bk

-t _ _
by = 1| =2 Y TTT Taisdajee({rig — rix Rx))
Gy =1 j=1

where r;; == 1y, € Ik, a;x = an;, and C; represents the set of all possible choices of
nixand nj, withi € {1,.., s} and j € {1, ..., tx}. Then, rescaling to a ball of radius 1,
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we have

ket C kekti=1li=

Sk ty
X ][ e ( Z (Z Tik — gr]-,k> -Rx) dx (4.3.15)
) =

B(1 ket \i=

[ bskbltck] = (H ||~ (i) >Z IT I—k[Halka]kX
B(R) keic+

where C represents the set of all possible choices of 7;; and nj; with i € {1,...,s:},
je {1, ..t} and k € KT. To estimate this, let us begin by fixing k:

— Sk tk
][ {b;{kbﬂ |Ie|~ (sk+1)/2 ZHHgl K@k ][ e ((Z Fik— Erj,n> -Rx) dx
B(R) Cr i=1i= B(1) i=1 j=1
In the inner sum,

Sk

Zri,k Zr]k = Z Xnln — Z Butn = Z Yuln,

i=1 VHGI]( r,,eIk I’HEIk

with «ay,, By, vn integers. By rational independence (4.1.7), the sum vanishes if and
only if v, = 0 for every n. So C can be divided into the combinations where 7y, = 0
for every n, Ci 1, and the remaining terms, Cy »:

F ] = (g

B(R) Cr
s t
+ Zﬁnazkﬂ]k ][ e ((Zk: Tik — Zk:rjrn) . Rx) dx). (4.3.16)
Crpi=1i=1 i=1 j=1

B(1)

For the first term, note that if v, = 0, then o, = B, thus sy = ;rne L% = Ypel Pn =
ty. Then, we denote by dy := #{n | a, # 0} and write Cy; = g =1 Cr1,4, where Ci1 g,
the set of indexes of Cy ; where the number of a,, # 0 equals d. Thus, the first term
on the right hand side of (4.3.16) is

Yok #Ckq,
‘1k|_(5k+fk)/2<21> :5tk’skdk*17kld" (4.3.17)

Cra | Ik |Sk

Assume now that we fix the set of {«,, } and dy, let us calculate the number of possible

indexes in Cy 1 4, the number of a;, # 0 equals dj. If we assume that N is large enough
such that || > maxs;, which is possible by (4.3.2), we may write Cy 1,4, = ﬁ
n k n

where J is an index set associated with the r, € I;. Thus,

Si! 2
#Cr1a, =Y (") (4.3.18)

Hnejk lxn!
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where the sum runs over the possible combination of a,, such thatdy = #{n | a, # 0}
and },c 7, &n = Sk. lf d = i, then a; < 1and

#Chrd, si!? (2N (I))!
T CNa ) @Np(h) — 05

= Sk!(l — gsk,k)/

I
as there are <| Kl
Sk

that ¢, i > 0 will be:

Now, consider the case when 1 < d; < si, the unlabelled sum in (4.3.18) will

have (ZNV rUk)) elements, thus it can be bounded by

> ways of choosing the elements with 2Ny, (I) = |I¢|. We have

dy
Sk!‘2 ZN‘ur(Ik)
#C, < - =
#Cera,] Ny (1) 2N (I) — dy)dy!
. Sk!Z ZNyr(Ik)
(2Npe (L) % die! (2Npe (L) — di)! (2N (1)™
with

(2Np, (Ix))!
((2Npy (L)) — di)! (2Npy (L) )™

and g4, = Oy, (N6 )~L. Therefore, the first term on the right hand side of (4.3.16) via
(4.3.17) is

= (1 —egx)

| Te| T2 1 = 5, (sk! + O, ((5N)*1)) . (4.3.19)
Cr1
For the second term, by construction, the inner sum does not vanish, so:
Sk Sk fx
ZHHalka]k ][ e ((Zri,k — er,n> ~Rx> dx =
Crpi=1i=1 B(1) i=1 j=1
Tas (27R || rik = Ty 7

)A—‘rl

by (4.3.5). Using (4.3.5) again and (4.1.7), the second term is Op x (R_A_3/2). Thus,
via (4.3.16) and (4.3.19), we finally obtain:

)

Sk
—ZHHazw;kC

t
Crz i=1i= <RH21 1Vik — Z]‘kzﬂ’]‘,n

7

E 675 | = by, (s + 05 ((6N) 7)) +Op (R7A72).
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Similarly, we claim that, if k # k/, then

][ [bskbtk’} = Opy <R’A’3/2) . (4.3.20)
B(R)

Indeed, as k # K, the inner sum of (4.3.15) will be

b

Zrzk_zr]k’— Z Xnln — Z BnTn

rn€lx Tn€ly

and by rational independence (4.1.7), if the sum vanishes, then a, = 8, = 0. Thus,
there is only the contribution when the inner sum doesn’t vanish and, as above, this
term decays as R goes to infinity due to (4.3.8). Now, we can deduce the expression
for the general case of (4.3.15). For the inner sum we can write:

Z(Zw—2w>=232ﬁm
kek+ \i=1 ket rpely

so the integral is, by rational independence (4.1.7) and (4.3.5),

s t
][ e ( Z <Zk:ri,k — Zk:rjlk> -Rx) dx =
kek+ \i=1 =1

B(1)
1 YK =0 Vn,k,
= C, Ja+1(27TR HZkeIC+ Yl 'Yﬁrn H)
(R HZkeIC+ Zrnelk 'er(zrnH)A—H

otherwise.

This splits C into C; C C of all choices of n;, njk such that 'y’,; =0and C; := C\(Cy, as
in (4.3.16). Now,

Sk Sk
=TT T Toms = 1S Tt = TT o (3204 (697))
C1 kekKti=1i= keK+ Cyy i=1i= ket

where we used (4.3.19) for the last equality. Finally, the sum over C,, arguing as
above, it is going to be Op v (R™"73/2). O

Similarly, we can prove that the function F; has (asymptotically) real Gaussian
moments for its L¥ norms:

Proposition 4.3.3. Let p be a positive integer. Then,

. . 2p (p)' ][ 2p+1 —
i imwp| f iy =0 i imouw] f (5@ <o

uniformly iny € B(W).
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Proof.

’ 1 v jd %
][ Y (y)dx = Wznanie (Zrni 'y> ][ e (Rx . Z”m) dx
B(R) i=1 i=1 i=1

B(1)

where the sum ¥ means } (,,,<n : 1<i<p'}- BY (4.3.7), the principal contribution will

! !
be when Y-, 7,,, = 0. In this case, if we define Y-/, 7, = Y0 a1 — Yhe &y Ty =

YN aarn, YN () +ay) = 2N &b = p’ must be even, so for p’ = 2p + 1 it will
not be zero. For p’ = 2p then, fixing a vector a™ := (a,})N_, there are 2p! ways of
choosing {|n;| < N : 1 <i<2p} forthata™,so

2p o 1 A2
Z[)Fx dr = x5 (2 L1+ Onp(R3)
B(R

N+pfl)

by (4.1.7), where the sum runs over all the possible a™. There are ( of those,

so the leading term is:
1 N+p—-1! 2p! N+p-1! 2p!

(ZN)p (2p')P'(N— 1)' B pr! (N_ 1)!NP = 2pp! (1 +Op(1/N)),

concluding the proof. O

4.3.3 From deterministic to random: passage to Gaussian fields.

The aim of this section is to prove the following technical proposition:

Proposition 4.3.4. Let ¢, be as in Section 4.3.1, ¢ > 0, W > 1 and s > 0 an integer.
Then there exist some Ky = Ko(e, W,s), No = Np(K,¢, W, s) and Ry = Ro(N, ¢, W,s)
such thatif K > Ky, 6§ < K™, N > Np and R > Ry we have

dp((,bx,Py) < €

where the convergence is with respect to the C*(B(W)) topology.

To ease the exposition, we divide the proof of Proposition 4.3.4 into two lemmas.
In the first lemma we introduce the auxiliary field F,, where

(L) (L)
= = 0-x where = = . 4.3.21
MK = HKN kie/c' YK Nk RN = T 2 ( )

We note that, by Claim 4.3.1, kx — 1 as SK™=1 0.

Lemma 4.3.5. Lete > 0,s > 0and K > 1, § > 0 be as in Section 4.3.1. Then there
exist some Ny = Ny(6,K,¢e,W,s) and Ry = Ro(N, ¢, W,s) such that for all N > N,
R > Ry, we have

dp(Kg b, Fu) <€

where the convergence is with respect to the C°(B(W)) topology.

Proof. We begin by explicating the dependence of R on N: we choose N and R such
that the error term in Lemma 4.3.2 tends to zero for every D. In order to do so, we
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will follow a diagonal argument. Let us write explicitly the error terms in Lemma
43.2as

’OD((S_lN_l)’ < CD(S_lN_l, ‘ON,D(R_A_3/2)| < CN,DR_A_B/Z/

and notice that, up to changing the constants, we may assume that Cp» < Cp and
Cn,pr < Cn,p for any D’ < D. Now, let us define Mp and Ry p such that

CpMp! — 0 CMD,DRMAD,;;/Z -0

as D — oo. Then, we choose N, R to go to infinity as any sequence satisfying N; > M,;
and R; > RN],,]-. Taking said sequence of N, R, for any fixed D, we have

Op(67'N;') =0, On,p(R;*?) =0 (4.3.22)

as j goes to infinity due to the fact that Cpy < Cp, Cyp < Cp,y if D' < D. With this
choice of N and R and mind, we simply say that N, R tend to infinity.

Let {by} and {cx} be defined as in Section 4.3.2. Then, since a Gaussian random
variable is determined by its moments (as the moments generating functions exists)
and the moments of all orders converge by (4.3.22), we can apply the method of
moments, [Bil08, Theorem 30.2], to see that

Y a5 Y aep as RN — oo (4.3.23)
k k

for any {a;} € RF. Bearing in mind the definition of ¢, in (4.3.3), (4.1.9), the
Cramér-Wold theorem [Bil08, Page 383], implies that, for any y1, ..., y; € B(W) with
[ a positive integer and § > 0, we have

K (Ba)s s @) = (B (92) o B ) RN oo
K (D Px(y1), s D*9ay1)) = (D*Fu(y1), s P (1)) RN — o0 (43.24)

where we have used the multi-index notation D* := dj;...0". Thus, thanks to (4.3.24)
and the discussion in Section 4.2.2, in order to prove the Lemma, we are left with
checking the hypothesis of Proposition 4.2.1.

Condition ii) in Proposition 4.2.1 Let ¢} := Klle;‘igbx with « a multi-index, the
Cauchy-Schwarz inequality gives

9:0) - 98| £ @) T b (10 2 TT@H™ (e () e (¢-v))

Sy =[] X 1oe(x)l- (4.3.25)
ke

Moreover, by (4.3.23) and the Continuous Mapping Theorem [Bil13, Theorem 2.7],
we have

Y 1be(x)] -5 G asR,N — oo (4.3.26)
ke
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where G is a random variable with finite mean, i.e. the sum of folded normal vari-
ables. By Portmanteau Theorem and Chebyshev’s inequality, we deduce that

limsupvolg [ Y |bk(x)| > ¢ | <P (G =€) <E[Gle, (4.3.27)
R,N—oo kek

as [¢/,00) is a closed set. Therefore, by (4.3.25) and (4.3.27), using the notation in
(4.2.3), we have

limsup volg (wge(6) > ¢€) < limsupvolg | Y |be(x)| > Cred | < Crelo.
R,N—oo R,N—o0 ke

Hence, we can conclude that, for all ¢ > 0 and all i, we have

lim li P «(0) =€) =0.
fimlim sup P (wgs (6) > )

This establishes (ii) in Proposition 4.2.1.

Condition i) in Proposition 4.2.1 By (4.3.3) and (4.3.13), for any point y € B(W)
we have fB(R) |#%(y)|2dx = O(1) as in Proposition 4.3.3 for p = 1. Thus, by the
Chebyshev’s inequality, we have

Pr(lgz(y)] > M) S M2

We can proceed similarly with ¢%(y) and this establishes i). O

To prove the next result, we need the following lemma, compare the statement
with [SSS16, Lemma 4] (here only a weaker version is needed).

Lemma 4.3.6. Let y, be a sequence of probability measures on $"~! such that u,
converges weakly to some probability measure y, then

dp (Fu, Fy) =0 asn — oo,
where the convergence is with respect to the C°(B(W)) topology.

We provide a proof of Lemma 4.3.6 in Appendix 4.A. Using Lemma 4.3.6, we
deduce the following:

Lemma 4.3.7. Let ¢ > 0 and s > 0. Then there exist some Ky = Ky (g, W, s) and some
Ny = No(e, W, s) such that for all K > Ko, § < K™ and N > Ny, we have

where the convergence is with respect to the C*(B(W)) topology.

Proof. Let ugn be as in (4.3.21) and let § < K™™. Then, in light of Lemma 4.3.6 it
is enough to prove the following: let ¢ > 0, there exist some Ky = Ko(¢) and some
Np = Ny (e) such that for all K > Ky and N > Ny, we have

dp(“l/lK,N,‘u) <&

Since y, weak*-converges to y as N — oo, we may assume that Ny = Np(¢) so that
dp(pr, 1) < €/2. Therefore, using the triangle inequality, it is enough to prove that
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dp(px N, Hr) < €/2 for K large enough depending on ¢ only, which bearing in mind
(4.2.1), is equivalent to the following:

HrN(B) < pr(Bies2) +€/2 ur(B) < px,N(Bies2) +€/2 (4.3.28)

for all Borel sets B C S L. For the sake of simplicity, from now on we write g y =
pk. By Claim 4.3.1 ii) for some C > 1if r,, € I, then ||r,, — CkH < CK™1, therefore

B =00 ¥ X/ Y <o ¥ 1/ Y ()

ke rnely kel m€Bic/k kel
ikeB

which, together with Claim 4.3.1 i) and our choice of 6 < K™, gives
#k(B) < pr(Bic/k) + C/K.
This proves the first part of (4.3.28), with /2 = C/K. Since

Ykek Hr(Ik)dgx (Byc/k) S, Lkek pr(leNB) #r(B) — (BN I)
Yerc tr(I) " Lrex (k) mr(Ix)

where I := Uicic Ix- Therefore, we have

uk(Bic/x) =

ur(B) < ug(Bic/kx) +C/K.

This proves the second part of (4.3.28), with e/2 = C/K and hence Lemma 4.3.7. [
We are finally ready to prove Proposition 4.3.4.

Proof of Proposition 4.3.4. The proposition follows from Lemma 4.3.5 and Lemma 4.3.7
together with the triangle inequality for the Prokhorov distance with the following
order in the choice of the parameters: W > 1, s > 0 a natural number, ¢ > 0 are
given, then K is large depending on ¢, W, s according to Lemma 4.3.7, 6 < K™™; N is
large depending on 6, ¢, W, s according to Lemma 4.3.5 and Lemma 4.3.7; finally R is
large depending on all the previous parameters according to Lemma 4.3.5. ]

4.3.4 Concluding the proof of Theorem 4.1.7
We are finally ready to prove Theorem 4.1.7:

Proof of Theorem 4.1.7. Fix W > 1, s > 0 and € > 0. Let K large enough according
to Lemma 4.3.7 applied with e/4 and such that CW2(s+D+m (sKm—1 1 W2K=2) < ¢/4
if 6 < K™ where C,! were defined in Lemma 4.3.1 and also such that |xz' — 1| is
small enough by Claim 4.3.1. Then we take an N large enough according to Lemma
4.3.5 applied with €/4. Finally, let R large enough as in Lemma 4.3.5 applied with
¢/2 and such that in Lemma 4.3.1, On (R™*73/2) < 1. With this, we have

][ IEx = a2 5y < £/2 and dp(¢x, Fy) < /2,
B(R)

concluding the proof.
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4.4 Proof of Proposition 4.1.5, semi-locality.

Let f be as in (4.1.1) and denote by N'Z(f, x, W) the number of nodal domains that
intersect the boundary of B(x, W). In order to prove Proposition 4.1.5 we need to ob-
tain bounds on N'Z(f, x, W). This is the content of the next section, where we follow
the recent preprint of Chanillo, Logunov, Malinnikova and Mangoubi [CLM+20],
see also Landis [Lan63].

441 Aboundon NZ

We begin by introducing a piece of notation borrowed from [CLM+20]: we say that
a domain A is cp-narrow (on scale 1) if

|ANB(x,1)] c
oo S 0o

|B(x,1)|
for all x € A. We will use the following bound [Section 3.2][CLM+20]:

Lemma 4.4.1. Letr € (1, R) and denote by (2 a nodal domain of f. Then, we have
NIZ(f,x,7) Sm [{Q: QN B(x,r) is not co-narrow}| + Mg (B(x,r))" ' 41",

where 91(-) is as in Section 4.2.3.

Since the proof of Lemma 4.4.1 follows step by step [CLM+20], we decided to
present it in Appendix 4.B. We observe that, if a nodal domain is not cp-narrow, then
|2 N B(xp,1)| > c1 for some constant ¢; > 0 and for some xy € Q. Thus, the number
of non cop-narrow nodal domains in B(x, W) is O(W™). Hence, Lemma 4.2.5 together
with Lemma 4.4.1 gives the following bound:

Corollary 4.4.2. Let F; be as in (4.1.6), then, provided that N is sufficiently large with
respect to W, we have

NI(f,x, W) S W' N1 < NmL

4.4.2 Small values of f

In this section we prove the following lemma which will also be our main tool in
controlling the doubling index of f.

Lemma 4.4.3. Let f be asin (4.1.1), > 0 and D > 1 be two parameters, then

volg(|f(x)| < B) S B+ NP +On(RA32),

The proof relies on the following Halasz” anti-concentration inequality [Hal77]
and [NV13, Lemma 6.2].
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Lemma 4.4.4 (Halasz’ bound). Let X be a real-valued random variable and let ¢ (t) =
E[exp(itX)] be its characteristic function then there exists some absolute constant
C > 0 such that

P(X|<1)<C /[ |t
[t<1

We are now ready to prove Lemma 4.4.3.

Proof of Lemma 4.4.3. Firstly we rewrite f as
N N
x) =Y buycos(ry-x)+ Y cusin(ry - x) (4.4.1)
n=1 n=1

for some b, ¢, with b2 + c2 = 1/2N. We apply Lemma 4.4.4 to obtain

volr([f(x)| < B) S B [pr(8)] (4.4.2)

|t|<1/pB

where ¥r(t) = Prr(t) UCB [exp(27itf(x))]. From now on, we may also as-

sume that 1/p > 1, as, if 1/ < 1, then we can use the trivial bound |yg(t)| < 1
on the right hand side of (4.4.2) and conclude the proof. We need the following
Jacobi-Anger expansion [AS65, page 355]:

eizcosez i il]l(z)eile 1zs1n9 Z ] 116.

[=—c0 |=—o00

Then, by (4.4.1), we have

exp(itf(x)) = [] exp(t(bncos(ry - x) + cusin(r, - x))
[n|<N
- T [z i (th)e [z n«tcn)e“w]
[n|<N [l=—o00 ]=—c0
_ Z ( H iln]ln(tbn)]l/(tcn)> celin(h+l)+Frn(In+y))-x (4.4.3)
llrmlN \n\éN !
Ll

Thanks to the rapid decay of Bessel functions as the index v — oo for a fixed argu-
ment z, that is

s A (2),

and bearing in mind (4.1.7) and (4.3.5), we can integrate (4.4.3) with respect to x
which, using Fubini, gives

pe(t/@) = Y T )i (tha), (ten) + O (RTA%72) (444

Ii,.IN==—00 [n|<N
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For the first term on the RHS of (4.4.4), we rewrite it as
Y TT n ), (ten) = T1 ( Yo (i)' I, (tbu) ], (tcn>> (44.5)
I, In=—00 |n|<N [n|<N \l=—0c0

where we have used the fact that J_;(x) = (—1)'J;(x). By Graf’s addition theorem
[Wat95, page 361], we have

]0(,/xz+yz):li J1(x)Ji(y) cos (%1) li ]l(x)]l(y)sin<§l> —0. (4.4.6)

Writing (—i)! = cos(7tl/2) — isin(rl/2) and applying (4.4.6), bearing in mind that
b2 +c2 = 1/2N, we obtain

> V2t
Y - A
Finally, inserting (4.4.7) into (4.4.5), we deduce that
v\ A
yr(t/(270)) = (]0 (W)) + Oy (R A 3/2). (4.4.8)

Let us denote the first summand by ¥X (¢). By the very definition of Bessel functions
[AS65, Page 375], we have

2 (=11 a2
Jo(x) =} —=——= (5
;0 qT(g+1) (2)
Therefore, Jo(x) = 1 —T'(2)"'x% + O(x*) < e for some ¢ > 0 and x sufficiently
small. Thus, bearing in mind (4.4.8), we have
YN () < e CF (4.4.9)

for all t < ¢;N1/2 for some sufficiently small constant c; > 0. For t > 1N 172 we use
that fact that |Jo(x)| < « < 1 for x > ¢; and for some 0 < a < 1, to obtain the bound

YR(H) Sa¥ SNTP

forany D > 1. Thus,

1/B
B \‘I’?(f)\dfﬁﬁ/ €*Ct2dt+ﬁ/ N~Pdt + Oy (R13/2)
R -1/

t<1/p

obtaining the desired result. O

As a consequence of Lemma 4.4.3, we deduce the following;:
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Lemma 4.4.5. Let f be as in (4.1.1), D, H > 1 be some (arbitrary but fixed) parame-
ters. Then, we have

Q< CH

—A-3/2
19 gsop oM S

1
volg (9 (B(x, H)) > Q) <p { !
QP
uniformly for all Q < N, x € B(R) and some absolute constant C' > 0.
Proof. Now, consider h(-,t) == f(-)-e?™ onB(H) = B(x,H) = B(x,H) x [-H/2,H/2],
then supy, ) |f| < supgyy [h]. Write hy(-) = h(H-) and fu(-) = f(H-), using el-
liptic regularity [Eva98, p.332], we have

sup | fle™ = sup |h| = sup |hu| S |hull2p0) S ™ falliee),
B(H) B(H) B(1)

where the constants in the notation are independent of H. Thus, letting H' = »,,H
B(2) = B/, we obtain

supp, 1 |frrl | frr |2
N (B(x, H)) < log% +1<Cy + 7H + log If(xL)TB) (4.4.10)
Thanks to (4.4.10), we have for B” = B(25¢,,)
||fHHL2(B”)
volg (Ms(x, H) > Q) < volg logW >Q—cH|,

for some absolute constant ¢ > 0. Since Q —cH > Q/2for Q > C'H for C' = 2¢ > 0,
we obtain that, in order to prove the lemma, it is enough to prove the following:

I frll 2 (pe 2D Al
volg (logv(;)(f) >Q/2) 50 1/Q° + <5 + Onn <R A 3/2>, (4.4.11)

for Q > C'H. Let I(x) := log(||fullr2(s/|f(x)]) and B > 0 be some parameter to
be chosen later, then

volg (I > Q/2) =volg (I > Q/2and |f(x)| < B) +volg (I > Q/2and |f(x)| = B)
(4.4.12)

First, we bound the first term on the RHS of (4.4.12). By Lemma 4.4.3, we have

volg(I > Q/2 and [f(x)| < B) < volr(|f(x)] < B) S B+On (R—A—3/2>
(4.4.13)

provided f > N ~D_ For the second term on the RHS of (4.4.12), we notice that

volg(I > Q/2and [£(x)| > B) < volg (| fll g, > Be¥/?). (4.4.14)

However, bearing in mind that B” = B(x, 2sz,), using (4.1.7), (4.3.5) and Fubini, we
have

][ HfH‘ ’%Z(B”) = vol B// + ON ((HR)*A73/2) ‘
B(R)
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Thus, Chebyshev’s inequality gives

1 A
volg (||fHHL2(B”) > e’ 2) < Figa *On ((HR) A=3/ 2) . (4.4.15)

Hence, putting (4.4.12), (4.4.13), (4.4.14) and (4.4.15) together, we get

1 A
volg(I > Q) §ﬁ+@+ow (R A 3/2)

finally, we take p = 1/ QP, so the condition B=>N T equivalent to N > Q and
conclude the proof of (4.4.11). ]

4.4.3 Proof of Proposition 4.1.5
We are finally ready to prove Proposition 4.1.5

Proof of Proposition 4.1.5. For short we write NZ(f,x, W) = NZ(F,,W). By [NSI6,
Lemma 1] for r = W, we have

1 N (Fy, W) N(f.R)
vol B(R) /B(RW) vol B(W) s vol B(R) S

1 N (F, W) NZI(F, W) )
S vol B(R) </B(R+w) vol B(W) dx+/B(R+w) vol B(W) ax | -

By Faber-Krahn inequality,

N (Fy, W) N (Fy, W) (R + W)™ — R™
_ N T <
/B(R+W) vol B(W) dx /B(R) vol B(W) dx S vol B(R) Rm !

which is O(vol B(R)W/R) by the binomial theorem, similarly for B(R) and B(R —
W). Thus, we have

N(f,R) 1
vol B(R) ~ vol B(W)

][ N (Fy, W)dx
B(R)

1 W
+0 | oo ][ NT(Fe, W)dx +O<R>. (4.4.16)
B(R+W)

Therefore, it is enough to prove the following:

% ][ NT(FoW)dx < — (1+Onw (RA772)). (4.4.17)

B(R+W)

First, we observe that if we cover dB(x, W) with O(W™~1) (m-dimensional) balls of
radius 100 with centres x + y;, then

NZI(F,W)=NI(f,x,W)<) (NI(f,x+y;,100) +N(f,x+y;,100))

1

< CNT(f,x+y;,100) +0 (W),
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where in the second inequality we have used the Faber-Krahn inequality. Therefore,
thanks to Lemma 4.4.1 applied with r = 100, we have

][ NT(F, W)dx < —Z ][ Ny (B(x +yi,100))" ' dx+
B(R+W) ! B(R+W)

7m Z ][ {Q: QN B(x +y;,100) is not co-narrow}| dx + O (I/l\/) (4.4.18)
" B(R+W)
If QN B(x + y;,100) is not co-narrow, then |QY N B(x + y;,100)| > c;. Thus
{Q: QN B(x +y;100) is not cy-narrow } | = O(1),

bearing in mind that the sum over i has O(W™~!) terms, the second term on the
right hand side of (4.4.18) is O(W~1).

Thus, it is enough to bound the first term to the right hand side of (4.4.18). Thanks
to Lemma 4.2.5, M(B(x,100)) < N. Thus, we have

CN)m 1
][ Nr(B(x + y;,100))" 1dx = / volg (Mf(B(x +y;,100))" " > t)dt
B(R+W) !

S 1+ Onwj00 ((R + W)fAfa/z) ,

where in the second inequality we have used Lemma 4.4.5, with D = m and H =
100. This concludes the proof of the proposition. O]

4.5 Proof of Theorem 4.1.8

4.5.1 Convergence in mean

The aim of this section is to show how Theorem 4.1.7 implies convergence in mean
of NV (+). That is, we prove the following proposition:

Proposition 4.5.1. Let W > 1and S C H(m — 1). Then we have

lim lim sup
N—oo R

][ N (E, S, W) — E[N'(F,, S, W)]| = 0.
B(R)

Moreover, the conclusion also holds for A/(-, T), as in Theorem 4.1.8.

To ease the exposition we split the proof of Proposition 4.5.1 into a series of pre-
liminary results.

4.5.2 Continuity of N'(-)

In this section we show that N (-, W), N (-, [£], W) and N (-, T, W) are continuous
functionals on a particular subspace of C! functions. This is a consequence of Thom’s
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Isotopy Theorem 4.2.11 and it refines the estimates of “Shell Lemma” in [NS16]. In
order to state the main result of this section we need to introduce some notation:

-V
Wg::Vg—x 8

<2

that is, the “spherical” part of the gradient. Also, ¥, = [g| + [|Vg|, ¥¢ = (8] +
|V¢l|| and for W > 1, let us define

Cl(W) = {g € CH(B(W+w)) | ¥4 > 0 on B(W + w) and ¥, > OonaB(W)}.
(4.5.1)

The parameter w > 0 could be as small as we want. For the sake of simplicity,
hereafter we assume w = 1. We then prove the following,

Proposition 4.5.2. Let W > 1 be fixed, S € H(m —1) and T € T a finite tree. Then
N(-,S,W) and N (-, T, W) are continuous functionals on C}(W).

Before starting the proof, we observe that the condition on ¥ is used to rule out
the possibility that the nodal set touches the boundary of the ball tangentially at one
point.

Proof of Proposition 45.2. Let V := B(W+1), V; .= B(W+1/2), Vj := B(W) and
heCl (W), as ¥, > 0, there is a finite number of connected components in Vj, i.e.,
h=1(0) N Vp has components {Z;}/_ L {Z]’-‘}{:l, where X; C Vpforalli € {1,...,I}
and Z;-k NaoVy # @ forallj € {1,...,]}. To treat the O-level set as a boundaryless

manifold, let x be a smooth radial step function which is zero in V; and greater
than sup,, |h| on the boundary of V, say T. Moreover, we observe that the condition
¥, > 0implies that ¥ NaVpis nota point: for m = 2 this follows from the definition
of ¥, > 0; for m > 2 it follows from the fact that, as the intersection is transversal, it
must be a submanifold on the boundary of codimension 1.

Therefore, it is possible to define d; > 0 as the maximal distance between some
xe (z;\vo) nv; (4.5.2)

and 9V, e, d; = max;dist (x € (Z\Vo) N3, %) =: dist (x;, (\Vo) NVA)
for some x; € (Z]*\Vo) N V1. Now, we are going to apply Thom’s Theorem 4.2.11
to i + x on V. Note that & + x has the same nodal set as 1 on V; and define 1";‘ the
connected component (boundaryless) of the nodal set of & + x which equals X on
V1. Let U; C V, be the open neighbourhood of ¥; and similarly ll]?" Cc Vof 1“;‘, both

given by the theorem. Let us also take ¢; > 0 and d; > ¢; > 0. By Theorem 4.2.11,

there is 6;, 67 > 0 such that if ¢’ satisfies

1 =8 llcrwy <o h+x =8l <6

then ¢’ has a nodal component in Uj, U; diffeomorphic to X, .j (respectively) and
the diffeomorphism satisfies
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If we define 6 := min;;{6;,67, (T — supy, |h|)/2} with [[g = h|lci(y) < 6, and g’ =
¢ + x, then the connected component of ¢’ diffeomorphic to I} cannot lie inside Vj.
Indeed, if x; is defined as in (4.5.2), <I>;-‘(xj) - x]-H < dj, so <I>;-‘(xj) is outside Vj.

Finally letting U = ((Uilli) U (uju;)) NV, if

—h < min{d, min {h} > 0}, 45.3
I3 =iy, < min{s, min (1} >0} (@53

then ¢ satisfies the hypotheses of Thom’s Theorem 4.2.11 for all the components and
it cannot vanish outside U. Therefore

N1 [E,W) =N (g, [E,W) VEeHm-—1),

in particular, N'(h, S, W) = N (g, S, W). The proof of N'(h, T, W) is similar as ®; of
Theorem 4.2.11 is the identity outside a proper subset of U;. O

Claim 4.5.1. With the notation of Proposition 4.5.2, C1(W) C CY(B(W + 1)) is an open
set.

Proof. If h, — h in the C! topology and |y, |(yx) + || Vha|| () = 0, we can choose
Yn, = Y SO

h(y) — h"j(y”)’ < [h(y) — h(ynj)’ + ’h(ynj) - h”j<y”j)|'

which goes to zero as j — oo, as the convergence is uniform, and similarly for the
gradient and ¥. Hence, the complement of C1(W) is closed. O

4.5.3 Checking the assumptions

In this section, we give a sufficient condition on v for the Gaussian field F, to belong
to C!(W) with the notation of Proposition 4.5.2. As our paths are a.s. analytic, we
have the following lemma, see also [NS16, Lemma 6].

Lemma 4.5.3 (Bulinskaya’s lemma). Let F = F,, with v an Hermitian measure sup-
ported on the sphere and s > 1. If v is not supported on a hyperplane, then F &
Cl(W) almost surely, where is C!(W) as in (4.5.1).

Proof. The proof of ¥ > 0 is a straightforward application of [AW09, Proposition
6.12] as the density of (F, VF)(x) is independent of x € B(W + 1). Indeed,

E (BZF(x)8]P(x)) = 4f7'lf2 AlA]dV(A) =: 21]

Gm—1

fori =0,...,m where dy := id and Ay := 1. Note that as v is Hermitian, ¥;5 = 0 for
i > 0, thatis, F(x) and VF(x) are independent. If ¥ = (iij)?jj:y then detX = 0is
equivalent to the existence of some u € R" such that

/S,H (A-u)*dv(A) = 0. (4.5.4)

However, this is not possible since v is not supported on a hyperplane, thus detX. #
Oand ¥ > 0.
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For ¥ > 0, consider a local parametrization (U, ¢) of S with basis {e;}/;" of the
tangent space TS where x € S := dB(W). Then,

Var YF(x) = E(x) - - E(x)"

where E' := ( e,...,e,_1 ). Thus, the variance is not positive definite if and only if
there exists v € R~ ! non-zero such thatu :== Y ' ve;and u - £ - u* = (472) Jom-a(A-
u)?dv(A) = 0, in contradiction (again) with the fact that v is not supported on
a hyperplane. Thus, det <Var Y F ‘(p(ll)) > ¢ > 0, so by Bulinskaya applied to

Y = (F, VF) we conclude ¥|,;;)> 0, then proceed analogously with the other local
parametrizations of the (finite) atlas. g

As a consequence of Proposition 4.5.2 and Lemma 4.5.3, we have the following:

Lemma 4.5.4. Lete > 0, W > 1and S C H(m — 1). Then there exist some Ky =
Ko(e, W), No = Ny(e, W) such that for all k > Ko, N > Np and 6 < K~"*! we have

‘]E[N(FVK,N/S/W)] - E[N(FH/S/ W)H <g

where pg y is as in (4.3.21). Moreover, the conclusion also holds for N'(-,T), as in
Theorem 4.1.8.

Proof. Thanks to Lemma 4.5.3, Fy,, € CL(W) a.s., thus the lemma follows directly
from Lemma 4.3.7 with Portmanteau Theorem. We can apply it in light of the fact
that N'(Fy, S, W) < N (Fyy, W) = O(W™) uniformly for all K and N by the

Faber-Krahn inequality and Proposition 4.5.2 which ensures that N (F},KVN, S,W)isa
continuous functional on C}(W). O

Lemma 4.5.5. Lete > 0, W > 1and S C H(m — 1). Then there exist some Ky =
Ko(e, W), No = No(K,e, W), Ry = Ro(N, e, W) such that for all K > Ky, § < K™,
N > Ny and R > Ry, we have

][ N (¢, S, W)dx — EIN (B, S, W)]| < e,

B(R)

Moreover, the conclusion also holds for (-, T), as in Theorem 4.1.8.

Proof. By Lemma 4.5.4, it is enough to prove that, under the assumptions of Lemma
4.5.5, we have

][ N (¢, S, W)dx — EIN (B, S, W)]| < e/2 (45.5)
B(R)

First, since C1(W) is open by Claim 4.5.1 and as IP (F,, € C}(W)) = 0 by Lemma
4.5.3, Portmanteau Theorem jointly with Lemma 4.3.5 gives

volg (cpx € ci(W)) 1 (4.5.6)
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as R, N go to infinity according to Lemma 4.3.5 depending on K > 1 (and thus § > 0).
Thus, by the Continuous Mapping Theorem and Lemma 4.3.5 for W + 1:

N (e, 8, W) 5 N (Fu, S, W).

Therefore Lemma 4.2.2 (using Faber-Krahn inequality) implies the desired result as
long as R, N go to infinity as in Lemma 4.3.5 depending on K > 1 (and thus § >
0). O

4.5.4 Proof of Proposition 4.5.1
We are finally ready to prove Proposition 4.5.1.
Proof of Proposition 4.5.1. Inlight of Lemma 4.5.4 and 4.5.5 it is enough to prove that,

given ¢ > 0, there exist some Ky = Ko(e, W), No = No(K,&, W), Ry = Ro(N, ¢, W)
such that forall K > Ky, 6 < K™, N > Ny and R > Ry, we have

< &

’ ][ (N (Fe, S, W) — N (¢r, S, W))dx
B(R)

First, by Lemma 4.3.1, we have
f 1B = & (puuny dx < CW2EED5m (SR W2K2) (14 On(R™A72))
B(R)

where W := W + 1. Let

€ = e(K, N, W') := CW2(s+D)+m (51<’”*1 + W’ZK*2) (1 + oN(R*A*W)) . (45.7)

Let us denote ¢, by ¢< and similarly for Fy, let B(R)* be the set where ¢, € CL(W).
We claim that

][ (N(ES, S, W) — N(¢5, S, W))) dx — Oas e — 0. (45.8)
B(R)*

For the sake of contradiction, let us suppose that there exist some v > 0 and a
sequence €, — 0, such that

| V(R SW)) = N (4,8, W))) dx | > 7.
B(R)*

However, Lemma 4.3.1 gives fB(R) | Ex" — ¢3" Hél(B(W’)) dx — 0 as €, — 0, thus there
exists a subsequence 7; such that with a rescaling B(R) to a ball of radius 1

c 2

n; €n;
FRn]]-x — (PRn]].x —0 (4.5.9)

Cl(B(W"))
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x-almost surely as j — co. However, (4.5.9) together with by the continuity of N/
(Lemma 4.5.1), the Faber-Krahn inequality and the Dominated Convergence Theo-
rem, gives
| NS W) = N (@) S, W))dx | =0
B(l)* ] ]
as j — oo, a contradiction. Finally, bearing in mind the Faber-Krahn inequality, we
have the bound

F V(ES S, W) = N9, S, W))dx = f (N(FE,S, W) = N (65, S, W) d+

B(R) B(R)*

+0 (w’m (1 ~ volg (4>€ e ci(W)))) <e,

where the inequality holds as long as € < €p given by (4.5.8) and R, N large enough
according to Lemma 4.3.5 to ensure (4.5.6).

Hence, we make the following choices of the parameters in order to prove the
proposition (recall that the parameters Ky, Ny, Rg must be chosen to satisfy i) and
ii)), let K large enough, with § < K~"+! as in Lemma 4.3.7, such that CW"2(5+)+7 x
x (6K™~1 4+ W"K™2) < €9/2 and such that K > Ko(¢/2, W) accordingly to Lemma
4.5.4. Similarly, let N > Ny(e/2, W') with Ny given in Lemma 4.5.4. We also take N
large enough according to Lemma 4.3.5 such that

o) (w’m (1 —volg (qae c ci(W)))) <e/2 (4.5.10)

provided R is large enough and the same for (4.5.5). Finally, let R large enough
according to the two conditions mentioned below (4.5.10) and such that in the defi-
nition of € in (4.5.7) we have Oy (R™27%/2) < 1. O

4.5.5 Concluding the proof of Theorem 4.1.8
We are finally ready to prove Theorem 4.1.8

Proof of Theorem 4.1.8. LetS C H(m—1)and T € T be given, and denote by N (f, -, R)
either N'(f,S,R) or N(f,T,R). Thanks to Proposition 4.1.5 and the fact that the
number of nodal domain with fixed topological class or tree type intersecting B(W)
is bounded by the total number of nodal domains intersecting B(W), for W > 1, we
have

N R) 1 ][
volB(R)  volB(W) iR

N(F,, -, R)dx + O (W*l) 4 Onw (R*H’/Z) . (45.11)
)

Now, by Theorem 4.2.9, with the same notation, we have

EN (Fy, -, W)]

vol By~ ensto ) +a(W),
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where a(W) — 0 as W — oo. By Proposition 4.5.1 applied with some ¢y/2, we have
][ N (F, -)dx —E[N (F, -, W)] | < e (4.5.12)
B(R)

if K > Ko with Ko = Ko(So/Z, W), N > N() with N() = NQ(K,80/2, W) and R = R()
with Rgp = Ro(N, €0/2, W). Hence, putting (4.5.11), (4.5.12) together, we obtain

N(f,~R) €0

VolB(R) CNS(-,V)‘ < Vol B(W) +a(W)+0 <1> +Onw (R,A,3/2) .

W

Let us now pick some & > 0 and choose first a W large enough (and fix it) so that
0 (W*l) +a(W) <e/3,

then set K > Ko, N > Ny and R > Ry with g9 = vol B(W)e/3 and R large enough
such that

1
ON,W <RA+3/2> < 8/3

4.6 Proof of Theorem 4.1.3.

4.6.1 Uniform integrability of V(F,, W)
We first prove Proposition 4.1.6:
Proof of Proposition 4.1.6. By Lemma 4.2.4 for r = W, we have

][ V(Fx, W)”"‘dx 5 (Wm)1+“ + W(mfl)(p“") ][ mf(B(X,3W))1+“dx
B(R) B(R)

— (WM)1+DC + W(mfl)(1+p¢) /CN1+:X

volg (mf(B(x, 3W))LE > t) dt
1

Changing variables and using Lemma 4.4.5 with D = a +2 and H = 3W, we find
that

CNTE 1 1+a cN o
/1 volg (Ny(B(x, W) > 1) di = (1+(x)/1 £ volg (Mp(B(x,3W)) > t) dt

S W(1+a) + Oy W(R—A—S/Z)

as required. O

4.6.2 Continuity of V.

In this section we prove the following proposition
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Proposition 4.6.1. Let W > 1 be given and f be as in (4.1.1). Then we have

lim limsup ][ V(E, W) — E[V(E, W)]| =0
N—o0 R—00 )
B

The proof of Proposition 4.6.1 is similar to the proof of Proposition 4.5.1. We just
need the following lemma, which follows from Theorem 4.2.11.

Lemma 4.6.2. V(-, B) is a continuous functional on C}(W).
Note that now the condition of ¥ > 0 is not needed here.

Proof. For the sake of simplicity, we set V = B(W + 1) and x as in the proof of Propo-
sition 4.5.2 so we will only consider boundaryless manifolds. Let & be an arbitrary
function of C1(W). We apply Thom’s Isotopy Theorem 4.2.11 to i’ := h + x, which is
identical to hin B(W). Let & > 0 and ¢ a local parametrization of a nodal component
Ly of h', which is a boundaryless manifold in B(W + 1). By Thom's Isotopy Theo-
rem 4.2.11, and with the same notation, ® o ¢ is a local parametrization of a nodal
component of g’, Ly provided [|h — ¢'[[c1yy < d and 6 > 0 is small enough as in
(4.5.3). If | denotes the Jacobian matrix and the local parametrizationis ¢ : A — U,
we have

vol U NLy) = [ \/det((J9(x))' - Jp(x)dx
and by the chainruleif oy : A — U’

Vol U N1 Ly) = [ [det(J®)(9(x))| /det((J9(x)" - ().
But, by the standard series for the determinant:
det(JB(y)) = det(l + J&(y) — 1) = 1+tr(JB(y) = 1) + o (|J&(y) ~ 1]
where I = Jid is the identity and
(@) — ) +o () ~ 1) | S |© — idller g < e

Thus, for L, C |J;U; C B(W +1) we have [ vol (L) —vol (Ly)| < evol (L ). Hence,
we also have

|vol (Ly N B(W)) —vol (@' (Ly N B(W)))| S evol (Ly NB(W)) < e(1+¢) vol (Ly).
Finally, as

|vol (7' (Ly N B(W))) — vol (L N B(W))| < vol (Ly N B(W +¢)\B(W))
the continuity of V at h follows immediately as the are finitely many components

Ly (because h € CL(W)), by the fact that |h —g|| = ||i' —¢'|| for ¢ = ¢+ x and
Ly N B(W) = Lg N B(W) (the same for Ly). O

We are now ready to prove Proposition 4.6.1.
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Proof of Proposition 4.6.1. The proof is similar to the proof of Proposition 4.5.1 so we
omit some details. By Claim 4.5.1 and Lemma 4.5.3 we have

P (Fy S c,{(W)) =1 (4.6.1)

Now, Lemma 4.6.2 together with (4.6.1), Theorem 4.1.7 (applied with W + 1) and the
Continuous Mapping Theorem imply that

V(F, W) -5 V(F, W) (4.6.2)

where the convergence is in distribution as R, N — oo according to that theorem.
Hence, Proposition 4.6.1 follows from (4.6.2), Proposition 4.1.6 and Lemma 4.2.2. [

4.6.3 Concluding the proof of Theorem 4.1.3

Before concluding the proof of Theorem 4.1.3, we need to following direct applica-
tion of the Kac-Rice formula:

Lemma 4.6.3. Suppose that F, is a centred, stationary Gaussian field defined on R™
such that (F, VF) is non-degenerate and v is supported on 5"~ then there exists
some constant ¢ = ¢(v) such that

E[V(F,,W)] = ¢(v) vol B(W)

Proof. For brevity let us write F = F,. By [AT09, Theorem 6.3], since F is non-
degenerate (4.5.4) and almost surely analytic, we have

BV (E,W)) = [ EIVE@)FG)ory 0y 463
where vg(,)(0) is the density of F(y) at zero. By stationarity, the integrand in (4.6.3)

is independent of y and the Lemma follows. ]

Remark 4.6.4. It is possible to explicitly derive an expression for E[V(F,, W)] =
Jaew BW ]E[|VF (y)||F(y)] in terms of the covariance of F, and its derivatives, following

computatlons similar to those of [KKW13; EPSR21]. However, since the calculations
are quite long, we decided not to include them in the article.

And lastly the following lemma:
Lemma 4.6.5. Leth : R™ — Rand 0 < r < R. Then we have

V(h;x,r)
<[ 22X« 6.
V(IR —7) < /B(R) volB(r] 1 < VO R+7) (4.6.4)

Proof. By the definition of } and Fubini, we have
Vh;,d:// Lo () Ly o1 () dH (1) dx.
Joy VOt = [ [ e ()b () ()
= 1,- 1(B(y,r) NB(R))dH(y),
S B0 () ol (B, r) 1 B(R)) dH(y)

so the lemma follows from 1pz_,) < vol (Bé(-),lr;(ﬂ)B(R)) < Ip(R4n)- O
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We are finally ready to prove Theorem 4.1.3.

Proof of Theorem 4.1.3. The proof follows closely the proof of Theorem 4.1.1, so we
omit some details. Let ¢ > 0 be given, then applying Lemma 4.6.5 with r = W and
dividing by vol B(R), we have

1 / V(E, W) V(f,R) 1 / V(E,, W)
oy dx < <
vol B(R) JB(r-w) vol B(W) volB(R) ~ vol B(R) Ja(r+w) vol B(W)

For any a > 0, Proposition 4.1.6 gives

1 V(Fs, W)

- T Onwa(R™),
vol B(R) /13(R+w)\B(R) vol B(W) nwa(RT)

for some 7y > 0. Therefore, as in the proof of Proposition 4.1.5,

V(f,R) [ V(F,W) )
vol B(R) — Bé ) W(w)dx +Onwa(R77). (4.6.5)

Finally, Proposition 4.6.1 gives, for every & > 0,

V(f,.R) 1
vol B(R) ~ vol B(W)

E[V(F,, W)] + O(e)

for all N and R sufficiently large. The theorem now follows from Lemma 4.6.3.  [J

4.7 Final comments.

4.7.1 Exact Nazarov-Sodin constant for limiting function?

As we have seen, Theorem 4.1.1 says that there are deterministic functions with
the growth rate for the nodal domains count arbitrarily close, increasing N, to the
Nazarov-Sodin constant. One may wonder whether this constant is attained if N
goes to infinity and the functions {fy} as in (4.1.1) (or a rescaling of it) converges,
in some appropriate space of functions, to some function f. Our argument does not
apply outright in the limit N — oo and then R — oo. That is, Theorem 4.1.1 gives

N(fn,R)

—5/5n,  CNS

YOI B(R =0. 4.7.1)

lim limsup
N=e R

Hovyever, given a sequence of functions fN = Cnfny with Cy > 0 (so N(fn,R) =
N (fn, R)) such that fy — f, one could hope that the following holds:

N(fu.R) N(f,R)

YV UN, = lim |22\
vol B(R) NS s vol B(R) eNS

R—o00

lim lim
R—00 N—o0

= 0. 4.7.2)

In this section we show that this is not true in general, that is, we give examples of
sequences of functions such that fy — f and (4.7.1) hold but (4.7.2) does not, in fact,
the growth rate is much smaller.
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Let us consider the functions

1
N= ON1/2 Y. el{rmx)),

[n|<N

assume that y is the Lebesgue measure on the sphere and define fy = N~1/2fy.
Then, we have

Fu0) = g X el =5 [ ellwmiotw) = = 6, 22T

where A = (m — 2)/2 and the convergence is uniform on compact sets, see (4.A.1),
with respect to x € R™ and also holds after differentiating any finite number of
times. Thus by Theorem 4.1.7, (4.7.1) holds, but

N(f,R) = cR(14 0r—0(1)) (4.7.3)

for some known ¢ > 0, thus (4.7.2) does not hold. We also observe that, using
[EPSR22a, Theorem 3.1], it is possible to make more general choices of a,, for ex-
ample a, = ¢(r,) for some sufficiently smooth function ¢. With this choice, either
the number of nodal domains of f grows as in (4.7.3) or it could even be bounded
(for large enough R the nodal set is a non-compact nodal component consisting on
layers and an “helicoid” connecting them).

In order to illustrate this change, we show in Figure 4.1 below the nodal set for
the function

1
en(x,y) : NZCOS (xcos B, +ysinb,)
n=1
for different N and 6, uniformly distributed over the sphere. As N increases the
connected components of the nodal sets near the origin tend to merge and they are
close and diffeomorphic to the ones of .

Finally, we mention that a similar phenomenon happens for eigenfunctions on
the two dimension torus T? = IR?/Z2. These can be written as

fra(x) =}, age((g, x)),

ces

where £ = & = {¢ € Z?* : |{|> = E} and 4z are complex coefficients. Under some
arithmetic conditions and some constrains on the coefficients, in [Boul4; BW16] it is
showed that there are deterministic realizations of the RWM, that is

N(f) = ens(p) - E(1+0(1)). (4.7.4)

However, since the points ¢/+/E € S! “generically” become equidistributed on S!

[EH99], the function 1

§€5

once rescaled, presents the same limiting behaviour described by (4.7.3). In particu-
lar, for f, , g = f (E~1/2), considering the periodicity, (4.7.4) and R large enough,

N(fy, g R) ~ vol B(R) - ens (1) (14 0(E?)),
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still an approximated constant.

(O

(A) 25 points. (B) 100 points.

.

(C) Nodal set for the function with 25 (D) Nodal set for the function with 100
points. points. In red for Jo(|x|).

FIGURE 4.1: Nodal set for the function gy for different N and the
points on the sphere S'. We have represented in red the first eight
connected components of Jo(| - |)~1(0).

4.7.2 On a question of Kulberg and Wigman

The methods we have developed allow us to solve a question raised by Kulberg and
Wigman, [KW18, Section 2.1], on the continuity of

= E[N(F, R)]

on the plane. Indeed, we can strengthen Lemma 4.5.4 to give a more general result
as in Proposition 4.7.1. This solves their question on any dimension, not only m = 2.

Proposition 4.7.1. Let u, be a sequence of measures on the sphere $”~! not sup-
ported on a hyperplane converging weakly to y as n — co. Then

E[N (Fy,, R)] = B[N (Fy, R)]

for any R > 0.
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Proof. Thanks to Lemma 4.5.3, F,,, F, € C1(B(W)) almost surely. From Lemma 4.3.6
we can stablish dp(F,,, F,) — 0. Thus the proposition follows directly Portmanteau
Theorem, as N'(F,,, R) = O(R™) by the Faber-Krahn inequality, uniformly for all #,
and it is continuous by Proposition 4.5.2. O

Remark 4.7.2. The same holds for topological classes and trees with an analogous,
mutatis mutandis, proof.

With our techniques we can also extend the discrepancy functional that was in-
troduced in [KW18, Proposition 1.2] for any dimension, topologies and nesting trees.
More precisely, we have:

Proposition 4.7.3. The discrepancy functional exists, that is,

N (F., - R)

i B o1s(R)

—c(-,n) ‘ (4.7.5)
exists and it is finite.

Proof. Following the proof of Theorem 4.2.9,

. N(F‘ul'/R)
1%1_130 VOIS(R)—C('IV)‘ =E|c(G, - p) —c(m)l,
as the convergence is in L'. O

From the proof we see that the discrepancy functional, (4.7.5), is zero if and only
if C(Fy, -,R) is a.s. a constant, that is, the limit of the nodal counts is non-random.

This is true, in particular, if the field is ergodic. This functional measures how far we

are from the ergodic situation of limg_, Q@%(RR)) being, a.s., a constant.

APPENDICES

4.A Gaussian fields lemma.

Adapting [EPSR20, Lemma 7.2] for our situation we can show:

Lemma 4.A.1. Lets > 0and W > 1, be given. Moreover, suppose that {, } nen be a
sequence of probability measures on S ! such that u, weak* converges to y. Then,

where the convergence is with respect to the C*(B(W)) topology.

Proof. Since p, weak*-converges to y and the exponential is a bounded continuous
function, by the discussion in Section 4.2.1 and Portmanteau Theorem, we have for
any x,y € B(W)

K (x,y) = E[Fy, (x)Fy, (y)] = /€(<x —Y,A))dpn(A) =

(4.A.1)
— [eltx=y,))dn() = E[F(0)F ()] = K(x,)
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Since, p, and u are compactly supported, we may differentiate under the integral
sign in (4.A.1), it follows that (4.A.1) holds after taking derivatives. Thanks to the
Cauchy-Schwarz inequality and the fact that yy is a probability measure, we have

|Kn(x,y) = Ku(x, )| < Cllx =" +y —¢/|

as |’ — | < |x —y| for any x,y € R. Therefore K,, is equicontinuous, |K,(x,y)| < 1
and it converges pointwise; thus, the Arzela-Ascoli Theorem implies that the conver-
gence in (4.A.1) is uniform for all x,y € B(W), together with its derivatives. Now,
for any integer t > 0, the mean of the H'-norm of F,, is uniformly bounded:

E|1Eu, s ZIE/ DE, ( |2dx_2/ DLDYK, (x,9),_, dx

|| <t |a| <t

o T [ DEDIK( )], e < Mo,

n—r00
la| <t

where, in the last line, we have used (4.A.1). As the constant M, is independent
of N, Sobolev’s inequality ensures that one can now take any sufficiently large ¢ to
conclude that

sup]EHF

Cb+1(B(W)) < Cs‘iPIEHFHn”%{f(B(W)) <M

for some constant M that only depends on W, t. Thus, for any ¢ > 0 and any suffi-
ciently large 1, we have

Vi ({Fu € CTHY(BW)) = (|, 181 (pwy) > M/€}) <

where 1}V is the measure on the space of C*(B(W)) functions corresponding to the
random field F,,. Accordingly, the sequence of probability measures v, is tight.
Indeed, by Lagrange and Arzela-Ascoli the closure of the set

{Fu, € CTHUBW)) : 1By, G gy < M/ e}

is precompact with the C° topology, so we can conclude by the very definition of
tightness, see Section 4.2.2. O

4.B Upper bound on N'Z.

In this section are going to prove Lemma 4.4.2 following [CLM+20, section 3.2] (that
is, the following argument is due to F. Nazarov and we claim no originality). We will
need the following (rescaled) result [CLM+20, Lemma 2.5]:

Lemma 4.B.1. Letr > 1and p > 0, let f be a Laplace eigenfunction with eigenvalue
47%r? on B(p). Suppose that an open set ) C B(p) is co-narrow (on scale 1/r) and
f =00n0QNB(p). Then, for every ¢ > 0, sufficiently small depending on ¢y and
m, if

@ L el

‘Bp’ X ’

then

sup |f| <e /" sup |f]
QNB(p/2) QNB(p)
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We are finally ready to prove Lemma 4.4.1

Proof of Lemma 4.4.1. First, we rescale f to f, so that NZ(f,x,r) = NZ(f,,x,1) and
we may assume that every nodal domain is ¢o-narrow. Let Z = NZ(f,, x,1), Q); be
the elements of N'Z(f;,x,1), D = Ny, (B(x,1)) 4+r = MNs(B(x,2r)) + r and finally let
B(x) = B(x,1). Suppose that Z > 2"+2¢ 1. D"~ for some constant c; = c;(m) to
be chosen later, we are going to derive a contradiction.

Let x; € ;N B(x,1) and define
S(p) = [{0 10N B(x,277)| < e ' D" [B(x;,27)| for j € {0, ., p}}|.

First we are going to show that S(0) # @. Indeed, since

Y 10,1 B(x,1)| < [B(2)],

for at least (3/4)Z nodal domains, we have
’(ijB(Xhl)‘<:gE
2m|B(1)| Tz’
thus S(0) > (3/4)Z.
Now, we claim the following:

Claim 4.B.1. Let p > 1, then there are at most Z4~P~2 nodal domains Q; € S(p)\S(p +

1).

Proof. From now on, fix some p > 1 and assume that (); € S(p), we wish to apply
1

Lemma 4.B.1 with e = Cl"fl D1, therefore we assume c; is sufficiently small in terms
of m and cp. Hence, we may apply Lemma 4.B.1 to B(x;,27/) for j = 0, ..., p, to see
that

SUPO,nB(x;2-7) | frl
SUPpy, ) | fr]

< (277 h)eP (4.B.1)

for some c; = cp(m) > 0 and for all i. On the other hand, Lemma 4.2.8 applied to f,,
with B(2) and E = Uq,es,Q; N B(x;,27P71), in light of the fact that nodal domains
are disjoint, gives

(zi QN B(xi,z-P-1>|>CD _ sup; [

|B(xi,2)] ™~ supg |fr|”

which, together with (4.B.1), implies

o CD

Rescaling we have B(x;,2) = 2"(P+2)B(x;,27P~1), thus (4.B.2) can be rewritten as

) ] y—p—1 CD
(Zl ‘QBZ(Z.B éﬂﬁ_zl) )’> S (27 h)abmmeb, (4B.3)
14




4.B. Upper bound on N'T. 155

which, taking c, sufficiently large, that is, ¢; small depending on m, implies that

L 100 B(x, 2777 _
B(xi,Z—P—l) =

47P2,

Hence there are at most Z - 4 72 nodal domains satisfying

|Q; N B(x;,27P71)]

> D7
B(x;,271)]| !

and the claim follows. O

Using the claim and the fact that S(p + 1) C S(p), we see that, for each p > 0
IS(p)| = Z—-ZY,477 > Z/2. However, since the number of nodal domains is finite
and

QN B(x,p)|
|B(x,p)]

we have that S(p) is empty for p sufficiently large, a contradiction. 0

= 1 for p small enough,
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Chapter 5

Almost sure existence of knots and
chaos in random Beltrami fields

5.1 Introduction

Our objective in this chapter is to establish Arnold’s view of complexity in Beltrami
fields, see Chapter 1. To do so, the key new tool is a theory of random Beltrami
tields, which we develop here in order to estimate the probability that a Beltrami
field exhibits certain complex dynamics. The blueprint for this is the Nazarov-Sodin
theory for Gaussian random monochromatic waves, which yields asymptotic laws
for the number of connected nodal components of the wave. Heuristically, the basic
idea is that a Beltrami field satisfying (1.8) can be thought of as a vector-valued
monochromatic wave; however, the vector-valued nature of the solutions and the
fact that we aim to control much more sophisticated geometric objects introduces
essential new difficulties from the very beginning.

5.1.1 Overview of the Nazarov-Sodin theory for Gaussian random monochro-
matic waves

In order to be self-contained and to stress the differences with random Beltrami
fields, we briefly present Nazarov-Sodin theory. See Chapter 1 for more. The Nazarov-
Sodin theory [NS16], whose original motivation was to understand the nodal set of
random spherical harmonics of large order [NS09], provides a very efficient tool
to derive asymptotic laws for the distribution of the zero set of smooth Gaussian
functions of several variables. The primary examples are various Gaussian ensem-
bles of large-degree polynomials on the sphere or on the torus and the restriction to
large balls of translation-invariant Gaussian functions on R?. Most useful for our
purposes are their asymptotic results for Gaussian random monochromatic waves,
which are random solutions to the Helmholtz equation

AF+F=0 (5.1.1)
on R?. We will henceforth restrict ourselves to the case d = 3 for the sake of con-

creteness.

As the Fourier transform of a solution to the Helmholtz equation (5.1.1) must be
supported on the sphere of radius 1, the way one constructs random monochromatic
waves is the following [CS19]. One starts with a real-valued orthonormal basis of
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the space of square-integrable functions on the unit two-dimensional sphere 5. Al-
though the choice of basis is immaterial, for concreteness we can think of the basis of
spherical harmonics, which we denote by Y;,,. Hence Y}, is an eigenfunction of the
spherical Laplacian with eigenvalue /(! 4+ 1), the index [ is a non-negative integer
and m ranges from —I to I. The degeneracy of the eigenvalue I(I + 1) is therefore
2] + 1. To consider a Gaussian random monochromatic wave, one now sets

00 !
@)=Y Y i ap Yiu(2) (5.1.2a)
I

=0m=—1

on the unit sphere || =1, § € R3, where a;,,, are independent standard Gaussian
random variables. One then defines F as the Fourier transform of the measure ¢ do,
where do is the area measure of the unit sphere. This is tantamount to setting

o X ]1+l(’x|)
mYm ool e
Ly ’(m)

1

NI

F(x) :== (2m) (5.1.2b)

|x|2

The central known result concerning the asymptotic distribution of the nodal
components of Gaussian random monochromatic waves is that, almost surely, the
number of connected components of the nodal set that are contained in a large ball
(and even those of any fixed compact topology) grows asymptotically like the vol-
ume of the ball. More precisely, let us denote by Nr(R) (respectively, Np(R; [Z])) the
number of connected components of the nodal set F~1(0) that are contained in the
ball centered at the origin of radius R (respectively, and diffeomorphic to X). Here
Y. is any smooth, closed, orientable surface ¥ C R3. It is obvious from the definition
that Nr(R; [X]) only depends on the diffeomorphism class of the surface, [X]. The
main result of the theory —which is due to Nazarov and Sodin [NS16] in the case
of nodal sets of any topology, and to Sarnak and Wigman when the topology of the
nodal sets is controlled [SW19]— can then be stated as follows. Here and in what

1
follows, the symbol L, will be used to denote that a certain sequence of random
a.s

variables converges both almost surely and in mean. Morally speaking, this is a
law of large numbers for the number of connected components associated with the
Gaussian field F.

Theorem 5.1.1. Let F be a monochromatic random wave. Then there are positive constants
v, v([X]) such that, as R — oo,

Ne(R) 1t Np(R;[Z]) 1
|BR’ g}l/, W?V([Z])

Here ¥ C R3 is any compact surface as above.

5.1.2 Gaussian random Beltrami fields on R3

Our goal is then to obtain an extension of the Nazarov-Sodin theory that applies to
random Beltrami fields. As we will discuss later, this is far from trivial because there
are essential new difficulties that make the analysis of the problem rather involved.

The origin of many of these difficulties is strongly geometric. In contrast to the
case of random monochromatic waves (or any other scalar Gaussian field), where
the main geometric objects of interest are the components of its nodal set, in the
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study of random vector fields we aim to understand structures of a much subtler
geometric nature. Among these structures, and in increasing order of complexity,
one should certainly consider the following:

(i) Zeros, i.e., points where the vector field vanishes.
(ii) Periodic orbits, which can be knotted in complicated ways.

(iif) Invariant tori, that is, surfaces diffeomorphic to a 2-torus that are invariant un-
der the flow of the field. They can be knotted too.

(iv) Compact chaotic invariant sets, which exhibit horseshoe-type dynamics and have,
in particular, positive topological entropy:.

Recall that a horseshoe is defined as a compact hyperbolic invariant set with a Can-
tor transverse section on which the time-T flow of u is topologically conjugate to a
Bernoulli shift [GH13], for some T. Consequently, let us define the following quan-
tities:

(i) N%(R) denotes the number of zeros of u contained in the ball Bg.

(ii) Given a (possibly knotted) closed curve v C R3, N2(R; [y]) denotes the num-
ber of periodic orbits of u contained in By that are isotopic to 7.

(iii) Given a (possibly knotted) torus 7 C R3, V(R;[T]) is the volume (understood
as the inner measure) of the set of ergodic invariant tori of u that are contained
in Br and are isotopic to 7. Ergodic means that we consider invariant tori on
which the orbits of u are dense.

(iv) NI(R) denotes the number of horseshoes of u contained in the ball Bg.

Clearly, these quantities only depend on the isotopy class of y and 7.

It is not hard to believe that these geometric subtleties give rise to a number of
analytic difficulties. One should mention, however, that there also appear other un-
expected analytic difficulties whose origin is less obvious. They are related to the
fact that it is not clear how to define a random Beltrami field through an analog
of (5.1.2b). This is because the characterization of a monochromatic wave as the
Fourier transform of a distribution supported on a sphere is the conceptual base of
the simple definition (5.1.2a), which underlies the equivalent but considerably more
awkward expression (5.1.2b). Heuristically, analytic difficulties stem from the fact
that there is not such a clean formula in Fourier space for a general Beltrami field.
This is because the three components of the Beltrami field (which are monochro-
matic waves) are not independent, so the reduction to a Fourier formulation with
independent variables is not trivial. We refer the reader to Section 5.3, where we
explain in detail how to define Gaussian random Beltrami fields in a way that is
strongly reminiscent of (5.1.2b). Later in this Introduction we shall also informally
discuss the aforementioned difficulties and discuss how we manage to circumvent
them using a combination of ideas from PDE, dynamical systems and probability

We can now state our main result for Gaussian random Beltrami fields on R,
as defined in Section 5.3. Let us emphasize that the picture that emerges from this
theorem is fully consistent with Arnold’s view of complexity in Beltrami fields; with
probability 1, we show that a random Beltrami field is “partially integrable” in that
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there is a large volume of invariant tori, and simultaneously features many compact
chaotic invariant sets and periodic orbits of arbitrarily complex topologies. This
coexistence of chaos and order is indeed the essential feature of the restriction to an
energy hypersurface of a generic Hamiltonian system with two degrees of freedom,
as Arnold put it. In this direction, Corollary 5.1.3 below is quite illustrative.

Theorem 5.1.2. Let u be a Gaussian random Beltrami field. Then:

(i) The topological entropy of u is positive almost surely. In fact, with probability 1,

NM(R
u( )>1/h.

lim inf
R—o0 ‘ R|
(ii) With probability 1, the volume of ergodic invariant tori of u isotopic to a given embed-

ded torus T C R® and the number of periodic orbits of u isotopic to a given closed
curve 7y C R3 satisfy the volumetric growth estimate

> W ([T]), nmmfN“i‘ > v°([]).

The constants v*, v([T]) and v°([7y]) above are all positive, for any choice of the curve
and the torus T .

Corollary 5.1.3. With probability 1, a Gaussian random Beltrami field on R® exhibits in-
finitely many horseshoes coexisting with an infinite volume of ergodic invariant tori of each
isotopy type. Moreover, the set of periodic orbits contains all knot types.

Remark 5.1.1. The result we prove (see Theorem 5.6.2) is in fact considerably stronger:
we do not only prescribe the topology of the periodic orbits and the invariant tori we
count, but also other important dynamical quantities. Specifically, in the case of peri-
odic orbits we have control over the periods (which we can pick in a certain interval
(T1,T2)) and the maximal Lyapunov exponents (which we can also pick in an inter-
val (A1, A2)). In the case of the ergodic invariant tori, we can control the associated
arithmetic and nondegeneracy conditions. Details are provided in Section 5.6.

Unlike the case of nodal set components considered in the context of the Nazarov—
Sodin theory for Gaussian random monochromatic waves, we do not prove exact
asymptotics for the quantities we study, but only nontrivial lower bounds that hold
almost surely. Without getting technicalities at this stage, let us point out that this
is related to analytic difficulties arising from the fact that we are dealing with quan-
tities that are rather geometrically nontrivial. If one considers a simpler quantity
such as the number of zeros of a Gaussian random Beltrami field, one can obtain
an asymptotic distribution law similar to that of the nodal components of a random
monochromatic wave, whose corresponding asymptotic constant can even be com-
puted explicitly:

Theorem 5.1.4. The number of zeros of a Gaussian random Beltrami field satisfies

NR)
’BR‘ a.s.

as R — oo. The constant is explicitly given by

VE = / 1Q(2)] 79 dz = 0.00872538....., (5.13)
R



5.1. Introduction 163

where ¢* := 21%/2/[143+/5 %], and Q, Q are the following homogeneous polynomials in
five variables:

Q(z) := 2125 + 23 — 2224 — 212074 — 2324 + 2207375 — 2122, (5.1.4)
2 T4 % 3 5

~ 189 42 42

Q(z) := 6—2% + ﬁ(z% +23) + E(zﬁ + 2124 +22). (5.1.5)

5.1.3 Random Beltrami fields on the torus

A Beltrami field on the flat 3-torus T3 := (R/27tZ)? (or, equivalently, on the cube
of R? of side length 27t with periodic boundary conditions) is a vector field on T3
satisfying the eigenvalue equation

curlv = Av

for some real number A # 0. It is well-known (see e.g. [ELPS17]) that the spectrum
of the curl operator on the 3-torus consists of the numbers of the form A = +|k|
for some vector with integer coefficients k € Z3. Restricting our attention to the
case of positive eigenvalues for the sake of concreteness, one can therefore label the
eigenvalue by a positive integer L such that A, = L!/2. The multiplicity of the
eigenvalue is given by the cardinality of the corresponding set of spatial frequencies,

Zy={keZ®: |k*=1}.

By Legendre’s three-square theorem, Z; is nonempty (and therefore A is an eigen-
value of the curl operator) if and only if L is not of the form 4°(8b + 7) for nonnega-
tive integers a and b.

The Beltrami fields corresponding to the eigenvalue A must obviously be of the
form
ML — Z VkL eik-x,
keZ;

for some vectors VkL € C3, where VkL = ka to ensure that the Beltrami field is real-
valued. Starting from this formula, in Section 5.7 we define the Gaussian ensemble of
random Beltrami fields ul of frequency A, which we parametrize by L. The natural
length scale of the problem is L!/2.

Our objective is to study to what extent the appearance of the various dynami-
cal objects described above (i.e., horseshoes, zeros, and periodic orbits and ergodic
invariant tori of prescribed topology) is typical in high-frequency Beltrami fields,
which corresponds to the limit L — co. When taking this limit, we shall always as-
sume that the integer L is admissible, by which we mean that it is congruent with 1,
2, 3,5 or 6 modulo 8. We will see in Section 5.7 (see also [Roz17]) that this number-
theoretic condition ensures that the dimension of the space of Beltrami fields with
eigenvalue A;, tends to infinity as L — co.

To state our main result about high-frequency random Beltrami fields in the torus
we need to introduce some notation. In parallel with the previous subsection, for
any closed curve 7y and any embedded torus 7T, let us respectively denote by NZ,,
N SLI N ;)L
to v and ergodic invariant tori isotopic to 7 of the field u’, as well as the volume
(i.e., inner measure) of these tori, which we denote by V!, ([7]). To further control

([7]) and N, ([T]) the number of zeros, horseshoes, periodic orbits isotopic
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the distribution of these objects, let us define the number of approximately equidis-
tributed ergodic invariant tori, N'f ([7]), as the largest integer m for which u* has m

ergodic invariant tori isotopic to 7 that are at a distance greater than m~1/3

apart
from one another. The number of approximately equidistributed horseshoes Nl}[lie,
periodic orbits isotopic to a curve Ni([y]) and zeros N”;° are defined analogously.
Note that, again, the asymptotic information that we obtain is perfectly aligned with

Arnold’s view of complex behavior in typical Beltrami fields.

Theorem 5.1.5. Let us denote by (u') the parametric Gaussian ensemble of random Bel-
trami fields on T3, where L ranges over the set of admissible integers. Consider any con-
tractible closed curve «y and any contractible embedded torus T in T3. Then:

(i) With a probability tending to 1 as L — oo, the field ul exhibits an arbitrarily large
number of approximately distributed horseshoes, zeros, periodic orbits isotopic to y
and ergodic invariant tori isotopic to T . More precisely, for any integer m,

lim P{min (N}, N ([T]), NoS([0]), N7} > mf =1
Furthermore, the probability that the topological entropy of the field grows at least
as L2 and that there are infinitely many ergodic invariant tori of u® isotopic to T
also tends to 1:

lim P{N', ([T]) = o0 and hyp(u) > vILV2} =1.

L—o0

(ii) The expected volume of the ergodic invariant tori of u isotopic to T is uniformly
bounded from below, and the expected number of horseshoes and periodic orbits isotopic
to v is at least of order L3/

ENM,  EN°, .
li{ninfmin{ o BN (1) ,EvuL<m>} > v.([), 7).

— 0

In the case of zeros, the asymptotic expectation is explicit, with v* given by (5.1.3):

Z

. EN};
Jim —75 = (2m)*v".

Here vl and v.([y], [T]) are positive constants.

Remark 5.1.2. As in the case of R3, the result we prove in Section 5.7 is actually
stronger in the sense that we have control over important dynamical quantities
(which now depend strongly on L) describing the flow near the above invariant tori
and periodic orbits.

5.1.4 Some technical remarks

In a way, the cornerstone of the Nazarov-Sodin theory is their very clever (and non-
probabilistic) “sandwich estimate”, which relates the number Nr(R) of connected
components of the nodal set of the Gaussian random field F that are contained in
an arbitrarily large ball B with ergodic averages of the same quantity involving the
number of components contained in balls of fixed radius. Two ingredients are key to
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effectively apply this sandwich estimate. On the one hand, each nodal component
cannot be too small by the Faber—Krahn inequality, which ensures, in dimension 3,
that its volume is at least cA =3 if AF + A2F = 0. On the other hand, to control the
connected components that intersect a large ball but are not contained in it, it suffices
to employ the Kac-Rice formula to derive bounds for the number of critical points
of a certain family of Gaussian random functions.

In the setting of random Beltrami fields, the need for new ideas becomes appar-
ent the moment one realizes that there are no reasonable substitutes for these two
key ingredients. That is, the frequency A does not provide bounds for the size of the
more sophisticated geometric objects considered in this context (i.e., periodic orbits,
invariant tori or horseshoes), and one cannot estimate the objects that intersect a ball
but are not contained in it using a Kac—Rice formula. As a matter of fact, we have
not managed to obtain any useful bounds for these quantities and, while we do use
a sandwich inequality of sorts (or at least lower bounds that can be regarded as a
weaker substitute thereof), even the measurability of the various objects of interest
becomes a nontrivial issue due to their complicated geometric properties.

To circumvent these problems, we employ different kinds of techniques. Firstly,
ideas from the theory of dynamical systems play a substantial role in our proofs. On
the one hand, KAM theory and hyperbolic dynamics are important to prove that
certain carefully chosen functionals are lower semicontinuous, which is key to solve
measurability issues that would be very hard to deal with otherwise. Furthermore,
to prove that Beltrami fields exhibit chaotic behavior almost surely, it is essential to
have at least one example of a Beltrami field that features a horseshoe, and even
that was not known. Indeed, the available examples of non-integrable ABC flows
are known to be chaotic on T? due to the non-contractibility of the domain, but not
on IR3. This technical point is fundamental, and makes them unsuitable for the study
of random Beltrami fields. Therefore, an important step in our proof is to construct,
using Melnikov theory, a Beltrami field on R® that has a horseshoe. Techniques from
Fourier analysis and from the global approximation theory for Beltrami fields are
also necessary to handle the inherent difficulties that stem from the fact that the
equation under consideration is more complicated than that of a monochromatic
wave. As an aside, the only point of the chapter where we use the Kac—Rice formula
is to compute the constant v* in closed form.

In the case of Beltrami fields on the torus, the results we prove concern not
only the expected values of the quantities of interest, but also the probability of
events. In the case of random monochromatic waves on the torus, Nazarov and
Sodin [NS16] had proved results for the expectation (which apply to very general
parametric scalar Gaussian ensembles), and Rozenshein [Roz17] had derived very
precise exponential bounds for the probability akin to those established by Nazarov
and Sodin [NS09] for random spherical harmonics. However, both results use in a
crucial way that the size of nodal components can be effectively estimated in terms
of the frequency: the Faber—Krahn inequality provides a lower bound for the volume
and large diameter components can be ruled out using a Crofton-type formula and
Bézout’s theorem. No such bounds hold in the case of Beltrami fields, so the way we
pass from the information that the rescaled covariant kernel of u! tends to that of u
to asymptotics for the distribution of invariant tori, horseshoes or periodic orbits is
completely different. Specifically, we rely on a direct argument ensuring the weak
convergence of sequences of probability measures, on spaces of smooth functions,
provided that suitable tightness conditions are satisfied.
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5.1.5 Outline of the chapter

In Section 5.2, we start by describing Beltrami fields in R® from the point of view
of Fourier analysis and provide some results about global approximation. Gaussian
random Beltrami fields on R® are introduced in Section 5.3, where we also establish
several results about the structure of the corresponding covariance matrix and about
the induced probability measure on the space of smooth vector fields. In Section 5.4
we recall, in a form that will be useful in later sections, several previous results
about ergodic invariant tori and periodic orbits arising in Beltrami fields. Section 5.5
is devoted to constructing a Beltrami field on R that is stably chaotic. Finally, in
Sections 5.6 and 5.7 we complete the proofs of our main results in the case of R3
and T3, respectively. The chapter concludes with an Appendix where we provide a
fairly complete Fourier-theoretic characterization of Beltrami fields.

5.2 Fourier analysis and approximation of Beltrami fields

In what follows, we will say that a vector field u on R3 is a Beltrami field if
curlu = u.

Taking the curl of this equation and using that necessarily div u = 0, it is easy to see
that u must also satisfy the Helmholtz equation:

Au+u=20.

To put it differently, the components of this vector field are monochromatic waves.
An immediate consequence of this is that the Fourier transform # of a polynomi-
ally bounded Beltrami field is a (vector-valued) distribution supported on the unit
sphere

S:={fcR%: ¢ =1}.

Since u is real-valued, ## must be Hermitian, i.e., #i(¢) = #(—¢). Furthermore, a clas-
sical result due to Herglotz [H6r15, Theorem 7.1.28] ensures that if u is a Beltrami
field with the sharp fall off at infinity, then there is a Hermitian vector-valued func-
tion f € L2(S,C3) such that i = f do; for the benefit of the reader, details on this and
other related matters are summarized in Appendix 5.A. For short, we shall simply
write this relation as u = Uy, with

U (x) = /5 F(&) % dor(E). (52.1)

Obviously Uy is a Beltrami field if and only if f is Hermitian (which makes Uy real
valued) and if it satisfies the distributional equation on the sphere

iEx f(8) = f(¢). (5.2.2)

In this chapter, we are particularly interested in Beltrami fields of the form u =
Uy, where now f is a general Hermitian vector-valued distribution on the sphere.
The corresponding integral, which is convergent if f is integrable, must be under-
stood in the sense of distributions for less regular f (that is to say, for f in the scale
of Sobolev spaces H*(S, C3) with s < 0). We recall, in particular, that for any integer
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k > 0 the field LIf is bounded as [EPSR22a, Appendix A]

(P
x<C - . 523
?{Li}()) R By 1+ ’x|2k HfHH k(s,C3) ( )

We recall that, for any real s, the H*(S) norm of a function f can be computed as

[ee]

I
1) = Z Z L+ 1% finl?,

where f},,, are the coefficients of the spherical harmonics expansion of f.

With g(t) := $(£2)1/2(1 + /7it), let us consider the vector-valued polynomial

p(&) :=q(&1) (& - 1L,&E&E — i, G& + k), (5.2.4)

which we will regard as a Hermitian function p : R* — C3. Note that the restriction
of p to the sphere vanishes exactly at the poles ¢+ := (£1,0,0). The inessential
nonvanishing normalization factor 4(;) has been introduced for later convenience:
when we define random Beltrami fields via the function p in Section 5.3, this choice
of p will ensure that the associated covariance matrix is the identity on the diagonal
(see Corollary 5.3.3).

We next show that, away from the poles, the density f of a Beltrami field Uy must
point in the same direction as p:

Proposition 5.2.1. The following statements hold.:

(i) If the vector field Uy is a Beltrami field, then p X f = 0as a distribution on S. Further-
more, if x is a smooth real-valued function on the sphere supported in S\{¢,¢_ } and
f € H(S,C3) for some real s, then there is a Hermitian scalar function ¢ € H*(S)
such that x f = ¢ p.

(ii) Conversely, for any Hermitian ¢ € H*(S), the associated field U, is a Beltrami field.

Proof. In view of Equation (5.2.2), for each vector ¢ € S, consider the linear map Mz
on C3 defined as
MgV =V —igx V.

More explicitly, M is the matrix

-1 —igs il
Me= | i&s -1 —igy | .
—ig& i -1

The determinant of this matrix is det Mz = Z+e+ 6% — 1, and in fact it is easy to
see that M has rank 2 for any unit vector §. Since Msp(5) = 0 forall § € S and
p(¢) only vanishes if { = ¢+, we then obtain that the kernel of M is spanned by the
vector p(&) whenever ¢ is not one of the poles 1. In a neighborhood of the poles,
the kernel of M; can be described as the linear span of p(¢) := q(&2) (8182 + 83, &5 —

1,8283 —iG1).

Since M¢f(¢) = 0 in the sense of distributions by (5.2.2), it stems from the above
analysis that one can write
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for ¢ away from the poles, and

in a neighborhood of the poles; here « and B are complex-valued scalars. As p({) X
p(¢) = 0forall { € S, we immediately infer that

pxf=0.

Also, as the support of a function is a closed set, p is bounded away from zero on
the support of x, so we have that

¢ = Xj|(p.]129 € H°(S).

As f is Hermitian, this proves the first part of the proposition. The second statement
follows immediately from the fact that

Me[p(8)p(8)] = () Mep(Z) = 0.
O

Remark 5.2.1. A Beltrami field of the form Upp can be written in terms of the scalar
function (x) := — [g e*q(&1) (&) do(&) (which satisfies the equation A + ¢ = 0)
as

Ugyp = (curlcurl 4 curl) (¢, 0,0) .

When ¢ is smooth, the Beltrami field has the sharp decay bound [Uy, (x)| < C|l@|[12(s)/ (1 +
|x])-

Remark 5.2.2. Not any Beltrami field of the form U can be written as U, for some

scalar function ¢: an obvious counterexample is given by

f(8):=(0,1,1) 6z, (&) + (0,1, =) &¢_(Z), (5.2.5)

where J¢, is the Dirac measure supported on the pole {1+ = (£1,0,0). The reason
for which we cannot hope to describe all Beltrami fields using just scalar multiples
of a fixed complex-valued continuous vector field p’ is topological. Indeed, as u is
divergence-free, we have that & - p’(&) = 0, so p’ must be a tangent complex-valued
vector field on S. By the hairy ball theorem, the real part of p’ must then have at least
one zero *. The equation i x p'() = p'(&) implies that the imaginary part of p’
also vanishes at ¢*, so in fact p’(¢*) = 0. This means that densities f such as (5.2.5),
where we can take ¢* := ¢ without any loss of generality, cannot be written in the
form ¢p’.

Intuitively speaking, Proposition 5.2.1 means that any Beltrami field Uy whose
density f is not too concentrated on ¢+ can be approximated globally by a field of
the form U,,. More precisely, one can prove the following:

Proposition 5.2.2. Consider a Hermitian vector-valued distribution f on S that satisfies
the distributional equation (5.2.2), and define

erj = inf {|Of|[ 1) : © € C(S), O(&4) = O(2-) = 1}.

If €7 is finite and € > €, one can then take a Hermitian scalar distribution on the sphere
@, which is in fact a finite linear combination of spherical harmonics if f € H~*(S,C3),
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such that

1 U (x) — Uyy(x)]?
sup L [ 1D = UnF o
r>0 R /By 1+ |x|

Furthermore, €9 = 0if f € L%(S,C3).

Proof. The first assertion is a straightforward consequence of the first part of Propo-
sition 5.2.1 and of the estimate (5.2.3). Indeed, since f is a compactly supported
distribution, then f € H*(S,C?) for some s. Take any €’ € (efx, €) and let us con-
sider a function ® as above such that || @f|| ;1) < €. Since €' > €y, it is obvious
that we can assume that © = 1 in a small neighborhood of the poles 1. Applying
Proposition 5.2.1 we infer that x f = ¢p with x := 1 — ® and some Hermitian scalar
function ¢ € H*(S). In view of the fact that the map f + Uy is linear and of the
bound (5.2.3), we then have

1 [Up(x) = Ugp(x) 1 |Uep(x))?
sup — dx = sup — — 2 _dx < C||OFf] < C€'.
R>Ig R JBg 1+ |x|* R>I8 R JBz 1+ |x|* 107 la-+s.c0
As finite linear combinations of spherical harmonics are dense in H*(S), if s = —k

we can approximate ¢ in the H~¥(S) norm by a Hermitian function ¢’ of this form;
then

1 [Up(x) = Uyy(x)?

sup — dx
R>I(§R Br 1+’x|2k
1 Us(x) — Uyy(x)|? 1 U v (x)]?
< sup - U () iz( ) dx +sup — de<Ce
rR>0 R J/Bg 1+ |x| rRo0 R /B 1+ x|

provided that [[¢ — ¢'[|y-+(g) < € —€".

Finally, to see that e;o = 0if f € L?(S,C?), let us take a smooth function © :
R® — [0,1] supported in the unit ball and such that ®(0) = 1. Setting

04(¢) :=0(ng —ndy ) +0(ng —ng_),

we trivially get that [|©,f||;2s) < | fllr2(s) for all n > 2 and that ©, f tends to zero
almost everywhere in S as n — co. The dominated convergence theorem then shows
that ||@,f||12(s) — 0as n — oo, thus proving the claim. O

Another, rather different in spirit, formulation of the principle that densities of
the form @p can approximate general Beltrami fields is presented in the following
theorem. Unlike the previous corollary, the approximation is considered only locally
in space, and in this direction one shows that even considering smooth functions ¢
is enough to obtain a subset of Beltrami fields that is dense in the C* compact-open

topology:
Proposition 5.2.3. Fix any positive reals € and k and a compact set K C R3 such that
R3\K is connected. Then, given any vector field v satisfying the equation curlv = v in

an open neighborhood of K, there exists a Hermitian finite linear combination of spherical
harmonics ¢ such that the Beltrami field Uy, approximates v in the set K as
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Proof. Let us fix an open set V' O K whose closure is contained in the open neigh-
borhood where v is defined, and a large ball Bx D V. Since R3\K is connected, it is
obvious that we can take V so that R3\V is connected as well. By the approxima-
tion theorem with decay for Beltrami fields [EPS15, Theorem 8.3], there is a Beltrami
field w that approximates v as

|[w—vllcky <€

and is bounded as |w(x)| < C/|x|. As the Fourier transform of w is supported
on S, Herglotz’s theorem [Hor15, Theorem 7.1.28] shows that one can write w = Uy
for some vector-valued Hermitian field f € L?(S, C?) that satisfies the distributional
equation (5.2.2). Proposition 5.2.2 then shows that there exists some Hermitian scalar
function ¢ € C®(S) such that

U — Ugpll12(8;) < Ce,

so that ||o — Ugpll12(v) < Ce. As the difference v — Uy, satisfies the Helmholtz equa-
tion

in V, and K CC V, standard elliptic estimates then allow us to promote this bound
to
o= Ugpllcrx) < Ce,

as we wished to prove. O

5.3 Gaussian random Beltrami fields

The Fourier-theoretical characterization of Beltrami fields presented in the previous
section paves the way to the definition of random Beltrami fields.

In parallel with (5.1.2a) (see Appendix 5.A for further heuristics), let us start by
setting

) 1

&)=Y Y i, Yi(2),
=0 m=—I

where a;,, are normally distributed independent standard Gaussian random vari-

ables and Y}, is an orthonormal basis of (real-valued) spherical harmonics on S.

Note that ¢ is Hermitian because of the identity Y;,,(—¢) = (—1)"Y},,(&). We now

define a Gaussian random Beltrami field as

u .= uq,p ’
where we recall that Uy and p were respectively defined in (5.2.1) and (5.2.4).

Remark 5.3.1. As discussed in Proposition 5.2.1, the role of the vector field p is to
ensure that the density f := ¢@p satisfies the Beltrami equation in Fourier space,
i¢ x f(&) = f(&). Hence one could replace p(¢) by any nonvanishing multiple of
it, that is, by p(¢) := A(¢) p(&) where A : R® — C is a smooth scalar Hermitian
function that does not vanish on S. All the results of the chapter about random
Beltrami fields remain valid if one defines a Gaussian random Beltrami field as u :=
U,; with ¢ as above, provided that one replaces p by p in the formulas. Also, the
results do not change if one replaces the basis of spherical harmonics by any other
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orthonormal basis of L2(S), but this choice leads to slightly more explicit formulas
for certain intermediate objects that appear in the proofs.

In what follows, we will use the notation D := —iV. An important role will be
played by the vector-valued differential operator with real coefficients p(D), whose
expression in Fourier space is

—

p(D)P(&) = p(&) P(8),

for any scalar function ¥ in R3. Equivalently, by Remark 5.2.1, the operator p(D)
reads, in physical space, as

p(D)y = —(curlcurl 4 curl)(q(D1),0,0),

where Dy := —id,,.

The first result of this section shows that a Gaussian random Beltrami field is a
well defined object both in Fourier and physical spaces:

Proposition 5.3.1. With probability 1, the function ¢ is in H=1=%(S)\L?(S) for any 6 > 0.
In particular, almost surely, u is a C* vector field and can be written as

x\ i %(M)
m (M) 7|+x|1/2 ] : (5.3.1)

The series converges in CX uniformly on compact sets almost surely, for any k.

Proof. For | > 0 and —I < m < I, a?  are independent, identically distributed ran-
dom variables with expected value 1. As the number of these variables with I < n
is
Z Z 1= (n+41)>?
=0m=-1

the strong law of large numbers ensures that the sample average, i.e., the random

variable
LYy
ar, s
(n+1)2 1=0 m——1 t

Xn =

converges to 1 almost surely as n — co. Now consider the truncation

E Z Zalelm

=0m=-1

As the spherical harmonics Yj,, are orthonormal, the L2 norm of ¢, is

n l
||§0n|‘%2(s) =) Z = (n+1)*X,,
1—0 m——1
and Hq)nH 5) tends to HgoH s) (Which may be infinite) as n — co. Since X, — 1
almost surely, we obtain from the above formula that (1 + 1) 72| ¢, H 5) tends to 1

almost surely. Therefore, ¢ is not in L?(S) with probability 1.
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On the other hand, since
2

) 1
2 _ alm
H(PHH*S(S) - E ; l+ 1 77 L 1\2s

it is straightforward to see that the expected value

x| Ea? = 2l+1
]E 2__ — Im
ol 5(8) E ; (I+1)2+2 Z{; (I+1)2+%

is finite for all 6 > 0. Hence ¢ € H~17%(S) almost surely, so u := Uy, is well defined
with probability 1.

To prove the representation formula for u and its convergence, let us begin by
noting that

Ury,p(x) = [[P() Yin (&) € do(g)
= p(D) [ 1¥in(&) ¥ do(q)

Using either the theory of point pair invariants and zonal spherical functions [CS19,
Proposition 4] or special function identities [EPSR22a, Proposition 2.1], the Fourier
transform of Y}, do has been shown to be

| 3 Jiy ()
[ i) e o) = 2 () T

This permits to formally write u as (5.3.1). To show that this series converges in C
on compact sets, for any large n, any N > n and any fixed positive integer k consider

the quantity
v (X ]I+%(|x|)
EANEIVARETRE

where we are using the standard multiindex notation. Since p(D) is a third-order
operator, for all |x| < R we obviously have

QnN E

| <k

Y Y amDtp

I=nm=-1

7

N ]l+l(r)
qn,N(x Z Z |ﬂlm|||Ylm||ck+3($) 7r12/2
I=n m=—I Ck3((0,R))
} ] 2 :
a I 1(r)
(Z Z (1 im2+25> Z Z (I+1 2+2(5HY1chk+3 +12/2
nm——l + =nm=-—I1 r Ck+3((O/R))

where here r := |x| and we have used the Cauchy-Schwartz inequality to pass to
the second line. The Sobolev inequality immediately gives

Yol cra(s)y < CllYomlless(s) < CU+ 1)

To estimate the Bessel function, recall the large-degree asymptotics

Jo(r) ~ @)~ (5
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which holds as v — co for uniformly bounded r. As the derivative of a Bessel func-
tion can be written in terms of Bessel functions via the recurrence relation

d
1) = =T (1) + (),

it follows that the C**3 norm of J, +1 (r)/r'/? tends to 0 exponentially as | — co on
compact sets:
] l+% (1’)

r1/2 > :

<(5
CE3((OR))

Since we have proven that

oo 1 2

am
» Z;W<m

I=0m=—

almost surely, now one only has to put together the estimates above to see that,
almost surely, g, n(x) tends to 0 as n — oo uniformly for all N > n and for all x in a
compact subset of R3. This establishes the convergence of the series and completes
the proof of the proposition. O

Remark 5.3.2. Note that each summand Uyy, , = (271)3/2p(D) [Ylm(ﬁ) | x| _1/2]”% (]x)]
of the series (5.3.1) is a Beltrami field.

Since a;,, are standard Gaussian variables, it is obvious that the vector-valued
Gaussian field u has zero mean. Our next goal is to compute its covariance kernel,
x, which maps each pair of points (x,y) € R x R® to the symmetric 3 x 3 matrix

k(x,y) :=Eu(x) @ u(y)]. (5.3.2)

In particular, we show that this kernel is translationally invariant, meaning that it
only depends on the difference:

K(x,y) = x(x—y).

We recall that, by Bochner’s theorem, there exists a nonnegative-definite matrix-
valued measure p such that s is the Fourier transform of p: this is the spectral mea-
sure of the Gaussian random field u. In the statement, p; is the j" component of the
vector field p.

Proposition 5.3.2. The components of the covariance kernel of the Gaussian random field u
are

Kik(x,y) = sp(x —y)
with

pj<D>pk<—D>ﬂ;j§‘j§’).

Nl

(%) = (20)

The spectral measure is dp(&) = p(&) @ p(&) do(E).



174 Chapter 5. Knots and chaos in random Beltrami fields

Proof. As ay,, are independent standard Gaussian variables, IE(a;,,a1,,) = 6110, SO
the covariance matrix is

= B[u;j(x )uk(y)] = E[uj(x)ur(y)]

) ;lg’ "B [ [ 1pi() peln) Yin(@) Yo (1) dor(@) do ()

Kk (x,

I
I Mg T Mg =

!
Lol
!
YN L@ Pl Y@ Yl o ) der ().

Here we have used that # and the spherical harmonics Y},, are real-valued. Since Y},
is an orthonormal basis, one has that

% [ [0 00 Yin(@) Yiulr) do(@) o) = [ 9() 9(0) oD

I=0m=-1

for any functions ¥,¢ € L%*(S). Hence we can get rid of the sums in the above
formula and write

6k(x) = [0 () pil@) do(@), (53.3)

which yields the formula for the spectral measure of u. Using now that p is Her-
mitian (i.e., p(§) = p(—¢)) and a well-known representation formula for the Bessel
function [/, the above integral can be equivalently written as

L& pi(@) n(8) 4o (@) = py(D) pu(~D) [ e*4do ()
— @m)pi(D) pu(-0) 2D,
The proposition then follows. O]

A straightforward corollary is that the Gaussian random Beltrami field u is nor-
malized so that its covariance matrix is the identity on the diagonal:

Corollary 5.3.3. Forany x € R3, x(x,x) = L.

Proof. The formula for the spectral measure computed in Proposition 5.3.2 implies
that

k() = [ p(@) () do(@).
As p is a polynomial, the computation then boils down to evaluating integrals of the

form [ &*do(¢), where @ = (a7, a2, a3) is a multiindex and &* := £]'¢5%83°. These
integrals can be computed in closed form [Fol01]:

(5.3.4)
otherwise.

/éa { [H] 1r(a]+1)] /T(‘“Hg) if a1, wp, a3 are even,

Here I' denotes the Gamma function.

Armed with this formula and taking into account the explicit expression of the
polynomial p(¢) (cf. Equation (5.2.4)), a tedious but straightforward computation
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shows

L@ p(@de(@) = o
The result then follows. O

Remark 5.3.3. The probability density function of the Gaussian random vector u(x)
is therefore p(y) := (27r)"2 e 2V*. That is, P{u(x) € Q} = [,p(y)dy for any
x € R? and any Borel subset Q C R°.

Since the Gaussian field u is of class C* with probability 1 by Proposition 5.3.1,
it is standard that it defines a Gaussian probability measure, which we henceforth
denote by y,, on the space of Ck vector fields on R®, where k is any fixed positive in-
teger. This space is endowed with its usual Borel o-algebra &, which is the minimal
o-algebra containing the “squares”

I(x,a,b) := {w € C*(R3,R3) : w(x) € [a1,b1) X [az, ba) x [a3,b3)}

forall x,a,b, € R3. To spell out the details, let us denote by () the sample space of the
random variables a;,, and show that the random field u is a measurable map from ()
to CF(IR3,R?). Since the o-algebra of CHR3,R?) is generated by point evaluations,
it suffices to show that l
M(X) - Z Z AIm uilYlmp(x)
I=0m=-I

is a measurable function Q — R3 for each x € R3. But this is obvious because
u(x) is the limit of finite linear combinations (with coefficients in R%) of the random
variables a;,,, which are of course measurable. In what follows, we will not men-
tion the o-algebra explicitly to keep the notation simple. Also, in view of the later
applications to invariant tori, we will henceforth assume that k > 4. Obviously, the
Gaussian probability measure 1, is regular because the space of C* vector fields is
metrizable (with the compact-open CF-topology).

Following Nazarov and Sodin [NS16], the next proposition shows that from the
facts that the covariance kernel «(x,y) only depends on x — y and that the spectral
measure has no atoms one can infer two useful properties of our Gaussian probabil-
ity measure that will be extensively employ in the rest of the chapter. Before stating
the result, let us recall that the probability measure y,, is said to be translationally in-
variant if p, (1t A) = pu(A) forall A C & and all y € R®. Here 7, denotes the
translation operator on C* fields, defined as t,w(x) := w(x +y).

Proposition 5.3.4. The probability measure y, is translationally invariant. Furthermore,
if @ is an L' random variable on the probability space (CF(R3,R%), &, u,,) , then

R—o0

lim ][Cborydy:]ECD
Bg

both y,-almost surely and in L' (CF(R?,R®), uy,).

Proof. Since the covariance kernel x(x,y) only depends on x — y, the probability
measure y, is translationally invariant. Also, note that (y, w) — T,w defines a con-
tinuous map

R® x C(R3?, R®) — CF(R3,R%),
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so the map (y, w) — ®(t,w) is measurable on the product space R® x C*(IR3, R%).
Wiener’s ergodic theorem [NS16; Bec81] then ensures that, for ® as in the statement,
there is a random variable ®* € L'(C¥(R® x R3), u,,) such that

: oo
]Zd)oTydy?CD
Br

as R — oo. Furthermore, ®* is translationally invariant (i.e., ®* o 7, = ®* for all
y € R® almost surely) and E®* = E®.

Also, as the spectral measure (computed in Proposition 5.3.2 above) has no atoms,
a theorem of Grenander, Fomin and Maruyama (see e.g. [NS16, Appendix B] or [Gre50]
and note that the proof carries over to the multivariate and vector-valued case) en-
sures that the action of the translations {7, : ¥ € R>} on the probability space
(CK(R3,R?), 5, py) is ergodic. As the measurable function ®* is translationally in-
variant, one then infers that ®* is constant y,-almost surely. As ® and ®* have the
same expectation, then ®* = [E® almost surely. The proposition then follows. [

It is clear that the support of the probability measure y, must be contained in the
space of Beltrami fields. In the last result of this section, we show that the support is
in fact the whole space. This property will be key in the following sections.

Proposition 5.3.5. The support of the Gaussian probability measure p, is the space of
Beltrami fields. More precisely, v is a Beltrami field iff for any compact set K C R® and
eache >0,

uy ({w € CHR3,R?) : [|o — wl|crx) < €}) > 0.

Proof. By Proposition 5.2.3, there exists a Hermitian finite linear combination of
spherical harmonics,

n 1
Q= Z Z Z.l‘)‘lelm/
1=0m=-—1

where a;,, are real numbers (not random variables), such that |[v — Ugp||cxx) < €/4-
Hence

€
yu({w S Ck(R3,R3) : Hw_UHCk(K) < 6}) > IP({”M — u(ppHCk(K) < 4}) ’

where IP denotes the natural Gaussian probability measure on the space of sequences
(al m ) :

Proposition 5.3.1 shows that the series

00 1
Z Z almuilylmp
1=0m=-1

converges in C*(K) almost surely, so for any fixed § > 0 there exists some number N
(which one can assume larger than ) such that

]P({ <€})>1—5.
crx) 8

oS I
Y. Y awmliy,,

I=N+1m=-1




5.4. Preliminaries about hyperbolic periodic orbits and invariant tori 177

With the convention that «;,, := 0 for [ > n, note that

N 1

=0 m=-—1

Z Z almquz P

I=N+1m=-I

CK(K)
Therefore, if we set M := 8(N + 1)? max;<y max_j<m<t [[Upy, [l (k. it follows that

P ({ln-tloro <)

[ee]

€
2][3'({ 2 Z AUy })HH]P ’Ell — |<7 ,
Ny P Ck(K) 1=0 m—=—1 <{ " " M})
which is strictly positive. The proposition then follows. U

5.4 Preliminaries about hyperbolic periodic orbits and invari-
ant tori

In this section we construct Beltrami fields that exhibit hyperbolic periodic orbits or
a positive measure set of ergodic invariant tori of arbitrary topology. Our construc-
tions are robust in the sense that these properties hold for any other divergence-free
field that is C*-close to the Beltrami field. Additionally, we recall some basic no-
tions and results about periodic orbits and invariant tori that will be useful in the
following sections.

5.4.1 Hyperbolic periodic orbits

We recall that a periodic integral curve, or periodic orbit, oy of a vector field u is
hyperbolic if all the (possibly complex) eigenvalues A; of the monodromy matrix of
u at v have modulus [Aj| # 1. Since we are interested in divergence-free vector
fields in dimension 3, in this case the eigenvalues are of the form A, A1 for some
real A > 1. The maximal Lyapunov exponent of the periodic orbit v is defined as

A= 10%)‘ > 0, where T is the period of .

Given a closed curve 7y smoothly embedded in R3, we say that -y has the knot
type [yo] if 7y is isotopic to . It is well known that the number of knot types is
countable. Given a set of four positive numbers Z = (Ty, T>, A1, Az), with 0 < T} <
T, and 0 < A < Ay, we denote by N(R; [y],Z) the number of hyperbolic periodic
orbits of a vector field u contained in the ball Bg, of knot type [y], whose periods and
maximal Lyapunov exponents are in the intervals (T;, T») and (A1, Az), respectively.
Since we have fixed the intervals of the periods and Lyapunov exponents, there is
a neighborhood of thickness #y of each periodic orbit (179 independent of the orbit)
such that no other periodic orbit of this type intersects it. The compactness of Br
then immediately implies that NS (R, [y],Z) is finite, although the total number of
hyperbolic periodic orbits in Bg may be countable.

An easy application of the hyperbolic permanence theorem [HPS06, Theorem
1.1] implies that the above periodic orbits are robust under C!-small perturbations,
so that

Ny (R; [v],Z) 2 N (R; [7], T)
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for any vector field v that is close enough to u in the C! norm. Indeed, if ||u —
0llc1(gy) < 4, then v has a periodic orbit 7, that is isotopic to, and contained in a
tubular neighborhood of width C¢ of, each periodic orbit y of u that has the afore-
mentioned properties. Moreover, the period and maximal Lyapunov exponent of 75
is also é-close to that of 7, so choosing J small enough they still lie in the intervals
(T1, Tz) and (A1, Az), respectively. Thus we have proved the following:

Proposition 5.4.1. The functional u — Ng(R;[v],Z) is lower semicontinuous in the
CF compact open topology for vector fields, for any k > 1. Furthermore, N3(R; [],T) < oo
for any C* vector field u.

The following result ensures that, for any fixed knot type [y] and any quadru-
ple Z, there is a Beltrami field u for which Ng(R;[v],Z) > 1. This result is a conse-
quence of [EPS12, Theorem 1.1], so we just give a short sketch of the proof.

Proposition 5.4.2. Given a closed curve vy C R and a set of numbers T as above, there
exists a Hermitian finite linear combination of spherical harmonics ¢ such that the Beltrami
field ug := Uy has a hyperbolic periodic orbit vy isotopic to vy, whose period and maximal
Lyapunov exponent lie in the intervals (Ty, To) and (A1, Az), respectively.

Proof. Proceeding as in [EPS12, Section 3, Step 2], after perturbing slightly the curve
7o to make it real analytic (let us also call y¢ the new curve), we construct a narrow
strip X that contains the curve 7. Using the same coordinates (z,6) as introduced
in [EPS12, Section 5], we define an analytic vector field

W= WY?‘VG—AZVZ,

where || is the length of yg and T € (Ty, T2), A € (A1, A2). Using the Cauchy-
Kovalevskaya theorem for Beltrami fields [EPS12, Theorem 3.1], we obtain a Bel-
trami field v on a neighborhood of g such that v|s = w. A straightforward com-
putation shows that < is a hyperbolic periodic orbit of v of period T and maxi-
mal Lyapunov exponent A. The result immediately follows by applying Proposi-
tion 5.2.3. ]

Corollary 5.4.3. There exists Ry > 0and 6 > 0 such that N3 (Ro; [v],Z) > 1 for any
vector field w such that ||w — u[)Hck(BRO) < J, provided that k > 1.

Proof. Taking Rg large enough so that the periodic orbit 7 is contained in Bg,, the
result is a straightforward consequence of the lower semicontinuity of N§(R; [v],Z),
cf. Proposition 5.4.1. O

5.4.2 Nondegenerate invariant tori

We recall that an invariant torus 7 of a vector field u is a compact surface diffeomor-
phic to the 2-torus, smoothly embedded in R3, and such that, the field u is tangent
to 7 and does not vanish on 7. In other words, T is invariant under the flow of u.
Given an embedded torus 7y, we say that 7 has the knot type [To] if T is isotopic
to 7o. It is well known that the number of knot types of embedded tori is countable.



5.4. Preliminaries about hyperbolic periodic orbits and invariant tori 179

To study the robustness of the invariant tori of a vector field it is customary to
introduce two concepts: an arithmetic condition (called Diophantine), which is re-
lated to the dynamics of # on 7, and a nondegeneracy condition (called twist) that
is related to the dynamics of u in the normal direction to 7.

We say that the invariant torus 7 is Diophantine with Diophantine frequency w if
there exist global coordinates on the torus (61,60,) € (R/Z)? such that the restriction
of the field u to 7 reads in these coordinates as

ulr = aeg +beg,, (5.4.1)

for some nonzero real constants a,b, and w := a/b modulo 1 is a Diophantine num-
ber. This means that there exist constants ¢ > 0 and v > 1 such that

C
mv+1

e
m

for any integers p,m with m > 1. Here ey, (often denoted by dy;) denotes the tangent
vector in the direction of 6;. We recall that the set of Diophantine numbers (with all
c > 0and all v > 1) has full measure. It is well known that the Diophantine property
(possibly changing the constant c) of the frequency w is independent of the choice of
coordinates.

Let us now introduce the notion of twist, which is more involved. To this end, we
parameterize a neighborhood of 7 with a coordinate system (p, 61,62) € (—J,6) x
(R/Z)? such that T = {p = 0} and u|,—¢ has the form (5.4.1). Let us now compute
the Poincaré map 7t defined by the flow of 1 on a transverse section . C {6, = 0}
(which exists if 6 is small enough because b # 0):

72 (=8,8") % (R/Z) — (—6,8) x (R/Z) (5.4.2)
(0,01) = (71(p,01), m2(p, 1)), (5.4.3)

for ' < 4. Obviously, 77(0,61) = (0,61 + w). Since u is divergence-free, the map 7
preserves an area form ¢ on X, which one can write in these coordinates as

o= P(p, 91) dp N d91 , (544)

for some positive function F. Notice that the area form ¢ is exact because it can be
written as 0 = dA, where A is the 1-form

Y
A:=h(p,6,)d6;, h(p,@l)::/ F(s,61) ds,
)

and the map 7t is also exact in the sense that 7*A — A is an exact 1-form. Indeed, the
area preservation implies that d(71*A — A) = 0; moreover the periodicity of / in 6;
readily implies that

1 1
/O (T A~ A)|peg = /O (h(0,6, + w) — h(0,6)) d6; =0,
so the claim follows from De Rham’s theorem. The exactness of both ¢ and 7 is a

crucial ingredient to apply the KAM theory.

Remark 5.4.1. It was shown in [EPS15, Proposition 7.3] that if the Euclidean vol-
ume form dx reads as H(p,61,62)dp A d6; A d6, in coordinates (p,61,62) for some
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positive function H, then the factor F that defines the area form o is F(p,61) =
H(p,61,0)ug,(p,61,0), where ug, denotes the 6,-component of the vector field u.

The twist of the invariant torus 7T is then defined as the number

19 0,0
T:.:= / 7{;752( 1)
0

0.6 4o, . (5.4.5)

The reason for which we consider this quantity is that it crucially appears in the
KAM nondegeneracy condition of [GELO08], cf. Ref. [EPS15, Definition 7.5] for this
particular case.

In the present chapter we are interested in the volume of the set of invariant
tori of a divergence-free vector field u. More precisely, given a quadruple J :=
(w1, w2, 7, T2), where 0 < w; < wy, 0 < 7§ < T, we denote by VI(R;[T],J)
the inner measure of the set of Diophantine invariant tori of a vector field u con-
tained in the ball Bg, of knot type [T ], whose frequencies and twists are in the inter-
vals (w1, wy) and (11, 72), respectively. One must employ the inner measure of this
set (as opposed to its usual volume) because this set does not need to be measurable.
When we speak of the volume of this set, it should always be understood in this
sense. An efficient way of providing a lower bound for this volume is by consider-
ing, for each V; > 0, the number N (R; [T ], J, Vo) of pairwise disjoint (closed) solid
tori contained in Bg whose boundaries are Diophantine invariant tori with parame-
ters in J and which contain a set of Diophantine invariant tori with parameters in J
of inner measure greater that ;.

Remark 5.4.2. The twist defined in Equation (5.4.5) depends on several choices we
made to construct the Poincaré map (i.e., the transverse section and the coordinate
system). Accordingly, the functional V}(R;[T], J) has to be understood as the in-
ner measure of the set of Diophantine invariant tori whose twists lie in the interval
(11, 2) for some choice of (suitably bounded) coordinates and sections, and simi-
larly with NY(R; [T], J, Vo). It is well known that the property of nonzero twist is
independent of the aforementioned choices.

Since the Poincaré map 7t that we introduced above is exact, we can apply the
KAM theorem for divergence-free vector fields [KKPS14, Theorem 3.2] to show that
the above invariant tori are robust for C*-small perturbations, so that Vi(R; [T], J) >
VIR [T],T) +0(1) and NE(R; [T], T, Vo) = NLY(R; [T], T, V) for any divergence-
free vector field v that is C*-close to u. Indeed, if ||u — 0llcs(pg) < 6, then v has a set
of Diophantine invariant tori of knot type [7] and of volume

VHR;[T],J) = ViR [T],TJ) — Cs"/2.

Here we have used that the frequency and twist of each of these invariant tori is
d-close to those of u, so by choosing ¢ small enough they lie in the intervals (w1, wy)
and (7, 7o), respectively. The argument for N} (R;[T], J, Vy) is analogous. Sum-
ming up, we have proved the following;:

Proposition 5.4.4. The functionals u — NY(R;[T],J, Vo) and u — VY(R; [T, J) are
lower semicontinuous in the C¥ compact open topology for divergence-free vector fields, for
any k > 4.

We next show that, for any knot type [T ], one can pick a quadruple J and some
Vo > 0 for which there is a Beltrami field u with NL(R; [T], 7, Vo) = 1. Thisis a
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straightforward consequence of [EPS15, Theorem 1.1] (see also [ELPS20, Section 3]),
so we just sketch the proof.

Proposition 5.4.5. Given an embedded torus T C R3, there exists a set of numbers J, Vo
as above, and a Hermitian finite linear combination of spherical harmonics ¢ such that the
Beltrami field ug := Uy, has a set of inner measure greater than Vo > 0 that consists of
Diophantine invariant tori of knot type [T | whose frequencies and twists lie in the intervals
(w1, wy) and (11, T2), respectively.

Proof. 1t follows from [EPS15, Theorem 1.1] that there exists a Beltrami field v that
satisfies curlv = Av in R3 for some small constant A > 0, which has a positive mea-
sure set of invariant tori of knot type [T ]. These tori are Diophantine and have posi-
tive twist. It is obvious that the field u(x) := v(x/A) satisfies the equation curlu = u
in R3, and still has a set of Diophantine invariant tori of knot type [7] of measure
bigger than some constant Vj, and positive twist. The result follows taking the inter-
vals (w1, wy) and (73, T2) in the definition of .7, so that they contain the frequencies
and twists of these tori of u, and applying Proposition 5.2.3 to approximate u by
a Beltrami field Uy, in a large ball containing the aforementioned set of invariant
tori. U

Corollary 5.4.6. Tnke J and Vj as in Proposition 5.4.5. There exists Ry > 0and § > 0
such that N&(Ro; [T1], T, Vo) = 1 and VE(Ro; [T],T) > Vo/2 for any divergence-free
vector field w such that ||w — u()Hck(BRO) < 4, provided that k > 4.

Proof. Taking Ry large enough so that the aforementioned set of invariant tori of u
is contained in Bg,, the result is a straightforward consequence of the lower semi-
continuity of Ni(R; [T], J, Vo) and VX(R;[T], J), cf. Proposition 5.4.4. O

5.5 A Beltrami field on R? that is stably chaotic

Our objective in this section is to construct a Beltrami field u in R® that exhibits a
horseshoe, that is, a compact (normally) hyperbolic invariant set with a transverse
section homeomorphic to a Cantor set on which the time-T flow of u (or of a suitable
reparametrization thereof) is topologically conjugate to a Bernoulli shift. It is stan-
dard that a horseshoe of a three-dimensional flow is a connected branched surface,
and that the existence of a horseshoe is stable in the sense that any other field that
is Cl-close to u has a horseshoe too [GH13, Theorem 5.1.2]. Moreover, the existence
of a horseshoe implies that the field has positive topological entropy; recall that the
topological entropy of the field, which we denote as hp (1), is defined as the en-
tropy of its time-1 flow. Summarizing, we have the following result for the number
of (pairwise disjoint) horseshoes of u contained in Bg, N!'(R):

Proposition 5.5.1. The functional u — NB(R) is lower semicontinuous in the C* compact
open topology for vector fields, for any k > 1. Moreover, if u has a horseshoe, its topological
entropy is positive.

In short, the basic idea to construct a Beltrami field with a horseshoe, is to con-
struct first “an integrable” Beltrami field having a heteroclinic cycle between two
hyperbolic periodic orbits, which we subsequently perturb within the Beltrami class
to produce a transverse heteroclinic intersection. By the Birkhoff-Smale theorem,
this ensures the existence of horseshoe-type dynamics.
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Proposition 5.5.2. There exists a Hermitian finite linear combination of spherical har-
monics ¢ such that the Beltrami field ug := Uy, exhibits a horseshoe. In other words,
NB (Ro) = 1 for all large enough Ry > 0.

Proof. Let us take cylindrical coordinates (z,7,0) € R x Rt x T, with T := R/2nZ,
defined as
z:=x3, (rcosf,rsinf) := (xq,x72) .

We now consider the axisymmetric vector field v in R? given by

0= % (aﬂ,u E,—3.9E, + % Eg) : (5.5.1)

Here
P :=cosz + 3r]i(r)

with J; being the Bessel function of the first kind and order 1, and the vector fields
1
EZ = (010/1)/ Er = ;('xlle/O)/ E9 = (_x2/xl/0)/

which are often denoted by 9, 9;, dp in the dynamical systems literature, have been
chosen so that

E.-V¢=0.¢, E-Vo=0¢, Ey-V¢ =200

for any function ¢. Notice that v - Vi = 0, so the scalar function 1 is a first integral
of v. This means that the trajectories of the field v are tangent to the level sets of ¢.

The vector field v is not defined on the z-axis, so we shall consider the domain in
Euclidean 3-space
Q:={(z,r,0): (z,r) €D, 0T},

where D is the domain in the (z, 7)-plane given by

9 18
D:= {(z,r). —10<z<10,10<r<5}.
The reason for choosing this particular domain of R® will become clear later in the
proof; for the time being, let us just note that ¢(z,r) > 0if (z,7) € D.

Also, observe that, away from the axis r = 0, the vector field v is smooth and
satisfies the Beltrami field equation curlv = v.

We claim that, in (2, v has two hyperbolic periodic orbits joined by a heteroclinic
cycle. Indeed, noticing that

(04, 9,¢) = (—sinz, 3r]o(r)),

where we have used the identity 9,[r]1(r)] = rJo(r), it follows that the points p+ :=
(£7,jo1) € D are critical points of ¢. Here jo; = 2.4048... is the first zero of the
Bessel function Jy. Plugging this fact in Equation (5.5.1), this implies that, on the
circles in 3-space

v+ :={(z,1,0):(z,r) =ps, 6 €T},
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the field v takes the form o

v(p+,0) = 5 Eg
Joa

with ¢o := 3jo1/1(jo) —1 > 0. Therefore, we conclude that the circles 7y are peri-
odic orbits of v contained in ().

It is standard that the stability of these periodic orbits can be analyzed using the
associated normal variational equation. Denoting by (v,, v, vy) the components of
the field v in the basis {E;, E,, Ey}, this is the linear ODE

n=An,

where 7 takes values in R? and A is the constant matrix

_ < 0 3J(jon) >
—1/joa 0 '

The Lyapunov exponents of the periodic orbit v+ are the eigenvalues of the ma-
trix A. Therefore, since Jj(jo1) < 0, these periodic orbits have a positive and a
negative Lyapunov exponent, so they are hyperbolic periodic orbits of saddle type.

9(vz, vr)

A= d(z,1)

(z1)=p=+

Since ¢ is a first integral of v and ¥(p+) = cp, the set

{(z7,0):9(z7) = co}

is an invariant singular surface of the vector field v. This set contains two regular
surfaces I'y and I'; diffeomorphic to a cylinder. We label them so I'; is contained in
the half space {r < jo1} and I'; in {r > jo1}. The boundaries of these cylinders are
the periodic orbits . The surface I'; is the stable manifold of v that coincides with
an unstable manifold of oy_, while T, is the unstable manifold of 7 that coincides
with a stable manifold of y_. Hence the union I'y UT’; of both cylinders then form
an heteroclinic cycle between the periodic orbits 1 and y_, and one can see that it
is contained in Q).

Let us now perturb the Beltrami field v in (2 by adding a vector field w (to be
fixed later) that also satisfies the Beltrami field equation curlw = w. Our goal is to
break the heteroclinic cycle I'y UT; in order to produce transverse intersections of
the stable and unstable manifolds of 7% and ¢, where 7% denote the hyperbolic
periodic orbits of the perturbed vector field

X =v+ew= (arlp%—swz) E,+ (‘azrl/]+ewr> E, + <;€+EZU9> Eg.

7

As before, (w,, w,, wy) denote the components of the vector field w in the basis
{E., E,, Eg}, which are functions of all three cylindrical coordinates (z,r,0). If ¢ > 0
is small enough, the 6-component of X is positive on the domain (), so we can divide
X by the factor Xy := % + ewyg > 0 to obtain another vector field Y that has the same
integral curves up to a reparametrization:

X  ro P+ er?w, £ —1o Y + ertw,

Yi=—=
X Y+ ertwg P+ er?wy

E, + Ep. (5.5.2)

Substituting the expression of i(z, r) and expanding in the small parameter ¢, the
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analysis of the integral curves of Y reduces to that of the following non-autonomous
system of ODEs in the planar domain D:

dz _ 3r°Jo(r) rPw,(z,r,t)  3rio(r)we(z, 1, t) )
dt — y(z7) < o(z,r) ¥(z,1)? ) +0(e), (5.5.3)
dr _ rsinz r*wy(z,r,t)  rPsinzwy(z,r,t)

at — y(zr) e ( v(zr) gz r)? ) +0(e%). (5.5.4)

Notice that the dependence on ¢ is 27t-periodic, and that we have replaced 6 by t in
the function w,(z,7,0) (and similarly w,, wg) because the §-component of the vector
field Yis 1. When ¢ = 0, one has

2

;= I h) (5.5.5)

Y(z7)

rsinz
= . (5.5.6)

¥(z7)
Hence the unperturbed system is Hamiltonian with symplectic form w := r~1dz A dr
and Hamiltonian function H(z,r) := logy(z,r). The periodic orbits v+ of v and
their heteroclinic cycle I'1 U I'; correspond to the (hyperbolic) fixed points p of the
unperturbed system joined by two heteroclinic connections I'y := T, N {6 = 0},

k = 1,2. These are precisely the two pieces of the level curve {H(z,r) = logco} that
are contained in D. Let us denote by

Ye(t) = (Zk(£;0,7%), Re(£0,75))

the integral curves of the separatrices that solve Equations (5.5.5)-(5.5.6) with ini-
tial conditions (0,7¢) € Tx. Of course, the closure of the set {y.(t): t € R} is T},
and the stability analysis of the periodic integral curves v+ readily implies that
lmy gy Yk(E) = P

By the implicit function theorem, the perturbed system (5.5.3)-(5.5.4) has exactly
two hyperbolic fixed points p§ € D so that p§ — p+ as e — 0. The technical tool to
prove that the unstable (resp. stable) manifold of p% and the stable (resp. unstable)
manifold of p® intersect transversely when & > 0 is small is the Melnikov function.
We define the vector fields Yp, Yi, respectively, as the unperturbed system and the
tirst order in € perturbation, i.e.,

3r2Jo(r) rsinz
Y = z
TENS RTERY
r?w, 3r4]0(r)w9> < rw, 1 sinzw9>
Y] = - z - r
= (5~ pear) B

ET’/

P(zr)  P(zr)?

Since the unperturbed system is Hamiltonian, we can apply Lemma 5.5.4 below
(which is a variation on known results in Melnikov theory) to conclude that if the
Melnikov functions

[e°]

My(t) := / W (Yo, Y1)y i, (5.5.7)

—00
have simple zeros for each k = 1,2, then the aforementioned transverse intersec-
tions exist, and that actually the heteroclinic connections intersect at infinitely many
points. The integrand w(Yp, Y1) denotes the action of the symplectic 2-form w on
the vector fields Y, Y3, evaluated on the integral curve i (t — to). It is standard that
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the improper integral in the definition of the Melnikov functions is absolutely con-
vergent because of the hyperbolicity of the fixed points joined by the separatrices
(see e.g. [GH13, Section 4.5]). Also notice that although [GH13, Section 4.5] concerns
transverse intersections of homoclinic connections, the analysis applies verbatim to
transverse intersections of heteroclinic connections.

More explicitly, the Melnikov functions are given by

1 f* .

My (to) = c7/ Ry (#)? [wz (Zi(t), Re(t), ) sin Zi(t) = 3Ry(£) Jo(Re(£))wr (Z (t), Re(t), £)] dt ,
0/

where Ry (t) = Ri(£0,7¢) and Z(t) = Zi(t;0, r¢). It is well known that the existence

of transverse intersections is independent of the choice of initial condition.

To analyze these Melnikov integrals, let us now choose the particular perturba-

tion
Ji(r)sino

w=J1(r)sinf E, + ji)CSOE, .

Ey. (5.5.8)

It is easy to check that curlw = w in R3; in fact w = (curl curl + curl) (Jo(r),0,0) (or,
to put it differently, w = Uy, -1,, where the distribution ¢’ on the sphere S is the
Lebesgue measure of the equator, normahzed to unit mass). With this choice, the
Melnikov functions take the form

CoMi(to) = /_o; Ri(£)? [J1 (Ri(+)) sin Z(t) sin(t + to) — 3Jo(Ri(£))J1(Re(t)) cos(t + to)] dt

=: a;sinty + by costyp,

where the constants a;, by are given by the integrals

m= [ RUP[1(Re(1)) sin Ze(t) cost + 3o(Re(t) 1 (Re(1)) sin ]
bk:/_OORk(t) [J1(Rie(t)) sin Zi () sint — 3Jo(Re(t)) J1 (R (t)) cos t] dt .

Since the Hamiltonian function has the symmetry H(—z,r) = H(z,r), it follows that
Ri(t) = Ri(—t) and Z(t) = —Zi(—t). This immediately yields that a; = a, = 0.
Moreover, it is not hard to compute the constants b; and b, numerically:

by =35508..., by =0.2497...

Therefore, the function My (ty) = by cos tg is a nonzero multiple of the cosine, so
it obviously has exactly two zeros in the interval [0,277), which are nondegenerate.
It then follows from Lemma 5.5.4 below that the two heteroclinic connections join-
ing p% intersect transversely. In turn, this implies [WWG90, Theorem 26.1.3] that
each hyperbolic fixed point p& has transverse homoclinic intersections, so by the
Birkhoff-Smale theorem [GH13, Theorem 5.3.5] the perturbed system (5.5.3)-(5.5.4)
(with w given by Equation (5.5.8)) has a compact hyperbolic invariant set on which
the dynamics is topologically conjugate to a Bernoulli shift. This set is contained in
a neighborhood of the heteroclinic cycle I UTy, and hence in the planar domain
D where the system is defined. This immediately implies that the vector field Y
defined in Equation (5.5.2), which is the suspension of the non-autonomous pla-
nar system (5.5.3), has a compact normally hyperbolic invariant set K on which its
time-T flow is topologically conjugate to a Bernoulli shift, where T := 27t N for some
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positive integer N > 0. The invariant set K is contained in () because it lies in a small
neighborhood of the invariant set I'1 UT';. Since the integral curves of X and Y are

the same, up to a reparametrization, K is also a chaotic invariant set of the Beltrami
field X in Q).

Finally, since R3 \5 is connected, and of course the vector field X satisfies the
Beltrami equation in an open neighborhood of (), for each 6 > 0, Proposition 5.2.3
shows that there is a Hermitian finite linear combination of spherical harmonics ¢
such that

X = Ugppllcria) <6

If 4 is small enough, the stability of transverse intersections implies that the Beltrami
field Uy, has a compact chaotic invariant set Ks in a small neighborhood of K on
which a suitable reparametrization of its time-T flow is conjugate to a Bernoulli shift,
so the proposition follows. O

Corollary 5.5.3. There exists Ry > 0 and & > 0 such that N}(Ro) > 1 for any vector field
w such that ||w — u()Hck(BRO) < 0, provided that k > 1.

Proof. Taking Ry so that the horseshoe of u( is contained in Bg,, the result is a
straightforward consequence of the lower semicontinuity of NI(R), cf. Proposi-
tion 5.5.1. O

To conclude, the following lemma gives the formula for the Melnikov function
that we employed in the proof of Proposition 5.5.2 above. This is an expression for
the Melnikov function of perturbations of a planar system that is Hamiltonian with
respect to an arbitrary symplectic form. This is a minor generalization of the well-
known formulas [GH13, Theorem 4.5.3] and [Hol80, Equation (23)], which assume
that the symplectic form is the standard one.

Lemma 5.5.4. Let Yy be a smooth Hamiltonian vector field defined on a domain D C
R? with Hamiltonian function H and symplectic form w. Assume that this system has
two hyperbolic fixed points p+ joined by a heteroclinic connection T. Take a smooth non-
autonomous planar field Yy, which we assume 27t-periodic in time, and consider the per-
turbed system Yy + €Y1 + O(e?). Then the simple zeros of the Melnikov function

M(to) = [ @00, Y) et
where the integrand is evaluated at the integral curve y(t — to; po) of Yo parametrizing the
separatrix T', give rise to a transverse heteroclinic intersection of the perturbed system, for
any small enough €.

Proof. 1f € is small enough, the perturbed system has two hyperbolic fixed points p& .
To analyze how the heteroclinic connection is perturbed, we take a point py € T and
we compute the so-called displacement (or distance) function A(#) on a section X
based at py and transverse to I. Recall that the function eA(to) gives the distance
of the splitting, up to order O(&?), between the corresponding stable and unstable
manifolds of the perturbed system at the section X.
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A standard analysis, cf. [Hol80, Equation (22)] or the proof of [GH13, Theorem
4.5.3], yields the following formula for A(fy):

t—tg

1 o
Ato) = o | Ya(y(t—t0)) x Yo(y(t — tg))e~ o "TDN(Nds gy - (559
(10) = ] | V10— 1)) > Yol (e~ to))e (559)

Wherg we have omitted the dependence of the integral curve on the initial condition
po € I'. Here we are using the notation X x Y := X;Y> — XY for vectors X, Y € R?
and Tr DY) is the trace of the Jacobian matrix of the unperturbed field Yj.

Take coordinates in D, which we will call (z,r) just as in the proof of Proposi-
tion 5.5.2, and write the symplectic form as w = p(z,r)dz A dr, where p(z,7) is a
smooth function that does not vanish. Let us call here {e,, e,} the basis of vector
fields dual to {dz,dr} (which are usually denoted by 9, and 9, as they correspond
to the partial derivatives with respect to the coordinates z and r). The Hamiltonian
field Y, reads in these coordinates as

1
YO - m (arH EZ - azH er> .
Noting that
w(Y0/Y1)|'y(t—t )
Yi(y(t—to)) x Yo(y(t—to)) = :
1(( 0)) o(r( 0)) p(7(t = to))
and
e Jo PTEDYo(v())ds — ,fy 0 Yo(1(s))-Vlogp(7(s)) ds (5.5.10)
_ €f0t40 %ﬁws))ds — P(’)’(t — to)) , (5511)
p(po)

Equation (5.5.9) implies that

__ Mit)
[Yo(po)lo(po) ’

so the claim follows because M(tp) coincides with the displacement function up to
a constant proportionality factor. 0

A(to)

5.6 Asymptotics for random Beltrami fields on R3

We are now ready to prove our main results about random Beltrami fields on R?,
Theorems 5.1.2 and 5.1.4. To do this, as we saw in the two previous sections, we
need to handle sets that have a rather geometrically complicated structure, which
gives rise to several measurability issues. For this reason, we start this section by
proving a version of the Nazarov-Sodin sandwich estimate [NS16, Lemma 1] that
circumvents some of these issues and which is suitable for our purposes.

5.6.1 A sandwich estimate for sets of points and for arbitrary closed sets

For any subsetI' C R3, we denote by N(x,r;T) the number of connected components
of T' that are contained in the ball B,(x). Also, if X := {x; : j € J}, where x; € R?,
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is a countable set of points (which is not necessarily a closed subset of IR?), then we
define
N(x, 7 X) ;= #[X N By (x)]

as the number of points of X’ contained in the open ball B, (x). For the ease of nota-
tion, we will write N(r;T) := N(0,7;T) and similarly A/ (r; X'). We remark that these
numbers may be infinite.

Lemma 5.6.1. Let T be any subset of R whose connected components are all closed and let
X :={x;:j € J}, with x; € R>, be a countable set of points of R®. Then the functions
N (-, 7; X) and N(-,r;T) are measurable, and for any 0 < r < R one has

/BR Al ) dy <N (R X) < / N %) dy,

vol B, Br., VOlB,

N(y,r;T)
W7 < . .
/B  eiE v S N(RT)

Proof. Let us start by noticing that
Ny rnX)=#{jeT:x€By,n} =) Lpux)¥).
jeJg

As the ball B,(x) is an open set, it is clear that 1p (,)(-) is a lower semicontinuous
function. Recall that lower semicontinuity is preserved under sums, and that the
supremum of an arbitrary set (not necessarily countable) of lower semicontinuous
functions is also lower semicontinuous. Therefore, from the formula

N (X)) =sup ) Lg (),
J' jeJ’
where J' ranges over all finite subsets of 7, we deduce that the function N (-, 7; X)
is lower semicontinuous, and therefore measurable.
Now let Jr := {j € J : xj € Br} and note that
vol BN (R; X) = ) / L, (x) () dy -
]EjR BR+r
As we can interchange the sum and the integral by the monotone convergence theo-
rem and
Y L)) < ) L) (W) = Ny, X),
j€TR jeg

one immediately obtains the upper bound for NV (R; X). Likewise, using now that

vol BN (R; X) = ) / Br(xj)(y) dy
jejR Bryr
> ) /B B, (x;) (V) dy
JEJR R—r
=Y [ W= [ N,
]EJ R—r R—r

we derive the lower bound. The sandwich estimate for A/(R; X) is then proved.
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Now let v be a connected component of I', which is a closed set by hypothesis.
Since v C B,(y) if and only if y € B,(x) for all x € 1, one has that

Ny, nT) =) 1y(y), (5.6.1)

yCr

where the sum is over the connected components of I' and the set 9" is defined, for
each connected component 7y of I, as

that is, as the set of points in R®> whose distance to any point of v is less than r.
Obviously, the set 9" is open, so 1., is lower semicontinuous, and contained in the
ball B,(xg), where xp is any point of 9. Also notice that 9" is not the empty set
provided that 2r is larger than the diameter of . Therefore, by the same argument as
before, if follows from the expression (5.6.1) that the function N(-,7;T') is measurable.
If we now define the set I'z consisting of the connected components of I' that are
contained in the ball Bg, the same argument as before shows that

1

N(R;T) > ) ol Ly (y) dy
’)’CFR ,}/ BR+r
1
> — 1, (y)d
7§R ‘/},7" BRfr T (y) y
1
N AL

'}’Cr ”)/r’ BR*V
S / N(y,r;T) dy
B

= r
ks SUP,cr 77|

N(y,r;T)
>/ SRy
B, B Y

In the first inequality we are summing over components -y whose diameter is smaller
than 2r, and to pass to the last inequality we have used the obvious volume bound
|7"| < |B;]. Note that the proof of the upper bound for N (R; X') does not apply
in this case, essentially because we do not have lower bounds for |y"| in terms of
|By|. O

5.6.2 Proof of Theorem 5.1.2 and Corollary 5.1.3

We are ready to prove Theorem 5.1.2. In fact, we will establish a stronger result
which permits to control the parameters of the periodic orbits and the invariant tori.
In what follows, we shall use the notation introduced in Sections 5.4 and 5.5 for
the number of periodic orbits NS (R; [y], Z), the number of Diophantine toroidal sets
N.(R; [T],J, Vo) (and the volume of the set of invariant tori V(R;[7], J)) and the
number of horseshoes NP'(R). This is useful in itself, since we showed in Section 5.4.1
that the quantity NS (R; [v], Z) is finite but this does not need to be the case if one just
counts NS (R; [v]). Also, the choice of counting the volume of invariant tori instead
of its number (which one definitely expect to be infinite) provides the trivial bound
VH(R;[T),J) < |Br|. Specifically, the result we prove is the following;:
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Theorem 5.6.2. Consider a closed curve vy and an embedded torus T of R®. Then for any
T = (T, Ta, A1, Ap), some J = (w1, wy, 71, T2) and some Vo > 0, where

0<Ti<T,, 0O<AI</Ay, O<wi<wy, 0<n<n,

a Gaussian random Beltrami field u satisfies

h
lim inf Ny (R) >,
R—e0 ’BR|

NY(R; [T], T, Vo)

. . u > t
llllz‘lllg;f IBx| > v ([T], T, W),
(0] .
liminf N (R [11. 1) > v°([v],7)
R—c0 ‘BR|

with probability 1, with constants that are all positive. In particular, the topological entropy
of u is positive almost surely, and

tp.
lim inf VulRi 1T, T) (R[], 7)

t
minf S Vo (7], Vo),

with probability 1.

Proof. For the ease of notation, let us denote by ®r () the quantities N}(R), NO(R; [v], Z)
and NY(R;[T],J,V), in each case. Horseshoes are closed, and so are the set of
periodic orbits isotopic to v with parameters in Z and the set of closed invariant
solid tori of the kind counted by N (R; [T], J, Vy). Therefore, the lower bound for
sets I' whose components are closed proved in Lemma 5.6.1 ensures that, for any
0<r <R,

Dr(u) S 1 D, (Tyu) o1 D) (Tyu)

= T | = 1T | 701/
Bx| ~ 1Bx| Jox, 1B 77 1BrlJee. 1B

where for any large m > 1 we have defined the truncation
P (w) := min{P,(w), m} .
We recall that the translation operator is defined as 7u(-) = u(- +y).

As the truncated random variable ®" is in L' (C*(R3,IR%), u,,) for any m, one can
consider the limit R — oo and apply Proposition 5.3.4 to conclude that

o ap(n) (Bl [ () 1

lim inf > liminf dy = —

Ko (Bl Kow B ] B Y= 1B
R

—r

E®

pu-almost surely, for any r and m. Corollaries 5.4.3, 5.4.6 and 5.5.3 imply that (for
any Z in the case of periodic orbits, for some J and some V > 0 in the case of
invariant tori, and unconditionally in the case of horseshoes), there exists some r >
0, some ¢ > 0 and a Beltrami field u( such that

P, (w) >1

for any divergence-free vector field w € CF(IR?, R?) with ||w — uollcs(p,) < 6. As the
random variable ®, is nonnegative, and the measure y, is supported on Beltrami
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fields (cf. Proposition 5.3.5), which are divergence-free, it is then immediate that,
when picking the parameters Z, J and Vj as above, one has for k > 4

E®" > py,({w € CH(R3,R?) : ||lw — uollckp,) < 6}) =: M(uo,6).
This is positive again by Proposition 5.3.5. So defining the constant, in each case, as

M(uo,é)
vVi=—7>"=>0
| By |

the first part of the theorem follows.

Finally, the topological entropy of u is positive almost surely because u has a
horseshoe with probability 1, see Proposition 5.5.1. The estimate for the growth of
the volume of Diophantine invariant tori follows from the trivial lower bound

VZE(R} [T], ..7) > W NL(R,‘ [ﬂ/ J, Vo) .
]

Remark 5.6.1. A simple variation of the proof of Theorem 5.6.2 provides an anal-
ogous result for links. We recall that a link £ is a finite set of pairwise disjoint
closed curves in R?, which can be knotted and linked among them. More precisely,
if N'(R;[£],Z) is the number of unions of hyperbolic periodic orbits of u that are
contained in Bg, isotopic to the link £, and whose periods and maximal Lyapunov
exponents are in the intervals prescribed by Z, then

1.
lim inf NAR; £}, 7) (R [£],1)

1
min =5 >0 (1£).7) > 0,

To apply the lower bound obtained in Lemma 5.6.1 to estimate the number of links, it
is enough to transform each link into a connected set by joining its different compo-
nents by closed arcs. The proof then goes exactly as in Theorem 5.6.2 upon noticing
that analogs of Proposition 5.4.2 and Corollary 5.4.3 also hold for links (the proof
easily carries over to this case).

Proof of Corollary 5.1.3. The corollary is now an immediate consequence of the fact
that the number of isotopy classes of closed curves and embedded tori is countable.
Indeed, by Theorem 5.1.2, with probability 1, a Gaussian random Beltrami field has
infinitely many horseshoes, an infinite volume of ergodic invariant tori isotopic to
a given embedded torus 7, and infinitely many periodic orbits isotopic to a given
closed curve <. Since the countable intersection of sets of probability 1 also has
probability 1, the claim follows. U

5.6.3 Proof of Theorem 5.1.4

We are now ready to prove the asymptotics for the number of zeros of the Gaussian
random Beltrami field u. Let us start by noticing that, almost surely, the zeros of u
are nondegenerate. This is because

uy ({w € CH(R3,R®) : det Vaw(x) = 0 and w(x) = 0 for some x € R*}) =0,
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which is a consequence of the boundedness of the probability density function (cf.
Remark 5.3.3) and that u is C* almost surely, see [AW(9, Proposition 6.5]. Hence the
intersection of the zero set

Xy = {x € R®: w(x) =0}

with a ball By is a finite set of points almost surely. The implicit function theorem
then implies that these zeros are robust under C!-small perturbations, so that with
probability 1, N'(R; Xy) > N (R; Xy,) for any vector field v that is close enough to w
in the C! norm. Summarizing, we have the following;:

Proposition 5.6.3. Almost surely, the functional w — N (R; Xy) is lower semicontinuous
in the CK compact open topology for vector fields, for any k > 1. Furthermore, N'(R; X,) <
oo with probability 1.

Since the variance E[u(x) ® u(x)] is the identity matrix by Corollary 5.3.3, the
Kac—Rice formula [AW09, Proposition 6.2] then enables us to compute the expected
value of the random variable

 N(r; Xy)
P, (w) = B (5.6.2)
E®, = ][IE{\ det Vao(x)| : w(x) = 0} p(0) dx
B,
= (27) 2E{| det Vw(x)| : w(x) = 0} . (5.6.3)

Here we have used that the above conditional expectation is independent of the
point x € R3 by the translational invariance of the probability measure. We recall

that the probability density function p(y) := (271) =% e~ 2V was introduced in Re-
mark 5.3.3.

To compute the above conditional expectation value, one can argue as follows:

Lemma 5.6.4. Forany x € R3,
E{| det Vu(x)| : u(x) = 0} = (2) 217,
where the constant v* is given by (5.1.3).

Proof. Let us first reduce the computation of the conditional expectation to that of
an ordinary expectation by introducing a new random variable {. Just like Vu(x),
this new variable takes values in the space of 3 x 3 matrices, which we will identify
with R? by labeling the matrix entries as

&1 G Cs
=\ Cs T Go | - (5.6.4)
¢z 08 Qo

This variable is defined as
¢ := Vu(x) — Bu(x), (5.6.5)



5.6. Asymptotics for random Beltrami fields on R3 193

where the linear operator B (which is a 9 x 3 matrix if we identify Vu(x) with a
vector in IR?) is chosen so that the covariance matrix of u(x) and  is 0:

-1

B:=E(Vu(x) @u(x))[E(u(x) ®u(x))] ~ =E(Vu(x) @ u(x)).

Here we have used that the second matrix is in fact the identity by Corollary 5.3.3.
An easy computation shows that then

E(®@u(x)) =0;

as u(x) and ( are Gaussian vectors with zero mean, this condition ensures that they
are independent random variables. Therefore, we can use the identity (5.6.5) to write
the conditional expectation as

E{|det Vu(x)|: u(x) =0} = E{|det[¢ + Bu(x)]| : u(x) =0} = E|det{|.

Our next goal is to compute the covariance matrix of { in closed form, which will
enable us to find the expectation of | det |. By definition,
E(f®¢) = E[(Vu(x) = Bu(x)) @ (Vu(x) — Bu(x))
= E[Vu(x) ® Vu(x)] = E[Vu(x) @ u(x)] E[u(x) ® Vu(x)].
The basic observation now is that, for any Hermitian polynomials in three variables

9(¢) and ¢'(&), the argument that we used to establish the formula (5.3.3) and Corol-
lary 5.3.3 shows that

E[(q(D)uj(x)) (q'(D)ux(x))] = Elq(Dx)u;(x) q'(Dy)ur(y)]ly=x

Here we have used that ¢'(D)uy is real-valued because g’ is Hermitian. As all the
matrix integrals in the calculation of [E({ ® {) are of this form with ¢(¢) = i¢ or 1,
the computation again boils down to evaluating integrals of the form [ *do (&),
which can be computed using the formula (5.3.4).

Tedious but straightforward computations then yield the following explicit for-
mula for the covariance matrix of {:

£ 0 0 0 -3 0 0 0 -3
0 & 0 4% 0 0 0 0 O
0 0 % 0 0 0 & 0 o0
o & 0 4 0 0 0 0 O
T=E(l®{=| -5 0 0 0 & 0 0 0 —-%
0 0 l01 o 0 3 10l =0
REERE LR
5 By 84 84 3
-5 0 0 0 —-% 0 0 0 %
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Note that this matrix is not invertible: it has rank 5, and an orthogonal basis for the
(4-dimensional) kernel is

{e1+e5+e9, ex—es, e3—e7, €6 —e3},

where {ej}]?zl denotes the canonical basis of R”. As we are dealing with Gaussian
vectors, this is equivalent to the assertion that

01+35+80=0, 0o=104, 0(3=107, C6=7Us (5.6.6)

almost surely (which amounts to saying that ( is a traceless symmetric matrix). No-
tice that these equations define a 5-dimensional subspace orthogonal to the kernel
of 2. The remaining random variables {’ := ({1, {2, {3, {5, () are independent Gaus-
sians with zero mean and covariance matrix

o
|
5o

=B e )=

o,,kl o oRw
5l
oo oo
—
=

o
CElvwo o
o o o o

By construction, ¥’ is an invertible matrix, so we can immediately write down a
formula for the expectation value of | det|:

> 1 gl €2 €3 171 5/=177
E|det| = (271) 2(detX') 2 /]Rs det gz 25 €C6 C e 28 ET 4
3 6 —61 64

= @midetx) ! [ Q@) ¥ ar,

with the cubic polynomial Q being defined as in (5.1.4). Since 3¢’ - £'~1¢" = Q(Z),
where the quadratic polynomial Q was defined in (5.1.5), and

5. 1432

r_
detX’ = ERER

we therefore have ,
E|detl| = (2mr)2v”.

The result then follows. O

Remark 5.6.2. If one keeps track of the connection between ¢ and Vu(x), it is not
hard to see that the first condition {1 4 {5 + {9 = 0in (5.6.6) is equivalent to div u(x) =
0, while the remaining three just mean that curlu(x) = u(x), at the points x € R3
where u(x) = 0.

In particular, this shows that ® € L! (Ck(]R3, IR3), 11,,). For the ease of notation,
let us define the ergodic mean operator

_ 1
|BR| Br

Ar®(w) : O(Tyw)dy.
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Since NV (R, Xy) is finite almost surely, cf. Proposition 5.6.3, the sandwich estimate
proved in Lemma 5.6.1 implies that, almost surely,

! ®,(tyw) dy < Pr(w) < !

< — b, (tyw)d
Be] Joy,, &)

|BR‘ Br—r

for any 0 < r < R. Therefore, and using that |Br,|/|Br| = (1 £ r/R)3, one has

3
(1= 1) A - Aco|

3
r
|CI)R - .ARq)r| < ‘ <1 + R) AR+, @, — ArD, R

For fixed r, Equation (5.6.3) and Proposition 5.3.4 ensure that
1
Ar®, = E®, = v* (5.6.7)
a.s.
as R — oo; also, note that the limit (which is independent of r) has been computed

in Lemma 5.6.4 above.

Therefore, if we let R — oo while 7 is held fixed, the RHS of the estimate before
Equation (5.6.7) tends to 0 p,-almost surely and in L!(y,,), so that

1
qDR_ARqu aL—s> 0

1
as R — oo. As AP, Ly by (5.6.7), Theorem 5.1.4 is proven.
a.s.

5.7 The Gaussian ensemble of Beltrami fields on the torus

5.7.1 Gaussian random Beltrami fields on the torus

As introduced in Section 5.1.3, a Beltrami field on the flat 3-torus T := (R/27Z)>
(o, equivalently, on the cube of R? of side length 27 with periodic boundary condi-
tions) is a vector field on T? satisfying the equation

curlv = Av

for some real number A # 0. To put it differently, Beltrami fields on the torus are the
eigenfields of the curl operator. It is easy to see that such an eigenfield is divergence-
free and has zero mean, that is, fT3 vdx = 0.

Since Av + A?v = 0, it is well-known (see e.g. [ELPS17]) that the spectrum of
the curl operator on the 3-torus consists of the numbers of the form A = =+|k| for
some vector with integer coefficients k € Z3. For concreteness, we will henceforth
assume that A > 0; the case of negative frequencies is completely analogous. Since
k has integer coefficients, one can label the positive eigenvalues of curl by a positive
integer L such that A; = L1/2. Let us define

Zy={keZ®: |k =1L}

and note that the set Z; is invariant under reflections (i.e., —k € Z; if k € Z}).
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The Beltrami fields corresponding to the eigenvalue A; must be of the form

v=Y Ve, (5.7.1)
keZy

for some Vi, € C°. Conversely, this expression defines a Beltrami field with fre-
quency Ay if and only if Vi = V_ (which ensures that v is real valued) and
ik

mXVk:Vk

Since |k| = L!/2, we infer from the proof of Proposition 5.2.1 that the vector V; must
be of the form
Vi = ay p(k/LV?) (5.7.2)

unless k = (j:Ll/ 2,0,0). Here o), € C is an arbitrary complex number and the
Hermitian vector field p(¢) was defined in (5.2.4).

The multiplicity of the eigenvalue A[ is given by the cardinality d;, := #Z;. By
Legendre’s three-square theorem, Z; is nonempty (and therefore A is an eigenvalue
of the curl operator) if and only if L is not of the form 4?(8b + 7) for nonnegative
integers a and b.

Based on the formulas (5.7.1)-(5.7.2), we are now ready to define a Gaussian ran-
dom Beltrami field on the torus with frequency A; as

7\ 1/2 ‘
ut(x) == ( > Y app(k/LV?) %, (5.7.3)

dr keZ;

where the real and imaginary parts of the complex-valued random variable al are
standard Gaussian variables. We also assume that these random variables are in-
dependent except for the constraint ak = al,. The inessential normalization factor

(27t/dp)"/? has been introduced for later convenience.

Note that u*(x) is a smooth R3-valued function of the variable x, so it induces
a Gaussian probability measure pu’ on the space of Ck-smooth vector fields on the
torus, CK(T3,R?). As before, we will always assume that k > 4 to apply results from
KAM theory. We will also employ the rescaled Gaussian random field

x
ul?(x) .= ut <z + L1/2>

for any fixed point z € T3.

5.7.2 Estimates for the rescaled covariance matrix

In what follows, we will restrict our attention to the positive integers L, which we
will henceforth call admissible, that are not congruent with 0, 4 or 7 modulo 8. When L
is congruent with 7 modulo 8, Legendre’s three-square theorem immediately implies
that Z is empty. The reason to rule out numbers congruent with 0 or 4 modulo 8
is more subtle: a deep theorem of Duke [Duk88], which addresses a question raised
by Linnik, ensures that the set Z;/ LY/2 becomes uniformly distributed on the unit
sphere as L — co through integers that are congruent to 1, 2, 3, 5 or 6 modulo 8. This
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ensures that

Z ¢(k/LV2) —>/<p &) do(Z) (5.7.4)

de

as L — oo through admissible Values, for any continuous function ¢ on S. A par-
ticular case is when L goes to infinity through squares of odd values, that is, when
L= (2m+1)?and m — oco.

The covariance kernel of the Gaussian random variable u~ is the matrix-valued
function

xt(x,y) == B ut(x) @ u"(y)].
Following Nazarov and Sodin [NS16], we will be most interested in the covariance
kernel of the rescaled field u'* at a point z € T®, which is given by

e =i ) oo )]

The following proposition ensures that, for large admissible frequencies L, the rescaled
covariance kernel, and suitable generalizations thereof, tend to those of a Gaussian
random Beltrami field on IR, x(x, y), defined in (5.3.2):

Proposition 5.7.1. For any z € T®, the rescaled covariance kernel k% (x, y) has the follow-

ing properties:

(i) It is invariant under translations and independent of z. That is, there exists some
function > such that

L _ L
i (xy) = (x—y).
(ii) Given any compact set K C R®, the covariance kernel satisfies

kb2 (x,y) = x(x,y)
in C°(K x K) as L — oo through admissible values.

Proof. Let a, B be any multiindices, and recall the operator D = —iV introduced in
Section 5.3. By definition, and using the fact that ul is real,

DDEx!(x,y) = B [D”‘ L<Z+L1/2) ® Dju L(z+L1y/2)]
L 4L B Y
=E [D“ (z+Ll/2>®D uL<z—|—L1/2>]

o LT k K k K\ ik
—Ekz ). E(aym )P<L1/2 @r\tiz ) \1iz) \ 1z ¢

eZ kez;

5s)— ik’-(z+ﬁ)‘

The independence properties of the Gaussian variables al (which have zero mean)
imply that E(akal) = 0if K’ ¢ {k, —k}. When k' = k one has

E* [l |*] = E*[(Reag)?] + B'[(Imag)?) =2,
and when k' = —k,

E'[(a})?] = E[(Rea})?] — EV[(Imaf)?] + 20 [(Rea}) (Ima})] = 0.
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Therefore, IEL(uIEQTE,) = 20y and we obtain

k k Kk \* k \P .
d Ty p<L1/2> ®p<L1/2> (Ll/z) (_L1/2> ok (x—y) /L2
L kez,

In particular, this formula shows that x%#(x, ) is independent of z and translation-
invariant.

D% Df KxLZ (x,y) =

Using now the fact that Z; becomes uniformly distributed on S as L — oo
through admissible values, we obtain via Equation (5.7.4) that

DD (x,y) = [ £(=)F p(&) © p() €€V do(2)
= DID] [ p(@) @ p(e) = do(2).

By Proposition 5.3.2, the RHS equals D¥ Df k(x,y), so the result follows. O

5.7.3 A convergence result for probability measures

We shall next present a result showing that the probability measure defined by the
rescaled field ul= converges, as L — oo, to that defined by the Gaussian random
Beltrami field on IR3, 4, on compact sets of R3:

Lemma 5.7.2. Fix some R > 0 and denote by ylg’z and R, respectively, the probabil-
ity measures on C¥(Bg,R®) defined by the Gaussian random fields u'* and u. Then the
measures yILz’Z converge weakly to y, r as L — oo through the admissible integers.

Proof. Let us start by noting that all the finite dimensional distributions of the fields
ul? converge to those of u as L — oo. Specifically, consider any finite number of
points x!,...,x" € R3, any indices j,...,j" € {1,2,3}, and any multiindices with
|a/| < k. Then it is not hard to see that the Gaussian vectors of zero expectation

@l (), U () € R

converge in distribution to the Gaussian vector
(0% up(xh),...,0% up(x")) (5.7.5)

as L — oo. This follows from the fact that their probability density functions are
completely determined by the n X n variance matrix

(aoc ¥k m ]L]fn(x, y)‘(x,y):(xl,xm))

4
1<Il,m<n

which converges to £ := (9% % K/ (X, Y) | (xy)=(xt,4m)) @8 L — oo by Proposition 5.7.1.
The latter, of course, is the Covarlance matrix of the Gaussian vector (5.7.5).
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It is well known that this convergence of arbitrary Gaussian vectors is not enough
to conclude that yILQ’Z converges weakly to y, g. However, notice that, for any inte-
ger s > 0, the mean of the H*-norm of ulz is uniformly bounded:

EY [l 5 = Y IE/ DL (x) 2 dx
‘04|<s
= Z / Tr (DgD;‘KL,Z(X,y)‘ =x) dx
la|<s Br y
- arya
L—o0 |0(|Z<s B Tr (DnyK(x/y)|y:x> dx < Ms,R .

To pass to the last line, we have used Proposition 5.7.1 once more. As the con-
stant M; r is independent of L, Sobolev’s inequality ensures that

Sup B 10215, < C 5up B [l < M

for some constant M that only depends on R. For any € > 0, this implies that for all
admissible L large enough

VIL?,Z({w € Ck(BR']R3 Hchk+1 Bg) > M/G}) < €

As the closure of the set {w € C¥(Bg,R?) : HwH%kH(BR) < M/e€} is compact by
the Arzela—Ascoli theorem, we conclude that the sequence of probability measures
‘uéz is tight. Therefore, a straightforward extension to jet spaces of the classical
results about the convergence of probability measures on the space of continuous
functions [Bil13, Theorem 7.1], carried out in [Wil86], permits to conclude that ylL{’Z

indeed converges weakly to y, g as L — co. The lemma is then proven. 0

5.7.4 Proof of Theorem 5.1.5

We are now ready to prove our asymptotic estimates for high-frequency Beltrami
fields on the torus. The basic idea is that, by the definition of the rescaling,

ut({w e CH(T8, R?) : NB > m}) > ui*({w € C*(Bg,R®) : N&(r) > m})

provided that r < R < L/2: this just means that the number of horseshoes that u*
has in the whole torus is certainly not less than those that are contained in a ball
centered at any given point z € T? of radius 7/L!/? < 1. The same is clearly true as
well when one counts invariant solid tori, periodic orbits or zeros instead.

For the ease of notation, let us denote by ®,(w) the quantity N& (r), N, (r; [T], 7, Vo),
NY(r;[v],Z) or NZ(r) (thatis, the number of nondegenerate zeros of w in B,), in each
case. See Sections 5.4 and 5.5 for precise definitions. We recall that NZ (r) = N (r; Xy)
with probability 1, cf. Section 5.6.3. Theorems 5.6.2 (for periodic orbits, invariant tori
and horseshoes) and 5.1.4 (for zeros) ensure that, given any m; > 0, any 4; > 0, any
closed curve 7y and any embedded torus 7, one can find some parameters Z, 7, Vp
and r > 0 such that

yu({w € Ck(]R3,1R3) : D, (w) > ml}) >1—0.
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Of course, here we are simply using that the volume |B, |, which appears in the state-
ments of Theorems 5.6.2 and 5.1.4 but not here, can be made arbitrarily large by
taking a large r.

Let us now fix some R > r and some point z € T3. We showed in Proposi-
tions 5.4.1,5.4.4, 5.5.1 and 5.6.3 that the functionals that we are now denoting by &,
are lower semicontinuous on the space C¥(IR?, IR®) of divergence-free fields for k > 4.
This implies that the set

erlel = {w € Ck(BR,RB) : (I)r(ZU) > ml}

is open in C¥(Bg,R?). Lemma 5.7.2 ensures that the measure yILQ’Z converges weakly
to p,,r as L — oo through the admissible integers. As the set (), r ,, is open, this is
well known to imply (see e.g. [Bil13, Theorem 2.1.iv]) that

lierl> io?f ‘MIL{'Z(Q;’,R,ml) > R (R m)

= mu({w € CH(R?,R%) : &, (w) > my})
>1-—19.

We observe that §; > 0 can be taken arbitrarily small if r is large enough (and
r/LY2 < R/LY? < 1). Now, for any A > 1 and L large enough, we can take A pair-
wise disjoint balls in T® of radius /L2 < A~!/3 centered at points {z*}# | C T8.
Setting m := Am;, the previous analysis, which is independent of the point z, readily
implies that

uh({w e CHT3, R3) : N3* > m}) >1-246 >1-7,

where the superscript X stands for h, t, o or z, thus proving the part of the statement
concerning the number of approximately equidistributed horseshoes, invariant tori
isotopic to T, periodic orbits isotopic to 7 or zeros. In fact, concerning invariant
tori, we observe that obviously NY (r;[T]) = oo if Ni(7;[T], J, Vo) = 1. Since the
previous estimate ensures that N}, (7; [T], J, Vo) > m; with probability 1 as L — oo,
we infer that the probability of having an infinite number of (Diophantine) invariant
tori isotopic to 7 also tends to 1 as L — oo through the admissible integers. However
this does not provide any information about the expected volume of the invariant
tori.

The result about the topological entropy follows from the following observation.
If we denote by ¢F the time-t flow of the Beltrami field u*(z + -), and by ¢ the flow
of the rescaled field 1L, it is evident that

L 1
Pr = Tia Py

Then, the topological entropy hiop ("), which is defined as the entropy of its time-1
flow, satisfies

1
htop(uL) = ht0p(4’1L) = htop (m(f)Ll/z) - htop((l)L]/z) - Ll/thop(‘Pl) (576)
= LY ?hyop (ub#) . (5.7.7)

In the third equality we have used that the topological entropy does not depend on
the space scale (or equivalently, on the metric), and in the fourth equality we have
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used Abramov’s well-known formula (see e.g. [GM10]). Since the rescaled field has
a horseshoe in a ball of radius r with probability 1 as L — co, and a horseshoe has
positive topological entropy, say larger than some constant v! (see Proposition 5.5.1),
Equation (5.7.6) implies that the topological entropy of ul is at least vM L1/2.

Finally, we prove the statement about the expected values. As above, we use the
functional ®,(w) to denote the number of different objects (horseshoes, solid tori or
periodic orbits). The case of zeros will be considered later. Note that, since ®; is
lower semicontinuous, and ul* converges weakly to y, as L — co by Lemma 5.7.2,
it is standard that [Bil13, Exercise 2.6]

. Lz q)r q)r

B nf B gy = Erp 21> 0
where we have picked some fixed, large enough r. Here we have used the asymp-
totics in IR?, given by Theorem 5.6.2, to infer that the last expectation is positive if r
is large. Notice that the constant # depends on [v],[T],Z or J depending on the
functional the we are considering, but we shall not write this dependence explicitly.
Furthermore, as the distribution of the measure ]/tIL{’Z is in fact independent of z by
Proposition 5.7.1, this ensures that there is some Ly independent of z such that

P Ul
]ELZ r i
B,] 2

for all admissible L > Ly and all z € T3.

Now, given any admissible L > Ly, it is standard that we can cover the torus )
by balls {B,,(z*) : 1 < a < AL} of radius r; := 2r/L!/? centered at z* € T? such
that the smaller balls B,, />(z") are pairwise disjoint. This implies that A; > ¢, L2 for
some dimensional constant c,. The expected value of, say, the number of horseshoes
of uk in T3 can then be controlled as follows, for any admissible L > Ly:

ELND B, \ 4 c1>
13/2 > Z L3/2

| Br|
Cr’BrW

>
2

> Vx

for some positive constant v, independent of L. An analogous estimate holds for the
expected value EFN°([v]).

To estimate the volume of ergodic invariant tori isotopic to 7 we can proceed as
follows. For any admissible L > Ly we have:

EWV(T) > 3 1B, 2 L= VO TLT)

a=1 |Br|
A . D

> Y By, ol VEM L
a=1 ‘Br|

Vor o
> LY Byl > v4(IT])
a=1

for some positive constant vt ([7]) independent of L. Here we have used that the
balls B,, /»(z") are pairwise disjoint and the sum of their volumes is, by construction,
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larger than |T3|/8.

Lastly, in the following lemma we consider the case of zeros:

Lemma 5.7.3. ]EL(L’%NLZIL) — (271)%% as L — oo through admissible values.

Proof. Let us use the notation
Qg := (=Rm,Rm) x (—Rm, Rmr) x (—=Rm, Rm)

for the open cube of side 271R in R® and call N " the number of zeros of ul (or rather
of its periodic lift to IR®) that are contained in Q;. By Bulinskaya’s lemma [AW09,
Proposition 6.11], with probability 1 the zero set of ul is nondegenerate (and hence
a finite set of points) and the lift of u* does not have any zeros on the boundary 9Q;.
Therefore, for any positive integer R,

w =N
almost surely. In particular, both quantities have the same expectation.

Let us now take some small positive real r and denote by N? (y,r) the number
of zeros of ul (or rather of its lift to IR®) that are contained in the ball B,(y). The
argument we used to prove the estimate for N'(R; X') in Lemma 5.6.1 (starting now
from the number of zeros in Q; instead of in Bg) shows that

N?, (z, N? (z,
[ e,
Q1 ‘B7’| " Q14r ‘Br‘

Note now that

Z z 1/2
/ Nazr) 1 / Na(L7)
J Q14 |Br| 147 |BrL1/2|

The expected value of this quantity is

IEL/ NEL,Z(rLl/Z) dZ:/ IEL,ZNLZ[L,Z(VLl/Z) dZ
= |BrL1/2| J Q14r ‘BrL1/2|
ELZNZ%_(rL'/?)
= |Q1ir|
|BrL1/2|

To pass to the second line we have used that the expected value inside the integral is
independent of the point z by Proposition 5.7.1; in particular, this value is indepen-
dent of the point z one considers.

We can now argue just as in the case of IR?, discussed in detail in Subsection 5.6.3,
so we will just sketch the arguments and refer to that subsection for the notation. The
Kac-Rice formula ensures

ELZNZ _(rL1/?)
’BrL1/2|

— (27) 3EM ({| det Vi #(0)| : ub*(0) = 0}),
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and this conditional expectation can be transformed into an unconditional one just
as in the proof of Lemma 5.6.4:

]EL'ZNZL,Z (I’Ll/2) -
B~ @0 E(ldetd))
r
i (27-[) _3/2 L,Z / 71@/.(21,2)—1? /
= 2052 (detot7)1/2 /RsQ (e 2 dg
= Vz,L,z .

The fact that the covariance matrix of ul-* converges to that of u as L — oo by Propo-
sition 5.7.1 implies that

Lz z

lim v*~* = v*.

L—00

Hence, writing the aforementioned sandwich estimate as

IELNZ
[QurlvH < 5 < [QuarlH

and letting L — oo and then » — 0, we infer that

Larz
3,z

. L
Jim g7t = Qi = v

The lemma follows. 0

Theorem 5.1.5 is then proven.

APPENDICES

5.A Fourier-theoretic characterization of Beltrami fields

For the benefit of the reader, in this appendix we describe what polynomially bounded
Beltrami fields look like in Fourier space. As Beltrami fields are a particular class of
vector-valued monochromatic waves, it is convenient to start the discussion by con-
sidering polynomially bounded solutions to the Helmholtz equation

AF+F =0.

As before, we consider the case of monochromatic waves on R?, but the analysis
applies essentially verbatim to any other dimension. The Fourier transform of this
equation shows that R

(1= [5")EFE) =0,
so the support of F must be contained in the unit sphere, S. In spherical coordinates
p = |¢] € Rt and w := {/|¢| € S, it is standard that this is equivalent to saying
that F is a finite sum of the form

N
F=)Y Fi(w)s™(p-1).
n=1
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Here 6 is the n'h derivative of the Dirac measure and F, is a distribution on the
sphere, so F,, € H*(S) for some s, € R (because any compactly supported distribu-
tion is in a Sobolev space, possibly of negative order). Note that F is real valued if
and only if the functions F, are Hermitian. Of course, there are also monochromatic
waves that are not polynomially bounded, such as F := ¢*1 cos(v/2 x3).

A classical result due to Herglotz [H6r15, Theorem 7.1.28] ensures that if F is a
monochromatic wave with the sharp fall off at infinity, i.e., such that

1
limsup — | F?dx < oo,
R0 R JBg

then there is a Hermitian vector-valued function f € L2(8) such that F = fd(p — 1).
Furthermore, the value of the above limit is in the interval [C:||F||?, (s Co|[FI2, (S)]

for some constants Cy, C;. This bound means that, on an average sense, |F(x)| decays
as C/|x|. The prime example of this behavior is given by f = 1, which corresponds
to F(x) = clx|~2J1a(]x]).

The expression (5.1.2) corresponds to the case N = 0 above, since the function Fy
with Fy = f(w) é(p — 1) is precisely

Fo(x) = /T)eix'“}f(a))da(w).

Also, if f € H7*(S) with k > 0 but not necessarily in L?(S), the function F is
bounded as [EPSR22a, Appendix A]

1 F()(X)z

sup

R Jo 14 a % S M lives) 5.A.1
R>0R Br l—|—’x‘2k X ||fHH K(S) ( )

|k—1

Hence in this case, F is bounded, on an average sense, by C|x . Therefore, if

f € HL(S), Fy is uniformly bounded in average sense.

If f is a Gaussian random field, as considered in the Nazarov-Sodin theory (see
Equation (5.1.2a)), we showed in Proposition 5.3.1 that f is almost surely in H~7%(S)
for all § > 0 and not in L?(S). This behavior morally corresponds to functions that
are bounded on a average sense but do not decay at infinity, as illustrated by the
function Fy := cos x1 generated by f := 3[éz, (&) + 3z (&)]. This is the kind of behav-
ior one needs to describe the expected local behavior of a high energy eigenfunction
on a compact manifold as one zooms in at a given point.

The monochromatic wave defined as F, := f(w) 8™ (o — 1) reads, in physical
space, as

Fu(x) = [ [T e os(@) 26" (o~ 1 dpde(w) = (-1)" [ F(@) 9l (026 ) do(w).

Note that the n'" derivative term involves an n'" power of x. Therefore, using
the bound (5.A.1), one easily finds that F, is bounded on average as C|x|"**~1 if
f € H7¥(S); explicit examples with this growth can be easily constructed by taking
f to be either a constant for k = 0 or the (k — 1) derivative of the Dirac mea-
sure for k > 1. Consequently, picking f as in (5.1.2a), the bound (5.A.1) morally
leads to thinking of F, as a function that grows as |x|" at infinity, which cannot
be the localized behavior of an eigenfunction. This is the rationale for defining a
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random monochromatic wave as in (5.1.2a)-(5.1.2b). In this direction, let us recall
that the relation between random monochromatic waves and zoomed-in high en-
ergy eigenfunctions on a various compact manifolds is an influential long-standing
conjecture of Berry [Ber77]. A precise form of this relation has been recently es-
tablished in the case of the round sphere and of the flat torus [NS09; NS16; Roz17],
which heuristically shows that (5.1.2a)-(5.1.2b) is indeed the proper definition of ran-
dom monochromatic waves for this purpose.

The reasoning leading to the definition of a random Beltrami field as (5.1.2) is
completely analogous, and the fact that one can relate Gaussian random Beltrami
fields on IR to high-frequency Beltrami fields on the torus just as in the case of the
Nazarov-Sodin theory heuristically ensures that this is indeed the appropriate def-
inition. For completeness, let us record that, just as in the case of monochromatic
random waves, the Fourier transform of a polynomially bounded Beltrami field u is
a finite sum of the form N

=L/ -1,

where now f, is a Hermitian C3-valued distribution on S. For u to be a Beltrami
field, there is an additional constraint on f, coming from the fact that not every dis-
tribution supported on S satisfies the equation i¢ x (&) = #(¢). A straightforward
computation shows that this constraint amounts to imposing that

£ (e s s (o i

onSforall 0 < j < N. Here ay; := H’;n;lo(l — m) with the convention that ag; := 1.
To see this, it suffices to note that the action of # and i¢ X & on a vector field w €
C*(R3,R3) is

N
(@) = (- V" [ fule0) -0l [pPlow)] doteo),
N
(ig x ,w) = Y- (<1)" i x ful) - Ol [pP(pw)] do(eo),

expand the nh derivative using the binomial formula and note that ay; is the kit
derivative of o' at p = 1.






Chapter 6

Unweighted Condorcet Jury
Theorem and Miracle of
Aggregation do not hold almost
surely

The Condorcet Jury Theorem or the Miracle of Aggregation are frequently invoked
to ensure the competence of some aggregate decision-making processes. Further-
more, to the best of the author’s knowledge, the current literature focuses on suffi-
cient conditions (in different circumstances) to ensure the thesis of the theorem, but
less attention has been paid to the applicability of the results.

Our objective in this chapter is to set the framework for the study of the appli-
cability of these important results. As directly checking the hypotheses of the the-
orem is unrealistic, we use a probabilistic approach with Bayesian grounds. Here,
we study under which circumstances the thesis predicted by the theorem is likely
to hold. Depending on our available evidence on voter competence, which will be
measured by a bias in a second-order probability measure, the thesis of the theorem
will happen almost surely or almost never. See Theorem 6.2.2 and Theorem 6.2.7 for
details. As we will see in these theorems, the opposite of the CJP could occur almost
surely, i.e., majority rule chooses the wrong option a.s. Therefore, this gives another
reason to study the applicability in order to ensure that we are not in this situation.

Furthermore, we also apply this framework in the case of weighted majority rule
with stochastic (or noisy) weights. It is concluded that these stochastic weights can
fix almost any voter profile of incompetence, see Theorem 6.5.2.

The chapter is organized as follows. In Section 6.1 we introduce the notation and
some definitions that will be used in the rest of the chapter. In Section 6.2 we present
the first results, examples and intuitions. In Sections 6.3, 6.4 and Appendix 6.A we
prove the theorems of the unweighted situation. In Section 6.5 we present the proof
and statement of the theorem where weighted majority rule is used instead of simple
majority rule. Section 6.6 gives an end to this chapter offering some concluding
remarks.
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6.1 Notation and some definitions

The space of sequences with elements in [0, 1] will be denoted by [0,1]N. The (un-
centered) moments of a measure vy will be denoted by:

mt = / x* dvg(x) < 1. (6.1.1)
[0,1]

In particular, m := m! = b+ 1 following Definition 6.2.4. We denote by (Q,P) an
abstract probability space where every random object is defined. Given two mea-
sures v, v/ we will say that v is absolutely continuous with respect to v' and write

v < V' if for every Borel set A, v'(A) = 0 implies v(A) = 0. We will write its

Radon-Nikodym derivative as 4. If there is a C > 0 such that a < Cb we write

a <b.

6.1.1 Distances and divergences

Consider a family M of probability distributions or measures.

Definition 6.1.1 (Divergence). Let M be as above and suppose that we are given a (smooth)
function d(-]|-) : M x M — R satisfying the following properties ¥V p,q € M:

i) d(pllg) =0,
ii) and d(p|lq) = Oiff p = q.

Then, d is said to be a divergence.

It is customary to add a third condition such that d defines an inner product on
the tangent space of M, see [RRT19]. Also, if only i) and ii) are satisfied, it is usually
called a semidivergence. As we will not use that property here, we will use the name
of divergence as in the previous definition. We also recall the standard definition of
distance.

Definition 6.1.2 (Distance). Let M be as above and suppose that we are given a function
d(-,-) : M x M — R satisfying the following properties ¥ p,q,r € M:

i) (Positive definiteness) d(p,q) = 0,and d(p,q) = 0iff p =g,
ii) (Symmetry) d(p,q) =d(q,p),
iii) (Triangle inequality) d(p,r) < d(p,q) +4d(q,7).

Then, d is said to be a distance.

Sometimes we will also use the notation d(-, -) for divergences too. As a diver-
gence do not necessarily satisfies ii) and iii), it is usually called a pseudodistance.
Let us explore some examples. Given two measures y, ' defined on the measurable
space (X, X), the total variation distance will be denoted by:

| —#'|| =2 sup |u(B) — u'(B)|.
BeX.
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That is, the total variation distance is twice the “maximum” difference between the
measure of the same set for ; and . That is, we have the useful bound

1
n(B) =W (B <5 [p—#| VYBEL, (6.1.2)
so the smaller || — /||, the smaller the discrepancy between u(B) and u'(B) for

every measurable set. In fact, it can be shown this is a norm in the space of Radon
signed measures, [Fol99, Proposition 7.16]. It is a well-known identity that:

2sup [1(A) =W (A)] = o=l ) = /X lp(x) — 0 (x)]dT(x), (6.13)

where p := du/dtand o’ := dy’/dt for some T > p, ' Forinstance, T := % (u + ).
Also, the relative entropy or Kullback-Leibler divergence is defined as:

d ’::/lo p(x) x)dT(x).
k(i) = [ log 75 p(x)dT(x)
See [RRT19] for more details and for a theoretical framework relating divergences
and entropies and for more (geometrical) properties of divergences.

6.2 On the a priori applicability of those results

As we saw in Chapter 1, the CJT is a powerful tool to ensure the existence of an
(almost) perfectly competent decision procedure. Nevertheless, in this Chapter we
investigate how likely is this result a priori and what can we do to increase its prior
probability.

6.2.1 Preliminary example

Let A be the standard Lebesgue measure on R and y = A X A = H%:l A If we
define X := Xj + X, X; ~ Bernoulli(p;) and p; are unknown, then {E[X] < 1} has
measure 1/2 w.r.t. . Indeed, E[X]| = p1 + p2 < 1 and by basic geometry

plloy) €012 /x4y <1} = .

In the same fashion, we can see that the measure of {E[X] < 2} is1as pj,p2 < 1
and, similarly, the measure of {IE[X] > 2} is 0. We then say that the event {[E[X] <
2} happens almost surely or y—almost surely and {E[X] > 2} does not happen
pu—almost surely (p-a.s.). In this setting, we can think of u as a “meta-probability mea-
sure” or a second-order probability measure, it assigns probabilities (or measures)
to some events of the parameters of the probability distributions of some random
variables of our interest. Thus, we have two different probability spaces':

e Standard probability space (Q), IP): the space (with its respective probability mea-
sure) depending on some parameters (fixed) where the problem is formulated.
In our previous example it was given by the random variable X : () — R with

IThe o-algebra will be the standard one in each case and thus it will be implicitly assumed.
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() the sample space and where the distribution of X = X}, ,, depends on the
fixed parameters p; and p,. That is, for a measurable set A

P (X S A) = Px(A,pl,pz).

* Meta-probability space (B, u): the space P (with its respective probability mea-
sure y) of the parameters of the previous random variable. In our previous
example it was given by P = [0,1]> and # = A x A, the standard Lebesgue
measure on the square [0, 1]2.

Now, it might be the case that we do not know the value of p; and p; but nevertheless
want to know how “likely” will be that, for instance, E[X] < 1. As we saw above,
this is a problem involving the two probability spaces:

* Standard probability space, E[X,, »,] = [q Xp,,p.(w)dP(w) = p1 + po.
* Meta-probability space, i ({(p1,p2) € [0,1)* | p1 + p2 < 1}) =1/2.

Notice also that if we chose a different y, the associated measure of each event would
probably change, i.e., we have to choose the measure on 8. From a Bayesian point
of view, if we want to consider the prior probability, it can be assumed that this
measure is not “biased” in any particular direction. That is, if we have no particular
evidence to assume the contrary or prior to collect any evidence, it seems reasonable
to impose that, for instance,

p{p1 €[0,1/2)}) = p({p1 € (1/2,1]}).

6.2.2 The CJT and measures on [0, 1]N

For the CJT, given our previous definitions, we have:

e Standard probability space is also denoted by (Q),IP) where the main random
variables involved are 1 Y7, X; for n € N and the event of our interest is
given by (1.9).

* Meta-probability space (B, 1) equals ([0,1]N, ). Here we are not interested in
measures on [0,1]?, but on [0,1]® or [0,1]N, i.e., the space of sequences with
elements in [0, 1], as p,, € [0,1] and the parameters of the problem are {p, }$° ;.

We now turn into the problem of finding y (or, more precisely, a set of u). A natural
measure to consider is

U= H A, (6.2.1)
which is the generalization of the measure on R? considered above. It is well-defined

by Kolmogorov’s Extension Theorem. This measure has the property of being cen-
tered in the sense that the mean value (first moment) of A is

1
/[0,11 xdA(x) = 3. 6.2.2)

However, we are going to consider more general “centered” measures than the one
in (6.2.1), i.e., a larger class. Before the precise definition, we need to introduce the
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concept of distances and divergences of probability measures, say d. These objects
tell us, in a sense to be precise in Section 4.1.8, how different two distinct y and p/
assign measures to an arbitrary set A. If d(u, u') = 0, the measures are identical
and if d increases, so does the discrepancy for some sets. There are several ways
of doing so, but two of the most important examples are the total variation dis-
tance (the statistical distance) and the Kullback-Leibler divergence (associated to the
Shannon-Boltzmann entropy). In fact, we are going to consider a larger set, that will
be denoted by D and which will be defined precisely in Definition 6.3.2. To ease
the exposition here, it can be understood that d below is either the total variation
distance or the Kullback-Leibler divergence. We are ready to define the concept of
centered measures.

Definition 6.2.1. A probability measure yu = [ vy, on [0,1]N will be centered if there
exists a probability measure on [0,1], vy, such that v, < vp ¥V n > 1 (see Section 4.1.8 for
notation),

1
d = 6.2.3
/[0,1} * dvo () 2 (6.23)

and

d(vy, vg) < o0, (6.2.4)
-1

n

withd € D.

Example 6.2.1. The case considered in (6.2.1) corresponds to the case vp = A and
Vo = v, V n positive integers, so d(vp, v,) = d(v,vp) = 0 (by definition of distance
and divergence, see Definition 6.1.1 and 6.1.2) and then,

Y d(va,vp) =0 < 0.
n=1

The idea is simple, the measure p is not too far (in the sense that the sum of
distances or divergences does not go to infinity) from a product measure [T, ; Vo
of identical measures on [0, 1] and these measures have mean 1/2. This generalizes
(6.2.1) in two ways. First, the measures of the product are not necessarily identical.
We allow the measure to be a “perturbation” of y. Second, the measure vy is not
necessarily the Lebesgue measure, but a measure with mean 1/2, i.e., we only need
this measure to have the same first moment as the Lebesgue measure on [0, 1]. For
instance, we can have atomic measures, i.e., v9({x}) > 0 for some x. This is not
allowed in the standard Lebesgue measure, as every single point has measure zero.
In particular, as we said in Section 4.1.8 we will define €1 = vp({1}), that is, there
is a probability €; such that each voter is going to vote for the correct option almost
surely as in the MoA. More generally, we define €1_,1 = v ([1 — €9, 1]).

With these measures, the CJP will not hold almost surely. It is important to note
that as we have a complete characterization, we are not saying that the hypothesis of
the theorem (CJT) will not hold, but that the thesis (CJP) will not hold. The latter im-
plies the former but the former implies the latter only if the conditions are necessary
too. More precisely:

Theorem 6.2.2. Almost surely independent Condorcet Jury Theorem does not hold for a
centered measure y, that is:
u(Cr) =0. (6.2.5)
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That is, no matter which measure we choose (with the reasonable condition of
Definition 6.2.1), it will assign probability zero to the CJP.

Remark 6.2.2. We should distinguish two concepts, impossible events and probabil-
ity (or measure) zero events. The first are associated with the empty set @ and the
second with a set of probability or measure zero, i.e., a null set. For instance, take a
uniform random variable X : QO — [0, 1] over [0,1] and let xy := /4 € [0,1]. X will
always (surely) give a number between 0 and 1. Thus, {X > 1} == {w / X(w) > 1}
is an impossible event. {X = x(} is not impossible (some number must be cho-
sen and it also had probability zero) but will not happen almost surely (the prob-
ability is zero). This implies that if we run the variable a large number of times n,

number of times X=X _, () a5 ;1 — oo (probabilistic application to frequencies).

Again, the idea is that whatever measure y we choose with the condition that
u is centered or not “biased”, the CJP will not hold almost surely. One could think
that this was somehow expected as soon as we chose m! = 1/2: we are choosing
m! = 1/2 but, as already Condorcet noticed, you need a probability greater than
1/2. Thus, one does not expect the CJT to hold. Hence, the theorem is more or
less trivial. Nevertheless, this intuition would be incorrect, as it would be confusing
the two probability spaces. Indeed, the first and second 1/2 belong to two different
spaces

* E[X;] = [, Xi(w)dP(w) = p; and this must be greater than 1/2 in the standard
CJT (where p; = p Vi € N),

o ml =[x dvo(x) = 1
The confusion is obvious if we consider the homogeneous case p; = p Vi € N,
the original Condorcet’s theorem. Then, we would have B = [0,1]. Imposing that
u = g is centered around 1/2, i.e., |, 01] X du(x) = % would not imply that the CJT
fails almost surely. In fact, it would have probability y((1/2,1]) > 0 unless u = 61/,

the Dirac measure at 1/2. For instance, if 4 = A, then the CJT would have probability
1/2.

A more subtler argument would say that, on average, probabilities are approxi-
mately (and asymptotically) 1/2 because m! = 1/2. More precisely, + Y/ 1 p; — 3
a.s. as n — oo. Thus, again, we cannot expect the CJT to hold in that situation be-
cause the probabilities, on average, should be greater than 1/2. But, this intuition
is incorrect too. In the following two examples we are going to construct an un-
countable set of sequences where the CJT holds but 1 Y p; — Lasn — oo, ie,
probabilities are on average 1/2.

Example 6.2.3. Let

¢ = { (i € 0N [ = 5 +ew e e [0,3]
1 1 &
i Yoe =0 Jim 2 Yei = oo

=1

Then, C; C Cj, i.e., the sequences in C; satisfy the CJP. Indeed, let X, := % Yl Xnas
in Section 1.1.3. By definition,

E (X;) = pi, Var(X;) = piqi,
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where g; := 1 — p;, then

P(Xnguz)— (Xp—E (%) <1/2—E (X)) <
P(1Xy —E(Xn) | 2 E(Xy —1/2)) <

Var(X,) YT (1/4-¢) G X(1/4-¢) 0 (6.2.6)

CE(E) -1 (T (Lxie)

as n — oo by Chebyshev’s inequality, which can be applied because, by hypothesis,
Y.iiq1¢€ > 0if n is large enough. We have also used that

n

lim © 2(1/4—8%) 1— lim ~ Es

n—oo 11 ¢ -1 n—oo 11 ¢

because s < ¢. Thus, P (X, > 1/2) — 1asn — oo, i.e., (1.9). But note that:

Thus, p; are, on average, 1/2 but nevertheless the CJP holds.

Remark 6.2.3. We can easily construct elements of this set as follows. Define ¢; =
max{i*,1/2}. Then, by the Euler-Maclaurin formula,

a+1 -1

n
® O (n%).
;l Ta+1 +0(n)

Thus, it is enough if we take « € (—1/2,0). H,S_‘X) is the generalized harmonic
number.

Now we present a second example of sets where, on average, the probabilities
are 1/2 but the CJP holds. The idea behind the construction is completely different.
It will also illustrate an important fact, being an element of C; does not necessarily
depend only on the tail of the sequence.

Example 6.2.4. Let us fix an m € IN greater than 1. Consider the sequence of
(pi)2y = (p1,---,Pm,1,1,0,1,0,1,...). In what follows we assume p; € {0,1}. In
this setting where the probability is either 0 or 1, the CJT holds trivially iff [{i : 1 <
i<nandp, =1} > [{i : 1 <i < nand p; = 0}| for every n large enough. Thus,
this is equivalent to:

n
:|{i:1<i<nandpi:1}|22pi>g Y n > np, (6.2.7)
i—1

bothn,ny € O.If p; =0Vi € {1,...,m}, then for n = 2k + 1:

Sn+m 1_ 1+k 1_ 1—m
n4+m 2 2k+1+m 5_2(m+2k—|—1)<0 vneo.
But, on the other hand, if p; =1Vi € {1,...,m}, then:

n+m 2 2k+14m 2 2(m+2k+1)
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In general, if there are m’ p; = 1 for 1 <i < mand 2m’ +1 > m then

S 1
2 >0 VneO.
n+m 2
But, note again that
1 n
J— %7
n.zpl 2

This latter set defines Cs.

Hence, as promised, C; U C; is an uncountable set of sequences where the CJT
holds but % Yiiipi— % as n — oo, i.e., probabilities are on average 1/2.

In the same manner, it could be argued that the hypotheses of the MoA are
not satisfied. If the event that a proportion of voters is informed is quite rare for
those measures, the MoA cannot be expected. Nevertheless, this condition of the
MOoA is satisfied in the following sense. First, recall that in Section 4.1.8 we defined
€1 = 1p({1}) and €1_¢,1 = v ([1 —€o,1]). This measures the probability that an
individual voter is well-informed (1) and almost well-informed (€1_¢,,1, the prob-
ability of choosing the correct option is greater than 1 — ¢y for some ¢y generally
small). Then, we have the following result:

Proposition 6.2.5. Let y a centered measure, 0 < g9 < 1/2,0 < & < €1_¢,1 and § > 0 as
small as we want. Then, 3 N € IN such that

mo({1<i<n/piel—¢gy,ll} >en)>1—-6 Vn>=N.

where py = [T vo and

" (lim nH1<i<n/piell—el]} > e) = 1.

n—00

In particular, if g = O then the same holds with p; = 1 and €1_,,1 = €1

This proposition means that the event that a proportion € > 0 of voters is well-
informed or almost well-informed will be reached if the population 7 is greater than
a (finite) N with probability as close to one as we want. These voters will vote for
the correct option with probability greater than 1 — ¢y with ¢y as small as we want or
even zero.

These remarks warn us that the proof of Theorem 6.2.2 cannot rely on those in-
tuitions and must use different ideas. This will be done in Appendix 6.3. The basic
idea is that we can only have the CJP if the sequences satisfy something similar to
(6.2.6) or (6.2.7) of the previous examples. But these conditions are too restrictive
and, thus, this set will have measure zero for the measures under consideration.

6.2.3 On the election of i and the prior probability

To derive u(C;) = 0, the centered condition of Definition 6.2.1 can be relaxed some-
how (although this condition is essential to calculate the a priori probability as we
will see below). We could define in the same fashion as in Definition 6.2.1:

Definition 6.2.4. A probability measure u = [ 51 vy, on [0, 1]N will be b-biased for b €
[—3, 3] if there exists a probability measure on [0,1], vo, such that v, < 1o ¥ n > 1 (see
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Section 4.1.8 for notation),

1
/ xdvp(x) = = +b (6.2.8)
[01] 2
and -
Z d(vy, 1) < oo. (6.2.9)
n=1
withd € D,

Example 6.2.6. This example is a generalization of the Example 6.2.1. For instance,
consider a “biased” measure

oy = [ [ Aor (6.2.10)
n=1

where the Radon-Nikodym derivative (this is, its probability density function py,) is
given by

dAyp,

A

with by € [-2,2], i.e.,, we modify the standard Lebesgue measure (A = Ap) such
that its density is affine and more concentrated on (0,1/2) if by € [—2,0) and more
concentrated on (1/2,1) if by € (0,2]. It is straightforward to check that in (6.2.10),
b = by/12. The case of Example 6.2.1 is recovered when by = 0.

(x) = pp,(x) = (1 = bo/2) + box,

It seems natural that the larger the positive (resp. negative) bias, the larger (resp.
smaller) 3 (Cr) will be. This happens because we are initially assigning less (resp.
more) measure to the event {p < 1/2}, i.e., to the event that the individual voter is
more likely to choose wrongly. Therefore, Theorem 6.2.2, as there is no bias (b = 0),
implies that for any measure u = [];_; v, where the v, assign probability to both
sides {p < 1/2} and {p > 1/2} “fairly”?, then u is going to assign measure zero to
the CJP, i.e., the CJP will not hold almost surely. Hence, we get the same result as if
b < 0, see Example 6.4.2. Sometimes, b < 0 could be justified (e.g., [Cap11]), but here
we show that even if we assume b = 0 because, following a Bayesian approach, we
want to estimate the prior probability (the probability before any evidence is collected)
of the CJP, we will arrive at the same result: the CJP fails almost surely. That is, if
we try to measure the applicability of the CJP according to a symmetrically balanced
distribution (in particular, with no bias toward incompetence) without considering
any evidence on voters competence, we arrive at the result that the CJT does not hold
almost surely. Prior (or a priori in this case) probabilities are the baseline from which
probabilities are updated when evidence is collected. So, in this setting, we would
need strong evidence of voter competence to expect that the CJT can be applied.

Nevertheless, the case b < 0 has an important difference with respect to b = 0.
Now we can prove that, almost surely, the anti-CJP will hold, i.e.,

n
lim PP ( X; < ”) —1, (6.2.11)
n—o0 = 2
the wrong option will be chosen almost surely. Indeed, let P(x) =1 —x, X' = Po X
and v, := ®,v,, the push-forward measure, as P (X' = 1) =: p’ = ®(p) measures

%In the sense that f[o,l/z) xdvg(x) + vo (%) + f(l/z,l] xdvg(x) = 4. If all the mass were concentrated

on [0,1/2), 1[0,1/2) = 1, then previous sum would be < 1/2 and the opposite for all the mass
concentrated on (1/2,1].
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the probability of choosing the wrong option. Hence, for i’ = [T, v;, we have

Mujd) = [ (1= M) = 5 —b =148 > 5.

[01] [0,1] 2

Thus, we can use Theorem 6.2.7 to conclude the proof.

Therefore, the CJT is a double-edged sword: it can either prove that majority rule is
an almost perfect mechanism or an almost perfect disaster. This is partly the reason
why we investigate here its applicability, to ensure that we are not in the case of a
perfect disaster, but of a perfect mechanism to aggregate information.

As above, we should not confuse the Bayesian analysis in the two probability
spaces. In the standard space, strategic voting and Bayesian—-Nash equilibria were
first analyzed by, among others, [ASB96; McL98]. Our Bayesian approach is in the
meta-probability level. We want to answer whether, given a dichotomous choice and
a set of voters or jurors, we can invoke the CJT to ensure they will reach the correct
option as the number of members increases. More precisely, we want to know its
prior probability. These two problems are completely different.

The measures considered in Definition 6.2.1 are quite general set of measures
satisfying this symmetry condition of not favoring incompetence. Nevertheless, we
can extend the results of Theorem 6.2.2 to a greater set of measures. This is treated in
Theorem 6.4.1 and Theorem 6.4.3. As we have said, these more technical theorems
extend Theorem 6.2.2 to some new measures, in particular, including the ones with
b <0.

6.2.4 The case of b > 0.

Can b > 0 be justified in some cases? As we commented in Section 1.1.3, we can
achieve p; > 1/2 for all i € IN if the original voters with p; < 1/2 are assigned a
weight of —1. In that case,

P((-)X;i=1)=P(X;=-1)=1—p; >1/2,

where for simplicity we have assumed (see Section 1.1.3) that X; € {—1,1}. As we
commented in the introduction, this does not seem easy to implement because voters
can reject negative weights. Nevertheless, one could think that a rational voter will
self-impose this if this voter knows that p; < 1/2. In other words, if the voter thinks
the correct option is A (X; = 1), then he/she votes B (X; = —1) and similarly for the
opposite case. Now the probability is p} = 1 — p; > 1/2. But this strategy requires
two steps:

* knowing that p; <1/2,

* be willing to reverse the outcome of one’s vote.

Considering real voters (not ideal ones), it is difficult to imagine the fulfillment of
these steps. First, it is an empirical fact how well people calibrate their degree of
knowledge with probability estimates. The standard finding of knowledge calibra-
tion experiments is overconfidence, people tend to overestimate their probability of
being right, see Chapter 8 of [SWT16] and references therein. And even if voters
acknowledge that they are worse than a coin toss, it does not seem realistic to expect
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that, in general, they will reverse their outcome. For instance, they can rationalize
their vote by introducing non-epistemic factors.

Be that as it may, our techniques can give us the result in this situation and this
is the content of the following proposition:

Theorem 6.2.7. Almost surely independent Condorcet Jury Theorem holds for a biased mea-
sure y with b > 0, that is
u(Cr) =1. (6.2.12)

Proof. The proof of this theorem parallels the proof of Theorem 6.2.2. The main
change is that the denominator of Q,, is:

n

Vi< Y (pi—1/2)

i=1

and the second factor tends to b > 0 as n — o by the SLLN. Similarly, m! — m? > 0
unless vy = J1, but in that case the theorem is trivial. Kakutani’s lemma is applied in
the same way:.

O

6.2.5 Results for weighted majority rule

But not everything is lost. We can try to modify the aggregation procedures to
achieve a competent mechanism. The natural idea is the consideration of a weighted

majority rule, i.e., we define:
n

XZ] = Ewixi,
i=1

where now X; € {—1,1} and w; € R (in principle, they could be negative, but we
will not consider that case here). The larger the weight (ceteris paribus), the greater
the influence of the voter. Weighted majority rule implies that the social choice func-
tion is sign(XY) being indifferent between the two if X¥ = 0. The previous case of
simple majority rule is recovered if w; = w; V' 7, j. The next step would be to obtain,
for some positive integer k and constants «, 8 > 0,

w=a+Bp*+e, (6.2.13)

i.e., competence is positively correlated with the weight we assign but the associ-
ation is not perfect, there is a stochastic error ¢. In Theorem 6.5.2 we show that if
(6.2.13) is good enough, the CJT will hold almost surely for “almost” every measure
u, even if they are strongly biased toward p = 0, i.e., we are not only considering
centered measures but the less favorable case of measures representing voters far
from competence. In other words, we are not estimating the prior probability but
the probability given almost any evidence on voters competence. This gives some
evidence for trying to include epistemic weights in the decision procedure if we are
interested in choosing the correct option.

As we have said, the main ingredient is the correct assignment of weights. In Ap-
pendix 6.B we take this question seriously because there is little point in theorizing
about something which cannot be practically implemented. We also consider how
“fair” this situation would be.
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6.3 Proof of Theorem 6.2.2 and Proposition 6.2.5

Let us assume first that yo = [, vo. By [BP98, Theorem 2], the CJP fails iff both

YiaPi—5

lim =00 (6.3.1)
e /Y pidi
where g; :=1 — p;, and 3 ny € IN such that
Hi:1<i<nandp, =1} >n/2 Vn>ng (6.3.2)

do not hold. For the first condition, we define:

_ YitiPi— 3 _ ﬁzz&l (i —2)

with Y7 pigi = Y1 (pi — p?). The key here is to realize that under the measure y,
p; are ii.d. random variables in ([0,1]N, 119). Thus, we can apply the Strong Law of
Large Numbers (SLLN), [Fol99, Theorem 10.13],

Qn:

1 n

1
- . 2 T2 1 2
ni:l(pZ pl)—>b+2 m* =m" —m*,
po-almost surely. Now, note that
m! —m? = / (x — x%) dvp(x) = / (x — x%) dvp(x) >0 (6.3.3)
[0,1] (0,1)

as long as 15((0,1)) > 0. This is going to be the case if 1 < 1/2, as
1
—_ = ml = €1 +/ X dVO(x) (634)
2 (01)

so [, 01) X dvo(x) = 1/2 —e; > 0. For the numerator, we need the other classical
asymptotic result, the Central Limit Theorem (CLT), to conclude

Vlﬁé (Pz’ - ;) — N(0,0%)

in distribution as n — oo. Thus, by Slutsky Theorem [Sha03, Theorem 1.11],

Qn — N(0,0"%) where ¢ = S —
P —

in distribution as n — oo. Let Q ~ N(0,0"?). So we can conclude that,

Ho (lim Qn = oo) =0. (6.3.5)

n—00

Indeed, let us define the events

A= {(p)Z1 € 01N/ Qul(pi)iZ1) = oo}, Ane = {(p1)Z1 € [0, 1N / Qu((p1)i21) > Me}
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where M, satisfies pp (Q < M) = 1 — &. By the definition of limit, for every ¢ > 0,

A C U ﬂ -An,s-

NeN n>=N
By the continuity of measures, [Fol99, Theorem 1.8.c)]
w( U N An,e) = lim po ( N An,a) < lim po (Ane) =&,
(NE]N n=N N0 n=N N0

where the last equality follows from the convergence in distribution. Hence, by the
monotonicity of measures,

]xlo(.A)Ss Ve>0,

concluding the proof of (6.3.5). Thus, the first condition (6.3.1) will not hold almost
surely. Let us see the second one (6.3.2). For that purpose, let us define for p € [0, 1]:

i lifp=1
p:: 0
ifpel01)

Thus, if po(p; € A) = w(A) for A a Borel set, p; ~ Bernoulli(e;) where we defined
e1as 1p({1}). Let us also define

Sp=|{i:1<i<nandp; =1} =) p (6.3.6)
i=1
and
B:={(p)21 € [0,1N / I ng: Spyiox > n0/2+kVk >0},
By={(p), €[0,1N /S, >n/2}. (6.3.7)
By the SLLN,
lim > =6 <L) =1
Ho nl_{rolo? =€ 5 )=+
Butif lim, 0 Sy /n =€ < %, then
w2

if n is large enough. Thus, po(B) = 0. Summing up,
po(Cr) = po(AUB) =0 (6.3.8)

concluding the proof of the theorem for g = [T v if €1 < 3.

We consider now the case of € = 1/2 and therefore vy = %(50 + 01). First note
that condition (6.3.1) does not hold because here either p; = 0 or g; = 0 almost
surely, so p; = 0 or q; = 0 Vi € IN almost surely, i.e., Q, is not well-defined almost
surely. But in this deterministic (only p = 0 or 1) situation, it is clear that CJP holds
iff (6.3.2) holds. So let us show that the former fails. Define p := 1if p = 1 and

p = —1 otherwise. If §j; = YL p;, then, S is a symmetric random walk in 7
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starting at zero. If we denote, for k € Z,
ry = po ({(pi)iz1 such that3n / S, = k})

where S, is a symmetric random walk starting at zero. It is standard that rg = 1,
in fact, the probability of returning infinitely often to 0 equals 1. Then, we have the
following difference equation:

1
Ty = E”k—l + Efk+1,

i.e., if the first move is up, there are k — 1 up movements left and, similarly, if the
tirst movement is down, we would need k 4+ 1 movements up. The solution is 7y =
c €[0,1] because 0 < rx < 1. Asrg =1, we concludery =1V k € Z.

Now, fix a ng € IN. Then, if S, := S} and (6.3.2) holds for that ng, then
Sno = 1

fori = 1,..,ng such that S, > 0 for n > ng odd. But, by the discussion above,
the probability that S, < —i < 0 is one, so the probability that S, > n/2 given a
tixed S, > ”°2+ ! is zero. Therefore, the negation of (6.3.2) holds almost surely as
po (B) < Ly #o(Mik=0Bug+2k) = 0, where

B = U ﬂ Bno-‘er'

np€0 k=0

Remark 6.3.1. One could argue that if C; were a tail event, then the measure could
only be 0 or 1 by Kolmogorov’s zero—one law, which agrees with our results. Nev-
ertheless, being an element of C; does not necessarily depend only on the tail. For
instance, consider de sequence of (§;)°, = (p1,...,Pm,1,1,0,1,0,1,...). If p; =
ovie{l,...,m}, thenform >1land n =2k + 1:

Sum 1 14k 1 1—m

wam 2 kii4m 2 amizky1) ~0 VNEO
But, on the other hand, if p; =1V i€ {1,...,m}, then:

oo 1 1tkdm 1 14M 4 vneo.

n+m 2 2k+14+4m 2 2(m+2k+1)

We need the following technical lemma to conclude the proof for a general cen-
tered measure.

Lemma 6.3.1. y =[], vy < po = [ ;=1 Vo provided (6.2.9) holds.
With this lemma the proof of Theorem 6.2.2 is concluded as 1(C;) = 0 by (6.3.8).

Proof of the technical Lemma 6.3.1. Let

” 1/2
dp(ve,vp) = (2(1 — H(vn,vo)))l/z _ (/X <\/?_ 1/‘2?) dr) (6.3.9)
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0s 1’l T \/ M dT

is the Hellinger integral with 7 is a measure such that v, v,, are absolutely continuous
and X = [0, 1] here. By Kakutani Dichotomy Theorem, [DPZ14, Proposition 2.21], if

where

[ee]

H (vo,v) >0, (6.3.10)

then u < up. To prove (6.3.10) we need to know the following fact: for 0 < a, <
1, TT=1(1 — a,) converges to a positive number iff — Y, log(1 — a,) converges iff
Y., ay converges, by the limit comparison test. Here 1 —a, = H(v,,1p). Indeed,
H(vy,19) < 1 by Cauchy-Schwarz’s inequality and H (v, 1p) > 0 as v, < v by
hypothesis (so take T = vp). Thus, it is enough if we prove that

1 — H(vy,v0) S llve — vol|, dxr (v — 10) (6.3.11)

which entails that ), (1 — H(vy, 19)) converges by (6.2.9). First, using (6.1.3), (6.3.9)

JA 2(x)< 1/dl_,/ﬂ ,/dv ,/dvl
dt dt = dt dt dt dt
assuming w.l.o.g. that (w [av — w‘fg) (x) = 0. For the second,

dir (v|[v") /log x)dx = 2/log

_ V' (x) p'(x)
= 2/—log O] p(x)dx > 2/ (1 - p(x)) p(x)dx

:/(14_1_2\/@\/%) dx:/<\/m7)— p’(x))zdx:1—H(V,1/),

where we have used that —log(x) > 1 — x and defined p := 4% and o’ = U

dv’

dT Cdr ().

Remark 6.3.2. As we see from (6.3.11), it is enough for our purposes if the distance
satisfies
1—H(vy, ) S d(vy —1p). (6.3.12)

So this is the condition which defines D, i.e., d € D iff d satisfies (6.3.12). In the last
part of the proof we showed that dg;, |-|| € D so defined. But the set is larger than
that, for instance, Bhattacharyya distance is defined as:

dg(v,v') == —log H(v,V").
Then, dp € D because —log(x) >1—x.

We finish this section with the proof of Proposition 6.2.5. We define:

o [1ifpeli—eo]
P77 oitp e 0,1 e)
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with p° = p. Thus, we have that

1 n
lim =Y 0 =€ .1 as.
-0 11 1—Z1pl 1—go,1

hence, by Egorov’s Theorem the convergence is almost uniform. If 0 < & < €1_¢,1,
then ¢ := €1_,,1 — € > 0 so by the definition of limit for n > N large enough

1 L1
|E2ﬁi—€1,goll}<€ iEZﬁi>8.
i=1 i=1

The result follows from the fact that almost uniform convergence implies that this
happens (with N uniform) for a set of measure no less than 1 — 4.

6.4 Extending Theorem 6.2.2

We present a theorem which includes some cases not considered in Theorem 6.2.2.
There is some overlapping with Theorem 6.2.2 but we opted to give a self-contained
and easier proof of that theorem. This makes the exposition clearer for some readers
as in the next proof we will use more technical tools, see Appendix 6.A.

Theorem 6.4.1. If u = ;> v; is a measure such that:

n
lirzljoljp \}ﬁ ,; (ml- — ;) < 0, (6.4.1)
1 n
lim inf - ; (m; —m?) >0, (6.4.2)
lim sup 1 i €1 < L (6.4.3)
n— 00 n i=1 2

where e1; := v;({1}) and o1, == (Lj E ((pi — mi)z))% goes to infinity, then CJP does
not hold p-almost surely, i.e., u(Cr) = 0.
Example 6.4.2. The biased measures of Definition 6.2.4 are included in this theo-

rem. Indeed, for yp with b < 0, ml < % so0 (6.4.1) holds because m; = m! Vi € N.
Condition (6.4.2) holds if vy # adg + (1 — «)é; for® some 1/2 < a < 1. Indeed,

m! —m? = /[0’1}(x —x%) dup(x) = /(.0,1)(x —x%) dvg(x) >0 (6.4.4)

as long as v9((0,1)) > 0. Now, as m!* < 1/2, it must be that 1y ({1}) = €1 < 3 so
(6.4.3) holds trivially.

We can improve the theorem as follows. First, some definitions, recall (6.3.6),

(n—ng)/2
Buon = [\ Bugrax ={(pi)21 € [0,1]N / Sy > k/2 Vk € {no,no+2,...,n}},
k=0

Bt ,={(p)21 €0,1N/ Sy >k/2Vke {ny,ng+2,...,n}and S, = (n+1)/2}.

3We arrive to the same conclusion in this case of 1y = ady + (1 — a)dy, but we should argue as in
(6.3.6) and below.
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The first set is given by the sequences such that the sum satisfies Sy > k/2 as in
condition (6.3.2) for odd numbers between 7y and n and the second is a subset such
that the last sum is in the border case S, = (n+1) /2.

Theorem 6.4.3. Assume that (6.4.1) and (6.4.2) hold. If the lim inf in (6.4.3) is 1/2 substi-

tute (6.4.3) for either there is a n > ng such that p (B, \B,, ) = 0and u({Si3 = 0})
or

[ee]

Z V(Bzo,noﬂk | Bigng26) (1 — €1(n0+2k+1))(1 - €1(n0+2k+2)) =00 Vng € 0. (64.5)
k=0

If so, we arrive at the same conclusion, the CJP does not hold y-almost surely.

Remark 6.4.1. Some comments on the new hypothesis are in order. First, condition
(6.4.1) is a generalization of the centered condition (6.2.3). Second, condition (6.4.2)
is a generalization of m! > m? that we saw in (6.3.3). Third, (6.4.3) is a generalization
of € < 1/2 in the previous theorem. Condition (6.4.5) can be used to treat the case of
purely atomic measures like vy = %(50 + 61) where there is no uncertainty as either
p=0orp =1, see Appendix 6.A.

We will prove these more technical theorems and give an example of application
of the latter in Appendix 6.A.

6.5 Weighted Condorcet Jury Theorem and its applicability

But even in the case b < 0, not everything is lost. We can try to modify the aggrega-
tion procedures to achieve a competent mechanism. The natural idea is the consider-
ation of a weighted majority rule described in (1.11). By hypothesis, P(X; = 1) = p;
and {X;}*, are independent. With weighted majority rule we have the following
version of the CJT (sufficient conditions).

Proposition 6.5.1. If either
Yii1 wi(pi — i)

\/ List WP pidi

— 0 (6.5.1)

ot, for any n large enough,

n n
Z Widp1 > Z wi(1 - 5}’71'1)
i=1 i=1

where &;; is the Kronecker delta, then the Condorcet Jury Property holds for the weights w.

Proof. As we have that
E (Xi) = 2pi =1 = pi —qi, Var(X;) = 4piq;,
where g; :== 1 — p;, then
P (X, <0) =P (X, -E(X;) < -E(Xy)) <P (|X; —E(X))[ > E (X)) <

< Var(Xy) _ 4YL wipigi 0

E (X9 (T wilpi—q1)°
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by Chebyshev’s inequality as n — oo, which can be applied because E (X}) > 0if n
is large enough by (6.5.1). For the second condition,

Xy =

n

M-

I
—

(wiépil — wl-(l — 5Pi1)) >0 a.s.

by hypothesis if n is large enough. ]

Remark 6.5.1. These conditions are the generalizations of (6.3.1) and (6.3.2). If we
had that, for instance, w; > 1, it can be checked that the proof given in [BP98] applies
to our case and these conditions are necessary too. w; > 1 corresponds to the case
where no voter loses, formally, its weight on the election.

Then, we can think of a procedure such that
L .
w=ua+y Bip'+e

i=1

i.e., the weight is correlated with the probability of “being right”(we assume the
polynomial of p is increasing), but there is a random error ¢. This error can be inter-
preted as a measurement error, we cannot expect to obtain a perfect correlation. For
simplicity we can assume

w=a+pp*+e (6.5.2)

for some positive k € IN. We also assume that w € [1, W] for some W > 1. Thus, we
choosex = 1and B = W — 1. That s,

w=wy(p) +e

where w; would be the deterministic weight for a given probability p going from
1 to W as a polynomial function. But there will be errors in the assignment of the
weights and this is captured by e. Now we are not going to assume that the measure v
is centered, i.e., we allow the situation m < 1/2 or b < 0. Our only requirement will
be much weaker; v ((3,1]) > 0. Otherwise (p > % does not happen almost surely),
we cannot expect the CJP because in the best situation weights would reduce it to
the case vy = J1,, where we know that the CJP fails.

But even though the distribution might be biased toward the wrong option, we
will prove that the CJT will hold almost surely if the weights are properly chosen.
This is the content of the next theorem. We define C}’ as the set of sequences of prob-
abilities {p,}_; such that for the weighted majority rule (??) according to (6.5.2),
the CJP holds (note that the social choice function is not fixed as it depends on the
weights). Also, 7y is now a measure on (p,¢) but ¢ is not independent of p (see
(6.5.3)), i.e., it is not a product measure. Similarly, u will be absolutely continuous
(following the idea of Lemma 6.3.1) w.r.t. uo = [];,— Uo. With this setting:

Theorem 6.5.2. Let {e,,}°> ; be a set of random variables distributed according to:
elp ~ N2(0,0%) (6.5.3)
where NP is the truncated Gaussian distribution restricted to the interval (a,b) where a =

a(p W) =—-W—=1)p, b =b(p,W) := (W —1)(1 — p). Let us assume that 7y satisfies
o ({p € (3,1]}) > 0. Then, there is a k such that if (W — 1)/ow, W are large enough,
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then
u(Cr) =1,
i.e., the CJP holds almost surely with this weighted majority rule.

The idea behind the theorem is clear: if we can find a procedure, with a suitable
error, to assign weights according to competence, the (weighted) CJT will hold al-
most surely. Note that now we are considering the posterior probability too, as the
measure is not centered any more. But, as we said, the main ingredient is the correct
assignment of weights. In the next subsection we take this question seriously. We
also consider how “fair” this situation would be.

Proof. First note that the first hypotheses ensure that w € [1, W] as if p is given, then
a(p) = 1—wy(p), b(p) = W —wy(p) and ¢ = w — wy(p). Let us explore the first
condition of Proposition 6.5.1:

wp—q)=—(1+e)+2(1+e)p+ (1—-W)pr+2(W —1)p"L (6.5.4)

We can analyze the expected values. As p € [0,1], then
E <pk) > E <pk+1) .

Nevertheless,
1

E(p1) > E ()’ (655)

by Hoélder’s inequality. Let us show that there is a k such that:
2F (pk+1) ~E <pk) > 0.
Indeed?,

okl ok — /

o1/2) xK(2x — 1)dvy(x) + / xK(2x — 1)dvp(x).

(1/21]

Thus,
2k (ka“ - mk) = / 2kxk(2x — 1)dvp(x) + / 2kxk(2x — 1)dvp(x).
0,1/2) (1/21]

By the Dominated Convergence Theorem, the first term goes to zero as k — oo and
2kxk(2x — 1) — o0 as k — oo for the second term, so there is a k such that the LHS is
positive.

Now we analyze the expectations that involve the error term ¢, in particular,
E((2p —1)e) = E((2p —1)E (¢|p))

by the law of iterated expectations. It is well-known that

E (e|lp) = Um, (6.5.6)

“We define vy := i o T where 7(p, ) = p, i.e., the push-forward measure. Thus, 7p({p € A}) =
Uo(A).
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where o := 2, B = g, ¢ the p.d.f. of a standard Gaussian function and & its c.d.f.

Then, v
E(elp) = W =1)f(xp),
where x :== (W —1)/0 and

(1= p)x) — p(—px)
Foop) = () — (1~ p)))’

It is straightforward to check that for p € (0,1), E (¢|p) — 0 exponentially as x — oo
because
NLEY) I (S L BT

=(1-p)x >

as x — oo. If p = 0, then B still goes to infinity and if p = 1, « still goes to —oo. By
the Dominated Convergence Theorem (as (6.5.6) ensures the integrand is bounded
by continuity on a compact set) we conclude that:

lim E((2p—1)f(x,p)) =0.

X—00

Therefore,

n

% ;wi(pi —q;) = 2m' =1+ (W —-1)E (Zpk+1 —F+(2p - 1)f(x,p)> a.s.

as n — oo by the SLLN. By the discussion above, if x, W are large enough, then the
limit is positive.
For the denominator of the first condition in Proposition 6.5.1 we know that

E (w’p(1—p)) >0

asw > 1,p(1—p) >0if p #0, p # 1 vp-almost surely. The first case is rejected
because 6y((1/2,1]) = 0 and if vy = J, then the CJT holds for W = 1 trivially (in
this case we do not need W large). Thus, by the SLLN again,

Y wi(pi — qi) _ Vi Yl wi(pi — qi)
\/ Litr Wi pidi \ 5 T w?pig;

Hence, the CJP now has yp-measure equal to one, i.e., o(C}’) = 1. As we did in the
proof of Theorem 6.2.2, the same holds for a “deviation” of this measure. Indeed, it
follows from y < p and the fact that the complement of C}’ is a pg-null set. O

— 00.

Remark 6.5.2. We could use weaker hypotheses, as in Theorem 6.4.1, nevertheless
we opted for maintaining the simplicity. For instance, we could replace the indepen-
dence of & by ergodicity and use the Ergodic Theorem instead of the SLLN, replace
the Gaussianity by a nice enough distribution or make the parameters of the distri-
bution depend on p.
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6.6 Concluding remarks

We have shown that the asymptotic CJP or the CJT for independent voters (which
includes the MoA and the case studied by Condorcet) are, a priori, highly unlikely
(see Theorem 6.2.2, 6.4.1) unless we add some good enough epistemic weights, i.e.,
weights correlated with epistemic rationality. That is, if we choose an arbitrary se-
quence of voters, it will not satisfy the CJP almost surely. The bottom line is that
applying the CJT (as it is common in some debates) might not be adequate if, us-
ing the Bayesian approach, there is no particular evidence of voter competence to
update our priors (it might be the opposite case, [Cap11]) nor some weights to cor-
rect the lack of competence. If “good” epistemic weights are added, its probability
goes to one by Theorem 6.5.2. Note that in this latter case we are not estimating
the prior probability but the probability given almost any evidence on voters com-
petence (including the less favorable situations). These weights must be correlated
(not necessarily a perfect correlation) with epistemic rationality and they guarantee
a minimal weight of one to every voter. The CJT is an important and useful result
to improve the decision-making process, but we have to ensure it holds when it is
supposed to hold.

Obviously, our framework is a toy model of the real world, but a good point
to start and, in fact, it is the same model that is usually used when the CJT is in-
voked. Some complications can be added and could be the topic of future research.
For instance, in some processes we do not expect the options to remain unchanged
if competent voters are more influential, but this is not directly captured in a di-
chotomous choice. An important limitation of the framework is the independence
assumption. Votes can be correlated because of a deliberation process (“contagion”
in general), common sources of information or strategic voting, see [Piv17] and ref-
erences therein. Some works have treated the CJT for dependent voters, see for
instance [PZ12; Piv17]. In this case the known necessary and sufficient conditions
involve the covariance between votes, say p;;. Thus, the measure y should include
these parameters, but it cannot be a product measure as above. Indeed, if, for in-
stance, X; € {0,1}, then

pij = E (XiX)) = |[E (X:X;)| < \/Pip;

by Holder inequality. Also, as p;j = P ({X; =1} N{X; =1}) < p;, p; and p;; =
pij — pipj- So, pij or p;; cannot be taken independently of p;, p; in p. A careful analy-
sis would be needed in this situation because how to choose the measure is not triv-
ial. Furthermore, sufficient and necessary conditions are less understood, so more
analysis in that direction would be needed too. Anyway, this setting is somehow
more restrictive as we not only need some competence condition, but additional
requirements must be added, see [Piv17, Theorem 5.3]. For instance, the “average
correlation” cannot growth too much: if votes are highly correlated there is little
point in increasing the number of voters as they will vote in the same direction. So
in this case, we would have to worry not only about competence but also about the
correlation between votes.
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APPENDICES

6.A Proof of Theorem 6.4.1, 6.4.3 and an example

The proof of Theorem 6.4.1 is going to be similar (except Kakutani’s Theorem) to the
proof of Theorem 6.2.2, but more technical. Some steps which are already there will
be omitted here (but they will be properly referenced). As we did there, we define

_YLapi—5 7 i (Pi—%).

As we said above, this quotient appears in the necessary and sufficient conditions of
the CJT. Q,, can be rewritten as:

Qn

B ﬁ Y (mi—g) + i;a" ,7;,1 im1 (pi —m;)

where o7, = (X7 E ((pi — mi)z))%. Now, by Kolmogorov’s version of the SLLN
(which we can apply because of (6.1.1)) we have almost surely:

lim © Y (pi—m) =0, lim -y (p?—m?) =0,

n—oo 1 = n—oo 1 =

Now, by the hypotheses of the theorem we can take a subsequence such that

k—oo /M \ 7

1
lim — Zmi—ml =c>0
k—o00 M =

Similarly,
Y E (pi—my)° < %
T e
as o1, — oo. Thus, Lyapunov’s condition holds, so we can apply Lindeberg’s CLT.

Hence, taking a subsequence (that we relabeled again) and using Slutsky Theorem
as before,

—0

an - N(ﬂQ' Ué)

in distribution as k — oo for some g, 0o € R. Then we can apply (6.3.5) to conclude
that the first condition of [BP98, Theorem 2] does not hold almost surely. Let us turn
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now to the second condition. For that purpose, as we did above, we define:
] 1ifp=1
~|oifp €o,1)
We also define the sums:
n
Spy=Hi:1<ny<nand p; =1} = Z i
1=ngp

First, if
limsup — Eelz =, (6.A.1)

n—oo M 2

by Kolmogorov’s SLLN then,

1 1
nh_rgo( 2p1_2€11> = limsup (n Zﬁl ani) =0 as.

n—oo

Using that limsup,, , (x,) + liminf, e (y,) < limsup, (X + y»), then

hmsup Z Pn = limsup — . Zell < 5

n—00 =1 n— 00

almost surely. Thus, for large enough ny,

for some 6 > 0, therefore violating the second condition for the CJT. This finishes the
proof of Theorem 6.4.1.

Let us prove Theorem 6.4.3. Recall that we defined the sets, for np < n odd
numbers:

(n—np)/2
Buon =[] Bugrax = {(p)21 € [0, 1N/ Sx >k/2 Vk € {no,ng+2,...,n}},

k=0
Bh = {(p)21 € 0,1N/ Sk >k/2 Vk € {ng,ng+2,...,n}and S, = (n+1)/2}.

If the liminf in (6.A.1) is 1/2, note that

Bn0!n+2 = {(pl)z 1 € Bnon SZI% 1} |_| ( no, H\Bno n) "

where LI denotes a disjoint union. The idea is that a sequence is in By, 42 C Byyn
because it satisfies either Sj; = (17 +1)/2 (so we need that the next two summands
are at least 1) or S > (n +1)/2 so the sequence is in By, 12, independently of
the next two summands. Thus, applying the (product) measure we will obtain the
following recurrence relation:

#(Buyir2) = #(Bugs) (#(Bhos | Buo )t (1S53 2 13) + 1= u(Bhy | Buyn) )
= U(Bugn) (1 = angnPn) ,
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where

pu (BS N Bugn )
V(Bzo,n ‘ Bno,n) = ( "l/lO(B )0 ) = Q&py,n and ,Bn =U ({Sni% = O}) .
no,n

Note that 8, = (1 — €1(41)) (1 — €1(n42))- Thus, for n > ng both odd:

n—ngp
2

V(B”O/”‘FZ) = V(Bnolno) H (1 - D‘no,no+2k,6n0+2k)~ (6~A-2)

=0

B

Now we take the limit n — co. If there is some k such that (1 — a; »,2kBny+2k) =
0, the product is zero and this corresponds to the first condition of Theorem 6.4.3.
Otherwise, as we saw in the proof of Lemma 6.3.1, this infinite product will be zero
iff

Z “ng,no+2kﬁ1’lg+2k = 0.
k=0

Then, similarly as we did above,

]/l (Bno,oo = ﬂ Bng,ng+2k> = hm ,u (Bno,n0+2k) = O'
k=0 k—o0

Therefore, y (B) < Y, ##(Bng,e0) = 0. This finishes the proof.

6.A.1 Example of application to the case vy = J (6 + &;): some combina-
torics

Let us consider how to apply (6.4.5). For simplicity, assume ny = 1. In order to
understand the set Bi’/n, we need to know how many points will satisfy S1;x > k+1
fork=0,...,(n—1)/2and S, = (n+1)/2. For k = 0, the only possibility is S; = 1.
Thus, we need to see the number of ways in which S} = ”T_l such that S%*Zk >k
fork=0,...,(n—1)/2 — 1. We can see this graphically if we consider a grid where
pi = 1lis translated into moving up and ; = 0 is translated into moving to the right.
The conditions above are equivalent to the condition that for every point (x, y) of the
path such that x + y = 2k, then x < y and the end point is (1, m) where n = 2m + 1.
This is illustrated in Figure 6.1. Note that the blue path satisfies these conditions
while the red one does not because of the point (3,1) in black. Our conditions are
not the same as lying above the diagonal (dashed line), as the blue path is below it
at (4,3). Nevertheless, if we allow the path to move (1, 1) at points on the diagonal,
like the blue arrow in Figure 6.1 shows, we can consider that the allowed paths are
always above the diagonal. So the problem reduces to counting the total number of
these paths.

In order to do so, we are going to establish some bijections as it is standard in
combinatorics. First, if we change the movement (1,1) to (0,1), there is a bijection
with the paths starting at (0,0) and ending on {(x,m) : x € IN}. Second, if we
add to these paths the movement (0,1) and the complete them with (1,0) till they
reach the diagonal, there is a bijection with the paths starting at (0,0) and ending
at (m +1,m + 1) without going below the diagonal. It is standard® that the total

5For instance, this is the number of Dyck paths, see Problem 28, 52 and Theorem 1.5.1 in [Stal5] for
more details on the bijections. Also, these numbers appear in the ballot problem: suppose A1 and A,
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FIGURE 6.1: Illustration for the case vy = % (60 + 1) with n = 11.

number of paths is C,,11, where C,, represents the n-th Catalan number, i.e.,

1 2n
cn._n+1(n).

Now, note that we can express (6.4.5) equivalently as,

n*no

-1

2

#(Buyn) = w(Bgny) — Z Bro+2iYno,no+2i
i=0

using the equations above (6.A.2) where

Ynom = W (Bug,n) Cngn = (Bzo,ﬂ) :

This is useful because in our case of np = 1 and n = 2m + 1 we can compute that
sum easily,

nonmg g

Z 1 1" Cy L 2(m+1)
#(Bugng) — i;) Pro+2iYnometai = 5 = 7, T =2 2(m+1)< 1 )

By Stirling’s approximation,

as m — oo.

are candidates for some election and there are an even number of voters, say 2n. Let us also assume
that n voting for A; and n for A;. In how many ways can the ballots be counted so that A; is always
ahead of or tied with A,? See the aforementioned theorem.
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6.B Practical implementation of epistemic weights: from psy-
chology and political philosophy

First, we must not confuse competence (p near one) with other attributes that can
be, under some conditions, correlated with competence, such as fluid or crystallized
intelligence. Following [Kah03] we can classify cognitive processes into two broad
categories: System 1 (intuition) and System 2 (reasoning). The former is autonomous
(executed automatically upon encountering the triggering stimulus and indepen-
dent on input from high-level control systems). Furthermore, it is fast, emotional
and relies on heuristics that can lead to biases. System 2 is slow, effortful, analytic...
Many processes of System 1 can operate at once in parallel, but System 2 processing
is largely serial. But we can split System 2 further into two “minds”, [Sta09], the
algorithmic and reflective mind. The former deals with slow thinking and demand-
ing computations (fluid intelligence, which IQ tests try to measure) and the latter is
related to rational thinking dispositions and its functions are to initiate the override
biased responses of System 1, the ones based on a “focal model” which can be biased
or the simulation of alternative responses. Thus, rationality is a combination of both
minds®, not just the algorithmic one. Obviously, these systems need knowledge to
work properly (and the one acquired through learning and past experiences is usu-
ally called crystallized intelligence), see Figure 3.3 of [Sta09]. Nevertheless, note that
some knowledge can be useless or harmful for achieving competence (“contami-
nated mindware”, [Sta09]) or, even if necessary, remain unused, as in the “override
failure”. To be more specific, [SWO08]:

...the relevant mindware for our present discussion is not just generic
procedural knowledge, nor is it the hodge-podge of declarative knowl-
edge that is often used to assess crystallized intelligence on ability tests.
Instead, it is a very special subset of knowledge related to how one views
probability and chance; whether one has the tools to think scientifically
and the propensity to do so; the tendency to think logically; and knowl-
edge of some special rules of formal reasoning and good argumentation.

Thus, we must note that competence could not be achieved even if the algorith-
mic mind is “highly developed”. There is evidence that thinking errors are relatively
independent of cognitive abilities [SWO08]. For instance, there is not a significant cor-
relation between the magnitude of some classical bias popularized by Kahneman
[Kah11] (e.g., anchoring effects or conjunction fallacy) and cognitive abilities. An-
other important example is the so-called myside bias (“people evaluate evidence,
generate evidence, and test hypotheses in a manner biased toward their own prior
opinions and attitudes”). The authors conjecture that fluid intelligence is only im-
portant when there is not a mindware gap (e.g., missing probability or scientific
knowledge) and the need to override heuristic responses is detected. This is the
case, e.g., in the rose syllogism (all flowers have petals; roses have petals; therefore,
roses are flowers—which is invalid) and the belief bias, but not in the Linda problem
between-subjects and conjunction fallacy. This feature of Linda problem illustrates
an important fact; it is not enough to have the knowledge (here, basic probabilistic
knowledge, P(A U B) > IP(A)), but we must have the tendency to use it when needed,

6 Also, the autonomous mind or System 1 can provide rational responses as it might contain norma-
tive rules that have been tightly compiled and that are automatically activated as a result of overlearn-
ing and practice.
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specially when there are no cues to do so. Thinking dispositions, in contrast to cog-
nitive abilities, are viewed as more malleable and this would predict that these skills
are more teachable. As we were saying, there are some biases which are correlated
with cognitive abilities as the argument evaluation test ([SWO08]), but they are not
naturalistic or similar to a real-life situation because subjects have been told to de-
couple prior beliefs from the evaluation of evidence. Then the correlation happens
because “participants of differing cognitive abilities have different levels of compu-
tational power available for the override operations that make decoupling possible”,
[SWT13].

Furthermore, more fluid intelligence could be even worse for myside bias. In-
deed, in [KPD+17] (see also references therein for more evidence) we can see why.
In this experiment, subjects must draw valid causal inference from empirical data.
The same empirical data is presented in two ways: in not an ideologically loaded
way (skin-rash treatment) and as a partisan issue (gun-control ban). In the former
(as expected), the higher the numeracy, the better the responses, but in the latter re-
sponses became polarized between liberal democrats and conservative republicans,
less accurate and got worse for subjects with higher numeracy skills (algorithmic
intelligence). Thus, this could be seen as a conflict between being epistemically ra-
tional (fitting one’s beliefs to the real world, what is true) and instrumentally rational
(optimizing goal fulfillment, what to do). This motivated reasoning can be the means
to achieve our goals because sharing some political views is a symbol of membership
and loyalty in political groups, expressive rationality, which can be more valuable
than epistemic goals. In our day-to-day actions having true beliefs (epistemic ratio-
nality) is useful for achieving our goals (instrumental rationality). More precisely, if
A = {a;}icr are the possible actions, S := {s;};c s the possible states of the world
and ¢ : A x § — & maps the consequences of the action in each state of the world,

then
U(a)=Y_ P(sjla) u(e(sja)),
jed

where U is the von Neumann-Morgenstern utility function and P assigns probabil-
ities to each state of the world. In order to maximize U, max,c 4 U(a) (instrumental
rationality), we need to have correct beliefs about the world, A, S, P and ¢, i.e.,
epistemic rationality. But in the political process our beliefs are dissociated from
their consequences (one’s beliefs on gun-control bans are unlikely to affect political
decisions and their consequences), so expressive rationality makes perfect sense as
epistemic and instrumental rationality are not necessarily linked and having true
beliefs about the world could be less valuable than rejecting our previous beliefs or
shared beliefs with our political group. As the social psychologist Jonathan Haidt
puts it, we are good rationalizers but poor reasoners when thinking about politics.
To achieve an epistemically rational response it could be more useful, for instance,
to adopt measures that effectively shield decision-relevant science from the identity-
protective motivated reasoning: behaving like a sport hooligan should not be seen
an appropriate way to process information. In a recent (preregistered) replication
of this study [PAK+21], the effect of motivated reasoning was found but it was less
clear the motivated numeracy (motivated reasoning increases with numeracy) find-
ing. In another study, [KS16], they corroborate the same hypothesis of expressive
rationality using beliefs about human evolution.

Hence, algorithmic intelligence might not be sufficient for rational thinking and
not as necessary as one could initially think, for instance, if epistemically reliable
shortcuts are available instead of a direct investigation or simulation of alternative
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responses. For example, if there is consensus between experts, take that as the most
likely option. This could reduce the need for algorithmic intelligence but it does
not eliminate some minimal amount; finding a reliable shortcut is a computation
demanding process. One should be cautious when assessing weights because they
must be correlated with epistemic rationality and the relation between this and other
typical measures of intelligence or knowledge is not trivial as we have seen. For in-
stance, one proposal could be [Stal6; SWT16] (total or partial subsets of the CART
focused on epistemic rationality) in combination with particular knowledge (mind-
ware) or skills (algorithmic mind) needed for competence in the particular domain
of the choice we face. Any other metric that is correlated with this assessment or a
similar one could be used too.

Obviously the weight assignment will depend on the particular process under
consideration. The assignment for a jury in a criminal trial will not be the same
as the one for a democratic process (where part of the evidence presented above
tits better). Nevertheless, the main idea still holds: a major part of the assignment
should be based on epistemic rationality. But particular mindware should be con-
sidered in each situation. For instance, law and the particular criminal evidence for
a trial and some basic knowledge of social sciences for a democratic process. Notice
that some topics are more prone than others to be solved as epistemic rationality
increases. For instance, discussing the means to achieve an agreed end can be easier
than discussing the ends we should pursue.

Second, we could think that a more natural way to achieve (1.9) is to exclude
voters with p < 1/2 (that is, w = 0), which will imply b > 0 and the CJP will hold
almost surely (similar proof as Theorem 6.2.2 or 6.4.1). That is, as we said in the
introduction we could consider:

o w; = 0if p; < 1/2 (similar to expert rule) or,

e w; < 0if p; <1/2,asin (1.12).

Nevertheless, we opted to investigate the case of w > 1, i.e., all votes count (ob-
viously, not in the same proportion) for several reasons. One is that it might be ob-
jected that in some circumstances not allowing some voters to participate can express
disrespect, i.e., a semiotic objection based on the expressive value of the democratic
process, [Brel6, Chapter 5]. To analyze it, the right of a competence decision process
must be weighted against the somehow socially conceived expressive value of the
restrictions. But in the setting where every potential voter is guaranteed a minimal
weight, w > 1 for every voter, these objections are less motivated. In fact, votes have
different weights in many present processes, although they are not usually weighted
according to competence but other factors.
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