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Abstract and conclusions

This dissertation is devoted to the study of several problems lying at the intersection of
harmonic analysis, partial differential equations and geometric measure theory. In general
terms, it is focused on how the geometry of a domain in Rn influences the boundedness
properties of certain operators defined in its boundary, and the applications of this in
the realm of boundary value problems. More specifically, the behavior of the measure
theoretic outward unit normal vector, which plays a central role in this work, is the key
geometric feature that will allow us to bound singular integral operators (such as Riesz
transforms or layer potentials) in certain function spaces. In turn, this is a fundamental
step for the study of boundary value problems. In the opposite direction, we extract
information from these operators about the geometry of a domain in terms of the behavior
of its outward unit normal vector.

Some of the singular integral operators that will have a pivotal role in this work are
harmonic double layer potentials, defined for each UR domain (cf. Definition 1.1.5) and
each function f ∈ L1(∂Ω, σ(x)

1+|x|n−1
)
according to

D∆f(x) := 1
ωn−1

ˆ
∂Ω

〈ν(y), y − x〉
|x− y|n

f(y) dσ(y) x ∈ Ω,

K∆f(x) := lim
ε→0+

1
ωn−1

ˆ
∂Ω\B(x,ε)

〈ν(y), y − x〉
|x− y|n

f(y) dσ(y) for σ-a.e. x ∈ ∂Ω,

where ωn−1 is the surface area of the unit sphere in Rn, ν is the geometric measure
theoretic outward unit normal to Ω (cf. Section 1.1), and σ := Hn−1b∂Ω (where Hn−1

stands for the (n−1)-dimensional Hausdorff measure in Rn). If ∆ denotes the Laplacian,
one can show that ∆D∆f = 0 and D∆f

∣∣κ−n.t.

∂Ω =
(1

2I + K∆
)
f σ-a.e. in ∂Ω for every

f ∈ L1(∂Ω, σ(x)
1+|x|n−1

)
, where I is the identity operator and the boundary trace is taken

non-tangentially (cf. Section 1.1). The classical method of layer potentials uses the
boundedness and invertibility properties of layer potential operators to study boundary
value problems. For instance, if 1

2I+K∆ is invertible in some function space contained in
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L1(∂Ω, σ(x)
1+|x|n−1

)
and f belongs to the said space then u := D∆

(
(1

2I +K∆)−1f
)
satisfies

u
∣∣κ−n.t.

∂Ω =
(1

2I +K∆
)(1

2I +K∆
)−1

f = f.

This scheme is used to show that the function u above is a solution for a Dirichlet
Problem. The case of the upper-half space, Ω = Rn+, will be treated with a different
approach, as in this case K∆ ≡ 0 (because ν(y) is perpendicular to y − x whenever
x, y ∈ ∂Ω) and hence 2D∆f

∣∣κ−n.t.

∂Ω = f . In fact, 2D∆f = P∆
t ∗ f , where P∆

t is the
harmonic Poisson kernel (cf. Theorem 1.2.4). This case highlights the importance of
the behavior of the outward unit normal vector ν.

More than 25 years ago, in [60, Problem 3.2.2, p. 117], C. Kenig asked to “Prove
that the layer potentials are invertible in appropriate [...] spaces in [suitable subclasses
of uniformly rectifiable] domains.” Kenig’s main motivation in this regard stems from
the desire of establishing solvability results for boundary value problems formulated in a
rather inclusive geometric setting. In the buildup to this open question on [60, p. 116],
it is remarked that there are quite general classes of open sets Ω ⊆ Rn with the property
that the said layer potentials are bounded operators on Lp(∂Ω, σ) for each exponent
p ∈ (1,∞). Remarkably, this is the case whenever Ω ⊆ Rn is an open set with a
uniformly rectifiable boundary (cf. [33]).

The theory developed by S. Hofmann, M. Mitrea, and M. Taylor in [53] goes some
way towards answering Kenig’s open question. The stated goal of [53] was to “find the
optimal geometric measure theoretic context in which Fredholm theory can be successfully
implemented, along the lines of its original development, for solving boundary value
problems with Lp data via the method of layer potentials [in domains with compact
boundaries].” In particular, [53] may be regarded as a sharp version of the fundamental
work of E. Fabes, M. Jodeit, and N. Rivière in [39], dealing with the method of boundary
layer potentials in bounded C 1 domains.

However, the insistence on ∂Ω being a compact set is prevalent in [53]. In particular,
the classical fact that the Dirichlet Problem (cf. (2.1.7)) is uniquely solvable in the case
when Ω = Rn+ does not fall under the tutelage of [53]. This leads one to speculate whether
the treatment of layer potentials may be extended to a class of unbounded domains that
includes the upper half-space. This is indeed the main goal of Chapter 2.

Specifically, we develop the theory of layer potentials to study boundary value prob-
lems in unbounded δ-SKT domains (with SKT acronym for Semmes-Kenig-Toro), a class
of domains whose key feature is that the BMO semi-norm (cf. (2.2.31)) of its outward
unit normal ν is controlled by δ ∈ (0, 1), which is assumed to be small. The class of
δ-SKT domains emerged from the earlier work of S. Semmes [107], [108], and C. Kenig
and T. Toro [61], [62], [63], and is related to a class of domains introduced in [53]. The
latter was designed to work well when the domains in question have compact boundaries.
By way of contrast, the fact that we are now demanding ‖ν‖[BMO(∂Ω,σ)]n < δ < 1 has
topological and metric implications for Ω. Specifically, Ω is a connected unbounded open
set, with a connected unbounded boundary and an unbounded connected complement.
For example, in the two-dimensional setting we show that the class of δ-SKT with
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δ ∈ (0, 1) small agrees with the category of chord-arc domains with small constant.
In this context, we prove that if δ is sufficiently small then the operator norm of

Calderón-Zygmund singular integrals whose kernels exhibit a certain algebraic structure
is O(δ) as δ → 0+ as in the Theorem 2.4.4, which we state next.

Theorem. Let Ω ⊆ Rn be an Ahlfors regular domain satisfying a two-sided local John
condition (cf. Definitions 1.1.2 and 1.1.10). Abbreviate σ := Hn−1b∂Ω and denote by ν
the geometric measure theoretic outward unit normal to Ω. Fix an integrability exponent
p ∈ (1,∞) along with a Muckenhoupt weight w ∈ Ap(∂Ω, σ) (cf. (2.2.300)). Also,
consider a sufficiently large integer N = N(n) ∈ N. Given a complex-valued function
k ∈ CN (Rn \ {0}) which is even and positive homogeneous of degree −n, consider the
maximal operator T∗ whose action on each given function f ∈ Lp(∂Ω, w) is defined as

T∗f(x) := sup
ε>0

∣∣Tεf(x)
∣∣ for each x ∈ ∂Ω,

where, for each ε > 0,

Tεf(x) :=
ˆ

y∈∂Ω
|x−y|>ε

〈x− y, ν(y)〉k(x− y)f(y) dσ(y) for all x ∈ ∂Ω.

Then there exists some C ∈ (0,∞), which depends only on n, p, [w]Ap, the local John
constants of Ω, and the Ahlfors regularity constant of ∂Ω, such that

‖T∗‖Lp(∂Ω,w)→Lp(∂Ω,w) ≤ C
( ∑
|α|≤N

sup
Sn−1

|∂αk|
)
‖ν‖[BMO(∂Ω,σ)]n .

We also establish estimates in the opposite direction, quantifying the flatness of a
“surface” by estimating the BMO semi-norm of its unit normal in terms of the operator
norms of certain singular integrals associated with the given surface. Ultimately, this
shows that the two-way bridge between geometry and analysis constructed here is in
the nature of best possible.

Significantly, the operator norm estimates above permit us to invert the bound-
ary double layer potentials associated with certain class of second-order homogeneous
constant complex coefficient PDE. Fix n ∈ N with n ≥ 2, along with M ∈ N, and
consider a second-order, homogeneous, constant complex coefficient, weakly elliptic,
M × M system in Rn

L =
(
aαβjk ∂j∂k

)
1≤α,β≤M ,

where the summation convention over repeated indices is in effect (here and elsewhere in
the manuscript). The weak ellipticity of the system L amounts to demanding that

the characteristic matrix L(ξ) := −
(
aαβjk ξjξk

)
1≤α,β≤M is

invertible for each vector ξ = (ξ1, . . . , ξn) ∈ Rn \ {0}.

This should be contrasted with the more stringent strong (Legendre-Hadamard) ellipticity
condition which asks for the existence of some κ0 > 0 such that

−Re
〈
L(ξ)ζ , ζ

〉
≥ κ0 |ξ|2 |ζ|2 for all ξ ∈ Rn and ζ ∈ CM .
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Examples of strongly (and hence weakly) elliptic operators include scalar operators,
such as the Laplacian ∆ =

n∑
j=1

∂2
j or, more generally, operators of the form divA∇ with

A = (ars)1≤r,s≤n an n×n matrix with complex entries satisfying the ellipticity condition

inf
ξ∈Sn−1

Re
[
arsξrξs

]
> 0,

(where Sn−1 denotes the unit sphere in Rn), as well as the complex version of the Lamé
system of elasticity in Rn,

L := µ∆ + (λ+ µ)∇div.

Above, the constants λ, µ ∈ C (typically called Lamé moduli), are assumed to satisfy

Reµ > 0 and Re (2µ+ λ) > 0,

a condition equivalent to the demand that the Lamé system satisfies the strong ellipticity
condition. While the Lamé system is symmetric, we stress that the results in this thesis
require no symmetry for the systems involved.

The main result regarding invertibility of double layer potentials is the following
(cf. Theorem 2.4.24).

Theorem. Let Ω ⊆ Rn be an open set satisfying a two-sided local John condition and
whose topological boundary is an Ahlfors regular set. Abbreviate σ := Hn−1b∂Ω and
denote by ν the geometric measure theoretic outward unit normal to Ω. Also, let L be a
homogeneous, second-order, constant complex coefficient, weakly elliptic M ×M system
in Rn for which Adis

L 6= ∅ (cf. (2.3.83)). Pick A ∈ Adis
L and consider the boundary-to-

boundary double layer potential operators KA,K
#
A associated with Ω and the coefficient

tensor A as in (2.3.4) and (2.3.5), respectively. Finally, fix an integrability exponent
p ∈ (1,∞), a Muckenhoupt weight w ∈ Ap(∂Ω, σ), and some number ε ∈ (0,∞).

Then there exists some small threshold δ0 ∈ (0, 1) which depends only on n, p, [w]Ap,
A, ε, the local John constants of Ω, and the Ahlfors regularity constant of ∂Ω, with the
property that if ‖ν‖[BMO(∂Ω,σ)]n < δ0 it follows that for each spectral parameter z ∈ C
with |z| ≥ ε the following operators are invertible:

zI +KA :
[
Lp(∂Ω, w)

]M −→ [
Lp(∂Ω, w)

]M
,

zI +KA :
[
Lp1(∂Ω, w)

]M −→ [
Lp1(∂Ω, w)

]M
,

zI +K#
A :

[
Lp(∂Ω, w)

]M −→ [
Lp(∂Ω, w)

]M
,

where Lp1(∂Ω, w) is a certain brand of Lp-based weighted Sobolev space of order one on
∂Ω (cf. Section 2.2.6).

The condition Adis
L 6= ∅ above amounts to say that L =

(
aαβjk ∂j∂k

)
1≤α,β≤M for some

distinguished coefficient tensor A =
(
aαβjk

)
1≤α,β≤M
1≤j,k≤n

, that is, a coefficient tensor A for which



Abstract and conclusions 5

the integral kernel of KA contains the inner product to ν(y) with the ‘chord’ x− y. This
algebraic structure is neccesary to apply the operator norm estimates previously stated
and obtain that ‖KA‖Lp(∂Ω,w)→Lp(∂Ω,w) ≤ C ‖ν‖[BMO(∂Ω,σ)]n , from where one deduces the
invertibility result for zI + KA in [Lp(∂Ω, w)]M if ‖ν‖[BMO(∂Ω,σ)]n is small enough.

Concisely put, in the previous theorem we are able to answer Kenig’s open question
(formulated above) pertaining to any given weakly elliptic homogeneous constant complex
coefficient second-order system L in Rn with Adis

L 6= ∅, in the setting of δ-SKT domains
Ω ⊆ Rn with δ ∈ (0, 1) small (relative to the original geometric characteristics of
Ω), for ordinary Lebesgue spaces, Muckenhoupt weighted Lebesgue spaces, as well as
Sobolev spaces on ∂Ω suitably defined in relation to each of the aforementioned scales.
Analogue results are proved for Lorentz spaces and Morrey spaces (see Remark 2.4.25,
Theorem 2.4.29, Theorem 2.7.12, Theorem 2.7.13). As indicated in Remark 2.4.28, the
smallness condition imposed on the parameter δ is actually in the nature of best possible
as far as the aforementioned invertibility results are concerned.

The invertibility results in the previous theorem open the door for solving boundary
value problems of Dirichlet, Regularity, Neumann, and Transmission type in the class of
δ-SKT domains with δ ∈ (0, 1) small (relative to the original geometric characteristics
of Ω) for second-order weakly elliptic constant complex coefficient systems which (either
themselves and/or their transposed) possess distinguished coefficient tensors.

For example, in such a setting, we succeed in establishing the well-posedness of the
Muckenhoupt weighted Dirichlet Problem and the Muckenhoupt weighted Regularity
Problem, formulated using the nontangential maximal operator introduced in (1.1.2),
and nontangential boundary traces defined as in (1.1.5):

(D)p,w



u ∈
[
C∞(Ω)

]M
,

Lu = 0 in Ω,

Nκu ∈ Lp(∂Ω, w),

u
∣∣κ−n.t.

∂Ω = f ∈
[
Lp(∂Ω, w)

]M
,

(R)p,w



u ∈
[
C∞(Ω)

]M
,

Lu = 0 in Ω,

Nκu ∈ Lp(∂Ω, w),

Nκ(∇u) ∈ Lp(∂Ω, w),

u
∣∣κ−n.t.

∂Ω = f ∈
[
Lp1(∂Ω, w)

]M
,

for each integrability exponent p ∈ (1,∞) and each Muckenhoupt weight w ∈ Ap(∂Ω, σ),
under the assumption that both L and L> have a distinguished coefficient tensor (cf.
Theorems 2.6.2 and 2.6.5). Moreover, we provide counterexamples which show that the
well-posedness result just described may fail if these assumptions on the existence of
distinguished coefficient tensors are simply dropped. Our results are therefore optimal
in this regard. We also establish solvability for boundary value results with boundary
data from Lorentz spaces, Morrey spaces, vanishing Morrey spaces, block spaces, and
from Sobolev spaces naturally associated with these scales.

This extends previously known well-posedness results for boundary value problems in
the upper half-space, which is the simplest example of unbounded SKT domain. Indeed, if
Ω = Rn+, then the Dirichlet Problem (D)p,w is uniquely solvable by taking the convolution
of the boundary datum f with the Poisson kernel associated with L in the upper half-
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space (cf. [8], [42], [82], [115], [117]). Poisson kernels for elliptic boundary value problems
in a half-space have been studied extensively in [1], [2], [69, §10.3], [112], [113], [114].

In this direction, in Chapter 3 we establish a Fatou-type theorem and a naturally
accompanying Poisson integral representation formula for null-solutions in the upper-half
space. The main result is the following (cf. Theorem 3.1.1).

Theorem. Consider a homogeneous, second-order, constant complex coefficient, strongly
elliptic M ×M system L and fix some aperture parameter κ > 0. Assume that

u ∈
[
C∞(Rn+)

]M
, Lu = 0 in Rn+,ˆ

Rn−1

(
Nκu

)
(x′) dx′

1 + |x′|n−1 <∞,

where Nκ denotes the nontangential maximal operator (cf. (1.1.2)). Then,

u
∣∣κ−n.t.

∂Rn+
exists at L n−1-a.e. point in Rn−1,

u
∣∣κ−n.t.

∂Rn+
belongs to

[
L1
(
Rn−1 ,

dx′

1 + |x′|n−1

)]M
,

u(x′, t) =
(
PLt ∗

(
u
∣∣κ−n.t.

∂Rn+

))
(x′) for each (x′, t) ∈ Rn+,

where PL =
(
PLβα

)
1≤β,α≤M denotes the Poisson kernel for L in Rn+ from Theorem 1.2.4

and PLt (x′) := t1−nPL(x′/t) for each x′ ∈ Rn−1 and t > 0.

This refines [82, Theorem 6.1, p. 956], where a stronger integrability condition is
assumed. We also wish to remark that even in the classical case when L := ∆, the
Laplacian in Rn, the previous theorem is more general (in the sense that it allows for
a larger class of functions) than the existing results in the literature. Indeed, the latter
typically assume an Lp integrability condition for the harmonic function which, in the
range p ∈ (1,∞), implies our weighted L1 integrability condition for the nontangential
maximal function demanded above. In this vein see, e.g., [42, Theorems 4.8-4.9, pp. 174-
175], [115, Corollary, p. 200], [116, Proposition 1, p. 119].

Moreover, this Fatou theorem has a natural associated uniqueness result which allows
the study of very general results regarding the well-posedness of boundary value problems
for elliptic systems (cf. Corollaries 3.1.3 and 3.1.4).

Going on with the study of boundary value problems in the upper-half space, in
Chapter 4 we study the Dirichlet Problem for elliptic systems with data in generalized
Hölder spaces and generalized Morrey-Campanato spaces. Furthermore, via PDE-based
techniques, we prove that these two function spaces are actually equivalent.

Generalized Hölder spaces, denoted by Ċ ω(∂Ω,CM ), quantify continuity in terms
of the modulus, or “growth” function, ω. Specifically, given U ⊆ Rn, M ≥ 1, and a
non-decreasing function ω : (0,∞) → (0,∞) whose limit at the origin vanishes, the
homogeneous space Ċ ω(U,CM ) is the collection of functions u : U → CM with

[u]Ċω(U,CM ) := sup
x,y∈U
x 6=y

|u(x)− u(y)|
ω(|x− y|) <∞.
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Similarly, for D ∈ (0,∞] and a non-decreasing function ω : (0, D) → (0,∞) whose
limit at the origin vanishes and which is bounded if D < ∞, the space C ω(U,CM )
is defined by the norm

‖u‖Cω(U,CM ) := sup
U
|u|+ [u]

Ċ ω̃(U,CM )
,

where ω̃(t) := ω(min{t,D}) for each t ∈ (0,∞).
Given a non-decreasing function ω : (0,∞) → (0,∞) whose limit at the origin

vanishes, along with some integrability exponent p ∈ [1,∞), we define the semi-norm

‖f‖E ω,p(Rn−1,CM ) := sup
Q⊆Rn−1

1
ω(`(Q))

(  
Q
|f(x′)− fQ|p dx′

)1/p
,

and we denote the associated function space by E ω,p(Rn−1,CM ), called the generalized
Morrey-Campanato space in Rn−1. The choice ω(t) := tα with α ∈ (0, 1) corresponds
to the classical Morrey-Campanato spaces, while the special case ω(t) := 1 yields the
usual space of functions of bounded mean oscillations (BMO). We also define, for every
u ∈

[
C 1(Rn+)

]M and q ∈ (0,∞),

‖u‖(ω,q)∗∗ := sup
Q⊆Rn−1

1
ω(`(Q))

(  
Q

( ˆ `(Q)

0
|(∇u)(x′, t)|2 t dt

)q/2
dx′
)1/q

.

We next state our main result on this subject, which is included in Theorem 4.1.2 and
generalizes work in [85] (where the case ω(t) = tα for α ∈ (0, 1) is studied) by allowing
more flexible scales to measure regularity in Hölder spaces and Morrey-Campanato
spaces.

Theorem. Consider a homogeneous, second-order, constant complex coefficient, strongly
elliptic M ×M system L. Also, fix an aperture parameter κ > 0, p ∈ [1,∞) along with
q ∈ (0,∞). Finally, let ω : (0,∞)→ (0,∞) be a non-decreasing function, whose limit at
the origin vanishes, and satisfying

sup
t>0

{
1
ω(t)

( ˆ t

0
ω(s)ds

s
+ t

ˆ ∞
t

ω(s)
s

ds

s

)}
< +∞.

Then the following statements are true.

(a) The generalized Hölder Dirichlet Problem for the system L in Rn+, i.e.,

u ∈
[
C∞(Rn+)

]M
,

Lu = 0 in Rn+,

[u]Ċω(Rn+,CM ) <∞,

u|∂Rn+ = f ∈ Ċ ω(Rn−1,CM ) on Rn−1,

is well-posed. More specifically, there is a unique solution which is given by

u(x′, t) = (PLt ∗ f)(x′), ∀ (x′, t) ∈ Rn+,
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where PL denotes the Poisson kernel for L in Rn+ from Theorem 1.2.4. In addition,
u belongs to the space Ċ ω(Rn+,CM ), satisfies u|∂Rn+ = f , and there exists a finite
constant C = C(n,L, ω) ≥ 1 such that

C−1[f ]Ċω(Rn−1,CM ) ≤ [u]Ċω(Rn+,CM ) ≤ C[f ]Ċω(Rn−1,CM ).

(b) The generalized Morrey-Campanato Dirichlet Problem for L in Rn+, formulated as

u ∈
[
C∞(Rn+)

]M
,

Lu = 0 in Rn+,

‖u‖(ω,q)∗∗ <∞,

u|
κ−n.t.

∂Rn+
= f ∈ E ω,p(Rn−1,CM ) a.e. on Rn−1,

is well-posed. More precisely, there is a unique solution which is given by

u(x′, t) = (PLt ∗ f)(x′), ∀ (x′, t) ∈ Rn+,

where PL denotes the Poisson kernel for L in Rn+ from Theorem 1.2.4. In addition,
u belongs to Ċ ω(Rn+,CM ), satisfies u|∂Rn+ = f a.e. on Rn−1, and there exists a finite
constant C = C(n,L, ω, p, q) ≥ 1 such that

C−1 ‖f‖E ω,p(Rn−1,CM ) ≤ ‖u‖
(ω,q)
∗∗ ≤ C ‖f‖E ω,p(Rn−1,CM ) .

(c) The following equality between vector spaces holds

Ċ ω(Rn−1,CM ) = E ω,p(Rn−1,CM )

with equivalent norms, where the right-to-left inclusion is understood in the sense
that for each f ∈ E ω,p(Rn−1,CM ) there exists a unique f̃ ∈ Ċ ω(Rn−1,CM ) with
the property that f = f̃ a.e. in Rn−1.

As a result, the Hölder Dirichlet Problem in (a) and the Morrey-Campanato Dirich-
let Problem in (b) are equivalent. Specifically, for any pair of boundary data which
may be identified in the sense described in the previous paragraph, these problems
have the same unique solution.

We would like to notice that in Section 4.7 we are able to weaken the hypothesis on
the growth function and still prove well-posedness for the two Dirichlet problems. The
main difference is that in that case they are no longer equivalent (see Example 4.7.4).

The interplay between analysis and geometry described at the outset of this section
allows us to give characterizations of certain class of domains based on purely analytic
conditions. Specifically, in Chapter 5 we characterize Lyapunov C 1,ω-domains. Lya-
punov C 1,ω-domains are open sets of locally finite perimeter whose geometric measure
theoretic outward unit normal ν belongs to C ω(∂Ω) (after possibly being redefined on a
set of σ-measure zero). Here, to simplify the notation, we call C ω(U) := C ω(U,C).
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Borrowing ideas from [52], the class of C 1,ω-domains can also be described as the
collection of all open subsets of Rn which locally coincide (up to a rigid transformation
of the space) with the upper-graph of a real-valued continuously differentiable function
defined in Rn−1 whose first-order partial derivatives belong to C ω(Rn−1).

The characterizations of the class of Lyapunov domains that we prove are in terms
of the boundedness properties of certain classes of singular integral operators acting on
generalized Hölder spaces on the boundary of an Ahlfors regular domain Ω ⊆ Rn with
compact boundary (cf. Definition 1.1.2). The most important examples of such singular
integral operators are the Riesz transforms Rj (cf. (5.1.3)-(5.1.4)).

Our present work adds further credence to the heuristic principle that the action
of the distributional Riesz transforms on the constant function 1 encapsulates much
information, both of analytic and geometric flavor, about the underlying Ahlfors regular
domain Ω ⊆ Rn (with compact boundary). At the most basic level, the main result of
F. Nazarov, X. Tolsa, and A. Volberg in [101] states that

∂Ω is a UR set ⇐⇒ Rj1 ∈ BMO(∂Ω, σ) for each j ∈ {1, . . . , n},

and it has been proved in [96] that

ν ∈ VMO(∂Ω, σ)

and ∂Ω is a UR set

⇐⇒ Rj1 ∈ VMO(∂Ω, σ) for all j ∈ {1, . . . , n},

where VMO(∂Ω, σ) stands for the Sarason space of functions with vanishing mean oscil-
lation on ∂Ω, with respect to the measure σ. By further assigning additional regularity
for the functionals {Rj1}1≤j≤n yields the following result (proved in [96])

Ω is a domain

of class C 1+α

⇐⇒ Rj1 ∈ C α(∂Ω) for all j ∈ {1, . . . , n},

where α ∈ (0, 1) and C α(∂Ω) is the classical Hölder space of order α on ∂Ω. This
is generalized by the following result, contained in Theorem 5.1.4, which allows us to
consider more flexible scales of spaces measuring Hölder regularity (see the discussion
in Example 1.3.4 in this regard).

Theorem. Suppose Ω ⊂ Rn is an Ahlfors regular domain whose boundary is compact.
Abbreviate σ := Hn−1b∂Ω and denote by ν the geometric measure theoretic outward unit
normal to Ω. Also, define Ω+ := Ω and Ω− := Rn \ Ω. Finally, let ω :

(
0, diam(∂Ω)

)
→

(0,∞) be a bounded, non-decreasing function, whose limit at the origin vanishes, and
satisfying

sup
0<t<diam(∂Ω)

{
1
ω(t)

( ˆ t

0
ω(s)ds

s
+ t

ˆ diam(∂Ω)

t

ω(s)
s

ds

s

)}
< +∞.

Then the following statements are equivalent:

(a) After possibly being altered on a set of σ-measure zero, the outward unit normal ν
to Ω belongs to the generalized Hölder space C ω(∂Ω).
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(b) The Riesz transforms on ∂Ω satisfy

Rj1 ∈ C ω(∂Ω) for each j ∈ {1, . . . , n}.

(c) The set Ω is a UR domain (in the sense of Definition 1.1.5), and given any odd
homogenous polynomial P of degree ` ≥ 1 in Rn the singular integral operator acting
on each function f ∈ C ω(∂Ω) according to

(Tf)(x) :=
ˆ

y∈∂Ω
|x−y|>ε

P (x− y)
|x− y|n−1+` f(y) dσ(y) for σ-a.e. x ∈ ∂Ω

is well-defined and maps the generalized Hölder space C ω(∂Ω) boundedly into itself.

(d) The set Ω is a UR domain, and the boundary-to-domain version of the Riesz trans-
forms defined for each j ∈ {1, . . . , n} and each f ∈ L1(∂Ω, σ) as(

R±j f
)
(x) := 1

$n−1

ˆ
∂Ω

xj − yj
|x− y|n

f(y) dσ(y), ∀x ∈ Ω±,

satisfy
R±j 1 ∈ C ω(Ω±) for each j ∈ {1, . . . , n}.

(e) The set Ω is a UR domain, and given any odd homogenous polynomial P of degree
` ≥ 1 in Rn, the integral operators acting on each function f ∈ C ω(∂Ω) according to

T±f(x) :=
ˆ
∂Ω

P (x− y)
|x− y|n−1+` f(y) dσ(y), ∀x ∈ Ω±,

map the generalized Hölder space C ω(∂Ω) continuously into C ω(Ω±).

This thesis has led to the following papers:

(a) Singular integral operators, quantitative flatness, and boundary problems, book
manuscript, 2019 (joint work with J.M. Martell, D. Mitrea, I. Mitrea, and
M. Mitrea).

(b) A Fatou theorem and Poisson’s integral representation formula for elliptic systems
in the upper-half space, to appear in “Topics in Clifford Analysis”, special volume
in honor of Wolfgang Sprößig, Swanhild Bernstein editor, Birkhäuser, 2019 (joint
work with J.M. Martell, D. Mitrea, I. Mitrea, and M. Mitrea).

(c) The generalized Hölder and Morrey-Campanato Dirichlet problems for elliptic sys-
tems in the upper-half space, to appear in Potential Anal., 2019 (joint work with
J.M. Martell and M. Mitrea).

(d) Characterizations of Lyapunov domains in terms of Riesz transforms and general-
ized Hölder spaces, preprint, 2019 (joint work with J.M. Martell and M. Mitrea).

The material in (a) is elaborated in Chapter 2, (b) is contained in Chapter 3, (c) is
developed in Chapter 4, and (d) is discussed in Chapter 5. They correspond, respectively,
to [77], [76], [79], and [78] in the bibliography.



Resumen y conclusiones (Spanish)

Esta tesis está dedicada al estudio de varios problemas que se encuentran en la intersec-
ción del análisis armónico, las ecuaciones en derivadas parciales y la teoría geométrica
de la medida. En términos generales, se centra en analizar cómo la geometría de un
dominio en Rn influye en las propiedades de acotación de ciertos operadores definidos
en su frontera y las aplicaciones que esto tiene en los problemas de valor en la frontera.
Más específicamente, el comportamiento del vector normal unitario exterior, que juega
un papel central en este trabajo, es la característica geométrica clave que nos permitirá
acotar operadores integrales singulares (como las transformadas de Riesz o los potenciales
de capa) en ciertos espacios de funciones. A su vez, este es un paso fundamental para
el estudio de los problemas de valor en la frontera. En la dirección contraria, usando
estos operadores extraemos información sobre la geometría del dominio, en función del
comportamiento de su vector normal unitario exterior.

Algunos de los operadores integrales singulares que tendrán un papel crucial en este
trabajo son los potenciales de doble capa armónicos, definidos para cada dominio UR (cf.
Definición 1.1.5) y para cada función f ∈ L1(∂Ω, σ(x)

1+|x|n−1
)
como

D∆f(x) := 1
ωn−1

ˆ
∂Ω

〈ν(y), y − x〉
|x− y|n

f(y) dσ(y) x ∈ Ω,

K∆f(x) := lim
ε→0+

1
ωn−1

ˆ
∂Ω\B(x,ε)

〈ν(y), y − x〉
|x− y|n

f(y) dσ(y) para σ-c.t.p. x ∈ ∂Ω,

donde ωn−1 es la medida de superficie de la esfera unidad en Rn, ν es el normal unitario
exterior a Ω (cf. Sección 1.1) y σ := Hn−1b∂Ω (donde Hn−1 denota la medida de
Hausdorff de dimensión n − 1 en Rn). Si ∆ denota el laplaciano, se puede probar que
∆D∆f = 0 y D∆f

∣∣κ−n.t.

∂Ω =
(1

2I + K∆
)
f en σ-casi todo punto de ∂Ω para cada f ∈

L1(∂Ω, σ(x)
1+|x|n−1

)
, donde I es el operador identidad y la traza a la frontera se toma no

tangencialmente (cf. Sección 1.1). El método clásico de los potenciales de capa hace uso
de las propiedades de acotación e invertibilidad de los operadores de potencial de capa
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para estudiar problemas de valor en la frontera. Por ejemplo, si 1
2I +K∆ es invertible en

cierto espacio de funciones contenido en L1(∂Ω, σ(x)
1+|x|n−1

)
y f pertenece a dicho espacio

entonces u := D∆
(
(1

2I + K∆)−1f
)
satisface

u
∣∣κ−n.t.

∂Ω =
(1

2I +K∆
)(1

2I +K∆
)−1

f = f.

Este esquema se usa para mostrar que la función u es una solución del problema de
Dirichlet. El caso del semiespacio superior, Ω = Rn+, será tratado con un enfoque distinto,
ya que en este caso K∆ ≡ 0 (porque ν(y) es perpendicular a y−x siempre que x, y ∈ ∂Ω)
y por tanto 2D∆f

∣∣κ−n.t.

∂Ω = f . De hecho, 2D∆f = P∆
t ∗ f , donde P∆

t es el núcleo
de Poisson armónico (cf. Teorema 1.2.4). Esto pone de manifiesto la importancia del
comportamiento del vector normal unitario exterior ν.

Hace más de 25 años, en [60, Problema 3.2.2, p. 117], C. Kenig pidió probar que los
potenciales de capa son invertibles en espacios apropiados en subclases adecuadas de
dominios uniformemente rectificables. La motivación principal de Kenig a este respecto
surge del deseo de establecer resultados para resolver problemas de valor en la frontera
formulados en un escenario geométrico general. En el preámbulo de esta pregunta abierta,
en [60, p. 116], se observa que hay clases generales de conjuntos abiertos Ω ⊆ Rn con la
propiedad de que los citados operadores de capa están acotados en Lp(∂Ω, σ) para cada
exponente p ∈ (1,∞). Notablemente, este es el caso siempre que Ω ⊆ Rn sea un conjunto
abierto con una frontera uniformemente rectificable (cf. [33]).

La teoría desarrollada por S. Hofmann, M. Mitrea y M. Taylor en [53] presenta un
avance para responder a la pregunta abierta de Kenig. El objetivo de [53] era el de
encontrar las condiciones óptimas en el contexto de la teoría geométrica de la medida
para las cuales la teoría de Fredholm pueda ser implementada de manera satisfactoria,
en las líneas de su desarrollo original, para resolver problemas de valor en la frontera
con dato en Lp mediante el método de los potenciales de capa en dominios con frontera
compacta. En particular, [53] puede considerarse como una versión óptima del trabajo
fundamental de E. Fabes, M. Jodeit y N. Rivière en [39] sobre el método de los potenciales
de capa en dominios C 1 acotados.

Sin embargo, la exigencia de que ∂Ω sea un conjunto compacto prevalece en [53]. En
particular, el hecho clásico de que el problema de Dirichlet (cf. (2.1.7)) es únicamente
resoluble en el caso en que Ω = Rn+ no se encuentra dentro del alcance de [53]. Esto
lleva a especular si el tratamiento de los potenciales de capa puede extenderse a una
clase de dominios no acotados que incluya al semiespacio superior. Este es, de hecho,
el objetivo principal del Capítulo 2.

Específicamente, desarrollamos la teoría de potenciales de capa para estudiar proble-
mas de valor en la frontera en dominios δ-SKT no acotados (donde SKT son las siglas de
Semmes-Kenig-Toro), una clase de dominios cuya característica clave es que la seminorma
BMO (cf. (2.2.31)) de su normal unitario exterior ν está controlada por δ ∈ (0, 1), un
parámetro que se asume pequeño. La clase de dominios δ-SKT emergió de trabajos de
S. Semmes [107], [108] y C. Kenig y T. Toro [61], [62], [63] y está relacionada con la
clase de dominios introducidos en [53]. Esta última fue diseñada para funcionar bien
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cuando los dominios en cuestión tienen fronteras compactas. En contraste, el hecho de
que pidamos aquí que ‖ν‖[BMO(∂Ω,σ)]n < δ < 1 tiene implicaciones topológicas y métricas
sobre Ω. Específicamente, Ω es un conjunto abierto, conexo, no acotado, con frontera
conexa no acotada y con complementario conexo no acotado. Por ejemplo, en el contexto
bidimensional, probamos que la clase de dominios δ-SKT con δ ∈ (0, 1) pequeña coincide
con la familia de dominios cuerda-arco con constante pequeña.

En este contexto, probamos que si δ es suficientemente pequeña entonces la norma
de los operadores integrales singulares de Calderón-Zygmund cuyo núcleo posee cierta
estructura algebraica es O(δ) cuando δ → 0+ como en el Teorema 2.4.4, que enunci-
amos a continuación.

Teorema. Sea Ω ⊆ Rn un dominio Ahlfors regular que satisface una condición two-sided
local John (cf. Definiciones 1.1.2 y 1.1.10). Abreviamos σ := Hn−1b∂Ω y denotamos por
ν al normal unitario exterior a Ω. Fijamos un exponente de integrabilidad p ∈ (1,∞), así
como un peso de Muckenhoupt w ∈ Ap(∂Ω, σ) (cf. (2.2.300)). Consideramos también un
entero suficientemente grande N = N(n) ∈ N. Dada una función k ∈ CN (Rn \ {0}) que
toma valores completos y es par y positivamente homogénea de grado −n, consideramos el
operador maximal T∗, que actúa en cada función f ∈ Lp(∂Ω, w) de acuerdo a la fórmula

T∗f(x) := sup
ε>0

∣∣Tεf(x)
∣∣ para cada x ∈ ∂Ω,

donde, para cada ε > 0,

Tεf(x) :=
ˆ

y∈∂Ω
|x−y|>ε

〈x− y, ν(y)〉k(x− y)f(y) dσ(y) para todo x ∈ ∂Ω.

Entonces existe C ∈ (0,∞), que depende solo de n, p, [w]Ap, las constantes local John
de Ω y las constantes de regularidad Ahlfors de ∂Ω, tal que

‖T∗‖Lp(∂Ω,w)→Lp(∂Ω,w) ≤ C
( ∑
|α|≤N

sup
Sn−1

|∂αk|
)
‖ν‖[BMO(∂Ω,σ)]n .

También establecemos estimaciones en la dirección contraria, cuantificando la plani-
cidad de una “superficie” estimando la seminorma BMO de su normal unitario en función
de las normas de ciertos operadores integrales singulares asociados con la superficie dada.
En definitiva, esto muestra que el puente de doble sentido entre la geometría y el análisis
que construimos aquí es el mejor posible.

Significativamente, las estimaciones para la norma de operadores enunciadas arriba
nos permiten invertir los potenciales de doble capa en la frontera asociados con cierta clase
de EDP de segundo orden, homogéneas y con coeficientes complejos constantes. Fijemos
n ∈ N con n ≥ 2, así como M ∈ N, y consideremos un sistema M ×M de segundo orden,
homogéneo, con coeficientes complejos constantes y débilmente elíptico en Rn,

L =
(
aαβjk ∂j∂k

)
1≤α,β≤M ,
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donde usamos (aquí y en el resto de esta memoria) el convenio de suma sobre índices
repetidos. La condición de elipticidad débil del sistema L equivale a imponer que

la matriz característica L(ξ) := −
(
aαβjk ξjξk

)
1≤α,β≤M es

invertible para cada vector ξ = (ξ1, . . . , ξn) ∈ Rn \ {0}.

Esta condición debe ser contrastada con la condición más estricta de elipticidad fuerte
(Legendre-Hadamard), que requiere que exista κ0 > 0 tal que

−Re
〈
L(ξ)ζ , ζ

〉
≥ κ0 |ξ|2 |ζ|2 para todo ξ ∈ Rn y ζ ∈ CM .

Ejemplos de operadores fuertemente (y por tanto débilmente) elípticos incluyen op-
eradores escalares, como el laplaciano ∆ =

n∑
j=1

∂2
j , o más en general, operadores de la

forma divA∇ con A = (ars)1≤r,s≤n una matriz n×n con entradas complejas satisfaciendo
la condición de elipticidad

inf
ξ∈Sn−1

Re
[
arsξrξs

]
> 0,

(donde Sn−1 denota la esfera unidad en Rn), así como la versión compleja del sistema
de Lamé de elasticidad en Rn,

L := µ∆ + (λ+ µ)∇div.

Aquí, suponemos que las constantes λ, µ ∈ C satisfacen

Reµ > 0 y Re (2µ+ λ) > 0,

una condición equivalente al hecho de que el sistema de Lamé satisfaga la condición de
elipticidad fuerte. Si bien el sistema de Lamé es simétrico, los resultados en esta tesis
no requieren ninguna hipótesis de simetría.

El resultado principal sobre la invertibilidad de potenciales de doble capa es el
siguiente (cf. Teorema 2.4.24).

Teorema. Sea Ω ⊆ Rn un conjunto abierto que satisface una condición two-sided lo-
cal John y cuya frontera topológica es un conjunto Ahlfors regular. Abreviamos σ :=
Hn−1b∂Ω y denotamos por ν al vector unitario exterior a Ω. Además, sea L un sistema
M×M en Rn débilmente elíptico, de segundo orden, homogéneo, con coeficientes comple-
jos constantes y para el cual Adis

L 6= ∅ (cf. (2.3.83)). Escogemos A ∈ Adis
L y consideramos

los operadores potenciales de doble capa en la frontera KA,K
#
A asociados con Ω y con el

tensor de coeficientes A como en (2.3.4) y (2.3.5) respectivamente. Finalmente, fijamos
un exponente de integrabilidad p ∈ (1,∞), un peso de Muckenhoupt w ∈ Ap(∂Ω, σ) y un
número ε ∈ (0,∞).

Entonces existe δ0 ∈ (0, 1), que depende solo de n, p, [w]Ap, A, ε, las constantes
local John de Ω y las constantes de regularidad Ahlfors de ∂Ω, con la propiedad de que
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si ‖ν‖[BMO(∂Ω,σ)]n < δ0 entonces se sigue que para cada parámetro espectral z ∈ C con
|z| ≥ ε los siguientes operadores son invertibles:

zI +KA :
[
Lp(∂Ω, w)

]M −→ [
Lp(∂Ω, w)

]M
,

zI +KA :
[
Lp1(∂Ω, w)

]M −→ [
Lp1(∂Ω, w)

]M
,

zI +K#
A :

[
Lp(∂Ω, w)

]M −→ [
Lp(∂Ω, w)

]M
,

donde Lp1(∂Ω, w) es un espacio de Sobolev en ∂Ω de orden uno basado en Lp (cf. Sec-
ción 2.2.6).

La condición Adis
L 6= ∅ de arriba quiere decir que L =

(
aαβjk ∂j∂k

)
1≤α,β≤M para algún

tensor de coeficientes distinguido A =
(
aαβjk

)
1≤α,β≤M
1≤j,k≤n

, es decir, un tensor de coeficientes A

para el cual el núcleo integral de KA contiene el producto escalar de ν(y) con la “cuerda”
x − y. Esta estructura algebraica es necesaria para aplicar las estimaciones para la
norma de los operadores enunciadas previamente y obtener que ‖KA‖Lp(∂Ω,w)→Lp(∂Ω,w) ≤
C ‖ν‖[BMO(∂Ω,σ)]n , de lo cual se deducen los resultados de invertibilidad para zI + KA

en [Lp(∂Ω, w)]M si ‖ν‖[BMO(∂Ω,σ)]n es suficientemente pequeño.
En términos concisos, en el teorema anterior somos capaces de contestar a la pregunta

abierta de Kenig (formulada arriba) para sistemas L en Rn débilmente elípticos, de
segundo orden, homogéneos, con coeficientes complejos constantes y con Adis

L 6= ∅,
en el contexto de dominios δ-SKT Ω ⊆ Rn con δ ∈ (0, 1) pequeña (con respecto a
las características geométricas originales de Ω), para espacios de Lebesgue ordinarios,
espacios de Lebesgue con pesos de Muckenhoupt, así como para los espacios de Sobolev
en ∂Ω adecuadamente definidos en relación a las escalas anteriores. Se prueban resultados
análogos para espacios de Lorentz y espacios de Morrey (ver Observación 2.4.25, Teo-
rema 2.4.29, Teorema 2.7.12, Teorema 2.7.13). Como se indica en la Observación 2.4.28,
la condición de que el parámetro δ sea pequeño es de hecho la mejor posible para los
resultados de invertibilidad antes mencionados.

Los resultados de invertibilidad en el teorema anterior abren la puerta a la resolución
de problemas de valor en la frontera de tipo Dirichlet, Regularidad, Neumann y Trans-
misión en dominios δ-SKT con δ ∈ (0, 1) pequeña (con respecto a las características
geométricas originales de Ω) para sistemas débilmente elípticos, de segundo orden, ho-
mogéneos, con coeficientes complejos constantes y que tienen (ellos y/o sus traspuestos)
un tensor de coeficientes distinguido.

Por ejemplo, en este contexto, conseguimos establecer que los problemas de Dirichlet
y de Regularidad en espacios con pesos de Muckenhoupt, formulados usando el oper-
ador maximal no tangencial que introducimos en (1.1.2) y las trazas a la frontera no
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tangenciales definidas en (1.1.5), están bien propuestos:

(D)p,w



u ∈
[
C∞(Ω)

]M
,

Lu = 0 en Ω,

Nκu ∈ Lp(∂Ω, w),

u
∣∣κ−n.t.

∂Ω = f ∈
[
Lp(∂Ω, w)

]M
,

(R)p,w



u ∈
[
C∞(Ω)

]M
,

Lu = 0 en Ω,

Nκu ∈ Lp(∂Ω, w),

Nκ(∇u) ∈ Lp(∂Ω, w),

u
∣∣κ−n.t.

∂Ω = f ∈
[
Lp1(∂Ω, w)

]M
,

para cada exponente de integrabilidad p ∈ (1,∞) y cada peso de Muckenhoupt w ∈
Ap(∂Ω, σ), ambos bajo la hipótesis de que L y L> tienen un tensor de coeficientes
distinguido (cf. Teoremas 2.6.2 y 2.6.5). Además, proporcionamos contraejemplos que
muestran que estos problemas pueden no estar bien propuestos si no asumimos la ex-
istencia de un tensor de coeficientes distinguido. Nuestros resultados son por tanto
óptimos a este respecto. Establecemos también resultados análogos para problemas de
valor en la frontera con dato en la frontera en espacios de Lorentz, espacios de Morrey,
espacios vanishing Morrey, espacios block y en los espacios de Sobolev asociados de
manera natural a estas escalas.

Esto extiende resultados previamente conocidos sobre problemas de valor en la fron-
tera en el semiespacio superior, que es el ejemplo más sencillo de dominio SKT no acotado.
En efecto, si Ω = Rn+, entonces el problema de Dirichlet (D)p,w está bien propuesto y la
solución viene dada como la convolución del dato en la frontera f con el núcleo de Poisson
asociado con L en el semiespacio superior (cf. [8], [42], [82], [115], [117]). Los núcleos de
Poisson para problemas de valor en la frontera elípticos en el semiespacio superior han
sido estudiados en profundidad en [1], [2], [69, §10.3], [112], [113], [114].

En esta dirección, en el Capítulo 3 establecemos un resultado de tipo Fatou y una
fórmula de representación integral de Poisson para soluciones en el semiespacio superior.
El resultado principal es el siguiente (cf. Teorema 3.1.1).

Teorema. Sea L un sistema M ×M fuertemente elíptico, de segundo orden, homogéneo
y con coeficientes complejos constantes y fijamos un parámetro de apertura κ > 0.
Asumimos que 

u ∈
[
C∞(Rn+)

]M
, Lu = 0 en Rn+,ˆ

Rn−1

(
Nκu

)
(x′) dx′

1 + |x′|n−1 <∞,

donde Nκ denota el operador maximal no tangencial (cf. (1.1.2)). Entonces,

u
∣∣κ−n.t.

∂Rn+
existe en L n−1-c.t.p. en Rn−1,

u
∣∣κ−n.t.

∂Rn+
pertenece a

[
L1
(
Rn−1 ,

dx′

1 + |x′|n−1

)]M
,

u(x′, t) =
(
PLt ∗

(
u
∣∣κ−n.t.

∂Rn+

))
(x′) para cada (x′, t) ∈ Rn+,

donde PL =
(
PLβα

)
1≤β,α≤M denota el núcleo de Poisson para L en Rn+ del Teorema 1.2.4

y PLt (x′) := t1−nPL(x′/t) para cada x′ ∈ Rn−1 y t > 0.
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Este resultado refina [82, Teorema 6.1, p. 956], donde se asume una condición de
integrabilidad más restrictiva. Es conveniente notar que incluso en el caso clásico en
que L := ∆ es el laplaciano en Rn, el teorema anterior es más general (en el sentido
de que se puede aplicar sobre una clase más amplia de funciones) que los resultados que
existen en la literatura. En efecto, normalmente se asume una condición de integrabilidad
en Lp para la función armónica que, en el rango p ∈ (1,∞), implica nuestra condición
de integrabilidad sobre el espacio L1 con peso sobre la función maximal no tangencial.
En este sentido, véase, por ejemplo, [42, Teorema 4.8-4.9, pp. 174-175], [115, Corolario,
p. 200], [116, Proposición 1, p. 119].

Además, este teorema de Fatou tiene resultados de unicidad asociados de manera nat-
ural, que permiten demostrar resultados muy generales que indican que ciertos problemas
de valor en la frontera elípticos están bien propuestos (cf. Corolarios 3.1.3 y 3.1.4).

Continuando con el estudio de problemas de valor en la frontera en el semiespacio
superior, en el Capítulo 4 estudiamos el problema de Dirichlet para sistemas elípticos
con dato en la frontera en espacios generalizados de Hölder y espacios generalizados de
Morrey-Campanato. Además, mediante técnicas basadas en EDP, probamos que estos
dos espacios de funciones son de hecho equivalentes.

Los espacios generalizados de Hölder, denotados por Ċ ω(∂Ω,CM ), cuantifican la
continuidad en términos de un módulo o función de crecimiento, ω. Específicamente,
dado U ⊆ Rn, M ≥ 1 y una función no decreciente ω : (0,∞) → (0,∞) cuyo límite
en el origen se anula, el espacio homogéneo Ċ ω(U,CM ) es la colección de funciones
u : U → CM tales que

[u]Ċω(U,CM ) := sup
x,y∈U
x 6=y

|u(x)− u(y)|
ω(|x− y|) <∞.

De forma similar, para D ∈ (0,∞] y una función no decreciente ω : (0, D) → (0,∞)
cuyo límite en el origen se anula y que es acotada si D < ∞, el espacio C ω(U,CM )
viene definido por la norma

‖u‖Cω(U,CM ) := sup
U
|u|+ [u]

Ċ ω̃(U,CM )
,

donde ω̃(t) := ω(min{t,D}) para cada t ∈ (0,∞).
Dada una función no decreciente ω : (0,∞) → (0,∞) cuyo límite en el origen se

anula, así como un exponente de integrabilidad p ∈ [1,∞), definimos la seminorma

‖f‖E ω,p(Rn−1,CM ) := sup
Q⊆Rn−1

1
ω(`(Q))

(  
Q
|f(x′)− fQ|p dx′

)1/p
,

y denotamos el espacio de funciones asociado por E ω,p(Rn−1,CM ), llamado espacio
generalizado de Morrey-Campanato en Rn−1. La elección ω(t) := tα con α ∈ (0, 1)
corresponde con los espacios clásicos de Morrey-Campanato, mientras que el caso especial
ω(t) := 1 produce el espacio usual de oscilación media acotada (BMO). También
definimos, para cada u ∈

[
C 1(Rn+)

]M y q ∈ (0,∞),

‖u‖(ω,q)∗∗ := sup
Q⊆Rn−1

1
ω(`(Q))

(  
Q

( ˆ `(Q)

0
|(∇u)(x′, t)|2 t dt

)q/2
dx′
)1/q

.
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Enunciamos a continuación nuestro resultado principal a este respecto, que está
incluido en el Teorema 4.1.2 y que generaliza resultados de [85] (donde se estudia el
caso ω(t) = tα con α ∈ (0, 1)) permitiendo escalas más flexibles al medir la regularidad
en los espacios de Hölder y Morrey-Campanato.

Teorema. Sea L un sistemaM×M fuertemente elíptico, de segundo orden, homogéneo y
con coeficientes complejos constantes. Fijamos además un parámetro de apertura κ > 0,
p ∈ [1,∞), así como q ∈ (0,∞). Finalmente, sea ω : (0,∞) → (0,∞) una función no
decreciente cuyo límite en el origen se anula y que satisface

sup
t>0

{
1
ω(t)

( ˆ t

0
ω(s)ds

s
+ t

ˆ ∞
t

ω(s)
s

ds

s

)}
< +∞.

Entonces las siguientes afirmaciones son ciertas.

(a) El problema de Dirichlet en el espacio generalizado de Hölder para el sistema L en
Rn+, es decir, 

u ∈
[
C∞(Rn+)

]M
,

Lu = 0 en Rn+,

[u]Ċω(Rn+,CM ) <∞,

u|∂Rn+ = f ∈ Ċ ω(Rn−1,CM ) en Rn−1,

está bien propuesto. Más específicamente, existe una única solución, que viene
dada por

u(x′, t) = (PLt ∗ f)(x′), ∀ (x′, t) ∈ Rn+,

donde PL denota el núcleo de Poisson para L en Rn+ del Teorema 1.2.4. Además,
u pertenece al espacio Ċ ω(Rn+,CM ), satisface u|∂Rn+ = f y existe una constante
finita C = C(n,L, ω) ≥ 1 tal que

C−1[f ]Ċω(Rn−1,CM ) ≤ [u]Ċω(Rn+,CM ) ≤ C[f ]Ċω(Rn−1,CM ).

(b) El problema de Dirichlet en el espacio generalizado de Morrey-Campanato para el
sistema L en Rn+, formulado como

u ∈
[
C∞(Rn+)

]M
,

Lu = 0 en Rn+,

‖u‖(ω,q)∗∗ <∞,

u|
κ−n.t.

∂Rn+
= f ∈ E ω,p(Rn−1,CM ) c.t.p. en Rn−1,

está bien propuesto. Concretamente, existe una única solución, que viene dada por

u(x′, t) = (PLt ∗ f)(x′), ∀ (x′, t) ∈ Rn+,

donde PL denota el núcleo de Poisson para L en Rn+ del Teorema 1.2.4. Además, u
pertenece a Ċ ω(Rn+,CM ), satisface u|∂Rn+ = f en casi todo punto de Rn−1 y existe
una constante finita C = C(n,L, ω, p, q) ≥ 1 tal que

C−1 ‖f‖E ω,p(Rn−1,CM ) ≤ ‖u‖
(ω,q)
∗∗ ≤ C ‖f‖E ω,p(Rn−1,CM ) .
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(c) Se tiene la siguiente igualdad entre espacios vectoriales

Ċ ω(Rn−1,CM ) = E ω,p(Rn−1,CM )

con normas equivalentes, donde la inclusión de derecha a izquierda se entiende en el
sentido de que para cada f ∈ E ω,p(Rn−1,CM ) existe una única f̃ ∈ Ċ ω(Rn−1,CM )
con la propiedad de que f = f̃ en casi todo punto de Rn−1.

Como resultado, el problema de Dirichlet en el espacio generalizado de Hölder de
(a) y el problema de Dirichlet en el espacio generalizado de Morrey-Campanato
de (b) son equivalentes. Específicamente, para cada par de datos en la frontera
que puedan ser indentificados en el sentido descrito en el párrafo anterior, estos
problemas tienen la misma solución única.

Notemos que en la Sección 4.7 debilitamos las hipótesis sobre la función de crecimiento
y probamos que los problemas de Dirichlet están bien propuestos. La diferencia principal
es que en este caso no son equivalentes (ver Ejemplo 4.7.4).

La interacción entre el análisis y la geometría descrita al comienzo de esta sección nos
permite dar una caracterización de ciertas clases de dominios basándonos en condiciones
puramente analíticas. Específicamente, en el Capítulo 5 caracterizamos dominios de
Lyapunov C 1,ω. Los dominios de Lyapunov C 1,ω son conjuntos abiertos con perímetro
localmente finito cuyo normal unitario exterior ν pertenece a C ω(∂Ω) (después de,
posiblemente, ser modificado en un conjunto de σ-medida cero). Aquí, para simplificar
la notación, llamamos C ω(U) := C ω(U,C).

Usando ideas de [52], la clase de dominios C 1,ω puede ser descrita también como
la colección de todos los subconjuntos abiertos de Rn que localmente coinciden (tras
una transformación rígida del espacio) con la región sobre el grafo de una función
continuamente diferenciable que toma valores reales, definida en Rn−1, cuyas derivadas
parciales de primer orden pertenecen a C ω(Rn−1).

Las caracterizaciones de la clase de dominios de Lyapunov que probamos vienen dadas
en términos de las propiedades de acotación de ciertas clases de operadores integrales
singulares actuando en espacios de Hölder generalizados en la frontera de un dominio
Ahlfors regular Ω ⊆ Rn con frontera compacta (cf. Definición 1.1.2). El ejemplo más
importante de estos operadores integrales singulares son las transformadas de Riesz
Rj (cf. (5.1.3)-(5.1.4)).

Nuestro trabajo añade credibilidad al principio heurístico de que la acción de la
transformada distribucional de Riesz sobre la función constante 1 encierra mucha in-
formación, de tipo analítico y también geométrico, sobre el dominio Ahlfors regular
subyacente Ω ⊆ Rn (con frontera compacta). Al nivel más básico, el resultado principal
de F. Nazarov, X. Tolsa y A. Volberg en [101] establece que

∂Ω es un conjunto UR ⇐⇒ Rj1 ∈ BMO(∂Ω, σ) para cada j ∈ {1, . . . , n}

y se ha probado en [96] que

ν ∈ VMO(∂Ω, σ)

y ∂Ω es un conjunto UR

⇐⇒ Rj1 ∈ VMO(∂Ω, σ) para todo j ∈ {1, . . . , n},
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donde VMO(∂Ω, σ) denota el espacio de Sarason de funciones en ∂Ω con oscilación media
que se anula, con respecto a la medida σ. Añadiendo más regularidad a los funcionales
{Rj1}1≤j≤n obtenemos el siguiente resultado (probado en [96])

Ω es un dominio

de clase C 1+α

⇐⇒ Rj1 ∈ C α(∂Ω) para todo j ∈ {1, . . . , n},

donde α ∈ (0, 1) y C α(∂Ω) es el espacio clásico de Hölder de orden α en ∂Ω. Este
resultado es generalizado por el siguiente, contenido en el Teorema 5.1.4, que nos permite
considerar escalas más flexibles para medir la regularidad Hölder (ver la exposición en
el Ejemplo 1.3.4 a este respecto).

Teorema. Sea Ω ⊂ Rn un dominio Ahlfors regular cuya frontera es compacta. Abre-
viamos σ := Hn−1b∂Ω y denotamos por ν al vector unitario exterior a Ω. Además,
definimos Ω+ := Ω y Ω− := Rn \ Ω. Finalmente, sea ω :

(
0, diam(∂Ω)

)
→ (0,∞) una

función acotada, no decreciente, cuyo límite en el origen se anula y que satisface

sup
0<t<diam(∂Ω)

{
1
ω(t)

( ˆ t

0
ω(s)ds

s
+ t

ˆ diam(∂Ω)

t

ω(s)
s

ds

s

)}
< +∞.

Entonces las siguientes afirmaciones son equivalentes:

(a) Después de ser posiblemente modificado en un conjunto de σ-medida cero, el normal
unitario exterior ν a Ω pertenece al espacio generalizado de Hölder C ω(∂Ω).

(b) Las transformadas de Riesz en ∂Ω satisfacen

Rj1 ∈ C ω(∂Ω) para cada j ∈ {1, . . . , n}.

(c) El conjunto Ω es un dominio UR (en el sentido de la Definición 1.1.5), y dado un
polinomio homogéneo e impar P de grado ` ≥ 1 en Rn el operador integral singular
que actúa en cada función f ∈ C ω(∂Ω) de acuerdo a la fórmula

(Tf)(x) :=
ˆ

y∈∂Ω
|x−y|>ε

P (x− y)
|x− y|n−1+` f(y) dσ(y) for σ-c.t.p. x ∈ ∂Ω

está bien definido y acotado del espacio generalizado de Hölder C ω(∂Ω) en sí mismo.

(d) El conjunto Ω es un dominio UR y la versión en la frontera de las transformadas
de Riesz, definidas para cada j ∈ {1, . . . , n} y cada f ∈ L1(∂Ω, σ) como

(
R±j f

)
(x) := 1

$n−1

ˆ
∂Ω

xj − yj
|x− y|n

f(y) dσ(y), ∀x ∈ Ω±,

satisfacen
R±j 1 ∈ C ω(Ω±) para cada j ∈ {1, . . . , n}.
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(e) El conjunto Ω es un dominio UR y dado un polinomio homogéneo e impar P de grado
` ≥ 1 en Rn, los operadores integrales que actúan en cada función f ∈ C ω(∂Ω) de
acuerdo a la fórmula

T±f(x) :=
ˆ
∂Ω

P (x− y)
|x− y|n−1+` f(y) dσ(y), ∀x ∈ Ω±,

están acotados del espacio generalizado de Hölder C ω(∂Ω) al espacio C ω(Ω±).

Esta tesis ha dado lugar a los siguientes artículos:

(a) Singular integral operators, quantitative flatness, and boundary problems, book
manuscript, 2019 (trabajo conjunto con J.M. Martell, D. Mitrea, I. Mitrea y
M. Mitrea).

(b) A Fatou theorem and Poisson’s integral representation formula for elliptic systems
in the upper-half space, to appear in “Topics in Clifford Analysis”, special volume in
honor of Wolfgang Sprößig, Swanhild Bernstein editor, Birkhäuser, 2019 (trabajo
conjunto con J.M. Martell, D. Mitrea, I. Mitrea y M. Mitrea).

(c) The generalized Hölder and Morrey-Campanato Dirichlet problems for elliptic sys-
tems in the upper-half space, to appear in Potential Anal., 2019 (trabajo conjunto
con J.M. Martell y M. Mitrea).

(d) Characterizations of Lyapunov domains in terms of Riesz transforms and general-
ized Hölder spaces, preprint, 2019 (trabajo conjunto con J.M. Martell y M. Mitrea).

El material en (a) está elaborado en el Capítulo 2, (b) está contenido en el Capítulo 3, (c)
está desarrollado en el Capítulo 4 y (d) está expuesto en el Capítulo 5. Corresponden,
respectivamente, a [77], [76], [79] y [78] en la bibliografía.
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We begin with a quick review of notational conventions used in the dissertation.
Throughout, N0 := N ∪ {0}, n ∈ N with n ≥ 2, and Ln stands for the n-dimensional
Lebesgue measure in Rn. For each k ∈ N, we denote by Nk0 the collection of all multi-
indices α = (α1, . . . , αk) with αj ∈ N0 for 1 ≤ j ≤ k. Also, we let Hn−1 denote
the (n − 1)-dimensional Hausdorff measure in Rn. For each set E ⊆ Rn, we let 1E
denote the characteristic function of E (i.e., 1E(x) = 1 if x ∈ E and 1E(x) = 0 if
x ∈ Rn \ E). Also, δjk is the Kronecker symbol (i.e., δjk := 1 if j = k and δjk := 0
if j 6= k). By {ej}1≤j≤n we shall denote the standard orthonormal basis in Rn, i.e.,
ej := (δjk)1≤k≤n for each j ∈ {1, . . . , n}. For each x ∈ Rn and r ∈ (0,∞) set B(x, r) :=
{y ∈ Rn : |x − y| < r}. The dot product of two vectors u, v ∈ Rn is denoted by
u · v = 〈u, v〉. Next, Rn± := {x ∈ Rn : ±〈x, en〉 > 0} denote, respectively, the upper-
space and lower half-space in Rn. For an arbitrary open set Ω ⊆ Rn we shall let D′(Ω)
stand for the space of distributions in Ω and E ′(Ω) will denote the space of compactly
supported distributions in Ω. Given an integrability exponent p ∈ [1,∞] along with
an integer k ∈ N, we shall define the local Lp-based Sobolev space of order k in Ω as
W k,p

loc (Ω) :=
{
u ∈ D′(Ω) : ∂αu ∈ Lploc(Ω,Ln), |α| ≤ k

}
. Next, Sn−1 := ∂B(0, 1) denotes

the unit sphere in Rn, and $n−1 = ωn−1 := Hn−1(Sn−1) is the surface area of Sn−1.
In addition, we shall let υn−1 denote the volume of the unit ball in Rn−1. Given any
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x, y ∈ Rn, by [x, y] we shall denotes the line segment with endpoints x, y. We shall also
need dist(x,E) := inf{|x − y| : y ∈ E}, the distance from a given point x ∈ Rn to a
nonempty set E ⊆ Rn. If (X,µ) is a given measure space, for each p ∈ (0,∞] we shall
denote by Lp(X,µ) the Lebesgue space of µ-measurable functions which are p-th power
integrable on X with respect to µ. Also, by Lp,q(X,µ) with p, q ∈ (0,∞] we shall denote
the scale of Lorentz spaces on X with respect to the measure µ. In the same setting,
for each µ-measurable set E ⊆ X with 0 < µ(E) < ∞ and each function f which is
absolutely integrable on E we set

ffl
E f dµ := µ(E)−1 ´

E f dµ.
Finally, we adopt the common convention of writing A ≈ B if there exists a constant

C ∈ (1,∞) with the property that A/C ≤ B ≤ CA for all values of the relevant
parameters entering the definitions of A,B (something that is self evident in each context
we employ this notation).

1.1 Classes of Euclidean sets of locally finite perimeter

Given an open set Ω ⊆ Rn and an aperture parameter κ ∈ (0,∞), define the non-
tangential approach regions

Γκ(x) :=
{
y ∈ Ω : |y − x| < (1 + κ) dist (y, ∂Ω)

}
for each x ∈ ∂Ω. (1.1.1)

In turn, these are used to define the nontangential maximal operator Nκ, acting on each
Ln-measurable function u defined in Ω according to(

Nκu
)
(x) := ‖u‖L∞(Γκ(x),Ln) for each x ∈ ∂Ω, (1.1.2)

with the convention that
(
Nκu

)
(x) := 0 whenever x ∈ ∂Ω is such that Γκ(x) = ∅. Note

that, if we work (as one usually does) with equivalence classes, obtained by identifying
functions which coincide Ln-a.e., the nontangential maximal operator is independent
of the specific choice of a representative in a given equivalence class. It turns out
that Nκu : ∂Ω → [0,+∞] is a lower-semicontinuous function. Also, it is apparent
from definitions that

whenever u ∈ C 0(Ω) one actually has(
Nκu

)
(x) = sup

y∈Γκ(x)
|u(y)| for all x ∈ ∂Ω. (1.1.3)

More generally, if u : Ω → R is a Lebesgue measurable function and E ⊆ Ω is
a Ln-measurable set, we denote by NE

κ u the non-tangential maximal function of u
restricted to E, i.e.,

NE
κ u : ∂Ω −→ [0,+∞] defined as

(NE
κ u)(x) := ‖u‖L∞(Γκ(x)∩E,Ln) for each x ∈ ∂Ω.

(1.1.4)

Hence, NE
κ u = Nκ(u · 1E). Throughout, we agree to use the simpler notation N δ

κ in the
case when E = {x ∈ Ω : dist(x, ∂Ω) < δ} for some δ ∈ (0,∞).
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Continue to assume that Ω is an arbitrary open, nonempty, proper subset of Rn

and suppose u is some vector-valued Ln-measurable function defined in Ω. Also, fix an
aperture parameter κ > 0 and consider a point x ∈ ∂Ω such that x ∈ Γκ(x) (i.e., x is
an accumulation point for the nontangential approach region Γκ(x)). In this context,
we shall say that the nontangential limit of u at x from within Γκ(x) exists, and its
value is the vector a ∈ CM , provided

for every ε > 0 there exists some r > 0 such that |u(y)−
a| < ε for Ln-a.e. point y ∈ Γκ(x) ∩B(x, r).

(1.1.5)

Whenever the nontangential limit of u at x from within Γκ(x) exists, we agree to denote
its value by the symbol

(
u
∣∣κ−n.t.

∂Ω
)
(x).

Moving on, recall that an Ln-measurable set Ω ⊆ Rn has locally finite perimeter if
its measure theoretic boundary, i.e.,

∂∗Ω :=
{
x ∈ ∂Ω : lim sup

r→0+

Ln(B(x, r) ∩ Ω)
rn

> 0, lim sup
r→0+

Ln(B(x, r) \ Ω)
rn

> 0
}
, (1.1.6)

satisfies

Hn−1(∂∗Ω ∩K) < +∞ for each compact K ⊆ Rn (1.1.7)

(cf. [38, Sections 5.7 and 5.11]). Alternatively, an Ln-measurable set Ω ⊆ Rn has locally
finite perimeter if, with the gradient taken in the sense of distributions in Rn,

µΩ := ∇1Ω (1.1.8)

is an Rn-valued Borel measure in Rn of locally finite total variation. Fundamental work
of De Giorgi-Federer (cf., e.g., [38]) then gives the following Polar Decomposition of
the Radon measure µΩ:

µΩ = ∇1Ω = −ν |∇1Ω| (1.1.9)

where |∇1Ω|, the total variation measure of the measure ∇1Ω, is given by

|∇1Ω| = Hn−1b∂∗Ω, (1.1.10)

and where

ν ∈
[
L∞(∂∗Ω,Hn−1)

]n is an Rn-valued function

satisfying |ν(x)| = 1 at Hn−1-a.e. point x ∈ ∂∗Ω.
(1.1.11)

We shall refer to ν above as the geometric measure theoretic outward unit normal
to Ω. Note here that by simply eliminating the distribution theory jargon implicit in
the interpretation of (1.1.9) (and using a straightforward limiting argument involving a
mollifier) one already arrives at the formula

ˆ
Ω

div ~F dLn =
ˆ
∂∗Ω

ν ·
(
~F
∣∣
∂Ω
)
dHn−1

for each vector field ~F ∈
[
C 1

0 (Rn)
]n. (1.1.12)
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For a set Ω ⊆ Rn of locally finite perimeter, we let ∂∗Ω denote the reduced boundary
of Ω, that is,

∂∗Ω consists of all points x ∈ ∂Ω satisfying the following
properties: 0 < Hn−1(B(x, r) ∩ ∂∗Ω

)
< +∞ for each r ∈

(0,∞), and lim
r→0+

ffl
B(x,r)∩∂∗Ω ν dH

n−1 = ν(x) ∈ Sn−1.
(1.1.13)

For any set Ω ⊆ Rn of locally finite perimeter we then have (cf. [38, p. 208])

∂∗Ω ⊆ ∂∗Ω ⊆ ∂Ω and Hn−1(∂∗Ω \ ∂∗Ω) = 0. (1.1.14)

Definition 1.1.1. A closed set Σ ⊆ Rn is called an Ahlfors regular set (or an Ahlfors-
David regular set) if there exists a constant C ∈ [1,∞) such that

rn−1/C ≤ Hn−1(B(x, r) ∩ Σ
)
≤ Crn−1, ∀ r ∈

(
0 , 2 diam (Σ)

)
, ∀x ∈ Σ. (1.1.15)

We say that Σ is a lower Ahlfors regular set if it satisfies the first inequality in (1.1.15)
and an upper Ahlfors regular set if it satisfies the second inequality in (1.1.15).

For a given closed set Σ ⊆ Rn, being Ahlfors regular is not a regularity condition in
a traditional analytic sense, but rather a property guaranteeing that, at all locations, Σ
behaves (in a quantitative, scale-invariant fashion) like an (n− 1)-dimensional “surface,”
with respect to the Hausdorff measure Hn−1. For example, the classical four-corner
Cantor set in the plane is an Ahlfors regular set (cf., e.g., [94, Proposition 4.79, p. 238]).

Definition 1.1.2. An open, nonempty, proper subset Ω of Rn is called an Ahlfors
regular domain provided ∂Ω is an Ahlfors regular set and Hn−1(∂Ω \ ∂∗Ω

)
= 0.

If Ω ⊆ Rn is an Ahlfors regular domain then the upper Ahlfors regularity condition
satisfied by ∂Ω (i.e., the second inequality in (1.1.15) with Σ := ∂Ω) together with
(1.1.7) guarantee that Ω is a set of locally finite perimeter. Also, the fact that the
measure theoretic boundary ∂∗Ω is presently assumed to have full measure (with respect
to Hn−1) in the topological boundary ∂Ω, ensures that the geometric measure theoretic
outward unit normal ν to Ω (cf. (1.1.11)) is actually well defined at Hn−1-a.e. point
on ∂Ω. Ultimately,

if Ω ⊆ Rn is an Ahlfors regular domain then

ν ∈
[
L∞(∂Ω,Hn−1)

]n is an Rn-valued function

satisfying |ν(x)| = 1 at Hn−1-a.e. point x ∈ ∂Ω.

(1.1.16)

From [53, Proposition 2.9, p. 2588] we also know that

if Ω ⊆ Rn is an Ahlfors regular domain, and if κ > 0 is an
arbitrary aperture parameter, then x ∈ Γκ(x) (i.e., x is an
accumulation point for the nontangential approach region Γκ(x))
for Hn−1-a.e. point x in the topological boundary ∂Ω.

(1.1.17)
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In particular, if Ω ⊆ Rn is an Ahlfors regular domain and u is an Ln-measurable function
u defined in Ω, then for any fixed aperture parameter κ > 0 it is meaningful to attempt
to define the nontangential boundary trace

(
u
∣∣κ−n.t.

∂Ω
)
(x) at Hn−1-a.e. point x ∈ ∂Ω. For

future endeavors, it is also useful to remark that (see [93] for a proof)

if Ω ⊂ Rn is an Ahlfors regular domain then Ω− := Rn \ Ω is also
an Ahlfors regular domain, whose topological boundary coincides
with that of Ω, and whose geometric measure theoretic boundary
agrees with that of Ω, i.e., ∂(Ω−) = ∂Ω and ∂∗(Ω−) = ∂∗Ω.
Moreover, the geometric measure theoretic outward unit normal
to Ω− is −ν at σ-a.e. point on ∂Ω.

(1.1.18)

We continue by recalling the notion of countable rectifiability.

Definition 1.1.3. A closed set E ⊆ Rn is said to be countably rectifiable (of
dimension (n− 1)) provided

E =

 ∞⋃
j=1

Sj

 ∪N, (1.1.19)

where N is a null-set for Hn−1 and each Sj is the image of a compact subset of Rn−1

under a Lipschitz map from Rn−1 to Rn.

The following definition is due to G. David and S. Semmes (cf. [34]).

Definition 1.1.4. A closed set Σ ⊆ Rn is said to be a uniformly rectifiable set (or
simply a UR set) if Σ is an Ahlfors regular set and there exist ε,M ∈ (0,∞) such that for
each location x ∈ Σ and each scale R ∈ (0 , 2 diam (Σ)

)
it is possible to find a Lipschitz

map ϕ : Bn−1
R → Rn (where Bn−1

R is a ball of radius R in Rn−1) with Lipschitz constant
≤M and such that

Hn−1(Σ ∩B(x,R) ∩ ϕ(Bn−1
R )

)
≥ εRn−1. (1.1.20)

Uniformly rectifiability is a quantitative version of countable rectifiability. Any UR
set is countably rectifiable. We also remark that any Ahlfors regular domain in Rn has
a (n − 1)-dimensional countably rectifiable boundary (cf. [96, Section 2]). Following
[53] we also make the following definition.

Definition 1.1.5. An open, nonempty, proper subset Ω of Rn is called a UR domain (short
for uniformly rectifiable domain) provided ∂Ω is a UR set (in the sense of Definition 1.1.4)
and Hn−1(∂Ω \ ∂∗Ω

)
= 0.

By design, any UR domain is an Ahlfors regular domain. A basic subclass of UR
domains has been identified by G. David and D. Jerison in [32]. To state (a version of)
their result, we first recall the following definition.

Definition 1.1.6. Fix R ∈ (0,∞] and c ∈ (0, 1). A nonempty proper subset Ω of Rn

is said to satisfy the (R, c)-corkscrew condition (or, simply, a corkscrew condition
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if the particular values of R, c are not important) if for each location x ∈ ∂Ω and each
scale r ∈ (0, R) there exists a point z ∈ Ω (called a corkscrew point relative to x and r)
with the property that B(z, c r) ⊆ B(x, r) ∩ Ω.

Also, a nonempty proper subset Ω of Rn is said to satisfy the (R, c)-two-sided
corkscrew condition provided both Ω and Rn \Ω satisfy the (R, c)-corkscrew condition
(with the same convention regarding the omission of R, c).

It is then clear from definitions that we have

∂∗Ω = ∂Ω for any Ln-measurable set Ω ⊆ Rn

satisfying a two-sided corkscrew condition.
(1.1.21)

Also, [32, Theorem 1, p. 840] implies that

if Ω is a nonempty proper open subset of Rn satisfying a two-
sided corkscrew condition and whose boundary is an Ahlfors
regular set, then Ω is a UR domain.

(1.1.22)

Following [57], we define the class of nontangentially accessible domains as those open
sets satisfying a two-sided corkscrew conditions and the following Harnack chain condi-
tion.

Definition 1.1.7. Fix R ∈ (0,∞] and N ∈ N. An open set Ω ⊆ Rn is said to satisfy
the (R,N)-Harnack chain condition (or, simply, a Harnack chain condition if the
particular values of R,N are irrelevant) provided whenever ε > 0, k ∈ N, z ∈ ∂Ω, r ∈
(0, R), and x, y ∈ B(z, r/4)∩Ω satisfy |x−y| ≤ 2kε and min

{
dist (x, ∂Ω) , dist (y, ∂Ω)

}
≥

ε, one may find a chain of balls B1, B2, . . . , BK with K ≤ Nk, such that x ∈ B1, y ∈ BK ,
Bi ∩Bi+1 6= ∅ for every i ∈ {1, . . . ,K − 1}, and

N−1 · diam (Bi) ≤ dist (Bi, ∂Ω) ≤ N · diam (Bi), (1.1.23)

diam (Bi) ≥ N−1 ·min
{
dist (x,Bi) , dist (y,Bi)

}
, (1.1.24)

for every i ∈ {1, . . . ,K}.

Following [57, pp. 93-94] (cf. also [64, Definition 2.1, p. 3]), we introduce the class of
NTA domains.

Definition 1.1.8. Fix R ∈ (0,∞] andN ∈ N. An open, nonempty, proper subset Ω of Rn

is said to be a (R,N)-nontangentially accessible domain (or simply an NTA domain
if the particular values of R,N are not important) if Ω satisfies both the (R,N−1)-two-
sided corkscrew condition and the (R,N)-Harnack chain condition. Finally, an open,
nonempty, proper subset Ω of Rn is said to be a (R,N)-two-sided nontangentially
accessible domain (or, simply, a two-sided NTA domain if the particular values of
R,N are not relevant) provided both Ω and Rn \Ω are (R,N)-nontangentially accessible
domains.
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There is also the related notion of (R,N)-one-sided NTA domain, i.e., an open set
satisfying a (R,N)-Harnack chain condition and a (R,N−1)-corkscrew condition (once
again, we agree to drop the parameters R,N if theirs values are not relevant). For
example, the complement of the classical four-corner Cantor set in the plane is a one-
sided NTA domain with an Ahlfors regular boundary. We continue with the definition
of uniform domains.

Definition 1.1.9. A nonempty, proper, open subset Ω of Rn is called a uniform domain
if there exist κ ∈ [1,∞) such that any two points x, y ∈ Ω may be joined in Ω by a
rectifiable path γ satisfying

length(γ) ≤ κ|x− y| and, for each z ∈ γ,

min
{

length(γx,z) , length(γy,z)
}
≤ κ dist(z, ∂Ω),

(1.1.25)

where γx,z and γy,z are the sub-arcs of γ joining z with x and y, respectively.

The following definition of yet another brand of local path connectivity condition
first appeared in [53].

Definition 1.1.10. An open, nonempty, proper subset Ω of Rn is said to satisfy a local
John condition if there exist θ ∈ (0, 1) and R > 0 (with the requirement that R =∞ if
∂Ω is unbounded) such that for every x ∈ ∂Ω and r ∈ (0, R) one may find xr ∈ B(x, r)∩Ω
such that B(xr, θr) ⊆ Ω and with the property that for each y ∈ B(x, r)∩∂Ω there exists
a rectifiable path γy : [0, 1]→ Ω whose length is ≤ θ−1r and such that

γy(0) = y, γy(1) = xr, dist
(
γy(t) , ∂Ω

)
> θ|γy(t)− y| for all t ∈ (0, 1]. (1.1.26)

Finally, a nonempty open set Ω ⊆ Rn which is not dense in Rn is said to satisfy a
two-sided local John condition if both Ω and Rn \ Ω satisfy a local John condition.

It is clear from the definitions that

any set satisfying a local John condition (respectively, a two-
sided local John condition) also satisfies a corkscrew condition
(respectively, a two-sided corkscrew condition).

(1.1.27)

Moreover, given any R ∈ (0,∞] and N ∈ N, from [53, Lemma 3.13, p. 2634] we know that

any (R,N)-nontangentially accessible domain satisfies a local John
condition, and any (R,N)-two-sided nontangentially accessible
domain satisfies a two-sided local John condition (in all cases
demanding that R = ∞ if the said domain has an unbounded
boundary).

(1.1.28)
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1.2 Elliptic operators

Fix n ∈ N with n ≥ 2 along with M ∈ N, and denote by L the collection of all
homogeneous constant complex coefficient second-order M ×M systems L in Rn. Hence,
any element L in L may be written as a matrix of differential operators of the form
L =

(
aαβjk ∂j∂k

)
1≤α,β≤M

for some complex numbers aαβjk (here and elsewhere, we shall use
the usual convention of summation over repeated indices). In particular, the action of L
on any given vector-valued distribution u = (uβ)1≤β≤M may be described as

Lu =
(
aαβjk ∂j∂kuβ

)
1≤α≤M

, (1.2.1)

and we denote by L> :=
(
aβαkj ∂j∂k

)
1≤α,β≤M

the (real) transposed of L. We also define
the characteristic matrix of L as

L(ξ) := −
[(
aαβjk ξjξk

)
1≤α,β≤M

]
for each ξ = (ξi)1≤i≤n ∈ Rn, (1.2.2)

and introduce

L∗ :=
{
L ∈ L : det[L(ξ)] 6= 0 for each ξ ∈ Rn \ {0}

}
. (1.2.3)

We shall refer to a system L ∈ L as being weakly elliptic if actually L ∈ L∗.
This is in contrast with the more stringent condition of Legendre-Hadamard (strong)
ellipticity, asks for the existence of some κ0 > 0 such that

Re
[
aαβjk ξjξkζαζβ

]
≥ κ0 |ξ|2 |ζ|2 for all

ξ = (ξj)1≤j≤n ∈ Rn and ζ = (ζα)1≤α≤M ∈ CM .
(1.2.4)

Examples of strongly (and hence weakly) elliptic operators include scalar operators,
such as the Laplacian ∆ =

n∑
j=1

∂2
j or, more generally, operators of the form divA∇ with

A = (ars)1≤r,s≤n an n×n matrix with complex entries satisfying the ellipticity condition

inf
ξ∈Sn−1

Re
[
arsξrξs

]
> 0, (1.2.5)

(where Sn−1 denotes the unit sphere in Rn), as well as the complex version of the Lamé
system of elasticity in Rn,

L := µ∆ + (λ+ µ)∇div. (1.2.6)

Above, the constants λ, µ ∈ C (typically called Lamé moduli), are assumed to satisfy

Reµ > 0 and Re (2µ+ λ) > 0, (1.2.7)

a condition equivalent to the demand that the Lamé system (1.2.6) satisfies the Legendre-
Hadamard ellipticity condition (1.2.4). While the Lamé system is symmetric, we stress
that the results in this thesis require no symmetry for the systems involved.
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Next, let us consider

A :=
{
A =

(
aαβjk

)
1≤α,β≤M
1≤j,k≤n

: each aαβjk belongs to C
}
, (1.2.8)

the collection of coefficient tensors with constant complex entries. Adopting natural
operations (i.e., componentwise addition and multiplication by scalars), this becomes a
finite dimensional vector space (over C) which we endow with the norm

‖A‖ :=
∑

1≤α,β≤M
1≤j,k≤n

∣∣aαβjk ∣∣ for each A =
(
aαβjk

)
1≤α,β≤M
1≤j,k≤n

∈ A. (1.2.9)

Hence, if the transposed of each given A =
(
aαβjk

)
1≤α,β≤M
1≤j,k≤n

∈ A is the coefficient tensor

A> :=
(
aβαkj

)
1≤α,β≤M
1≤j,k≤n

, then A 3 A 7→ A> ∈ A is an isometry. With each coefficient tensor

A =
(
aαβjk

)
1≤α,β≤M
1≤j,k≤n

∈ A associate the system LA ∈ L according to

LA :=
(
aαβjk ∂j∂k

)
1≤α,β≤M

. (1.2.10)

Then the map

A 3 A 7−→ LA ∈ L (1.2.11)

is linear and surjective, though it fails to be injective. Specifically, if we introduce

Aant :=
{
B =

(
bαβjk

)
1≤α,β≤M
1≤j,k≤n

∈ A : bαβjk = −bαβkj whenever

1 ≤ j, k ≤ n and 1 ≤ α, β ≤M
}
, (1.2.12)

the collection of all coefficient tensors which are antisymmetric in the lower indices, then
Aant is a closed linear subspace of A and for each A, Ã ∈ A we have

LA = L
Ã
⇐⇒ A− Ã ∈ Aant. (1.2.13)

If we now define

AL :=
{
A ∈ A : L = LA

}
for each L ∈ L, (1.2.14)

and for each L ∈ L we set (with the distance considered in the normed vector space A)

‖L‖ := dist
(
A,Aant) for each/some A ∈ AL, (1.2.15)

then L 3 L 7→ ‖L‖ is an unambiguously defined norm on the vector space L. In the
topology induced by this norm, L∗ from (1.2.3) is an open subset of L, the mapping
(1.2.11) is continuous, and L 3 L 7→ L> ∈ L is an isometry.

Finally, we denote by AWE the collection of all coefficient tensors A with the property
that the M × M homogeneous second-order system LA associated with A in Rn as
in (1.2.10) is weakly elliptic, i.e.,

AWE :=
{
A ∈ A : LA ∈ L∗

}
. (1.2.16)
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Then AWE is an open subset of A.
The following theorem, itself a special case of [92, Theorem 11.1, p. 393], summa-

rizes some of the main properties of a certain type of fundamental solution canonically
associated with any given homogeneous, constant complex coefficient, weakly elliptic
second-order system in Rn.

Theorem 1.2.1. Let L be a homogeneous, second-order, constant complex coefficient,
M ×M system in Rn, which is weakly elliptic (cf. (1.2.3)).Then there exists an M ×M
matrix-valued function E =

(
Eαβ

)
1≤α,β≤M , canonically associated with the given system

L, such that the following properties are true.

(a) For each α, β ∈ {1, . . . ,M} one has Eαβ ∈ C∞
(
Rn \ {0}

)
and Eαβ(x) = Eαβ(−x)

for every x ∈ Rn \ {0}.

(b) For each fixed point y ∈ Rn one has L
[
E(· − y)

]
= δyIM×M in the sense of

distributions in Rn, where IM×M is the M × M identity matrix and δy denotes
the Dirac distribution with mass at y in Rn. That is, using the standard Kronecker
delta notation,

aαβjk ∂xj∂xk
[
Eβγ(x− y)

]
= δαγδy(x), x ∈ Rn, (1.2.17)

in the sense of distributions, for every α, γ ∈ {1, . . . ,M}.

(c) The transposed of E, i.e., E> = (Eβα)1≤α,β≤M , is a fundamental solution for
the transposed system L>. In other words, for each fixed point y ∈ Rn one has
L>
[
E>(· − y)

]
= δyIM×M in the sense of distributions in Rn, i.e.,

aβαkj ∂xj∂xk
[
Eγβ(x− y)

]
= δαγδy(x), x ∈ Rn, (1.2.18)

in the sense of distributions, for every α, γ ∈ {1, . . . ,M}.

(d) For every multi-index α ∈ Nn0 with n + |α| > 2, the function ∂αE is positive
homogeneous of degree 2− n− |α| and there exists a constant Cα ∈ (0,∞) with the
property that

∣∣(∂αE)(x)
∣∣ ≤ Cα|x|2−n−|α| for all x ∈ Rn \ {0}. (1.2.19)

Finally, corresponding to n = 2 and α = (0, . . . , 0), there exists C ∈ (0,∞) such
that |E(x)| ≤ C

(
1 +

∣∣ ln |x|∣∣) for every x ∈ R2 \ {0}.

The following result is a particular case of more general interior estimates found
in [91, Theorem 11.9, p. 364].

Theorem 1.2.2. Let L be a constant complex coefficient system as in (1.2.1) satisfying
the weak ellipticity condition in (1.2.3). Then for every p ∈ (0,∞), λ ∈ (0, 1), and
m ∈ N0 there exists a finite constant C = C(L, p,m, λ, n) > 0 with the property that
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for every null-solution u of L in a ball B(x,R), where x ∈ Rn and R > 0, and every
r ∈ (0, R) one has

sup
z∈B(x,λr)

|(∇mu)(z)| ≤ C

rm

( 
B(x,r)

|u(x)|p dx
)1/p

. (1.2.20)

The fundamental solution of L will be the matrix denoted by E := (Ejk)1≤j,k≤M . The
following theorem from [91, Theorem 11.1] summarizes the properties of E in our context.

We now proceed to study the properties of solutions in the upper-half space Rn+ :=
{x = (x′, t) ∈ Rn : x′ ∈ Rn−1, t > 0}. First, introduce

W 1,2
bdd(Rn+) :=

{
u ∈ L2

loc(Rn+) : u, ∂ju ∈ L2(Rn+ ∩B(0, r)
)

for each j ∈ {1, . . . , n} and r ∈ (0,∞)
}
, (1.2.21)

and define the Sobolev trace Tr, whenever meaningful, as

(Tr u)(x′) := lim
r→0+

 
B((x′,0),r)∩Rn+

u(y) dy, x′ ∈ Rn−1. (1.2.22)

The following result is taken from [90, Corollary 2.4].

Proposition 1.2.3. Let L be a constant complex coefficient system as in (1.2.1) satisfying
(1.2.4), and suppose u ∈

[
W 1,2

bdd(Rn+)
]M satisfies Lu = 0 in Rn+ and Tr u = 0 on Rn−1.

Then u ∈
[
C∞(Rn+)

]M and there exists a finite constant C > 0, independent of u, such
that for each x ∈ Rn+ and each r > 0,

sup
Rn+∩B(x,r)

|∇u| ≤ C

r
sup

Rn+∩B(x,2r)
|u|. (1.2.23)

When dealing with the upper-half space, we agree to denote the (n− 1)-dimensional
Lebesgue measure of given Lebesgue measurable set E ⊆ Rn−1 by |E|. Also, by a cube
Q in Rn−1 we shall understand a cube with sides parallel to the coordinate axes. Its side-
length will be denoted by `(Q), and for each λ > 0 we shall denote by λQ the cube concen-
tric with Q whose side-length is λ `(Q). For every function h ∈

[
L1

loc(Rn−1)
]M we write

hQ :=
 
Q
h(x′) dx′ := 1

|Q|

ˆ
Q
h(x′) dx′ ∈ CM , (1.2.24)

with the integration performed componentwise. Moving on, for each given function f ∈[
L1

loc(Rn−1)
]M define the Lp-based mean oscillation of f at a scale r ∈ (0,∞) as

oscp(f ; r) := sup
Q⊆Rn−1

`(Q)≤r

(  
Q
|f(x′)− fQ|p dx′

)1/p
. (1.2.25)

Poisson kernels for elliptic boundary value problems in a half-space have been studied
extensively in [1], [2], [69, §10.3], [112], [113], [114]. The following theorem is contained
in [85, Theorem 2.3 and Proposition 3.1], [82, Theorem 3.1, p. 934], and [2]. Here and
elsewhere, the convolution between two functions, which are matrix-valued and vector-
valued, respectively, takes into account the algebraic multiplication between a matrix
and a vector in a natural fashion.
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Theorem 1.2.4. Suppose L is a constant complex coefficient system as in (1.2.1),
satisfying (1.2.4). Then the following statements are true.

(a) There exists a matrix-valued function PL = (PLαβ)1≤α,β≤M : Rn−1 → CM×M , called
the Poisson kernel for L in Rn+, such that PL ∈

[
C∞(Rn−1)

]M×M , there exists some
finite constant C > 0 such that

|PL(x′)| ≤ C

(1 + |x′|2)n/2
, ∀x′ ∈ Rn−1, (1.2.26)

and ˆ
Rn−1

PL(x′) dx′ = IM×M , (1.2.27)

where IM×M stands for the M ×M identity matrix.

(b) If for every x′ ∈ Rn−1 and t > 0 one defines

KL(x′, t) := PLt (x′) := t1−nPL(x′/t), (1.2.28)

then KL ∈
[
C∞

(
Rn+ \ B(0, ε)

)]M×M for every ε > 0 and the function KL =(
KL
αβ

)
1≤α,β≤M satisfies

LKL
·β = 0 in Rn+ for each β ∈ {1, . . . ,M}, (1.2.29)

where KL
·β :=

(
KL
αβ

)
1≤α≤M is the β-th column in KL. Moreover, for each multi-

index α ∈ Nn0 there exists Cα ∈ (0,∞) such that∣∣(∂αKL)(x)
∣∣ ≤ Cα |x|1−n−|α|, for every x ∈ Rn+ \ {0}. (1.2.30)

(c) For each function f = (fβ)1≤β≤M ∈
[
L1(Rn−1, dx′

1+|x′|n
)]M define, with PL as above,

u(x′, t) := (PLt ∗ f)(x′), ∀ (x′, t) ∈ Rn+. (1.2.31)

Then u is meaningfully defined, via an absolutely convergent integral, and for every
aperture parameter κ > 0, it satisfies

u ∈
[
C∞(Rn+)

]M
, Lu = 0 in Rn+, u|

κ−n.t.

∂Rn+
= f a.e. on Rn−1 (1.2.32)

(with the last identity valid in the set of Lebesgue points of f), and there exists a
constant C = C(n,L, κ) ∈ (0,∞) with the property that(

Nκu
)
(x′) ≤ C

(
Mf

)
(x′), ∀x′ ∈ Rn−1 (1.2.33)

Furthermore, there exists a finite constant C > 0 such that

|(∇u)(x′, t)| ≤ C

t

ˆ ∞
1

osc1(f ; st)ds
s2 , ∀ (x′, t) ∈ Rn+, (1.2.34)

and, for each cube Q ⊆ Rn−1,(ˆ `(Q)

0

 
Q
|(∇u)(x′, t)|2 t dx′ dt

)1/2

≤ C
ˆ ∞

1
osc1(f ; s`(Q))ds

s2 . (1.2.35)
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1.3 Growth functions and generalized Hölder spaces

Definition 1.3.1. Given a number D ∈ (0,∞), a function ω : (0, D)→ (0,∞) is called
a growth function on (0, D) if ω is non-decreasing and

lim
t→0+

ω(t) = 0, ω(D) := lim
t→D−

ω(t) <∞. (1.3.1)

Corresponding to the case when D = ∞, a function ω : (0,∞) → (0,∞) is called a
growth function on (0,∞) if ω is non-decreasing and

lim
t→0+

ω(t) = 0. (1.3.2)

It turns out that any growth function on an interval extends to a growth function on
(0,∞). For ease of reference, we state this formally in the remark below.
Remark 1.3.2. Let D ∈ (0,∞]. If ω is a growth function on (0, D) then

ω̃(t) := ω
(

min{t,D}
)

for each t ∈ (0,∞) (1.3.3)

is a growth function on (0,∞) with the property that ω̃ = ω on (0, D).
We shall frequently impose additional conditions on the growth functions employed

in this work. First, if ω is a growth function on (0, D), with D ∈ (0,∞], we shall
call ω doubling provided

sup
0<t<D/2

ω(2t)
ω(t) <∞, (1.3.4)

and refer to the supremum in the left hand-side of (1.3.4) as the doubling constant of
ω. It is then immediate from definitions that

if ω is a doubling growth function on (0, D), with D ∈ (0,∞], then
ω̃ is a doubling growth function on the interval (0,∞).

(1.3.5)

Another assumption (which plays a natural role in a variety of contexts) imposed on
a given growth function ω : (0, D) → (0,∞), with D ∈ (0,∞], is that

Cω := sup
0<t<D

{
1
ω(t)

(ˆ t

0
ω(s)ds

s
+ t

ˆ D

t

ω(s)
s

ds

s

)}
< +∞. (1.3.6)

Hence, whenever (1.3.6) holds it follows that Cω ∈ (0,∞) and
ˆ t

0
ω(s)ds

s
+ t

ˆ D

t

ω(s)
s

ds

s
≤ Cω · ω(t) for each t ∈ (0, D), (1.3.7)

with the added bonus that when D < ∞ this inequality also extends to t = D if ω(D)
is interpreted as in (1.3.1).

Let us note that for any growth function ω on (0, D), with D ∈ (0,∞], the demand
in (1.3.6) implies that ω is doubling. Indeed, for each t ∈ (0, D/4) we may write

(ln 2)ω(2t) ≤
ˆ 4t

2t
ω(s)ds

s
≤ 4t

ˆ D

t

ω(s)
s

ds

s
≤ 4Cω · ω(t) (1.3.8)

which already proves that ω is doubling in the case when D = ∞, whereas if D < ∞
then for each t ∈ (D/4, D/2) we have ω(2t) ≤ Cω(t) with C := ω(D)/ω(D/4).
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Remark 1.3.3. Condition (1.3.6) is closely related to the dilation indices of Orlicz spaces
studied in [10], [40] (which are useful in the theory of interpolation of Orlicz spaces).
Given a growth function ω : (0, D)→ (0,∞), where D ∈ (0,∞], we set

hω(s) := sup
0<t<min{D,D/s}

ω(ts)
ω(t) for each s ∈ (0,∞), (1.3.9)

and define the lower and upper dilation indices of ω, respectively, as

iω := lim
s→0+

ln hω(s)
ln s = sup

0<s<1

ln hω(s)
ln s , Iω := lim

s→∞
ln hω(s)

ln s = inf
s>1

ln hω(s)
ln s . (1.3.10)

Then one may check that (1.3.6) holds if 0 < iω ≤ Iω < 1. Indeed, from (1.3.10) we
see that whenever 0 < ε < min{iω, 1 − Iω} there exists some Cε ∈ (0,∞) such that
hω(s) ≤ Cεs

iω−ε for every s ∈ (0, 1), and hω(s) ≤ Cεs
Iω+ε for every s ∈ (1,∞). Hence,

there there exists C ∈ (0,∞) such that if 0 < t < D then

iω > 0 ⇒
ˆ t

0

ω(s)
ω(t)

ds

s
=
ˆ 1

0

ω(ts)
ω(t)

ds

s
≤ Cε

ˆ 1

0
siω−ε

ds

s
≤ C, (1.3.11)

Iω < 1 ⇒ t

ˆ D

t

ω(s)
sω(t)

ds

s
=
ˆ D/t

1

ω(ts)
sω(t)

ds

s
≤ Cε

ˆ ∞
1

sIω+ε−1ds

s
≤ C. (1.3.12)

It is of interest to provide relevant examples of growth functions satisfying (1.3.6).

Example 1.3.4. Fix D ∈ (0,∞]. Given α ∈ (0, 1), if ω(t) := tα for each t ∈ (0, D) then
iω = Iω = α, hence (1.3.6) holds. The particular version of Theorem 5.1.4 corresponding
to this scenario has been established in [96]. There are many examples of interest that
are treated here for the first time. To elaborate, fix an arbitrary α ∈ (0, 1) along with
θ ∈ R and, for each t ∈ (0,∞), define log+ t := max{0, ln t}. Then such examples include

ω(t) := tα (A+ log+ t)θ for all t ∈ (0, D), where A := max{1,−θ/α}, (1.3.13)

and

ω(t) := tα (B + log+(1/t))θ for all t ∈ (0, D), where B := max{1, θ/α}. (1.3.14)

In these situations iω = Iω = α which, as noted earlier, guarantees that (1.3.6) holds.
Another relevant example is offered by

ω(t) := max{tα, tβ} for all t ∈ (0, D), where 0 < α, β < 1. (1.3.15)

Indeed, in such a case we have iω = min{α, β} and Iω = max{α, β} if D = ∞, and
iω = Iω = min{α, β} if D <∞. Similarly, if

ω(t) := min{tα, tβ} for all t ∈ (0, D), where 0 < α, β < 1, (1.3.16)

then iω = min{α, β} and Iω = max{α, β} if D =∞ and iω = Iω = max{α, β} if D <∞.
Hence, once again, condition (1.3.6) is verified.
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Next, we introduce generalized Hölder spaces, consisting of functions whose continuity
is quantified using growth functions of the sort previously discussed.

Definition 1.3.5. Let U ⊆ Rn be an arbitrary set and M ≥ 1.

(a) Given a growth function ω on (0,∞), for each vector-valued function u : U → CM

consider [u]Ċω(U,CM ) to be zero if U is a singleton, and

[u]Ċω(U,CM ) := sup
x,y∈U
x 6=y

|u(x)− u(y)|
ω(|x− y|) ∈ [0,∞] (1.3.17)

if the cardinality of the set U is at least two. Then the homogeneous ω-Hölder
space on U is introduced as

Ċ ω(U,CM ) :=
{
u : U → CM : [u]Ċω(U,CM ) <∞

}
. (1.3.18)

(b) If D ∈ (0,∞] and ω is a growth function on (0, D), define the inhomogeneous
ω-Hölder space on U as

C ω(U,CM ) :=
{
u ∈ Ċ ω̃(U,CM ) : u bounded on U

}
, (1.3.19)

and is equipped with the norm

C ω(U,CM ) 3 u 7−→ ‖u‖Cω(U,CM ) := sup
U
|u|+ [u]

Ċ ω̃(U,CM )
. (1.3.20)

In relation to Definition 1.3.5 a few comments are in order. First, in the context
of item (a), [·]Ċω(U,CM ) is a semi-norm for the space Ċ ω(U,CM ). Second, the fact that
ω(t) → 0 as t → 0+ implies that if u ∈ Ċ ω(U,CM ) then u is a uniformly continuous
function on U . Finally, we note that the choice ω(t) := tα for each t ∈ (0,∞), with
α ∈ (0, 1), yields the classical scale of Hölder spaces of order α on U .

Going further, it is clear from definitions that if ω is a growth function on (0,∞)
and U ⊆ Rn is an arbitrary set, then

fg ∈ C ω(U,CM ) and ‖fg‖Cω(U,CM ) ≤ ‖f‖Cω(U,CM )‖g‖Cω(U,CM )

for any two functions f, g ∈ C ω(U,CM ).
(1.3.21)

Also, for each subset V of U , the restriction operators

Ċ ω(U,CM ) 3 u 7→ u
∣∣
V
∈ Ċ ω(V,CM ) and C ω(U,CM ) 3 u 7→ u

∣∣
V
∈ C ω(V,CM )

are well-defined, linear, and bounded.
(1.3.22)

In the opposite direction, we have the following extension result.
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Lemma 1.3.6. Let U ⊆ Rn be an arbitrary set, M ≥ 1, and suppose ω is a doubling
growth function on (0,∞). Then Ċ ω(U,CM ) and Ċ ω(U,CM ) coincide as vector spaces
and have equivalent semi-norms. More specifically, the restriction map

Ċ ω(U,CM ) 3 u 7−→ u
∣∣
U
∈ Ċ ω(U,CM ) (1.3.23)

is a linear bijection which, under the canonical identification of functions u ∈ Ċ ω(U,CM )
with their restrictions u

∣∣
U
∈ Ċ ω(U,CM ), satisfies

[u]Ċω(U,CM ) ≤ [u]Ċω(U,CM ) ≤ C[u]Ċω(U,CM )

for each function u ∈ Ċ ω(U,CM ),
(1.3.24)

where C ∈ [1,∞) is the doubling constant of ω.
As a corollary of this, (1.3.5), and definitions, whenever U ⊆ Rn is an arbitrary set,

and ω is a doubling growth function on (0, D) for some D ∈ (0,∞], one may canonically
identify C ω(U,CM ) ≡ C ω(U,CM ) and there exists C ∈ [1,∞) such that

‖u‖Cω(U,CM ) ≤ ‖u‖Cω(U,CM ) ≤ C‖u‖Cω(U,CM )

for each function u ∈ C ω(U,CM ).
(1.3.25)

Proof. Fix an arbitrary u ∈ Ċ ω(U,CM ). As noted earlier, this membership ensures that
u is uniformly continuous, hence u extends uniquely to a continuous function v on U . To
show that v actually belongs to Ċ ω(U,CM ) pick two arbitrary distinct points x, y ∈ U .
Then there exist two sequences {xj}j∈N, {yj}j∈N of points in U such that xj → x and
yj → y as j → ∞. After discarding finitely many terms, there is no loss of generality
in assuming that 0 < |xj − yj | < 2|x − y| for each j ∈ N. Relying on the fact that ω is
non-decreasing we may then write

|v(x)− v(y)| = lim
j→∞

|u(xj)− u(yj)| ≤ [u]Ċω(U,CM ) lim sup
j→∞

ω(|xj − yj |)

≤ [u]Ċω(U,CM ) ω(2|x− y|) ≤ C[u]Ċω(U,CM ) ω(|x− y|), (1.3.26)

where C ∈ [1,∞) is the doubling constant of ω. This ultimately proves that v ∈
Ċ ω(U,CM ) and [v]Ċω(U,CM ) ≤ C[u]Ċω(U,CM ). All desired conclusions now follow.

To simplify the notation, we call Ċ ω(U) := Ċ ω(U,C), and C ω(U) := C ω(U,C). We
continue by making the following definition.

Definition 1.3.7. Let Ω ⊆ Rn be a nonempty open set and denote by C 1(Ω) the space
of continuously differentiable functions in Ω. Given a growth function ω on (0, D), with
D ∈ (0,∞], for each u ∈ C 1(Ω) define

‖u‖C 1,ω(Ω) := sup
Ω
|u|+ sup

Ω
|∇u|+ [∇u]

Ċ ω̃(Ω)
∈ [0,∞], (1.3.27)

then introduce
C 1,ω(Ω) :=

{
u ∈ C 1(Ω) : ‖u‖C 1,ω(Ω) <∞

}
. (1.3.28)

To close this section, we make the following convention. When simply speaking of
a growth function, we shall understand a growth function ω defined on some interval
(0, D), with D ∈ (0,∞].
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1.4 Clifford algebras

This section is a brief tutorial about Clifford algebras, which are a non-commutative
higher-dimensional version of the field of complex numbers, where some of the magic can-
cellations and algebraic miracles typically associated with the complex plane still occur.

The Clifford algebra with n imaginary units is the minimal enlargement of Rn to a
unitary real algebra (C̀ n,+,�), which is not generated as an algebra by any proper
subspace of Rn and such that

x� x = −|x|2 for every x ∈ Rn ↪→ C̀ n. (1.4.1)

In particular, with {ej}1≤j≤n denoting the standard orthonormal basis in Rn, we have

ej � ej = −1 for all j ∈ {1, . . . , n} and

ej � ek = −ek � ej for each distinct j, k ∈ {1, . . . , n}.
(1.4.2)

This allows us define an embedding Rn ↪→ C̀ n by identifying

Rn 3 x = (x1, . . . , xn) ≡
n∑
j=1

xjej ∈ C̀ n. (1.4.3)

In particular, {ej}1≤j≤n become n imaginary units in C̀ n. Any element u ∈ C̀ n has
a unique representation of the form

u =
n∑
`=0

∑′

|I|=`
uIeI , uI ∈ R, (1.4.4)

where
∑′ indicates that the sum is performed only over strictly increasing multi-indices

I, i.e., I = (i1, i2, . . . , i`) with 1 ≤ i1 < i2 < · · · < i` ≤ n, and eI denotes the Clifford
algebra product eI := ei1 � ei2 � · · · � ei` . Write e0 := e∅ := 1 for the multiplicative
unit in C̀ n. For each u ∈ C̀ n represented as in (1.4.4) define the projection

uproj :=
n∑
j=1

ujej ∈ Rn, (1.4.5)

and denote by

uscal := u∅e∅ = u∅ ∈ R, the scalar component of u. (1.4.6)

We endow C̀ n with the natural Euclidean metric, hence

|u| :=

 n∑
`=0

∑′

|I|=`
|uI |2

1/2

for each u =
n∑
`=0

∑′

|I|=`
uIeI ∈ C̀ n. (1.4.7)

Next, define the conjugate of each eI as the unique element eI ∈ C̀ n with the property
that eI � eI = eI � eI = 1. Thus, if I = (i1, . . . , i`) with 1 ≤ i1 < i2 < · · · < i` ≤ n,
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then the conjugate of eI is given by eI = (−1)`ei` � · · · � e2 � e1. More generally, for
an arbitrary element u ∈ C̀ n represented as in (1.4.4) we define

u :=
n∑
`=0

∑′

|I|=`
uIeI . (1.4.8)

Note that x = −x for every x ∈ Rn ↪→ C̀ n, and |u| = |u| for every u ∈ C̀ n. One may
also check that for any u, v ∈ C̀ n we have

|u� v| ≤ 2n/2|u||v|, u� v = v � u, (1.4.9)

and, in fact,

|u� v| = |u||v| if either

u ∈ Rn ↪→ C̀ n, or v ∈ Rn ↪→ C̀ n,
(1.4.10)

For further details on Clifford algebras, the reader is referred to [99].
To study the boundedness of operators acting on Clifford algebra-valued functions, we

need appropriate norms on the spaces to which the said functions belong. If (X, ‖·‖X) is a
Banach space thenX⊗C̀ n will denote the Banach space consisting of elements of the form

u =
n∑
`=0

∑′

|I|=`
uIeI , uI ∈ X, (1.4.11)

equipped with the norm

X ⊗ C̀ n 3 u =
n∑
`=0

∑′

|I|=`
uIeI 7→ ‖u‖X⊗C̀ n :=

n∑
`=0

∑′

|I|=`
‖uI‖X . (1.4.12)



CHAPTER 2

Singular integral operators and quantitative flatness

We develop the theory of layer potentials in the context of δ-SKT domains in Rn (with
SKT acronym for Semmes-Kenig-Toro) where the parameter δ ∈ (0, 1), regulating the
size of the BMO semi-norm of the outward unit normal ν to Ω, is assumed to be small.
This category of two-sided NTA domains with Ahlfors regular boundaries, which emerged
from the earlier work of S. Semmes, C. Kenig, and T. Toro, is related to a class of domains
introduced in [53]. The latter was designed to work well when the domains in question
have compact boundaries. By way of contrast, the fact that we are now demanding
‖ν‖[BMO(∂Ω,σ)]n < 1 (where σ is the “surface measure” Hn−1b∂Ω) has topological and
metric implications for Ω, namely Ω is a connected unbounded open set, with a connected
unbounded boundary and an unbounded connected complement. For example, in the
two-dimensional setting we show that the class of δ-SKT with δ ∈ (0, 1) small agrees
with the category of chord-arc domains with small constant.

Assuming Ω ⊆ Rn to be a δ-SKT with δ ∈ (0, 1) sufficiently small (relative to other
geometric characteristics of Ω) we prove that the operator norm of Calderón-Zygmund
singular integrals whose kernels exhibit a certain algebraic structure (specifically, they
contain the inner product to ν(y) with the “chord” x − y as a factor) is O(δ) as δ →
0+ in the context of Muckenhoupt weighted Lebesgue spaces, Lorentz spaces, Morrey
spaces, vanishing Morrey spaces, block spaces, as well as for the brands of Sobolev spaces
naturally associated with these scales. Simply put, the problem that we completely solve
is that of determining when singular integral operators of double layer type have small
operator norms. We also establish estimates in the opposite direction, quantifying the
flatness of a “surface” by estimating the BMO semi-norm of its unit normal in terms of the
operator norms of certain singular integrals canonically associated with the given surface
(such as the harmonic double layer, the family of Riesz transforms, and commutators
between Riesz transforms and pointwise multiplication by the components of the unit
normal). Ultimately, this goes to show that the two-way bridge between geometry and
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analysis constructed here is in the nature of best possible.
Significantly, the operator norm estimates described in the previous paragraph permit

us to invert the boundary double layer potentials associated with certain classes of second-
order PDE (such as the Laplacian, any scalar homogeneous constant complex coefficient
second-order operator which is weakly elliptic when n ≥ 3 or strongly elliptic in any
dimension, the Lamé system of elasticity and, most generally, any weakly elliptic homo-
geneous constant complex coefficient second-order systems having a certain distinguished
coefficient tensor), acting on a large variety of function spaces considered on the boundary
of a sufficiently flat domain (specifically, a δ-SKT domain with δ ∈ (0, 1) suitably small
relative to other geometric characteristics of the said domain). In particular, this portion
of our work goes in the direction of answering the question posed by C. Kenig in [60,
Problem 3.2.2, p. 117] asking to invert layer potentials in appropriate spaces on certain
uniformly rectifiable sets.

In turn, these invertibility results allow us to establish solvability results for boundary
value problems in the class of weakly elliptic second-order systems mentioned above,
in a sufficiently flat δ-SKT domain, with boundary data from Muckenhoupt weighted
Lebesgue spaces, Lorentz spaces, Morrey spaces, vanishing Morrey spaces, block spaces,
and from Sobolev spaces naturally associated with these scales.

In summary, a central theme in Geometric Measure Theory is understanding how
geometric properties translate into analytical ones, and here we explore the implications
of demanding that Gauss’ map ∂Ω 3 x 7→ ν(x) ∈ Sn−1 has small BMO semi-norm, in
the realm of singular integral operators and boundary value problems. The sharp theory
developed here complements the results of S. Hofmann, M. Mitrea, and M. Taylor ob-
tained for bounded domains in [53], and extends previously known well-posedness results
for elliptic PDE’s in the upper half-space (which is a δ-SKT domain for each δ ∈ (0, 1)).

The material in this chapter is based on joint work with J.M. Martell, D. Mitrea,
I. Mitrea, and M. Mitrea (cf. [77]).
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2.1 Introduction

More than 25 years ago, in [60, Problem 3.2.2, p. 117], C. Kenig asked to “Prove that
the layer potentials are invertible in appropriate [...] spaces in [suitable subclasses of
uniformly rectifiable] domains.” Kenig’s main motivation in this regard stems from the
desire of establishing solvability results for boundary value problems formulated in a
rather inclusive geometric setting. In the buildup to this open question on [60, p. 116], it
is remarked that there are quite general classes of open sets Ω ⊆ Rn with the property that
if σ := Hn−1b∂Ω (where Hn−1 stands for the (n − 1)-dimensional Hausdorff measure in
Rn) then the said layer potentials are bounded operators on Lp(∂Ω, σ) for each exponent
p ∈ (1,∞). Remarkably, this is the case whenever Ω ⊆ Rn is an open set with a
uniformly rectifiable boundary (cf. [33]).

To further elaborate on this issue, recall the terminology introduced in Section 1.2.
In this context, note that the given system L in (1.2.1) does not determine uniquely
the coefficient tensor

A :=
(
aαβjk

)
1≤j,k≤n

1≤α,β≤M
(2.1.1)
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since employing Ã :=
(
ãαβjk

)
1≤j,k≤n

1≤α,β≤M
in place of A in the right-hand side of (1.2.1) yields

the same system whenever the difference aαβjk − ã
αβ
jk is antisymmetric in the indices j, k

(for each α, β ∈ {1, . . . ,M}). Hence, there are a multitude of coefficient tensors A which
may be used to represent the given system L as in (1.2.1). For each such coefficient
tensor A :=

(
aαβjk

)
1≤j,k≤n

1≤α,β≤M
we shall associate a double layer potential operator KA on

the boundary of a given uniformly rectifiable domain Ω ⊆ Rn (see Definition 1.1.5).
Specifically, if σ := Hn−1b∂Ω is the “surface measure” on ∂Ω and if ν = (ν1, . . . , νn)
denotes the geometric measure theoretic outward unit normal to Ω, then for each function

f = (fα)1≤α≤M ∈
[
L1
(
∂Ω ,

σ(x)
1 + |x|n−1

)]M
(2.1.2)

we define, at σ-a.e. point x ∈ ∂Ω,

KAf(x) :=
(
− lim
ε→0+

ˆ
∂Ω\B(x,ε)

νk(y)aβαjk (∂jEγβ) (x− y)fα(y) dσ(y)
)

1≤γ≤M
. (2.1.3)

(Note that (2.1.2) is the most general environment in which each truncated integral
in (2.1.3) is absolutely convergent.)

To offer a simple example, consider the case when L = ∆, the Laplacian, in R2.
Then n = 2 and M = 1. In this scalar case, we agree to drop the Greek superscripts
labeling the entries of the coefficient tensor (2.1.1) used to express L as in (1.2.1). Hence,
we shall consider writings ∆ = ajk∂j∂k corresponding to various choices of the matrix
A = (ajk)1≤j,k≤2 ∈ C2×2. Two such natural choices are

A0 :=
(

1 0
0 1

)
, A1 :=

(
1 i

−i 1

)
, (2.1.4)

corresponding to which the recipe given in (2.1.3) yields

KA0f(x) = lim
ε→0+

1
2π

ˆ
∂Ω\B(x,ε)

〈ν(y), y − x〉
|x− y|2

f(y) dσ(y) for σ-a.e. x ∈ ∂Ω, (2.1.5)

i.e., the (two-dimensional) harmonic boundary-to-boundary double layer potential oper-
ator and, under the natural identification R2 ≡ C,

KA1f(z) = lim
ε→0+

1
2πi

ˆ
∂Ω\B(z,ε)

f(ζ)
ζ − z

dζ for σ-a.e. z ∈ ∂Ω, (2.1.6)

i.e., the boundary-to-boundary Cauchy integral operator, respectively.

Returning to the mainstream discussion in the general setting considered earlier,
fundamental work in [33] guarantees that, if Ω ⊆ Rn is a uniformly rectifiable domain,
then for each coefficient tensor A as in (2.1.1) which may be employed to write the given
system L as in (1.2.1), the boundary-to-boundary double layer potential KA from (2.1.3)
is a well-defined, linear, and bounded operator on

[
Lp(∂Ω, σ)

]M for each p ∈ (1,∞).
This property is particularly relevant in the treatment of the Dirichlet Problem for the
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system L in the uniformly rectifiable domain Ω when the boundary data are selected
from the space

[
Lp(∂Ω, σ)

]M with p ∈ (1,∞), i.e.,

(D)p


u ∈

[
C∞(Ω)

]M
, Lu = 0 in Ω,

Nκu ∈ Lp(∂Ω, σ),

u
∣∣κ−n.t.

∂Ω = g ∈
[
Lp(∂Ω, σ)

]M
,

(2.1.7)

where Nκu is the nontangential maximal function, and u
∣∣κ−n.t.

∂Ω is the nontangential
boundary trace, of the solution u (see the body of the manuscript for precise defini-
tions). Indeed, the essence of the boundary layer method is to consider as a candidate
for the solution of the Dirichlet Problem (2.1.7) the CM -valued function u defined at
each point x ∈ Ω by

u(x) :=
(
−
ˆ
∂Ω
νk(y)aβαjk (∂jEγβ) (x− y)fα(y) dσ(y)

)
1≤γ≤M

, (2.1.8)

for some yet-to-be-determined function f = (fα)1≤α≤M ∈
[
Lp(∂Ω, σ)

]M . In light of
the special format of u (in particular, thanks to the jump-formula (2.3.67)), this ul-
timately reduces the entire aforementioned Dirichlet Problem to the issue of solving
the boundary integral equation(1

2I +KA

)
f = g on ∂Ω, (2.1.9)

where I is the identity operator (see Section 2.6 for the actual implementation of this
approach). As such, having the operator KA well defined, linear, and bounded on[
Lp(∂Ω, σ)

]M with p ∈ (1,∞) opens the door for bringing in functional analytic tech-
niques for inverting 1

2I+KA on
[
Lp(∂Ω, σ)

]M and eventually expressing the solution f as(1
2I + KA

)−1
g.

A breakthrough in this regard has been registered by S. Hofmann, M. Mitrea, and
M. Taylor in [53], where they have employed Fredholm theory in order to solve the
boundary integral equation (2.1.9). To describe one of their main results, suppose
L = ∆, the Laplacian in Rn, is written as ∆ = ajk∂j∂k for the identity matrix A :=
(δjk)1≤j,k≤n. The blueprint provided in (2.1.3) then presently produces the classical
harmonic double layer potential operator K∆, acting on each function f ∈ Lp(∂Ω, σ)
with p ∈ (1,∞) according to

K∆f(x) := lim
ε→0+

1
ωn−1

ˆ
∂Ω\B(x,ε)

〈ν(y), y − x〉
|x− y|n

f(y) dσ(y) for σ-a.e. x ∈ ∂Ω, (2.1.10)

where ωn−1 is the surface area of the unit sphere in Rn. In regard to this operator,
S. Hofmann, M. Mitrea, and M. Taylor have proved in [53, Theorem 4.36, pp. 2728-2729]
that if Ω ⊆ Rn is a bounded open set satisfying a two-sided local John condition and
whose boundary is Ahlfors regular, then for every threshold ε > 0 there exists some δ > 0
(which depends only on the said geometric characteristics of Ω, n, p, and ε) such that

dist
(
ν ,
[
VMO(∂Ω, σ)

]n)
< δ =⇒ dist

(
K∆ , Cp(Lp(∂Ω, σ))

)
< ε. (2.1.11)
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The distance in the left-hand side of (2.1.11) is measured in the John-Nirenberg space[
BMO(∂Ω, σ)

]n of vector-valued functions of bounded mean oscillations on ∂Ω (with
respect to the surface measure σ), from the unit vector ν ∈

[
L∞(∂Ω, σ)

]n to the Sarason
space

[
VMO(∂Ω, σ)

]n of vector-valued functions of vanishing mean oscillations on ∂Ω
(with respect to the surface measure σ), which is a closed subspace of

[
BMO(∂Ω, σ)

]n.
The distance in the right-hand side of (2.1.11) is considered from K∆ ∈ Bd(Lp(∂Ω, σ)),
the Banach space of all linear and bounded operators on Lp(∂Ω, σ) equipped with the
operator norm, to Cp(Lp(∂Ω, σ)) which is the closed linear subspace of Bd(Lp(∂Ω, σ))
consisting of all compact operators on Lp(∂Ω, σ). In particular, in the class of domains
currently considered, K∆ is a compact operator on Lp(∂Ω, σ) whenever ν belongs to[
VMO(∂Ω, σ)

]n. This is remarkable in as much that a purely geometric condition implies
a functional analytic property of a singular integral operator. Most importantly, (2.1.11)
ensures the existence of some small threshold δ > 0 (which depends only on the said
geometric characteristics of Ω, n, and p) with the property that

dist
(
ν ,
[
VMO(∂Ω, σ)

]n)
< δ =⇒ dist

(
K∆ , Cp(Lp(∂Ω, σ))

)
< 1

2 (2.1.12)

=⇒ 1
2I +K∆ Fredholm operator with index zero on Lp(∂Ω, σ).

This is the main step in establishing that 1
2I +K∆ is actually an invertible operator on

Lp(∂Ω, σ) in the said geometric setting, under the additional assumption that Rn \ Ω
is connected (see [53, Theorem 6.13, p. 2806]).

Another key result of a similar flavor to (2.1.11) proved in [53] pertains to the
commutators

[
Mνk , Rj

]
:= MνkRj−RjMνk , where j, k ∈ {1, . . . , n}, between the operator

Mνk of pointwise multiplication by νk, the k-th scalar component of the geometric
measure theoretic outward unit normal ν to Ω, and j-th Riesz transform Rj on ∂Ω,
acting on any given function f ∈ L1(∂Ω, σ(x)

1+|x|n−1
)
according to

Rjf(x) := lim
ε→0+

2
ωn−1

ˆ
∂Ω\B(x,ε)

xj − yj
|x− y|n

f(y) dσ(y) for σ-a.e. x ∈ ∂Ω. (2.1.13)

Specifically, [53, Theorem 2.19, p. 2608] states that if Ω ⊆ Rn is a bounded open set
satisfying a two-sided local John condition and whose boundary is Ahlfors regular, and
if some p ∈ (1,∞) has been fixed, then there exists some C ∈ (0,∞) (depending only on
the aforementioned geometric characteristics of Ω, n, and p) such that

n∑
j,k=1

dist
([
Mνk , Rj

]
, Cp(Lp(∂Ω, σ))

)
≤ C dist

(
ν ,
[
VMO(∂Ω, σ)

]n)
. (2.1.14)

Estimates of this type (with the Riesz transforms replaced by more general singular
integral operators of the same nature) turned out to be a key ingredient in the proof of
the fact that, if Ω is as above and p ∈ (1,∞), then for every threshold ε > 0 there exists
some δ > 0 (of the same nature as before) such that

dist
(
ν ,
[
VMO(∂Ω, σ)

]n)
< δ =⇒ dist

(
K∆ , Cp(Lp1(∂Ω, σ))

)
< ε, (2.1.15)
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where Lp1(∂Ω, σ) is a certain brand of Lp-based Sobolev space of order one on ∂Ω,
introduced in [53] (and further developed in [95], [93]).

These considerations have led to the development of a theory of boundary layer
potentials in what was labeled in [53] as bounded δ-SKT domains, a subclass of the family
of bounded uniformly rectifiable domains inspired by work of S. Semmes [107], [108], and
C. Kenig and T. Toro [61], [62], [63], whose trademark feature is the fact that the distance
dist

(
ν ,
[
VMO(∂Ω, σ)

]n), measured in the John-Nirenberg space
[
BMO(∂Ω, σ)

]n, is < δ.
In turn, this was used in [53] to establish the well-posedness of the Dirichlet, Regularity,
Neumann, and Transmission problems for the Laplacian in the class of bounded δ-SKT
domains with δ sufficiently small (relative to other geometric characteristics of Ω). Quite
recently, this theory has been extended in [80] to the case when the boundary data
belong to Muckenhoupt weighted Lebesgue and Sobolev spaces.

In addition, the class of bounded δ-SKT domains also turns out to be in the nature
of best possible as far as the “close-to-compactness” results mentioned in (2.1.11) and
(2.1.14) are concerned. Indeed, [53, Theorem 4.41, p. 2743] states that, if Ω ⊆ Rn is a
uniformly rectifiable domain with compact boundary and if some p ∈ (1,∞) has been
fixed, then there exists some C ∈ (0,∞) (depending only on the uniform rectifiability
character of Ω, n, and p) such that

dist
(
ν ,
[
VMO(∂Ω, σ)

]n) (2.1.16)

≤ C
{

dist
(
K∆ , Cp(Lp(∂Ω, σ))

)
+

n∑
j,k=1

dist
([
Mνk , Rj

]
, Cp(Lp(∂Ω, σ))

)}1/n
.

In particular, if K∆ and all commutators
[
Mνk , Rj

]
are compact on Lp(∂Ω, σ) then ν

belongs to
[
VMO(∂Ω, σ)

]n.
The stated goal of [53] was to “find the optimal geometric measure theoretic context

in which Fredholm theory can be successfully implemented, along the lines of its original
development, for solving boundary value problems with Lp data via the method of layer
potentials [in domains with compact boundaries].” In particular, [53] may be regarded as
a sharp version of the fundamental work of E. Fabes, M. Jodeit, and N. Rivière in [39],
dealing with the method of boundary layer potentials in bounded C 1 domains. As such,
the theory developed in [53] goes some way towards answering Kenig’s open question
formulated at the beginning of this section.

However, the insistence on ∂Ω being a compact set is prevalent in this work. In
particular, the classical fact that the Dirichlet Problem (2.1.7) is uniquely solvable in
the case when Ω = Rn+ (by taking the convolution of the boundary datum g with the
harmonic Poisson kernel in the upper half-space; cf. [8], [42], [115], [117]) does not fall
under the tutelage of [53]. The issue is that once the uniformly rectifiable domain Ω
is allowed to have an unbounded boundary then, generally speaking, singular integral
operators like the harmonic double layer (2.1.10) are no longer (close to being) compact
on Lp(∂Ω, σ), though they remain well defined, linear, and bounded on this space, as
long as 1 < p < ∞. The fact that the theory developed in [53] is not applicable in this
scenario leads one to speculate whether the treatment of layer potentials may be extended
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to a class of unbounded domains that includes the upper half-space. In particular, it is
natural to ask whether there is a parallel theory for unbounded domains Ω ⊆ Rn in
which we control the mean oscillations of its outward unit normal ν by suitably adapting
the condition dist

(
ν,
[
VMO(∂Ω, σ)

]n)
< δ which is ubiquitous in [53]. This is indeed

the main goal in the present monograph.

A seemingly peculiar aspect of the harmonic double layer operator (which, in hind-
sight turns out to be one of its salient features) is that, as visible from (2.1.10), if Ω = Rn+
then K∆ = 0. Indeed, in such a case we have ∂Ω = Rn−1 × {0} and ν = (0, . . . , 0,−1),
hence 〈ν(y), y − x〉 = 0 for all x, y ∈ ∂Ω. This observation lends some credence to the
conjecture loosely formulated as follows:

if Ω ⊆ Rn is a uniformly rectifiable domain and 1 < p < ∞,
then the operator norm ‖K∆‖Lp(∂Ω,σ)→Lp(∂Ω,σ) is small if Ω is
close to being a half-space in Rn.

(2.1.17)

To make this precise, one needs to choose an appropriate way of quantifying the proximity
of a uniformly rectifiable domain Ω ⊆ Rn to a half-space in Rn. Since work in [52] gives
that a uniformly rectifiable domain Ω ( Rn actually is a half-space in Rn if and only
if its geometric measure theoretic outward unit normal ν is a constant vector field, in
which scenario ‖ν‖[BMO(∂Ω,σ)]n = 0, it is natural to make the following conjecture (which
is a precise, quantitative version of (2.1.17)):

if Ω ⊆ Rn is an open set satisfying a two-sided local John
condition and whose boundary is Ahlfors regular, then for each
p ∈ (1,∞) there exists a constant C ∈ (0,∞) (which depends
only on the said geometric characteristics of Ω, n, and p) such
that ‖K∆‖Lp(∂Ω,σ)→Lp(∂Ω,σ) ≤ C ‖ν‖[BMO(∂Ω,σ)]n .

(2.1.18)

We may go a step further and adopt a broader perspective, by replacing the Laplacian
by a more general system of the sort discussed in (1.2.1). Specifically, consider a second-
order, homogeneous, constant complex coefficient, weakly elliptic, M × M system L

in Rn written as in (1.2.1) for some coefficient tensor A as in (2.1.1). Also, suppose
Ω ⊆ Rn is an open set satisfying a two-sided local John condition and whose boundary
is Ahlfors regular. Finally, fix an integrability exponent p ∈ (1,∞). Then one may
speculate whether there exists a constant C ∈ (0,∞) (which depends only on the said
geometric characteristics of Ω, n, p, and A) such that the double layer potential operator
KA associated with the set Ω and the coefficient tensor A as in (2.1.3) satisfies

‖KA‖[Lp(∂Ω,σ)]M→[Lp(∂Ω,σ)]M ≤ C ‖ν‖[BMO(∂Ω,σ)]n . (2.1.19)

It turns out that the choice of the coefficient tensor A used to write the given system
L drastically affects the veracity of (2.1.19). Indeed, consider the case when L := ∆ is
the Laplacian in R2, and Ω := R2

+. Observe that ‖ν‖[BMO(∂Ω,σ)]2 = 0 in this case, since
ν is constant. From (2.1.4)-(2.1.5) we see that KA0 = 0, which is in agreement with
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what (2.1.19) predicts in this case. On the other hand, the operator KA1 from (2.1.6)
becomes (under the natural identification ∂Ω ≡ R)

KA1f(x) = lim
ε→0+

1
2πi

ˆ
R\[x−ε,x+ε]

f(y)
y − x

dy for L1-a.e. x ∈ R, (2.1.20)

i.e., KA1 = (i/2)H where

Hf(x) := lim
ε→0+

1
π

ˆ

y∈R
|x−y|>ε

f(y)
x− y

dy for L1-a.e. x ∈ R, (2.1.21)

is the classical Hilbert transform on the real line. In particular, since H2 = −I we
have

(
KA1

)2 = 4−1I which goes to show that ‖KA1‖[Lp(∂Ω,σ)]M→[Lp(∂Ω,σ)]M ≥ 2−1,
invalidating (2.1.19) in this case.

This brings up the question of determining which of the many coefficient tensors
A that may be used in the representation of the given system L as in (1.2.1) actually
give rise to double layer potential operators KA (via the blueprint (2.1.3)) that have a
chance of satisfying the estimate formulated in (2.1.19). This question is of an algebraic
nature. To answer it, we find it convenient to adopt a more general point of view
and consider the class of singular integral operators acting at σ-a.e. point x ∈ ∂Ω on
functions f as in (2.1.2) according to

TΘf(x) :=
(

lim
ε→0+

ˆ
∂Ω\B(x,ε)

〈
Θγ(x− y)ν(y) , f(y)

〉
dσ(y)

)
1≤γ≤M

(2.1.22)

where

Θ = (Θγ)1≤γ≤M with each Θγ ∈
[
C∞(Rn \ {0})

]M×n
odd and positive homogeneous of degree 1− n.

(2.1.23)

Note that KA fits into this class, as it corresponds to (2.1.22) with Θ = (Θγ)1≤γ≤M given
by Θγ :=

(
aβαjk ∂jEγβ

)
1≤α≤M
1≤k≤n

for each index γ ∈ {1, . . . ,M}.

In this notation, the question is to find what additional condition should be imposed
on Θ = (Θγ)1≤γ≤M so that the analogue of (2.1.19) holds with the operator KA replaced
by TΘ. The latter inequality implies that TΘ must vanish whenever Ω is a half-space in
Rn. Choosing Ω := {z ∈ Rn : 〈z, ω〉 > 0} with ω ∈ Sn−1 arbitrary then leads to the
conclusion that for each index γ ∈ {1, . . . ,M} we have

Θγ(x− y)ω = 0 for each ω ∈ Sn−1 and each x, y ∈ 〈ω〉⊥ with x 6= y. (2.1.24)

Specializing this to the case when y = 0 and observing that x ∈ 〈ω〉⊥ is equivalent
to having ω ∈ 〈x〉⊥, we arrive at

Θγ(x)ω = 0 ∈ CM whenever x 6= 0 and ω ∈ 〈x〉⊥, (2.1.25)

which is the same as saying that for each vector x ∈ Rn \ {0} the rows of the matrix
Θγ(x) ∈ CM×n are scalar multiples of x. Thus, there exists a family of scalar functions
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kγ,1, . . . , kγ,M defined in Rn \ {0} such that the rows of Θγ(x) are kγ,1(x)x, . . . , kγ,M (x)x
for each x ∈ Rn \ {0}. Ultimately, this implies that k :=

(
kγ,α

)
1≤γ≤M
1≤α≤M

is a matrix-

valued function belonging to
[
C∞(Rn \ {0})

]M×M which is even, positive homogeneous
of degree −n, and such that for each γ ∈ {1, . . . ,M} we have

Θγ(x)ω = 〈x, ω〉kγ·(x) for each x ∈ Rn \ {0} and ω ∈ Rn. (2.1.26)

Consequently, TΘ from (2.1.22) may be simply re-cast as

Tf(x) = lim
ε→0+

ˆ
∂Ω\B(x,ε)

〈x− y, ν(y)〉k(x− y)f(y) dσ(y) for σ-a.e. x ∈ ∂Ω. (2.1.27)

In terms of the original double layer potential operator KA, the above argument proves
that

if (2.1.19) holds then the integral kernel of KA is necessarily of
the form 〈x − y, ν(y)〉k(x − y) for some matrix-valued function
k ∈

[
C∞(Rn\{0})

]M×M which is even and positive homogeneous
of degree −n.

(2.1.28)

An algebraic condition, formulated solely in terms of A, guaranteeing that the integral
kernel of KA has the distinguished structure singled out in (2.1.28) has been identified
in [86] (see (2.3.74)-(2.3.75) where the said algebraic condition is recalled). Henceforth,
we shall refer to such a coefficient tensor A as being “distinguished”, and we shall denote
by Adis

L the collection of all distinguished coefficient tensors which may be employed
in the writing of a given system L.

Examples of weakly elliptic second-order homogeneous constant coefficient systems
L in Rn which possess distinguished coefficient tensors (i.e., for which Adis

L 6= ∅) include
all scalar operators in dimension n ≥ 3. In particular, this is the case for the Laplacian
∆ =

n∑
j=1

∂2
j or, more generally, for operators of the form L = divA∇ with the coefficient

matrix A = (ajk)1≤j,k≤n ∈ Cn×n satisfying the weak ellipticity condition

n∑
j,k=1

ajkξjξk 6= 0, ∀ ξ = (ξ1, . . . , ξn) ∈ Rn \ {0}. (2.1.29)

Other examples of weakly elliptic second-order homogeneous constant coefficient systems
which possess distinguished coefficient tensors are obtained by considering the complex
version of the Lamé system of elasticity in Rn,

Lµ,λ := µ∆ + (λ+ µ)∇div, (2.1.30)

where the Lamé moduli λ, µ ∈ C are assumed to satisfy

µ 6= 0, 2µ+ λ 6= 0, 3µ+ λ 6= 0. (2.1.31)

The first two requirements in (2.1.31) are equivalent to having the system Lµ,λ weakly
elliptic (in the sense of (1.2.3)), while the last requirement in (2.1.31) ensures the
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existence of a distinguished coefficient tensor for Lµ,λ. Recall from (1.2.7) that the
(strong) Legendre-Hadamard ellipticity condition (1.2.4) holds for the complex Lamé
system Lµ,λ if and only if

Reµ > 0 and Re (2µ+ λ) > 0. (2.1.32)

As such, our results apply to certain classes of weakly elliptic second-order systems which
are not necessarily strongly elliptic (in the sense of Legendre-Hadamard). Also, while
the Lamé system is symmetric, we stress that the results in this monograph require no
symmetry for the systems involved.

One of the main results in this work asserts that if L is a second-order, homogeneous,
constant complex coefficient, weakly elliptic,M×M system in Rn, with the property that
Adis
L 6= ∅, and if Ω ⊆ Rn is an open set satisfying a two-sided local John condition and

whose boundary is Ahlfors regular, then for each A ∈ Adis
L and each p ∈ (1,∞) there exists

a constant C ∈ (0,∞) (which depends only on the said geometric characteristics of Ω, n,
p, and A) such that estimate (2.1.19) actually holds (hence, in particular, the conjecture
formulated in (2.1.18) is true). See Theorem 2.4.20 for a result of a more general flavor,
formulated in terms of Muckenhoupt weighted Lebesgue spaces. Specifically, if the system
L, the coefficient tensor A, and the set Ω are as just described, then for each Muckenhoupt
weight w ∈ Ap(∂Ω, σ) with 1 < p < ∞ there exists a constant C ∈ (0,∞) (which now
also depends on [w]Ap) with the property that

‖KA‖[Lp(∂Ω,w)]M→[Lp(∂Ω,w)]M ≤ C ‖ν‖[BMO(∂Ω,σ)]n . (2.1.33)

In turn, Theorem 2.4.20 is painlessly implied by the even more general result presented
in Theorem 2.4.4 which, de facto, is the central point of this monograph. The proof of
Theorem 2.4.4 uses a combination of tools of a purely geometric nature (such as Theo-
rem 2.2.25 containing a versatile version of a decomposition result originally established
by S. Semmes for smooth surfaces in [107] then subsequently strengthened as to apply
to rough settings in [53], and the estimate from Proposition 2.2.24 controlling the inner
product between the integral average of the outward unit normal and the “chord” in terms
of the BMO semi-norm of the outward unit normal to a domain), and techniques of a
purely harmonic analytic nature (like good-λ inequalities, maximal operator estimates,
stopping time arguments, and Muckenhoupt weight theory).

These considerations lead us to adopt (as we do in Definition 2.2.14) the following
basic piece of terminology. An open, nonempty, proper subset Ω of Rn is said to be
a δ-SKT domain (for some δ > 0) if Ω satisfies a two-sided local John condition, ∂Ω
is an Ahlfors regular set and, with σ := Hn−1b∂Ω, the geometric measure theoretic
outward unit normal ν to Ω satisfies

‖ν‖[BMO(∂Ω,σ)]n < δ. (2.1.34)

Remarkably, demanding that δ in (2.1.34) is small has topological and metric im-
plications for the underlying domain, namely Ω is a connected unbounded open set,
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Figure 2.1: A prototype of an unbounded δ-SKT domain for which δ > 0 may be made
as small as desired, relative to the Ahlfors regularity constant of ∂Ω and the local John
constants of Ω (cf. (2.2.195), (2.2.197))

with a connected unbounded boundary and an unbounded connected complement (see
Theorem 2.2.33). In the two-dimensional setting we actually show that the class of δ-SKT
with δ ∈ (0, 1) small agrees with the category of chord-arc domains with small constant
(see Theorem 2.2.38 for a precise statement). Most importantly, (2.1.33) shows that the
oscillatory behavior of the outward unit normal is a key factor in determining the size of
the operator norm for the double layer potential operator KA.

Inspired by the format of a double layer operator (cf. (2.1.3)), so far we have been
searching for singular integral operators fitting the general template in (2.1.22) for which
it may be possible to control their operator norm in terms of ‖ν‖[BMO(∂Ω,σ)]n . While
{TΘ : Θ as in (2.1.23)} is a linear space, this is not stable under transposition (which is
an isometric transformation and, hence, preserves the quality of having a small norm).
This suggests that we cast a wider net and consider the class of singular integrals acting
at σ-a.e. point x ∈ ∂Ω on functions f as in (2.1.2) according to

TΘ1,Θ2f(x) :=
(

lim
ε→0+

ˆ

∂Ω\B(x,ε)

〈
Θ1
γ(x− y)ν(y)−Θ2

γ(x− y)ν(x), f(y)
〉
dσ(y)

)
1≤γ≤M

(2.1.35)

where Θ1 = (Θ1
γ)1≤γ≤M and Θ2 = (Θ2

γ)1≤γ≤M are as in (2.1.23). The latter condition en-
sures that TΘ1,Θ2 is a well-defined, linear, and bounded operator on

[
Lp(∂Ω, w)

]M (recall
that we are assuming Ω to be a uniformly rectifiable domain). Consequently, {TΘ1,Θ2 :
Θ1,Θ2 as in (2.1.23)} is a linear subspace of the space of linear and bounded operators
on
[
Lp(∂Ω, w)

]M which contains each double layer KA as in (2.1.3) as well as its formal
transposed whose action on each function f as in (2.1.2) at σ-a.e. x ∈ ∂Ω is given by

K#
A f(x) :=

(
lim
ε→0+

ˆ

∂Ω\B(x,ε)

νk(x)aβ αjk (∂jEγ β)(x− y)fγ(y) dσ(y)
)

1≤α≤M

. (2.1.36)

If an estimate like (2.1.33) holds for the operator (2.1.35), then we would necessarily have
TΘ1,Θ2 = 0 whenever Ω ⊆ Rn is a half-space. Taking Ω := {z ∈ Rn : 〈z, ω〉 > 0} with
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ω ∈ Sn−1 arbitrary then forces that for each index γ ∈ {1, . . . ,M} we have[
Θ1
γ(x− y)−Θ2

γ(x− y)
]
ω = 0 for each ω ∈ Sn−1

and each x, y ∈ 〈ω〉⊥ with x 6= y.
(2.1.37)

The same type of reasoning which, starting with (2.1.24), has produced (2.1.26) then
shows that there exists a matrix-valued function k ∈

[
C∞(Rn \ {0})

]M×M , which is even
and positive homogeneous of degree −n, such that for each index γ ∈ {1, . . . ,M} we have

[Θ1
γ(z)−Θ2

γ(z)]ω = 〈x, ω〉kγ·(x) for each x ∈ Rn \ {0} and ω ∈ Rn. (2.1.38)

In turn, this implies that (2.1.35) may be re-cast as

TΘ1,Θ2f(x) = lim
ε→0+

ˆ
∂Ω\B(x,ε)

〈x− y, ν(y)〉k(x− y)f(y) dσ(y)

+
(

lim
ε→0+

ˆ
∂Ω\B(x,ε)

〈Θ2
γ(x− y)(ν(y)− ν(x)), f(y)〉 dσ(y)

)
1≤γ≤M

(2.1.39)

for σ-a.e. x ∈ ∂Ω. The first principal-value integral in (2.1.39) has been encountered
earlier in (2.1.27), while the second one is of commutator type. Specifically, the second
principal-value integral in (2.1.39) may be thought of as a finite linear combination of
commutators between singular integral operators of convolution type with kernels which
are odd and positive homogeneous of degree 1−n (like the entries in any of the matrices
Θ2
γ) and operators Mνj of pointwise multiplication with the scalar components νj , 1 ≤

j ≤ n, of the outward unit normal ν.
The ultimate conclusion is that, in addition to the family of operators described in

(2.1.27), the class of commutators of the sort just described provides the only other viable
candidates for operators whose norms become small when the ambient surface on which
they are defined becomes flatter. That such an eventuality actually materializes is implied
by [53, Theorem 2.16, p. 2603] which, in particular, gives (in the same setting as above)

n∑
j,k=1

∥∥[Mνk , Rj
]∥∥
Lp(∂Ω,w)→Lp(∂Ω,w) ≤ C ‖ν‖[BMO(∂Ω,σ)]n . (2.1.40)

In the opposite direction, in Theorem 2.5.5 we prove that whenever Ω ⊆ Rn is a
uniformly rectifiable domain, 1 < p < ∞, and w ∈ Ap(∂Ω, σ), there exists some
C ∈ (0,∞) which depends only on n, p, [w]Ap , and the Ahlfors regularity constant
of ∂Ω with the property that

‖ν‖[BMO(∂Ω,σ)]n ≤ C
{
‖K∆‖Lp(∂Ω,w)→Lp(∂Ω,w) (2.1.41)

+ max
1≤j,k≤n

‖[Mνk , Rj ]‖Lp(∂Ω,w)→Lp(∂Ω,w)

}1/(2n−1)
.

This is done using the Clifford algebra machinery (cf. Section 1.4) and exploiting the
relationship between the Cauchy-Clifford operator (cf. (2.5.1)) and the operators K∆,
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[Mνk , Rj ] with 1 ≤ j, k ≤ n, intervening in (2.1.41). Collectively, these results point
to the optimality of the class of δ-SKT domains with δ ∈ (0, 1) small as the geometric
environment in which ‖K∆‖[Lp(∂Ω,w)]M→[Lp(∂Ω,w)]M and

∥∥[Mνk , Rj
]∥∥
Lp(∂Ω,w)→Lp(∂Ω,w) for

1 ≤ j, k ≤ n can possibly be small (relative to n, p, [w]Ap , and the uniform rectifi-
ability character of ∂Ω).

We also succeed in characterizing flatness solely in terms of the behavior of the Riesz
transforms {Rj}1≤j≤n (defined in (2.1.13)). In one direction, in Theorem 2.5.7 we show
that if Ω ⊆ Rn is a uniformly rectifiable domain with an unbounded boundary and
w ∈ Ap(∂Ω, σ) with p ∈ (1,∞), then there exists some C ∈ (0,∞) which depends only
on n, p, [w]Ap , and the uniform rectifiability character of ∂Ω with the property that

‖ν‖[BMO(∂Ω,σ)]n ≤ C
{∥∥∥I +

n∑
j=1

R2
j

∥∥∥
Lp(∂Ω,w)→Lp(∂Ω,w)

(2.1.42)

+ max
1≤j,k≤n

∥∥[Rj , Rk]∥∥Lp(∂Ω,w)→Lp(∂Ω,w)

}1/(2n−1)
.

Moreover, in the unweighted case (i.e., when w ≡ 1) the exponent 1/(2n − 1) may be
replaced by 1/n. In the opposite direction, in Theorem 2.5.8 we prove that if Ω ⊆ Rn is
an open set satisfying a two-sided local John condition and whose topological boundary is
an Ahlfors regular set, then for each Muckenhoupt weight w ∈ Ap(∂Ω, σ) with p ∈ (1,∞)
there exists some constant C ∈ (0,∞) which depends only on n, p, [w]Ap , the local John
constants of Ω, and the Ahlfors regularity constant of ∂Ω, such that

∥∥∥I +
n∑
j=1

R2
j

∥∥∥
Lp(∂Ω,w)→Lp(∂Ω,w)

≤ C ‖ν‖[BMO(∂Ω,σ)]n , (2.1.43)

and

max
1≤j<k≤n

∥∥[Rj , Rk]∥∥Lp(∂Ω,w)→Lp(∂Ω,w) ≤ C ‖ν‖[BMO(∂Ω,σ)]n . (2.1.44)

Collectively, (2.1.42)-(2.1.44) give a fully satisfactory answer to the question of quantify-
ing flatness of a given “surface” Σ (thought of as the boundary of a uniformly rectifiable
domain Ω ⊆ Rn) in terms of the operator theoretic nature of the Riesz transforms on Σ.
Informally, these estimates amount to saying that the flatter Σ is, the closer {Rj}1≤j≤n
are to satisfying the “usual” Riesz transform identities

n∑
j=1

R2
j = −I and RjRk = RkRj for all j, k ∈ {1, . . . , n}, (2.1.45)

when all operators are considered on Muckenhoupt weighted Lebesgue spaces on Σ, and
vice versa. In the limit case when Σ is genuinely flat (manifested through the vanishing
of the BMO semi-norm of its unit normal), all formulas in (2.1.45) become genuine
identities. The best know case is that when Σ is the hyperplane Rn−1 × {0} in Rn, a
scenario in which (2.1.45) may be readily checked when p = 2 and w ≡ 1 based on the
fact that each Rj is a Fourier multiplier corresponding to the symbol iξj/|ξ|.
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The insistence on Muckenhoupt weights is justified by the fact that the boundedness
of the Riesz transforms on a weighted Lebesgue space Lp with p ∈ (1,∞) actually forces
the intervening weight to belong to the Muckenhoupt class Ap. See the discussion in
Section 2.5.4 in this regard, where other related results may be found.

While estimate (2.1.33) is valid irrespective of whether ∂Ω is bounded or not, its
usefulness is most apparent when ‖ν‖[BMO(∂Ω,σ)]n is sufficiently small (relative to the
geometry of Ω and the weight w) since, in the context of (2.1.33),

‖ν‖[BMO(∂Ω,σ)]n < 1/(2C) implies that 1
2I + KA is invertible

on
[
Lp(∂Ω, w)

]M and (1
2I + KA)−1 may be expressed as the

Neumann series 2−1∑∞
j=0(−2KA)j , which is convergent in the

operator norm,

(2.1.46)

and one can actually show that having ‖ν‖[BMO(∂Ω,σ)]n < 1 forces ∂Ω to be unbounded.
We may therefore recast (2.1.46) as saying that we may invert 1

2I+KA on
[
Lp(∂Ω, w)

]M
whenever Ω ⊆ Rn is a δ-SKT domain for some δ ∈ (0, 1) sufficiently small (relative to
the basic geometric features of Ω and the weight w), and the latter condition implies
that ∂Ω is unbounded.

Estimate (2.1.33) then becomes a powerful tool in the proof of similar results on other
function spaces. First, in concert with the homogeneous space version of the commutator
theorem of Coifman et al., [27], proved in [53, Theorem 2.16, p. 2603], this implies an
analogous estimate on Muckenhoupt weighted Sobolev spaces (see (2.2.349)). That is,
retaining the assumptions on the domain Ω and the system L made in the build-up to
(2.1.33), whenever A ∈ Adis

L and w ∈ Ap(∂Ω, σ) with 1 < p < ∞ we have

‖KA‖[Lp1(∂Ω,w)]M→[Lp1(∂Ω,w)]M ≤ C ‖ν‖[BMO(∂Ω,σ)]n , (2.1.47)

for some constant C ∈ (0,∞) of the same nature as before. To elaborate on this
crucial estimate, one should think of our Muckenhoupt weighted Sobolev space Lp1(∂Ω, w)
as being naturally associated with a family

{
∂τjk

}
1≤j,k≤n of first-order “tangential”

differential operators along ∂Ω, which may loosely be described as ∂τjk = νj∂k − νk∂j
for each j, k ∈ {1, . . . , n}. Specifically, Lp1(∂Ω, w) is the linear space consists of functions
f ∈ Lp(∂Ω, w) with ∂τjkf ∈ Lp(∂Ω, w) for each j, k ∈ {1, . . . , n} (see the discussion in
Section 2.2.6 in this regard). From this perspective it is then of paramount importance
to understand the manner in which a double layer operator KA commutes with a generic
tangential differential operators ∂τjk . It turns out that

each commutator [KA, ∂τjk ] acting on a function f belonging to a
Muckenhoupt weighted Sobolev space may be expressed as a finite
linear combination of commutators of the form [Mν , R] acting on
the components of ∇tanf , the tangential gradient of f , where Mν

stands for the operator of pointwise multiplication by (generic
components of) the unit normal ν, and R is a convolution-type
singular integral operator on ∂Ω of similar nature as the Riesz
transforms on ∂Ω (cf. (2.1.13)).

(2.1.48)
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Based on this, (2.1.33), and a suitable analogue of (2.1.40), we then conclude that the
key estimate stated in (2.1.47) holds. In turn, (2.1.47) permits us to invert 1

2I +KA on
the Muckenhoupt weighted Sobolev space

[
Lp1(∂Ω, w)

]M , for each w ∈ Ap(∂Ω, σ) with
1 < p < ∞, via a Neumann series converging in the operator norm, whenever Ω ⊆ Rn

is a δ-SKT domain for some δ ∈ (0, 1) sufficiently small (a condition that renders ∂Ω
unbounded) relative to the geometry of Ω and the weight w.

Second, we use the operator norm estimate on Muckenhoupt weighted Lebesgue
spaces from (2.1.33) as a gateway to establishing similar estimates via extrapolation
procedures. One of the best known embodiments of this principle is Rubio de Fran-
cia’s celebrated extrapolation theorem, according to which estimates on Muckenhoupt
weighted Lebesgue spaces for a fixed integrability exponent and all weights imply similar
estimates for all integrability exponents (prompting Antonio Córdoba to famously declare
that “there are no Lp spaces, only weighted L2 spaces”). Here we use (2.1.33) together
with an extrapolation procedure from [93] (recalled in Proposition 2.7.5) to obtain norm
estimates for double layer operators on the scale of Morrey spaces on the boundary of
uniformly rectifiable domain Ω ⊆ Rn, i.e.,

Mp,λ(∂Ω, σ) :=
{
f ∈ L1

loc(∂Ω, σ) : ‖f‖Mp,λ(∂Ω,σ) <∞
}

(2.1.49)

with p ∈ (1,∞) and λ ∈ (0, n − 1), where

‖f‖Mp,λ(∂Ω,σ) := sup
x∈∂Ω and

0<R<2 diam(∂Ω)

{
R
n−1−λ

p
(  

∂Ω∩B(x,R)
|f |p dσ

) 1
p

}
. (2.1.50)

(Note that the scale of ordinary Lebesgue spaces on ∂Ω corresponds to the end-point
case λ = 0, while the end-point λ = n−1 corresponds to the space of essentially bounded
functions on ∂Ω.) Retaining the same geometric context as before and assuming A ∈ Adis

L ,
the extrapolation procedure alluded to above yields

‖KA‖[Mp,λ(∂Ω,σ)]M→[Mp,λ(∂Ω,σ)]M ≤ C ‖ν‖[BMO(∂Ω,σ)]n , (2.1.51)

for some constant C ∈ (0,∞) of the same nature as before (cf. Theorem 2.7.11 for
this, and other related results). We may take this a step further and establish a similar
operator norm estimate involving the Morrey-styled Sobolev space Mp,λ

1 (∂Ω, σ). These,
in turn, allow us to us to invert 1

2I + KA both on the Morrey space
[
Mp,λ(∂Ω, σ)

]M
and on the Morrey-based Sobolev space

[
Mp,λ

1 (∂Ω, σ)
]M , under similar assumptions as

before. See Theorem 2.7.12 where this and other invertibility results on related spaces
are proved. In addition, (2.1.33) implies (via real interpolation) norm estimates and
invertibility results for double layer potential operators on Lorentz spaces and Lorentz-
based Sobolev spaces (cf. Remark 2.4.21 and Remark 2.4.25).

Concisely put, in this work we are able to answer Kenig’s open question (formulated
at the outset of this section) pertaining to any given weakly elliptic homogeneous constant
complex coefficient second-order system L in Rn with Adis

L 6= ∅, in the setting of δ-SKT
domains Ω ⊆ Rn with δ ∈ (0, 1) small (relative to the original geometric characteristics



2. Singular integral operators and quantitative flatness 57

of Ω), for ordinary Lebesgue spaces, Lorentz spaces, Muckenhoupt weighted Lebesgue,
Morrey spaces, as well as Sobolev spaces on ∂Ω suitably defined in relation to each of
the aforementioned scales (see Theorem 2.4.24, Remark 2.4.25, Theorem 2.4.29, Theo-
rem 2.7.12, Theorem 2.7.13). As indicated in Remark 2.4.28, the smallness condition
imposed on the parameter δ is actually in the nature of best possible as far as the
aforementioned invertibility results are concerned.

In turn, the aforementioned invertibility results open the door for solving boundary
value problems of Dirichlet, Regularity, Neumann, and Transmission type in the class of
δ-SKT domains with δ ∈ (0, 1) small (relative to the original geometric characteristics
of Ω) for second-order weakly elliptic constant complex coefficient systems which (either
themselves and/or their transposed) possess distinguished coefficient tensors.

For example, in such a setting, we succeed in establishing the well-posedness of
the Muckenhoupt weighted Dirichlet Problem and the Muckenhoupt weighted Regu-
larity Problem (formulated using the nontangential maximal operator introduced in
(1.1.2), and nontangential boundary traces defined as in (1.1.5), for some fixed aperture
parameter κ > 0):

(D)p,w



u ∈
[
C∞(Ω)

]M
,

Lu = 0 in Ω,

Nκu ∈ Lp(∂Ω, w),

u
∣∣κ−n.t.

∂Ω = f ∈
[
Lp(∂Ω, w)

]M
,

(R)p,w



u ∈
[
C∞(Ω)

]M
,

Lu = 0 in Ω,

Nκu ∈ Lp(∂Ω, w),

Nκ(∇u) ∈ Lp(∂Ω, w),

u
∣∣κ−n.t.

∂Ω = f ∈
[
Lp1(∂Ω, w)

]M
,

(2.1.52)
for each integrability exponent p ∈ (1,∞) and each Muckenhoupt weight w ∈ Ap(∂Ω, σ),
under the assumption that both L and L> have a distinguished coefficient tensor. More-
over, we provide counterexamples which show that the well-posedness result just de-
scribed may fail if these assumptions on the existence of distinguished coefficient tensors
are simply dropped. See Theorem 2.6.2 and Theorem 2.6.5 for more nuanced statements.
Our results are therefore optimal in this regard. We wish to note that even in the scalar
(i.e.,M = 1), unweighted case (i.e., w ≡ 1), the well-posedness of the problems in (2.1.52)
would still be new for such basic constant complex coefficient differential operators as

L = ∂2
1 + · · ·+ ∂2

n−1 + i∂2
n. (2.1.53)

Existence for (D)p,w, (R)p,w is established by looking for a solution which is expressed
as in (2.1.8), making use of the jump-formula (2.3.67), and the fact that 1

2I + KA is
invertible both on the Muckenhoupt weighted Lebesgue space

[
Lp(∂Ω, w)

]M as well as
on the Muckenhoupt weighted Sobolev space

[
Lp1(∂Ω, w)

]M . The issue of uniqueness
requires a new set of techniques, and may be challenging even in the classical setting of
the upper half-space Ω := Rn+. In the particular case when L = ∆, the Laplacian in Rn,
the Dirichlet boundary value problem (D)p,w in Ω := Rn+ has been treated at length in
a number of monographs in the unweighted case (i.e., when w = 1), including [8], [42],
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[115], [116], and [117]. In all these works, the existence part makes use of the explicit
form of the harmonic Poisson kernel, while the uniqueness relies on either the Maximum
Principle, or the Schwarz reflection principle for harmonic functions. Neither of these
techniques may be adapted successfully to prove uniqueness in the case of general systems
treated here. Subsequently, the Dirichlet boundary value problem (D)p,w in Ω := Rn+
for a general strongly elliptic, second-order, homogeneous, constant complex coefficient,
system L, and for an arbitrary Muckenhoupt weight w has been treated in [82], where
existence employs the Agmon-Douglis-Nirenberg Poisson kernel for L, while uniqueness
relies on special properties of the Green function for L in the upper half-space Rn+.

In the present setting, when Ω is merely a δ-SKT domain with δ ∈ (0, 1) small
(relative to the original geometric characteristics of Ω), in order to deal with the issue
of uniqueness for the Muckenhoupt weighted Dirichlet Problem (D)p,w we construct a
Green function G for L in Ω by correcting the fundamental solution E of L in Rn (as
to ensure its boundary trace on ∂Ω vanishes) using the existence part for the Regularity
Problem (R)p′,w′ (formulated for the transposed system L>, the conjugate exponent p′,
and the dual weight w′) and then employ a rather general Poisson integral representation
formula recently established in [93] (cf. Theorem 2.6.1 for a precise statement).

In the same geometric setting, of δ-SKT domains, we also discuss the solvability of the
Muckenhoupt weighted Neumann Problem (in Theorem 2.6.10) and the Muckenhoupt
weighted Transmission Problem (in Theorem 2.6.14), i.e.,



u ∈
[
C∞(Ω)

]M
,

Lu = 0 in Ω,

Nκ(∇u) ∈ Lp(∂Ω, w),

∂Aν u = f ∈
[
Lp(∂Ω, w)

]M
,



u± ∈
[
C∞(Ω±)

]M
,

Lu± = 0 in Ω±,

Nκ(∇u±) ∈ Lp(∂Ω, w),

u+∣∣κ−n.t.

∂Ω = u−
∣∣κ−n.t.

∂Ω σ-a.e. on ∂Ω,

∂Aν u
+ − µ · ∂Aν u− = f ∈

[
Lp(∂Ω, w)

]M
,

(2.1.54)

(where ∂Aν is the conormal derivative operator associated with the coefficient tensor A
used to represent the given system L, and µ ∈ C \ {±1} is a transmission parameter),
as well as variants of those boundary value problems involving Lorentz spaces. In all
cases, we show that the boundary layer method may be successfully implemented for
any second-order homogeneous constant complex coefficient weakly elliptic system L in
Rn whose transposed possesses a distinguished coefficient tensor, assuming A ∈ Adis

L> .
Moreover, in the two-dimensional setting we show that the Neumann and Transmission
Problems (2.1.54) remain solvable for a larger spectrum of choices of the coefficient tensor
for the Lamé system (see the results in Section 2.4.4, as well as Remark 2.6.12 and
Remark 2.6.16, in this regard).

In [93], a robust Calderón-Zygmund theory for singular integral operators of boundary
layer type associated with weakly elliptic systems and uniformly rectifiable domains
has been developed. Here we use such a platform (consisting of results recalled in
Proposition 2.7.6, Theorem 2.7.7, and Theorem 2.7.8) to prove solvability results for
a variety of boundary value problems of Dirichlet, Regularity, Neumann, and Transmis-
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sion type (akin those formulated in (2.1.52) and (2.1.54)) with data in Morrey spaces,
vanishing Morrey spaces, and block spaces (cf. Theorem 2.7.20, Theorem 2.7.22, The-
orem 2.7.24, Theorem 2.7.25).

Lastly, we develop a perturbation theory to the effect that, in all cases discussed
so far in this narrative, solvability of a boundary value problem for a certain system
Lo implies solvability for any other system L which is sufficiently close to Lo (with
proximity quantified using the norm introduced in (1.2.15)). For results of this na-
ture, the reader is referred to Theorem 2.6.4, Theorem 2.6.9, Theorem 2.6.13, Theo-
rem 2.6.18, Theorem 2.7.21.

2.2 Geometric measure theory

2.2.1 More on classes of Euclidean sets of locally finite perimeter

Recall the notion of Harnack chain condition in Definition 1.1.7. Note that, in the context
of Definition 1.1.7, consecutive balls must have comparable radii. The “notangentiality”
condition (1.1.23) further implies that

λBi ⊆ Ω for each λ ∈ (0, 2N−1 + 1] and i ∈ {1, . . . ,K}. (2.2.1)

The Harnack chain condition described in Definition 1.1.7 should be thought of as a
quantitative local connectivity condition. In particular, any open set Ω ⊆ Rn satis-
fying an (∞, N)-Harnack chain condition (for some N ∈ N) is pathwise connected in
a quantitative fashion.

To elaborate on the latter aspect, we find it convenient to eliminate the parameter
ε > 0 in Definition 1.1.7. Assuming R =∞, this implies that for each k ≥ 2 there exists
Lk ∈ N (which is of the order of N · log2 k) with the property that for each

x1, x2 ∈ Ω with |x1 − x2| ≤ k ·min
{
dist (x1, ∂Ω) , dist (x2, ∂Ω)

}
(2.2.2)

one can find a sequence of balls{
B(yj , rj)

}
1≤j≤` with ` ∈ N satisfying ` ≤ Lk, such

that B
(
yj , (2N−1 + 1)rj

)
⊆ Ω for every j ∈ {1, . . . , `},

x1 ∈ B(y1, r1), x2 ∈ B(y`, r`), and there exists some
zj ∈ B(yj , rj) ∩B(yj+1, rj+1) for all j ∈ {1, . . . , `− 1}.

(2.2.3)

The fact that Lk = O(log2 k) as k → ∞ quantifies the intuitive idea that the closer to
the boundary the points x1, x2 are, and the further apart for each other they happen to
be, the larger the numbers of balls in the Harnack chain joining them. To proceed,
we agree to abbreviate

δ∂Ω(x) := dist (x, ∂Ω) for each x ∈ Ω. (2.2.4)

Then the first property in (2.2.3) implies that for each j ∈ {1, . . . , `} and a, b ∈ B(yj , rj)
we have δ∂Ω(a) ≥ 2N−1rj and δ∂Ω(a) ≤ (N + 1) · δ∂Ω(b). In particular, for each index
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j ∈ {1, . . . , ` − 1} we have

(N + 1)−1 · δ∂Ω(zj) ≤ δ∂Ω(zj+1) ≤ (N + 1) · δ∂Ω(zj). (2.2.5)

Joining x1, y1, z1, y2, z2, y3, . . . , y`−1, z`−1, y`, x2 with line segments yields a polygonal arc
γ joining x1 with x2 in Ω, whose length may be estimated as follows:

length(γ) ≤ N
∑̀
j=1

rj ≤ N
∑̀
j=1

δ∂Ω(zj) ≤ N
Lk∑
j=1

(N + 1)j · δ∂Ω(x1)

≤ (N + 1)Lk+1 · δ∂Ω(x1). (2.2.6)

In a similar fashion, length(γ) ≤ (N + 1)Lk+1 · δ∂Ω(x2) hence, ultimately,

length(γ) ≤ (N + 1)Lk+1 ·min
{
δ∂Ω(x1) , δ∂Ω(x2)

}
. (2.2.7)

In addition, for each x ∈ γ there exists jx ∈ {1, . . . , `} such that x ∈ B(yjx , rjx) so

δ∂Ω(x) ≥ (N + 1)−jx · δ∂Ω(x1) ≥ (N + 1)−Lk · δ∂Ω(x1). (2.2.8)

Analogously, δ∂Ω(x) ≥ (N + 1)−Lk · δ∂Ω(x2) which goes to show that

δ∂Ω(x) ≥ (N + 1)−Lk ·max
{
δ∂Ω(x1) , δ∂Ω(x2)

}
for each x ∈ γ. (2.2.9)

The existence of such a path γ is going to be used in Lemma 2.2.1 and Lemma 2.2.2
which, in turn, play a significant role in the proof of Theorem 2.2.38.

Next, recall the notion of NTA domain in Definition 1.1.8. It turns out that from
any point in a given one-sided NTA domain one may proceed along a path towards to
the interior of said domain, which progressively distances itself from the boundary. This
is made precise in the lemma below.

Lemma 2.2.1. Let Ω ⊂ Rn be an unbounded (∞, N)-one-sided NTA domain for some
N ∈ N. Then there exists a constant CN ∈ (1,∞) with the following significance. For
each location x ∈ Ω and each scale r ∈ (0,∞) there exist a point x∗ ∈ Ω and a polygonal
arc γ joining x with x∗ in Ω such that

|x− x∗| < 2r, δ∂Ω(x∗) ≥ r/N2, length(γ) ≤ CN · r,

and length(γx,y) ≤ CN · δ∂Ω(y) for each point y ∈ γ,
(2.2.10)

where γx,y is the sub-arc of γ joining x with y.

Proof. Without loss of generality assume N ≥ 2. If δ∂Ω(x) ≥ r/N , simply take x∗ := x

and γ := {x}. If δ∂Ω(x) < r/N , there exists m ∈ N such that r/Nm+1 ≤ δ∂Ω(x) < r/Nm.
Pick some point z ∈ ∂Ω such that δ∂Ω(x) = |x−z| and define rj := N j ·δ∂Ω(x) ∈ (0,∞) for
each j ∈ {1, . . . ,m}. The fact that Ω satisfies (∞, N−1)-corkscrew condition guarantees
that for each j ∈ {1, . . . ,m} there exists a corkscrew point xj ∈ Ω relative to the location
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z and scale rj . Hence, for each j ∈ {1, . . . ,m} we have B(xj , rj/N) ⊆ B(z, rj)∩Ω which
entails

N j · δ∂Ω(x) = rj > δ∂Ω(xj) > rj/N = N j−1 · δ∂Ω(x)

and |xj − z| < rj = N j · δ∂Ω(x) for each j ∈ {1, . . . ,m}.
(2.2.11)

Denote x0 := x and observe that for each j ∈ {1, . . . ,m} we have xj−1, xj ∈ B(z, rj).
Together with (2.2.11), for each j ∈ {1, . . . ,m} this permits us to estimate

|xj−1 − xj | < 2rj = 2N j · δ∂Ω(x) ≤ 2N2 ·min
{
δ∂Ω(xj−1) , δ∂Ω(xj)

}
. (2.2.12)

Hence, we are in the scenario described in (2.2.2) with xj−1, xj playing the roles of x1,
x2, and k := 2N2. From (2.2.7)-(2.2.9) we then conclude that there exists CN ∈ (1,∞)
with the property that for each j ∈ {1, . . . ,m} we may find a polygonal arc γj joining
xj−1 with xj in Ω such that

length(γj) ≤ CN ·min
{
δ∂Ω(xj−1) , δ∂Ω(xj)

}
≤ CN ·N j · δ∂Ω(x), (2.2.13)

and

CN · δ∂Ω(y) ≥ max
{
δ∂Ω(xj−1) , δ∂Ω(xj)

}
≥ N j−1 · δ∂Ω(x) for each y ∈ γj . (2.2.14)

If we now define x∗ := xm and take γ := γ1 ∪ γ2 ∪ · · · ∪ γm then γ is a polygonal arc
joining x = x0 with x∗ = xm in Ω whose length satisfies

length(γ) =
m∑
j=1

length(γj) ≤
m∑
j=1

CN ·N j · δ∂Ω(x)

≤ N · CN
N − 1 N

m · δ∂Ω(x) ≤
(N · CN
N − 1

)
r, (2.2.15)

thanks to (2.2.13) and our choice of m. Also, for each y ∈ γ there exists jy ∈ {1, . . . ,m}
such that y ∈ γjy , hence we may use (2.2.14) to bound the length of the sub-arc γx,y of
γ joining x with y by

length(γx,y) ≤
jy∑
j=1

length(γj) ≤
jy∑
j=1

CN ·N j · δ∂Ω(x)

≤ N2 · CN
N − 1 N jy−1 · δ∂Ω(x) ≤

(N2 · C2
N

N − 1
)
δ∂Ω(y). (2.2.16)

Our choice of x∗, the first line in (2.2.11), and our choice of m also permit us to conclude
that

δ∂Ω(x∗) = δ∂Ω(xm) > Nm−1 · δ∂Ω(x) ≥ r/N2. (2.2.17)

Finally, since x, x∗ ∈ B(z, rm) it follows that |x− x∗| < 2rm = 2Nm · δ∂Ω(x) < 2r, so all
properties claimed in (2.2.10) are verified.

Our next lemma shows that one-sided NTA domains satisfy a quantitative connec-
tivity property of the sort considered by O. Martio and J. Sarvas in [87], where the class
of uniform domains has been introduced.
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Lemma 2.2.2. Let Ω ⊂ Rn be an unbounded (∞, N)-one-sided NTA domain for some
N ∈ N. Then there exists a constant CN ∈ (1,∞) with the following significance. For
any two points x, x̃ ∈ Ω and any scale r ∈ (0,∞) with r ≥ |x− x̃| there exists a polygonal
arc Γ joining x with x̃ in Ω such that

length(Γ) ≤ CN · r, and for each point y ∈ Γ

min
{
length(Γx,y) , length(Γy,x̃)

}
≤ CN · δ∂Ω(y),

(2.2.18)

where Γx,y and Γy,x̃ are the sub-arcs of Γ joining x with y and, respectively, y with x̃.

Proof. Fix two points x, x̃ ∈ Ω and pick a scale r ∈ (0,∞) with r ≥ |x−x̃|. If δ∂Ω(x) > 2r
then x̃ ∈ B(x, r) ⊆ B(x, 2r) ⊆ Ω. In such a scenario, take Γ to be the line segment with
end-points x, x̃ and all desired properties follow. There remains to treat the case when

δ∂Ω(x) ≤ 2r. (2.2.19)

To proceed, let x∗, x̃∗ be associated with the given points x, x̃ as in Lemma 2.2.1,
and denote by γ, γ̃ the polygonal arcs joining x with x∗ and x̃ with x̃∗ in Ω, having the
properties described in (2.2.10), for the current scale r. Specifically, for this choice of the
scale, (2.2.10) gives

|x− x∗| < 2r, |x̃− x̃∗| < 2r,

δ∂Ω(x∗) ≥ r/N2, δ∂Ω(x̃∗) ≥ r/N2,

length(γ) ≤ CN · r, length(γ̃) ≤ CN · r,

length(γx,y) ≤ CN · δ∂Ω(y) for each y ∈ γ,

length(γ̃x̃,y) ≤ CN · δ∂Ω(y) for each y ∈ γ̃.

(2.2.20)

Note that

|x∗ − x̃∗| ≤ |x∗ − x|+ |x− x̃|+ |x̃− x̃∗| < 2r + r + 2r = 5r. (2.2.21)

From (2.2.21) and the second line in (2.2.20) we then see that

|x∗ − x̃∗| < 5r ≤ 5N2 ·min
{
δ∂Ω(x∗) , δ∂Ω(x̃∗)

}
. (2.2.22)

Thus, we are in the scenario described in (2.2.2) with x1 := x∗, x2 := x̃∗, and with
k := 5N2. From (2.2.7)-(2.2.9) we then conclude that there exist a constant CN ∈ (1,∞)
along with a polygonal arc γ̂ joining x∗ with x̃∗ in Ω such that

length(γ̂) ≤ CN ·min
{
δ∂Ω(x∗) , δ∂Ω(x̃∗)

}
≤ 2CN · r, (2.2.23)

where the last inequality comes from (2.2.19), and

CN · δ∂Ω(y) ≥ max
{
δ∂Ω(x∗) , δ∂Ω(x̃∗)

}
≥ r/N2 for each y ∈ γ̂, (2.2.24)

with the last inequality provided by the second line in (2.2.20).
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If we now define
Γ := γ ∪ γ̂ ∪ γ̃ (2.2.25)

then Γ is a polygonal arc joining x with x̃ in Ω. Also, (2.2.20) and (2.2.23) allow us to
estimate

length(Γ) = length(γ) + length(γ̂) + length(γ̃) ≤ CN · r, (2.2.26)

proving the first estimate in (2.2.18). Fix now an arbitrary point y ∈ Γ. If y belongs
to γ, then Γx,y = γx,y which further entails length(Γx,y) = length(γx,y) ≤ CN · δ∂Ω(y)
by (2.2.20). Thus, the last estimate in (2.2.18) holds in this case. Similarly, if y ∈ γ̃,
then length(Γy,x̃) = length(γ̃x̃,y) ≤ CN · δ∂Ω(y) again by (2.2.20), so the last estimate in
(2.2.18) holds in this case as well. Finally, in the case when y ∈ γ̂ we may write

min
{
length(Γx,y) , length(Γy,x̃)

}
≤ length(Γ) ≤ CN · r ≤ CN · δ∂Ω(y), (2.2.27)

by (2.2.26) and (2.2.24).

When its end-points belong to a suitable neighborhood of infinity, the polygonal
arc constructed in Lemma 2.2.2 may be made to avoid any given bounded set. This
property, established in the next lemma, is going to be relevant later on, in the course
of the proof of Theorem 2.2.38.

Lemma 2.2.3. Let Ω ⊂ Rn be an unbounded (∞, N)-one-sided NTA domain for some
N ∈ N such that Rn \ Ω 6= ∅. Fix some point z0 ∈ Rn \ Ω and some radius R ∈ (0,∞).
Then there exist a large constant C = C(N) ∈ (0,∞) together with a small number
ε = ε(N) ∈ (0, 1) with the property that for any two points x, x̃ ∈ Ω \ B(z0, R) and any
scale r ∈ (0,∞) with r ≥ max

{
|x− x̃| , C ·R

}
the polygonal arc Γ joining x with x̃ in Ω

as in Lemma 2.2.2 is disjoint from B(z0, εR).

Proof. Consider ε ∈ (0, 1) and C ∈ (0,∞) to be specified momentarily. Recall formula
(2.2.25). Assume there exists a point y ∈ γ ∩ B(z0, εR). Then y ∈ γ ⊆ Ω so the line
segment with end-points y and z0 intersects ∂Ω. As such, δ∂Ω(y) ≤ εR. Also, γx,y joins
the point x ∈ Rn \ B(z0, R) with the point y ∈ B(z0, εR), which forces length(γx,y) ≥
(1− ε)R. In concert with the last line in (2.2.10) this permits us to write

(1− ε)R ≤ length(γx,y) ≤ CN · δ∂Ω(y) ≤ CN · εR, (2.2.28)

which leads to a contradiction if we choose ε := 1/[2(CN + 1)]. Thus, for this choice of ε
we have γ∩B(z0, εR) = ∅. In a similar fashion, we also have γ̃∩B(z0, εR) = ∅. Finally,
if there exists a point y ∈ γ̂ ∩ B(z0, εR) then based on (2.2.24) and the nature of the
scale r we may estimate

εR ≥ δ∂Ω(y) ≥ r/(N2 · CN ) ≥ (C ·R)/(N2 · CN ) (2.2.29)

which leads to a contradiction if C = C(N) ∈ (0,∞) is sufficiently large.
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To be able to define the class of Semmes-Kenig-Toro domains we have in mind we
first need to formally introduce the John-Nirenberg space of functions of bounded mean
oscillations on Ahlfors regular sets. Specifically, given a closed set Σ ⊆ Rn, for each x ∈ Σ
and r > 0 define the surface ball ∆ := ∆(x, r) := B(x, r) ∩ Σ. For any constant λ > 0
we also agree to define λ∆ := ∆(x, λr) := B(x, λr) ∩ Σ. Make the assumption that Σ is
Ahlfors regular and abbreviate σ := Hn−1bΣ. For each f ∈ L1

loc(Σ, σ) introduce

f∆ :=
 

∆
f dσ for each surface ball ∆ ⊆ Σ, (2.2.30)

then consider the semi-norm

‖f‖BMO(Σ,σ) := sup
∆⊆Σ

 
∆

∣∣f − f∆
∣∣ dσ, (2.2.31)

where the supremum in the right side of (2.2.31) is taken over all surface balls ∆ ⊆
Σ. We shall then denote by BMO(Σ, σ) the space of all functions f ∈ L1

loc(Σ, σ) with
the property that ‖f‖BMO(Σ,σ) < ∞.

The above considerations may be naturally adapted to the case of vector-valued
functions. Specifically, given N ∈ N, for each f : Σ → CN with locally integrable
scalar components, we define

‖f‖[BMO(Σ,σ)]N := sup
∆⊆Σ

 
∆

∣∣f − f∆
∣∣ dσ, (2.2.32)

where the supremum in the right side of (2.2.32) is taken over all surface balls ∆ ⊆ Σ,
the integral average f∆ ∈ CN is taken componentwise, and | · | is the standard Euclidean
norm in CN . In an analogous fashion, we then define

[
BMO(Σ, σ)

]N as the space of all
CN -valued functions f ∈

[
L1

loc(Σ, σ)
]N with the property that ‖f‖[BMO(Σ,σ)]N <∞.

A natural version of the classical John-Nirenberg inequality concerning exponential
integrability of functions of bounded mean oscillations remains valid in this setting.
Specifically, [75, Theorem 1.4, p. 2000] implies that there exist some small constant
c ∈ (0,∞) along with some large constant C ∈ (0,∞), both of which depend only
on the doubling character of σ, with the property that

 

∆

exp
{

c |f − f∆|
‖f‖BMO(Σ,σ)

}
dσ ≤ C (2.2.33)

for each non-constant function f ∈ BMO(Σ, σ) and each surface ball ∆ ⊆ Σ. Note that
for each surface ball ∆ ⊆ Σ and each λ ∈ (0,∞) we have

1 ≤ exp
{
− cλ
‖f‖BMO(Σ,σ)

}
· exp

{
c |f(x)−f∆|
‖f‖BMO(Σ,σ)

}
for every x ∈ ∆ with |f(x)− f∆| > λ.

(2.2.34)
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This shows that (2.2.33) implies the following level set estimate with exponential decay:

σ
({
x ∈ ∆ : |f(x)− f∆| > λ

})
≤ exp

{
− cλ
‖f‖BMO(Σ,σ)

}ˆ
∆

exp
{

c |f − f∆|
‖f‖BMO(Σ,σ)

}
dσ

≤ C · exp
{
− cλ
‖f‖BMO(Σ,σ)

}
σ(∆) (2.2.35)

for each non-constant function f ∈ BMO(Σ, σ), each surface ball ∆ ⊆ Σ, and each
λ ∈ (0,∞). Conversely, (2.2.35) implies an estimate like (2.2.33), namely

 

∆

exp
{
co |f − f∆|
‖f‖BMO(Σ,σ)

}
dσ ≤ 1 + C

c/co − 1 , (2.2.36)

for each non-constant function f ∈ BMO(Σ, σ) and each surface ball ∆ ⊆ Σ, as long
as co ∈ (0, c). See also [14, Theorem 3.15], [37, Theorem 3.1, p. 1397], [65, Lemma 2.4,
p. 409], [88], and [118, Theorem 2, p. 33] in this regard. Here we wish to emphasize that
only the doubling property of the underlying measure plays a role. In turn, the John-
Nirenberg level set estimate (2.2.35) has many notable consequences. For one thing,
(2.2.33) implies that ef ∈ L1

loc(Σ, σ) if f is a σ-measurable function on Σ with ‖f‖BMO(Σ,σ)
small enough (with ln | · | a representative example of this local exponential integrability
phenomenon). Second, (2.2.35) guarantees that

BMO(Σ, σ) ⊆ Lploc(Σ, σ) for each p ∈ (0,∞). (2.2.37)

Third, (2.2.35) allows for more flexibility in describing the size of the BMO semi-norm.
Specifically, for each p ∈ [1,∞) and f ∈ L1

loc(Σ, σ) define

‖f‖BMOp(Σ,σ) := sup
∆⊆Σ

( 
∆
|f − f∆|p dσ

)1/p
, (2.2.38)

where the supremum in (2.2.38) is taken over all surface balls ∆ ⊆ Σ. Then for each
integrability exponent p ∈ [1,∞) there exists some constant CΣ,p ∈ (0,∞) with the
property that for each function f ∈ L1

loc(Σ, σ) we have

‖f‖BMO(Σ,σ) ≤ ‖f‖BMOp(Σ,σ) ≤ CΣ,p‖f‖BMO(Σ,σ). (2.2.39)

Indeed, the first estimate in (2.2.39) is a direct consequence of definitions and Hölder’s
inequality, while the second estimate in (2.2.39) relies on the John-Nirenberg inequality
(2.2.35). Parenthetically, we wish to note that when Σ := R (hence σ = L1) and
p := 2 the value of the optimal constant in (2.2.39) is known. Concretely, for each
f ∈ L1

loc(R,L1) we have

‖f‖BMO(R,L1) ≤ ‖f‖BMO2(R,L1) ≤ 1
2e

1+(2/e)‖f‖BMO(R,L1). (2.2.40)

The justification of the second estimate in (2.2.40) uses a sharp version of the one-
dimensional version of the John-Nirenberg inequality (cf. [73]) according to which for
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each function f ∈ BMO(R,L1), each nonempty finite sub-interval I ⊂ R, and each
λ ∈ (0,∞) we have (with fI :=

ffl
I f dL

1)

L1
({
t ∈ I : |f(t)− fI | > λ

})
≤ 1

2e
4/eL1(I) · exp

{
− 2λ/e
‖f‖BMO(R,L1)

}
. (2.2.41)

Specifically, for each nonempty finite sub-interval I ⊂ R we may write
 
I
|f(t)− fI |2 dt = 1

L1(I)

ˆ ∞
0

2λ · L1
({
t ∈ I : |f(t)− fI | > λ

})
dλ

≤ e4/e
ˆ ∞

0
λ · exp

{
− 2λ/e
‖f‖BMO(R,L1)

}
dλ

= e4/e(e/2)2 ‖f‖2BMO(R,L1)

ˆ ∞
0

λ · e−λ dλ

= e4/e(e/2)2 ‖f‖2BMO(R,L1) , (2.2.42)

thanks to (2.2.41) and some natural changes of variables, so the second estimate in
(2.2.40) readily follows from (2.2.42) and (2.2.38).

Returning to the mainstream discussion, observe that (2.2.39) implies that for each
integrability exponent p ∈ [1,∞) we have

‖f‖BMO(Σ,σ) ≈ sup
∆⊆Σ

( 
∆

∣∣f − f∆
∣∣p dσ) 1

p

≈ sup
∆⊆Σ

inf
c∈R

( 
∆

∣∣f − c∣∣p dσ) 1
p

, (2.2.43)

uniformly for f ∈ L1
loc(Σ, σ). For further use, let us also note here that if ∆ and ∆′ are

two concentric surface balls in Σ then for any f ∈ L1
loc(Σ, σ) and any q ∈ [1,∞) we have

(  
∆
|f − f∆′ |q dσ

) 1
q ≤ Cq,n

[
1 +

(σ(∆ ∪∆′)
σ(∆ ∩∆′)

) 1
q
]
‖f‖BMO(Σ,σ) . (2.2.44)

In particular, (2.2.44) readily implies that there exists some constant C ∈ (0,∞) which
depends only on n and the Ahlfors regular constant of Σ with the property that for each
function f ∈ L1

loc(Σ, σ) and each surface ball ∆ ⊆ Σ we have∣∣f2∆ − f∆
∣∣ ≤ C ‖f‖BMO(Σ,σ) . (2.2.45)

In turn, (2.2.45) may be used to estimate

∣∣f2j∆ − f∆
∣∣ ≤ j∑

k=1

∣∣f2k∆ − f2k−1∆
∣∣ ≤ Cj ‖f‖BMO(Σ,σ) , (2.2.46)

for each function f ∈ L1
loc(Σ, σ), each surface ball ∆ ⊆ Σ, and each integer j ∈ N.

More generally, suppose Σ ⊆ Rn is a closed set and assume µ is a doubling Borel
measure on Σ. This means that there exists C ∈ (0,∞) with the property that for
each surface ball ∆ ⊆ Σ we have

0 < µ(2∆) ≤ Cµ(∆) < +∞. (2.2.47)
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In this setting, we shall denote by BMO(Σ, µ) the space of all functions f ∈ L1
loc(Σ, µ)

with the property that

‖f‖BMO(Σ,µ) := sup
∆⊆Σ

 
∆

∣∣∣f −  
∆
f dµ

∣∣∣ dµ < +∞, (2.2.48)

where the supremum is once again taken over all surface balls ∆ ⊆ Σ. Much as
before, since the John-Nirenberg inequality holds for generic Borel doubling measures (as
noted in the discussion pertaining to (2.2.33)-(2.2.35)), for each integrability exponent
p ∈ [1,∞) we then have

‖f‖BMO(Σ,µ) ≈ ‖f‖BMOp(Σ,µ)

≈ sup
∆⊆Σ

( 
∆

 
∆
|f(x)− f(y)|p dµ(x)dµ(y)

) 1
p

≈ sup
∆⊆Σ

inf
c∈R

( 
∆

∣∣f − c∣∣p dµ) 1
p

, (2.2.49)

uniformly for f ∈ L1
loc(Σ, µ), where

‖f‖BMOp(Σ,µ) := sup
∆⊆Σ

( 
∆

∣∣∣f −  
∆
f dµ

∣∣∣p dµ)1/p
, (2.2.50)

with the supremum taken over all surface balls ∆ ⊆ Σ. As before, for any given
integer N ∈ N, we shall denote by

[
BMO(Σ, µ)

]N the space of CN -valued functions
f ∈

[
L1

loc(Σ, µ)
]N with the property that ‖f‖[BMO(Σ,µ)]N < ∞, where the semi-norm

‖·‖[BMO(Σ,µ)]N is defined much as in (2.2.32). Finally, for each f ∈
[
L1

loc(Σ, µ)
]N we

agree to define ‖f‖[BMOp(Σ,µ)]N as in (2.2.50), now interpreting | · | as the standard
Eucludean norm in CN .

Lemma 2.2.4. Let (X,µ) be a measure space with the property that 0 < µ(X) < ∞.
Also, fix an integer N ∈ N and suppose f ∈

[
L1(X,µ)

]N . Then
 
X

∣∣∣f −  
X
f dµ

∣∣∣2 dµ =
 
X
|f |2 dµ−

∣∣∣  
X
f dµ

∣∣∣2. (2.2.51)

In particular,

if |f(x)| = 1 for µ-a.e. x ∈ X then
 
X

∣∣∣f −  
X
f dµ

∣∣∣2 dµ = 1−
∣∣∣  

X
f dµ

∣∣∣2 and

(
1−

∣∣∣  
X
f dµ

∣∣∣)2
≤
 
X

∣∣∣f −  
X
f dµ

∣∣∣2 dµ ≤ 2
(
1−

∣∣∣  
X
f dµ

∣∣∣),
1−

∣∣∣  
X
f dµ

∣∣∣ ≤  
X

∣∣∣f −  
X
f dµ

∣∣∣ dµ ≤ √2
√

1−
∣∣∣  

X
f dµ

∣∣∣.
(2.2.52)
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Proof. Keeping in mind that |Z −W |2 = |Z|2− 2Re(Z ·W ) + |W |2 for each Z,W ∈ CN ,
we may compute 

X

∣∣∣f −  
X
f dµ

∣∣∣2 dµ =
 
X

(
|f |2 − 2Re

[
f ·
( 

X
f dµ

)]
+
∣∣∣  

X
f dµ

∣∣∣2) dµ
=
 
X
|f |2 dµ− 2Re

 
X
f ·
( 

X
f dµ

)
dµ+

∣∣∣  
X
f dµ

∣∣∣2
=
 
X
|f |2 dµ−

∣∣∣  
X
f dµ

∣∣∣2, (2.2.53)

proving (2.2.51). Then (2.2.52) follows from this by observing that

1−
∣∣∣  

X
f dµ

∣∣∣2 =
(
1 +

∣∣∣  
X
f dµ

∣∣∣)(1−
∣∣∣  

X
f dµ

∣∣∣) ≤ 2
(
1−

∣∣∣  
X
f dµ

∣∣∣) (2.2.54)

and

1−
∣∣∣  

X
f dµ

∣∣∣ =
 
X
|f | dµ−

∣∣∣  
X
f dµ

∣∣∣
≤
 
X

∣∣∣f −  
X
f dµ

∣∣∣ dµ ≤ ( 
X

∣∣∣f −  
X
f dµ

∣∣∣2 dµ)1/2
, (2.2.55)

by the reverse triangle inequality and the Cauchy-Schwarz inequality.

Given an Ahlfors regular domain Ω ⊆ Rn, Lemma 2.2.4 applies to the geometric
measure theoretic outward unit normal ν to Ω, taking X := ∆, an arbitrary surface ball
on ∂Ω, and µ := Hn−1b∆. As indicated below, this yields a better bound for the BMO
semi-norm of ν than directly estimating ‖ν‖[BMO(∂Ω,σ)]n ≤ 2 ‖ν‖[L∞(∂Ω,σ)]n = 2.

Lemma 2.2.5. Let Ω ⊆ Rn be an Ahlfors regular domain. Abbreviate σ := Hn−1b∂Ω
and denote by ν the geometric measure theoretic outward unit normal to Ω. Then

‖ν‖[BMO(∂Ω,σ)]n ≤ ‖ν‖[BMO2(∂Ω,σ)]n ≤ 1, (2.2.56)

and

1− inf
∆⊆∂Ω

∣∣∣  
∆
ν dσ

∣∣∣ ≤ ‖ν‖[BMO(∂Ω,σ)]n ≤
√

2
√

1− inf
∆⊆∂Ω

∣∣∣  
∆
ν dσ

∣∣∣, (2.2.57)

where the two infima are taken over all surface balls ∆ ⊆ ∂Ω. Also,

if ∂Ω is bounded then ‖ν‖[BMO(∂Ω,σ)]n = ‖ν‖[BMO2(∂Ω,σ)]n = 1. (2.2.58)

As a consequence,

∂Ω is unbounded whenever ‖ν‖[BMO(∂Ω,σ)]n < 1. (2.2.59)

In relation to (2.2.58) we wish to note that, in the class of Ahlfors regular domains,
having the BMO semi-norm of its geometric measure theoretic outward unit normal pre-
cisely 1 is not an exclusive attribute of bounded domains. For example, a straightforward
computation shows that an infinite strip in Rn (i.e., the region in between two parallel
hyperplanes in Rn) is an unbounded Ahlfors regular domain with the property that the
BMO semi-norm of its outward unit normal is equal to 1.
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Proof of Lemma 2.2.5. Hölder’s inequality and Lemma 2.2.4 imply that for each surface
ball ∆ ⊆ ∂Ω we have(  

∆

∣∣ν − ν∆
∣∣ dσ)2

≤
 

∆

∣∣ν − ν∆
∣∣2 dσ = 1−

∣∣∣  
∆
ν dσ

∣∣∣2 ≤ 1, (2.2.60)

from which (2.2.56) follows on account of (2.2.32), (2.2.38), and (2.2.39). Next, (2.2.57)
follows from (2.2.52), used with X := ∆, arbitrary surface ball on ∂Ω, and µ := Hn−1b∆.

To justify the claim made in (2.2.58), assume first that the set Ω is bounded. In such
a case, fix some point x0 ∈ ∂Ω along with some real number r0 > diam (∂Ω) and note
that the latter choice entails ∆0 := B(x0, r0)∩∂Ω = ∂Ω. Also, since Hn−1(∂Ω\∂∗Ω

)
= 0

(cf. Definition 1.1.2) the Divergence Formula (1.1.12) gives

ν∆0 =
( 1
σ(∂Ω)

ˆ
∂Ω
ν · ej dσ

)
1≤j≤n

=
( 1
σ(∂Ω)

ˆ
Ω

div ej dLn
)

1≤j≤n
= 0. (2.2.61)

In concert with (1.1.11) this implies (again, bearing in mind that Hn−1(∂Ω \ ∂∗Ω
)

= 0)

‖ν‖[BMO(∂Ω,σ)]n = sup
∆⊆∂Ω

 
∆

∣∣ν − ν∆
∣∣ dσ ≥  

∂Ω

∣∣ν − ν∆0

∣∣ dσ = 1. (2.2.62)

In light of (2.2.56), we then conclude that ‖ν‖[BMO(∂Ω,σ)]n = ‖ν‖[BMO2(∂Ω,σ)]n = 1 in this
case. When Ω is an unbounded Ahlfors regular domain with compact boundary in Rn,
having n ≥ 2 implies that Rn \Ω is a bounded Ahlfors regular domain whose topological
boundary coincides with that of Ω, whose geometric measure theoretic boundary agrees
with that of Ω, and whose geometric measure theoretic outward unit normal is −ν at
σ-a.e. point on ∂Ω (cf. [93] for a proof). Granted these properties, we may run the
same argument as in (2.2.61)-(2.2.62) with Rn \ Ω in place of Ω and conclude that
‖ν‖[BMO(∂Ω,σ)]n = 1 in this case as well. This finishes the proof of (2.2.58).

To close this section, recall for further use that CMO(Rn,Ln) is the closure of C∞0 (Rn)
in BMO(Rn,Ln). As may be seen with the help of [17, Théorème 7, p. 198], the space
CMO(Rn,Ln) may be alternatively described as the linear subspace of BMO(Rn,Ln)
consisting of functions f satisfying the following three conditions:

lim
r→0+

[
sup
x∈Rn

(  
B(x,r)

∣∣∣f −  
B(x,r)

f dLn
∣∣∣ dLn)] = 0, (2.2.63)

lim
r→∞

[
sup
x∈Rn

(  
B(x,r)

∣∣∣f −  
B(x,r)

f dLn
∣∣∣ dLn)] = 0, (2.2.64)

and

lim
|x|→∞

[
sup

r∈[R0,R1]

(  
B(x,r)

∣∣∣f −  
B(x,r)

f dLn
∣∣∣ dLn)] = 0

for each R0, R1 ∈ (0,∞) with R0 < R1.

(2.2.65)

This is going to be relevant later on, in Proposition 2.2.10.



70 2.2. Geometric measure theory

2.2.2 Chord-arc curves in the plane

Shifting gears, in this section we shall work in the two-dimensional setting. We being
by recalling some known results of topological flavor. First, for bounded sets, we know
from [9, Corollary 1, p. 352] that

an open bounded connected set Ω ⊆ R2 is simply
connected if and only if R2 \ Ω is connected,

(2.2.66)

and

an open bounded connected set Ω ⊆ R2 is simply
connected if and only if ∂Ω is connected.

(2.2.67)

For unbounded sets, [9, Corollary 2, p. 352] gives

an open unbounded connected set Ω ⊆ R2 is simply connected if and
only if every connected component of R2 \ Ω is unbounded,

(2.2.68)

and

an open unbounded connected set Ω ⊆ R2 is simply connected if and
only if every connected component Σ of ∂Ω is unbounded.

(2.2.69)

(Parenthetically, it is worth noting that the boundary of an open set Ω ⊆ R2 which is
both connected and simply connected is not necessarily connected: e.g., take Ω := R2 \E
where E := [0,∞) × {0, 1}.) Finally, according to [9, Corollary 3, p. 352],

if E ⊆ R2 is a closed set such that each connected component of
E is unbounded, then R2 \ E is a simply connected set,

(2.2.70)

and according to [105, Theorem 13.11, p. 274]

an open connected set Ω ⊆ R2 ≡ C is simply connected if and only if
Ĉ\Ω is connected, where Ĉ := C∪{∞} is the extended complex plane
(i.e., the one-point compactification of C, aka Riemann’s sphere).

(2.2.71)

Next, recall that a (compact) curve in the Euclidean plane R2 (canonically identified
with C) is a set of the form Σ = γ([a, b]), where a, b ∈ R are two numbers satisfying a < b,
and γ : [a, b]→ R2 is a continuous function, called a parametrization of Σ. Call the curve
Σ simple if Σ has a parametrization γ : [a, b]→ R2 whose restriction to [a, b) is injective
(hence, Σ is simple if it is non self-intersecting). Call the curve Σ closed if it has a
parametrization γ : [a, b]→ R2 satisfying γ(a) = γ(b). Also, call Σ ⊂ C a Jordan curve,
if Σ is a simple closed curve. Thus, a curve is Jordan if and only if it is the homeomorphic
image of the unit circle S1. The classical Jordan curve theorem asserts that

the complement of a Jordan curve Σ ⊂ C consists precisely of two
connected components, one bounded Ω+, and one unbounded Ω−, called
the inner and outer domains of Σ, satisfying ∂Ω± = Σ.

(2.2.72)

In light of (2.2.67), we also conclude that

the inner domain Ω+ of a Jordan curve Σ ⊂ C is simply connected. (2.2.73)
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We are also going to be interested in Jordan curves passing through infinity in
the plane. This class consists of sets of the form Σ = γ(R), where γ : R → R2 is a
continuous injective function with the property that lim

t→±∞
|γ(t)| = ∞. For this class of

curves a version of the Jordan separation theorem is also valid, namely
if Σ is a Jordan curve passing through infinity, then its
complement in C consists precisely of two open connected
components, called Ω±, which satisfy ∂Ω+ = Σ = ∂Ω−.

(2.2.74)

Once (2.2.74) has been established, we deduce from (2.2.69) that

in the context of (2.2.74), the sets Ω± are simply connected. (2.2.75)

To justify (2.2.74), let Σ be a Jordan curve passing through infinity. From definitions,
it follows that Σ is a closed subset of C. Fix an arbitrary point zo ∈ C \ Σ and
consider the homeomorphisms

Φ : C \ {zo} −→ C \ {0}, Φ(z) := (z − zo)−1 for all z ∈ C \ {zo},

Φ−1 : C \ {0} −→ C \ {zo}, Φ−1(ζ) := zo + ζ−1 for all ζ ∈ C \ {0},
(2.2.76)

which are inverse to each other. We then claim that

Σ̃ := Φ(Σ) ∪ {0} (2.2.77)

is a simple closed curve which contains the origin in C. To see that this is indeed the
case, start by expressing Σ = γ(R) where γ : R → R2 is a continuous injective function
with the property that lim

t→±∞
|γ(t)| = ∞. Then γ̃ :

[
− π/2, π/2

]
→ C defined for

each t ∈
[
− π/2, π/2

]
as

γ̃(t) :=


(
γ(tan t)− zo

)−1 if t ∈
(
− π/2, π/2

)
,

0 if t ∈
{
± π/2

}
,

(2.2.78)

is a continuous function whose restriction to
[
−π/2, π/2

)
is injective, and whose image is

precisely Σ̃. Also, 0 ∈ Σ̃ by design. Hence, as claimed, Σ̃ is a simple closed curve passing
through 0 ∈ C. The classical Jordan curve theorem recalled in (2.2.72) then ensures that
C \ Σ̃ consists precisely of two open connected components, one bounded Ω̃+, and one
unbounded Ω̃−, satisfying ∂Ω̃± = Σ̃. In particular,

C \ {0} = Ω̃+ t
(
Σ̃ \ {0}

)
t Ω̃− (disjoint unions). (2.2.79)

Then O± := Φ−1(Ω̃±) are open connected subsets of C \ {zo}, and applying the home-
omorphism Φ−1 to (2.2.79) yields

C \ {zo} = O+ t Σ tO− (disjoint unions). (2.2.80)

Let us also observe that since Ω̃− is unbounded, there exists a sequence {ζj}j∈N ⊆ Ω̃− with
|ζj | → ∞ as j →∞. Consequently, the sequence {zj}j∈N defined for each j ∈ N as zj :=
Φ−1(ζj) = zo + ζ−1

j is contained in Φ−1(Ω̃−) = O− and converges to zo. This shows that

zo ∈ O−. (2.2.81)
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Next, since Σ is a closed set, the fact that zo ∈ C \ Σ guarantees the existence of
some r > 0 with the property that B(zo, r) ∩ Σ = ∅. In the context of (2.2.80) this
shows that the connected set B(zo, r) \ {zo} is covered by the open sets O±. As such,
B(zo, r) \ {zo} is fully contained in either O+, or O−. In view of (2.2.81) we ultimately
conclude that B(zo, r) \ {zo} ⊆ O−. Then Ω+ := O+ and Ω− := O− ∪ {zo} are open,
connected, disjoint subsets of C, with

C = Ω+ t Σ t Ω− (disjoint unions), (2.2.82)

and

∂Ω± = ∂O± \ {zo} = Φ−1(∂Ω̃± \ {0}
)

= Φ−1(Σ̃ \ {0}) = Σ. (2.2.83)

This finishes the proof of (2.2.74).
Moving on, the length L ∈ [0,+∞] of a given compact curve Σ = γ([a, b]) is defined as

L := sup
N∑
j=1
|γ(tj)− γ(tj−1)|, (2.2.84)

where the supremum is taken over all partitions a = t0 < t1 < · · · < tN−1 < tN = b of
the interval [a, b]. As is well-known (cf., e.g., [72, Theorem 4.38, p. 135]), the length L of
any simple compact curve Σ may be expressed in terms of the Hausdorff measure by

L = H1(Σ), (2.2.85)

and
|z1 − z2| ≤ H1(Σ) for any compact curve Σ
in the plane with endpoints z1, z2 ∈ C.

(2.2.86)

Call a curve Σ rectifiable provided its length is finite (i.e., L < +∞), and call Σ
locally rectifiable if each of its compact sub-curves is rectifiable. The latter condition
is equivalent to demanding that γ(I) is a rectifiable curve for each compact sub-interval I
of the domain of definition of some (or any) parametrization on Σ. In particular, a Jordan
curve Σ passing through infinity in the plane, with parametrization γ : R→ Σ, is locally
rectifiable if and only if γ(I) is a rectifiable curve for any compact sub-interval I of R.

Suppose Σ is a rectifiable, simple, compact curve in the plane, and denote by L its
length. Then there exists a unique parametrization [0, L] 3 s 7→ z(s) ∈ Σ of Σ, called
the arc-length parametrization of Σ, with the property that for each s1, s2 ∈ [0, L]
with s1 < s2 the length of the curve with end-points at z(s1) and z(s2) is s2 − s1. It
is well known (see, e.g., [72, Definition 4.21 and Theorem 4.22, pp. 128-129]) that the
arch-length parametrization exists and satisfies

z(·) is differentiable at L1-a.e. point in [0, L]

and |z ′(s)| = 1 for L1-a.e. s ∈ [0, L].
(2.2.87)

Also, (2.2.85)-(2.2.86) imply

|z(s1)− z(s2)| ≤ |s1 − s2|, ∀ s1, s2 ∈ [0, L]. (2.2.88)
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Lemma 2.2.6. Let Σ be a rectifiable, simple, compact curve in the plane. Denote by
L its length, and let [0, L] 3 s 7→ z(s) ∈ Σ be its arc-length parametrization. Given
s1, s2 ∈ [0, L] with s1 < s2, abbreviate I := [s1, s2] and set z ′I :=

ffl
I z
′(s) ds. Then

 
I
|z ′(s)− z ′I |2 ds = 1−

∣∣∣z(s2)− z(s1)
s2 − s1

∣∣∣2. (2.2.89)

Proof. Upon observing that

z ′I =
 
I
z ′(s) ds = 1

s2 − s1

ˆ s2

s1

z ′(s) ds = z(s2)− z(s1)
s2 − s1

, (2.2.90)

this is a direct consequence of the formula in the second line of (2.2.52).

Remark 2.2.7. The arch-length parametrization of a locally rectifiable Jordan curve
passing through infinity in the plane is defined similarly, with R now playing the role of the
interval [0, L], and satisfies properties analogous to (2.2.87), (2.2.88), and Lemma 2.2.6.

We continue by recalling an important category of curves, introduced in 1936 by
Mikhail A. Lavrentiev in [71] (also known as the class of Lavrentiev curves).

Definition 2.2.8. Given some number κ ∈ [0,∞), recall that a set Σ ⊂ C is said to be a
κ-CAC, or simply CAC (acronym for chord-arc curve) if the parameter κ is de-emphasized,
provided Σ is a locally rectifiable Jordan curve passing through infinity with the property
that

`(z1, z2) ≤ (1 + κ)|z1 − z2| for all z1, z2 ∈ Σ, (2.2.91)

where `(z1, z2) denotes the length of the sub-arc of Σ joining z1 and z2.

In general, the presence of a cusp prevents a curve from being chord-arc. For example,
Σ :=

{
(x,
√
|x|) : x ∈ R} is a Jordan curve passing through infinity in R2 ≡ C which

nonetheless fails to be chord-arc. Indeed, if for x > 0 we set z1 := x + i
√
x ∈ Σ and

z2 := −x + i
√
x ∈ Σ then L’Hôspital’s Rule gives

lim
x→0+

`(z1, z2)
|z1 − z2|

= lim
x→0+

2
´ x

0

√
1 + 1

4t dt

2x = lim
x→0+

√
1 + 1

4x = +∞, (2.2.92)

which shows that condition (2.2.91) is violated for each κ ∈ [0,∞).
There are fundamental links between chord-arc curves in the plane and the John-

Nirenberg space BMO on the real line. Such connections, along with other basic proper-
ties of chord-arc curves, are brought to the forefront in Proposition 2.2.9 below. To
facilitate stating and proving it, we first wish to recall the following version for bi-
Lipschitz maps of the classical Kirszbraun extension theorem proved in [68, Theorem 1.2]
with a linear bound on the distortion:

any function f : R→ C with the property that there exist C,C ′ ∈
(0,∞) such that C|t1 − t2| ≤ |f(t1) − f(t2)| ≤ C ′|t1 − t2| for
all t1, t2 ∈ R extends to a homeomorphism F : C → C with
(C/120)|z1 − z2| ≤ |F (z1) − F (z2)| ≤ (2000C ′)|z1 − z2| for all
z1, z2 ∈ C.

(2.2.93)
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Results of this nature have also been proved in [120], [121], [58, Proposition 1.13, p. 227]
(see also [104, Theorem 7.10, p. 166] and [29] in the case when the real line is replaced
by the unit circle), though the quantitative aspect is less precise, or not explicitly
mentioned, in these works.

Here is the proposition dealing with basic properties of chord-arc curves mentioned
above.

Proposition 2.2.9. Let Σ ⊂ C be a κ-CAC in the plane, for some κ ∈ [0,∞), and
consider its arc-length parametrization R 3 s 7→ z(s) ∈ Σ. Then the following statements
are true.

(i) For each s1, s2 ∈ R one has

|z(s1)− z(s2)| ≤ |s1 − s2| ≤ (1 + κ)|z(s1)− z(s2)|, (2.2.94)

and
z(·) is differentiable at L1-a.e. point in R,

with |z ′(s)| = 1 for L1-a.e. s ∈ R.
(2.2.95)

(ii) For each zo ∈ Σ and r ∈ (0,∞) abbreviate ∆(zo, r) := B(zo, r) ∩ Σ. Then for each
so ∈ R and r ∈ (0,∞) one has

(so − r, so + r) ⊆ z−1(∆(z(so), r)
)
⊆
(
so − (1 + κ)r , so + (1 + κ)r

)
. (2.2.96)

(iii) For every Lebesgue measurable set A ⊆ R one has

H1(z(A)
)

= L1(A), (2.2.97)

and for each H1-measurable set E ⊆ Σ one has

H1(E) = L1(z−1(E)
)
. (2.2.98)

(iv) With the arc-length measure σ on Σ defined as

σ := H1bΣ, (2.2.99)

for each σ-measurable set E ⊆ Σ and each non-negative σ-measurable function g

on E one has ˆ
E
g dσ =

ˆ
z−1(E)

g(z(s)) ds. (2.2.100)

(v) Denote by Ω the region of the plane lying to the left of the curve Σ (relative to the
orientation Σ inherits from its arc-length parametrization R 3 s 7→ z(s) ∈ Σ). Then
Ω is a set of locally finite perimeter and its geometric measure theoretic outward
unit normal ν is given by

ν(z(s)) = −i z ′(s) for L1-a.e. s ∈ R. (2.2.101)

As a consequence, for L1-a.e. number s ∈ R the line {z(s) + t z ′(s) : t ∈ R} is
an approximate tangent line to Σ at the point z(s). Hence, Ω has an approximate
tangent line at H1-almost every point on ∂Ω.
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(vi) The set Ω introduced in item (v) is a connected, simply connected, unbounded, two-
sided NTA domain with an Ahlfors regular boundary (hence also an Ahlfors regular
domain which satisfies a two-sided local John condition and, in particular, a UR
domain) and whose topological boundary is precisely Σ, i.e., ∂Ω = Σ. In fact,

there exists a bi-Lipschitz homeomorphism F : R2 → R2 such that
120−1(1 + κ)−1|z1 − z2| ≤ |F (z1) − F (z2)| ≤ 2000|z1 − z2| for all
z1, z2 ∈ C, and with the property that Ω = F (R2

+), R2\Ω = F (R2
−),

as well as ∂Ω = F (R× {0}).

(2.2.102)

(vii) With the piece of notation introduced in (2.2.38) one has

1
2(1 + κ)‖ν‖BMO(Σ,σ) ≤ ‖z ′‖BMO(R,L1) ≤ ‖z ′‖BMO2(R,L1) ≤

√
κ(2 + κ)
1 + κ

< 1

(2.2.103)
and

1
2(1 + κ)‖z

′‖BMO(R,L1) ≤ ‖ν‖BMO(Σ,σ) ≤ 2
√
κ(2 + κ). (2.2.104)

Moreover, Σ is a κ∗-CAC with κ∗ ∈ [0,κ] defined as

κ∗ := 1√
1− ‖z ′‖2BMO2(R,L1)

− 1

=
‖z ′‖2BMO2(R,L1)√

1− ‖z ′‖2BMO2(R,L1)
(
1 +

√
1− ‖z ′‖2BMO2(R,L1)

) . (2.2.105)

Proof. The claims in item (i) are seen from definitions and Remark 2.2.7, while the claim
in item (ii) is an elementary consequence of (2.2.94). Next, in view of (2.2.95), the area
formula (cf. [38, Theorem 1, p. 96]) gives (2.2.97), which may be equivalently recast as in
(2.2.98). Also, the change of variable formula (cf. [38, Theorem 2, p. 99]) gives (2.2.100).
This takes care of items (iii)-(iv).

To proceed, from the version of the Jordan curve theorem recorded in (2.2.74) we
conclude that

the complement of the curve Σ in C consists precisely of two
open connected components, namely Ω+ := Ω and Ω− :=
C \ Ω, satisfying ∂Ω+ = Σ = ∂Ω−.

(2.2.106)

In addition, from (2.2.96) and (2.2.98) we see that for each so ∈ R and r ∈ (0,∞) we
have

H1(∆(z(so), r)
)

= L1
(
z−1(∆(z(so), r)

))
≤ L1

((
so − (1 + κ)r , so + (1 + κ)r

))
= 2(1 + κ)r. (2.2.107)
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Based on this and the criterion for finite perimeter from [38, Theorem 1, p. 222] we
then conclude that Ω is a set of locally finite perimeter. Next, if so ∈ R is a point of
differentiability for the complex-valued function z(·), then for every ε > 0 there exists
δ > 0 such that

z(so + s) ∈ B
(
z(so) + s z ′(so) , ε|s|

)
for each s ∈ (−δ, δ). (2.2.108)

In turn, from this geometric property we deduce that for each angle θ ∈ (0, π) there
exists a height h = h(θ) > 0 such that if Γ±θ,h denote the open truncated plane sectors
with common vertex at z(so), common aperture θ, common height h, and symmetry axes
along the vectors ±i z′(so), then

Γ+
θ,h ⊆ Ω = Ω+ and Γ−θ,h ⊆ C \ Ω = Ω−. (2.2.109)

To proceed, observe that that the measure-theoretic boundary of Ω (cf. (1.1.6)) may be
presently described as

∂∗Ω =
{
z ∈ ∂Ω : lim sup

r→0+

L2(B(z, r) ∩ Ω±
)

r2 > 0
}
. (2.2.110)

Together, (2.2.109) and (2.2.110) imply that

A :=
{
z(so) : so ∈ A

}
⊆ ∂∗Ω, where we have set

A :=
{
so ∈ R : so differentiability point for z(·)

}
.

(2.2.111)

Meanwhile, from (2.2.97) and the fact that z(·) is differentiable at L1-a.e. point in R we
deduce (also using ∂Ω = Σ) that

H1(∂Ω \ A) = H1(Σ \ A) = H1(z(R \A)
)

= L1(R \A) = 0. (2.2.112)

With this in hand, formula
H1(∂Ω \ ∂∗Ω) = 0 (2.2.113)

follows by combining (2.2.111) with (2.2.112). As a consequence of (2.2.112)-(2.2.113)
and (1.1.14) we then conclude that

A ∩ ∂∗Ω has full H1-measure in ∂Ω. (2.2.114)

Next, pick an arbitrary point zo ∈ A and recall that (2.2.109) holds. From this and
[52, Proposition 2.14, p. 606] it follows that if Γπ−θ is the infinite open plane sector with
vertex at zo, aperture π − θ, and symmetry axis along the vector −i z ′(so), then the
geometric measure theoretic outward unit normal to Ω satisfies

ν(z(so)) ∈ Γπ−θ (2.2.115)

provided ν(z(so)) exists, i.e., if z(so) ∈ ∂∗Ω. The fact that the angle θ ∈ (0, π) may
chosen arbitrarily close to π then forces ν(z(so)) = −i z ′(so) whenever z(so) ∈ ∂∗Ω, i.e.
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for so ∈ z−1(A ∩ ∂∗Ω). Given that by (2.2.114) and (2.2.97) the latter set has full one-
dimensional Lebesgue measure in R, the claim in (2.2.101) is established. This finishes
the treatment of item (v).

Turning our attention to item (vi), first observe that (2.2.94) implies

(1 + κ)−1|s1 − s2| ≤ |z(s1)− z(s2)| ≤ |s1 − s2| for all s1, s2 ∈ R, (2.2.116)

hence R 3 s 7→ z(s) ∈ C is a bi-Lipschitz map. When used in conjunction with (2.2.116),
the extension result recalled in (2.2.93) gives that

R 3 s 7→ z(s) ∈ Σ extends to a bi-Lipschitz homeomorphism
F : C → C with the property that for any points z1, z2 ∈ C one
has [120(1 + κ)]−1|z1 − z2| ≤ |F (z1)− F (z2)| ≤ 2000|z1 − z2|.

(2.2.117)

As a consequence, work in [52] implies that Ω is a connected two-sided NTA domain
with an Ahlfors regular boundary (hence also a connected Ahlfors regular domain which
satisfies a two-sided local John condition; cf. (1.1.21) and (1.1.28)). As far as item (vi)
is concerned, there remains to observe that ∂Ω = Σ has been noted earlier in (2.2.106).

Turning our attention to item (vii), fix s1, s2 ∈ R with s1 < s2, abbreviate I := [s1, s2]
and set z ′I :=

ffl
I z
′(s) ds. We may then use Lemma 2.2.6 and (2.2.94) to estimate

 
I
|z ′(s)− z ′I |2 ds = 1−

∣∣∣z(s2)− z(s1)
s2 − s1

∣∣∣2 ≤ 1−
( 1

1 + κ

)2
= κ(2 + κ)

(1 + κ)2 . (2.2.118)

In view of (2.2.38), this readily yields the penultimate inequality in (2.2.103). The second
inequality in (2.2.103) is seen directly from the first inequality in (2.2.40).

To prove the very first inequality in (2.2.103), fix an arbitrary point zo ∈ Σ along
with a radius r ∈ (0,∞), and set ∆ := B(zo, r) ∩ Σ. Then there exists a unique number
so ∈ R such that zo = z(so) ∈ Σ, and we abbreviate I :=

(
so − (1 + κ)r , so + (1 + κ)r

)
.

In particular, (2.2.96) and (2.2.98) imply

σ(∆) = H1(∆(z(so), r)
)

= L1
(
z−1(∆(z(so), r)

))
≥ L1

((
so − r , so + r

))
= 2r = (1 + κ)−1L1(I). (2.2.119)

With c := −i
ffl
I z
′(s) ds ∈ C we may then write

 
∆
|ν − c| dσ = 1

σ(∆)

ˆ
∆
|ν − c| dσ = 1

σ(∆)

ˆ
z−1(∆)

|ν(z(s))− c| ds

≤ 1
σ(∆)

ˆ
I
|ν(z(s))− c| ds = L

1(I)
σ(∆)

 
I
|ν(z(s))− c| ds

= L
1(I)
σ(∆)

 
I
|z ′(s)− ic| ds ≤ (1 + κ)

 
I
|z ′(s)− ic| ds

≤ (1 + κ)‖z ′‖BMO (R,L1), (2.2.120)

making use of (2.2.100), (2.2.96), (2.2.101), (2.2.119), and the choice of c. With (2.2.120)
in hand, the first inequality in (2.2.103) readily follows. The last estimate in (2.2.104) is
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implicit in (2.2.103). To prove the first estimate in (2.2.104), retain notation introduced
above and, now with the choice c :=

ffl
∆ ν dσ ∈ C, estimate

 so+r

so−r
|z ′(s)− ic| ds = 1

2r

ˆ so+r

so−r
|z ′(s)− ic| ds ≤ 1

2r

ˆ
z−1(∆)

|z ′(s)− ic| ds

= 1
2r

ˆ
z−1(∆)

|ν(z(s))− c| ds = 1
2r

ˆ
∆
|ν − c| dσ

= σ(∆)
2r

 
∆
|ν − c| dσ ≤ (1 + κ)

 
∆
|ν − c| dσ

≤ (1 + κ)‖ν‖BMO (Σ,σ), (2.2.121)

thanks to (2.2.96), (2.2.101), (2.2.100), and (2.2.107). This readily yields the first
estimate in (2.2.104).

To deal with the very last claim in item (vii), fix some s1, s2 ∈ R with s1 < s2, set
I := [s1, s2] and abbreviate z ′I :=

ffl
I z
′(s) ds. Lemma 2.2.6 then permits us to estimate

‖z ′‖2BMO2(R,L1) ≥
 
I
|z ′(s)− z ′I |2 ds = 1−

∣∣∣z(s2)− z(s1)
s2 − s1

∣∣∣2. (2.2.122)

In turn, this implies

|s1 − s2| ≤
|z(s1)− z(s2)|√

1− ‖z ′‖2BMO2(R,L1)

= (1 + κ∗)|z(s1)− z(s2)|, (2.2.123)

provided κ∗ is defined as in (2.2.105). This goes to show that, indeed, Σ is a κ∗-CAC.

Having discussed a number of basic properties of chord-arc curves in Proposition 2.2.9,
we now wish to elaborate on the manner on which concrete examples of chord-arc curves
may be produced. To set the stage for the subsequent discussion orserve that, when
specialized to the one-dimensional setting, (2.2.63)-(2.2.65) imply that for each function
f ∈ CMO(R,L1) we have

lim
−∞<s1<s2<+∞
|s1|+|s2|→∞

(  s2

s1

∣∣∣f −  s2

s1

f dL1
∣∣∣ dL1

)
= 0, (2.2.124)

and

lim
−∞<s1<s2<+∞

s2−s1→0+

( s2

s1

∣∣∣f −  s2

s1

f dL1
∣∣∣ dL1

)
= 0. (2.2.125)

These properties are relevant in the context of the next proposition, describing a wealth
of examples of chord-arc curves in the plane.

Proposition 2.2.10. Suppose b ∈ CMO(R,L1) is a real-valued function and consider
the assignment

R 3 s 7−→ z(s) :=
ˆ s

0
eib(t) dt ∈ C. (2.2.126)

If the said assignment is injective then R 3 s 7→ z(s) ∈ C is, in fact, the arc-length
parametrization of a chord-arc curve (which, in particular, passes through infinity in the
plane).
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Proof. Introduce

F (s1, s2) := z(s1)− z(s2)
s1 − s2

for each s1, s2 ∈ R with s1 6= s2. (2.2.127)

Then, whenever −∞ < s1 < s2 < +∞ and with bI abbreviating
ffl s2
s1
b(t) dt, we may write

F (s1, s2) =
 s2

s1

eib(t) dt =
 s2

s1

(
eib(t) − eibI

)
dt+ eibI . (2.2.128)

Recall that

|eiθ − 1| =
∣∣∣ ˆ θ

0
ieit dt

∣∣∣ ≤ ∣∣∣ ˆ θ

0

∣∣ieit∣∣ dt∣∣∣ = |θ| for each θ ∈ R. (2.2.129)

Then, since b is real-valued, we may use (2.2.129) to estimate∣∣∣  s2

s1

(
eib(t) − eibI

)
dt
∣∣∣ =

∣∣∣  s2

s1

(
ei(b(t)−bI) − 1

)
dt
∣∣∣

≤
 s2

s1

∣∣ei(b(t)−bI) − 1
∣∣ dt ≤  s2

s1

|b(t)− bI | dt. (2.2.130)

According to (2.2.124)-(2.2.125) (written for b in place of f), the last integral in (2.2.130)
converges to zero as either |s1|+ |s2| → ∞, or s2−s1 → 0+. Since

∣∣eibI ∣∣ = 1, we conclude
that

lim
−∞<s1 6=s2<+∞
|s1|+|s2|→∞

|F (s1, s2)| = 1 and lim
−∞<s1 6=s2<+∞
|s1−s2|→0+

|F (s1, s2)| = 1. (2.2.131)

Given that, by assumption, the assignment R 3 s 7→ z(s) ∈ C is injective, we also have

F (s1, s2) 6= 0 whenever −∞ < s1 6= s2 < +∞. (2.2.132)

From (2.2.131), (2.2.132), and the fact that F : {(s1, s2) ∈ R2 : s1 6= s2} → C is
continuous, we conclude that there exists c ∈ (0, 1) with the property that |F (s1, s2)| ≥ c
for each s1, s2 ∈ R with s1 6= s2. In view of (2.2.127), this implies

|s1 − s2| ≤ c−1|z(s1)− z(s2)| for each s1, s2 ∈ R. (2.2.133)

In particular, this entails lim
s→±∞

|z(s)| =∞. In addition, the mapping R 3 s 7→ z(s) ∈ C

is continuous, and it is assumed to be injective. Given that |z ′(s)| =
∣∣eib(s)∣∣ = 1 for

L1-a.e. s ∈ R, since b is real-valued, it follows that R 3 s 7→ z(s) ∈ C is the arc-length
parametrization of a Jordan curve in the plane which passes through infinity.

Here is a version of Proposition 2.2.10 in which the membership of b to CMO(R,L1)
is replaced by the demand that ‖b‖L∞(R,L1) <

π
2 . In an interesting twist, this forces

the image of (2.2.126) to be a Lipschitz graph.

Proposition 2.2.11. If b ∈ L∞(R,L1) is a real-valued function with ‖b‖L∞(R,L1) <
π
2

then the assignment (2.2.126) is actually the arc-length parametrization of a Lipschitz
graph in the plane (hence, in particular, a chord-arc curve).
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Proof. Suppose there exists θ ∈ (0, π/2) such that b(t) ∈ (−θ, θ) for L1-a.e. t ∈ R. Since
for L1-a.e. t ∈ R we have z ′(t) = eib(t) = cos(b(t)) + i sin(b(t)) given that b is real-valued,
it follows that

Re z ′(t) = cos(b(t)) ≥ cos θ > 0 for L1-a.e. t ∈ R. (2.2.134)

Granted this, whenever −∞ < s1 < s2 < +∞ we may estimate

|z(s2)− z(s1)| ≥ Re
(
z(s2)− z(s1)

)
= Re

ˆ s2

s1

z ′(t) dt =
ˆ s2

s1

Rez ′(t) dt

≥
ˆ s2

s1

cos θ dt = (cos θ)(s2 − s1), (2.2.135)

which, in light of Proposition 2.2.10, implies that the image of z(·) is a chord-arc curve
Σ in the plane. As such, Proposition 2.2.9 implies that if Ω denotes the region in C
lying to the left of the curve Σ (relative to the orientation Σ inherits from its arc-
length parametrization R 3 s 7→ z(s) ∈ Σ), then Ω is an Ahlfors regular domain whose
topological boundary is Σ, and whose geometric measure theoretic outward unit normal
ν is given at L1-a.e. s ∈ R by ν(z(s)) = −i z ′(s). Consider next the constant vector field
h := (0,−1) ≡ −i in C and regard ν as a C2-valued function. Then, with 〈·, ·〉 denoting
the standard inner product in R2, we have〈

ν(z(s)), h(z(s))
〉

= Re
(
iν(z(s))

)
= Re z ′(s) ≥ cos θ > 0 for L1-a.e. s ∈ R. (2.2.136)

This goes to show that there exists a constant vector field which is transversal to Ω and,
as a consequence of work in [52], we conclude that Ω is the upper-graph of a Lipschitz
function ϕ : R→ R. The desired conclusion now follows.

Another sub-category of chord-arc curves is offered by graphs of real-valued BMO1

functions defined on the real line.

Proposition 2.2.12. Let ϕ ∈ W 1,1
loc (R) be such that ϕ ′ ∈ BMO (R,L1) and consider its

graph Σ :=
{(
x, ϕ(x)

)
: x ∈ R

}
⊆ R2. Then Σ is a κ-CAC with κ = ‖ϕ ′‖BMO (R,L1).

Proof. Throughout, identify R2 with C. Since functions inW 1,1
loc (R) are locally absolutely

continuous (cf., e.g., [72, Corollary 7.14, p. 223]), we conclude that Σ is a curve in the
plane, with parametrization R 3 x 7→ x + iϕ(x) ∈ Σ. Hence, Σ is a Jordan curve that
passes through infinity in the plane. From [53, Proposition 2.25, p. 2616] we know that
Σ is an Ahlfors regular set which, in light of (2.2.85) implies that the curve Σ is also
locally rectifiable. Consider two arbitrary points z1, z2 ∈ Σ, say z1 :=

(
a, ϕ(a)

)
and

z2 :=
(
b, ϕ(b)

)
for some a, b ∈ R with a < b, and denote by Σz1,z2 the sub-arc of Σ with

end-points z1, z2. From [53, Proposition 2.25, p. 2616] we also know that the arc-length
measure σ := H1bΣ on the curve Σ satisfies

`(z1, z2) = σ(Σz1,z2) =
ˆ b

a

√
1 + |ϕ ′(x)|2 dx. (2.2.137)
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Observe that the function F : R → R defined as F (t) :=
√

1 + t2 for each t ∈ R is
Lipschitz, with Lipschitz constant ≤ 1, since |F ′(t)| = |t|/

√
1 + t2 ≤ 1 for each t ∈ R.

Consequently, if we set

ϕ ′I :=
 b

a
ϕ ′ dL1 = ϕ(b)− ϕ(a)

b− a
, (2.2.138)

then ˆ b

a

√
1 + |ϕ ′(x)|2 dx =

ˆ b

a
F (ϕ ′(x)) dx

≤
ˆ b

a
|F (ϕ ′(x))− F (ϕ ′I)| dx+ (b− a)F (ϕ ′I)

≤
ˆ b

a
|ϕ ′(x)− ϕ ′I | dx+ (b− a)

√
1 + (ϕ ′I)2

≤ (b− a)‖ϕ ′‖BMO (R,L1) + (b− a)

√
1 +

(ϕ(b)− ϕ(a)
b− a

)2

≤ |z1 − z2|‖ϕ ′‖BMO (R,L1) + |z1 − z2|

=
(
1 + ‖ϕ ′‖BMO (R,L1)

)
|z1 − z2|. (2.2.139)

From (2.2.137) and (2.2.139) we conclude that (2.2.91) holds with κ = ‖ϕ ′‖BMO (R,L1),
and the desired conclusion follows.

Another basic link between chord-arc curves in the plane and the John-Nirenberg
space BMO on the real line has been noted by R. Coifman and Y. Meyer. Specifically,
[25] contains the following result: if Σ ⊆ C is a chord-arc curve then its arc-length
parametrization R 3 s 7→ z(s) ∈ Σ satisfies z ′(s) = eib(s) for L1-a.e. s ∈ R for some
real-valued function b ∈ BMO(R,L1) and, in the converse direction, for any given real-
function b ∈ BMO(R,L1) whose BMO semi-norm is sufficiently small, the function R 3
s 7→ z(s) :=

´ s
0 e

ib(t) dt ∈ C is the arc-length parametrization of a chord-arc curve (cf. also
[26] for related results). Below we further elaborate on this last part of Coifman-Meyer’s
result. In particular, the analysis contained in our next proposition (which may be
thought of as a quantitative version of Proposition 2.2.10) is going to be instrumental in
producing a large variety of examples of δ-SKT domains a little later (see Example 2.2.20).

Proposition 2.2.13. Let b ∈ BMO (R,L1) be a real-valued function with

‖b‖BMO (R,L1) < 1 (2.2.140)

and introduce
κ :=

‖b‖BMO (R,L1)
1− ‖b‖BMO (R,L1)

∈ [0,∞). (2.2.141)

Define z : R→ C by setting

z(s) :=
ˆ s

0
ei b(t) dt for each s ∈ R. (2.2.142)
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Finally, consider Σ := z(R), the image of R under the mapping z(·). Then the following
statements are true.

(i) The set Σ is a κ-CAC which contains the origin 0 ∈ C, and R 3 s 7−→ z(s) ∈ Σ is
its arc-length parametrization. In addition,

‖z ′‖BMO (R,L1) ≤ 2‖b‖BMO (R,L1). (2.2.143)

(ii) Denote by Ω the region of the plane lying to the left of the curve Σ (relative to
the orientation Σ inherits from its arc-length parametrization R 3 s 7→ z(s) ∈ Σ).
Then the set Ω is the image of the upper half-plane under a global bi-Lipschitz
homeomorphism of C, and

the Ahlfors regularity constant of ∂Ω and the local John
constants of Ω stay bounded as ‖b‖BMO (R,L1) −→ 0+. (2.2.144)

Furthermore, the geometric measure theoretic outward unit normal ν satisfies

‖ν‖BMO(Σ,σ) ≤ 4κ. (2.2.145)

(iii) With the piece of notation introduced in (2.2.38), if in place of (2.2.140) one now
assumes

‖b‖BMO2(R,L1) <
√

2 (2.2.146)

then Σ is a κ2-CAC with

κ2 :=
‖b‖2BMO2(R,L1)

2− ‖b‖2BMO2(R,L1)
∈ [0,∞). (2.2.147)

As a consequence of this and (2.2.104), in such a scenario one has

‖ν‖BMO(Σ,σ) ≤ 2
√
κ2(2 + κ2). (2.2.148)

Proof. The fact that b is real-valued entails that ei b(·) ∈ L∞(R,L1). In turn, this
membership guarantees that z(·) in (2.2.142) is a well-defined Lipschitz function on R,
with z(0) = 0 ∈ C, and such that z ′(s) = ei b(s) for L1-a.e. s ∈ R. In particular,

|z ′(s)| = 1 for L1-a.e. s ∈ R. (2.2.149)

We claim that the inequalities in (2.2.94) hold. To see this, for each s1, s2 ∈ R we write
(keeping in mind that b is real-valued)

|z(s1)− z(s2)| =
∣∣∣ ˆ s1

0
ei b(t) dt−

ˆ s2

0
ei b(t) dt

∣∣∣ =
∣∣∣ ˆ s1

s2

ei b(t) dt
∣∣∣

≤
∣∣∣ ˆ s1

s2

∣∣ei b(t)∣∣ dt∣∣∣ = |s1 − s2|, (2.2.150)
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justifying the first inequality in (2.2.94). To prove the second inequality in (2.2.94), for
each finite, non-trivial, sub-interval I of R introduce

bI :=
 
I
b(t) dt, mI := ei bI , (2.2.151)

and note that the fact that b is real-valued implies |mI | = 1. Also, m−1
I = e−i bI . Assume

−∞ < s1 < s2 < +∞ and set I := [s1, s2]. We may then estimate

∣∣z(s1)− z(s2)−mI · (s1 − s2)
∣∣ =

∣∣∣ ˆ s2

s1

(z ′(t)−mI) dt
∣∣∣

=
∣∣∣ ˆ s2

s1

(
z ′(t)m−1

I − 1
)
dt
∣∣∣ =

∣∣∣ ˆ s2

s1

(
ei(b(t)−bI) − 1

)
dt
∣∣∣

≤
ˆ s2

s1

∣∣ei(b(t)−bI) − 1
∣∣ dt ≤ ˆ s2

s1

|b(t)− bI | dt

= |s1 − s2|
 
I
|b(t)− bI | dt ≤ |s1 − s2|‖b‖BMO (R,L1)

=
( κ

1 + κ

)
|s1 − s2|, (2.2.152)

where we have used the fact that Lipschitz functions are locally absolutely continuous
(hence, the fundamental theorem of calculus applies), as well as the elementary inequality
from (2.2.129). From (2.2.152), we obtain

|s1 − s2| = |mI · (s1 − s2)| ≤ |z(s1)− z(s2)|+ |z(s1)− z(s2)−mI · (s1 − s2)|

≤ |z(s1)− z(s2)|+
( κ

1 + κ

)
|s1 − s2|, (2.2.153)

which then readily yields the second estimate in (2.2.94). In particular, (2.2.94) implies
that R 3 s 7→ z(s) ∈ Σ is a bi-Lipschitz bijection. The argument so far shows that Σ
is a κ-CAC passing through the origin 0 ∈ C, and R 3 s 7−→ z(s) ∈ Σ is its arc-length
parametrization. To finish the treatment of the claims in item (i), there remains to
justify (2.2.143). To this end, given any finite interval I ⊂ R, set bI :=

ffl
I b(t) dt ∈ R and

mI := ei bI ∈ S1 (the two memberships a consequence of the fact that b is real-valued).
With z ′I :=

ffl
I z
′(s) ds ∈ C we may then estimate (bearing in mind that m−1

I = e−i bI

and the inequality in (2.2.129))
 
I

∣∣z ′(s)− z ′I ∣∣ ds ≤ 2
 
I

∣∣z ′(s)−mI

∣∣ ds = 2
 
I

∣∣z ′(s)m−1
I − 1

∣∣ ds
= 2

 
I

∣∣ei(b(s)−bI) − 1
∣∣ ds ≤ 2

 
I
|b(s)− bI | ds

≤ 2‖b‖BMO (R,L1), (2.2.154)

and (2.2.143) readily follows from this. Next, all but the last claim in item (ii) are
consequences of (2.2.102). The estimate in (2.2.145) is obtain by combing the first
inequality in (2.2.103) with (2.2.143) and (2.2.141).
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To deal with the claims in item (iii), make the assumption that (2.2.146) holds and
define κ2 as in (2.2.147). Whenever −∞ < s1 < s2 < +∞ and I := [s1, s2] we may
estimate

s2 − s1 ≤
√

(s2 − s1)2 +
∣∣∣ ˆ s2

s1

(b(t)− bI) dt
∣∣∣2 =

∣∣∣(s2 − s1) + i

ˆ s2

s1

(b(t)− bI) dt
∣∣∣

=
∣∣∣mI · (s2 − s1) +mI ·

ˆ s2

s1

i(b(t)− bI) dt
∣∣∣

≤ |z(s2)− z(s1)|

+
∣∣∣z(s2)− z(s1)−mI · (s2 − s1)−mI ·

ˆ s2

s1

i(b(t)− bI) dt
∣∣∣. (2.2.155)

Note that the last term above may be written as∣∣∣z(s2)− z(s1)−mI · (s2 − s1)−mI ·
ˆ s2

s1

i(b(t)− bI) dt
∣∣∣

=
∣∣∣ ˆ s2

s1

(
z ′(t)−mI −mI · i(b(t)− bI)

)
dt
∣∣∣

=
∣∣∣ ˆ s2

s1

(
z ′(t)m−1

I − 1− i(b(t)− bI)
)
dt
∣∣∣

=
∣∣∣ ˆ s2

s1

(
ei(b(t)−bI) − 1− i(b(t)− bI)

)
dt
∣∣∣. (2.2.156)

Also, for each θ ∈ R we may use (2.2.129) to write

|eiθ − 1− iθ| =
∣∣∣ ˆ θ

0
i(eit − 1) dt

∣∣∣ ≤ ∣∣∣ ˆ θ

0

∣∣i(eit − 1)
∣∣ dt∣∣∣

≤
∣∣∣ ˆ θ

0
|t| dt

∣∣∣ = θ2/2. (2.2.157)

From (2.2.155), (2.2.156), (2.2.157), (2.2.38), and (2.2.147) we then conclude that

s2 − s1 ≤ |z(s2)− z(s1)|+ 1
2

ˆ s2

s1

|b(t)− bI |2 dt

≤ |z(s2)− z(s1)|+ 1
2(s2 − s1)‖b‖2BMO2(R,L1)

= |z(s2)− z(s1)|+
( κ2

1 + κ2

)
(s2 − s1). (2.2.158)

From (2.2.158) we conclude that the version of (2.2.94) with κ replaced by κ2 holds. In
particular, Σ is a κ2-CAC. The proof of Proposition 2.2.13 is therefore complete.

2.2.3 The class of δ-SKT domains

We begin making the following definition which is central for the present work. This
should be compared with [53, Definitions 4.7-4.9, p. 2690] where related, yet distinct,
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variants have been considered (the said definitions in [53] are designed to work particu-
larly well when dealing with domains with compact boundaries, as opposed to the preset
endeavors where we shall consider domains with unbounded boundaries).

Definition 2.2.14. Consider a parameter δ > 0. Call Ω a δ-SKT domain if Ω is an
open, nonempty, proper subset of Rn, which satisfies a two-sided local John condition,
whose topological boundary ∂Ω is an Ahlfors regular set, and whose geometric measure
theoretic outward unit normal ν is such that

‖ν‖[BMO(∂Ω,σ)]n < δ, (2.2.159)

where σ := Hn−1b∂Ω.

Whenever Ω ⊆ Rn is an open set satisfying a two-sided local John condition and whose
topological boundary ∂Ω is an Ahlfors regular set, it follows from (1.1.27), (1.1.22), and
(1.1.21) that Ω is a UR domain (hence, in particular, an Ahlfors regular domain). Since
in this class of domains we always have ‖ν‖[BMO(∂Ω,σ)]n ≤ 1 (cf. (2.2.56)), condition
(2.2.159) is redundant when δ > 1. We will, however, be interested in the case when δ is
small. In particular, when δ ∈ (0, 1), Lemma 2.2.5 ensures that ∂Ω is an unbounded set.

Let us also note here that, as is visible from the first inequality in (2.2.57), whenever
Ω ⊆ Rn is a δ-SKT domain with δ ∈ (0, 1) then its geometric measure theoretic outward
unit normal ν satisfies (with the infimum taken over all surface balls ∆ ⊆ ∂Ω)

inf
∆⊆∂Ω

∣∣∣  
∆
ν dσ

∣∣∣ > 1− δ. (2.2.160)

Conversely, whenever Ω ⊆ Rn is an open set satisfying a two-sided local John condition
and whose topological boundary ∂Ω is an Ahlfors regular set, it follows from the second
inequality in (2.2.57) that Ω is a δ-SKT domain for each

δ >
√

2
√

1− inf
∆⊆∂Ω

∣∣∣  
∆
ν dσ

∣∣∣, (2.2.161)

where the infimum is taken over all surface balls ∆ ⊆ ∂Ω.
Examples and counterexamples of δ-SKT domains in Rn are as follows.

Example 2.2.15. The set Ω := Rn+ is a δ-SKT domain for each δ > 0. Indeed, the
outward unit normal ν = −en = (0, . . . , 0,−1) to Ω is constant, hence its BMO semi-
norm vanishes. More generally, any half-space in Rn, i.e., any set of the form

Ωxo,ξ :=
{
x ∈ Rn : 〈x− xo, ξ〉 > 0

}
with xo ∈ Rn and ξ ∈ Sn−1,

(2.2.162)

is a δ-SKT domain for each δ > 0.
Consider next a sector of aperture θ ∈ (0, 2π) in the two-dimensional space, i.e., a

planar set of the form

Ωθ :=
{
x ∈ R2 \ {xo} : x−xo

|x−xo| · ξ > cos(θ/2)
}

with xo ∈ R2, θ ∈ (0, 2π), and ξ ∈ S1,
(2.2.163)
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and abbreviate σθ := H1b∂Ωθ. Then a direct computation shows that the outward unit
normal vector ν to Ωθ, regarded as a complex-valued function, satisfies

‖ν‖BMO(∂Ωθ,σθ) = | cos(θ/2)|. (2.2.164)

Hence,
Ωθ is a δ-SKT domain if and only if δ > | cos(θ/2)|. (2.2.165)

One last example in the same spirit is offered by the cone of aperture θ ∈ (0, 2π) in
Rn with vertex at the origin and axis along en, i.e.,

Ωθ :=
{
x ∈ Rn \ {0} : xn

|x|
> cos(θ/2)

}
=
{
x = (x′, xn) ∈ Rn−1 × R : xn > φ(x′)

}
, (2.2.166)

where φ : Rn−1 → R is given by φ(x′) := |x′| cot(θ/2) for each x′ ∈ Rn−1. If we abbreviate
σθ := Hn−1b∂Ωθ, then a direct computation (cf. (2.2.169) below) shows that the outward
unit normal vector ν to Ωθ satisfies

‖ν‖[BMO(∂Ωθ,σθ)]n = | cos(θ/2)|, hence once again

Ωθ is a δ-SKT domain if and only if δ > | cos(θ/2)|.
(2.2.167)

Example 2.2.16. If Ω ⊆ Rn is a δ-SKT domain for some δ > 0, then Rn \ Ω is also a
δ-SKT domain (having the same topological and measure theoretic boundaries as Ω, and
whose geometric measure theoretic outward unit normal is the opposite of the one for
Ω). Also, any rigid transformation of Rn preserves the class of δ-SKT domains. One may
also check from definitions that there exists a dimensional constant cn ∈ (0,∞) with the
property that if Ω is a δ-SKT domain in Rn for some δ > 0 then Ω × R is a (cnδ)-SKT
domain in Rn+1.

Example 2.2.17. Given δ > 0, the region Ω :=
{
(x′, t) ∈ Rn−1 × R : t > φ(x′)

}
above

the graph of a Lipschitz function φ : Rn−1 → R whose Lipschitz constant is < 2−3/2δ is
a δ-SKT domain. To see this is indeed the case, it is relevant to note that

F : Rn → Rn defined for all x = (x′, xn) ∈ Rn−1 × R = Rn

as F (x′, xn) := x+ φ(x′)en =
(
x′, xn + φ(x′)

)
,

(2.2.168)

is a bijective function with inverse F−1 : Rn → Rn given at each point y = (y′, yn) in
Rn−1 × R = Rn by F−1(y′, yn) = y − φ(y′)en =

(
y′, yn − φ(y′)

)
, and that both F, F−1

are Lipschitz functions with constant ≤ 1 + ‖∇φ‖[L∞(Rn−1,Ln−1)]n−1 . Hence, Ω is the
image of the upper half-space Rn+ under the bi-Lipschitz homeomorphism F , which also
maps Rn− onto Rn \Ω and Rn−1 × {0} onto ∂Ω. This goes to show that Ω is a two-sided
NTA domain with an Ahlfors regular boundary, hence also an Ahlfors regular domain
satisfying a two-sided local John condition (cf. (1.1.21) and (1.1.28)). To conclude that
Ω is a δ-SKT domain we need to estimate the BMO semi-norm of its geometric measure
theoretic outward unit normal. Since this satisfies

ν
(
x′, φ(x′)

)
= (∇φ(x′),−1)√

1 + |∇φ(x′)|2
for Ln−1-a.e. x′ ∈ Rn−1, (2.2.169)
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it follows that for Ln−1-a.e. point x′ ∈ Rn−1 we have

ν
(
x′, φ(x′)

)
+ en =

(
∇φ(x′)√

1 + |∇φ(x′)|2
, 1− 1√

1 + |∇φ(x′)|2

)
(2.2.170)

=
(

∇φ(x′)√
1 + |∇φ(x′)|2

,
|∇φ(x′)|2√

1 + |∇φ(x′)|2(1 +
√

1 + |∇φ(x′)|2)

)
.

Therefore, with σ := Hn−1b∂Ω, we may estimate

‖ν‖[BMO(∂Ω,σ)]n = ‖ν + en‖[BMO(∂Ω,σ)]n ≤ 2 ‖ν + en‖[L∞(∂Ω,σ)]n

= 23/2
∥∥∥∥∥ |∇φ|

(1 + |∇φ|2)1/4(1 +
√

1 + |∇φ|2)1/2

∥∥∥∥∥
L∞(Rn−1,Ln−1)

≤ 23/2 ‖∇φ‖[L∞(Rn−1,Ln−1)]n−1 < δ. (2.2.171)

All things considered, the above analysis establishes that Ω ⊆ Rn is a δ-SKT domain,
with δ = O

(
‖∇φ‖[L∞(Rn−1,Ln−1)]n−1

)
as ‖∇φ‖[L∞(Rn−1,Ln−1)]n−1 −→ 0+. In addition,

since the Lipschitz constants of the functions F, F−1 stay bounded when the Lipschitz
constant of φ, i.e., ‖∇φ‖[L∞(Rn−1,Ln−1)]n−1 , stays bounded, we ultimately conclude that
that

by taking ‖∇φ‖[L∞(Rn−1,Ln−1)]n−1 sufficiently small, matters may
be arranged so that the above set Ω ⊆ Rn is a δ-SKT domain
with δ > 0 as small as desired, relative to the Ahlfors regularity
constant of ∂Ω and the local John constants of Ω.

(2.2.172)

Example 2.2.18. Given any δ > 0, the region Ω :=
{
(x′, t) ∈ Rn−1 × R : t >

φ(x′)
}
above the graph of some BMO1 function φ : Rn−1 → R, (i.e., a function φ ∈

L1
loc(Rn−1,Ln−1) with ∇φ belonging to

[
BMO(Rn−1,Ln−1)

]n−1), satisfying (for some
purely dimensional constant Cn ∈ (1,∞))

‖∇φ‖[BMO(Rn−1,Ln−1)]n−1 < min{1, δ/Cn
}

(2.2.173)

is a δ-SKT domain. Indeed, BMO1 domains are contained in the class of Zygmund
domains (cf. [53, Proposition 3.15, p. 2637]) which, in turn, are NTA domains (cf. [57,
Proposition 3.6, p. 94]). Since the set Rn \ Ω happens to be a reflection across the
origin of Ω̃ :=

{
(x′, t) ∈ Rn−1 × R : t > φ̃(x′)

}
where φ̃(x′) := −φ(−x′) for each

x′ ∈ Rn−1, we also conclude that Rn \Ω is an NTA domain. Thus, Ω is a two-sided NTA
domain. In particular, Ω satisfies a two-sided local John condition (cf. (1.1.28)). From
[53, Corollary 2.26, p. 2622] we also know that ∂Ω is an Ahlfors regular set. Finally,
[53, Proposition 2.27, p. 2622] guarantees the existence of a purely dimensional constant
C ∈ (0,∞) such that

‖ν‖[BMO(∂Ω,σ)]n (2.2.174)

≤ C ‖∇φ‖[BMO(Rn−1,Ln−1)]n−1

(
1 + ‖∇φ‖[BMO(Rn−1,Ln−1)]n−1

)
.
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Hence ‖ν‖[BMO(∂Ω,σ)]n < δ if (2.2.173) is satisfied with Cn := 2C, proving that a Ω is
indeed a δ-SKT domain. In addition,

choosing ‖∇φ‖[BMO(Rn−1,Ln−1)]n−1 sufficiently small, ensures
that the above set Ω ⊆ Rn is a δ-SKT domain with δ > 0
as small as wanted, relative to the Ahlfors regularity constant
of ∂Ω and the local John constants of Ω.

(2.2.175)

To offer concrete, interesting examples and counterexamples pertaining to BMO1,
work in the two-dimensional setting, i.e., when n = 2. For a fixed arbitrary number
ε ∈ (0,∞) consider the continuous odd function φε : R→ R defined as

φε(x) :=

 εx
(

ln |x| − 1
)

if x ∈ R \ {0},

0 if x = 0,
for each x ∈ R. (2.2.176)

Then from [92, Exercise 2.127, p. 89] we know that the distributional derivative of this
function is φ′ε = ε ln | · |. Hence, for some absolute constant C ∈ (0,∞),∥∥φ′ε∥∥BMO(R,L1) ≤ Cε (2.2.177)

so φε is indeed in BMO1. This being said, φε is not a Lipschitz function, so this example
is outside the scope of item (c) above. Consequently, the planar region Ωε lying above the
graph of φε (cf. Figure 2.2) is a non-Lipschitz δ-SKT domain in the plane with δ = O(ε)
as ε→ 0+ (as seen from (2.2.174) and (2.2.177)).

Figure 2.2: The prototype of a non-Lipschitz δ-SKT domain Ωε for which δ = O(ε) as
ε→ 0+ and such that the Ahlfors regularity constant of ∂Ωε and the local John constants
of Ωε are uniformly bounded in ε
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On the other hand, the distributional derivative of the function ψε : R → R defined
as

ψε(x) :=

 εx
(

ln |x| − 1
)

if x > 0,

0 if x ≤ 0,
for each x ∈ R, (2.2.178)

is ψ′ε = ε
(

ln | · |
)
1(0,∞) which fails to be in BMO(R, L1) (recall that the latter space is not

stable under multiplication by cutoff functions). Hence, ψε does not belong to BMO1.
In this vein, we wish to note that while the planar region Ω̃ε lying above the graph of
ψε continues to be an Ahlfors regular domain satisfying a two-sided local John condition
for each ε > 0, its (complex-valued) geometric measure theoretic outward unit normal ν
satisfies, due to the corner singularity at 0 ∈ ∂Ω̃ε and (2.2.164) with θ = π/2,

‖ν‖BMO(∂Ω̃ε,σ̃ε)
≥ 1√

2
for each ε > 0, (2.2.179)

where σ̃ε := H1b∂Ω̃ε. Consequently, as ε → 0+, the set Ω̃ε never becomes a δ-SKT
domain if δ ∈ (0, 1/

√
2) (cf. Figure 2.3).

Figure 2.3: A family
{
Ω̃ε
}
ε>0 of Ahlfors regular domains satisfying a two-sided local

John condition with uniform constants which does not contain a δ-SKT domain with
δ ∈ (0, 1/

√
2)

Example 2.2.19. From [61, Theorem 2.1, p. 515] and [61, Remark 2.2, pp. 514-515] we
know that there exist two purely dimensional constants, δn ∈ (0,∞) and Cn ∈ (0,∞),
with the property that if Ω ⊆ Rn is a δo-Reifenberg flat domain, in the sense of [61,
Definition 1.2, pp. 509-510] with R =∞ and with 0 < δo ≤ δn, and if the surface measure
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σ := Hn−1b∂Ω satisfies

σ
(
B(x, r) ∩ ∂Ω

)
≤ (1 + δo)υn−1r

n−1

for each x ∈ ∂Ω and r > 0,
(2.2.180)

(with υn−1 denoting the volume of the unit ball in Rn−1), then Ω is an Ahlfors regular
domain whose geometric measure theoretic outward unit normal ν to Ω satisfies

‖ν‖[BMO(∂Ω,σ)]n ≤ Cn
√
δo. (2.2.181)

See also [20, p. 11] and [107] in this regard. Consequently, given any number δ > 0, any
δo-Reifenberg flat domain with 0 < δo < min

{
δn , (δ/Cn)2} which satisfies (2.2.180) as

well as a two-sided local John condition is a δ-SKT domain.

Example 2.2.20. Denote by Ω the region of the plane lying to one side of a κ-CAC Σ ⊂
C. Then Proposition 2.2.9 implies that Ω is a δ-SKT domain for any δ > 2

√
κ(2 + κ).

To offer a concrete example, consider a real-valued function b ∈ BMO (R,L1) with
‖b‖BMO (R,L1) < 1 and define z : R→ C by setting

z(s) :=
ˆ s

0
ei b(t) dt for each s ∈ R. (2.2.182)

If Ω ⊆ C ≡ R2 is the region of the plane to one side of the curve Σ := z(R), then
Proposition 2.2.9 implies that Ω is a connected Ahlfors regular domain which satisfies
a two-sided local John condition, and ∂Ω = Σ, and whose geometric measure theoretic
outward unit normal ν to Ω is given by

ν(z(s)) = −i ei b(s) for L1-a.e. s ∈ R. (2.2.183)

In addition, if we set σ := H1b∂Ω then (2.2.145) gives

‖ν‖BMO(∂Ω,σ) ≤
4‖b‖BMO (R,L1)

1− ‖b‖BMO (R,L1)
. (2.2.184)

As a consequence, Ω is a δ-SKT domain in R2 for each δ ∈ (0,∞) bigger than the number
in the right hand-side of (2.2.184).

For instance, we may take b to be a small multiple of the logarithm on the real line,
i.e.,

b(s) := ε ln |s| for each s ∈ R \ {0},

with 0 < ε <
∥∥ ln | · |

∥∥−1
BMO (R,L1)

(2.2.185)

(e.g., the computation on [45, p. 520] shows that
∥∥ ln | · |

∥∥
BMO (R,L1) ≤ 3 ln(3/2), so taking

0 < ε < [3 ln(3/2)]−1 ≈ 0.8221 will do). Such a choice makes b a real-valued function
with small BMO semi-norm which nonetheless maps R \ {0} onto R. In view of the
formula given in (2.2.183), this goes to show that Gauss’ map Σ 3 z 7→ ν(z) ∈ S1 is
surjective, which may be interpreted as saying that the unit normal rotates arbitrarily
much along the boundary. In particular, the chord-arc curve Σ produced in this fashion,
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which is actually the topological boundary of a δ-SKT domain Ω ⊆ R2 (with δ > 0 which
can be made as small as one pleases by taking ε > 0 appropriately small), fails to be a
rotation of the graph of a function (even locally, near the origin). This being said, from
Proposition 2.2.9 we know that

the set Ω ⊆ R2 is actually bi-Lipschitz
homeomorphic to the upper half-plane.

(2.2.186)

Figure 2.4: Zooming in the curve s 7→ z(s) at the point 0 ∈ C

The above pictures in Figure 2.4 depict an unbounded δ-SKT domain Ω ⊆ R2 which is
not the upper-graph of a function (in any system of coordinates isometric to the standard
one in the plane). The set Ω is the region lying to one side of the curve Σ = z(R) with
R 3 s 7→ z(s) ∈ C defined by the formula given in (2.2.182) for the function b as in
(2.2.185) with 0 < ε <

∥∥ ln | · |
∥∥−1

BMO (R,L1). As visible from (2.2.184), we have δ = O(ε) as
ε→ 0+.

In the above pictures we have taken ε = 0.4 < 1
2
∥∥ ln | · |

∥∥−1
BMO (R,L1) and progressively

zoomed in at the point 0 ∈ ∂Ω. The boundary of the set Ω is the plot of the curve
R 3 s 7→ z(s) ∈ C with

z(s) =
ˆ s

0
eiε ln |t| dt =

 (iε+ 1)−1s eiε ln |s| if s ∈ R \ {0},

0 ∈ C if s = 0.
(2.2.187)

Here, (iε + 1)−1 is merely a complex constant, s is the scaling factor that determines
how far z(s) is from the origin (specifically, |z(s)| = |s|/

√
ε2 + 1), and eiε ln |s| is the

factor that determines how the two spirals (making up ∂Ω \ {0}, namely z((−∞, 0)) and
z((0,+∞))) spin about the point 0 ∈ C. Note that |z(s)| growths linearly (with respect
to s) which is very fast compared to the spinning rate (which is logarithmic) and this is
why we have chosen to zoom in at the point 0 ∈ C in several distinct frames to get a
better understanding of how ∂Ω looks near 0. The fact that ∂Ω is symmetric with respect
to the origin is a direct consequence of R 3 s 7→ z(s) ∈ C being odd. If z(s) = reiθ is
the polar representation of (2.2.187) for s ∈ (0,∞) then, with ω := 2π − arccos

( 1√
ε2+1

)
,

we have θ = ω + ε ln |s| and r = |z(s)| = (ε2 + 1)−1/2 |s| = (ε2 + 1)−1/2e(θ−ω)/ε. Thus,
in polar coordinates, the curve Σ+ := z

(
(0,+∞)

)
has the equation r = αeβθ with α :=

(ε2 + 1)−1/2e−ω/ε ∈ (0,∞) and β := ε−1 ∈ (0,∞) which identifies it precisely as a
logarithmic spiral. In a similar fashion, the polar equation of the curve Σ− := z

(
(−∞, 0)

)
is r = αeβθ with α := (ε2 + 1)−1/2e−(ω+π)/ε ∈ (0,∞) and β := ε−1 ∈ (0,∞) which once
again identifies it as a logarithmic spiral.
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The MATLAB code that generated these pictures reads as follows:

s = [−100 : 0.001 : 100];
p = 0.4;
z = (1/(i ∗ p + 1.0)) ∗ s. ∗ exp(i ∗ p ∗ log(abs(s)));
plot(real(z), imag(z), ′LineWidth′, 2), grid on, axis equal

Finally, we wish to elaborate on (2.2.186) and, in the process, get independent
confirmation of (2.2.102) and (2.2.144). First, we observe that the δ-SKT domain Ω ⊆ C
described above is the image of the upper half-plane R2

+ under map F : C → C defined
for each z ∈ C by

F (z) :=

 (iε+ 1)−1z eiε ln |z| if z ∈ C \ {0},

0 ∈ C if z = 0.
(2.2.188)

Note that F is a bijective, odd function, with inverse F−1 : C → C given at each ζ ∈ C
by

F−1(ζ) =

 (iε+ 1)ζ e−iε ln(|ζ|
√
ε2+1) if ζ ∈ C \ {0},

0 ∈ C if ζ = 0.
(2.2.189)

Also, whenever z1, z2 ∈ C are such that |z1| ≥ |z2| > 0 we may estimate

|F (z1)− F (z2)| ≤ 1√
ε2 + 1

{
|z1 − z2|+ |z2|

∣∣eiε ln |z1| − eiε ln |z2|∣∣} (2.2.190)

and ∣∣eiε ln |z1| − eiε ln |z2|∣∣ =
∣∣eiε(ln |z1|−ln |z2|) − 1

∣∣ ≤ ε∣∣ ln |z1| − ln |z2|
∣∣

= ε ln
( |z1|
|z2|
)
≤ ε

( |z1|
|z2| − 1

)
= ε

( |z1|−|z2|
|z2|

)
≤ ε |z1−z2||z2| , (2.2.191)

using the fact that |eiθ − 1| ≤ |θ| for each θ ∈ R and 0 ≤ ln x ≤ x− 1 for each x ∈ [1,∞).
From this we then eventually deduce that

|F (z1)− F (z2)| ≤ ε+ 1√
ε2 + 1

|z1 − z2| for all z1, z2 ∈ C, (2.2.192)

hence F is Lipschitz. The same type of argument also shows that F−1 is also Lipschitz,
namely

|F−1(ζ1)− F−1(ζ2)| ≤ (ε+ 1)
√
ε2 + 1 |ζ1 − ζ2| for all ζ1, ζ2 ∈ C, (2.2.193)

so we ultimately conclude that F : C→ C is an odd bi-Lipschitz homeomorphism of the
complex plane. In summary,

the δ-SKT domain Ω ⊆ C lying to the left of the curve
R 3 s 7−→ z(s) ∈ C defined in (2.2.187) is in fact the image
of the upper half-plane R2

+ under the odd bi-Lipschitz
homeomorphism F : C→ C from (2.2.188).

(2.2.194)
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Note that F also maps the lower half-plane R2
− onto R2 \Ω, and R× {0} onto ∂Ω. This

is in agreement with (2.2.102). Moreover, since the Lipschitz constants of F, F−1 stay
bounded uniformly in ε ∈ (0, 1) (as is clear from (2.2.192), (2.2.193)) while, as noted
earlier, δ = O(ε) as ε→ 0+, we see that (as predicted in (2.2.144))

by taking ε ∈ (0, 1) sufficiently small, matters may be
arranged so that the above set Ω ⊆ R2 is a δ-SKT domain
with δ > 0 as small as one wishes, relative to the Ahlfors
regularity constant of ∂Ω and the local John constants of
Ω.

(2.2.195)

Example 2.2.21. Wemay also construct examples of δ-SKT domains exhibitingmultiple
spiral points (cf. Figure 2.1). Specifically, suppose −∞ < t1 < t2 < · · · < tN−1 < tN <

+∞, for some N ∈ N, and consider

b(t) := ε
N∑
j=1

ln |t− tj | for each t ∈ R \ {t1, . . . , tN}, (2.2.196)

for some sufficiently small ε > 0. Next, define z : R → C as in (2.2.182) for this choice
of the function b. Then Proposition 2.2.13 and Proposition 2.2.9 imply that the region
Ω in R2 lying to one side of the curve Σ := z(R) is indeed a δ-SKT domain and, in
fact, δ = O(ε) as ε → 0+. Moreover, from (2.2.183) and (2.2.196) we see that ∂Ω = Σ
looks like a spiral at each of the points z(t1), . . . , z(tN ). Yet, once again, there exists a
bi-Lipschitz homeomorphism F : R2 → R2 such that Ω = F (R2

+), R2 \ Ω = F (R2
−), and

∂Ω = F (R× {0}) (cf. (2.2.102)). Also, (2.2.144) presently entails

by choosing ε ∈ (0, 1) appropriately small, we may
ensure that Ω is a δ-SKT domain in R2 with δ > 0
as small as desired, relative to the Ahlfors regularity
constant of ∂Ω and the local John constants of Ω.

(2.2.197)

Example 2.2.22. We wish to note that the construction in Example 2.2.21 may be
modified as to allow infinitely many spiral points. Specifically, assume {tj}j∈N ⊆ R is a
given sequence of real numbers and consider

0 < λj < 2−j min
{

1 ,
∥∥ ln | · −tj |

∥∥−1
L1([−j,j],L1)

}
for each j ∈ N. (2.2.198)

Also, suppose 0 < ε <
∥∥ ln | · |

∥∥−1
BMO(R,L1) and define

b(t) := ε
∞∑
j=1

λj ln |t− tj | for each t ∈ R \ {tj}j∈N. (2.2.199)

The choice in (2.2.198) ensures that the above series converges absolutely in L1(K,L1)
for any compact subset K of R. This has two notable consequences. First, the series in
(2.2.199) converges absolutely in a pointwise sense L1-a.e. in R; in particular, b is well
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defined at L1-a.e. point in R and takes real values. Second,

‖b‖BMO(R,L1) ≤ ε
∞∑
j=1

λj
∥∥ ln | · −tj |

∥∥
BMO(R,L1)

= ε
∥∥ ln | · |

∥∥
BMO(R,L1)

∞∑
j=1

λj < 1. (2.2.200)

Granted this, if we now define z : R → C as in (2.2.182) for this choice of the function
b then Proposition 2.2.13 and Proposition 2.2.9 imply that the region Ω in R2 lying to
one side of the curve Σ := z(R) is a δ-SKT domain with δ = O(ε) as ε → 0+. In fact,
there exists a bi-Lipschitz homeomorphism F : R2 → R2 as in (2.2.102), and (2.2.144)
holds. We claim that matters may be arranged so that ∂Ω = Σ develops a spiral at each
of the points {z(tj)}j∈N. To this end, start by making the assumption that the sequence
{tj}j∈N does not have any finite accumulation points. Inductively, we may then select a
sequence of small positive numbers {rj}j∈N ⊆ (0, 1) with the property that the family of
intervals Ij := (tj − rj , tj + rj), j ∈ N, are mutually disjoint. For each j ∈ N consider
the non-empty compact set Kj := [−j, j] \ Ij and, in addition to (2.2.198), impose the
condition that

0 < λj < 2−j
∥∥ ln | · −tj |

∥∥−1
L∞(Kj ,L1) for each j ∈ N. (2.2.201)

Pick now jo ∈ N arbitrary. Then for each t ∈ Ijo decompose b(t) = f(t) + g(t) where

f(t) := ελjo ln |t− tjo | and g(t) := ε
∑

j∈N\{jo}
λj ln |t− tj |. (2.2.202)

In view of (2.2.201), the series defining g converges uniformly on Ijo , hence g is a
continuous and bounded function on Ijo . Since f is continuous and unbounded from
below on (tjo , tjo + rjo), it follows that the restriction of b to (tjo , tjo + rjo) is continuous
and unbounded from below. This implies that b

(
(tjo , tjo + rjo)

)
contains an interval of

the form (−∞, ajo), for some ajo ∈ R. Similarly, b
(
(tjo − rjo , tjo)

)
contains an interval of

the form (−∞, cjo), for some cjo ∈ R. Based on this and (2.2.183) we then conclude that
the normal ν(z(t)) completes infinitely many rotations on the unit circle as t approaches
tjo either from the left or from the right. Hence, ∂Ω = Σ develops a spiral at the point
z(tjo).

Example 2.2.23. All sets considered so far have been connected. In the class of
disconnected sets in the plane consider a double sector of arbitrary aperture θ ∈ (0, π),
i.e., a set of the form

Ω :=
{
x ∈ R2 \ {x0} :

∣∣ x−x0
|x−x0| · ξ

∣∣ > cos(θ/2)
}

with x0 ∈ R2, θ ∈ (0, π), and ξ ∈ S1,
(2.2.203)

and abbreviate σ := H1b∂Ω. Then simple symmetry considerations show that for
each r ∈ (0,∞) the geometric measure theoretic outward unit normal ν to Ω satisfies
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ffl
B(xo,r)∩∂Ω ν dσ = 0, hence

‖ν‖[BMO(∂Ω,σ)]2 ≥
 
B(xo,r)∩∂Ω

∣∣∣ν −  
B(xo,r)∩∂Ω

ν dσ
∣∣∣ dσ

=
 
B(xo,r)∩∂Ω

|ν| dσ = 1. (2.2.204)

As a consequence,

the double sector Ω from (2.2.203) is a disconnected Ahlfors
regular domain which satisfies a two-sided local John condition
but fails to be a δ-SKT domain for each δ ∈ (0, 1].

(2.2.205)

We may even arrange matters so that the set in question has a disconnected boundary.
Specifically, given any two distinct points x0, x1 ∈ R2, along with an angle θ ∈ (0, π),
and a direction vector ξ ∈ S1, such that

x1 − x0
|x1 − x0|

· ξ < cos(θ/2), (2.2.206)

consider

Ω :=
{
x ∈ R2 \ {x0} : x− x0

|x− x0|
· ξ > cos(θ/2)

}
(2.2.207)

⋃{
x ∈ R2 \ {x1} : x− x1

|x− x1|
· (−ξ) > cos(θ/2)

}
.

This is the union of two planar sectors with vertices at x0 and x1, axes along ξ and −ξ,
and common aperture θ. The condition in (2.2.206) ensures that the said sectors are
disjoint, hence Ω is disconnected, with disconnected boundary. Note that if σ := H1b∂Ω
and ν stands for the geometric measure theoretic outward unit normal to Ω then

lim
r→∞

 
B(xo,r)∩∂Ω

ν dσ = 0 (2.2.208)

which, much as in (2.2.204), once again implies that ‖ν‖[BMO(∂Ω,σ)]2 ≥ 1. Consequently,

the set Ω from (2.2.207) is an Ahlfors regular domain satisfying
a two-sided local John condition which is disconnected and has a
disconnected boundary, and which fails to be a δ-SKT domain for
each δ ∈ (0, 1].

(2.2.209)

Similar considerations apply virtually verbatim in Rn with n ≥ 2 (working with cones in
place of sectors).

These examples are particularly relevant in the context of Theorem 2.2.33.

Moving on, our next result, which slightly refines work in [53], identifies general
geometric conditions on a set Ω ⊆ Rn of locally finite perimeter so that the inner product
between the integral average ν∆ of outward unit normal ν to Ω in any given surface ball
∆ ⊆ ∂Ω and the “chord” x − y with x, y ∈ ∆ may be controlled in terms of the radius
of the said ball and the BMO semi-norm of the outward unit normal ν.
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Proposition 2.2.24. Let Ω ⊆ Rn be an open set satisfying a two-sided local John
condition and whose boundary is an Ahlfors regular set. Abbreviate σ := Hn−1b∂Ω and
denote by ν the geometric measure theoretic outward unit normal to Ω. Then there exists
C ∈ (0,∞) depending only on the local John constants of Ω and the Ahlfors regularity
constant of ∂Ω such that for each λ ∈ [1,∞) one has

sup
z∈∂Ω

sup
R>0

sup
x,y∈∆(z,λR)

R−1|〈x− y, ν∆(z,R)〉| ≤ Cλ
(
1 + log2 λ) ‖ν‖[BMO(∂Ω,σ)]n . (2.2.210)

Proof. From [53, Corollary 4.15, pp. 2697-2698] we know that there exists some constant
C ∈ (0,∞) depending only on the local John constants of Ω and the Ahlfors regularity
constant of ∂Ω such that

sup
x∈∂Ω

sup
R>0

sup
y∈∆(x,2R)

R−1|〈x− y, ν∆(x,R)〉| ≤ C ‖ν‖[BMO(∂Ω,σ)]n . (2.2.211)

Fix λ ∈ [1,∞) along with x ∈ ∂Ω, R > 0, and x, y ∈ ∆(z, λR). Then |x − y| ≤ 2λR,
hence y ∈ ∆(x, 2λR), so

|〈x− y, ν∆(z,R)〉| ≤ |〈x− y, ν∆(x,2λR)〉|+ |x− y||ν∆(x,2λR) − ν∆(z,R)|

≤ CλR ‖ν‖[BMO(∂Ω,σ)]n + 2λR|ν∆(x,2λR) − ν∆(z,3λR)|

+ 2λR|ν∆(z,3λR) − ν∆(z,R)|

≤ CRλ
(
1 + log2 λ) ‖ν‖[BMO(∂Ω,σ)]n , (2.2.212)

by (2.2.211) and elementary estimates involving integral averages (cf. (2.2.44), (2.2.46)).
After dividing the most extreme sides by R, then taking the supremum over all z ∈ ∂Ω,
R > 0, and x, y ∈ ∆(z, λR), we arrive at (2.2.210).

We continue by discussing a basic decomposition theorem. The general idea originated
in [107, Proposition 5.1, p. 212] where such a decomposition result has been stated for
surfaces of class C 2, via a proof which makes essential use of smoothness, though the
main quantitative aspects only depend on the rough character of the said surface. A
formulation in which the C 2 smoothness assumption is replaced by Reifenberg flatness
appears in [62, Theorem 4.1, p. 398] (see also the comments on [20, p. 66]).

The most desirable version of such a decomposition result has been proved by S. Hof-
mann, M. Mitrea, and M. Taylor in [53, Theorem 4.16, p. 2701], starting with a different
set of hypotheses which, a priori, do not specifically require the domain in question to
be Reifenberg flat. Below we present a variant of this result which is well suited to
the applications we have in mind.

Theorem 2.2.25. Let Ω ⊆ Rn be an open set satisfying a two-sided local John condition
whose boundary is an Ahlfors regular set. Abbreviate σ := Hn−1b∂Ω and denote by ν
the geometric measure theoretic outward unit normal to Ω. Then there exists a threshold
δ∗ ∈ (0, 1), depending only on the dimension n, the local John constants of Ω, and the
Ahlfors regularity constant of ∂Ω, such that whenever

‖ν‖[BMO(∂Ω,σ)]n < δ < δ∗ (2.2.213)
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there exist C0 ∈ (0, δ−1
∗ ) along with C1, C2, C3 ∈ (0,∞), depending only on the dimension

n, the local John constants of Ω, and the Ahlfors regularity constant of ∂Ω, with the
following significance. For every location x0 ∈ ∂Ω and every scale r > 0 there exist a
unit vector ~nx0,r ∈ Sn−1 along with a Lipschitz function

h : H(x0, r) := 〈~nx0,r〉⊥ → R with sup
y1,y2∈H(x0,r)

y1 6=y2

|h(y1)− h(y2)|
|y1 − y2|

≤ C0δ, (2.2.214)

whose graph

G :=
{
x = x0 + x′ + t~nx0,r : x′ ∈ H(x0, r), t = h(x′)

}
(2.2.215)

(in the coordinate system x = (x′, t) ⇔ x = x0 + x′ + t~nx0,r, x′ ∈ H(x0, r), t ∈ R) is a
good approximation of ∂Ω in the cylinder

C(x0, r) :=
{
x0 + x′ + t~nx0,r : x′ ∈ H(x0, r), |x′| ≤ r, |t| ≤ r

}
(2.2.216)

in the following sense. First, with υn−1 denoting the volume of the unit ball in Rn−1,

σ
(
C(x0, r) ∩

(
∂Ω4G

))
≤ C1υn−1r

n−1e−C2/δ, (2.2.217)

where 4 denotes the symmetric set-theoretic difference. Second, there exist two disjoint
σ-measurable sets G(x0, r) and E(x0, r) such that

C(x0, r) ∩ ∂Ω = G(x0, r) ∪ E(x0, r), (2.2.218)

G(x0, r) ⊆ G, σ
(
E(x0, r)

)
≤ C1υn−1r

n−1e−C2/δ. (2.2.219)

Third, if Π : Rn → H(x0, r) is defined by Π(x) := x′ for each x = x0 + x′ + t~nx0,r ∈ Rn

with x′ ∈ H(x0, r) and t ∈ R, then∣∣x− (x0 + Π(x) + h(Π(x))~nx0,r)
∣∣ ≤ C0δ · dist

(
Π(x),Π(G(x0, r))

)
for each point x ∈ E(x0, r),

(2.2.220)

and

C(x0, r) ∩ ∂Ω ⊆
{
x0 + x′ + t~nx0,r : |t| ≤ C0δr, x

′ ∈ H(x0, r)
}
, (2.2.221)

Π
(
C(x0, r) ∩ ∂Ω

)
=
{
x′ ∈ H(x0, r) : |x′| < r

}
. (2.2.222)

Fourth, if

C+(x0, r) :=
{
x0 + x′ + t ~nx0,r : x′ ∈ H(x0, r), |x′| ≤ r, −r < t < −C0δr

}
,

C−(x0, r) :=
{
x0 + x′ + t ~nx0,r : x′ ∈ H(x0, r), |x′| ≤ r, C0δr < t < r

}
,

(2.2.223)

then
C+(x0, r) ⊆ Ω and C−(x0, r) ⊆ Rn \ Ω. (2.2.224)

Finally,

(1− C3δ)υn−1r
n−1 ≤ σ

(
∆(x0, r)

)
≤ (1 + C3δ)υn−1r

n−1. (2.2.225)
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Proof. This is established by reasoning as in [53, pp. 2703-2709] with (2.2.213) replacing
the small local BMO assumption (which, in particular, frees us from having to restrict
x0 to a compact subset of ∂Ω). The key observation is that in the present context, the
parameter R∗ from [53, Theorem 4.16, p. 2701] (which limits the size of the scale r) may
be taken to be +∞. In turn, this is seen by a careful inspection of the proof of [53,
Theorem 4.16, p. 2701], in which we now rely on [53, Corollary 4.15, p. 2697] in place of
[53, Theorem 4.14, p. 2697].

Finally, since the claim pertaining to (2.2.223)-(2.2.224) does not explicitly appear in
the statement of [53, Theorem 4.16, p. 2701], we provide a proof here. From (2.2.221)-
(2.2.222) it follows that the connected sets C±(x0, r) introduced in (2.2.223) do not
intersect ∂Ω. As such, Ω+ := Ω and Ω− := Rn \ Ω form a disjoint, open cover of
C±(x0, r), hence

C+(x0, r) is fully contained in either Ω+ or Ω−, and
also C−(x0, r) is fully contained in either Ω+ or Ω−.

(2.2.226)

Denote by x±r ∈ Ω± the two corkscrew points corresponding to the location x0 and scale
r. In particular,

|x±r − x0| < r and B
(
x±r , θr

)
⊆ Ω± (2.2.227)

where the parameter θ ∈ (0, 1) is as in Definition 1.1.10. Assume 0 < δ < θ/C0 to begin
with. This makes it impossible to contain either of the balls B

(
x+
r , θr

)
, B
(
x−r , θr

)
in the

strip
{
x0 + x′ + t~nx0,r : |t| ≤ C0δr, x

′ ∈ H(x0, r)
}
. Since, as seen from (2.2.227), their

centers x±r belong to B(x0, r) ⊂ C(x0, r), in turn this forces one of the following four
alternatives to be true:

B
(
x+
r , θr

)
∩ C+(x0, r) 6= ∅ and B

(
x−r , θr

)
∩ C+(x0, r) 6= ∅, (2.2.228)

B
(
x+
r , θr

)
∩ C−(x0, r) 6= ∅ and B

(
x−r , θr

)
∩ C−(x0, r) 6= ∅, (2.2.229)

B
(
x+
r , θr

)
∩ C+(x0, r) 6= ∅ and B

(
x−r , θr

)
∩ C−(x0, r) 6= ∅, (2.2.230)

B
(
x+
r , θr

)
∩ C−(x0, r) 6= ∅ and B

(
x−r , θr

)
∩ C+(x0, r) 6= ∅. (2.2.231)

Note that the alternative described in (2.2.228) cannot possibly hold. Indeed, the
existence of two points z1 ∈ B

(
x+
r , θr

)
∩ C+(x0, r) and z2 ∈ B

(
x−r , θr

)
∩ C+(x0, r) would

imply that, on the one hand, the line segment [z1, z2] lies in the convex set C+(x0, r), hence
also either in Ω+ or in Ω− by (2.2.226). However, the fact that z1 ∈ B

(
x+
r , θr

)
⊆ Ω+ and

z2 ∈ B
(
x−r , θr

)
⊆ Ω− prevents either one of these eventualities form materializing. This

contradiction therefore excludes (2.2.228). Reasoning in a similar fashion we may rule
out (2.2.229). When (2.2.230) holds, from (2.2.226) and the fact that B

(
x±r , θr

)
⊆ Ω±

(cf. (2.2.227)) we conclude that the inclusions in (2.2.224) hold as stated. Finally,
when (2.2.231) holds, from (2.2.226) and (2.2.227) we deduce that C+(x0, r) ⊆ Ω− and
C−(x0, r) ⊆ Ω+. In such a scenario, we may ensure that the inclusions in (2.2.224)
are valid simply by re-denoting ~nx0,r as −~nx0,r which amounts to reversing the roles of
C+(x0, r) and C−(x0, r). This concludes the proof of (2.2.224).
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In the final portion of this section we explore the implications of the quality of being a
δ-SKT domain with δ > 0 small in terms of flatness (in the Reifenberg sense) and topology
(cf. Theorem 2.2.33). To facilitate the subsequent discussion, the reader is reminded that
the Hausdorff distance between two arbitrary nonempty sets A,B ⊂ Rn is defined as

Dist[A,B] := max
{

sup{dist (a,B) : a ∈ A} , sup{dist (b, A) : b ∈ B}
}
. (2.2.232)

We also recall the following definitions from [61].

Definition 2.2.26. Fix R ∈ (0,∞] along with δ ∈ (0,∞) and let Σ ⊂ Rn be a closed
set. Then Σ is said to be a (R, δ)-Reifenberg flat set if for each for each x ∈ Σ and
each r ∈ (0, R) there exists an (n− 1)-dimensional plane π(x, r) in Rn which contains x
and satisfies

Dist
[
Σ ∩B(x, r) , π(x, r) ∩B(x, r)

]
≤ δ r. (2.2.233)

For example, given δ > 0, the graph of a real-valued Lipschitz function defined in Rn−1

with a sufficiently small Lipschitz constant is a (∞, δ)-Reifenberg flat set.

Definition 2.2.27. Fix R ∈ (0,∞] along with δ ∈ (0,∞). A nonempty, proper subset Ω
of Rn is said to satisfy the (R, δ)-separation property if for each x ∈ ∂Ω and r ∈ (0, R)
there exist an (n− 1)-dimensional plane π̃(x, r) in Rn passing through x and a choice of
unit normal vector ~nx,r to π̃(x, r) such that{

y + t ~nx,r ∈ B(x, r) : y ∈ π̃(x, r), t > 2δr
}
⊂ Ω and{

y + t ~nx,r ∈ B(x, r) : y ∈ π̃(x, r), t < −2δr
}
⊂ Rn \ Ω.

(2.2.234)

Definition 2.2.28. Fix R ∈ (0,∞] along with δ ∈ (0,∞). A nonempty, proper subset Ω
of Rn is called an (R, δ)-Reifenberg flat domain (or simply a Reifenberg flat domain
if the particular values ofR, δ are not important) provided Ω satisfies the (R, δ)-separation
property and ∂Ω is an (R, δ)-Reifenberg flat set.

Recall the two-sided corkscrew condition from Definition 1.1.6.

Proposition 2.2.29. Let Ω be a nonempty proper subset of Rn satisfying the (R, c)-two-
sided corkscrew condition for some R ∈ (0,∞] and c ∈ (0, 1). In addition, suppose ∂Ω
is a (R, δ)-Reifenberg flat set for some δ ∈ (0, c/2). Then Ω is an (R, δ)-Reifenberg flat
domain.

Proof. Pick a location x ∈ ∂Ω and a scale r ∈ (0, R). Definition 2.2.26 ensures the
existence of of an (n−1)-dimensional plane π(x, r) in Rn passing through x which satisfies
(2.2.233). Make a choice of a unit normal vector ~nx,r to π(x, r) and abbreviate

C+(x, r) :=
{
y + t ~nx,r ∈ B(x, r) : y ∈ π(x, r), t > 2δr

}
,

C−(x, r) :=
{
y + t ~nx,r ∈ B(x, r) : y ∈ π(x, r), t < −2δr

}
.

(2.2.235)

We claim that matters may be arranged (by taking δ sufficiently small to begin with,
and by making a judicious choice of the orientation of ~nx,r) so that

C+(x, r) ⊂ Ω and C−(x, r) ⊂ Rn \ Ω. (2.2.236)
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With this goal in mind, first observe that (2.2.233) guarantees that the connected sets
C±(x, r) do not intersect ∂Ω. As such, Ω+ := Ω and Ω− := Rn \ Ω form a disjoint, open
cover of C±(x, r), hence

C+(x, r) is entirely contained in either Ω+ or Ω−, and
also C−(x, r) is entirely contained in either Ω+ or Ω−.

(2.2.237)

To proceed, denote by x±r ∈ Ω± the two corkscrew points corresponding to the location
x and scale r. In particular,

|x±r − x| < r and B
(
x±r , cr

)
⊆ Ω± (2.2.238)

where the constant c ∈ (0, 1) is as in Definition 1.1.6. Hence, if we consider the balls
B
(
x+
r , cr

)
, B
(
x−r , cr

)
, their centers x±r belong to B(x, r). The fact that we are presently

assuming 0 < δ < c/2 with c ∈ (0, 1) ensures that δ < (c/2)
√

4− c2 which, as some
elementary geometry shows, forces each of the balls B

(
x+
r , cr

)
, B
(
x−r , cr

)
to intersect one

of the sets C+(x, r), C−(x, r). As such, one of the following four alternatives is true:

B
(
x+
r , cr

)
∩ C+(x, r) 6= ∅ and B

(
x−r , cr

)
∩ C+(x, r) 6= ∅, (2.2.239)

B
(
x+
r , cr

)
∩ C−(x, r) 6= ∅ and B

(
x−r , cr

)
∩ C−(x, r) 6= ∅, (2.2.240)

B
(
x+
r , cr

)
∩ C+(x, r) 6= ∅ and B

(
x−r , cr

)
∩ C−(x, r) 6= ∅, (2.2.241)

B
(
x+
r , cr

)
∩ C−(x, r) 6= ∅ and B

(
x−r , cr

)
∩ C+(x, r) 6= ∅. (2.2.242)

Observe that the alternative described in (2.2.239) cannot possibly hold. Otherwise, the
existence of two points z1 ∈ B

(
x+
r , cr

)
∩C+(x, r) and z2 ∈ B

(
x−r , cr

)
∩C+(x, r) would imply

that, on the one hand, the line segment [z1, z2] lies in the convex set C+(x, r), hence also
either in Ω+ or in Ω− by (2.2.237). This being said, the fact that z1 ∈ B

(
x+
r , cr

)
⊆ Ω+ and

z2 ∈ B
(
x−r , cr

)
⊆ Ω− prevents either one of these eventualities form materializing. This

contradiction therefore excludes (2.2.239). Reasoning in a similar fashion we may rule
out (2.2.240). When (2.2.241) holds, from (2.2.237) and the fact that B

(
x±r , cr

)
⊆ Ω±

(cf. (2.2.238)) we conclude that the inclusions in (2.2.236) hold as stated. Finally,
when (2.2.242) holds, from (2.2.226) and (2.2.238) we deduce that C+(x, r) ⊆ Ω− and
C−(x, r) ⊆ Ω+. In such a scenario, we may ensure that the inclusions in (2.2.236) are
valid simply by re-denoting ~nx,r as −~nx,r which amounts to reversing the roles of C+(x, r)
and C−(x, r). This concludes the proof of (2.2.236). In turn, from (2.2.236) and (2.2.235)
we conclude that (2.2.234) holds with π̃(x, r) := π(x, r). Definition 2.2.27 then implies
that Ω is, indeed, an (R, δ)-Reifenberg flat domain.

Any δ-SKT domain with δ > 0 sufficiently small is a Reifenberg flat domain. Specif-
ically, we have the following result.

Proposition 2.2.30. Suppose Ω ⊆ Rn is an open set satisfying a two-sided local John
condition and whose boundary is Ahlfors regular. Abbreviate σ := Hn−1b∂Ω and denote
by ν the geometric measure theoretic outward unit normal to Ω.
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Then there exists some threshold δ∗ ∈ (0, 1) along with some constant C ∈ (0,∞),
both depending only on the dimension n, the local John constants of Ω, and the Ahlfors
regularity constant of ∂Ω, such that if ‖ν‖[BMO(∂Ω,σ)]n < δ with δ ∈ (0, δ∗) then Ω is an
(∞, Cδ)-Reifenberg flat domain.

A version of this result continues to hold with the two-sided local John condition
relaxed to a two-sided corkscrew condition, in which scenario one concludes that ∂Ω is
a Reifenberg flat set but only at small scales (see [15, Theorem 2.1] for details).

Proof of Proposition 2.2.30. Choose the parameter δ∗ ∈ (0, 1) as in Theorem 2.2.25 and
make the assumption that ‖ν‖[BMO(∂Ω,σ)]n < δ with δ ∈ (0, δ∗). Then from (2.2.221) it
follows that there exists some C ∈ (0,∞) which depends only on the dimension n, the
local John constants of Ω, and the Ahlfors regularity constant of ∂Ω, such that ∂Ω is
an (∞, Cδ)-Reifenberg flat set. Also, (2.2.223)-(2.2.224) guarantee that, for a constant
C ∈ (0,∞) of the same nature as before, Ω satisfies the (∞, Cδ)-separation property.
Alternatively, we may invoke Proposition 2.2.29 (keeping in mind that the two-sided
local John condition implies the two-sided corkscrew condition). Granted these qualities,
Definition 2.2.28 then implies that Ω is an (∞, Cδ)-Reifenberg flat domain.

It turns out that sufficiently flat Reifenberg domains are NTA domains. More specif-
ically, from [61, Theorem 3.1, p. 524] and its proof we see that

there exists a purely dimensional constant δn ∈ (0,∞) with the
property that for each δ ∈ (0, δn) and R ∈ (0,∞] one may find a
number N = N(δ,R) ∈ N with the property that that any (R, δ)-
Reifenberg flat domain Ω ⊆ Rn is also an (R,N)-nontangentially
accessible domain (in the sense of Definition 1.1.8).

(2.2.243)

This has a number of useful consequences. For example, it allows us to conclude that
any open set satisfying a two-sided corkscrew condition and whose topological boundary
is a sufficiently flat Reifenberg set is actually an NTA domain.

Proposition 2.2.31. Let Ω be a nonempty proper subset of Rn satisfying the (R, c)-
two-sided corkscrew condition for some R ∈ (0,∞] and c ∈ (0, 1). In addition, suppose
∂Ω is a (R, δ)-Reifenberg flat set with 0 < δ < min{c/2, δn}, where δn ∈ (0,∞) is the
purely dimensional constant from (2.2.243). Then there exist N = N(δ,R) ∈ N with the
property that Ω is an (R,N)-nontangentially accessible domain.

Proof. The desired conclusion is a direct consequence of Proposition 2.2.29, (2.2.243),
and Definition 1.1.8.

In concert with Proposition 2.2.30, the result recalled in (2.2.243) also shows that
any δ-SKT domain with δ > 0 sufficiently small is a two-sided NTA domain. Here
is a precise statement.
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Proposition 2.2.32. Let Ω ⊆ Rn be an open set satisfying a two-sided local John
condition and whose boundary is Ahlfors regular. Abbreviate σ := Hn−1b∂Ω and denote
by ν the geometric measure theoretic outward unit normal to Ω.

Then there exists a threshold δ0 ∈ (0, 1) and a number N ∈ N, both depending only
on the dimension n, the local John constants of Ω, and the Ahlfors regularity constant
of ∂Ω, such that if ‖ν‖[BMO(∂Ω,σ)]n < δ0 then Ω is an (∞, N)-two-sided nontangentially
accessible domain (in the sense of Definition 1.1.8).

In the converse direction, fix δ ∈ (0,∞), N ∈ N, R ∈ (0,∞], and suppose Ω ⊆ Rn is an
(R,N)-two-sided nontangentially accessible domain (with the requirement that R = ∞
if ∂Ω is unbounded) whose boundary is an Ahlfors regular set. Then from (1.1.28) and
definitions we see that Ω is a δ-SKT domain whenever its geometric measure theoretic
outward unit normal ν satisfies ‖ν‖[BMO(∂Ω,σ)]n < δ (where, as usual, σ := Hn−1b∂Ω).

Proof of Proposition 2.2.32. Let δ∗ ∈ (0, 1) and C ∈ (0,∞) be as in Proposition 2.2.30,
and recall the purely dimensional constant δn ∈ (0,∞) from (2.2.243). Take

δ0 := min
{
δ∗ , δn/C

}
∈ (0, 1) (2.2.244)

and assume that ‖ν‖[BMO(∂Ω,σ)]n < δ0. Also, fix some δ ∈
(
‖ν‖[BMO(∂Ω,σ)]n , δ0

)
. Propo-

sition 2.2.30 then guarantees that Ω is an (∞, Cδ)-Reifenberg flat domain. Given that
Cδ < δn, from (2.2.243) we conclude that there exists some N ∈ N such that Ω is an
(∞, N)-nontangentially accessible domain in the sense of Definition 1.1.8.

Going further, observe that the set Rn\Ω satisfies a two-sided local John condition and
recall from Example 2.2.16 that its topological and measure theoretic boundaries coincide
with those of Ω. Also, the geometric measure theoretic outward unit normal to Rn \Ω is
−ν at σ-a.e. point on ∂Ω. In particular, the BMO semi-norm of the geometric measure
theoretic outward unit normal to Rn \Ω is < δ. As such, the argument in the first part of
the proof applies and gives that Rn \Ω is an (∞, N)-nontangentially accessible domain as
well. All together, this makes Ω an (∞, N)-two-sided nontangentially accessible domain.

We are now in a position to show that for a δ-SKT domain Ω ⊆ Rn the demand
that the parameter δ ∈ (0, 1) is suitably small relative to the geometry of Ω has a
string of remarkable topological and metric consequences for the set Ω. To set the
stage, from [70, Theorem 2 in 49.VI, 57.I.9(i), 57.III.1] (cf. also [67, Lemma 4(1) and
Lemma 5, p. 1702]) we first note that

if O ⊆ Rn is some arbitrary connected open set, then any
connected component of Rn \ O has a connected boundary. (2.2.245)

Theorem 2.2.33. Let Ω ⊆ Rn be an open set satisfying a two-sided local John condition
and whose boundary is Ahlfors regular. Abbreviate σ := Hn−1b∂Ω and denote by ν the
geometric measure theoretic outward unit normal to Ω.

Then there exists a threshold δ0 ∈ (0, 1) depending only on the ambient dimension
n, the local John constants of Ω, and the Ahlfors regularity constant of ∂Ω, such that if
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‖ν‖[BMO(∂Ω,σ)]n < δ0 it follows that Ω is an unbounded connected set, Ω is an unbounded
connected set, ∂Ω is an unbounded connected set, Rn \Ω is an unbounded connected set,
Rn \Ω is an unbounded connected set, and ∂(Ω ) = ∂Ω, ∂(Rn \Ω ) = ∂Ω, ∂(Rn \Ω) = ∂Ω.

As is apparent from Example 2.2.23, the demand that the parameter δ > 0 is
sufficiently small cannot be dispense with in the context of Theorem 2.2.33.

Proof of Theorem 2.2.33. Bring in the threshold δ0 ∈ (0, 1) from Proposition 2.2.32
and assume that ‖ν‖[BMO(∂Ω,σ)]n < δ0. From Proposition 2.2.32, Definition 1.1.8, and
Definition 1.1.7 we then conclude that both Ω and Rn \ Ω are pathwise connected open
sets (hence, connected open sets). Having established this, from (2.2.245) we then see
that ∂

(
Rn \ Ω

)
= ∂(Ω ) is connected. The fact that Ω satisfies an exterior corkscrew

condition further implies ∂(Ω ) = ∂Ω. Since δ < 1, Lemma 2.2.5 ensures that ∂Ω is
unbounded, and this forces both Ω and Rn \ Ω to be unbounded (given that they have
∂Ω as their topological boundary). Also, the fact that Rn \ Ω is connected implies that
its closure is connected. However, Rn \ Ω = Rn \ Ω̊ and

Ω̊ = Ω \ ∂(Ω ) = Ω \ ∂Ω = Ω̊ = Ω, (2.2.246)

so Rn \ Ω = Rn \ Ω is connected.

In the two-dimensional setting, it turns out that having an outward unit normal with
small BMO semi-norm implies (under certain background assumptions) that the domain
in question is actually simply connected. This makes the object of Corollary 2.2.34,
which augments Theorem 2.2.33.

Corollary 2.2.34. Let Ω ⊆ R2 be an open set satisfying a two-sided local John condition
and whose boundary is Ahlfors regular. Abbreviate σ := H1b∂Ω and denote by ν the
geometric measure theoretic outward unit normal to Ω. Then there exists a threshold
δ0 ∈ (0, 1), depending only on the local John constants of Ω and the Ahlfors regularity
constant of ∂Ω, such that if ‖ν‖[BMO(∂Ω,σ)]2 < δ0 it follows that Ω is an unbounded
connected set which is simply connected, ∂Ω is an unbounded connected set, R2 \Ω is an
unbounded connected set which is simply connected, and ∂(R2 \ Ω ) = ∂Ω.

Proof. All claims are consequences of Theorem 2.2.33 and either (2.2.68), or (2.2.69), or
(2.2.70).

2.2.4 Chord-arc domains in the plane

In the two-dimensional setting, an important category of sets is the class of chord-arc
domains, discussed next.

Definition 2.2.35. Given a nonempty, proper, open subset Ω of R2 and κ ∈ [0,∞), one
calls Ω a κ-CAD (or simply chord-arc domain, if the value of κ is not important) provided
∂Ω is a locally rectifiable simple curve, which is either a closed curve or a Jordan curve
passing through infinity in C ≡ R2, with the property that

`(z1, z2) ≤ (1 + κ)|z1 − z2| for all z1, z2 ∈ ∂Ω, (2.2.247)
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where `(z1, z2) denotes the length of the shortest arc of ∂Ω joining z1 and z2.

For example, a planar sector Ωθ of aperture θ ∈ (0, 2π) (cf. (2.2.163)) is a κ-CAD
with constant κ := [sin(θ/2)]−1 − 1. While Proposition 2.2.12 shows that the upper-
graph of any real-valued BMO1 function defined on the real line is a chord-arc domain
(hence, in particular, any Lipschitz domain in the plane is a chord-arc domain), from our
earlier discussion (see, e.g., Example 2.2.20) we know that the boundaries of chord-arc
domains may actually contain spiral points. There are also subtle connections between
the quality of being a chord-arc domain and the behavior of the conformal mapping
(see, e.g., [20] and the references therein).

Our next major goal is to establish, in the two-dimensional setting, the coincidence
of the class of κ-CAD domains with κ ≥ 0 small constant with that of δ-SKT domains
with δ > 0 small. This is accomplished in Theorem 2.2.38. For now recall the concept
of UR domain from Definition 1.1.5.

Proposition 2.2.36. Assume Ω ⊆ R2 ≡ C is a chord-arc domain. Then Ω is a connected
UR domain, satisfying a two-sided local John condition. Moreover, ∂Ω = ∂( Ω ) and if
either ∂Ω is unbounded, or Ω is bounded, then Ω is also simply connected.

Proof. If ∂Ω is a Jordan curve passing through infinity in C then the desired conclu-
sions follow from item (vi) of Proposition 2.2.9 and (2.2.69). If ∂Ω is bounded, then
there exists a bi-Lipschitz homeomorphism F of the complex plane onto itself such
that F

(
∂B(0, 1)

)
= ∂Ω (cf. [104, Theorem 7.9, p. 165]). This implies that each of

the connected sets F
(
B(0, 1)

)
, F
(
C\B(0, 1)

)
is contained in the disjoint union of Ω with

C \ Ω. Since F is surjective, this forces that either

F
(
B(0, 1)

)
= Ω and F

(
C \B(0, 1)

)
= C \ Ω, (2.2.248)

or
F
(
B(0, 1)

)
= C \ Ω and F

(
C \B(0, 1)

)
= Ω. (2.2.249)

All desired conclusions readily follow from this and the transformational properties under
bi-Lipschitz maps established in [52].

A chord-arc domain with a sufficiently small constant is necessarily unbounded (and,
in fact, has an unbounded boundary).

Proposition 2.2.37. If Ω ⊆ R2 is a κ-CAD with κ ∈
[
0 ,
√

2− 1
)
then ∂Ω is unbounded.

Proof. Seeking a contradiction, assume Ω ⊆ R2 is a κ-CAD with κ ∈
[
0 ,
√

2 − 1
)
and

such that ∂Ω is a bounded set. In particular, ∂Ω is a rectifiable closed curve. Abbreviate
L := H1(∂Ω) ∈ (0,∞) and let [0, L] 3 s 7→ z(s) ∈ ∂Ω be the arc-length parametrization
of ∂Ω. Define z0 := z(0), z1/4 := z(L/4), z1/2 := z(L/2), z3/4 := z(3L/4). Since

|z0 − z1/4| ≤ `(z0, z1/4) = L/4, |z3/4 − z0| ≤ `(z3/4, z0) = L/4,

|z1/2 − z3/4| ≤ `(z1/2, z3/4) = L/4, |z1/4 − z1/2| ≤ `(z1/4, z1/2) = L/4,
(2.2.250)



2. Singular integral operators and quantitative flatness 105

it follows that
z1/4, z3/4 ∈ D := B(z0, L/4) ∩B(z1/2, L/4), (2.2.251)

hence
|z1/4 − z3/4| ≤ diam(D). (2.2.252)

On the one hand, with R := |z0 − z1/2|, elementary geometry gives that

diam(D) = 2
√

(L/4)2 − (R/2)2 =
√
L2/4−R2. (2.2.253)

On the other hand, L/2 = `(z0, z1/2) ≤ (1 + κ)|z0 − z1/2| = (1 + κ)R so

diam(D) ≤
√
L2/4− (L/(2 + 2κ))2 = L

2

√
1−

( 1
1 + κ

)2
. (2.2.254)

Based on the chord-arc property, (2.2.252), and (2.2.254) we then conclude that

L

2 = `(z1/4, z3/4) ≤ (1 + κ)|z1/4 − z3/4|

≤ (1 + κ)diam(D) ≤ L

2

√
(1 + κ)2 − 1, (2.2.255)

which further implies that κ ≥
√

2− 1, a contradiction.

By design, the boundary of any chord-arc domain is a simple curve, and this brings
into focus the question: when is the boundary of an open, connected, simply connected
planar set a Jordan curve? According to the classical Carathéodory theorem, this is the
case if and only if some (or any) conformal mapping ϕ : D → Ω (where D is the unit
disk in C) extends to a homeomorphism ϕ : D → Ω (see, e.g., [43, Theorem 3.1, p. 13]).
A characterization of bounded planar Jordan regions in terms of properties having no
reference to their boundaries has been given by R.L.Moore in 1918. According to [100],

given an open, bounded, connected, simply connected set Ω ⊆ R2,
in order for ∂Ω to be a simple closed curve it is necessary and
sufficient that Ω is uniformly connected im kleinen (i.e., if for every
εo > 0 there exists δo > 0 such that any two points P, P̃ ∈ Ω with
|P−P̃ | < δo lie in a connected subset Γ of Ω satisfying |P−Q| < εo

for each point Q ∈ Γ).

(2.2.256)

A moment’s reflection shows that the uniform connectivity condition (im kleinen) for-
mulated above is equivalent to the demand that for every εo > 0 there exists δo > 0
such that any two points P, P̃ ∈ Ω with |P − P̃ | < δo lie in a connected subset Γ of Ω
with diam (Γ) < εo. This condition is meant to prevent the boundary of Ω to “branch
out” (like in the case of a partially slit disk).

We are now in a position to establish the coincidence of the class of κ-CAD domains
with κ ≥ 0 small constant with that of δ-SKT domains with δ > 0 small, in the two-
dimensional Euclidean setting.
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Theorem 2.2.38. If Ω ⊂ R2 is a κ-CAD with κ ∈
[
0 ,
√

2−1
)
then Ω is a δ-SKT domain

for any δ > 2
√
κ(2 + κ). In particular, Ω is a δ-SKT domain for, say, δ := 4

√
κ(2 + κ)

a choice which satisfies δ = O(
√
κ ) as κ → 0+.

Conversely, given any M ∈ (0,∞) there exists δ∗ ∈ (0, 1) with the property that
whenever δ ∈ (0, δ∗) it follows that any δ-SKT domain Ω ⊂ R2 whose Ahlfors regularity
constant as well as local John constants are ≤M is a κ-CAD with κ = O(δ) as δ → 0+.

Proof. Suppose Ω ⊂ R2 is a κ-CAD with κ ∈
[
0 ,
√

2 − 1
)
. Proposition 2.2.37 then

ensures that ∂Ω is an unbounded set. Keeping this in mind, from Definition 2.2.35 we
then conclude that ∂Ω is a Jordan curve passing through infinity in C ≡ R2. Granted
(2.2.247), it follows that ∂Ω is a κ-CAC. From Proposition 2.2.9 and (2.2.74) we then see
that Ω satisfies a two-sided local John condition and has an Ahlfors regular boundary.
Moreover, if σ := H1b∂Ω and ν is the geometric measure theoretic outward unit normal
to Ω, from (2.2.103) we deduce that

‖ν‖BMO(∂Ω,σ) ≤ 2
√
κ(2 + κ). (2.2.257)

It follows from this Definition 2.2.14 that Ω is a δ-SKT whenever δ > 2
√
κ(2 + κ). This

completes the proof of the claim in the first part of the statement of the theorem.
In the converse direction, let Ω ⊆ R2 be a δ-SKT domain with δ is sufficiently

small relative to the Ahlfors regularity constant and the local John constants of Ω.
Then Proposition 2.2.32 implies that Ω is an (∞, N)-two-sided nontangentially accessible
domain (in the sense of Definition 1.1.8), for some N ∈ N. From Corollary 2.2.34 we
also know that Ω is an unbounded connected set which is simply connected, and whose
topological boundary is an unbounded connected set.

The first order of business is to show that actually ∂Ω is a simple curve. To establish
this, we intend to make use of Moore’s criterion recalled in (2.2.256). Since this pertains
to bounded sets, as a preliminary step we fix a point z0 ∈ C \ Ω and consider

Ω̃ := Φ(Ω) ⊆ C, (2.2.258)

where
Φ : C \ {z0} −→ C \ {0}

Φ(z) := (z − z0)−1 for each z ∈ C \ {z0}.
(2.2.259)

Note that, when restricted to Ω, the function Φ satisfies a Lipschitz condition. Specifi-
cally, if r0 := dist (z0, ∂Ω) then r0 ∈ (0,∞) and we may estimate

∣∣Φ(z1)− Φ(z2)
∣∣ = |z1 − z2|
|z1 − z0||z2 − z0|

≤ r−2
0 |z1 − z2| for all z1, z2 ∈ Ω. (2.2.260)

Also, since Φ is a homeomorphism and Ω ⊆ C\{z0} it follows that Ω̃ = Φ(Ω) is an open,
connected, simply connected subset of C \ {0}. Moreover, Ω ⊆ C \B(z0, r0) and since Φ
maps C\B(z0, r0) into B(0, 1/r0) it follows that Ω̃ ⊆ B(0, 1/r0), hence Ω̃ is also bounded.
The idea is then to check Moore’s criterion (cf. (2.2.256)) for Ω̃, conclude that ∂Ω̃ is a
simple curve, then use Φ−1 to reach a similar conclusion for ∂Ω. Since Φ−1 is singular
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at 0 ∈ ∂Ω̃, special care is required when checking the uniform connectivity condition (im
kleinen) near the origin. This requires some preparations.

To proceed, fix some large number R ∈ (0,∞), to be specified later in the proof.
Pick two points P, P̃ ∈ Ω̃ ∩ B(0, 1/R) then define x := Φ−1(P ) and x̃ := Φ−1(P̃ ). It
follows that x, x̃ ∈ Ω \B(z0, R). Bring in the polygonal arc Γ joining x with x̃ in Ω as in
Lemma 2.2.2. As noted in Lemma 2.2.3, there exists ε = ε(N) ∈ (0, 1) with the property
that this curve is disjoint from B(z0, εR). Next, abbreviate L := length(Γ) ∈ (0,∞)
and let [0, L] 3 s 7→ Γ(s) ∈ Γ be the arc-length parametrization of Γ. In particular,∣∣Γ′(s)∣∣ = 1 for L1-a.e. s ∈ (0, L). If we define

Γ̃(s) := Φ(Γ(s)) = 1
Γ(s)− z0

for each s ∈ [0, L], (2.2.261)

then the image of Γ̃ is a rectifiable curve joining P with P̃ in Ω̃. In particular, this curve
is a connected subset of Ω̃ containing P, P̃ and, with (2.2.256) in mind, the immediate
goal is to estimate the length of this curve. Retaining the symbol Γ̃ for the said curve,
we have

length(Γ̃) =
ˆ L

0

∣∣Γ̃′(s)∣∣ ds =
ˆ L

0

∣∣Φ′(Γ(s))
∣∣ · ∣∣Γ′(s)∣∣ ds

=
ˆ L

0

ds

|Γ(s)− z0|2
. (2.2.262)

For each s ∈ [0, L] we have Γ(s) ∈ Ω. Given that z0 /∈ Ω, the line segment joining
Γ(s) with z0 intersects ∂Ω, hence |Γ(s) − z0| ≥ δ∂Ω(Γ(s)). On the other hand, for each
s ∈ [0, L] the last line in (2.2.18) implies that CN ·δ∂Ω(Γ(s)) ≥ min{s, L−s}. All together,
CN · |Γ(s)− z0| ≥ min{s, L− s} for each s ∈ [0, L]. Upon recalling that the polygonal arc
Γ is disjoint from B(z0, εR), we also have |Γ(s)−z0| ≥ εR for each s ∈ [0, L]. Ultimately,
this proves that there exists some cN ∈ (0,∞) with the property that

|Γ(s)− z0| ≥ cN ·
(
R+ min{s, L− s}

)
for each s ∈ [0, L]. (2.2.263)

Combining (2.2.262) with (2.2.263) then gives

length(Γ̃) =
ˆ L

0

ds

|Γ(s)− z0|2
≤ CN

ˆ L

0

ds(
R+ min{s, L− s}

)2
= CN

ˆ L/2

0

ds(
R+ min{s, L− s}

)2 + CN

ˆ L

L/2

ds(
R+ min{s, L− s}

)2
= 2CN

ˆ L/2

0

ds

(R+ s)2 ≤ 2CN
ˆ ∞

0

ds

(R+ s)2 = 2CN
R

. (2.2.264)

Armed with (2.2.264), we now proceed to check that the set Ω̃ is uniformly connected
im kleinen (in the sense made precise in (2.2.256)). To get started, suppose some
threshold εo > 0 has been given. Make the assumption that

R > max
{
r0 ,

2CN
εo

}
and pick δo ∈

(
0, 1/(2R)

)
, (2.2.265)
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reserving the right to make further specifications regarding the size of δo. Consider two
points P, P̃ ∈ Ω̃ with |P − P̃ | < δo. The goal is to find a connected subset of Ω̃ whose
every point is at distance ≤ εo from P . To this end, we distinguish two cases.

Case I: Assume P, P̃ ∈ Ω̃ ∩ B(0, 1/R). Then Γ̃, the curve introduced in (2.2.261), is a
connected subset of Ω̃ containing P, P̃ , and (2.2.264) implies (in view of (2.2.265)) that
length(Γ̃) < εo. In particular, for any point Q ∈ Γ̃ we have |P −Q| ≤ length(Γ̃) < εo, as
wanted.

Case II: Assume either P /∈ Ω̃ ∩ B(0, 1/R), or P̃ /∈ Ω̃ ∩ B(0, 1/R). Since we know that
|P − P̃ | < δo < 1/(2R) to begin with, this forces P, P̃ ∈ Ω̃ \ B(0, 1/(2R)). To proceed,
observe that the restriction of Φ : Ω→ Ω̃ to Ω ∩B(z0, 2R), i.e., the function

Φ̃ : Ω ∩B(z0, 2R) −→ Ω̃ \B(0, 1/(2R)),

Φ̃(z) := (z − z0)−1 for each z ∈ Ω ∩B(z0, 2R),
(2.2.266)

is a bijection, whose inverse

Φ̃−1 : Ω̃ \B(0, 1/(2R)) −→ Ω ∩B(z0, 2R),

Φ̃−1(ζ) := ζ−1 + z0 for each ζ ∈ Ω̃ \B(0, 1/(2R)),
(2.2.267)

is Lipschitz since for each ζ1, ζ2 ∈ Ω̃ \B(0, 1/(2R)) we may estimate

∣∣Φ̃−1(ζ1)− Φ̃−1(ζ2)
∣∣ = |ζ1 − ζ2|

|ζ1||ζ2|
≤ (2R)2|ζ1 − ζ2|. (2.2.268)

In particular, if we set x := Φ̃−1(P ) ∈ Ω and x̃ := Φ̃−1(P̃ ) ∈ Ω, it follows that

|x− x̃| =
∣∣Φ̃−1(P )− Φ̃−1(P̃ )

∣∣ ≤ (2R)2|P − P̃ | ≤ (2R)2δo. (2.2.269)

Let Γ be the polygonal arc joining x with x̃ in Ω as in Lemma 2.2.2 with the scale
r := |x− x̃|. Then the first inequality in (2.2.18) tells us that length(Γ) ≤ CN · |x− x̃|, so
L := length(Γ) ≤ CN ·(2R)2δo by (2.2.269). Let [a, b] 3 t 7→ γ(t) ∈ Γ be a parametrization
of the curve Γ and define Γ̃ := Φ ◦ γ. Then the image of Γ̃ is a rectifiable curve joining
P with P̃ in Ω̃. Indeed, Φ(Γ) ⊆ Φ(Ω) = Ω̃ and

Φ(γ(a)) = Φ(x) = Φ
(
Φ̃−1(P )

)
= Φ̃

(
Φ̃−1(P )

)
= P,

Φ(γ(b)) = Φ(x̃) = Φ
(
Φ̃−1(P̃ )

)
= Φ̃

(
Φ̃−1(P̃ )

)
= P̃ ,

(2.2.270)

given that Φ̃−1(P ), Φ̃−1(P̃ ) belong to Ω ∩ B(z0, 2R) where Φ agrees with Φ̃. Retaining
the symbol Γ̃ for the the said curve, we may estimate

length(Γ̃) ≤ r−2
0 · length(Γ) = L/r2

0 ≤ CN · (2R)2δo/r
2
0, (2.2.271)

where the first inequality is a consequence of (2.2.84) and the fact that Φ : Ω → Ω̃ is a
Lipschitz function with constant ≤ r−2

0 (cf. (2.2.260)). Choosing δo > 0 sufficiently small,
to begin with, so that CN · (2R)2δo/r

2
0 < εo, we ultimately conclude that length(Γ̃) < εo.
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Hence, once again, Γ̃ is a connected subset of Ω̃ containing P, P̃ , and with the property
that |P −Q| ≤ length(Γ̃) < εo for each point Q ∈ Γ̃.

Let us summarize our progress. In view of (2.2.256), the proof so far gives that

∂Ω̃ a simple closed curve in the plane. (2.2.272)

Moreover, since Φ(∂Ω) ⊆ ∂Ω̃, the origin 0 ∈ C is an accumulation point for Φ(∂Ω) (as is
visible from (2.2.259), keeping in mind that ∂Ω is unbounded), and ∂Ω̃ is a closed set,
we conclude that 0 ∈ ∂Ω̃. In turn, this implies that ∂Ω̃ \ {0} is a simple curve, and that
the function (2.2.259) induces a homeomorphism Φ : ∂Ω→ ∂Ω̃ \ {0}. As a consequence,
∂Ω = Φ−1(∂Ω̃ \ {0}) is a simple curve in the plane. In addition, the (upper) Ahlfors
regularity property of ∂Ω ensures that the curve ∂Ω is locally rectifiable, hence

∂Ω = Φ−1(∂Ω̃ \ {0}) is a locally rectifiable simple curve in the plane. (2.2.273)

Next, if γ̃ :
[
− π

2 ,
π
2
]
→ ∂Ω̃ is a parametrization of ∂Ω̃ with γ̃(±π/2) = 0, then

γ : R→ ∂Ω, γ(t) := Φ−1(γ̃(arctan t)
)

for each t ∈ R, (2.2.274)

becomes a parametrization of the curve ∂Ω. Given that lim
t→±∞

|γ(t)| = 0, we ultimately
conclude that

∂Ω is a Jordan curve passing through infinity in the plane. (2.2.275)

At this stage, there remains to prove that ∂Ω satisfies the chord-arc condition (2.2.247)
with a constant κ = O(δ) as δ → 0+. In this regard, we note that Theorem 2.2.25
gives (cf. (2.2.225) with n = 2) that there exists a finite geometrical constant Co > 1,
independent of δ, with the property that∣∣∣∣∣H1(B(z, r) ∩ ∂Ω

)
2r − 1

∣∣∣∣∣ ≤ Co δ, ∀ z ∈ ∂Ω, ∀ r ∈ (0,∞). (2.2.276)

Without loss of generality, henceforth assume 0 < δ < 1/(4Co). Consider now two points
z1, z2 ∈ ∂Ω. Abbreviate r := `(z1, z2) and denote by z3 the first exit point of the curve
∂Ω out of B(z1, r). Hence, |z1 − z3| = r and the ordering z1, z2, z3 conforms with the
positive orientation of ∂Ω. Moreover,

the portion of ∂Ω between z1 and z3 is contained inside B(z1, r). (2.2.277)

To proceed, introduce ∆ := B(z1, r)∩∂Ω and decompose ∆ = ∆+∪∆− (disjoint union),
where ∆± denote the sets of points in ∆ lying, respectively, to the left and to the right
of z1. Also, denote by `(∆±) the arc-lengths of ∆±. Then

H1(B(z1, r) ∩ ∂Ω
)

= `(∆−) + `(∆+) and `(∆±) ≥ r. (2.2.278)

Making use of (2.2.276) and (2.2.278) we may therefore estimate

Co δ ≥
∣∣∣∣∣H1(B(z, r) ∩ ∂Ω

)
2r − 1

∣∣∣∣∣ =
∣∣∣∣∣`(∆−)− r

2r + `(∆+)− r
2r

∣∣∣∣∣
= `(∆−)− r

2r + `(∆+)− r
2r ≥ `(∆+)− r

2r . (2.2.279)
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Hence, by (2.2.277) and (2.2.279),

|z2 − z3| ≤ `(∆+)− r ≤ 2rCo δ (2.2.280)

which further implies

|z1 − z2| ≥ |z1 − z3| − |z2 − z3| ≥ r − 2rCo δ = (1− 2Co δ)`(z1, z2). (2.2.281)

This proves that

`(z1, z2) ≤ (1 + κ)|z1 − z2| with κ := 2Co δ
1− 2Co δ

, (2.2.282)

which goes to show that ∂Ω is a chord-arc curve. Moreover, the fact that we have assumed
0 < δ < 1/(4Co) implies 0 < κ < 4Coδ, so in particular κ = O(δ) as δ → 0+. Hence, Ω
is a κ-CAD with κ = O(δ) as δ → 0+, finishing the proof of Theorem 2.2.38.

2.2.5 Dyadic grids and Muckenhoupt weights on Ahlfors regular sets

The following result, pertaining to the existence of a dyadic grid structure on a given
Ahlfors regular set, is essentially due to M. Christ [22] (cf. also [33], [34]), with some
refinements worked out in [51, Proposition 2.11, pp. 19-20].

Proposition 2.2.39. Let Σ ⊆ Rn be a closed, unbounded, Ahlfors regular set, and
abbreviate σ := Hn−1bΣ. Then there are finite constants a1 ≥ a0 > 0 such that for
each m ∈ Z there exists a collection

Dm(Σ) := {Qmα }α∈Im (2.2.283)

of subsets of Σ indexed by a nonempty, at most countable set of indices Im, as well as a
family {xmα }α∈Im of points in Σ, for which the collection of all dyadic cubes in Σ, i.e.,

D(Σ) :=
⋃
m∈Z

Dm(Σ), (2.2.284)

has the following properties:

(1) [All dyadic cubes are open] For each m ∈ Z and each α ∈ Im the set Qmα is relatively
open in Σ.

(2) [Dyadic cubes are mutually disjoint within the same generation] For each m ∈ Z
and each α, β ∈ Im with α 6= β there holds Qmα ∩Qmβ = ∅;

(3) [No partial overlap across generations] For each m, ` ∈ Z with ` > m and each
α ∈ Im, β ∈ I`, either Q`β ⊆ Qmα or Qmα ∩Q`β = ∅.

(4) [Any dyadic cube has a unique ancestor in any earlier generation] For each integers
m, ` ∈ Z with m > ` and each α ∈ Im there is a unique β ∈ I` such that Qmα ⊆ Q`β.
In particular, for each m ∈ Z and each α ∈ Im there exists a unique β ∈ Im−1 such
that Qmα ⊆ Qm−1

β (a scenario in which Qm−1
β is referred to as the parent of Qmα ).
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(5) [The size is dyadically related to the generation] For each m ∈ Z and each α ∈ Im
one has

∆(xmα , a02−m) ⊆ Qmα ⊆ ∆Qmα := ∆(xmα , a12−m). (2.2.285)

(6) [Control of the number of children] There exists an integer M ∈ N with the property
that for each m ∈ Z and each α ∈ Im one has

#
{
β ∈ Im+1 : Qm+1

β ⊆ Qmα
}
≤M. (2.2.286)

Also, this integer may be chosen such that for each m ∈ Z, each x ∈ Σ, and each
r ∈ (0, 2−m) the number of Q’s in Dm(Σ) that intersect ∆(x, r) is at most M .

(7) [Each generation covers the space σ-a.e.] For each m ∈ Z one has

σ
(
Σ \

⋃
α∈Im

Qmα

)
= 0. (2.2.287)

In particular,
N :=

⋃
m∈Z

(
Σ \

⋃
α∈Im

Qmα

)
=⇒ σ(N) = 0, (2.2.288)

and for each m ∈ Z and each α ∈ Im one has

σ
(
Qmα \

⋃
β∈Im+1, Q

m+1
β
⊆Qmα

Qm+1
β

)
= 0. (2.2.289)

(8) [Dyadic cubes have thin boundaries] There exist constants, some small ϑ ∈ (0, 1)
along with some large C ∈ (0,∞), such that for each m ∈ Z, each α ∈ Im, and
each t > 0 one has

σ
({
x ∈ Qmα : dist(x,Σ \Qmα ) ≤ t · 2−k

})
≤ Ctϑ · σ(Qmα ). (2.2.290)

Moving on, assume Σ ⊆ Rn is a closed set and abbreviate σ := Hn−1bΣ. It has
been noted in [93] that

if Hn−1(K ∩ Σ) < +∞ for each compact subset K of Rn then σ is
a complete, locally finite (hence also sigma-finite), separable, Borel-
regular measure on Σ, where the latter set is endowed with the
topology canonically inherited from the ambient space.

(2.2.291)

Let w be a weight on Σ, i.e., a σ-measurable function satisfying 0 < w(x) <∞ for σ-a.e.
point x ∈ Σ. We agree to also use the symbol w for the weighted measure w σ, i.e., define

w(E) :=
ˆ
E
w dσ for each σ-measurable set E ⊆ Σ. (2.2.292)

Then the measures w and σ have the same sigma-algebra of measurable sets, and are
mutually absolutely continuous with each other. Recall that, for a generic measure space
(X,µ), the measure µ is said to be semi-finite if for each µ-measurable set E ⊆ X

with µ(E) = ∞ there exists some µ-measurable set F ⊆ E such that 0 < µ(F ) < ∞
(cf., e.g., [41, p. 25]).
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Lemma 2.2.40. Suppose Σ ⊆ Rn is a closed set and abbreviate σ := Hn−1bΣ. Let
w be an arbitrary weight on Σ and pick an arbitrary σ-measurable set ∆ ⊆ Σ with
σ(∆) <∞. Then the measure wb∆ is semi-finite and, whenever p, p ′ ∈ (1,∞) are such
that 1/p+ 1/p ′ = 1, it follows that

‖w−1‖Lp ′ (∆,w) = sup
f∈Lp(∆,w)
‖f‖Lp(∆,w)=1

ˆ
∆
|f | dσ. (2.2.293)

Proof. Consider a w-measurable set E ⊆ ∆ with w(E) = ∞. In particular, the set E
is σ-measurable. If for each N ∈ N we set EN := {x ∈ E : w(x) < N} then EN is a
σ-measurable subset of ∆ and EN ⊆ EN+1. Also,

⋃
N∈NEN = {x ∈ E : w(x) < ∞}

hence σ
(
E \

⋃
N∈NEN

)
= 0. Consequently,

lim
N→∞

w(EN ) = lim
N→∞

ˆ
EN

w dσ =
ˆ
E
w dσ = w(E) =∞, (2.2.294)

by Lebesgue’s Monotone Convergence Theorem. In turn, (2.2.294) implies that there
exists No ∈ N such that w(ENo) > 0. Since we also have

w(ENo) =
ˆ
ENo

w dσ ≤ No · σ(ENo) ≤ No · σ(∆) <∞, (2.2.295)

we conclude that ENo is a w-measurable subset of E with 0 < w(ENo) <∞. This implies
that wb∆ is indeed a semi-finite measure.

With an eye on (2.2.293), let Sfin(∆, w) be the vector space of all complex-valued
functions defined on ∆ which may be expressed as f =

∑N
j=1 λj1Ej where N ∈ N, each

λj is a complex number, the family {Ej}1≤j≤N consists of w-measurable mutually disjoint
subset of ∆, and w

(⋃N
j=1Ej

)
< +∞. Note that each such function f happens to be σ-

measurable and, for each q ∈ (0,∞), satisfies
´

∆ |f |
q ≤

∑N
j=1 |λj |q · σ(∆) < ∞. Hence,

Sfin(∆, w) ⊆
⋂

0<q<∞
Lq(∆, σ) (2.2.296)

and, in particular,

fw−1 ∈ L1(∆, w) for each f ∈ Sfin(∆, w). (2.2.297)

Having picked p, p ′ ∈ (1,∞) with 1/p+ 1/p ′ = 1, we may then write

‖w−1‖Lp ′ (∆,w) = sup
f∈Sfin(∆,w)
‖f‖Lp(∆,w)=1

∣∣∣ ˆ
∆
fw−1 dw

∣∣∣ = sup
f∈Sfin(∆,w)
‖f‖Lp(∆,w)=1

∣∣∣ ˆ
∆
f dσ

∣∣∣

≤ sup
f∈Lp(∆,w)
‖f‖Lp(∆,w)=1

ˆ
∆
|f | dσ. (2.2.298)

The first equality above is a consequence of [41, Theorem 6.14, p. 189], whose applicability
in the present setting is ensured by (2.2.297) and the fact that the measure wb∆ is semi-
finite. The second equality in (2.2.298) is justified upon recalling that dw = wdσ, and
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the inequality in (2.2.298) is trivial. There remains to observe that for each f ∈ Lp(∆, w)
with ‖f‖Lp(∆,w) = 1 Hölder’s inequality gives

ˆ
∆
|f | dσ =

ˆ
∆
|f |w−1 dw ≤ ‖w−1‖Lp ′ (∆,w). (2.2.299)

At this stage, (2.2.293) becomes a consequence of (2.2.298) and (2.2.299).

Next, assume that Σ ⊆ Rn, where n ∈ N with n ≥ 2, is a closed set which is Ahlfors
regular, and abbreviate σ := Hn−1bΣ. Given p ∈ (1,∞), we say that a weight w on
Σ belongs to the Muckenhoupt class Ap(Σ, σ) if

[w]Ap := sup
∆⊆Σ

( 
∆
w(x) dσ(x)

)( 
∆
w(x)1−p ′ dσ(x)

)p−1
<∞, (2.2.300)

where p ′ is the Hölder conjugate exponent of p (i.e., p ′ ∈ (1,∞) satisfies 1/p+ 1/p ′ = 1)
and the supremum runs over all surface balls ∆ in Σ. Corresponding to p = 1, we
say that w ∈ A1(Σ, σ) if

[w]A1 := sup
∆⊆Σ

(
ess inf
x∈∆

w(x)
)−1 ( 

∆
w dσ

)
<∞. (2.2.301)

Recall that the (non-centered) Hardy-Littlewood maximal operatorM on Σ acts on each
σ-measurable function f on Σ according to

Mf(x) := sup
∆3x

 
∆
|f | dσ, ∀x ∈ Σ, (2.2.302)

where the supremum is taken over all surface balls ∆ in Σ which contain the point x.
In particular, a weight w on Σ belongs to A1(Σ, σ) if and only if there exists a constant
C ∈ (0,∞) with the property that Mw(x) ≤ Cw(x) at σ-a.e. point x ∈ Σ, and the best
constant is actually [w]A1 . Corresponding to the end-point p = ∞,

the class A∞(Σ, σ) is defined as the
union of all Ap(Σ, σ) with p ∈ [1,∞).

(2.2.303)

Lemma 2.2.41. Suppose Σ ⊆ Rn is a closed set which is Ahlfors regular, and abbreviate
σ := Hn−1bΣ. Then for each p ∈ (1,∞), each Muckenhoupt weight w ∈ Ap(Σ, σ), and
each σ-measurable function f on Σ one has 

∆
|f | dσ ≤ [w]1/pAp

( 
∆
|f |p dw

)1/p
,

for each surface ball ∆ ⊆ Σ.
(2.2.304)

Conversely, if p ∈ (1,∞) and w is a weight on Σ with the property that there exists
a constant C ∈ (0,∞) such that

 
∆
|f | dσ ≤ C

( 
∆
|f |p dw

)1/p
for each

function f ∈ Lploc(Σ, w) and surface ball ∆ ⊆ Σ,
(2.2.305)

then actually w ∈ Ap(Σ, σ) and [w]Ap ≤ Cp.
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Proof. Let p ′ ∈ (1,∞) denote the Hölder conjugate exponent of p and fix an arbitrary
σ-measurable function f on Σ. Then for each surface ball ∆ ⊆ Σ we may estimate 

∆
|f | dσ = 1

σ(∆)

ˆ
∆
|f |w1/pw−1/p dσ

≤ 1
σ(∆)

( ˆ
∆
|f |pw dσ

)1/p(ˆ
∆
w−p

′/p dσ
)1/p ′

=
(  

∆
w1−p ′ dσ

)1/p ′(  
∆
w dσ

)1/p( 
∆
|f |p dw

)1/p

≤ [w]1/pAp

(  
∆
|f |p dw

)1/p
, (2.2.306)

by Hölder’s inequality and (2.2.300). This proves (2.2.304).
As for the converse, fix p ∈ (1,∞) and suppose w is a generic weight function on

Σ for which there exists a constant C ∈ (0,∞) such that (2.2.305) holds. Once again,
denote p ′ ∈ (1,∞) the Hölder conjugate exponent of p and fix an arbitrary surface ball
∆ ⊆ Σ. Then, with tilde denoting the extension by zero of a function originally defined
on ∆ to the entire set Σ, we may write

‖w−1‖Lp ′ (∆,w) = sup
f∈Lp(∆,w)
‖f‖Lp(∆,w)=1

ˆ
∆
|f | dσ = σ(∆) · sup

f∈Lp(∆,w)
‖f‖Lp(∆,w)=1

 
∆
|f̃ | dσ

≤ Cσ(∆) · sup
f∈Lp(∆,w)
‖f‖Lp(∆,w)=1

( 
∆
|f̃ |p dw

)1/p
≤ C σ(∆)

w(∆)1/p , (2.2.307)

where the first equality comes from Lemma 2.2.40, and the first inequality is implied by
(2.2.305). This proves that ‖w−1‖Lp ′ (∆,w) ≤ C · σ(∆)/w(∆)1/p which, after unraveling
notation, yields ( 

∆
w dσ

)( 
∆
w1−p ′ dσ

)p−1
≤ Cp. (2.2.308)

Ultimately, in view of the arbitrariness of the surface ball ∆ ⊆ Σ, this implies that
w ∈ Ap(Σ, σ) and [w]Ap ≤ Cp.

In this work we are particularly interested in the scale of weighted Lebesgue space
Lp(Σ, w) := Lp(Σ, wσ) with p ∈ (1,∞) and w ∈ Ap(Σ, σ). As in the Euclidean setting,
given a weight w on Σ along with an integrability exponent p ∈ (1,∞), the Hardy-
Littlewood maximal operator M is bounded on Lp(Σ, w) if and only if w ∈ Ap(Σ, σ), in
which case there exists C = C(p,Σ) ∈ (0,∞) with the property that

‖Mf‖Lp(Σ,w) ≤ C[w]1/(p−1)
Ap

‖f‖Lp(Σ,w) for each f ∈ Lp(Σ, w) (2.2.309)

(see, e.g., [55, Proposition 7.13]). Also, corresponding to p = 1, the operator M satisfies
the weak-(1, 1) inequality

sup0<λ<∞ λ · w
(
{x ∈ Σ : Mf(x) > λ}

)
≤ C‖f‖L1(Σ,w)

for all f ∈ L1(Σ, w), with C ∈ (0,∞) independent of f,
(2.2.310)
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if and only if w ∈ A1(Σ, σ). For the reader’s convenience, other useful properties of
Muckenhoupt weights are summarized in the proposition below (for a more extensive
discussion pertaining to the theory of weights in the general context of spaces of homo-
geneous type the reader is referred to [4], [44], [56], [66], [118]).

Proposition 2.2.42. Let Σ ⊆ Rn be a closed Ahlfors regular set and define σ := Hn−1bΣ.
Then the following properties hold.

(1) [Openness/Self-Improving] If w ∈ Ap(Σ, σ) with p ∈ (1,∞) then there exist some
τ ∈ (1,∞) and some ε ∈ (0, p− 1) (both of which depend only on p, [w]Ap, n, and
the Ahlfors regularity constant of Σ) such that

wτ ∈ Ap(Σ, σ) and w ∈ Ap−ε(Σ, σ). (2.2.311)

In addition, both
[
wτ
]
Ap

and [w]Ap−ε are controlled in terms of p, [w]Ap, n, and
the Ahlfors regularity constant of Σ. In fact, matters may be arranged so that, in
a quantitative fashion,

wθ ∈ Aq(Σ, σ) for each θ ∈ (τ−1, τ) and q ∈ (p− ε,∞). (2.2.312)

(2) [Monotonicity] If 1 ≤ p ≤ q ≤ ∞ then Ap(Σ, σ) ⊆ Aq(Σ, σ) and [w]Aq ≤ [w]Ap for
each w ∈ Ap(Σ, σ).

(3) [Dual Weights] Given any w ∈ Ap(Σ, σ) with p ∈ (1,∞), it follows that w1−p′

belongs to Ap′(Σ, σ) and [w1−p ′ ]Ap ′ = [w]1/(p−1)
Ap

, where p′ ∈ (1,∞) is the Hölder
conjugate exponent of p.

(4) [Products/Factorization] If w1, w2 ∈ A1(Σ, σ) then for every exponent p ∈ (1,∞)
one has w1 ·w1−p

2 ∈ Ap(Σ, σ) and [w1 ·w1−p
2 ]Ap ≤ [w1]A1 · [w2]p−1

A1
. Also, given any

two weights w1, w2 ∈ Ap(Σ, σ) with p ∈ (1,∞) along with some α ∈ [0, 1], it follows
that wα1 · w1−α

2 ∈ Ap(Σ, σ) and [wα1 · w1−α
2 ]Ap ≤ [w1]αAp · [w2]1−αAp

.

(5) [Doubling] If w ∈ Ap(Σ, σ) with p ∈ (1,∞) then for every surface ball ∆ ⊆ Σ and
every σ-measurable set E ⊆ ∆ one has(

σ(E)
σ(∆)

)p
≤ [w]Ap ·

w(E)
w(∆) (2.2.313)

In particular, the measure w is doubling, that is, there exists some C ∈ (0,∞)
which depends only on p, n, and the Ahlfors regularity constant of Σ, such that
w(2∆) ≤ C[w]Ap · w(∆) for every surface ball ∆ ⊆ Σ. More generally, with the
constant C ∈ (0,∞) of the same nature as above, one has the inequality w(λ∆) ≤
C[w]Ap · λp(n−1) ·w(∆) for each λ ∈ (1,∞) and each surface ball ∆ ⊆ Σ (where, as
in the past, λ∆ denotes the concentric dilate of ∆ by a factor of λ).

(6) [Reverse Hölder Inequalities] For every w ∈ A∞(Σ, σ) there exist some q ∈ (1,∞)
and some C ∈ (0,∞) (which both depend only on p, [w]Ap, n, and the Ahlfors
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regularity constant of Σ, for some p ∈ (1,∞) for which w ∈ Ap(Σ, σ)) such that
( 

∆
wq dσ

)1/q
≤ C

 
∆
w dσ, (2.2.314)

for every surface ball ∆ ⊆ Σ. Consequently, there exist some power τ > 0 and some
constant C ∈ (0,∞) (in fact, C is the same as in (2.2.314) and τ = 1/q′ where q′

is the Hölder conjugate of the exponent q from (2.2.314)) such that

w(E)
w(∆) ≤ C

(
σ(E)
σ(∆)

)τ
(2.2.315)

for every surface ball ∆ ⊆ Σ and every σ-measurable set E ⊆ ∆. Another useful
consequence of (2.2.314) and Hölder’s inequality is that for each σ-measurable
function f on Σ and each surface ball ∆ ⊆ Σ one has

 
∆
|f | dw ≤ C

( 
∆
|f |q′ dσ

)1/q′

(2.2.316)

where q′ ∈ (1,∞) is the Hölder conjugate exponent of q, and C ∈ (0,∞) is as in
(2.2.314).

(7) [Building A1 Weights] There exists C ∈ (0,∞) which depends only on n and Σ, with
the property that if f ∈ L1

loc(Σ, σ) is not identically zero and satisfies Mf < ∞
at σ-a.e. point on Σ then for each θ ∈ (0, 1) one has (Mf)θ ∈ A1(Σ, σ) and[
(Mf)θ

]
A1
≤ C(1− θ)−1.

(8) [BMO and Weights] For each p ∈ (1,∞) and w ∈ Ap(Σ, σ) there exist some small
ε = ε(Σ, p, [w]Ap) > 0 and some large C = C(Σ, p, [w]Ap) ∈ (0,∞) such that
for each b ∈ BMO(Σ, σ) with ‖b‖BMO(Σ,σ) < ε one has w · eb ∈ Ap(Σ, σ) and[
w · eb

]
Ap
≤ C. In particular, for each fixed integrability exponent p ∈ (1,∞) the

set Up :=
{
b ∈ BMO(Σ, σ) : eb ∈ Ap(Σ, σ)

}
is open in BMO(Σ, σ). Also, for each

weight w ∈ A1(Σ, σ), the function logw belongs to the space BMO(Σ, σ) and one
has ‖ logw‖BMO(Σ,σ) ≤ C(Σ, n, [w]A1). Finally, for each b ∈ BMO(Σ, σ) and each
p ∈ (1,∞) it follows that the function max{1, |b|} belongs to Ap(Σ, σ) and there
exists some constant CΣ,p ∈ (0,∞) which is independent of b with the property that
[max{1, |b|}]Ap ≤ CΣ,p(1 + ‖b‖BMO(Σ,σ)).

(9) [Dyadic Cubes] If Σ is unbounded, then properties (2.2.313), (2.2.314), and (2.2.315)
also hold if surface balls ∆ are replaced by dyadic “cubes”, as described in Proposi-
tion 2.2.39.

Proof. For the memberships in (2.2.311), (2.2.312) (including their quantitative aspects)
see [56, Theorems 1.1-1.2], [16, Theorem 2.31, p. 58]. The claims in items (2)-(4) may
be justified straight from definitions, much as in the Euclidean setting (cf., e.g., [42]).
The estimate in (2.2.313) may be seen from Lemma 2.2.41, used here with f := 1E . In
concert with the Ahlfors regularity of Σ, this implies all subsequent claims in item (5).
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The reverse Hölder inequality claimed in (2.2.314) is contained in [56, Theorem 2.3],
[118, Theorem 15, p. 9]. Moreover, if q′ is the Hölder conjugate of the exponent q from
(2.2.314) then for every surface ball ∆ ⊆ Σ and every σ-measurable set E ⊆ ∆ we may
estimate

w(E)
w(∆) =

 
∆

1E dw = σ(∆)
w(∆)

 
∆

1E w dσ

≤ σ(∆)
w(∆)

(  
∆

1E dσ
)1/q′( 

∆
wq dσ

)1/q

≤ C σ(∆)
w(∆)

(  
∆

1E dσ
)1/q′( 

∆
w dσ

)
= C

(
σ(E)
σ(∆)

)1/q′

, (2.2.317)

thanks to Hölder’s inequality and (2.2.314). This establishes (2.2.315) with τ := 1/q′ > 0
and C ∈ (0,∞) the same constant as in (2.2.314).

Consider next the claim made in item (7). Suppose f ∈ L1
loc(Σ, σ) is not identically

zero and has the property that Mf <∞ at σ-a.e. point on Σ. Fix a surface ball ∆ ⊆ Σ
and decompose f = f1+f2 with f1 := f12∆ and f2 := f1Σ\2∆. The fact thatMf <∞ at
σ-a.e. point on Σ then entails f1 ∈ L1(Σ, σ). Since 0 < θ < 1 and 0 ≤Mf ≤Mf1 +Mf2,
we conclude that

(Mf)θ ≤ (Mf1)θ + (Mf2)θ on Σ. (2.2.318)

Based on Kolmogorov’s inequality, the fact that M satisfies the weak-(1, 1) inequality,
the membership of f1 to L1(Σ, σ), and the fact that the measure σ is doubling we may
estimate (  

∆
|Mf1|θ dσ

)1/θ
≤
( 1

1− θ
) 1
θ
σ(∆)−1‖Mf1‖L1,∞(Σ,σ)

≤ C
( 1

1− θ
) 1
θ
σ(∆)−1‖f1‖L1(Σ,σ)

≤ C
( 1

1− θ
) 1
θ

 
2∆
|f | dσ

≤ C
( 1

1− θ
) 1
θ inf
x∈2∆

(Mf)(x). (2.2.319)

Hence, on the one hand,
 

∆
|Mf1|θ dσ ≤

C

1− θ
(

inf
x∈2∆

(Mf)(x)
)θ
. (2.2.320)

On the other hand, the fact that

for each surface ball ∆′ ⊆ Σ such that ∆′ ∩ ∆ 6= ∅
and ∆′ ∩ (Σ \ 2∆) 6= ∅ it follows that ∆ ⊆ 6∆′

(2.2.321)

readily implies that there exists a geometric constant C ∈ (0,∞) with the property that

(Mf2)(y) ≤ C(Mf2)(x) for each x, y ∈ ∆. (2.2.322)
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In turn, this forces 
∆
|Mf2|θ dσ ≤ C

(
inf
x∈∆

(Mf2)(x)
)θ
≤ C

(
inf
x∈∆

(Mf)(x)
)θ

(2.2.323)

which, in concert with (2.2.320) and (2.2.318) proves that 
∆
|Mf |θ dσ ≤ C

1− θ · inf
x∈∆

[(Mf)(x)]θ. (2.2.324)

Since 0 < [(Mf)(x)]θ <∞ for σ-a.e. point x ∈ Σ, ultimately (2.2.324) goes to show that
(Mf)θ ∈ A1(Σ, σ) and

[
(Mf)θ

]
A1
≤ C(1− θ)−1.

For the first two claims in item (8) see [59, p. 33 and p. 60] for a proof in the Euclidean
ambient which readily adapts to the present setting, given the availability of a John-
Nirenberg inequality for doubling measures (see the discussion pertaining to (2.2.33)-
(2.2.35)) and the results in the current items (1)-(6). For the third claim in item (8) see
[42, Theorem 3.3, p. 157] for a proof in the Euclidean space which goes through in the
present setting as well. We may justify the very last claim in item (8) by arguing along
the lines of the proof of [47, Lemma 1.12, p. 471]. Specifically, given b ∈ BMO(Σ, σ) set
w := max{1, |b|} and fix some p ∈ (1,∞). Then for an arbitrary surface ball ∆ in Σ we
may write( 

∆
w dσ

)( 
∆
w
− 1
p−1 dσ

)p−1

≤
( 

∆

[
1 + |b− b∆|

]
dσ

)( 
∆

( 1
max{1, |b|}

) 1
p−1

dσ

)p−1

+ |b∆|
( 

∆

( 1
max{1, |b|}

) 1
p−1

dσ

)p−1

≤ 1 + ‖b‖BMO(Σ,σ) +
( 

∆

( |b∆|
max{1, |b|}

) 1
p−1

dσ

)p−1

. (2.2.325)

Also, if E0 := {x ∈ ∆ : |b(x)| > |b∆|/2} and E1 := {x ∈ ∆ : |b(x)| ≤ |b∆|/2}, then for
each x ∈ E0 we have |b∆|/|b(x)| ≤ 2 while for each x ∈ E1 we have |b∆| ≤ 2|b(x) − b∆|.
Consequently,( 

∆

( |b∆|
max{1, |b|}

) 1
p−1

dσ

)p−1

≤ max
{
1, 2p−2} · ( 1

σ(∆)

ˆ
E0

( |b∆|
|b|

) 1
p−1

dσ

)p−1

+ max
{
1, 2p−2} · ( 1

σ(∆)

ˆ
E1

|b∆|
1
p−1 dσ

)p−1

≤ max
{
2, 2p−1} · (σ(E0)

σ(∆)
)p−1

+ max
{
2, 2p−1} · ( 

∆
|b− b∆|

1
p−1 dσ

)p−1

≤ CΣ,p
(
1 + ‖b‖BMO(Σ,σ)

)
, (2.2.326)
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where the last step uses the John-Nirenberg inequality. In view of the arbitrariness
of ∆, from (2.2.325)-(2.2.326) we conclude that w ∈ Ap(Σ, σ) and [w]Ap ≤ CΣ,p(1 +
‖b‖BMO(Σ,σ)) for some constant CΣ,p ∈ (0,∞) which is independent of b. This takes care
of the very last claim item (8). Finally, the claim in item (9) is a consequence of (2.2.285)
and doubling.

Given that the class of Muckenhoupt weights is going to play a prominent role in this
work, it is appropriate to include some relevant concrete examples of interest.

Example 2.2.43. Suppose Σ ⊆ Rn is a closed set which is Ahlfors regular, and abbrevi-
ate σ := Hn−1bΣ. Also, fix some p ∈ (1,∞) along with an arbitrary point x0 ∈ Σ. Then
for each power a ∈

(
1− n, (p− 1)(n− 1)

)
the function

w : Σ→ [0,∞], w(x) := |x− x0|a for each x ∈ Σ, (2.2.327)

is a Muckenhoupt weight in the class Ap(Σ, σ). Furthermore, [w]Ap depends only on the
Ahlfors regularity constant of Σ, p, and a.

See, for example, [44, Proposition 1.5.9, p. 42]. More generally, the following result ap-
pears in [93].

Proposition 2.2.44. Assume Σ ⊆ Rn is a closed set which is Ahlfors regular, and
abbreviate σ := Hn−1bΣ. Fix d ∈ [0, n − 1) and consider a d-set E ⊆ Σ, i.e., a closed
subset E of Σ with the property that there exists some Borel outer-measure µ on E

satisfying

µ
(
B(x, r) ∩ E

)
≈ rd, uniformly for x ∈ E and r ∈

(
0 , 2 diam (E)

)
. (2.2.328)

Then for each p ∈ (1,∞) and a ∈
(
d + 1 − n , (p − 1)(n − 1 − d)

)
the function w :=[

dist (·, E)
]a is a Muckenhoupt weight in the class Ap(Σ, σ). Moreover, [w]Ap depends

only on the Ahlfors regularity constant of Σ, the proportionality constants in (2.2.328),
d, p, and a.

We continue to explore properties of Muckenhoupt weights in the context of Ahlfors
regular sets which are relevant for this work.

Lemma 2.2.45. Let Σ ⊆ Rn be a closed Ahlfors regular set and define σ := Hn−1bΣ.
Then for each w ∈ A∞(Σ, σ) one has

BMO(Σ, σ) ⊆ L1
loc(Σ, w). (2.2.329)

Proof. This is a direct consequence of (2.2.303), item (2) in Proposition 2.2.42, (2.2.316),
and (2.2.37).

If Σ ⊆ Rn is a closed Ahlfors regular set and σ := Hn−1bΣ, then for each weight
function w on Σ we have L∞(Σ, σ) = L∞(Σ, w), i.e., these vector spaces coincide and
they have identical norms. Remarkably, whenever w ∈ A∞(Σ, σ) it follows that the
BMO spaces on Σ with respect to σ and w are once again identical. Here is a formal
statement of this fact.
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Lemma 2.2.46. Suppose Σ ⊆ Rn is a closed set which is Ahlfors regular, and abbreviate
σ := Hn−1bΣ. Also, fix some weight w ∈ A∞(Σ, σ) (hence, there exists some p ∈ (1,∞)
for which w ∈ Ap(Σ, σ)). Then there exists a constant C ∈ [1,∞) which depends only on
p, [w]Ap, n, and the Ahlfors regularity constant of Σ such that

C−1 ‖f‖BMO(Σ,σ) ≤ ‖f‖BMO(Σ,w) ≤ C ‖f‖BMO(Σ,σ) (2.2.330)

for each function f ∈ L1
loc(Σ, σ) ∩ L1

loc(Σ, w).
Moreover, for each σ-measurable function f on Σ one has the equivalence

f ∈ BMO(Σ, σ)⇐⇒ f ∈ BMO(Σ, w) (2.2.331)

and if either of these memberships materializes then ‖f‖BMO(Σ,σ) ≈ ‖f‖BMO(Σ,w) where
the implicit proportionality constants depend only on p, [w]Ap, n, and the Ahlfors regu-
larity constant of Σ. Succinctly put,

the spaces BMO(Σ, σ) and BMO(Σ, w) coincide as sets

and have equivalent semi-norms.
(2.2.332)

Proof. Pick a function f ∈ L1
loc(Σ, σ) ∩ L1

loc(Σ, w). To prove the first inequality in
(2.2.330), start by writing (2.2.304) with f replaced by f −

ffl
∆ f dw for some arbitrary

surface ball ∆ ⊆ Σ, then invoke (2.2.43) to obtain

‖f‖BMO(Σ,σ) ≤ 2 sup
∆⊆Σ

inf
c∈R

( 
∆

∣∣f − c∣∣ dσ) ≤ 2 sup
∆⊆Σ

 
∆

∣∣∣f −  
∆
f dw

∣∣∣ dσ
≤ 2[w]1/pAp

· sup
∆⊆Σ

( 
∆

∣∣∣f −  
∆
f dw

∣∣∣p dw)1/p

≤ C ‖f‖BMO(Σ,w) , (2.2.333)

for some constant C ∈ (0,∞) as in the statement. To prove the second inequality in
(2.2.330), observe first that w belongs to some Reverse Hölder class, say w ∈ RHq(Σ, σ)
for some q ∈ (1,∞). if q′ ∈ (1,∞) denoting the Hölder conjugate exponent of q, then
(2.2.316) allows to estimate

inf
c∈R

( 
∆

∣∣f − c∣∣ dw) ≤  
∆

∣∣∣f −  
∆
f dσ

∣∣∣ dw
≤ C

( 
∆

∣∣∣f −  
∆
f dσ

∣∣∣q′ dσ)1/q′

, (2.2.334)

for some constant C ∈ (0,∞) of the same nature as before. Taking the supremum over
all surface balls ∆ ⊆ Σ and then using John-Nirenberg’s inequality, we ultimately obtain
‖f‖BMO(Σ,w) ≤ C ‖f‖BMO(Σ,σ), as desired.

As regards the equivalence in (2.2.331), assume first that f ∈ BMO(Σ, σ). Then
(2.2.329) implies that f ∈ L1

loc(Σ, σ)∩L1
loc(Σ, w), so (2.2.330) holds. Conversely, assume

the function f belongs to BMO(Σ, w). In particular, f ∈ L1
loc(Σ, w) and the John-

Nirenberg inequality (for the doubling measure w) guarantees that we also have f ∈
Lploc(Σ, w). In concert with (2.2.304) the latter membership implies that f ∈ L1

loc(Σ, σ),
hence once again (2.2.330) applies.
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The doubling and self-improving properties of Muckenhoupt weights yield the fol-
lowing result (see [93] for a proof).

Lemma 2.2.47. Suppose Σ ⊆ Rn, where n ∈ N with n ≥ 2, is a closed set which is
Ahlfors regular, and abbreviate σ := Hn−1bΣ. In this setting, fix some p ∈ (1,∞) along
with a Muckenhoupt weight w ∈ Ap(Σ, σ). Then

ˆ
Σ

w(x)
(1 + |x|n−1)p dσ(x) < +∞. (2.2.335)

Also, there exists an exponent po ∈ (1, p] with the property that

Lp(Σ, w) ↪→ Lq
(
Σ ,

σ(x)
1 + |x|n−1

)
continuously, for each fixed q ∈ (0, po).

(2.2.336)

As a consequence,

Lp(Σ, w) ↪→ L1
(
Σ ,

σ(x)
1 + |x|n−1

)
continuously, (2.2.337)

and
Lp(Σ, w) ⊆

⋃
1<q<p

Lqloc(Σ, σ). (2.2.338)

2.2.6 Sobolev spaces on Ahlfors regular sets

Consider an Ahlfors regular domain Ω ⊆ Rn. Denote by ν = (ν1, . . . , νn) the geomet-
ric measure theoretic outward unit normal to Ω, and abbreviate σ := Hn−1b∂Ω. In
particular, (2.2.291) implies that

σ is a complete, locally finite (hence also sigma-finite), sep-
arable, Borel-regular measure on ∂Ω, where the latter set is
endowed with the topology canonically inherited from Rn.

(2.2.339)

Among other things, this implies (cf. [93]) that for every f ∈ L1
loc(∂Ω, σ) we have

f = 0 at σ-a.e. point on ∂Ω ⇐⇒
ˆ
∂Ω
fφ dσ = 0 for every φ ∈ C∞0 (Rn). (2.2.340)

In this context, define the family of first-order tangential derivative operators, ∂τjk with
j, k ∈ {1, . . . , n}, acting on functions ϕ ∈ C∞0 (Rn) according to

∂τjkϕ := νj(∂kϕ)
∣∣
∂Ω − νk(∂jϕ)

∣∣
∂Ω for all j, k ∈ {1, . . . , n}. (2.2.341)

The starting point in the development of a brand of first-order Sobolev spaces on ∂Ω
is the observation that for any two functions ϕ,ψ ∈ C∞0 (Rn) and every pair of indices
j, k ∈ {1, . . . , n} one has the boundary integration by parts formula

ˆ
∂Ω

(∂τjkϕ)ψ dσ = −
ˆ
∂Ω
ϕ(∂τjkψ) dσ. (2.2.342)
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Indeed, identity (2.2.342) is a consequence of the Divergence Formula (1.1.12) applied to
a suitable vector field, namely ~F := ∂k(ϕψ)ej−∂j(ϕψ)ek (where {ei}1≤i≤n is the standard
orthonormal basis in Rn), which is smooth, compactly supported, divergence-free, and
satisfies ν · ~F = (∂τjkϕ)ψ + ϕ(∂τjkψ) at σ-a.e. point on ∂Ω.

Next, given a function f ∈ L1
loc(∂Ω, σ) along with two indices j, k ∈ {1, . . . , n}, we

shall say that ∂τjkf exists in (or, belongs to) the space L1
loc(∂Ω, σ) if there exists a

function fjk ∈ L1
loc(∂Ω, σ) such that

ˆ
∂Ω

(∂τjkϕ)f dσ = −
ˆ
∂Ω
ϕfjk dσ for all ϕ ∈ C∞0 (Rn). (2.2.343)

In view of (2.2.340), we conclude that the function fjk is unambiguously defined by the
demand in (2.2.343). Henceforth we shall favor the notation

∂τjkf := fjk (2.2.344)

which, in particular, allows us to recast (2.2.343) more in line with (2.2.342), namely as
ˆ
∂Ω
f(∂τjkϕ) dσ = −

ˆ
∂Ω

(∂τjkf)ϕdσ for all ϕ ∈ C∞0 (Rn). (2.2.345)

In analogy with the classical flat, Euclidean case, it is natural to regard ∂τjkf as a weak
(tangential) derivative of the function f . The developments so far allow us to define
a convenient functional analytic environment within which is possible to consider such
weak (tangential) derivatives of functions in L1

loc(∂Ω, σ). Specifically, for each p ∈ [1,∞]
we introduce the local Sobolev space Lp1,loc(∂Ω, σ) as

Lp1,loc(∂Ω, σ) :=
{
f ∈ Lploc(∂Ω, σ) : ∂τjkf ∈ L

p
loc(∂Ω, σ), 1 ≤ j, k ≤ n

}
. (2.2.346)

In such a context, we define the tangential gradient operator as

Lp1,loc(∂Ω, σ) 3 f 7→ ∇tanf :=
(

n∑
k=1

νk∂τkjf

)
1≤j≤n

. (2.2.347)

If Ω is actually a UR domain, we may recover the weak tangential derivatives from the
components of the tangential gradient operator via (cf. [93], [53, Lemma 3.40])

∂τjkf = νj(∇tanf)k − νk(∇tanf)j , 1 ≤ j, k ≤ n,

for every f ∈ Lp1,loc(∂Ω, σ) with p ∈ (1,∞).
(2.2.348)

Going further, having fixed an integrability exponent p ∈ (1,∞) along with a Muck-
enhoupt weight w ∈ Ap(∂Ω, σ), define the (boundary) weighted Sobolev space

Lp1(∂Ω, w) :=
{
f ∈ Lp(∂Ω, w) : ∂τjkf ∈ L

p(∂Ω, w), 1 ≤ j, k ≤ n
}

(2.2.349)

which is a Banach space when equipped with the norm

Lp1(∂Ω, w) 3 f 7→ ‖f‖Lp1(∂Ω,w) := ‖f‖Lp(∂Ω,w) +
n∑

j,k=1

∥∥∥∂τjkf∥∥∥Lp(∂Ω,w)
. (2.2.350)



2. Singular integral operators and quantitative flatness 123

Since there exists q ∈ (1,∞) such that Lp(∂Ω, w) ↪→ Lqloc(∂Ω, σ) (cf. Lemma 2.2.47), we
see that Lp1(∂Ω, w) ↪→ Lq1,loc(∂Ω, σ) for such an exponent q. In particular, the equality
in (2.2.348) holds for every function f ∈ Lp1(∂Ω, w).

In the same geometric setting, recall that Lp,q(∂Ω, σ) with p, q ∈ (0,∞] stands for the
scale of Lorentz spaces on ∂Ω, with respect to the measure σ. These are quasi-Banach
spaces which arise naturally as intermediate spaces for the real interpolation method
used within the scale of ordinary Lebesgue spaces. In particular, this implies that

Lp,q(∂Ω, σ) ↪→ L1(∂Ω, σ(x)
1+|x|n−1

)
∩
(⋂

1<s<p L
s
loc(∂Ω, σ)

)
whenever p ∈ (1,∞) and q ∈ (0,∞].

(2.2.351)

In relation to this scale of spaces, it is also of interest to consider (boundary) Lorentz-
based Sobolev spaces. Specifically, following [93], for each p ∈ (1,∞) and q ∈ (0,∞] we set

Lp,q1 (∂Ω, w) :=
{
f ∈ Lp,q(∂Ω, σ) : ∂τjkf ∈ L

p,q(∂Ω, σ), 1 ≤ j, k ≤ n
}

(2.2.352)

which is a quasi-Banach space when equipped with the quasi-norm

Lp,q1 (∂Ω, σ) 3 f 7→ ‖f‖Lp,q1 (∂Ω,σ) := ‖f‖Lp,q(∂Ω,σ) +
n∑

j,k=1

∥∥∥∂τjkf∥∥∥Lp,q(∂Ω,σ)
. (2.2.353)

In the proposition below, which refines [53, Lemma 3.36, p. 2678], we study the
manner in which weak tangential derivatives interact with pointwise nontangential traces.
See [93] for a proof.

Proposition 2.2.48. Let Ω ⊆ Rn be an Ahlfors regular domain. Set σ := Hn−1b∂Ω and
denote by ν = (ν1, . . . , νn) the geometric measure theoretic outward unit normal to Ω.
Also, fix an integrability exponent p ∈ [1,∞] and an aperture parameter κ ∈ (0,∞). In
this context, assume the function u ∈W 1,1

loc (Ω) satisfies

Nκu ∈ Lploc(∂Ω, σ), Nκ(∇u) ∈ Lploc(∂Ω, σ), (2.2.354)

and the nontangential traces

u
∣∣κ−n.t.

∂Ω and (∂ju)
∣∣κ−n.t.

∂Ω for j ∈ {1, . . . , n}

exist at σ-a.e. point on ∂Ω.
(2.2.355)

Then u
∣∣κ−n.t.

∂Ω belongs to Lp1,loc(∂Ω, σ), the functions (∂1u)
∣∣κ−n.t.

∂Ω , . . . , (∂nu)
∣∣κ−n.t.

∂Ω belong
to Lploc(∂Ω, σ) and, for each j, k ∈ {1, . . . , n} and for σ-a.e. point on ∂Ω, one has

∂τjk

(
u
∣∣κ−n.t.

∂Ω

)
= νj

(
(∂ku)

∣∣κ−n.t.

∂Ω

)
− νk

(
(∂ju)

∣∣κ−n.t.

∂Ω

)
. (2.2.356)

In particular, for each j, k ∈ {1, . . . , n} one has∣∣∣∂τjk(u∣∣κ−n.t.

∂Ω

)∣∣∣ ≤ 2Nκ(∇u) at σ-a.e. point on ∂Ω. (2.2.357)

The following result from [93] may be regarded as a weighted counterpart of Proposi-
tion 2.2.48.
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Proposition 2.2.49. Let Ω ⊆ Rn be an Ahlfors regular domain and abbreviate σ :=
Hn−1b∂Ω. Fix an aperture parameter κ ∈ (0,∞) and an integrability exponent p ∈ (1,∞).
Also, assume w : ∂Ω→ [0,+∞] is a σ-measurable function satisfying 0 < w(x) < +∞ for
σ-a.e. x ∈ ∂Ω and w−1/p ∈ Lp

′

loc(∂Ω, σ), where p ′ ∈ (1,∞) denotes the Hölder conjugate
exponent of p; in particular, Lp(∂Ω, wσ) ↪→ L1

loc(∂Ω, σ). In this setting, suppose that
some complex-valued function u ∈ W 1,1

loc (Ω) has been given which satisfies the following
conditions:

u
∣∣κ−n.t.

∂Ω exists at σ-a.e. point on ∂Ω and

Nκu ∈ L1
loc(∂Ω, σ), Nκ(∇u) ∈ Lp(∂Ω, wσ).

(2.2.358)

Then the nontangential trace u
∣∣κ−n.t.

∂Ω belongs to L1
1,loc(∂Ω, σ) and satisfies

∂τjk

(
u
∣∣κ−n.t.

∂Ω

)
∈ Lp(∂Ω, wσ) for each j, k ∈ {1, . . . , n}

and
n∑

j,k=1

∥∥∥∂τjk(u∣∣κ−n.t.

∂Ω

)∥∥∥
Lp(∂Ω,wσ)

≤ C
∥∥Nκ(∇u)

∥∥
Lp(∂Ω,wσ)

(2.2.359)

for some constant C ∈ (0,∞) independent of u.

2.3 Calderón-Zygmund theory for boundary layers in UR
domains

In [18], A.P. Calderón has initiated a breakthrough by proving the Lp-boundedness of
the principal-value Cauchy integral operator on Lipschitz curves with small Lipschitz
constant. Subsequently, R. Coifman, A. McIntosh, and Y. Meyer have successfully
extended Calderón’s estimate on Cauchy integrals to general Lipschitz curves in [24], and
used this to establish the boundedness of higher-dimensional singular integral operators
(such as the harmonic double layerK∆) on Lebesgue spaces Lp(Σ,Hn−1) with p ∈ (1,∞),
whenever Σ is a strongly Lipschitz surface in Rn. This gave the impetus for studying
such singular integral operators on surfaces more general than the boundaries of Lipschitz
domains. Works of G. David [30], [31], G. David and D. Jerison [32], G. David and
S. Semmes [33], [34], and of S. Semmes [106] yield such boundedness when the Σ ⊆ Rn

is a UR set, i.e., Σ is a closed Ahlfors regular set which contains “big pieces” of Lipschitz
images in a quantitative, uniform, scale-invariant fashion (cf. Definition 1.1.4).

This body of results, which interfaced tightly with geometric measure theory, has
been applied to problems in PDE’s for the first time by S. Hofmann, M. Mitrea, and
M. Taylor in [53] (see also [95] for PDE’s in the setting of Riemannian manifolds). Here
we continue this line of work with two specific goals in mind. First, we consider singular
integral operators (SIO’s) acting on a larger variety of function spaces and, second, we
seek finer bounds on the operator norm of the singular integrals of double layer type.
We begin by discussing the general setup.

2.3.1 Boundary layer potentials: the setup
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First, assume Ω ⊆ Rn is a given UR domain. Abbreviate σ := Hn−1b∂Ω and denote
by ν = (ν1, . . . , νn) the geometric measure theoretic outward unit normal to Ω. In
addition, consider a homogeneous, second-order, constant complex coefficient, weakly
elliptic M ×M system L in Rn and recall the matrix-valued fundamental solution E =
(Eαβ)1≤α,β≤M associated with L as in Theorem 1.2.1. Finally, fix a coefficient tensor
A =

(
aαβjk

)
1≤α,β≤M
1≤j,k≤n

∈ AL, and pick an arbitrary function

f = (fα)1≤α≤M ∈
[
L1(∂Ω , σ(x)

1+|x|n−1
)]M

. (2.3.1)

In this setting, define the action of the boundary-to-domain double layer potential opera-
tor DA on f as

DAf(x) :=
(
−
ˆ
∂Ω
νk(y)aβαjk (∂jEγβ) (x− y)fα(y) dσ(y)

)
1≤γ≤M

, (2.3.2)

at each point x ∈ Ω. From (1.2.19) we see that (2.3.1) is the most general functional
analytic setting in which the integral in (2.3.2) is absolutely convergent. The double layer
operator D may be regarded as a mechanism for generating lots of null-solutions for the
given system L in Ω since, as is apparent from (2.3.2) and Theorem 1.2.1,

for each function f as in (2.3.1) we have

DAf ∈
[
C ∞(Ω)

]M and L(DAf) = 0 in Ω.
(2.3.3)

Going further, let us define the action of the boundary-to-boundary double layer potential
operator KA on f as in (2.3.1) by setting

KAf(x) :=
(
− lim
ε→0+

ˆ

y∈∂Ω
|x−y|>ε

νk(y)aβαjk (∂jEγβ) (x− y)fα(y) dσ(y)
)

1≤γ≤M
, (2.3.4)

at σ-a.e. point x ∈ ∂Ω. Another singular integral operator which is closely related to
(2.3.4) is the so-called “transposed” double layer operator K#

A defined by setting

K#
A f(x) :=

(
lim
ε→0+

ˆ

y∈∂Ω
|x−y|>ε

νk(x)aβ αjk (∂jEγ β)(x− y)fγ(y) dσ(y)
)

1≤α≤M

(2.3.5)

at σ-a.e. x ∈ ∂Ω, for each function f as in (2.3.1). Since we are presently assuming that
Ω is a UR domain, work in [93] guarantees that the above singular integral operators are
well-defined in a σ-a.e. pointwise fashion for each function as in (2.3.1).

Example 2.3.1. The standard fundamental solution for the Laplacian in Rn is defined
for x ∈ Rn \ {0} by

E(x) :=


1

ωn−1(2− n)
1

|x|n−2 , if n ≥ 3,

1
2π ln |x|, if n = 2,

(2.3.6)
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where, as usual, ωn−1 denotes the surface area of the unit sphere in Rn (cf. [92,
Section 7.1]). Given an Ahlfors regular domain Ω ⊆ Rn, abbreviate σ := Hn−1b∂Ω
and denote by ν the geometric measure theoretic outward unit normal to Ω. Set aαβjk :=
ajk := δjk in (1.2.1) so that L = ∆, and refer to D∆, K∆ (constructed as in (2.3.2),
(2.3.4)) for this choice of coefficient tensor, i.e., for A := In×n, the identity matrix)
as being the (classical) harmonic double layer potentials. Concretely, for each func-
tion f ∈ L1(∂Ω , σ(x)

1+|x|n−1
)
we have (writing, in this case, D∆,K∆,K

#
∆ in place of

DIn×n ,KIn×n ,K
#
In×n

)

D∆f(x) = 1
ωn−1

ˆ
∂Ω

〈ν(y), y − x〉
|x− y|n

f(y) dσ(y), ∀x ∈ Ω, (2.3.7)

and, at σ-a.e. point x ∈ ∂Ω,

K∆f(x) = lim
ε→0+

1
ωn−1

ˆ

y∈∂Ω
|x−y|>ε

〈ν(y), y − x〉
|x− y|n

f(y) dσ(y), (2.3.8)

K#
∆f(x) = lim

ε→0+

1
ωn−1

ˆ

y∈∂Ω
|x−y|>ε

〈ν(x), x− y〉
|x− y|n

f(y) dσ(y). (2.3.9)

Returning to the mainstream discussion, continue to assume that Ω ⊆ Rn is a
UR domain and set σ := Hn−1b∂Ω. Also, as before, continue to assume that L is a
homogeneous constant complex coefficient weakly elliptic second-order M ×M system
in Rn. Then, for each coefficient tensor A ∈ AL, a basic identity relating the boundary-
to-domain double layer potential operator DA to the boundary-to-boundary double layer
potential operator KA is the jump-formula (proved in [93]), to the effect that for each
aperture parameter κ > 0 and each function f ∈

[
L1(∂Ω, σ(x)

1+|x|n−1
)]M

we have (with
I denoting the identity operator)

DAf
∣∣κ−n.t.

∂Ω =
(1

2I +KA

)
f at σ-a.e. point on ∂Ω. (2.3.10)

Another fundamental property of the boundary-to-domain double layer potential
operator is the ability of absorbing an arbitrary spacial derivative and eventually re-
locate it, via integration by parts on the boundary, all the way to the function on
which this was applied to begin with. This is made precise in the following basic
proposition, proved in [93].

Proposition 2.3.2. Let Ω ⊆ Rn be an Ahlfors regular domain. Define σ := Hn−1b∂Ω,
and denote by ν = (ν1, . . . , νn) the geometric measure theoretic outward unit normal to
Ω. Also, for some M ∈ N, consider a weakly elliptic, homogeneous, constant (complex)
coefficient, second-order, M ×M system L in Rn, written as in (1.2.1) for some choice
of a coefficient tensor A =

(
aαβrs

)
1≤r,s≤n

1≤α,β≤M
. Finally, associate with A and Ω the double
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layer potential operator DA as in (2.3.2), and consider a function

f = (fα)1≤α≤M ∈
[
L1
(
∂Ω ,

σ(x)
1 + |x|n−1

)]M
with the property that

∂τjkfα ∈ L
1
(
∂Ω ,

σ(x)
1 + |x|n−1

)
for 1 ≤ j, k ≤ n and 1 ≤ α ≤M.

(2.3.11)

Then for each index ` ∈ {1, . . . , n} and each point x ∈ Ω one has

∂`
(
DAf

)
(x) =

( ˆ
∂Ω
aβαrs (∂rEγβ)(x− y)(∂τ`sfα)(y) dσ(y)

)
1≤γ≤M

. (2.3.12)

In particular, for each aperture parameter κ > 0, the nontangential boundary trace(
∇DAf

)∣∣κ−n.t.

∂Ω exists (in Cn·M ) at σ-a.e. point on ∂Ω. (2.3.13)

Once again, assume that Ω ⊆ Rn is a UR domain and set σ := Hn−1b∂Ω. Also, as
before, continue to assume that L is a homogeneous constant complex coefficient weakly
elliptic second-order M ×M system in Rn. In general, different choices of the coefficient
tensor A ∈ AL yield different double layer potential operators, so it makes sense to use
the subscript A to highlight the dependence on the choice of the coefficient tensor A.
One integral operator of layer potential variety which is intrinsically associated with the
given system L is the so-called single layer potential operator S , whose integral kernel
is the matrix-valued function E(x− y), x, y ∈ ∂Ω. In order to make sense of the action
of such an operator on any function as in (2.3.1), it is necessary to alter the said integral
kernel and consider the following modified single layer potential operator

Smodf(x) :=
ˆ
∂Ω

{
E(x− y)− E∗(−y)

}
f(y) dσ(y) for each x ∈ Ω,

for each f ∈
[
L1(∂Ω, σ(x)

1+|x|n−1
)]M

, where E∗ := E · 1Rn\B(0,1).

(2.3.14)

In this regard, it is worth noting that for each f ∈
[
L1(∂Ω, σ(x)

1+|x|n−1
)]M

the function

Smodf is well defined, belongs to the space
[
C ∞(Ω)

]M , and for each multi-index α ∈ Nn0
with |α| ≥ 1 one has

∂α(Smodf)(x) =
ˆ
∂Ω

(∂αE)(x− y)f(y) dσ(y) for each x ∈ Ω. (2.3.15)

In particular,

L
(
Smodf

)
= 0 in Ω for each f ∈

[
L1(∂Ω, σ(x)

1+|x|n−1
)]M

. (2.3.16)

Analogously to (2.3.14), we define the following modified version of the boundary-to-
boundary single layer operator

Smodf(x) :=
ˆ
∂Ω

{
E(x− y)− E∗(−y)

}
f(y) dσ(y) at σ-a.e. x ∈ ∂Ω,

for each f ∈
[
L1(∂Ω, σ(x)

1+|x|n−1
)]M

, where E∗ := E · 1Rn\B(0,1).

(2.3.17)
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Then this operator is meaningfully defined, via an absolutely convergent integral, at
σ-a.e. point in ∂Ω, and

Smod :
[
L1(∂Ω, σ(x)

1+|x|n−1
)]M
−→

[
L1

loc(∂Ω, σ)
]M (2.3.18)

is a well-defined, linear and continuous mapping. Also, with the modified boundary-to-
domain single layer operator Smod as in (2.3.14), for each aperture parameter κ > 0
and each f ∈

[
L1(∂Ω, σ(x)

1+|x|n−1
)]M one has

((
Smodf

)∣∣∣κ−n.t.

∂Ω

)
(x) = (Smodf)(x) at σ-a.e. point x ∈ ∂Ω. (2.3.19)

See [93] for a more in-depth discussion on this topic.
To close this section, we define the conormal derivative operator associated with a

given Ahlfors regular domain and a given coefficient tensor. Specifically, suppose Ω ⊆ Rn

is an Ahlfors regular domain and abbreviate σ := Hn−1b∂Ω. In particular, Ω is a set
of locally finite perimeter, and its geometric measure theoretic outward unit normal
ν = (ν1, . . . , νn) is defined σ-a.e. on ∂Ω. Also, fix a coefficient tensor A =

(
aαβrs

)
1≤r,s≤n

1≤α,β≤M
along with some aperture parameter κ > 0. In such a setting, define the conormal
derivative of a given function u = (uβ)1≤β≤M ∈

[
W 1,1

loc(Ω)
]M as the CM -valued function

∂Aν u :=
(
νra

αβ
rs

(
∂suβ

)∣∣κ−n.t.

∂Ω

)
1≤α≤M

at σ-a.e. point on ∂Ω. (2.3.20)

It has been proved in [93] that if Ω ⊆ Rn is a UR domain and σ := Hn−1b∂Ω then
for each function f ∈

[
L1(∂Ω, σ(x)

1+|x|n−1
)]M

, the conormal derivative ∂Aν Smodf may be
meaningfully considered in the sense of (2.3.20), and

∂Aν Smodf =
(
− 1

2I +K #
A>

)
f at σ-a.e. point in ∂Ω, (2.3.21)

where I is the identity, and K #
A>

is the operator associated as in (2.3.5) with the UR
domain Ω and the transposed coefficient tensor A>.

2.3.2 SIO’s on Muckenhoupt weighted Lebesgue and Sobolev spaces

We begin by considering garden variety Calderón-Zygmund singular integral operators
(SIO’s), i.e., operators of convolution-type with odd, homogeneous, sufficiently smooth
kernels, which otherwise lack any particular algebraic characteristics. The goal is to
obtain estimates in Muckenhoupt weighted Lebesgue spaces on UR sets in Rn.

Proposition 2.3.3. Let Σ ⊆ Rn be a closed UR set and abbreviate σ := Hn−1bΣ.
Assume N = N(n) ∈ N is a sufficiently large integer and consider a complex-valued
function k ∈ CN

(
Rn \ {0}

)
which is odd and positive homogeneous of degree 1−n. Also,

fix an integrability exponent p ∈ (1,∞), along with a Muckenhoupt weight w ∈ Ap(Σ, σ).
In this setting, for each f ∈ L1(Σ, σ(x)

1+|x|n−1
)
define

Tεf(x) :=
ˆ

y∈Σ
|x−y|>ε

k(x− y)f(y) dσ(y) for each x ∈ Σ, (2.3.22)
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T∗f(x) := sup
ε>0
|Tεf(x)| for each x ∈ Σ, (2.3.23)

Tf(x) := lim
ε→0+

Tεf(x) for σ-a.e. x ∈ Σ. (2.3.24)

Then there exists a constant C ∈ (0,∞) which depends exclusively on n, p, [w]Ap,
and the UR constants of Σ with the property that for each f ∈ Lp(Σ, w) one has

‖T∗f‖Lp(Σ,w) ≤ C
( ∑
|α|≤N

sup
Sn−1

|∂αk|
)
‖f‖Lp(Σ,w) , (2.3.25)

In particular,

the truncated integral operators Tε : Lp(Σ, w)→ Lp(Σ, w) are
well defined, linear, and bounded in a uniform fashion with
respect to the truncation parameter ε > 0.

(2.3.26)

Moreover, for each function f ∈ L1(Σ, σ(x)
1+|x|n−1

)
the limit defining Tf(x) in (2.3.24) exists

at σ-a.e. x ∈ Σ and the operator

T : Lp(Σ, w) −→ Lp(Σ, w) (2.3.27)

is well defined, linear, and bounded. Let p′ ∈ (1,∞) denote the Hölder conjugate exponent
of p and, with w′ := w1−p′ ∈ Ap′(Σ, σ), consider the natural identification(

Lp(Σ, w)
)∗ = Lp

′(Σ, w′). (2.3.28)

Then, under the canonical integral pairing (f, g) 7→
´

Σ fg dσ, it follows that

the (real) transposed of the operator (2.3.27) is
the operator −T : Lp′(Σ, w′)→ Lp

′(Σ, w′).
(2.3.29)

Finally, assume Ω ⊆ Rn be an open set such that ∂Ω is a UR set and abbreviate
σ := Hn−1b∂Ω. Fix some p ∈ (1,∞) along with a Muckenhoupt weight w ∈ Ap(∂Ω, σ),
and pick an aperture parameter κ > 0. With the integral kernel k as before, for each
f ∈ Lp(∂Ω, w) define

T f(x) :=
ˆ
∂Ω
k(x− y)f(y)dσ(y) for each x ∈ Ω. (2.3.30)

Then there exists a constant C ∈ (0,∞) which depends exclusively on n, p, [w]Ap, and
the UR constants of ∂Ω with the property that for each f ∈ Lp(∂Ω, w) one has

‖Nκ(T f)‖Lp(∂Ω,w) ≤ C
( ∑
|α|≤N

sup
Sn−1

|∂αk|
)
‖f‖Lp(∂Ω,w) . (2.3.31)

The above proposition points to uniform rectifiability as being intimately connected
with the boundedness of a large class of Calderón-Zygmund like operators on Mucken-
houpt weighted Lebesgue spaces. From the work of G. David and S. Semmes (cf. [33],
[34]) we know that UR sets make up the most general context in which Calderón-Zygmund



130 2.3. Calderón-Zygmund theory for boundary layers in UR domains

like operators are bounded on ordinary Lebesgue spaces. David and Semmes have also
proved that, under the background assumption of Ahlfors regularity, uniform rectifiability
is implied by the simultaneous L2 boundedness of all truncated integral convolution type
operators on Σ (uniformly with respect to the truncation), whose kernels are smooth, odd,
and satisfy standard growth conditions, i.e., odd functions k ∈ C∞(Rn \ {0}) satisfying

sup
x∈Rn\{0}

[
|x|(n−1)+|α|∣∣(∂αk)(x)

∣∣] < +∞, ∀α ∈ Nn0 . (2.3.32)

In fact, a remarkable result proved by F. Nazarov, X. Tolsa, and A. Volberg in [101]
states that the L2-boundedness of the truncated Riesz transforms on Σ alone (uniformly
with respect to the truncation) yields uniform rectifiability. The corresponding result in
the plane was proved earlier in [89]. In light of (2.3.26), the above discussion highlights
the optimality of demanding that Σ is a UR set in the context of Proposition 2.3.3.

Results like Proposition 2.3.3 have been recently established in [93]. Here we present
an alternative approach which makes essential use of the Fefferman-Stein sharp maximal
function, considered in the setting of spaces of homogeneous type (for the Euclidean
context, see [59, p. 52], [42, Theorem 3.6, p. 161]).

Proof of Proposition 2.3.3. To set the stage, recall the Fefferman-Stein sharp maximal
operator M# on Σ, acting on each function f ∈ L1

loc(Σ, σ) according to

M#f(x) := sup
∆3x

 
∆

∣∣∣∣f −  
∆
f dσ

∣∣∣∣ dσ, ∀x ∈ Σ, (2.3.33)

where the supremum is taken over all surface balls ∆ ⊆ Σ containing the point x ∈ Σ.
Clearly, for each f ∈ L1

loc(Σ, σ) and each x ∈ Σ we have

sup
∆3x

inf
a∈C

 
∆
|f − a| dσ ≤M#f(x) ≤ 2 sup

∆3x
inf
a∈C

 
∆
|f − a| dσ. (2.3.34)

Also, given α ∈ (0, 1), for each f ∈ L1
loc(Σ, σ) set

M#
α f(x) := M#(|f |α)(x)1/α for all x ∈ Σ. (2.3.35)

Since having 0 < α < 1 ensures that |Xα − Y α| ≤ |X − Y |α for all X,Y ∈ [0,∞), from
(2.3.35) and the last inequality in (2.3.34) one may readily check that

M#
α f(x) ≤ 21/α sup

∆3x
inf
a∈C

( 
∆
|f − a|α dσ

)1/α
(2.3.36)

for each f ∈ L1
loc(Σ, σ) and each x ∈ Σ. Finally, recall from (2.2.302) the (non-centered)

Hardy-Littlewood maximal operator M on Σ.
From (2.3.22)-(2.3.24) it is clear that the maximal operator T∗ and the principal-value

singular integral operator T depend in a homogeneous fashion on the kernel function k.
In view of this observation, by working with k/K (in the case when k is not identically
zero) where K :=

∑
|α|≤N supSn−1 |∂αk|, there is no loss of generality in assuming that∑

|α|≤N
sup
Sn−1

|∂αk| = 1. (2.3.37)
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The fact that for each function f ∈ L1(Σ, σ(x)
1+|x|n−1

)
the limit defining Tf(x) in (2.3.24)

exists at σ-a.e. x ∈ Σ has been proved in [93]. To proceed, denote by L∞comp(Σ, σ) the
subspace of L∞(Σ, σ) consisting of functions with compact support. Also, fix a power
α ∈ (0, 1). We will first show that there exists a constant C = C(Σ, n, α) ∈ (0,∞) such
that

M#
α (Tf)(x) ≤ C ·Mf(x)

for all f ∈ L∞comp(Σ, σ) and x ∈ Σ.
(2.3.38)

To this end, fix a function f ∈ L∞comp(Σ, σ) along with a point x ∈ Σ, and consider an
arbitrary surface ball ∆ = ∆(x0, r0), with center at x0 ∈ Σ and radius r0 > 0, containing
the point x. Decompose f = f1 + f2, where f1 := f12∆ and f2 := f1Σ\2∆. Then∣∣Tf2(x0)

∣∣ < +∞ and we abbreviate a := Tf2(x0) ∈ C. Note that
 

∆
|Tf − a|α dσ ≤

 
∆
|Tf1|α dσ +

 
∆
|Tf2 − a|α dσ. (2.3.39)

For the first term in the right-hand side of (2.3.39), using Kolmogorov’s inequality, the
fact that T is bounded from L1(Σ, σ) to L1,∞(Σ, σ) (cf. [93], [53, Proposition 3.19]) and
the fact that Σ is an Ahlfors regular set to write 

∆
|Tf1|α dσ ≤

Cα
σ(∆)α ‖Tf1‖αL1,∞(Σ,σ) ≤

Cα
σ(∆)α ‖f1‖αL1(Σ,σ)

≤ Cα
( 

2∆
|f | dσ

)α
≤ Cα ·Mf(x)α. (2.3.40)

For the second term in the right-hand side of (2.3.39), note that the properties of k and
(2.3.37) entail

|(∇k)(z)| =
∣∣∣(∇k)

( z
|z|
|z|
)∣∣∣ ≤ |z|−n sup

|ω|=1
|(∇k)(ω)| = Cn|z|−n, (2.3.41)

for each z ∈ Rn \{0}, where Cn ∈ (0,∞) is a purely dimensional constant. On account of
(2.3.41) and the Mean Value Theorem, we see that there exists a dimensional constant
Cn ∈ (0,∞) with the property that for each y ∈ ∆ and z ∈ Σ \ 2∆ we have

|k(y − z)− k(x0 − z)| ≤ Cn
|y − x0|
|x0 − z|n

≤ Cnr0
|x0 − z|n

. (2.3.42)

Using this, for every y ∈ ∆ we may write

|Tf2(y)− a| = |Tf2(y)− Tf2(x0)|

≤
ˆ

Σ\2∆
|k(y − z)− k(x0 − z)||f(z)| dσ(z)

≤ Cr0

∞∑
j=1

ˆ
2jr0≤|x0−z|<2j+1r0

|f(z)|
|x0 − z|n

dσ(z)

≤ C
∞∑
j=1

2−j
 

2j+1∆
|f(z)| dσ(z)

≤ C ·Mf(x), (2.3.43)
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where C ∈ (0,∞) depends only on dimension and the Ahlfors regularity constant of Σ.
At this stage, the claim in (2.3.38) follows by combining (2.3.36), (2.3.39), (2.3.40), and
(2.3.43).

We shall now analyze two cases, depending on whether Σ is bounded or not. Consider
first the latter case, in which Σ is unbounded. In such a setting, the A∞-weighted version
of the Fefferman-Stein inequality for spaces of homogeneous type (cf., e.g. [7, Sections 3.2
and 5]) gives that for every q ∈ (0,∞) there exists a constant Cw ∈ (0,∞), which depends
on the weight w ∈ Ap(Σ, σ) ⊆ A∞(Σ, σ) only through its characteristic [w]Ap (indeed, it
can be expressed as an increasing function of [w]Ap), such that

‖Mg‖Lq(Σ,w) ≤ Cw
∥∥∥M#g

∥∥∥
Lq(Σ,w)

for each

g ∈ L1
loc(Σ, σ) such that Mg ∈ Lq(Σ, w).

(2.3.44)

To proceed, fix α ∈ (0, 1) and f ∈ L∞comp(Σ, σ). Let us momentarily work under the
additional assumption that the weight w belongs to L∞(Σ, σ). This permits us to
estimate

‖M(|Tf |α)‖Lp/α(Σ,w) ≤ ‖w‖
α/p
L∞(Σ,σ) ‖M(|Tf |α)‖Lp/α(Σ,σ)

≤ C ‖w‖α/pL∞(Σ,σ) ‖Tf‖
α
Lp(Σ,σ)

≤ C ‖w‖α/pL∞(Σ,σ) ‖f‖
α
Lp(Σ,σ) < +∞, (2.3.45)

where we have used the boundedness of M on Lp/α(Σ, σ) and the boundedness of T on
Lp(Σ, σ) (cf. [53, Proposition 3.18]). This allows us to use (2.3.44) (with g := |Tf |α and
q := p/α) to obtain, for some constant Cw ∈ (0,∞) (again, depending in an increasing
fashion on [w]Ap),

‖Tf‖Lp(Σ,w) ≤
∥∥∥M(|Tf |α)1/α

∥∥∥
Lp(Σ,w)

= ‖M(|Tf |α)‖1/α
Lp/α(Σ,w)

≤ Cw
∥∥∥M#(|Tf |α)

∥∥∥1/α

Lp/α(Σ,w)
= Cw

∥∥∥M#
α (Tf)

∥∥∥
Lp(Σ,w)

≤ Cw ‖Mf‖Lp(Σ,w) ≤ Cw ‖f‖Lp(Σ,w) , (2.3.46)

where the first inequality follows from Lebesgue Differentiation Theorem (cf. [6]), the
last equality is a consequence of (2.3.35), the penultimate inequality comes from (2.3.38),
the last inequality is implied by the boundedness of the Hardy-Littlewood operator M
on Lp(Σ, w).

To remove the restriction w ∈ L∞(Σ, σ), we proceed as follows. For each j ∈ N, let
wj := min{w, j} ∈ L∞(Σ, σ). Moreover, as in [46, Ex. 9.1.9], we have

[wj ]Ap ≤ Cp(1 + [w]Ap) (2.3.47)

for some Cp ∈ (0,∞) independent of j ∈ N. As such, we may invoke (2.3.46) written for
each wj (which now involves a constant whose dependence in wj may be expressed in
terms of a non-decreasing function of [wj ]Ap) to conclude that

‖Tf‖Lp(Σ,wj) ≤ C ‖f‖Lp(Σ,wj) ≤ C ‖f‖Lp(Σ,w) , (2.3.48)
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for some constant C ∈ (0,∞) independent of j ∈ N. Upon letting j → ∞ and
relying on Lebesgue’s Monotone Convergence Theorem, we arrive at the conclusion that
‖Tf‖Lp(Σ,w) ≤ C ‖f‖Lp(Σ,w) for every f ∈ L∞comp(Σ, σ). Given that L∞comp(Σ, σ) is dense
in Lp(Σ, w), this ultimately establishes the boundedness of the operator T in the context
of (2.3.27) when Σ is unbounded.

Let us now consider the case when Σ is bounded. In this case, compared to (2.3.44),
the A∞-weighted version of the Fefferman-Stein inequality includes an extra term, namely
it now reads (cf. [7, Sections 3.2 and 5])

‖Mg‖Lq(Σ,w) ≤ Cw
∥∥∥M#g

∥∥∥
Lq(Σ,w)

+ Cσ(Σ)−1
(ˆ

Σ
w dσ

)1/q
‖g‖L1(Σ,σ) (2.3.49)

for all g ∈ L1(Σ, σ) with Mg ∈ Lq(Σ, w),

where Cw ∈ (0,∞) is as before and C ∈ (0,∞) is a purely geometric constant. Fix
α ∈ (0, 1) and f ∈ L∞comp(Σ, σ). Assume first that w ∈ L∞(Σ, σ) and note that (2.3.45)
holds in the same way. This permits us to invoke (2.3.49) (with g := |Tf |α and q := p/α),
so in place of (2.3.46) we now get

‖Tf‖Lp(Σ,w) ≤
∥∥M(|Tf |α)

∥∥1/α
Lp/α(Σ,w)

≤ Cw
∥∥M#(|Tf |α)

∥∥1/α
Lp/α(Σ,w)

+ Cσ(Σ)−1/α
(ˆ

Σ
w dσ

)1/p∥∥|Tf |α∥∥1/α
L1(Σ,σ)

≤ Cw ‖f‖Lp(Σ,w) + Cσ(Σ)−1/α
(ˆ

Σ
w dσ

)1/p
‖Tf‖Lα(Σ,σ) , (2.3.50)

where the first and last estimates follow as before. Here, the constant Cw ∈ (0,∞)
depends on w only through its characteristic [w]Ap (again, this may be expressed as an
increasing function of [w]Ap), while C ∈ (0,∞) depends just on p, α, n and the Ahlfors
regularity constant of Σ.

It remains to estimate ‖Tf‖Lα(Σ,σ) in a satisfactory manner. Using Kolmogorov’s
inequality and the fact that T is bounded from L1(Σ, σ) into L1,∞(Σ, σ) (cf. [93], [53,
Proposition 3.19]) and Hölder’s inequality we obtain

‖Tf‖Lα(Σ,σ) ≤ (1− α)−1/ασ(Σ)(1−α)/α ‖Tf‖L1,∞(Σ,σ)

≤ Cσ(Σ)(1−α)/α ‖f‖L1(Σ,σ)

= Cσ(Σ)(1−α)/α
(ˆ

Σ
w1−p′ dσ

)1/p′
‖f‖Lp(Σ,w) . (2.3.51)

Let us record our progress. The argument so far proves that, if Σ is bounded, then for
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each f ∈ L∞comp(Σ, σ) we have

‖Tf‖Lp(Σ,w) ≤
(
Cw + C σ(Σ)−1

(ˆ
Σ
w dσ

)1/p(ˆ
Σ
w1−p′ dσ

)1/p′)
‖f‖Lp(Σ,w)

≤
(
Cw + C [w]1/pAp

)
‖f‖Lp(Σ,w) , (2.3.52)

where Cw ∈ (0,∞) is as above. As before, to remove the restriction w ∈ L∞(Σ, σ), we
work with wj := min{w, j} for j ∈ N. Thanks to (2.3.47) the constant in the right-hand
side of (2.3.52) may be controlled uniformly in j. After passing to limit j →∞ and once
again relying on the density L∞comp(Σ, σ) into Lp(Σ, w), we eventually conclude that the
operator T is bounded in the context of (2.3.27) in this case as well. Moreover,

‖T‖Lp(Σ,w)→Lp(Σ,w) ≤ C, (2.3.53)

where C ∈ (0,∞) depends only on n, p, [w]Ap , and the UR constants of Σ. This finishes
the proof of (2.3.27).

Next, (2.3.25) follows from (2.3.27), Cotlar’s inequality, to the effect that there exists
some C ∈ (0,∞) which depends only on n, and the Ahlfors regularity constant of Σ,
with the property that for every function f ∈ L∞comp(Σ, σ) we have

(T∗f)(x) ≤ C ·M(Tf)(x) + C ·Mf(x) for each x ∈ Σ, (2.3.54)

the boundedness of the Hardy-Littlewood operator M on Lp(Σ, w), and a density ar-
gument. Going further, (2.3.29) may be justified by first establishing a similar claim
for the truncated operators (2.3.22) using Fubini’s theorem, then invoking Lebesgue’s
Dominated Convergence Theorem (whose applicability is guaranteed by (2.3.25)) to pass
to limit ε→ 0+.

Finally, consider the claim made in the very last part of the statement. It is apparent
from (2.3.30) that the boundary-to-domain operator T depends in a homogeneous fashion
on the kernel function k. Much as before, this permits us to work under the additional
assumption that (2.3.37) holds. Granted this, the estimate claimed in (2.3.31) is a direct
consequence of inequality (2.3.25) and the formula (cf. [53, eq. (3.2.22)])

Nκ
(
T f)(x) ≤ C · T∗f(x) + C ·Mf(x) for each x ∈ Σ, (2.3.55)

where C ∈ (0,∞) depends only on n and the Ahlfors regularity constant of Σ, and
where the maximal operator T∗ and the Hardy-Littlewood maximal function M are now
associated with the UR set Σ := ∂Ω.

The stage has been set for considering the action of the boundary layer potentials as-
sociated with a given weakly elliptic system L and UR domain Ω in Rn as in (2.3.2)-(2.3.5)
and (2.3.14) on Muckenhoupt weighted Lebesgue and Sobolev spaces on ∂Ω. To state
our main result in this regard, given any two Banach spaces (X, ‖·‖X), (Y, ‖·‖Y ), denote

Bd
(
X → Y

)
:=
{
T : X → Y : T linear and bounded

}
, (2.3.56)



2. Singular integral operators and quantitative flatness 135

and equip this space with the standard operator norm Bd
(
X → Y

)
3 T 7→ ‖T‖X→Y (cf.

(2.4.1)). Finally, corresponding to the case when Y = X, we agree to abbreviate

Bd(X) := Bd
(
X → X

)
. (2.3.57)

Proposition 2.3.4. Suppose Ω ⊆ Rn is a UR domain and abbreviate σ := Hn−1b∂Ω.
Also, let L be a homogeneous, second-order, constant complex coefficient, weakly elliptic
M ×M system in Rn. Pick A ∈ AL and consider the boundary layer potential operators
DA,KA,K

#
A associated with Ω and the coefficient tensor A as in (2.3.2), (2.3.4), and

(2.3.5). Also, recall the modified single layer potential operator Smod associated with Ω
and L as in (2.3.14). Finally, fix an integrability exponent p ∈ (1,∞), a Muckenhoupt
weight w ∈ Ap(∂Ω, σ), and an aperture parameter κ > 0.

(a) The following operators are well defined, sub-linear, and bounded:[
Lp(∂Ω, w)

]M 3 f 7−→ Nκ(DAf) ∈ Lp(∂Ω, w), (2.3.58)

[
Lp1(∂Ω, w)

]M 3 f 7−→ Nκ (∇DAf) ∈ Lp(∂Ω, w). (2.3.59)

Also,

for each f ∈
[
Lp1(∂Ω, w)

]M the nontangential trace(
∇DAf

)∣∣κ−n.t.

∂Ω exists (in Cn·M ) at σ-a.e. point on ∂Ω.
(2.3.60)

(b) For every f ∈
[
Lp(∂Ω, w)

]M the limits in (2.3.4) and (2.3.5) exist at σ-a.e. point
on ∂Ω. Moreover, the operators KA and K#

A are well defined, linear, and bounded
in the following contexts:

KA :
[
Lp(∂Ω, w)

]M −→ [
Lp(∂Ω, w)

]M
, (2.3.61)

KA :
[
Lp1(∂Ω, w)

]M −→ [
Lp1(∂Ω, w)

]M
, (2.3.62)

K#
A :

[
Lp(∂Ω, w)

]M −→ [
Lp(∂Ω, w)

]M
. (2.3.63)

Additionally, the operators KA,K
#
A in (2.3.61)-(2.3.63) depend continuously on

the underlying coefficient tensor A. More specifically, with the piece of notation
introduced in (1.2.16), the following operator-valued assignments are continuous:

AWE 3 A 7−→ KA ∈ Bd
([
Lp(∂Ω, w)

]M)
, (2.3.64)

AWE 3 A 7−→ KA ∈ Bd
([
Lp1(∂Ω, w)

]M)
, (2.3.65)

AWE 3 A 7−→ K#
A ∈ Bd

([
Lp(∂Ω, w)

]M)
. (2.3.66)

Furthermore, the nontangential boundary trace of the boundary-to-domain double
layer is related to the boundary-to-boundary double layer via a jump-formula, to the
effect that for every f ∈

[
Lp(∂Ω, w)

]M and σ-a.e. in ∂Ω one has

DAf
∣∣κ−n.t.

∂Ω =
(1

2I +KA

)
f, (2.3.67)
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where I is the identity operator.

(c) For each f ∈
[
Lp(∂Ω, w)

]M , one has

Smodf ∈
[
C ∞(Ω)

]M
, L

(
Smodf

)
= 0 in Ω. (2.3.68)

In addition, the conormal derivative of the modified boundary-to-domain single layer
satisfies the following jump-formula

∂Aν Smodf =
(
− 1

2I +K #
A>

)
f at σ-a.e. point in ∂Ω, (2.3.69)

where I is the identity, and K #
A>

is the operator associated as in (2.3.5) with the
UR domain Ω and the transposed coefficient tensor A>. Also, there exists some
constant C = C(Ω, p, w, L, κ) ∈ (0,∞) independent of f such that

‖Nκ(∇Smodf)‖Lp(∂Ω,w) ≤ C‖f‖[Lp(∂Ω,w)]M . (2.3.70)

Proof. With the exception of (2.3.64)-(2.3.66), all the claims may be justified based
on (2.3.2)-(2.3.16), Lemma 2.2.47, Proposition 2.3.2, Proposition 2.2.49, and Proposi-
tion 2.3.3. Finally, the continuity properties of the operator-valued maps in (2.3.64)-
(2.3.66) have been proved in [93].

2.3.3 Distinguished coefficient tensors

To each weakly elliptic system L we may canonically associate a fundamental solution
E as in Theorem 1.2.1. Having fixed a UR domain, this is then used to create a
variety of double layer potential operators KA, in relation to each choice of a coefficient
tensor A ∈ AL. While any such double layer KA has a rich Calderón-Zygmund theory
(as discussed in Proposition 2.3.4), seeking more specialized properties requires placing
additional demands on the coefficient tensor A. We begin by recording a result proved
in [86] (see also [81]), describing the said demands phrased in several equivalent forms.

Proposition 2.3.5. Let L be a homogeneous, second-order, constant complex coefficient,
weakly elliptic M ×M system in Rn, and consider the matrix-valued function defined for
each ξ ∈ Rn \ {0} as (

Eγβ(ξ)
)
1≤γ,β≤M := −

[
L(ξ)

]−1 ∈ CM×M (2.3.71)

(recall that the characteristic matrix L(ξ) of L has been defined in (1.2.2)). Also, let
E =

(
Eαβ)1≤α,β≤M be the fundamental solution associated with the given system L as in

Theorem 1.2.1.
Then for each coefficient tensor A =

(
aαβjk

)
1≤α,β≤M
1≤j,k≤n

∈ AL (cf. (1.2.14)) the following

conditions are equivalent:

(a) For each k, k′ ∈ {1, . . . , n} and each α, γ ∈ {1, . . . ,M} there holds(
xk′a

βα
jk − xka

βα
jk′
)
(∂jEγβ)(x) = 0 for all x = (xi)1≤i≤n ∈ Rn \ {0}. (2.3.72)
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(b) For each s, s′ ∈ {1, . . . , n} and each α, γ ∈ {1, . . . ,M}, in the sense of tempered
distributions in Rn one has[

aβαrs ∂ξs′ − a
βα
rs′∂ξs

][
ξrEγβ(ξ)

]
= 0. (2.3.73)

(c) For each k, k′ ∈ {1, . . . , n} and each α, γ ∈ {1, . . . ,M} one has(
aβαk′k − a

βα
kk′ + ξja

βα
jk ∂ξk′ − ξja

βα
jk′∂ξk

)
Eγβ(ξ) = 0 for all ξ ∈ Rn \ {0} (2.3.74)

and also ˆ
S1

(
aβαjk ξk′ − a

βα
jk′ξk

)
ξj Eγβ(ξ) dH1(ξ) = 0 if n = 2. (2.3.75)

(d) One has

ξrξj
[
aβαrs′

(
aλµsj + aλµjs

)
− aβαrs

(
aλµs′j + aλµjs′

)]
Eµβ(ξ) + aλαs′s − aλαss′ = 0

for all ξ ∈ Sn−1, all s, s′ ∈ {1, . . . , n}, and all α, λ ∈ {1, . . . ,M},
(2.3.76)

with the cancellation conditionˆ
S1

(
aβαrs ξs′ − a

βα
rs′ξs

)
ξrEλβ(ξ) dH1(ξ) = 0

for all s, s′ ∈ {1, . . . , n} and α, λ ∈ {1, . . . ,M},
(2.3.77)

additionally imposed in the case when n = 2.

(e) For each ξ ∈ Sn−1 and each α, λ ∈ {1, . . . ,M},

the expression
(
aλµsj + aλµjs

)
Eµβ(ξ)ξjξraβαrs′ + aλαs′s

is symmetric in the indices s, s′ ∈ {1, . . . , n},
(2.3.78)

with the condition that for each α, λ ∈ {1, . . . ,M}

the expression
ˆ
S1
aβαrs ξs′ξrEλβ(ξ) dH1(ξ)

is symmetric in the indices s, s′ ∈ {1, 2},
(2.3.79)

also imposed in the case when n = 2.

(f) There exists a matrix-valued function

k =
{
kγα

}
1≤γ,α≤M : Rn \ {0} −→ CM×M (2.3.80)

with the property that for each γ, α ∈ {1, . . . ,M} and s ∈ {1, . . . , n} one has

aβαrs (∂rEγβ)(x) = xskγα(x) for all x ∈ Rn \ {0}. (2.3.81)

It is worth noting that the conditions in items (a)-(f) above are intrinsically formu-
lated in terms of the given weakly elliptic system L.
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Definition 2.3.6. Given a second-order, weakly elliptic, homogeneous, M ×M system
L in Rn, with constant complex coefficients, call

A =
(
aαβrs

)
1≤r,s≤n

1≤α,β≤M
∈ AL (2.3.82)

a distinguished coefficient tensor for the system L provided any of the conditions
(a)-(f) in Proposition 2.3.5 holds. Also, denote by Adis

L the family of such distinguished
coefficient tensors for L, say,

Adis
L :=

{
A =

(
aαβrs

)
1≤r,s≤n

1≤α,β≤M
∈ AL : conditions (2.3.74)-(2.3.75) (2.3.83)

hold for each k, k′ ∈ {1, . . . , n} and α, γ ∈ {1, . . . ,M}
}
.

Finally, introduce the class of weakly elliptic systems which posses a distinguished
coefficient tensor, by setting

Ldis :=
{
L ∈ L∗ : Adis

L 6= ∅
}
. (2.3.84)

The relevance of the distinguished coefficient tensors is most apparent from the
following result proved in [86] (see also [81]).

Proposition 2.3.7. Let L be a homogeneous, second-order, constant complex coefficient,
weakly elliptic M×M system in Rn, and suppose A ∈ AL. Then the following statements
are equivalent.

(i) The coefficient tensor A belongs to Adis
L .

(ii) Whenever Ω is a half-space in Rn, the boundary-to-boundary double layer potential
KA associated with A and Ω as in (2.3.4) is the zero operator.

(iii) There exists a matrix-valued function k ∈
[
C∞(Rn \ {0})

]M×M which is even,
positive homogeneous of degree −n, and with the property that for each UR domain
Ω ⊆ Rn the (matrix-valued) integral kernel of the double layer potential operator
KA associated with A and Ω as in (2.3.4) has the form

〈ν(y), x− y〉k(x− y)

for each x ∈ ∂Ω and Hn−1-a.e. y ∈ ∂Ω,
(2.3.85)

where ν is the geometric measure theoretic outward unit normal to Ω.

(iv) There exists a matrix-valued function k# ∈
[
C∞(Rn \ {0})

]M×M which is even,
positive homogeneous of degree −n, and with the property that for each UR domain
Ω ⊆ Rn the (matrix-valued) integral kernel of the “transposed” double layer potential
operator K#

A associated with A and Ω as in (2.3.5) has the form

〈ν(x), y − x〉k#(x− y)

for Hn−1-a.e. x ∈ ∂Ω and each y ∈ ∂Ω,
(2.3.86)

where ν is the geometric measure theoretic outward unit normal to Ω.
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Moreover, whenever either (hence all) of the above conditions materializes, the ma-
trices k, k# in items (iii), (iv) above are related to each other via k# = k>, where the
superscript > indicates transposition.

In light of Proposition 2.3.7 and (2.1.28), we are particularly interested in the class
of weakly elliptic homogeneous constant complex coefficient second-order systems L with
Adis
L 6= ∅. The following example shows that the latter condition is always satisfied

by strongly elliptic scalar operators.

Example 2.3.8. Assume L is a second-order, homogeneous, constant complex coeffi-
cient, scalar differential operator in Rn (i.e., as in (1.2.1) withM = 1), which is strongly
elliptic. Specifically, suppose L = ajk∂j∂k with ajk ∈ C for j, k ∈ {1, . . . , n} having
the property that there exists a constant c ∈ (0,∞) such that

Re
[ n∑
j,k=1

ajkξjξk
]
≥ c|ξ|2, ∀ ξ = (ξ1, . . . , ξn) ∈ Rn. (2.3.87)

Introduce A := (ajk)1≤j,k≤n ∈ Cn×n then define

(ãjk)1≤j,k≤n := symA := A+A>

2 , (bjk)1≤j,k≤n := (symA)−1. (2.3.88)

In particular, L = LsymA := ãjk∂j∂k, i.e., the coefficient matrix symA may be used to
represent the given differential operator L. In this case, it turns out that the fundamental
solution E canonically associated with the operator L as in Theorem 1.2.1 may be
explicitly identified (cf. [92, Theorem 7.68, pp. 314-315]) as the function E ∈ L1

loc(Rn,Ln)
given at each point x ∈ Rn \ {0} by

E(x) =


− 1

(n− 2)ωn−1
√

det(symA)
〈(symA)−1x, x〉−

n−2
2 if n ≥ 3,

1
4π
√

det(symA)
log(〈(symA)−1x, x〉) + cA if n = 2,

(2.3.89)

where log denotes the principal branch of the complex logarithm (defined for complex
numbers z ∈ C \ (−∞, 0] so that za = ea log z for each a ∈ R), and cA is a complex
constant which depends solely on A. As both symA and B are symmetric matrices, for
each index j ∈ {1, . . . , n} and each point x = (xi)1≤i≤n ∈ Rn \ {0} we therefore have (in
all dimensions n ≥ 2)

(∂jE)(x) = 〈(symA)−1x, x〉−
n
2 (δrjbrsxs + δsjbrsxr)

2ωn−1
√

det(symA)

= 〈(symA)−1x, x〉−
n
2 brjxr

ωn−1
√

det(symA)
. (2.3.90)

Thus, with CA,n abbreviating
(
ωn−1

√
det(symA)

)−1 ∈ C, for each k, k′ ∈ {1, . . . , n} we
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may compute(
xk′ ãjk − xkãjk′

)
(∂jE)(x) = CA,n〈(symA)−1x, x〉−

n
2
(
xk′ ãkj − xkãk′j

)(
bjrxr

)
= CA,n〈(symA)−1x, x〉−

n
2
(
xk′δkr − xkδk′r

)
xr

= CA,n〈(symA)−1x, x〉−
n
2
(
xk′xk − xkxk′

)
= 0. (2.3.91)

This shows that condition (2.3.72) is presently verified for the choice of coefficient tensor
symA in the representation of the given differential operator L. Hence, symA ∈ Adis

L

which proves that, in the case when M = 1, we have

Adis
L 6= ∅ for every scalar, strongly elliptic, homogeneous, second-

order, constant complex coefficient operator L in Rn.
(2.3.92)

Consequently, Proposition 2.3.7 guarantees that for each UR domain Ω ⊆ Rn the integral
kernel of the double layer potential operator KsymA associated with symA and Ω as in
(2.3.4) has the form (2.3.85). This being said, it is actually of interest to identify the said
integral kernel explicitly. Based on (2.3.88)-(2.3.90) and (2.3.4) we see that the kernel of
if ν = (ν1, . . . , νn) is the geometric measure theoretic outward unit normal to Ω then the
integral kernel of the double layer potential operator KsymA is

−νk(y)ãjk (∂jE) (x− y) = −〈(symA)−1(x− y), x− y〉−
n
2 νk(y)brj ãjk(x− y)r

ωn−1
√

det(symA)

= −〈(symA)−1(x− y), x− y〉−
n
2 〈ν(y), x− y〉

ωn−1
√

det(symA)
(2.3.93)

for each x ∈ ∂Ω and Hn−1-a.e. y ∈ ∂Ω,

which, as already anticipated, is of the form (2.3.85) with

k(z) := −〈(symA)−1z, z〉−
n
2

ωn−1
√

det(symA)
, ∀ z ∈ Rn \ {0}. (2.3.94)

Our next example shows that, for scalar operators in dimensions n ≥ 3, weak
ellipticity itself guarantees the existence of a distinguished coefficient tensor.

Example 2.3.9. Suppose n ≥ 3, and consider an arbitrary second-order, homogeneous,
constant complex coefficient, scalar differential operator L in Rn (i.e., as in (1.2.1) with
M = 1), which is merely weakly elliptic. Recall (cf. (1.2.3)) that this means that we may
express L = ajk∂j∂k with ajk ∈ C for j, k ∈ {1, . . . , n} having the property that

n∑
j,k=1

ajkξjξk 6= 0, ∀ ξ = (ξ1, . . . , ξn) ∈ Rn \ {0}. (2.3.95)

Introduce A := (ajk)1≤j,k≤n ∈ Cn×n. It has been shown in [86] that (here is where n ≥ 3
is used)

there exists an angle θ ∈ [0, 2π) such that if we set Aθ := eiθA

then the matrix symAθ := (Aθ + A>θ )/2 ∈ Cn×n is strongly
elliptic, in the sense that there exists some c ∈ (0,∞) such that
Re 〈(symAθ)ξ, ξ〉 ≥ c|ξ|2 for each ξ ∈ Rn (cf. (2.3.87)).

(2.3.96)



2. Singular integral operators and quantitative flatness 141

From this and (2.3.89) we conclude that the fundamental solution E ∈ L1
loc(Rn,Ln)

canonically associated as in Theorem 1.2.1 with the operator L = e−iθLAθ = e−iθLsymAθ
presently may be expressed at each point x ∈ Rn \ {0} as

E(x) = − eiθ

(n− 2)ωn−1
√

det (symAθ)
〈
(symAθ)−1x, x

〉 2−n
2 . (2.3.97)

In view of this formula and the fact that symA := (A+ A>)/2 is related to symAθ via
symAθ = eiθsymA, we conclude from (2.3.89)-(2.3.91) that condition (2.3.72) currently
holds for the choice of coefficient matrix symA in the representation of the given differ-
ential operator L. Thus, symA ∈ Adis

L which goes to show that, in the case when n ≥ 3
and M = 1, we have

if n ≥ 3 then Adis
L 6= ∅ for every scalar, weakly elliptic, homo-

geneous, second-order, constant complex coefficient operator
L in Rn.

(2.3.98)

Turning our attention to genuine systems, below we pay special attention to the
Lamé system of elasticity.

Example 2.3.10. Consider the following complexified version of the Lamé system (orig-
inally arising in the study of linear elasticity), defined for any two parameters µ, λ ∈ C
(referred to as Lamé moduli) as

L := µ∆ + (µ+ λ)∇ div, (2.3.99)

acting on vector fields u = (uβ)1≤β≤n defined in (subsets) of Rn (with the Laplacian
applied componentwise). Hence, L = L>, and one may check (cf. [92, Proposition 10.14,
p. 366]) that

the complex Lamé system (2.3.99) is weakly
elliptic if and only if µ 6= 0 and 2µ+ λ 6= 0.

(2.3.100)

We may express the complex Lamé system L as in (1.2.1) (with M := n) using a variety
of coefficient tensors, such as those belonging to the one-parameter family

A(ζ) =
(
aαβjk (ζ)

)
1≤j,k≤n
1≤α,β≤n

defined for each ζ ∈ C according to

aαβjk (ζ) := µδjkδαβ + (µ+ λ− ζ)δjαδkβ + ζδjβδkα, 1 ≤ j, k, α, β ≤ n.
(2.3.101)

In other words, for each vector field u = (uβ)1≤β≤n ∈
[
D′(Rn)

]n and each parameter
ζ ∈ C, the Lamé system (2.3.99) satisfies

Lu =
(
aαβjk (ζ)∂j∂kuβ

)
1≤α≤n

in
[
D′(Rn)

]n
. (2.3.102)

In relation to the coefficient tensor (2.3.101) it turns out that for any given µ, λ, ζ ∈ C
with µ 6= 0 and 2µ + λ 6= 0 if L is as in (2.3.99) then we have (cf. [53], [86] for specific
details)

A(ζ) ∈ Adis
L ⇐⇒ 3µ+ λ 6= 0 and ζ = µ(µ+ λ)

3µ+ λ
. (2.3.103)
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This ultimately shows that

whenever the Lamé moduli µ, λ ∈ C are such that µ 6= 0,
2µ + λ 6= 0, and 3µ + λ 6= 0, the Lamé operator L defined
as in (2.3.102) has the property that Adis

L = Adis
L> 6= ∅.

(2.3.104)

It is of interest to concretely identity the format of the double layer potential operators
associated with the complex Lamé system Lµ,λ = µ∆ + (λ+µ)∇div in Rn, associated as
in (2.1.30) to Lamé moduli µ, λ ∈ C satisfying

µ 6= 0 and 2µ+ λ 6= 0 (2.3.105)

(thus ensuring the weak ellipticity of Lµ,λ; cf. (2.3.100)). For this system, the funda-
mental solution E of Lµ,λ from Theorem 1.2.1 has the explicit form E = (Ejk)1≤j,k≤n, a
matrix whose (j, k) entry is defined at each point x = (x1, . . . , xn) ∈ Rn \ {0} according
to

Ejk(x) =



−(3µ+ λ)
2µ(2µ+ λ)ωn−1

[
δjk

(n− 2)|x|n−2 + (µ+ λ)xjxk
(3µ+ λ)|x|n

]
if n ≥ 3,

3µ+ λ

4πµ(2µ+ λ)

[
δjkln |x| −

(µ+ λ)xjxk
(3µ+ λ)|x|2

]
+ cµ,λδjk if n = 2,

(2.3.106)

for every j, k ∈ {1, . . . , n}, where cµ,λ ∈ C is the constant given by

cµ,λ := (1 + ln 4)(λ+ µ)
8πµ(λ+ 2µ) − ln 2

2πµ. (2.3.107)

Let us now fix an arbitrary UR domain Ω ⊆ Rn, abbreviate σ := Hn−1b∂Ω, and denote
by ν = (ν1, . . . , νn) the geometric measure theoretic outward unit normal to Ω. In such a
setting, with each choice of ζ ∈ C, associate a double layer potential operator KA(ζ) as in
(2.3.4). A direct computation based on (2.3.106), (2.3.101), and (2.3.4) then shows that
the integral kernel Θζ(x, y) of the principal-value double layer potential operator KA(ζ)
is an n× n matrix whose (j, k) entry, 1 ≤ j, k ≤ n, is explicitly given by

Θζ
jk(x, y) = −C1(ζ) δjk

ωn−1

〈x− y, ν(y)〉
|x− y|n

− (1− C1(ζ)) n

ωn−1

〈x− y, ν(y)〉(xj − yj)(xk − yk)
|x− y|n+2

− C2(ζ) 1
ωn−1

(xj − yj)νk(y)− (xk − yk)νj(y)
|x− y|n

, (2.3.108)

for σ-a.e. x, y ∈ ∂Ω, where the constants C1(ζ), C2(ζ) ∈ C are defined as

C1(ζ) := µ(3µ+ λ)− ζ(µ+ λ)
2µ(2µ+ λ) , C2(ζ) := µ(µ+ λ)− ζ(3µ+ λ)

2µ(2µ+ λ) . (2.3.109)

Thus, if for any a = (a1, . . . , an) ∈ Cn and b = (b1, . . . , bn) ∈ Cn, we agree to define a⊗ b
to be the n× n matrix

a⊗ b :=
(
ajbk

)
1≤j,k≤n ∈ Cn×n, (2.3.110)
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then for each ζ ∈ C the integral kernel Θζ(x, y) of KA(ζ) may be recast as

Θζ(x, y) = −C1(ζ) 1
ωn−1

〈x− y, ν(y)〉
|x− y|n

In×n

− (1− C1(ζ)) n

ωn−1

〈x− y, ν(y)〉(x− y)⊗ (x− y)
|x− y|n+2

− C2(ζ) 1
ωn−1

(x− y)⊗ ν(y)− ν(y)⊗ (x− y)
|x− y|n

, (2.3.111)

for σ-a.e. x, y ∈ ∂Ω, where In×n is the n × n identity matrix. The penultimate term
above suggests that for each function f ∈

[
L1(∂Ω, σ(x)

1+|x|n−1
)]n we define

Qf(x) := lim
ε→0+

n

ωn−1

ˆ

y∈∂Ω
|x−y|>ε

〈x− y, ν(y)〉(x− y)⊗ (x− y)
|x− y|n+2 f(y) dσ(y)

= lim
ε→0+

n

ωn−1

ˆ

y∈∂Ω
|x−y|>ε

〈x− y, ν(y)〉〈x− y, f(y)〉
|x− y|n+2 (x− y) dσ(y), (2.3.112)

at σ-a.e. point x ∈ ∂Ω. Then, if

3µ+ λ 6= 0 and ζ∗ := µ(µ+ λ)
3µ+ λ

, (2.3.113)

from (2.3.109) we see that C2(ζ∗) = 0, so the last term in (2.3.111) drops out and the
principal-value double layer potential operator KA(ζ∗) becomes

KA(ζ∗) = C1(ζ∗)K∆In×n − (1− C1(ζ∗))Q

= 2µ
3µ+ λ

K∆In×n −
µ+ λ

3µ+ λ
Q, (2.3.114)

where K∆ is the harmonic double layer potential operator (cf. (2.3.8)). In view of
(2.3.8) and (2.3.112), this is in agreement with the prediction made in item (iii) of
Proposition 2.3.7.

Traditionally, the singular integral operator KA(ζ∗) from (2.3.114) has been called the
(boundary-to-boundary) pseudo-stress double layer potential operator for the Lamé
system, and the alternative notation KΨ has been occasionally employed.

We conclude this series of examples by discussing a case of a second-order, ho-
mogeneous, real constant coefficient, weakly elliptic system which does not posses a
distinguished coefficient tensor.

Example 2.3.11. Work in the plane R2 ≡ C, and consider the second-order, homoge-
neous, real constant coefficient, 2× 2 system

L = 1
4

∂2
x − ∂2

y −2∂x∂y
2∂x∂y ∂2

x − ∂2
y

 . (2.3.115)
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An example of a coefficient tensor in AL is given by A =
(
aαβjk

)
1≤j,k≤2
1≤α,β≤2

with

a11
11 = a22

11 = 1
4 , a11

22 = a22
22 = −1

4 , a11
12 = a11

21 = a22
12 = a22

21 = 0,

a12
12 = a12

21 = −1
4 , a21

12 = a21
21 = 1

4 , a21
11 = a21

22 = a12
22 = a12

11 = 0.
(2.3.116)

The characteristic matrix of the system L is given by

L(ξ) = −1
4

ξ2
1 − ξ2

2 −2ξ1ξ2

2ξ1ξ2 ξ2
1 − ξ2

2

 at each ξ = (ξ1, ξ2) ∈ R2. (2.3.117)

Hence, at each ξ = (ξ1, ξ2) ∈ R2 \ {0} we have

det [L(ξ)] = 1
16
[
(ξ2

1 − ξ2
2)2 + (2ξ1ξ2)2] = 1

16(ξ2
1 + ξ2

2)2 = 1
16 |ξ|

4 6= 0, (2.3.118)

which goes to show that

the system L from (2.3.115) is weakly elliptic. (2.3.119)

In particular, L has a fundamental solution as in Theorem 1.2.1 which, once a UR
domain in the plane has been fixed, may then be used to associate double layer potential
operators KA with any coefficient tensor A ∈ AL as in (2.3.4), and all these singular
integral operators enjoy the properties discussed in Proposition 2.3.4.

This being said, since with η := (1, 0) ∈ C2 we have

〈L(ξ)η, η〉 = −1
4(ξ2

1 − ξ2
2) for each ξ = (ξ1, ξ2) ∈ R2, (2.3.120)

and since the last expression above vanishes identically on the diagonal of R2, it follows
that the system L from (2.3.115) fails to satisfy the Legendre-Hadamard strong ellipticity
condition.

To better understand this system, observe that its transposed is

L> = 1
4

∂2
x − ∂2

y 2∂x∂y
−2∂x∂y ∂2

x − ∂2
y

 (2.3.121)

and, if π1, π2 : C2 → C are the canonical coordinate projections, defined as

π1(z1, z2) := z1 and π2(z1, z2) = z2 for each (z1, z2) ∈ C2, (2.3.122)

then
L(u1, u2) =

(
π1L

>(u1,−u2) , −π2L
>(u1,−u2)

)
for any open set Ω ⊆ R2 ≡ C and any two

complex-valued functions u1, u2 ∈ C 2(Ω).

(2.3.123)

As a consequence,

L(u1, u2) = 0⇐⇒ L>(u1,−u2) = 0

for any open set Ω ⊆ R2 ≡ C and any

complex-valued function U = u1 + iu2 ∈ C 2(Ω).

(2.3.124)
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Pressing on, recall the Cauchy-Riemann operator and its conjugate

∂z̄ := 1
2
(
∂x + i∂y

)
, ∂z := 1

2
(
∂x − i∂y

)
, where z = x+ iy, (2.3.125)

then bring in Bitsadze’s operator (cf. [12], [13]), which is simply the square of ∂z̄, i.e,

L := ∂2
z̄ = 1

4∂
2
x + i

2∂x∂y −
1
4∂

2
y , z = x+ iy. (2.3.126)

To place things into a broader perspective, there are three basic prototypes of scalar,
constant coefficient, second-order, elliptic operators in the plane: the Laplacian 4∂z∂z̄,
plus Bitsadze’s operator ∂2

z̄ and its complex conjugate ∂2
z . With π1, π2 : C2 → C the

canonical coordinate projections from (2.3.122), the system L introduced in (2.3.115) is
related to Bitsadze’s operator L = ∂2

z̄ via

L(u1 + iu2) = π1L(u1, u2) + iπ2L(u1, u2)

for any open set Ω ⊆ R2 ≡ C and any two

complex-valued functions u1, u2 ∈ C 2(Ω).

(2.3.127)

In particular,
L
(
ReU , ImU

)
=
(
Re (LU) , Im (LU)

)
for any open set Ω ⊆ R2 ≡ C and any

complex-valued function U ∈ C 2(Ω).

(2.3.128)

On the other hand, given any open set Ω ⊆ R2 ≡ C along with any complex-valued
function U ∈ C 2(Ω), we have ∂2

z̄U = 0 if and only if f := −∂z̄U is holomorphic in Ω,
and the latter condition further implies that the function g(z) := U(z) + z̄f(z) for each
z ∈ Ω is holomorphic in Ω. As such, the general format of null-solution of ∂2

z̄ in an open
set Ω ⊆ R2 ≡ C is

U(z) = g(z)− z̄f(z) for all z ∈ Ω, where

f and g are holomorphic functions in Ω.
(2.3.129)

This is akin to the description of affine functions on the real line as null-solutions of
the one-dimensional Laplacian d2/dx2, with the role of d/dx now played by the Cauchy-
Riemann operator ∂z̄, with z̄ now playing the role of the variable x, and with holomorphic
functions playing the role of constants.

Specializing the expression of U in (2.3.129) to the case when g(z) := zf(z) for each
z ∈ Ω, we obtain the following particular family of null-solutions for Bitsadze’s operator
L in any given open set Ω ⊆ R2 ≡ C:

U(z) = (z − z̄)f(z), where f

is any holomorphic function in Ω.
(2.3.130)

From this and (2.3.128) we then conclude that
given any holomorphic function f in an open set Ω ⊆ C,
the vector-valued function u = (u1, u2) with components
u1(z) := Re

[
(z − z̄)f(z)

]
and u2(z) := Im

[
(z − z̄)f(z)

]
for

z ∈ Ω is a null-solution of the system L from (2.3.115).

(2.3.131)
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In particular, by further specializing this property to the case when Ω := R2
+ ≡ C+ and

the holomorphic function f(z) := (z + i)−m for z ∈ C+, where m ∈ N is arbitrary, shows
that the vector-valued function u(m) =

(
u

(m)
1 , u

(m)
2
)
with components defined at each

z ∈ C+ as

u
(m)
1 (z) := Re

[
(z − z̄)(z + i)−m

]
and u

(m)
2 (z) := Im

[
(z − z̄)(z + i)−m

]
(2.3.132)

is a null-solution of the system L from (2.3.115). Note that each function u(m) belongs
to
[
C∞(R2

+ )
]2, vanishes identically on ∂R2

+ ≡ R (since z − z̄ = 0 for each z ∈ R), and
for each multi-index α ∈ N2

0 there exists some Cα ∈ (0,∞) with the property that

∣∣∂αu(m)(z)
∣∣ ≤ Cα(1 + |z|)1−m−|α| for all z ∈ R2

+. (2.3.133)

The estimate above implies that, having fixed an aperture parameter κ > 0, for each
multi-index α ∈ N2

0 there exists some Cα ∈ (0,∞) such that

Nκ
(
∂αu(m))(x) ≤ Cα(1 + |x|)1−m−|α| for all x ∈ R ≡ ∂R2

+. (2.3.134)

As such, for any given p ∈ (1,∞), any Muckenhoupt weight w ∈ Ap(R,L1), and any
multi-index α ∈ N2

0, we have Nκ
(
∂αu(m)) ∈ Lp(R, w) as long as either m ≥ 2 or |α| > 0.

Ultimately, this proves that the null-space of the Infinite-Order Regularity Problem for
the system L in R2

+, i.e., the linear space of all vector-valued functions u satisfying
u ∈

[
C∞(R2

+)
]2
, Lu = 0 in R2

+,

Nκ
(
∂αu

)
∈ Lp(R, w) for all α ∈ N2

0,

u
∣∣κ−n.t.

∂R2
+

= 0 at L1-a.e. point on R,

(2.3.135)

is infinite dimensional. In particular, the space of null-solutions of the corresponding
Dirichlet Problem for the system L in R2

+ (cf. (2.1.52)) is infinite dimensional. Since
in item (c) of Theorem 2.6.2 we shall learn that this cannot happen if Adis

L> 6= ∅, we
then conclude that we necessarily have Adis

L> = ∅ in this case. In other words, L> from
(2.3.121) is a weakly elliptic, second-order, homogeneous, real constant coefficient, 2× 2
system in R2 which does not posses any distinguished coefficient tensor.

We may also run a variant of this argument, in which we now start with L> instead
of L. If

L = ∂2
z = 1

4∂
2
x − i

2∂x∂y −
1
4∂

2
y (2.3.136)

is the complex conjugate of Bitsadze’s operator L from (2.3.126), then in place of
(2.3.127)-(2.3.128) we now have

L(u1 + iu2) = π1L
>(u1, u2) + iπ2L

>(u1, u2)

for any open set Ω ⊆ R2 ≡ C and any two

complex-valued functions u1, u2 ∈ C 2(Ω),

(2.3.137)
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and, respectively,
L>
(
ReU , ImU

)
=
(
Re (LU) , Im (LU)

)
for any open set Ω ⊆ R2 ≡ C and any

complex-valued function U ∈ C 2(Ω).

(2.3.138)

Keeping in mind that U is a null-solution of L if and only if U is a null-solution of L
and reasoning as before, we conclude that, for each m ∈ N, the vector-valued function
v(m) =

(
v

(m)
1 , v

(m)
2
)
with components defined at each z ∈ C+ as

v
(m)
1 (z) := Re

[
(z̄ − z)(z̄ − i)−m

]
and v

(m)
2 (z) := Im

[
(z̄ − z)(z̄ − i)−m

]
(2.3.139)

is a null-solution of the system L> from (2.3.121). In turn, this goes to show that the
null-space of the Infinite-Order Regularity Problem for the system L> in R2

+ (formulated
as in (2.3.135) with L> now replacing L) is infinite dimensional. Once this has been
established, from item (c) in Theorem 2.6.2 we then conclude that Adis

L = ∅. The
bottom line is that

L in (2.3.115) is an example of a weakly elliptic, second-order,
homogeneous, real constant coefficient, 2× 2 system in R2, with
the property that Adis

L = ∅ and Adis
L> = ∅.

(2.3.140)

In particular, this goes to show that not every weakly elliptic, second-order, homogeneous,
real constant coefficient, system has a distinguished coefficient tensor.

In relation to the system L from (2.3.115) it is also of interest to identify the space
of boundary traces of its null-solutions whose nontangential maximal function belongs
to a Muckenhoupt weighted Lebesgue space.

Proposition 2.3.12. Fix an integrability index p ∈ (1,∞) along with a Muckenhoupt
weight w ∈ Ap(R,L1), and choose an aperture parameter κ > 0. Also, recall the 2 × 2
system L defined in the plane as in (2.3.115).

Then if u ∈
[
C∞(R2

+)
]2 is a vector-valued function satisfying

Lu = 0 in R2
+, Nκu ∈ Lp(R, w), (2.3.141)

and such that the nontangential boundary trace

f := u
∣∣κ−n.t.

∂R2
+

exists (in C2) at L1-a.e. point on R, (2.3.142)

it follows that the function f belongs to
[
Lp(R, w)

]2 and, if f1, f2 ∈ Lp(R, w) are the
scalar components of f (i.e., f = (f1, f2)), then with H denoting the Hilbert transform
on the real line (cf. (2.1.21)) one has

Hf1 = f2 at L1-a.e. point on R. (2.3.143)

In the converse direction, for any given f ∈ Lp(R, w) there exists a vector-valued
function u ∈

[
C∞(R2

+)
]2 satisfying

Lu = 0 in R2
+, Nκu ∈ Lp(R, w), and

u
∣∣κ−n.t.

∂R2
+

= (f,Hf) at L1-a.e. point on R.
(2.3.144)
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All together, the space of admissible boundary data for the Dirichlet Problem formu-
lated in terms of Muckenhoupt weighted Lebesgue spaces for the system L in the upper
half-plane, i.e.,{

u
∣∣κ−n.t.

∂R2
+

: u ∈
[
C∞(R2

+)
]2
, Lu = 0 in R2

+, Nκu ∈ Lp(R, w), (2.3.145)

and u
∣∣κ−n.t.

∂R2
+

exists at L1-a.e. point on R
}
,

is precisely {
(f,Hf) : f ∈ Lp(R, w)

}
. (2.3.146)

As a consequence of this and (2.3.124), one also has{
u
∣∣κ−n.t.

∂R2
+

: u ∈
[
C∞(R2

+)
]2
, L>u = 0 in R2

+, Nκu ∈ Lp(R, w),

and u
∣∣κ−n.t.

∂R2
+

exists at L1-a.e. point on R
}

=
{
(f,−Hf) : f ∈ Lp(R, w)

}
. (2.3.147)

Proof. That the function f belongs to
[
Lp(R, w)

]2 is clear from
∣∣u∣∣κ−n.t.

∂R2
+

∣∣ ≤ Nκu, the fact
that u

∣∣κ−n.t.

∂R2
+

is L1-measurable (cf. [93]), and the last property in (2.3.141).

To proceed, fix a function u ∈
[
C∞(R2

+)
]2 satisfying (2.3.141)-(2.3.142) and denote

by u1, u2 ∈ C∞(R2
+) its scalar components. Hence, u = (u1, u2) in R2

+. Also, pick an
arbitrary ε > 0 and define

Uε(z) := u1(z + εi) + iu2(z + εi) for each z ∈
(
R2

+ − εi
)
. (2.3.148)

Then Uε ∈ C∞(R2
+−εi) and, as seen from (2.3.127), the fact that Lu = 0 in R2

+ translates
into ∂2

z̄Uε = 0 in R2
+ − εi. Granted this, (2.3.129) then guarantees the existence of two

holomorphic functions fε, gε in R2
+ − εi with the property that

Uε(z) = gε(z)− z̄fε(z) for each z ∈
(
R2

+ − εi
)
. (2.3.149)

More specifically, the unique holomorphic functions f, g which do the job in (2.3.149) are

fε(z) := −∂z̄Uε(z) and gε(z) := Uε(z) + z̄fε(z) for each z ∈
(
R2

+ − εi
)
. (2.3.150)

Henceforth, we agree to restrict Uε, fε, gε to R2
+. With this interpretation, introduce

Wε(z) := gε(z)− zfε(z) for each z ∈ R2
+. (2.3.151)

Hence, Wε is holomorphic in R2
+, extends continuously to R2

+, and

Uε(z)−Wε(z) = 2iyfε(z) = −2iy
(
∂z̄Uε

)
(z)

for each z = x+ iy ∈ R2
+.

(2.3.152)
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From the fact that ∂2
z̄Uε = 0 in R2

+ we also conclude that 0 = ∂2
z∂

2
z̄Uε = 1

16∆2Uε, i.e., the
function Uε is bi-harmonic in R2

+. Select θ ∈ (0, 1) and κ̃ ∈ (0, κ) both small so that

1 + θ + κ̃

1− θ < 1 + κ. (2.3.153)

Fix an arbitrary point x ∈ R ≡ ∂R2
+ and pick some zo = xo+ iyo ∈ Γκ̃(x). The inequality

demanded in (2.3.153) ensures that

B(zo, θyo) ⊆ Γκ(x). (2.3.154)

Based on interior estimates for bi-harmonic functions (cf. [92, Theorem 11.12, p. 415]),
(2.3.152), and (2.3.154) we may then estimate, for some constant C = C(θ) ∈ (0,∞),∣∣Uε(zo)−Wε(zo)

∣∣ = 2yo
∣∣(∂z̄Uε)(zo)∣∣ ≤ √2yo|(∇Uε)(zo)|

≤ C
 
B(zo,θyo)

|Uε| dL2 ≤ C
(
NκUε

)
(x). (2.3.155)

Taking the supremum over all zo ∈ Γκ̃(x) this ultimately yields(
Nκ̃(Uε −Wε)

)
(x) ≤ C

(
NκUε

)
(x) for each x ∈ R ≡ ∂R2

+. (2.3.156)

In turn, (2.3.156) implies

Nκ̃Wε ≤ Nκ̃Uε +Nκ̃(Uε −Wε) ≤ NκUε + CNκUε

= (1 + C)NκUε ≤ (1 + C)Nκu on R ≡ ∂R2
+. (2.3.157)

Upon recalling that the nontangential maximal function Nκ̃Wε is non-negative and lower-
semicontinuous, we then conclude from (2.3.157), the last property in (2.3.141), and
(2.2.337) that

Nκ̃Wε ∈ L1
(
R , L

1(x)
1+|x|

)
. (2.3.158)

Let us record our progress. The argument so far shows that the function Wε is holo-
morphic in R2

+, extends continuously to R2
+, and there exists some aperture parameter

κ̃ > 0 such that Nκ̃Wε belongs to L1
(
R , L

1(x)
1+|x|

)
. These properties allow us to invoke the

Cauchy reproducing formula (proved in [93] in much more general geometric settings)
which asserts that

Wε(z) = 1
2πi

ˆ
R

(
Wε

∣∣
R
)
(y)

y − z
dy, for each z ∈ R2

+. (2.3.159)

Since fε, gε extend continuously to R2
+, from (2.3.149), (2.3.151), and the fact that z = z̄

on R ≡ ∂R2
+, we conclude that

Wε

∣∣
R = Uε

∣∣
R on R ≡ ∂R2

+. (2.3.160)

Hence, if we abbreviate
hε := Uε

∣∣
R on R ≡ ∂R2

+, (2.3.161)
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after taking the nontangential boundary traces of both sides in (2.3.159) and using the
Plemelj jump-formula for the Cauchy operator (which continues to be valid in this setting;
see [93]) we arrive at

hε =
(1

2I + i
2H
)
hε at L1-a.e. point on R, (2.3.162)

where I is the identity and H is the Hilbert transform on R. Hence, on the one hand,
we may rewrite (2.3.162) simply as

Hhε = −ihε at L1-a.e. point on R. (2.3.163)

On the other hand, from (2.3.161) and (2.3.148) we see that

hε(x) = u1(x+ εi) + iu2(x+ εi) for L1-a.e. x ∈ R. (2.3.164)

In turn, this implies

|hε(x)| ≤
√

2
(
Nκu

)
(x) for L1-a.e. x ∈ R, (2.3.165)

and, when used in concert with (2.3.142), that

lim
ε→0+

hε(x) =
(
u1
∣∣κ−n.t.

∂R2
+

)
(x) + i

(
u2
∣∣κ−n.t.

∂R2
+

)
(x)

= f1(x) + if2(x) for L1-a.e. x ∈ R. (2.3.166)

Thanks to (2.3.165)-(2.3.166) and the last property in (2.3.141), we may now invoke
Lebesgue’s Dominated Convergence Theorem to conclude that

lim
ε→0+

hε = f1 + if2 in Lp(R, w). (2.3.167)

Having established this, on account of (2.3.163) and the continuity of the Hilbert trans-
form H on the Muckenhoupt weighted Lebesgue space Lp(R, w) we obtain

H(f1 + if2) = −i(f1 + if2) at L1-a.e. point on R. (2.3.168)

The idea is now write u = Reu + i Im u and observe that, since the coefficients
of the system L are real, Reu ∈

[
C∞(R2

+)
]2 and Im u ∈

[
C∞(R2

+)
]2 enjoy the same

properties as the function u in (2.3.141)-(2.3.142). Granted what we have proved already,
it follows that if φ1, φ2 are the scalar components of (Reu)

∣∣κ−n.t.

∂R2
+

and if ψ1, ψ2 are the

scalar components of (Im u)
∣∣κ−n.t.

∂R2
+

then φ1, φ2, ψ1, ψ2 are real-valued functions belonging
to Lp(R, w), and the conclusion in (2.3.168) written separately for Reu and Im u gives

H(φ1 + iφ2) = −i(φ1 + iφ2) at L1-a.e. point on R, (2.3.169)

and, respectively,

H(ψ1 + iψ2) = −i(ψ1 + iψ2) at L1-a.e. point on R. (2.3.170)
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In particular, taking the real parts in (2.3.169)-(2.3.170) (keeping in mind that H maps
real-valued functions into real-valued functions) leads to the conclusion that

Hφ1 = φ2 and Hψ1 = ψ2. (2.3.171)

Upon observing that u
∣∣κ−n.t.

∂R2
+

= (Reu)
∣∣κ−n.t.

∂R2
+

+ i (Im u)
∣∣κ−n.t.

∂R2
+

implies f1 = φ1 + iψ1 and
f2 = φ2 + iψ2, from (2.3.171) we readily obtain the formula claimed in (2.3.143).

In the converse direction, suppose first that the function f ∈ Lp(R, w) is real-valued.
Then Hf ∈ Lp(R, w) and work in [93] then ensures that

U(z) := 1
2πi

ˆ
R

(f + iHf)(y)
y − z

dy, for each z ∈ R2
+, (2.3.172)

is a holomorphic function in R2
+ satisfying NκU ∈ Lp(R, w) and

U
∣∣κ−n.t.

∂R2
+

=
(1

2I + i
2H
)
(f + iHf) = f + iHf at L1-a.e. point on R, (2.3.173)

since the Hilbert transform satisfies H2 = −I on Lp(R, w). If we now set u1 := ReU and
u2 := ImU , then u := (u1, u2) ∈

[
C∞(R2

+)
]2 is a vector-valued function with real-valued

scalar components. Thanks to (2.3.128), we have

Lu = L
(
ReU , ImU

)
=
(
Re (∂2

z̄U) , Im (∂2
z̄U)

)
= 0 ∈ C2 in R2

+, (2.3.174)

since ∂z̄U = 0 in R2
+ by the Cauchy-Riemann equations. Also, Nκu = NκU ∈ Lp(R, w)

given that, by design, |u| = |U |. Finally, at L1-a.e. point on R we have

u
∣∣κ−n.t.

∂R2
+

=
(
ReU

∣∣κ−n.t.

∂R2
+
, ImU

∣∣κ−n.t.

∂R2
+

)
= (f,Hf), (2.3.175)

by virtue of (2.3.173) and the fact that f is real-valued. Thus, u satisfies all requirements
in (2.3.144).

To deal with an arbitrary function f ∈ Lp(R, w) which is not necessarily real-valued,
denote by φ, ψ the real and imaginary parts of f . In particular, f = φ + iψ. From
what we have proved so far, there exist v, w ∈

[
C∞(R2

+)
]2 as in (2.3.144) such that

v
∣∣κ−n.t.

∂R2
+

= (φ,Hφ) and w
∣∣κ−n.t.

∂R2
+

= (ψ,Hψ). Then the function u := v + iw ∈
[
C∞(R2

+)
]2

is as in (2.3.144) and satisfies u
∣∣κ−n.t.

∂R2
+

= (f,Hf), as wanted.

Remark 2.3.13. Suppose w ∈ Ap(R,L1) for some p ∈ (1,∞) and choose an aperture
parameter κ > 0. Also, let L be the 2×2 system from (2.3.115) and assume u : R2

+ → C2

is a function satisfying

u ∈
[
C∞(R2

+)
]2
, Lu = 0 in R2

+, Nκu ∈ Lp(R, w),

and u
∣∣κ−n.t.

∂R2
+

= 0 at L1-a.e. point on R.
(2.3.176)

In particular, u satisfies (2.3.141)-(2.3.142) with f = (f1, f2) = (0, 0). Retaining notation
from the proof of Proposition 2.3.12, from (2.3.159), (2.3.160), and (2.3.161) we see that

Wε(z) = 1
2πi

ˆ
R

hε(y)
y − z

dy, for each z ∈ R2
+. (2.3.177)
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Let U := u1 + iu2, where u1, u2 are the two scalar components of the C2-valued function
u. On the one hand, from (2.3.148)-(2.3.150) it is clear that

lim
ε→0+

Wε(z) = U(z) + (z − z̄)
(
∂z̄U

)
(z) for fixed each z ∈ R2

+. (2.3.178)

On the other hand, for each fixed z ∈ R2
+, on account of (2.3.167) and the fact that

we currently have f1 + if2 = 0, we conclude that the limit as ε → 0+ of the integral in
(2.3.177) is zero. Based on these observations and (2.3.177), we ultimately conclude that

if u is as in (2.3.176) then the C-valued function U := u1 + iu2

(where u1, u2 are the two scalar components of the C2-valued
function u) satisfies U(z) = (z̄ − z)

(
∂z̄U

)
(z) for each z ∈ R2

+.
(2.3.179)

The same type of argument also shows that

U ∈ C∞(R2
+)

∂2
z̄U = 0 in R2

+

NκU ∈ Lp(R, w)

U
∣∣κ−n.t.

∂R2
+

= 0 on R


=⇒ U(z) = (z̄ − z)

(
∂z̄U

)
(z) for all z ∈ R2

+. (2.3.180)

Bearing in mind that for any U as in the left side of (2.3.180) the function f := −∂z̄U is
holomorphic in R2

+, we may recast the conclusion in (2.3.180) as saying that there exists
some holomorphic function f in R2

+ such that U(z) = (z − z̄)f(z) for each z ∈ R2
+. In

particular, this shows that that the choice g(z) := zf(z) which has led to the conclusion
in (2.3.130) is actually canonical in the case when Ω = R2

+, the nontangential trace of
U vanishes, and the nontangential maximal function of U belongs to a Muckenhoupt
weighted Lebesgue space.

By further building on Proposition 2.3.12, below we identify the space of admissible
boundary data for the Muckenhoupt weighted version of the Regularity Problem for the
system L from (2.3.115) in the upper half-plane.

Proposition 2.3.14. Fix an integrability index p ∈ (1,∞) along with a Muckenhoupt
weight w ∈ Ap(R,L1), and choose an aperture parameter κ > 0. Also, recall the 2 × 2
system L defined in the plane as in (2.3.115). Then the space of admissible boundary
data for the Muckenhoupt weighted version of the Regularity Problem for the system L

in the upper half-plane, i.e.,{
u
∣∣κ−n.t.

∂R2
+

: u ∈
[
C∞(R2

+)
]2
, Lu = 0 in R2

+, Nκu,Nκ(∇u) ∈ Lp(R, w),

and u
∣∣κ−n.t.

∂R2
+

exists at L1-a.e. point on R
}
, (2.3.181)

coincides with {
(f,Hf) : f ∈ Lp1(R, w)

}
. (2.3.182)



2. Singular integral operators and quantitative flatness 153

As a consequence of this and (2.3.124), one also has{
u
∣∣κ−n.t.

∂R2
+

: u ∈
[
C∞(R2

+)
]2
, L>u = 0 in R2

+, Nκu,Nκ(∇u) ∈ Lp(R, w),

and u
∣∣κ−n.t.

∂R2
+

exists at L1-a.e. point on R
}

=
{
(f,−Hf) : f ∈ Lp1(R, w)

}
. (2.3.183)

Proof. Consider some function u = (u1, u2) ∈
[
C∞(R2

+)
]2 satisfying Lu = 0 in R2

+,
with Nκu,Nκ(∇u) ∈ Lp(R, w), and such that u

∣∣κ−n.t.

∂R2
+

exists at L1-a.e. point on R. In

particular, Proposition 2.3.12 guarantees that u
∣∣κ−n.t.

∂R2
+

= (f,Hf) for some f ∈ Lp(R, w).

Then actually f = u1
∣∣κ−n.t.

∂R2
+
∈ Lp1(R, w), thanks to Proposition 2.2.49 (used with u1 in

place of u and with Ω := R2
+). This proves that the nontangential boundary trace u

∣∣κ−n.t.

∂R2
+

belongs to the space in (2.3.182).
Conversely, start with a function f ∈ Lp1(R, w), which is first assumed to be real-

valued. Work in [93] ensures that Hf ∈ Lp1(R, w) and

U(z) := 1
2πi

ˆ
R

(f + iHf)(y)
y − z

dy, for each z ∈ R2
+, (2.3.184)

is a holomorphic function in R2
+ satisfying NκU, Nκ(∇U) ∈ Lp(R, w) and, much as in

(2.3.173), U
∣∣κ−n.t.

∂R2
+

= f + iHf . Then u :=
(
ReU, ImU) ∈

[
C∞(R2

+)
]2 is a vector-valued

function with real-valued scalar components, satisfying Nκu, Nκ(∇u) ∈ Lp(R, w) and

u
∣∣κ−n.t.

∂R2
+

=
(
ReU

∣∣κ−n.t.

∂R2
+
, ImU

∣∣κ−n.t.

∂R2
+

)
= (f,Hf), (2.3.185)

since f is real-valued. Given that, much as in (2.3.174) we also have Lu = 0 in R2
+, it

follows that (f,Hf) belongs to the space in (2.3.181). Finally, the general case when
f ∈ Lp1(R, w) is not necessarily real-valued is dealt with based on what we have just
proved, decomposing f into its real and imaginary parts. This eventually shows that the
space from (2.3.182) is contained in the space from (2.3.181). By double inclusion, we
may therefore conclude that the said spaces are in fact equal.

In the last part of this section we elaborate on connections with Poisson kernels,
introduced in Theorem 1.2.4. We wish to augment Theorem 1.2.4 with the following
result proved in [84], which identifies yet another scenario when a Poisson kernel exists.

Proposition 2.3.15. Let L be an M × M homogeneous constant complex coefficient
second-order system in Rn which is weakly elliptic and satisfies Adis

L 6= ∅. Fix a coefficient
tensor A ∈ Adis

L and bring in the function k : Rn \{0} → CM×M from (2.3.80), associated
with A as in item (f) of Proposition 2.3.5. Then the matrix-valued function

P : Rn−1 −→ CM×M defined by

P (x′) := 2k(x′, 1) for each x′ ∈ Rn−1
(2.3.186)

is a Poisson kernel for L in Rn+ (in the sense that it satisfies the properties in Theo-
rem 1.2.4).
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Based on the mere knowledge that the system L ∈ L∗ has a Poisson kernel in Rn+,
the Muckenhoupt weighted Dirichlet Problem for L in the upper half-space (formulated
as in (2.1.52) with Ω := Rn+) has been shown in [82] to be always solvable. In concert
with Proposition 2.3.12, this solvability result offers an alternative proof of (2.3.140).

2.4 Boundedness and invertibility of double layer poten-
tials

The key result in this work is Theorem 2.4.4 which elaborates on the nature of the
operator-norm of a singular integral operator T defined on the boundary of a UR domain
Ω whose integral kernel has a special algebraic format, through the presence of the inner
product between the outward unit normal ν to Ω and the chord, as a factor. Proving this
theorem requires extensive preparations and takes quite a bit of effort, but the redeeming
feature of Theorem 2.4.4 is that the said operator-norm estimate involves the BMO semi-
norm of ν as a factor. This trademark attribute (which is shared by the double layer
operator KA associated with a distinguished coefficient tensor A) entails that the flatter
∂Ω is, the smaller ‖T‖ is. In particular, having ∂Ω sufficiently flat ultimately allows us
to invert 1

2I+KA on Muckenhoupt weighted Lebesgue spaces via a Neumann series, and
this is of paramount importance later on, when dealing with boundary value problems
via the method of boundary layer potentials.

2.4.1 Estimates for Euclidean singular integral operators

We begin with a few generalities of functional analytic nature. Given two normed vector
spaces

(
X, ‖·‖X

)
and

(
Y, ‖·‖Y

)
, consider a positively homogeneous mapping T : X → Y ,

i.e., a function T sending X into Y and satisfying T (λu) = λT (u) for each u ∈ X and
each λ ∈ (0,∞) (note that taking u := 0 ∈ X and λ := 2 implies T (0) = 0 ∈ Y ).
We shall denote by

‖T‖X→Y := sup
{
‖Tu‖Y : u ∈ X, ‖u‖X = 1

}
∈ [0,∞] (2.4.1)

the operator norm of such a mapping T ; in particular,

‖Tu‖Y ≤ ‖T‖X→Y ‖u‖X for each u ∈ X. (2.4.2)

It is then straightforward to check that a positively homogeneous mapping T : X → Y

is continuous at 0 ∈ X if and only if T is bounded (i.e., it maps bounded subsets of X
into bounded subsets of Y ) if and only if ‖T‖X→Y < +∞.

Consider now the special case when X,Y are Lebesgue spaces (associated with a
generic measure space) and T is a sub-linear mapping of X into Y (i.e., T : X → Y

satisfies T (λu) = |λ|T (u) for each u ∈ X and each scalar λ, as well as T (u+w) ≤ Tu+Tw
at a.e. point, for each u,w ∈ X). Then, for each u,w ∈ X we have |Tu−Tw| ≤ T (u−w)
at a.e. point, hence ‖Tu− Tw‖Y ≤ ‖T (u− w)‖Y ≤ ‖T‖X→Y ‖u− w‖X . Consequently,

a sub-linear map T : X → Y is continuous

if and only if ‖T‖X→Y < +∞.
(2.4.3)
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Let us now start in earnest. To facilitate dealing with Theorem 2.4.2 a little later,
we first isolate a useful estimate in the lemma below.

Lemma 2.4.1. Fix an integrability exponent p ∈ (1,∞) along with a Muckenhoupt weight
w ∈ Ap(Rn,Ln). Then there exists a constant C ∈ (0,∞) which only depends on n, p,
and [w]Ap, with the property that for each x ∈ Rn, each r ∈ (0,∞), and real-valued
function A ∈W 1,1

loc (Rn) with

∇A ∈
[
BMO(Rn,Ln)

]n (2.4.4)

one has
ˆ

y∈Rn
|x−y|>r

∣∣A(x)−A(y)− 〈∇A(y), x− y〉
∣∣p

|x− y|(n+1)p dw(y)

≤ Crpw
(
B(x, r)

)∥∥∇A∥∥p[BMO(Rn,Ln)]n . (2.4.5)

Proof. For starters, from Lemma 2.2.45 and (2.4.4) we see that

∇A ∈
[
L1

loc(Rn, w)
]n
. (2.4.6)

Next, recall from (2.2.311) that there exists ε ∈ (0, p − 1) which depends only on p, n,
and [w]Ap , such that

w ∈ Ap−ε(Rn,Ln). (2.4.7)

Fix x ∈ Rn, r ∈ (0,∞), and a function A as in the statement of the lemma. By breaking
up the integral dyadically, estimating the denominator, and using the doubling property
of w ∈ Ap−ε(Rn,Ln) (cf. item (5) of Proposition 2.2.42) we may dominate

ˆ

y∈Rn
|x−y|>r

∣∣A(x)−A(y)− 〈∇A(y), x− y〉
∣∣p

|x− y|(n+1)p dw(y)

≤ Cn,p
∞∑
j=1

w(B(x, 2jr))
2j(n+1)p · Ij ≤ Cn,p,w

∞∑
j=1

2jn(p−ε)w(B(x, r))
2j(n+1)p · Ij , (2.4.8)

where, for each j ∈ N,

Ij := 1
w(B(x, 2jr))

ˆ

2j−1r<|x−y|≤2jr

∣∣A(x)−A(y)− 〈∇A(y), x− y〉
∣∣p dw(y). (2.4.9)

To proceed, for each j ∈ N introduce

Aj(z) := A(z)−
(  

B(x,2jr)
∇Adw

)
· z for each z ∈ Rn (2.4.10)

(making use of (2.4.6) to ensure that this is meaningful), and observe that Ij , originally
defined in (2.4.9), does not change if the function A is replaced by Aj . Consequently, for
each j ∈ N we have

Ij ≤ Cp · IIj + Cp · IIIj , (2.4.11)
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where

IIj := 1
w(B(x, 2jr))

ˆ

2j−1r<|x−y|≤2jr

∣∣Aj(x)−Aj(y)|p dw(y), (2.4.12)

and

IIIj := 2jprp

w(B(x, 2jr))

ˆ

2j−1r<|x−y|≤2jr

∣∣∇Aj(y)
∣∣p dw(y). (2.4.13)

Fix an integrability exponent q ∈ (n,∞) and pick j ∈ N arbitrary. Then for each y ∈ Rn

such that 2j−1r < |x− y| ≤ 2jr we may estimate

|Aj(x)−Aj(y)| ≤ Cq,n|x− y|
(  
|x−z|≤2|x−y|

|∇Aj(z)|q dz
)1/q

≤ Cq,n,w · 2jr
(  

B(x,2|x−y|)
|∇Aj |pq dw

)1/(pq)

≤ Cq,n,w · 2jr
(  

B(x,2|x−y|)

∣∣∣∇A−  
B(x,2|x−y|)

∇Adw
∣∣∣pq dw)1/(pq)

+ Cq,n,w · 2jr
∣∣∣  

B(x,2jr)
∇Adw −

 
B(x,2|x−y|)

∇Adw
∣∣∣

≤ Cq,n,w · 2jr‖∇A‖[BMO(Rn,w)]n

≤ Cq,n,w · 2jr‖∇A‖[BMO(Rn,Ln)]n . (2.4.14)

Above, the first estimate is provided by Mary Weiss’ Lemma (cf. [19, Lemma 1.4, p. 144],
or [47, Lemma 2.10, p. 477]), the second estimate uses |x− y| ≤ 2jr and Lemma 2.2.41,
the third estimate is implied by (2.4.10) which gives ∇Aj = ∇A −

ffl
B(x,2jr)∇Adw, the

penultimate estimate is a consequence of the John-Nirenberg inequality, (2.2.44) (written
with w in place of σ), and the doubling property of w, while the final estimate in (2.4.14)
comes from Lemma 2.2.46. In turn, (2.4.12) and (2.4.14) yield

IIj ≤ C · 2jprp‖∇A‖p[BMO(Rn,Ln)]n . (2.4.15)

By combining (2.4.13) and (2.4.10) we also see that

IIIj ≤ 2jprp
 
B(x,2jr)

∣∣∣∇A−  
B(x,2jr)

∇Adw
∣∣∣p dw

≤ C · 2jprp‖∇A‖[BMO(Rn,w)]n ≤ C · 2jprp‖∇A‖
p
[BMO(Rn,Ln)]n , (2.4.16)

where the last inequality is once again provided by Lemma 2.2.46. From (2.4.15)-(2.4.16)
and (2.4.11) we then conclude that

Ij ≤ C · 2jprp‖∇A‖p[BMO(Rn,Ln)]n for each j ∈ N. (2.4.17)

Using this back in (2.4.8) now readily yields (2.4.5), since
∑∞
j=1 2−jnε <∞.
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The next result, dealing with boundedness for certain type of singular integral oper-
ators in the Euclidean context, refines work in [53, Theorem 4.34, p. 2725].

Theorem 2.4.2. Pick an integrability exponent p ∈ (1,∞) along with a Muckenhoupt
weight w ∈ Ap(Rn−1,Ln−1). Recall the dual weight w′ := w1−p′ ∈ Ap′(Rn−1,Ln−1) of
w, where p′ ∈ (1,∞) is the Hölder conjugate exponent of p. Next, fix three numbers
n,m, d ∈ N with n ≥ 2, and let N = N(n,m) ∈ N be a sufficiently large integer. Let
A ∈W 1,1

loc (Rn−1) be a complex-valued function with the property that

∇A ∈
[
BMO(Rn−1,Ln−1)

]n−1
. (2.4.18)

Also, for each j ∈ {1, . . . ,m} consider a real-valued function Bj ∈ W 1,1
loc (Rn−1) with the

property that

∇Bj ∈
[
BMO(Rn−1,Ln−1)

]n−1
, (2.4.19)

and set B := (B1, . . . , Bm). In addition, consider a function Φ : Rn−1 → Rd for which
there exists c ∈ (0, 1] such that

c|x′ − y′| ≤ |Φ(x′)− Φ(y′)| ≤ c−1|x′ − y′| for all x′, y′ ∈ Rn−1; (2.4.20)

hence, Φ is bi-Lipschitz. Going further, suppose F ∈ CN+2(Rm) is a complex-valued
function which is even, has the property that ∂αF belongs to L1(Rm,Lm) for every multi-
index α ∈ Nn0 with |α| ≤ N + 2, and

sup
X∈Rm

[
(1 + |X|)|F (X)|

]
< +∞. (2.4.21)

Finally, for each function g ∈ Lp(Rn−1, wLn−1) and each point x′ ∈ Rn−1 define

TA,BΦ,∗ g(x′) := sup
ε>0

∣∣∣∣∣
ˆ

y′∈Rn−1

|Φ(x′)−Φ(y′)|>ε

A(x′)−A(y′)− 〈∇A(y′), x′ − y′〉
|x′ − y′|n

×

× F
(B(x′)−B(y′)
|x′ − y′|

)
g(y′) dy′

∣∣∣∣∣. (2.4.22)

Then TA,BΦ,∗ is a well-defined, continuous, sub-linear mapping of the Muckenhoupt
weighted Lebesgue space Lp(Rn−1, wLn−1) into itself, and there exists some constant
C(n, p, w) ∈ (0,∞) which depends only on n, p, and [w]Ap with the property that∥∥∥TA,BΦ,∗

∥∥∥
Lp(Rn−1,wLn−1)→Lp(Rn−1,wLn−1)

(2.4.23)

≤ C(n, p, w) · c−3n
( ∑
|α|≤N+2

‖∂αF‖L1(Rm,Lm) + sup
X∈Rm

(1 + |X|)|F (X)|
)

× ‖∇A‖[BMO(Rn−1,Ln−1)]n−1

(
1 +

m∑
j=1
‖∇Bj‖[BMO(Rn−1,Ln−1)]n−1

)N
.
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Theorem 2.4.2 is an intricate piece of machinery allowing us to estimate, in a rather
detailed and specific manner, the maximal operator associated with integral kernels that
exhibit a certain type of algebraic structure. We shall put this to good use in Lemma 2.4.3
which, in turn, is a basic ingredient in the proof of Theorem 2.4.4 (the main result in
this section). This being said, Theorem 2.4.2 is useful for a variety of other purposes.

To give an example, work in the one-dimensional setting and recall the Hilbert
transform H on the real line from (2.1.21). Also, consider a complex-valued function
A ∈W 1,1

loc (R) with the property that A′ ∈ BMO(R,L1). LetMA stand for the operator of
pointwise multiplication by A, and denote by D the one-dimensional derivative operator
f 7→ df/dx on the real line. Finally, fix an integrability exponent p ∈ (1,∞) along
with a Muckenhoupt weight w ∈ Ap(R,L1). Then the commutator [H,MAD], originally
defined on C∞0 (R), extends to a bounded linear mapping on Lp(R, w) with operator
norm ≤ C ‖A′‖BMO(R,L1) where C ∈ (0,∞) is an absolute constant. Indeed, given any
f ∈ C∞0 (R), at L1-a.e. differentiability point x ∈ R for A (hence, at L1-a.e. x ∈ R)
we may write (keeping in mind that, since the Hilbert transform is a multiplier, H
commutes with differentiation):

[H,MAD]f(x) = H(Af ′)(x)−A(x) d
dx

(Hf(x)) = H(Af ′)(x)−A(x)(Hf ′)(x)

= lim
ε→0+

1
π

ˆ

y∈R
|x−y|>ε

A(y)−A(x)
x− y

f ′(y) dy

= − lim
ε→0+

(A(y)−A(x)
x− y

f(y)
∣∣∣y=x+ε

y=x−ε

)
− lim
ε→0+

1
π

ˆ

y∈R
|x−y|>ε

d

dy

(A(y)−A(x)
x− y

)
f(y) dy

= lim
ε→0+

1
π

ˆ

y∈R
|x−y|>ε

A(x)−A(y)−A′(y)(x− y)
(x− y)2 f(y) dy. (2.4.24)

(The fact that the limit in the third line of (2.4.24) vanishes is ensured by the differen-
tiability of A at x, and the continuity of f at x). Granted this formula, Theorem 2.4.2
applies with n = 2, m = 1, Φ the identity, B ≡ 0, and taking F ∈ C∞0 (R) to be an even
function with F (0) = 1. The desired conclusion then follows from (2.4.23).

To offer another example where Theorem 2.4.2 plays a decisive role, fix κ ∈ (0,∞)
and suppose Σ is a κ-CAC passing through infinity in C. Recall the Cauchy integral
operator on the chord-arc curve Σ acts on each f ∈ L1(Σ, dH1(ζ)

1+|ζ|
)
according to

(CΣf)(z) := lim
ε→0+

1
2πi

ˆ

ζ∈Σ
|z−ζ|>ε

f(ζ)
ζ − z

dζ for H1-a.e. z ∈ Σ. (2.4.25)
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Since from Proposition 2.2.9 we know that Σ is the topological boundary of a UR domain,
Proposition 2.3.3 guarantees that CΣ is a well-defined, linear, and bounded operator on
Lp(Σ, w) whenever p ∈ (1,∞) and w ∈ Ap(Σ, σ), where σ := H1bΣ. Let us indicate
how Theorem 2.4.2 may be used to show that

the flatter the chord-arc curve Σ becomes, the closer the corre-
sponding Cauchy operator becomes (with proximity measured in the
operator norm on Muckenhoupt weighted Lebesgue spaces) to the
(suitably normalized) Hilbert transform on the real line.

(2.4.26)

A brief discussion on this topic may be found in [23, pp. 138-139]. In order to facilitate
a direct comparison between the two singular integral operators mentioned in (2.4.26),
it is natural to consider the pull-back of CΣ to R under the arc-length parametrization
R 3 s 7→ z(s) ∈ C of Σ. After natural adjustments in notation, this corresponds to
the mapping sending each f ∈ Lp(R, w) into

(CRf)(t) := lim
ε→0+

i

2π

ˆ

s∈R
|z(t)−z(s)|>ε

z ′(s)
z(t)− z(s)f(s) ds for L1-a.e. t ∈ R, (2.4.27)

where p ∈ (1,∞) and w ∈ Ap(R,L1). Recall from (2.2.94) that the function z(·) is
bi-Lipschitz, specifically,

(1 + κ)−1|t− s| ≤ |z(t)− z(s)| ≤ |t− s| for all t, s ∈ R. (2.4.28)

Keeping this in mind, a suitable application1 of [54, Proposition B.2] allows to change
the truncation in (2.4.27) to

(CRf)(t) = lim
ε→0+

i

2π

ˆ

s∈R
|t−s|>ε

z ′(s)
z(t)− z(s)f(s) ds for L1-a.e. t ∈ R, (2.4.29)

for each f ∈ Lp(R, w) with p ∈ (1,∞) and w ∈ Ap(R,L1). We wish to compare the
operator written in this form with the (suitably normalized) Hilbert transform on the real
line, acting on functions f ∈ Lp(R, w), where p ∈ (1,∞) and w ∈ Ap(R,L1), according to

(Hf)(t) := lim
ε→0+

1
π

ˆ

s∈R
|t−s|>ε

f(s)
t− s

ds for L1-a.e. t ∈ R. (2.4.30)

Fix p ∈ (1,∞), w ∈ Ap(R,L1), and f ∈ Lp(R, w). Then at L1-a.e. t ∈ R we may express(
CR − (i/2)H

)
f(t) = lim

ε→0+

i

2π

ˆ

s∈R
|t−s|>ε

( z ′(s)
z(t)− z(s) −

1
t− s

)
f(s) ds

= lim
ε→0+

1
2πi

ˆ

s∈R
|t−s|>ε

z(t)− z(s)− z ′(s)(t− s)
(z(t)− z(s))(t− s) f(s) ds. (2.4.31)

1While [54, Proposition B.2] is stated for ordinary Lebesgue spaces, the same type of result holds in
the class of Muckenhoupt weighted Lebesgue spaces (thanks to the fact that the phenomenon in question
is local in nature, and (2.2.338)).
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Pick an even function φ ∈ C∞0 (C) satisfying (with κ as in (2.4.28))

0 ≤ φ ≤ 1, φ ≡ 0 near 0 ∈ C, suppφ ⊆ B(0, 2),

φ ≡ 1 on B(0, 1) \B
(
0, (1 + κ)−1), (2.4.32)

along with a function ψ ∈ C∞0 (R) which is even and satisfies

0 ≤ ψ ≤ 1, suppψ ⊆ [−4, 4], and ψ ≡ 1 on [−2, 2] \
[
− 1

2 ,
1
2
]
. (2.4.33)

We may then invoke Theorem 2.4.2 with n := 2, m := 3, and

Φ(t) := t, A(t) := z(t), B(t) :=
(
Re z(t), Im z(t), t

)
for all t ∈ R,

F (a, b, c) := c

a+ ib
φ(a+ ib)ψ(c) for all (a, b, c) ∈ R3,

(2.4.34)

and conclude from (2.4.23) and (2.2.103) that there exist some integer Ñ ∈ N and some
constant Cp,w ∈ (0,∞) such that, with κ as in (2.4.28), we have

∥∥CR − (i/2)H
∥∥
Lp(R,w)→Lp(R,w) ≤ Cp,w(1 + κ)Ñ

√
κ. (2.4.35)

This lends credence to (2.4.26) since it implies

∥∥CR − (i/2)H
∥∥
Lp(R,w)→Lp(R,w) = O(

√
κ ) as κ → 0+. (2.4.36)

After this preamble, we are ready to present the proof of Theorem 2.4.2.

Proof of Theorem 2.4.2. Throughout, let us abbreviate

K(x′, y′) := A(x′)−A(y′)− 〈∇A(y′), x′ − y′〉
|x′ − y′|n

F
(B(x′)−B(y′)
|x′ − y′|

)
, (2.4.37)

for each x′ ∈ Rn−1 and Ln−1-a.e. y′ ∈ Rn−1. That, to begin with, TA,B∗ g(x′) in (2.4.56)
is well-defined for each g ∈ Lp(Rn−1, wLn−1) and each x′ ∈ Rn−1 is ensured by observing
that

K(·, ·) is an Ln−1 ⊗ Ln−1-measurable function on Rn−1 × Rn−1, (2.4.38)

which is clear from (2.4.37), and that

for each g ∈ Lp(Rn−1, wLn−1), ε > 0, x′ ∈ Rn−1,

one has
ˆ

y′∈Rn−1

|x′−y′|>ε

|K(x′, y′)||g(y′)| dy′ < +∞. (2.4.39)

The finiteness property in (2.4.39) is a consequence of Hölder’s inequality, (2.4.37), the
fact that F is bounded, and Lemma 2.4.1 (used with n replaced by n− 1, p ′ in place of
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p, and with w′ in place of w). In concert, these give that for each g ∈ Lp(Rn−1, wLn−1),
each ε > 0, and each x′ ∈ Rn−1 we have

ˆ

y′∈Rn−1

|x′−y′|>ε

|K(x′, y′)||g(y′)| dy′ ≤ Cε
[
w′
(
B(x′, ε)

)]1/p′( sup
X∈Rm

|F (X)|
)
× (2.4.40)

× ‖g‖Lp(Rn−1,wLn−1)
∥∥∇A∥∥[BMO(Rn−1,Ln−1)]n−1 <∞.

To proceed, for each function function g ∈ Lp(Rn−1, wLn−1), each truncation parameter
ε > 0, and each point x′ ∈ Rn−1 define

TA,BΦ,ε g(x′) :=
ˆ

y′∈Rn−1

|Φ(x′)−Φ(y′)|>ε

K(x′, y′)g(y′) dy′. (2.4.41)

Thanks to (2.4.20) and (2.4.38)-(2.4.39), the above integral is absolutely convergent,
which means that TA,BΦ,ε g(x′) is a well-defined number. If Q+ denotes the collection of all
positive rational numbers, we claim that for each function g ∈ Lp(Rn−1, wLn−1) we have

(
TA,BΦ,∗ g

)
(x′) = sup

ε∈Q+

∣∣(TA,BΦ,ε g
)
(x′)

∣∣ for every x′ ∈ Rn−1. (2.4.42)

To justify this, pick some g ∈ Lp(Rn−1, wLn−1). The idea is to show that if x′ ∈ Rn−1

is arbitrary and fixed then for each ε ∈ (0,∞) and each sequence {εj}j∈N ⊆ (0,∞) such
that εj ↘ ε as j →∞ we have

lim
j→∞

(
TA,BΦ,εj g

)
(x′) =

(
TA,BΦ,ε g

)
(x′). (2.4.43)

To justify (2.4.43) note that

{y′ ∈ Rn−1 : |Φ(x′)− Φ(y′)| > εj} ↗ {y′ ∈ Rn−1 : |Φ(x′)− Φ(y′)| > ε} (2.4.44)

as j →∞, in the sense that

{y′ ∈ Rn−1 : |Φ(x′)− Φ(y′)| > ε} =
⋃
j∈N
{y′ ∈ Rn−1 : |Φ(x′)− Φ(y′)| > εj} (2.4.45)

and

{y′ ∈ Rn−1 : |Φ(x′)− Φ(y′)| > εj} ⊆ {y′ ∈ Rn−1 : |Φ(x′)− Φ(y′)| > εj+1} (2.4.46)

for every j ∈ N. Then (2.4.43) follows from (2.4.44) and Lebesgue’s Dominated Conver-
gence Theorem (whose applicability is ensured by (2.4.38)-(2.4.39)). Having established
this, (2.4.42) readily follows on account of the density of Q+ in (0,∞).

Moving on, we claim that

for each fixed threshold ε > 0, the function

Rn−1 × Rn−1 3 (x′, y′) 7−→
(
1{y′∈Rn−1, |Φ(x′)−Φ(y′)|>ε}

)
(y′) ∈ R

is lower-semicontinuous, hence Ln−1 ⊗ Ln−1-measurable.

(2.4.47)
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To justify this claim, observe that for every number λ ∈ R the set of points in Rn−1×Rn−1

where the given function is > λ may be described as
∅ if λ ≥ 1,{
(x′, y′) ∈ Rn−1 × Rn−1 : |Φ(x′)− Φ(y′)| > ε

}
if λ ∈ [0, 1),

Rn−1 × Rn−1 if λ < 0.

(2.4.48)

Thanks to the fact that Φ is a continuous function, all sets appearing in (2.4.48) are open
in Rn−1 × Rn−1. This proves that the function (2.4.47) is indeed lower-semicontinuous.

We next claim that

given any g ∈ Lp(Rn−1, wLn−1), the
function TA,BΦ,∗ g is Ln−1-measurable. (2.4.49)

To see that this is the case, granted (2.4.42) and since the supremum of some countable
family of Ln−1-measurable functions is itself a Ln−1-measurable function, it suffices to
show that

TA,BΦ,ε g is a Ln−1-measurable function, for each fixed

ε ∈ (0,∞) and each fixed g ∈ Lp(Rn−1, wLn−1).
(2.4.50)

With this goal in mind, fix ε ∈ (0,∞) along with g ∈ Lp(Rn−1, wLn−1), and for each
j ∈ N define

Gj : Rn−1 × Rn−1 −→ R given at every (x′, y′) ∈ Rn−1 × Rn−1 by

Gj(x′, y′) :=
(
1B(0′,j)

)
(x′)K(x′, y′)g(y′)

(
1{y′∈Rn−1, |Φ(x′)−Φ(y′)|>ε}

)
(y′).

(2.4.51)

Then, thanks to (2.4.38) and (2.4.47), it follows that Gj is an Ln−1 ⊗ Ln−1-measurable
function for each j ∈ N. In addition, from (2.4.51), (2.4.39), and since balls have finite
measure, we see that

ˆ
Rn−1×Rn−1

|Gj(x′, y′)| dx′dy′ < +∞. (2.4.52)

Granted these properties, Fubini’s Theorem (whose applicability is ensured by the fact
that

(
Rn−1,Ln−1) is a sigma-finite measure space) then guarantees that

gj : Rn−1 → R, gj(x′) :=
ˆ
Rn−1

Gj(x′, y′) dy′, ∀x′ ∈ Rn−1,

is an Ln−1-measurable function, for each integer j ∈ N.
(2.4.53)

On the other hand, from (2.4.51), (2.4.53), and (2.4.41) it is apparent that for each j ∈ N
we have

gj = 1B(0′,j) T
A,B
Φ,ε g everywhere in Rn−1. (2.4.54)

In particular, this implies

lim
j→∞

gj = TA,BΦ,ε g pointwise everywhere in Rn−1. (2.4.55)
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At this stage, the fact that TA,BΦ,ε g is an Ln−1-measurable function follows from (2.4.55)
and (2.4.53). The claim in (2.4.49) is therefore established.

We next turn our attention to the main claim made in (2.4.23). The special case
when d := n − 1 and Φ(x′) := x′ for each x′ ∈ Rn−1 has been treated in [53], following
basic work in [47]. Specifically, from [53, Theorem 4.34, p. 2725] we know that if for each
g ∈ Lp(Rn−1, wLn−1) we define

TA,B∗ g(x′) := sup
ε>0

∣∣∣∣∣
ˆ

y′∈Rn−1

|x′−y′|>ε

K(x′, y′)g(y′) dy′
∣∣∣∣∣ at each x′ ∈ Rn−1, (2.4.56)

then

TA,B∗ is a well-defined sub-linear operator from
the space Lp(Rn−1, wLn−1) into itself

(2.4.57)

and there exists a constant C(n, p, w) ∈ (0,∞) with the property that∥∥∥TA,B∗ ∥∥∥
Lp(Rn−1,wLn−1)→Lp(Rn−1,wLn−1)

(2.4.58)

≤ C(n, p, w)
( ∑
|α|≤N+2

‖∂αF‖L1(Rm,Lm) + sup
X∈Rm

(1 + |X|)|F (X)|
)

× ‖∇A‖[BMO(Rn−1,Ln−1)]n−1

(
1 +

m∑
j=1
‖∇Bj‖[BMO(Rn−1,Ln−1)]n−1

)N
.

To deal with the present case, in which the truncation is performed in the more general
fashion described in (2.4.22), for each ε > 0 and each x′ ∈ Rn−1 abbreviate

Dε(x′) :=
{
y′ ∈ Rn−1 : |Φ(x′)− Φ(y′)| > ε and |x′ − y′| ≤ ε

}
⋃{

y′ ∈ Rn−1 : |Φ(x′)− Φ(y′)| ≤ ε and |x′ − y′| > ε
}
. (2.4.59)

Fix an arbitrary g ∈ Lp(Rn−1, wLn−1) and define

Rg(x′) := sup
ε>0

ˆ
Dε(x′)

∣∣∣∣A(x′)−A(y′)− 〈∇A(y′), x′ − y′〉
|x′ − y′|n

× (2.4.60)

× F
(B(x′)−B(y′)
|x′ − y′|

)
g(y′)

∣∣∣∣ dy′
at each point x′ ∈ Rn−1. These definitions imply that for each g ∈ Lp(Rn−1, wLn−1) we
have

TA,BΦ,∗ g(x′) ≤ TA,B∗ g(x′) +Rg(x′) for every x′ ∈ Rn−1. (2.4.61)

To estimate the last term in appearing in the right-hand side of (2.4.61), pick some

γ ∈ (0, p− 1) such that w ∈ Ap/(1+γ)(Rn−1,Ln−1), (2.4.62)
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fix an arbitrary point x′ ∈ Rn−1, consider an arbitrary threshold ε > 0, and select a
function g ∈ Lp(Rn−1, wLn−1). Also, abbreviate

Q := Qx′,ε :=
{
y′ ∈ Rn−1 : |x′ − y′| < ε

}
(2.4.63)

and introduce

AQ(z′) := A(z′)−
(  

Q
∇AdLn−1

)
· z′ for each z′ ∈ Rn−1. (2.4.64)

Observe that the number Rg(x′), originally defined in (2.4.60), does not change if the
function A is replaced by AQ. Consequently,

Rg(x′) ≤ R1g(x′) +R2g(x′) (2.4.65)

where

R1g(x′) := sup
ε>0

ˆ
Dε(x′)

∣∣∣∣AQ(x′)−AQ(y′)
|x′ − y′|n

F
(B(x′)−B(y′)
|x′ − y′|

)
g(y′)

∣∣∣∣ dy′ (2.4.66)

and

R2g(x′) := sup
ε>0

ˆ
Dε(x′)

∣∣∣∣〈∇AQ(y′), x′ − y′〉
|x′ − y′|n

F
(B(x′)−B(y′)
|x′ − y′|

)
g(y′)

∣∣∣∣ dy′. (2.4.67)

Note that, thanks to (2.4.20) and (2.4.59), we have

c ε ≤ |x′ − y′| ≤ c−1ε for each y′ ∈ Dε(x′). (2.4.68)

Having fixed an integrability exponent q ∈ (n− 1,∞), for each y′ ∈ Dε(x′) we may rely
on Mary Weiss’ Lemma (cf. [19, Lemma 1.4, p. 144]) in concert with (2.2.43), (2.2.44),
(2.4.63), and (2.4.68) to estimate

|AQ(x′)−AQ(y′)|
|x′ − y′|

≤ Cq,n
(  
|x′−z′|≤2|x′−y′|

|∇AQ(z′)|q dz′
)1/q

≤ Cq,n
(  
|x′−z′|≤2|x′−y′|

∣∣∣∇A(z′)−
 
|x′−ζ′|≤2|x′−y′|

∇A(ζ ′) dζ ′
∣∣∣q dz′)1/q

+ Cq,n
∣∣∣  

Q
∇AdLn−1 −

 
|x′−ζ′|≤2|x′−y′|

∇A(ζ ′) dζ ′
∣∣∣

≤ Cq,n · c−2(n−1)/q‖∇A‖[BMO(Rn−1,Ln−1)]n−1 . (2.4.69)

Choosing q := 2(n−1) it follows that there exists a constant Cn ∈ (0,∞), which depends
only on n, such that

|AQ(x′)−AQ(y′)| ≤ (Cn/c)|x′ − y′|‖∇A‖[BMO(Rn−1,Ln−1)]n−1

for each point y′ ∈ Dε(x′).
(2.4.70)
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In concert, (2.4.66), (2.4.68), and (2.4.70) allow us to conclude that

R1g(x′) ≤ Cn · c1−2n( sup
X∈Rm

|F (X)|
)
‖∇A‖[BMO(Rn−1,Ln−1)]n−1×

× sup
ε>0

( 
|x′−y′|<c−1ε

|g(y′)| dy′
)
. (2.4.71)

To estimate R2g(x′), bring in a brand of the Hardy-Littlewood maximal operator
which associates to each Ln−1-measurable function f on Rn−1 the function Mγf defined
as

Mγf(x′) := sup
r>0

(  
|x′−y′|<r

|f(y′)|1+γ dy′
)1/(1+γ)

for each x′ ∈ Rn−1. (2.4.72)

Then, using (2.4.67), (2.4.64), Hölder’s inequality, and (2.2.44) we may write

R2g(x′) ≤ Cn · c2−2n( sup
X∈Rm

|F (X)|
)
×

× sup
ε>0

(  
|x′−y′|<c−1ε

∣∣∣∇A(y′)−
 
Q
∇AdLn−1

∣∣∣|g(y′)| dy′
)

≤ Cn · c2−2n( sup
X∈Rm

|F (X)|
)
Mγg(x′)×

× sup
ε>0

(  
|x′−y′|<c−1ε

∣∣∣∇A(y′)−
 
Q
∇AdLn−1

∣∣∣(1+γ)/γ
dy′
)γ/(1+γ)

≤ Cn,γ · c3−3n( sup
X∈Rm

|F (X)|
)
‖∇A‖[BMO(Rn−1,Ln−1)]n−1Mγg(x′). (2.4.73)

Collectively, (2.4.65), (2.4.71), (2.4.73), and Hölder’s inequality imply

Rg(x′) ≤ Cn,γ · c−3n( sup
X∈Rm

|F (X)|
)
‖∇A‖[BMO(Rn−1,Ln−1)]n−1Mγg(x′). (2.4.74)

In turn, from (2.4.74) and (2.4.61) we conclude that for every x′ ∈ Rn−1 we have

0 ≤ TA,BΦ,∗ g(x′) ≤ TA,B∗ g(x′) (2.4.75)

+ Cn,γ · c−3n( sup
X∈Rm

|F (X)|
)
‖∇A‖[BMO(Rn−1,Ln−1)]n−1Mγg(x′).

Granted (2.4.62), the maximal operatorMγ is a well-defined sub-linear bounded mapping
from Lp(Rn−1, wLn−1) into itself. Bearing this in mind, from (2.4.75), (2.4.57), (2.4.58),
(2.2.337), and the fact that the space Lp(Rn−1, wLn−1) is a lattice, the estimate claimed
in (2.4.23) now follows. As a consequence, TA,BΦ,∗ is a sub-linear mapping of finite
operator norm on Lp(Rn−1, wLn−1). Hence, as remarked in (2.4.3), the operator TA,BΦ,∗ is
continuous from Lp(Rn−1, wLn−1) into itself.

The next step is to transfer the Euclidean result from Theorem 2.4.2 to singular
integral operators on Lipschitz graphs, a task accomplished in the following lemma.
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Lemma 2.4.3. Given a unit vector ~n ∈ Sn−1, consider the hyperplane H := 〈~n〉⊥ ⊆ Rn−1

and suppose h : H → R is a function satisfying

M := sup
x,y∈H
x 6=y

|h(x)− h(y)|
|x− y|

< +∞. (2.4.76)

Fix an arbitrary point x0 ∈ Rn and let

G :=
{
x0 + x+ h(x)~n : x ∈ H

}
⊆ Rn (2.4.77)

denote the graph of h in the coordinate system X = (x, t) ⇔ X = x0 + x + t~n, with
x ∈ H and t ∈ R. Abbreviate σ := Hn−1bG and denote by ν the unique unit normal to G
satisfying ν ·~n < 0 at σ-a.e. point on G. Also, fix some integrability exponent p ∈ (1,∞).
Given a complex-valued function k ∈ CN+2(Rn \ {0}), for some sufficiently large integer
N = N(n) ∈ N, which is even and positive homogeneous of degree −n, consider the
maximal singular integral operator T acting on each f ∈ Lp(G, σ) as

T∗f(x) := sup
ε>0

∣∣∣∣∣
ˆ

y∈G
|x−y|>ε

〈x− y, ν(y)〉k(x− y)f(y) dσ(y)
∣∣∣∣∣, ∀x ∈ G. (2.4.78)

Then T∗ is a well-defined continuous sub-linear mapping from the space Lp(G, σ) into
itself and there exists a constant C(n, p) ∈ (0,∞), which depends only on n, p, with the
property that

‖T∗‖Lp(G,σ)→Lp(G,σ) ≤ C(n, p)M(1 +M)4n+N
( ∑
|α|≤N+2

sup
Sn−1

∣∣∂αk∣∣). (2.4.79)

Proof. Recall that {ej}1≤j≤n stands for the standard orthonormal basis in Rn. Let us
first treat the case when x0 = 0 ∈ Rn and ~n := en, a scenario in which H = 〈en〉⊥ may be
canonically identified with Rn−1. Assume this is the case, and consider an even function
ψ ∈ C∞(Rn) with the property that

0 ≤ ψ ≤ 1, ψ vanishes identically in Rn \B
(
0, 2
√

1 +M2 ),
ψ ≡ 1 on B(0,

√
1 +M2) \B(0, 1), ψ ≡ 0 on B(0, 1/2),

and for each α ∈ Nn0 there exists Cα ∈ (0,∞), depending only

on the given multi-index α, so that supx∈Rn |(∂αψ)(x)| ≤ Cα.

(2.4.80)

Then F := ψk is an even function belonging to CN+2(Rn), and satisfying∑
|α|≤N+2

‖∂αF‖L1(Rn,Ln) + sup
x∈Rn

(1 + |x|)|F (x)|

≤ Cn(1 +M)n
( ∑
|α|≤N+2

sup
Sn−1

∣∣∂αk∣∣), (2.4.81)
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for some purely dimensional constant Cn ∈ (0,∞). Moreover, if for each point x′ ∈ Rn−1

we set Φ(x′) := (x′, h(x′)) then Φ : Rn−1 → Rn is a bi-Lipschitz function and (2.4.80)
implies that

k

(Φ(x′)− Φ(y′)
|x′ − y′|

)
= F

(Φ(x′)− Φ(y′)
|x′ − y′|

)
for each x′, y′ ∈ Rn−1 with x′ 6= y′.

(2.4.82)

To proceed, note that for each σ-measurable set E ⊆ G and each function g ∈ L1(E, σ)
we have ˆ

E
g dσ =

ˆ
{y′∈Rn−1: (y′,h(y′))∈E}

g(y′, h(y′))
√

1 + |(∇h)(y′)|2 dy′, (2.4.83)

(cf., e.g., [119, Proposition 12.9, p. 164]) and

ν(y′, h(y′)) = ((∇h)(y′),−1)√
1 + |(∇h)(y′)|2

for Ln−1-a.e. y′ ∈ Rn−1. (2.4.84)

Also, fix f ∈ Lp(G, σ) and define f̃(x′) := f(x′, h(x′)) for each x′ ∈ Rn−1. In particular,
from (2.4.83) we conclude that

f̃ ∈ Lp(Rn−1,Ln−1) and
∥∥f̃∥∥

Lp(Rn−1,Ln−1) ≤ ‖f‖Lp(G,σ). (2.4.85)

Then based on (2.4.78), (2.4.83), (2.4.84), the homogeneity of k, and (2.4.82) we may
write

(T∗f)(x′, h(x′)) = sup
ε>0

∣∣∣∣∣
ˆ

y′∈Rn−1 with√
|x′−y′|2+(h(x′)−h(y′))2>ε

(
〈∇h(y′), x′ − y′〉+ h(y′)− h(x′)

)
×

× k
(
x′ − y′, h(x′)− h(y′)

)
f̃(y′) dy′

∣∣∣∣∣
= sup

ε>0

∣∣∣∣∣
ˆ

y′∈Rn−1

|Φ(x′)−Φ(y′)|>ε

h(x′)− h(y′)− 〈∇h(y′), x′ − y′〉
|x′ − y′|n

×

× F
(Φ(x′)− Φ(y′)
|x′ − y′|

)
f̃(y′) dy′

∣∣∣∣∣. (2.4.86)

From (2.4.86), Theorem 2.4.2 (used with m := n, d := n, A := h, B := Φ, and w ≡ 1),
(2.4.81), and (2.4.83) we then conclude that (2.4.79) holds in this case.

To treat the case when x0 = 0 but ~n ∈ Sn−1 is arbitrary, pick an orthonormal basis
{vj}1≤j≤n−1 in H and consider the unitary transformation in Rn uniquely defined by the
demand that Uvj = ej for j ∈ {1, . . . , n− 1} and U~n = en. Then G̃ := UG becomes the
graph of h̃ := h ◦U−1 : Rn−1 → R, which is a Lipschitz function with the same Lipschitz
constant M as the original function h. Since the Hausdorff measure is rotation invariant,
for each g ∈ L1(G, σ) we haveˆ

y∈G
g(y) dσ(y) =

ˆ
ỹ∈G̃

(g ◦ U−1)(ỹ) dσ̃(ỹ), (2.4.87)
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where σ̃ := Hn−1bG̃. Moreover, the unique unit normal ν̃ to G̃ satisfying ν̃ · en < 0
at Hn−1-a.e. point on G̃ is ν̃ = U(ν ◦ U−1). Consider k̃ := k ◦ U−1 and note that
this is a complex-valued function of class CN+2(Rn \ {0}), which is even and positive
homogeneous of degree −n. Finally, fix some function f ∈ Lp(G, σ) and abbreviate
f̃ := f ◦U−1. Bearing in mind the fact that U is a linear isometry satisfying U−1 = U>,
from (2.4.78) and (2.4.87) we see that if x ∈ G and x̃ := Ux then

T∗f(x) = sup
ε>0

∣∣∣∣∣
ˆ

ỹ∈G̃
|x̃−ỹ|>ε

〈x̃− ỹ, ν̃(ỹ)〉k̃(x̃− ỹ)f̃(ỹ) dσ̃(ỹ)
∣∣∣∣∣. (2.4.88)

Hence,
T∗f(x) = T̃∗f̃(x̃) whenever x ∈ G and x̃ = Ux, (2.4.89)

where T̃∗ is the maximal operator associated as in (2.4.78) with the Lipschitz graph G̃
and the kernel k̃. In particular, given that (2.4.89) and (2.4.87) imply

ˆ
G
(T∗f)(x)p dσ(x) =

ˆ
G̃
(T̃∗f̃)(x̃)p dσ̃(x̃), (2.4.90)

the estimate claimed in (2.4.79) becomes a consequence of the corresponding estimate
for the maximal operator T̃∗ established in the first part of the current proof.

Finally, the case when both x0 ∈ Rn and ~n ∈ Sn−1 are arbitrary follows from what
we have proved so far using the natural invariance of the maximal operator (2.4.78) to
translations.

2.4.2 Estimates for certain classes of singular integrals on UR sets

The following theorem, which is central for the present work, is the main result regarding
the size of the operator norm of certain maximal integral operators acting on Mucken-
houpt weighted Lebesgue spaces on the boundary of Ahlfors regular domains satisfying
a two-sided local John condition. In turn, this is going to be the key ingredient in obtain
invertibility results for the brand of boundary double layer potential operators considered
in this work. The proof is inspired by that of [53, Theorem 4.36, pp. 2728-2729].

Theorem 2.4.4. Let Ω ⊆ Rn be an Ahlfors regular domain satisfying a two-sided local
John condition. Abbreviate σ := Hn−1b∂Ω and denote by ν the geometric measure
theoretic outward unit normal to Ω. Fix an integrability exponent p ∈ (1,∞) along with a
Muckenhoupt weight w ∈ Ap(∂Ω, σ), and recall the earlier convention of using the same
same symbol w for the measure associated with the given weight w as in (2.2.292). Also,
consider a sufficiently large integer N = N(n) ∈ N. Given a complex-valued function
k ∈ CN (Rn \ {0}) which is even and positive homogeneous of degree −n, consider the
maximal operator T∗ whose action on each given function f ∈ Lp(∂Ω, w) is defined as

T∗f(x) := sup
ε>0

∣∣Tεf(x)
∣∣ for each x ∈ ∂Ω, (2.4.91)
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where, for each ε > 0,

Tεf(x) :=
ˆ

y∈∂Ω
|x−y|>ε

〈x− y, ν(y)〉k(x− y)f(y) dσ(y) for all x ∈ ∂Ω. (2.4.92)

Then there exists some C ∈ (0,∞), which depends only on n, p, [w]Ap, the local John
constants of Ω, and the Ahlfors regularity constant of ∂Ω, such that

‖T∗‖Lp(∂Ω,w)→Lp(∂Ω,w) ≤ C
( ∑
|α|≤N

sup
Sn−1

|∂αk|
)
‖ν‖[BMO(∂Ω,σ)]n . (2.4.93)

Before presenting the proof of this theorem, several comments are in order.
Remark 2.4.5. In the context of Theorem 2.4.4, estimate (2.4.93) continues to hold with
a fixed constant C ∈ (0,∞) when the integrability exponent and the corresponding
Muckenhoupt weight are allowed to vary with control. Specifically, an inspection of the
proof of Theorem 2.4.4 given below shows that for each compact interval I ⊂ (0,∞) and
each number W ∈ (0,∞) there exists a constant C ∈ (0,∞), which depends only on n,
I, W , the local John constants of Ω, and the Ahlfors regularity constant of ∂Ω, with the
property that (2.4.93) holds for each p ∈ I and each w ∈ Ap(∂Ω, σ) with [w]Ap ≤W .
Remark 2.4.6. Since any Ahlfors regular domain satisfying a two-sided local John condi-
tion is a UR domain (cf. (1.1.22)), Proposition 2.3.3 applies and gives that T∗ is bounded
on Lp(∂Ω, w), with norm controlled in terms of n, k, p, [w]Ap , the local John constants
of Ω, and the Ahlfors regularity constant of ∂Ω. The crux of the matter here is the more
refined version of the estimate of the operator norm of T∗ given in (2.4.93).
Remark 2.4.7. We focus on establishing the estimate claimed in (2.4.93) in the class of
operators whose integral kernel factors as the product of 〈x − y, ν(y)〉, i.e., the inner
product between the unit normal ν(y) and the “chord” x − y, with some matrix-valued
function k ∈ CN (Rn \ {0}) which is even and positive homogeneous of degree −n, since
it has been noted in (2.1.28) that this is the only type of kernel (in the class of double
layer-like integral operators) for which the said estimate has a chance of materializing.
Remark 2.4.8. The class of domains to which Theorem 2.4.4 applies includes all two-sided
NTA domains with an Ahlfors regular boundary (cf. (1.1.28)).
Remark 2.4.9. In the unweighted case, i.e., for w ≡ 1 (or, equivalently, when the measure
w coincides with σ), estimate (2.4.93) simply reads (for some C ∈ (0,∞) which now
depends only on n, p, the local John constants of Ω, and the Ahlfors regularity constant
of ∂Ω)

‖T∗‖Lp(∂Ω,σ)→Lp(∂Ω,σ) ≤ C
( ∑
|α|≤N

sup
Sn−1

|∂αk|
)
‖ν‖[BMO(∂Ω,σ)]n . (2.4.94)

It turns out that whenever (2.4.94) is available one may produce a weighted version of
such an estimate via interpolation. Specifically, recall the interpolation theorem of Stein-
Weiss (cf. [11, Theorem 5.4.1, p. 115]) according to which for any two σ-measurable
functions w0, w1 : ∂Ω→ [0,∞] and any θ ∈ (0, 1) we have(

Lp(∂Ω, w0σ) , Lp(∂Ω, w1σ)
)
θ,p

= Lp(∂Ω, w̃σ) where w̃ := w1−θ
0 · wθ1. (2.4.95)
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Now, given a Muckenhoupt weight w ∈ Ap(∂Ω, σ), from (2.2.311) we know that there
exists some τ ∈ (1,∞) (which depends only on n, p, [w]Ap , and the Ahlfors regularity
constant of ∂Ω) such that wτ ∈ Ap(∂Ω, σ). Upon specializing (2.4.95) to the case when
θ := 1− τ−1 ∈ (0, 1), w0 := wτ , and w1 := 1 we therefore obtain(

Lp(∂Ω, wτσ) , Lp(∂Ω, σ)
)
θ,p

= Lp(∂Ω, w). (2.4.96)

Consequently, since T∗ is a sub-linear operator which is bounded both on Lp(∂Ω, wτσ)
(given that wτ ∈ Ap(∂Ω, σ)), and on Lp(∂Ω, σ) we may write

‖T∗‖Lp(∂Ω,w)→Lp(∂Ω,w) ≤ ‖T∗‖
1−θ
Lp(∂Ω,wτσ)→Lp(∂Ω,wτσ) ‖T∗‖

θ
Lp(∂Ω,σ)→Lp(∂Ω,σ)

≤ CΩ,n,p,k,[w]Ap ‖ν‖
θ
[BMO(∂Ω,σ)]n , (2.4.97)

with the last inequality provided by (2.4.94).
While the weighted norm inequality established in (2.4.97) is in the spirit of (2.4.93),

the BMO semi-norm of the outward unit normal vector ν only picks up a small exponent
θ ∈ (0, 1) in (2.4.97). This is in sharp contrast with (2.4.93) where the power of
‖ν‖[BMO(∂Ω,σ)]n is precisely 1. Hence, a two-step approach consisting first of proving
the plain estimate (2.4.94) and, second, deriving a weighted version based on the pro-
cedure based on interpolation described above, only yields a weaker result than the one
advertised in (2.4.93). Given this, in the proof of (2.4.93) presented below we shall devise
an alternative approach, which deals with the weighted case directly, incorporating the
weight in all relevant intermediary steps.

We are ready to proceed to the task of providing the proof of Theorem 2.4.4.

Proof of Theorem 2.4.4. As visible from (2.4.91)-(2.4.92), the maximal operator T∗ de-
pends in a homogeneous fashion on the kernel function k. As such, by working with k/K
(in the case when k is not identically zero) where K :=

∑
|α|≤N supSn−1 |∂αk|, matters

are reduced to proving that whenever∑
|α|≤N

sup
Sn−1

|∂αk| ≤ 1 (2.4.98)

it is possible to find a constant C ∈ (0,∞) which depends only on n, p, [w]Ap , the local
John constants of Ω, and the Ahlfors regularity constant of ∂Ω such that

‖T∗‖Lp(∂Ω,w)→Lp(∂Ω,w) ≤ C ‖ν‖[BMO(∂Ω,σ)]n . (2.4.99)

Henceforth, assume (2.4.98).
To proceed, recall the parameter δ∗ > 0 from Theorem 2.2.25. In the case when

‖ν‖[BMO(∂Ω,σ)]n ≥ min{δ∗, 1}, the estimate claimed in (2.4.99) follows directly from
Proposition 2.3.3, which ensures that the maximal operator T∗ is bounded in Lp(∂Ω, w).
Therefore, there remains to consider the case when ‖ν‖[BMO(∂Ω,σ)]n < min{δ∗, 1}. Assume
this is the case and pick some δ such that

‖ν‖[BMO(∂Ω,σ)]n < δ < min{δ∗, 1}. (2.4.100)



2. Singular integral operators and quantitative flatness 171

In such a scenario, Lemma 2.2.5 implies that the set ∂Ω is unbounded. We may also
invoke Proposition 2.2.24 to conclude that there exists some CΩ ∈ (0,∞), which depends
only on the local John constants of Ω and the Ahlfors regularity constant of ∂Ω, such
that for each µ ∈ [1,∞) we have

sup
z∈∂Ω

sup
R>0

sup
x,y∈∆(x,µR)

R−1∣∣〈x− y, ν∆(z,R)
〉∣∣ ≤ CΩ · µ(1 + log2 µ)δ. (2.4.101)

For reasons which are going to be clear momentarily, in addition to the truncated
operators Tε from (2.4.92) we shall need a version in which the truncation is performed
using a smooth cutoff function (rather than a characteristic function). Specifically, fix
a function ψ ∈ C∞(R) satisfying 0 ≤ ψ ≤ 1 on R and with the property that ψ ≡ 0
in (−∞, 1] and ψ ≡ 1 in [2,∞). For each ε > 0 then define the action of the smoothly
truncated operator T(ε) on each f ∈ Lp(∂Ω, w) by setting

T(ε)f(x) :=
ˆ
∂Ω
ψ
( |x− y|

ε

)
〈x− y, ν(y)〉 k(x− y)f(y) dσ(y) (2.4.102)

for each x ∈ ∂Ω. Let us also define a smoothly truncated version of the maximal operator
(2.4.91) by setting, for each f ∈ Lp(∂Ω, w),

T(∗)f(x) := sup
ε>0

∣∣T(ε)f(x)
∣∣ at every point x ∈ ∂Ω. (2.4.103)

For the time being, the goal is compare roughly truncated singular integral operators
with their smoothly truncated counterparts. To accomplish this task, for each fixed
γ ≥ 0 bring in a brand of Hardy-Littlewood maximal operator which associates to each
σ-measurable function f on ∂Ω the functionMγf defined as

Mγf(x) := sup
∆3x

(  
∆
|f |1+γ dσ

)1/(1+γ)
for each x ∈ ∂Ω, (2.4.104)

where the supremum is taken over all surface balls ∆ ⊆ ∂Ω containing the point x. On
to the task at hand, having fixed some ε > 0, for each f ∈ Lp(∂Ω, w) and each x ∈ ∂Ω
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we may estimate

∣∣(Tεf−T(ε)f)(x)
∣∣ ≤ ˆ

∆(x,2ε)\∆(x,ε)

∣∣〈x− y, ν(y)〉
∣∣ |k(x− y)||f(y)| dσ(y)

≤ Cε−1
 

∆(x,2ε)

∣∣〈x− y, ν(y)〉
∣∣ |f(y)| dσ(y)

≤ Cε−1
 

∆(x,2ε)

∣∣〈x− y, ν(y)− ν∆(x,2ε)
〉∣∣|f(y)| dσ(y)

+ Cε−1
 

∆(x,2ε)

∣∣〈x− y, ν∆(x,2ε)
〉∣∣|f(y)| dσ(y)

≤ C
( 

∆(x,2ε)

∣∣ν(y)− ν∆(x,2ε)
∣∣ γ+1
γ dσ(y)

) γ
1+γ

( 
∆(x,2ε)

|f(y)|1+γ dσ(y)
) 1

1+γ

+ C
(

sup
y∈∆(x,2ε)

ε−1∣∣〈x− y, ν∆(x,2ε)
〉∣∣)( 

∆(x,2ε)
|f(y)|1+γ dσ(y)

) 1
1+γ

≤ Cδ · inf
∆(x,2ε)

Mγf, (2.4.105)

using Hölder’s inequality, (2.2.43), (2.4.100), (2.4.101), and (2.4.104). Then, (2.4.105)
implies that there exists some C ∈ (0,∞), which depends only on γ, the local John
constants of Ω, and the Ahlfors regularity constant of ∂Ω, with the property that for
each function f ∈ Lp(∂Ω, w) we have∣∣T∗f(x)− T(∗)f(x)

∣∣ ≤ Cδ · Mγf(x) for each x ∈ ∂Ω. (2.4.106)

Henceforth we agree to fix γ ∈ (0, p − 1), which depends only on n, p, [w]Ap , and
the Ahlfors regularity constant of ∂Ω, such that w ∈ Ap/(1+γ)(∂Ω, σ), with [w]Ap/(1+γ)

controlled in terms of n, p, [w]Ap , and the Ahlfors regularity constant of ∂Ω. From
(2.2.311) we know that such a choice is possible.

To proceed, consider a dyadic grid D(∂Ω) on the Ahlfors regular set ∂Ω (as in
Proposition 2.2.39, presently used with Σ := ∂Ω). Also, choose a compactly supported
function f ∈ Lp(∂Ω, w). Note that for each ε > 0 the function T(ε)f is continuous on
∂Ω, by Lebesgue’s Dominated Convergence Theorem (whose applicability in the present
setting is ensured by Lemma 2.2.47). Since the pointwise supremum of any collection of
continuous functions is lower-semicontinuous, we conclude that for each λ > 0 the set{

x ∈ ∂Ω : T(∗)f(x) > λ
}

is relatively open in ∂Ω. (2.4.107)

Next, fix a reference point x0 ∈ ∂Ω and abbreviate ∆0 := ∆(x0, 2−m) for some m ∈ Z
chosen so that supp f ⊆ 2∆0. We emphasize that all subsequent constants are going
to be independent of the function f , the point x0, and the integer m. Upon recalling
(2.2.283), define

Q0 :=
{
Q ∈ Dm(∂Ω) : Q ∩ 2∆0 6= ∅

}
(2.4.108)
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then introduce
I0 :=

⋃
Q∈Q0

Q. (2.4.109)

By design, I0 is a relatively open subset of ∂Ω. Recall the parameter a1 > 0 appearing
in (2.2.285) of Proposition 2.2.39. We claim that

I0 ⊆ a∆0 where a := 2(1 + a1) > 2. (2.4.110)

Indeed, if x ∈ I0 then x ∈ Q for some Q ∈ Q0. In particular, Q ∩ 2∆0 6= ∅ so we may
pick some y ∈ Q ∩ 2∆0. Then x, y ∈ Q ⊆ ∆(xQ, a12−m) by (2.2.285), where xQ denotes
the “center” of the dyadic cube Q. Consequently, |x − y| < a12−m+1 which, in turn,
permits us to estimate |x− x0| ≤ |x− y|+ |y − x0| < a12−m+1 + 2−m+1 = a · 2−m. Thus
x ∈ B(x0, a · 2−m) ∩ ∂Ω = a∆0, proving the inclusion in (2.4.110).

We also claim that

there exists a σ-measurable set N ⊆ ∂Ω with the
property that σ(N) = 0 and 2∆0 \N ⊆ I0.

(2.4.111)

To justify this, recall from (2.2.287) that

N := ∂Ω \
(⋃

Q∈Dm(∂Ω)Q
)
is a σ-measurable set

satisfying σ(N) = 0 and ∂Ω \N =
⋃
Q∈Dm(∂Ω)Q. (2.4.112)

Intersecting both sides of the last equality in (2.4.112) with 2∆0 while bearing in mind
(2.4.108)-(2.4.109) then yields

2∆0 \N =
⋃

Q∈Dm(∂Ω)

(
Q ∩ 2∆0

)
=

⋃
Q∈Q0

(
Q ∩ 2∆0

)
⊆

⋃
Q∈Q0

Q = I0, (2.4.113)

ultimately proving (2.4.111).
Since w ∈ Ap(∂Ω, σ) ⊆ A∞(∂Ω, σ), there exists some small number τ > 0 such that

(2.2.315) holds. Let us define

A := θ · δ−1 ∈ (0,∞) for some small θ ∈ (0, 1). (2.4.114)

At various stages in the proof we shall make specific demands on the size of θ, though
always in relation to the background geometric parameters and the weight, namely n, p,
[w]Ap , the local John constants of Ω, and the Ahlfors regularity constant of ∂Ω. We find
it convenient to abbreviate

η(θ, δ) := C
(
θ1+γ + θδ−1 · exp

{
− c γ

δ(1 + γ)
}

+ e−c/δ
)
, (2.4.115)

where C ∈ (0,∞) is a constant which depends only on n, p, [w]Ap , the local John
constants of Ω, and the Ahlfors regularity constant of ∂Ω, and where c ∈ (0,∞) is of
a purely geometric nature (i.e., c depends only the local John constants of Ω and the
Ahlfors regularity constant of ∂Ω). We agree to retain the notation η(θ, δ) even when
C, c ∈ (0,∞) may occasionally change in size (while retaining the same nature, however).
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Our long-term goal is to obtain the following type of good-λ inequality: there exist
C, c ∈ (0,∞) as above such that for each λ > 0 we have

w
({
x ∈ I0 : T∗f(x) > 4λ and Mγf(x) ≤ Aλ

})
≤ η(θ, δ)τ · w

({
x ∈ I0 : T(∗)f(x) > λ

})
. (2.4.116)

Here and elsewhere, we employ our earlier convention of using the same same symbol
w for the measure associated with the given weight w as in (2.2.292). The reader is
also alerted to the fact that the maximal operator appearing in the right-hand side of
(2.4.116) employs smooth truncations (as in (2.4.103)).

To prove (2.4.116), fix an arbitrary λ > 0 and abbreviate

Fλ :=
{
x ∈ I0 : T∗f(x) > 4λ and Mγf(x) ≤ Aλ

}
. (2.4.117)

Proposition 2.3.3 implies that T∗f is a σ-measurable function. Since so isMγf (cf. [6]
or [93] for a proof), it follows that Fλ is a σ-measurable set. From (2.4.107) and the fact
that I0 is a relatively open subset of ∂Ω we also conclude that

{
x ∈ I0 : T(∗)f(x) > λ

}
is a relatively open subset of ∂Ω (in particular, σ-measurable). As such, the good-λ
inequality is meaningfully formulated in (2.4.116).

Clearly, it is enough to consider the case Fλ 6= ∅ since otherwise (2.4.116) is trivially
satisfied by any choice of C ∈ (0,∞). For the remainder of the proof, assume this is the
case. Since Fλ ⊆ I0 and I0 ⊆ a∆0, we conclude that

Fλ ⊆ I0 ⊆ a∆0 and sup
Fλ
Mγf ≤ Aλ. (2.4.118)

To proceed, decompose I0 = Pλ∪Sλ (disjoint union) where, with the smoothly truncated
maximal operator T(∗) as in (2.4.103),

Pλ :=
{
x ∈ I0 : T(∗)f(x) ≤ λ

}
and Sλ :=

{
x ∈ I0 : T(∗)f(x) > λ

}
. (2.4.119)

As a consequence of (2.4.107) and the fact that I0 is a relatively open subset of ∂Ω, the
set Sλ is itself a relatively open subset of ∂Ω. Moreover, using (2.4.106) and (2.4.118),
for each point x ∈ Fλ we may estimate

4λ < T∗f(x) ≤ T(∗)f(x) + Cδ · Mγf(x) ≤ T(∗)f(x) + CδAλ

= T(∗)f(x) + Cθλ < T(∗)f(x) + 3λ, (2.4.120)

by our choice of A in (2.4.114) and by taking θ > 0 small enough to begin with. From
(2.4.120) we see that T(∗)f(x) > λ, hence x ∈ Sλ which ultimately goes to show that
Fλ ⊆ Sλ. Thus,

Sλ is a nonempty relatively open subset of
∂Ω, with the property that Fλ ⊆ Sλ ⊆ I0.

(2.4.121)

We first treat the case in which there exists Q0 ∈ Q0 such that Pλ ∩ Q0 = ∅ or,
equivalently,

Q0 ⊆ Sλ. (2.4.122)
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Applying Theorem 2.2.25 to the surface ball a∆0 permits us to decompose

a∆0 = G ∪ E, (2.4.123)

where G and E are disjoint σ-measurable subsets of ∂Ω satisfying properties implied by
(2.2.214)-(2.2.219) (relative to the location x0 and the scale r := a2−m) in the present
setting. Specifically, there exists three constants C0, C1, C2 ∈ (0,∞) of a purely geometric
nature (i.e., depending only the local John constants of Ω and the Ahlfors regularity
constant of ∂Ω) so that G is contained in the graph G =

{
x0 + x + h(x)~n : x ∈ H

}
of

a Lipschitz function h : H → R (where ~n ∈ Sn−1 is a unit vector and H = 〈~n〉⊥ is the
hyperplane in Rn orthogonal to ~n) such that

sup
x,y∈H
x 6=y

|h(x)− h(y)|
|x− y|

≤ C0δ, (2.4.124)

whereas E satisfies

σ(E) ≤ C1 e
−C2/δσ(a∆0). (2.4.125)

Since supp f ⊆ 2∆0 and a > 2 it follows that f = f1a∆0 . Based on this observation and
the fact that I0 ⊆ a∆0 (cf. (2.4.118)), we may then estimate

σ(Fλ) ≤ σ
({
x ∈ a∆0 : T∗

(
f1a∆0

)
(x) > 4λ

})
. (2.4.126)

By further decomposing f1a∆0 = f1G + f1E (cf. (2.4.123)), then using the sub-linearity
of T∗, as well as (2.4.123) and (2.4.125), we obtain

σ
({
x ∈ a∆0 :T∗

(
f1a∆0

)
(x) > 4λ

})
≤ σ

({
x ∈ G : T∗

(
f1G

)
(x) > 2λ

})
+ σ

({
x ∈ G : T∗

(
f1E

)
(x) > 2λ

})
+ C1 e

−C2/δσ(a∆0). (2.4.127)

To bound the first term in the right-hand side of (2.4.127), the idea is to use the fact
that G is contained in the graph G of the function h, then employ Lemma 2.4.3 while
taking advantage of (2.4.124). Turning to specifics, denote by σ̃ the surface measure
on G, and by T̃∗ the maximal operator associated with G as in (2.4.78) (much as T∗ in
(2.4.91)-(2.4.92) is associated with ∂Ω). Also, fix a point x̃ ∈ Fλ (which, according to
(2.4.118), also places x̃ into a∆0). Observe that the measures σ and σ̃ are compatible on
∂Ω ∩ G (as they are both induced by Hn−1). This observation, Chebysheff’s inequality,
Lemma 2.4.3, (2.4.124), (2.4.123), (2.4.104), (2.4.118), and (2.4.114) then permit us to
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estimate

σ
({
x ∈ G :T∗

(
f1G

)
(x) > 2λ

})
≤ σ̃

({
x ∈ G : T̃∗

(
f1G

)
(x) > 2λ

})
≤ 1

(2λ)1+γ

ˆ
G
|T̃∗(f1G)|1+γ dσ̃ ≤ C δ

1+γ

λ1+γ

ˆ
G
|f1G|1+γ dσ̃

= C
δ1+γ

λ1+γ

ˆ
G
|f |1+γ dσ ≤ Cδ1+γ σ(a∆0)

λ1+γ

 
a∆0

|f |1+γ dσ

≤ Cδ1+γ σ(a∆0)
λ1+γ

[
Mγf(x̃)

]1+γ
≤ C (Aδ)1+γ σ(a∆0)

= C θ1+γ σ(a∆0), (2.4.128)

for some constant C ∈ (0,∞) which depends only on n, p, [w]Ap , and C0. As for the
second term in the right-hand side of (2.4.127), once again fix a point x̃ ∈ Fλ (which
then also belongs to a∆0). We may then use the fact that T∗ is bounded from L1(∂Ω, σ)
into the weak Lebesgue space L1,∞(∂Ω, σ) (cf. [53, Proposition 3.19]), (2.4.123), Hölder’s
inequality, (2.4.125), (2.4.104), (2.4.118), and (2.4.114) to obtain

σ
({
x ∈ G : T∗

(
f1E

)
(x) > 2λ

})
≤ σ

({
x ∈ ∂Ω : T∗

(
f1E

)
(x) > 2λ

})
≤ C

λ

ˆ
∂Ω
|f |1E dσ = C

λ

ˆ
a∆0

|f |1E dσ

≤ C

λ
σ(E)

γ
1+γ

(ˆ
a∆0

|f |1+γ dσ

) 1
1+γ

= C

λ

( σ(E)
σ(a∆0)

) γ
1+γ

( 
a∆0

|f |1+γ dσ

) 1
1+γ

σ(a∆0)

≤ C

λ
exp

{
− C2 γ

δ(1 + γ)
}
Mγf(x̃)σ(a∆0)

≤ CA · exp
{
− C2 γ

δ(1 + γ)
}
σ(a∆0)

= Cθδ−1 · exp
{
− C2 γ

δ(1 + γ)
}
σ(a∆0), (2.4.129)

where C ∈ (0,∞) depends only n, the local John constants of Ω, and the Ahlfors
regularity constant of ∂Ω. Gathering (2.4.127), (2.4.128), and (2.4.129) then yields

σ
({
x ∈ a∆0 :T∗

(
f1a∆0

)
(x) > 4λ

})
≤ C

(
θ1+γ + θδ−1 · exp

{
− C2 γ

δ(1 + γ)
}

+ e−C2/δ
)
σ(a∆0)

= η(θ, δ)σ(a∆0), (2.4.130)
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where η(θ, δ) ∈ (0,∞) is as in (2.4.115). Finally, from (2.4.130) and (2.4.126) we see that

σ(Fλ) ≤ η(θ, δ)σ(a∆0), (2.4.131)

where η(θ, δ) ∈ (0,∞) is as in (2.4.115).
Moving on, observe that (2.2.285) implies that there exists a point xQ0 ∈ ∂Ω with

the property that
∆(xQ0 , a02−m) ⊆ Q0 ⊆ ∆(xQ0 , a12−m). (2.4.132)

From this and (2.4.108) we then conclude that there exists some constant c > 0, which
only depends on the Ahlfors regularity constant of ∂Ω, with the property that a∆0 ⊆
c∆(xQ0 , a12−m). As a consequence of this inclusion we may write (for some C ∈ (0,∞)
which depends only on n, p, [w]Ap , and the Ahlfors regularity constant of ∂Ω)

w(a∆0) ≤ w
(
c∆(xQ0 , a12−m)

)
≤ C w

(
∆(xQ0 , a02−m)

)
≤ Cw(Q0) (2.4.133)

where we have also used the fact that w is a doubling measure (cf. (2.2.313)) and
(2.4.132). With this in hand, we may now estimate

w(Fλ) ≤ η(θ, δ)τ · w(a∆0) ≤ η(θ, δ)τ · w(Q0)

≤ η(θ, δ)τ · w(Sλ), (2.4.134)

where the first inequality uses (2.2.315), the fact that Fλ ⊆ a∆0 (cf. (2.4.118)), and
(2.4.131), the second inequality is based on (2.4.133), while the last inequality is a
consequence of (2.4.122). Therefore (2.4.116) holds whenever there exists Q0 ∈ Q0

such that Pλ ∩Q0 = ∅.
To complete the proof of (2.4.116), it remains to consider the case when Pλ ∩Q 6= ∅

for each Q ∈ Q0. In this scenario, take an arbitrary dyadic cube Q ∈ Q0. From (2.4.109)
we know that Q ⊆ I0. Subdivide Q dyadically and stop when Pλ∩Q′ = ∅. This produces
a family of pairwise disjoint (stopping time) dyadic cubes {Qj}j∈JQ ⊂ D(∂Ω) such that
Qj ⊆ Q, Qj ∩ Pλ = ∅, and Q′ ∩ Pλ 6= ∅ for all Q′ ∈ D(∂Ω) such that Qj ( Q′ ⊆ Q. In
particular Qj ( Q for every j ∈ JQ and Q̃j , the dyadic parent of Qj , satisfies Q̃j ⊆ Q.
With the σ-nullset N as in (2.2.288), we now claim that⋃

j∈JQ

Qj ⊆ Sλ ∩Q ⊆
( ⋃
j∈JQ

Qj
)
∪N. (2.4.135)

To justify the first inclusion above, observe that if j ∈ JQ then Qj ⊆ Sλ ∩ Q, since
Qj ⊆ Q ⊆ I0 and Qj ∩ Pλ = ∅ imply that Qj ⊆ Q \ Pλ = Q ∩ Sλ. This establishes
the first inclusion in (2.4.135). As regards the second inclusion claimed in (2.4.135),
consider an arbitrary point x ∈

(
Sλ ∩ Q

)
\ N . Then T(∗)f(x) > λ which, in view of

(2.4.107), ensures that we may find a surface ball ∆x := ∆(x, rx) such that T(∗)f(y) > λ

for every y ∈ ∆x. Thanks to (2.2.285) and (2.2.287) we may then choose a dyadic cube
Qx ∈ D(∂Ω) such that x ∈ Qx and Qx ⊆ ∆x ∩Q ⊆ I0. This forces Qx ⊆ Sλ ∩Q, hence
Qx ∩ Pλ = ∅. By the maximality of the family chosen above, Qx ⊆ Qj for some j ∈ JQ
which goes to show that x ∈ Qj . Ultimately, this proves the second inclusion in (2.4.135).
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Going further, the idea is to carry out the stopping-time argument just described
for each dyadic cube Q ∈ Q0. For ease of reference, organize the resulting collection
of dyadic cubes

{
Qj : Q ∈ Q0 and j ∈ JQ

}
(which is an at most countable set) as a

single-index family
{
Q`
}
`∈I of mutually disjoint dyadic cubes; in particular,⋃

Q∈Q0

⋃
j∈JQ

Qj =
⋃
`∈I

Q`, (2.4.136)

with the latter union comprised of pairwise disjoint dyadic cubes in ∂Ω. Note that
Sλ ∩ Q might be empty for some Q ∈ Q0 and in this case JQ = ∅ (i.e., the family of
cubes {Qj}j∈JQ is empty, since there are no stopping time dyadic cubes produced in this
case). However, (2.4.109) and (2.4.121) imply that Sλ ∩ Q cannot be empty for every
Q ∈ Q0 and, as a consequence, I 6= ∅. Going further, using (2.4.109) and the fact that
Sλ ⊆ I0 (cf. (2.4.119)) we may write⋃

Q∈Q0

(Sλ ∩Q) = Sλ (2.4.137)

which further entails, on account of (2.4.136) and (2.4.135), that⋃
`∈I

Q` ⊆ Sλ ⊆
( ⋃
`∈I

Q`
)
∪N. (2.4.138)

By construction, for each index ` ∈ I there exists a point x∗` such that

x∗` ∈ Q̃` ∩ Pλ = Q̃` ∩
(
I0 \ Sλ

)
, (2.4.139)

where Q̃` denotes the dyadic parent of Q` (cf. item (4) in Proposition 2.2.39). For each
` ∈ I we let ∆` := ∆Q` and ∆̃` := ∆

Q̃`
be as in (2.2.285). Pressing on, split the collection

{∆`}`∈I into two sub-classes. Specifically, bring in

I1 :=
{
` ∈ I : there exists x∗∗` ∈ ∆` such that Mγf(x∗∗` ) ≤ Aλ

}
and I2 := I \ I1.

(2.4.140)

Hence, by design, Fλ ∩∆` = ∅ for each ` ∈ I2. Recall now from (2.4.121) that Fλ ⊆ Sλ.
From this, (2.4.138), and (2.2.285) we then obtain (bearing in mind that σ(N) = 0; cf.
(2.2.288))

w(Fλ) =
∑
`∈I

w(Fλ ∩Q`) ≤
∑
`∈I1

w(Fλ ∩∆`). (2.4.141)

Let us also consider

F` :=
{
x ∈ ∆` : T∗f(x) > 4λ

}
for each ` ∈ I1, (2.4.142)

and observe that this entails

Fλ ∩∆` ⊆ F` for each ` ∈ I1, (2.4.143)

Our next goal is to prove that

σ(F`) ≤ η(θ, δ) · σ(∆`) for each ` ∈ I1. (2.4.144)
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Granted this, using (2.2.315) it would follow that

w(F`) ≤ η(θ, δ)τ · w(∆`) for each ` ∈ I1 (2.4.145)

which, in concert with (2.4.141), (2.4.143), (2.2.285) plus the fact that w is a doubling
measure, and (2.4.138), would then imply

w(Fλ) ≤
∑
`∈I1

w(Fλ ∩∆`) ≤
∑
`∈I1

w(F`) ≤ η(θ, δ)τ ·
∑
`∈I1

w(∆`)

≤ η(θ, δ)τ ·
∑
`∈I1

w(Q`) ≤ η(θ, δ)τ ·
∑
`∈I

w(Q`)

= η(θ, δ)τ · w(Sλ), (2.4.146)

finishing the justification of (2.4.116).
We now turn to the proof of (2.4.144). Fix ` ∈ I1 and, in order to lighten notation,

in the sequel we agree to suppress the dependence of ∆`, ∆̃`, F`, x∗` , and x∗∗` on the index
`, and simply write ∆, ∆̃, F , x∗, and x∗∗, respectively. With this convention in mind,
observe first that

∆ ⊆ 2∆̃. (2.4.147)

To justify this inclusion, recall from (2.2.285) that we may write ∆ = B(xQ, rQ) ∩ ∂Ω
and ∆̃ = B(x

Q̃
, r
Q̃

)∩ ∂Ω; moreover, since Q̃ is the parent of Q, we have r
Q̃

= 2rQ. Then
for each x ∈ ∆ we have |x−x

Q̃
| ≤ |x−xQ|+ |xQ−xQ̃| < rQ+r

Q̃
= (3/2)r

Q̃
< 2r

Q̃
which

ultimately proves (2.4.147). Going forward, let us also denote by ∆∗ the surface ball of
center x∗ and radius R := Λ · rQ, for a sufficiently large constant Λ ∈ (2,∞) (depending
only on the implicit constants in the dyadic grid construction, which in turn depend only
on the Ahlfors regularity constant of ∂Ω) chosen so that

2∆̃ ⊆ ∆∗. (2.4.148)

We then decompose

f = f1 + f2 where f1 := f12∆∗ and f2 := f1∂Ω\2∆∗ . (2.4.149)

By virtue of the sub-linearity of T∗ and the fact that ∆ ⊆ ∆∗ ⊆ 4∆∗ (cf. (2.4.147)-
(2.4.148)) this implies

σ(F ) ≤ σ
({
x ∈ ∆ : T∗f1(x) > 2λ

})
+ σ

({
x ∈ ∆ : T∗f2(x) > 2λ

})
≤ σ

({
x ∈ 4∆∗ : T∗f1(x) > 2λ

})
+ σ

({
x ∈ ∆ : T∗f2(x) > 2λ

})
. (2.4.150)

The contribution from f1 in the last line above is handled as in (2.4.123)-(2.4.125),
(2.4.127)-(2.4.130) by performing a decomposition of 4∆∗ as in Theorem 2.2.25. Indeed,
a∆0, x̃, f , and λ are replaced by 4∆∗, x∗∗, f1, and 1

2λ, respectively, and we use that
Mγf(x∗∗) ≤ Aλ (cf. (2.4.140)), supp f1 ⊆ 2∆∗ ⊆ 4∆∗ (cf. (2.4.149)), and σ(4∆∗) ≤
c · σ(∆) for some c ∈ (0,∞) depending only the Ahlfors regularity constant of ∂Ω (since
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∂Ω is Ahlfors regular and the surface balls 4∆∗, ∆ have comparable radii) to run the
same proof as before. The conclusion is that

σ
({
x ∈ 4∆∗ : T∗f1(x) > 2λ

})
≤ η(θ, δ) · σ(∆). (2.4.151)

In view of the conclusion we seek (cf. (2.4.144)), this suits our purposes.
As for f2, recall that R is the radius of the surface ball ∆∗, and for each given ε > 0

set ε′ := max{ε, 2R}. Based on this choice of ε′, the definition of the truncated singular
integral operators in (2.4.92), the truncation in the definition of the function f2, the
estimate in (2.4.105) (presently used with x∗ in place of x and ε′ in place of ε), the
fact that x∗∗ ∈ ∆ ⊆ ∆∗ ⊆ ∆(x∗, 2ε′) (cf. (2.4.140) and (2.4.147)-(2.4.148)), the fact
that Mγf(x∗∗) ≤ Aλ (cf. (2.4.140)), the definition of T(∗)f(x∗) (cf. (2.4.103)), the
membership of x∗ to Pλ (cf. (2.4.139)), and the first formula in (2.4.119) we may write∣∣Tεf2(x∗)

∣∣ =
∣∣Tε′f(x∗)

∣∣ ≤ |Tε′f(x∗)− T(ε′)f(x∗)
∣∣+ ∣∣T(ε′)f(x∗)

∣∣
≤ Cδ · Mγf(x∗∗) + T(∗)f(x∗) ≤ CδAλ+ λ

= Cθλ+ λ ≤ 3
2λ, (2.4.152)

with the last line a consequence of our choice of A in (2.4.114) and taking θ > 0 small
enough to begin with. With ε > 0 momentarily fixed, consider now an arbitrary point
x ∈ ∆ and bound ∣∣Tεf2(x)− Tεf2(x∗)

∣∣ ≤ I + II + III, (2.4.153)

where

I :=
ˆ

y∈∂Ω\2∆∗
|x−y|>ε, |x∗−y|>ε

∣∣∣〈x− y, ν(y)〉k(x− y)− 〈x∗ − y, ν(y)〉k(x∗ − y)
∣∣∣|f(y)| dσ(y),

II :=
ˆ

y∈∂Ω\2∆∗
|x−y|>ε, |x∗−y|≤ε

|〈x− y, ν(y)〉||k(x− y)||f(y)| dσ(y),

III :=
ˆ

y∈∂Ω\2∆∗
|x∗−y|>ε, |x−y|≤ε

|〈x∗ − y, ν(y)〉||k(x∗ − y)||f(y)| dσ(y). (2.4.154)

In preparation for estimating the term I, we will first analyze the difference between
I and a similar expression in which ν(y) has been replaced by the integral average ν∆∗ :=ffl

∆∗ ν dσ. To set the stage, for each fixed y ∈ ∂Ω \ 2∆∗ consider the function

Fy(z) := 〈z − y, ν(y)− ν∆∗〉k(z − y) for each z ∈ B(x∗, R). (2.4.155)

Then

|(∇Fy)(z)| ≤
( ∑
|α|≤1

sup
Sn−1

|∂αk|
)∣∣ν(y)− ν∆∗

∣∣
|z − y|n

for each z ∈ B(x∗, R). (2.4.156)

Keeping in mind that x ∈ ∆ ⊆ ∆∗ = B(x∗, R) ∩ ∂Ω (cf. (2.4.147)-(2.4.148)), we have

|x− x∗| < R. (2.4.157)
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Also, (recall that [x, x∗] denotes the line segment with endpoints x, x∗),

|x∗ − y| ≤ 2|ξ − y| for each y ∈ ∂Ω \ 2∆∗ and each ξ ∈ [x, x∗]. (2.4.158)

Hence, by (2.4.155)-(2.4.156), the Mean Value Theorem (bearing in mind (2.4.98)),
(2.4.157)-(2.4.158), and Hölder’s inequality it follows that

ˆ
∂Ω\2∆∗

∣∣∣〈x− y, ν(y)− ν∆∗〉k(x− y)− 〈x∗ − y, ν(y)− ν∆∗〉k(x∗ − y)
∣∣∣|f(y)| dσ(y)

=
ˆ
∂Ω\2∆∗

∣∣Fy(x)− Fy(x∗)
∣∣|f(y)| dσ(y)

≤
ˆ
∂Ω\2∆∗

|x− x∗| · sup
ξ∈[x,x∗]

∣∣(∇Fy)(ξ)∣∣|f(y)| dσ(y)

≤ C
ˆ
∂Ω\2∆∗

R

|x∗ − y|n
∣∣ν(y)− ν∆∗

∣∣|f(y)| dσ(y)

≤ C
∞∑
j=1

2−j
 

2j+1∆∗\2j∆∗

∣∣ν(y)− ν∆∗
∣∣|f(y)| dσ(y)

≤ C
∞∑
j=1

2−j
( 

2j+1∆∗

(∣∣ν(y)− ν2j+1∆∗
∣∣+ ∣∣ν2j+1∆∗ − ν∆∗

∣∣) 1+γ
γ dσ(y)

) γ
1+γ
×

×
( 

2j+1∆∗
|f(y)|1+γ dσ(y)

) 1
1+γ

≤ C
( ∞∑
j=1

(j + 2) 2−j
)
‖ν‖[BMO(∂Ω,σ)]nMγf(x∗∗)

≤ CAδλ, (2.4.159)

for some C ∈ (0,∞) which depends only on n, p, [w]Ap , and the Ahlfors regularity
constant of ∂Ω. Above, the fifth inequality relies on (2.2.43) and the fact that

∣∣ν2j+1∆∗ − ν∆∗
∣∣ ≤ C (j + 1) ‖ν‖[BMO(∂Ω,σ)]n for each j ∈ N (2.4.160)

for some C ∈ (0,∞) depending only on n and the Ahlfors regular constant of ∂Ω, which
is a direct consequence of (2.2.46). The fifth inequality in (2.4.159) also uses the fact
that x∗∗ ∈ ∆ ⊆ ∆∗ ⊆ 2j+1∆∗ for each integer j ∈ N. The last inequality in (2.4.159) is
a consequence of the fact thatMγf(x∗∗) ≤ Aλ (cf. (2.4.140)).

On the other hand, from the properties of the kernel k and the Mean Value Theorem
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we obtainˆ
∂Ω\2∆∗

∣∣∣〈x− y, ν∆∗〉k(x− y)− 〈x∗ − y, ν∆∗〉k(x∗ − y)
∣∣∣|f(y)| dσ(y)

=
ˆ
∂Ω\2∆∗

∣∣∣ (〈x− y, ν∆∗〉 − 〈x∗ − y, ν∆∗〉) k(x∗ − y)

+ 〈x− y, ν∆∗〉 (k(x− y)− k(x∗ − y))
∣∣∣|f(y)| dσ(y)

≤ Cn
∞∑
j=1

ˆ
2j+1∆∗\2j∆∗

( |〈x− x∗, ν∆∗〉|
|x∗ − y|n

+R
|〈x− y, ν∆∗〉|
|x∗ − y|n+1

)
|f(y)| dσ(y)

≤ Cn
∞∑
j=1

ˆ
2j+1∆∗\2j∆∗

|〈x− x∗, ν∆∗〉|
|x∗ − y|n

|f(y)| dσ(y)

+ CnR
∞∑
j=1

ˆ
2j+1∆∗\2j∆∗

|〈x− y, ν∆∗ − ν2j+1∆∗〉|
|x∗ − y|n+1 |f(y)| dσ(y)

+ CnR
∞∑
j=1

ˆ
2j+1∆∗\2j∆∗

|〈x− y, ν2j+1∆∗〉|
|x∗ − y|n+1 |f(y)| dσ(y)

=: I1 + I2 + I3. (2.4.161)

To estimate I1, write

I1 ≤ CnR−1|〈x− x∗, ν∆∗〉|
∞∑
j=1

2−j
 

2j+1∆∗
|f(y)| dσ(y)

≤ Cδ
∞∑
j=1

2−jMγf(x∗∗) ≤ CδMγf(x∗∗)

≤ CAδλ, (2.4.162)

where C ∈ (0,∞) depends only on n, the local John constants of Ω, and the Ahlfors
regularity constant of ∂Ω. The second inequality above is a consequence of (2.4.101)
used here with z := x∗, y := x∗, µ := 2 (a valid choice given that x ∈ ∆(x∗, 2R)
since, as seen from (2.4.147)-(2.4.148), we have x ∈ ∆ ⊆ ∆∗ = ∆(x∗, R)), as well as the
fact that x∗∗ ∈ ∆ ⊆ ∆∗ ⊆ 2j+1∆∗ for each j ∈ N. The last inequality (2.4.162) uses
Mγf(x∗∗) ≤ Aλ (cf. (2.4.140)).

To treat I2, we write (for some C ∈ (0,∞) which depends only on n, the local John
constants of Ω, and the Ahlfors regularity constant of ∂Ω),

I2 ≤ CR
∞∑
j=1

ˆ
2j+1∆∗\2j∆∗

|ν∆∗ − ν2j+1∆∗ |
|x∗ − y|n

|f(y)| dσ(y)

≤ C
∞∑
j=1

(j + 1) ‖ν‖[BMO(∂Ω,σ)]n 2−j
 

2j+1∆∗
|f(y)| dσ(y)

≤ CδMγf(x∗∗) ≤ CAδλ, (2.4.163)
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where the first inequality uses the definition of I2 and the estimate |x−y| ≤ (3/2)|x∗−y|
for each y ∈ ∂Ω\2∆∗, the second inequality takes into account (2.4.160) and the Ahlfors
regularity of ∂Ω, while the remaining inequalities are justified as in (2.4.162).

As regards I3, write (again, with C ∈ (0,∞) depending only on n, the local John
constants of Ω, and the Ahlfors regularity constant of ∂Ω)

I3 ≤ C
∞∑
j=1

2−j
 

2j+1∆∗

|〈x− y, ν2j+1∆∗〉|
2j+1R

|f(y)| dσ(y)

≤ Cδ
∞∑
j=1

2−j
 

2j+1∆∗
|f(y)| dσ(y) ≤ CδMγf(x∗∗)

≤ CAδλ. (2.4.164)

The second inequality in (2.4.164) is based on (2.4.101) used with z := x∗ and R replaced
by 2j+1R. The remaining inequalities in (2.4.164) are then justified much as in (2.4.162).

At this stage, by combining (2.4.159) and (2.4.161)-(2.4.164) we conclude that there
exists some C ∈ (0,∞) which depends only on n, the local John constants of Ω, and the
Ahlfors regularity constant of ∂Ω, such that

I ≤ CAδλ. (2.4.165)

To bound II in (2.4.154), recall that x, x∗∗ ∈ ∆ and assume y ∈ ∂Ω \ 2∆∗ is such that
|x∗ − y| ≤ ε and |x− y| > ε. Then, 2R < |x∗ − y| ≤ ε and since x, x∗∗ ∈ ∆ ⊆ B(xQ, rQ)
(where xQ and rQ are, respectively, the center and radius of the surface ball ∆) and
R = Λ · rQ with Λ > 2, we have |x − x∗∗| < 2rQ < R < ε/2. Hence, the point
x∗∗ belongs to the surface ball ∆(x, ε/2). Moreover, on account of (2.4.157) we may
write |x − y| ≤ |x − x∗| + |x∗ − y| < R + ε < (3/2)ε which, in particular, guarantees
that y ∈ ∆(x, 2ε). Consequently, ε < |x− y| < 2ε hence |k(x− y)| ≤ ε−n and (for some
C ∈ (0,∞) which depends only on depends only on n and the Ahlfors regularity constant
of ∂Ω),

II ≤ Cε−1
 

∆(x,2ε)
|〈x− y, ν(y)〉| |f(y)| dσ(y)

≤ Cε−1
 

∆(x,2ε)
|〈x− y, ν(y)− ν∆(x,2ε)〉| |f(y)| dσ(y)

+ Cε−1
 

∆(x,2ε)
|〈x− y, ν∆(x,2ε)〉| |f(y)| dσ(y)

=: II1 + II2. (2.4.166)

Using Hölder’s inequality, (2.2.43), (2.4.140), and (2.4.100) we obtain that there exists
some C ∈ (0,∞) which depends only on n, p, [w]Ap , the local John constants of Ω, and
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the Ahlfors regularity constant of ∂Ω, such that

II1 ≤ C
( 

∆(x,2ε)
|ν(y)− ν∆(x,2ε)|

1+γ
γ dσ(y)

) γ
1+γ

( 
∆(x,2ε)

|f(y)|1+γ dσ(y)
) 1

1+γ

≤ C ‖ν‖[BMO(∂Ω,σ)]nMγf(x∗∗) ≤ CAδλ, (2.4.167)

since x∗∗ is contained in ∆(x, ε/2) ⊆ ∆(x, 2ε) and Mγf(x∗∗) ≤ CAλ, as already noted
earlier. As for II2, invoking (2.4.101), Hölder’s inequality, and (2.4.140), it follows that
(with C ∈ (0,∞) as above)

II2 ≤ C
(

sup
y∈∆(x,2ε)

ε−1|〈x− y, ν∆(x,2ε)〉|
) 

∆(x,2ε)
|f(y)| dσ(y)

≤ Cδ
(  

∆(x,2ε)
|f(y)|1+γ dσ(y)

) 1
1+γ

≤ Cδ · Mγf(x∗∗) ≤ CAδλ. (2.4.168)

From (2.4.166)-(2.4.168) we see that there exists C ∈ (0,∞) which depends only on n,
p, [w]Ap , the local John constants of Ω, and the Ahlfors regularity constant of ∂Ω, such
that

II ≤ CAδλ. (2.4.169)

Turning our attention to III, recall that x, x∗∗ ∈ ∆ and suppose y ∈ ∂Ω \ 2∆∗ is such
that |x∗ − y| > ε and |x− y| ≤ ε. Then |x∗ − y| > 2R > R+ |x− x∗| by (2.4.157) which
further entails ε ≥ |x − y| ≥ |x∗ − y| − |x − x∗| > R. In particular, R < ε. If we now
abbreviate R̃ := R+ε then, on the one hand, |x∗−y| ≤ |x∗−x|+|x−y| < R+ε = R̃, while
on the other hand having |x∗−y| > ε and |x∗−y| > 2R implies |x∗−y| > R+(ε/2) > 1

2R̃.
As such, |k(x∗ − y)| ≤ R̃−n and

III ≤ CnR̃−1
 

∆(x∗,R̃)
|〈x∗ − y, ν(y)〉| |f(y)| dσ(y). (2.4.170)

Granted this, the same type of argument which, starting with the first line in (2.4.166)
has produced (2.4.169) (reasoning with R̃/2 replacing ε and with x∗ replacing x) will now
yield (for some C ∈ (0,∞) which depends only on n, p, [w]Ap , the local John constants
of Ω, and the Ahlfors regularity constant of ∂Ω)

III ≤ CAδλ, (2.4.171)

as soon as we show that x∗∗ ∈ ∆(x∗, R̃). To justify this membership, start by recalling
that |x − x∗∗| < 2rQ < R and then use (2.4.157), the triangle inequality, and the fact
that R < ε to estimate |x∗−x∗∗| ≤ |x−x∗|+ |x−x∗∗| < 2R < R̃. The proof of (2.4.171)
is therefore complete.

Let us summarize our progress. From (2.4.153), (2.4.165), (2.4.169), and (2.4.171) we
conclude that there exists some C ∈ (0,∞), which depends only on θ, n, p, [w]Ap , the
local John constants of Ω, and the Ahlfors regularity constant of ∂Ω, such that∣∣∣Tεf2(x)− Tεf2(x∗)

∣∣∣ ≤ C Aδλ, ∀x ∈ ∆, ∀ ε > 0. (2.4.172)
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In view of the fact that A = θ · δ−1 this entails∣∣∣Tεf2(x)− Tεf2(x∗)
∣∣∣ ≤ 1

2λ, ∀x ∈ ∆, ∀ ε > 0, (2.4.173)

provided we pick θ > 0 small to begin with. From (2.4.152), (2.4.173), and (2.4.91) we
then obtain

T∗f2(x) ≤ 2λ for all x ∈ ∆, (2.4.174)

whenever θ > 0 is small enough. Therefore, for this choice of θ, we conclude that

σ
({
x ∈ ∆ : T∗f2(x) > 2λ

})
= 0 (2.4.175)

which, in concert with (2.4.150) and (2.4.151), establishes (2.4.144). This finishes the
proof of the good-λ inequality (2.4.116).

Once (2.4.116) has been established, we proceed to prove (2.4.99). First, using
(2.4.106), by our definition of A, and by possibly choosing a smaller θ > 0, for each
point x ∈ I0 with T(∗)f(x) > λ andMγf(x) ≤ Aλ we may write

λ < T(∗)f(x) ≤ T∗f(x) + Cδ · Mγf(x)

≤ T∗f(x) + CδAλ = T∗f(x) + Cθλ

< T∗f(x) + 1
2λ. (2.4.176)

Hence, for such a choice of θ we have

1
2λ < T∗f(x) whenever the point x ∈ I0 is such
that T(∗)f(x) > λ andMγf(x) ≤ Aλ.

(2.4.177)

Consequently,

{
x ∈ I0 : T(∗)f(x) > λ and Mγf(x) ≤ Aλ

}
⊆
{
x ∈ I0 : T∗f(x) > λ

2
}

(2.4.178)

which, in turn, permits us to estimate

w
({
x ∈ I0 : T(∗)f(x) > λ

})
≤ w

({
x ∈ I0 : T(∗)f(x) > λ and Mγf(x) ≤ Aλ

})
+ w

({
x ∈ I0 : Mγf(x) > Aλ

})
≤ w

({
x ∈ I0 : T∗f(x) > λ

2
})

+ w
({
x ∈ I0 : Mγf(x) > Aλ

})
. (2.4.179)

From (2.4.115) it is clear that

lim
θ→0+

lim
δ→0+

η(θ, δ) = 0 (2.4.180)
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so it is possible to choose the threshold δ0 > 0 and the coefficient θ > 0 small enough
depending only on n, p, [w]Ap , the local John constants of Ω, and the Ahlfors regularity
constant of ∂Ω, so that

η(θ, δ)τ < (2 · 8p)−1. (2.4.181)

This is the last demand imposed on δ, θ, and the totality of the such size specifications
imply that the final choice of the said parameters ultimately depends only on n, p, [w]Ap ,
the local John constants of Ω, and the Ahlfors regularity constant of ∂Ω. Combining
(2.4.179) with (2.4.116) and keeping (2.4.181) in mind we then get

w
({
x ∈ I0 :T∗f(x) > 4λ

})
≤ w

({
x ∈ I0 : T∗f(x) > 4λ and Mγf(x) ≤ Aλ

})
+ w

({
x ∈ I0 : Mγf(x) > Aλ

})
≤ η(θ, δ)τ · w

({
x ∈ I0 : T(∗)f(x) > λ

})
+ w

({
x ∈ I0 : Mγf(x) > Aλ

})
< (2 · 8p)−1w

({
x ∈ I0 : T∗f(x) > λ

2
})

+
(
1 + (2 · 8p)−1)w({x ∈ I0 : Mγf(x) > Aλ

})
. (2.4.182)

Recall that γ ∈ (0, p − 1) has been chosen so that w ∈ Ap/(1+γ)(∂Ω, σ), hence Mγ

is bounded on Lp(∂Ω, w). Multiply the most extreme sides of (2.4.182) by pλp−1 and
integrate over λ ∈ (0,∞). Bearing in mind that A = θ · δ−1, after three natural changes
of variables (namely, λ̃ := 4λ in the first integral, λ̃ := 1

2λ in the second integral, and
λ̃ := θδ−1λ in the third integral) we therefore obtainˆ

I0

|T∗f |pw dσ ≤
1
2

ˆ
I0

|T∗f |pw dσ + δpθ−p
(
22p + 2−p−1)ˆ

I0

(Mγf)pw dσ

≤ 1
2

ˆ
I0

|T∗f |pw dσ + C δp
ˆ
∂Ω
|f |pw dσ, (2.4.183)

for some constant C ∈ (0,∞) which depends only on n, p, [w]Ap , the local John constants
of Ω, and the Ahlfors regularity constant of ∂Ω (hence, in particular, independent of
the function f , the quantity δ, as well as the parameters x0,m defining the set I0).
Since f ∈ Lp(∂Ω, w) and the operator T∗ maps the space Lp(∂Ω, w) into itself (cf.
Proposition 2.3.3), it follows that

´
I0
|T∗f |pw dσ ≤ ‖T∗f‖pLp(∂Ω,w) < ∞. Hence, the

first integral in the right-most side of (2.4.183) may be absorbed in the left-most side.
By also taking into account (2.4.111), we therefore obtainˆ

2∆0

|T∗f |pw dσ ≤
ˆ
I0

|T∗f |pw dσ ≤ Cδp
ˆ
∂Ω
|f |pw dσ. (2.4.184)

Recall that 2∆0 = ∆(x0, 2−m+1) and the only constraint on the integer m ∈ Z has
been that supp f ⊆ 2∆0. Upon letting m → −∞ and invoking Lebesgue’s Monotone
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Convergence Theorem we arrive at the conclusion that, for some C ∈ (0,∞) which
depends only on n, p, [w]Ap , and the Ahlfors regularity constant of ∂Ω, we have the
estimate ˆ

∂Ω
|T∗f |pw dσ ≤ Cδp

ˆ
∂Ω
|f |pw dσ,

for every f ∈ Lp(∂Ω, w) with compact support.
(2.4.185)

To treat the case when the function f ∈ Lp(∂Ω, w) is now arbitrary, for each j ∈ N
define fj := 1∆(x0,j)f . Then Lebesgue’s Dominated Convergence Theorem implies that
fj → f in Lp(∂Ω, w) as j → ∞, and since T∗ is continuous on Lp(∂Ω, w) we also have
T∗fj → T∗f in Lp(∂Ω, w) as j →∞. Writing the estimate in (2.4.185) for fj in place of
f and passing to limit j →∞ then yields

ˆ
∂Ω
|T∗f |pw dσ ≤ Cδp

ˆ
∂Ω
|f |pw dσ for each f ∈ Lp(∂Ω, w), (2.4.186)

where C ∈ (0,∞) depends only on n, p, [w]Ap , and the Ahlfors regularity constant
of ∂Ω. Finally, sending δ ↘ ‖ν‖[BMO(∂Ω,σ)]n (cf. (2.4.100)), this finishes the proof of
(2.4.99).

Recall the notion of chord-arc domain introduced, in the two-dimensional setting, in
Definition 2.2.35.

Corollary 2.4.10. Fix κ∗ ∈ (0,∞) and let Ω ⊆ R2 be a κ-CAD for some κ ∈ [0,κ∗).
Abbreviate σ := H1b∂Ω and denote by ν the geometric measure theoretic outward unit
normal to Ω. Also, fix an integrability exponent p ∈ (1,∞) along with a Muckenhoupt
weight w ∈ Ap(∂Ω, σ). Consider a complex-valued function k ∈ CN (R2 \ {0}), for a
sufficiently large integer N ∈ N, which is even and positive homogeneous of degree −2,
and define the maximal operator T∗ acting on each function f ∈ Lp(∂Ω, w) according to

T∗f(x) := sup
ε>0

∣∣Tεf(x)
∣∣ for each x ∈ ∂Ω, (2.4.187)

where, for each ε > 0,

Tεf(x) :=
ˆ

y∈∂Ω
|x−y|>ε

〈x− y, ν(y)〉k(x− y)f(y) dσ(y) for all x ∈ ∂Ω. (2.4.188)

Then there exists some C ∈ (0,∞), which depends only on κ∗, p, [w]Ap such that

‖T∗‖Lp(∂Ω,w)→Lp(∂Ω,w) ≤ C
( ∑
|α|≤N

sup
S1
|∂αk|

)√
κ. (2.4.189)

Of course, the crux of the matter is the presence of
√
κ as a multiplicative factor in the

right hand-side of (2.4.189). As a consequence, ‖T∗‖Lp(∂Ω,w)→Lp(∂Ω,w) is small if Ω ⊆ R2

is a κ-CAD whose constant κ > 0 is sufficiently small (relative to the integral exponent
p, the characteristic [w]Ap of the Muckenhoupt weight, and the integral kernel k).
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Proof of Corollary 2.4.10. From Proposition 2.2.36 and Proposition 2.3.3 it follows that
T∗ is bounded on Lp(∂Ω, w), with norm controlled in terms of

∑
|α|≤N supS1 |∂αk|, and

κ∗, p, [w]Ap . This trivially implies (2.4.189) when κ stays away from zero, say when
κ ≥

√
2− 1, simply by adjusting constants. When κ ∈

[
0 ,
√

2− 1
)
the estimate claimed

in (2.4.189) is implied by (2.4.93) and (2.2.257).

Theorem 2.4.4 then readily implies similar operator norm estimates for principal-
value singular integral operators whose integral kernel has a special algebraic format, in
that it involves the inner product between the outward unit normal and the chord, as a
factor. This is made precise in the corollary below. In turn, for a given second-order,
homogeneous, constant complex coefficient system L with Adis

L 6= ∅, and a given Ahlfors
regular domain Ω ⊆ Rn satisfying a two-sided local John condition, Corollary 2.4.11 will
be used for T being either the boundary-to-boundary double layer potential operator KA

associated with a coefficient tensor A ∈ Adis
L , or its “transposed” version K#

A , acting on
Muckenhoupt weighted Lebesgue spaces on ∂Ω.

Corollary 2.4.11. Let Ω ⊆ Rn be an Ahlfors regular domain satisfying a two-sided
local John condition. Abbreviate σ := Hn−1b∂Ω and denote by ν the geometric measure
theoretic outward unit normal to Ω. Fix an integrability exponent p ∈ (1,∞) along with
a Muckenhoupt weight w ∈ Ap(∂Ω, σ), and recall the earlier convention of using the
same same symbol w for the measure associated with the given weight w as in (2.2.292).
Also, consider a sufficiently large integer N = N(n) ∈ N and suppose k ∈ CN (Rn \ {0})
is a complex-valued function which is even and positive homogeneous of degree −n. In
this setting consider the principal-value singular integral operators T, T# acting on each
function f ∈ Lp(∂Ω, w) according to

Tf(x) := lim
ε→0+

ˆ

y∈∂Ω
|x−y|>ε

〈x− y, ν(y)〉k(x− y)f(y) dσ(y), (2.4.190)

and
T#f(x) := lim

ε→0+

ˆ

y∈∂Ω
|x−y|>ε

〈y − x, ν(x)〉k(x− y)f(y) dσ(y), (2.4.191)

at σ-a.e. point x ∈ ∂Ω. Then there exists a constant C ∈ (0,∞), which depends only
on n, p, [w]Ap, the local John constants of Ω, and the Ahlfors regularity constant of ∂Ω,
with the property that

‖T‖Lp(∂Ω,w)→Lp(∂Ω,w) ≤ C
( ∑
|α|≤N

sup
Sn−1

|∂αk|
)
‖ν‖[BMO(∂Ω,σ)]n (2.4.192)

and ∥∥∥T#
∥∥∥
Lp(∂Ω,w)→Lp(∂Ω,w)

≤ C
( ∑
|α|≤N

sup
Sn−1

|∂αk|
)
‖ν‖[BMO(∂Ω,σ)]n . (2.4.193)
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Furthermore, with p′ ∈ (1,∞) denoting the Hölder conjugate exponent of p and with
w′ := w1−p′ ∈ Ap′(∂Ω, σ), it follows that

the (real) transposed of T : Lp(∂Ω, w) → Lp(∂Ω, w) is
the operator T# : Lp′(∂Ω, w′)→ Lp

′(∂Ω, w′).
(2.4.194)

Proof. In view of the fact that

‖T‖Lp(∂Ω,w)→Lp(∂Ω,w) ≤ ‖T∗‖Lp(∂Ω,w)→Lp(∂Ω,w) , (2.4.195)

the estimate claimed in (2.4.192) follows directly from (2.4.93). As regards the claim
made in (2.4.193), first observe that (2.4.194) holds, thanks to (2.4.190)-(2.4.191) and
(2.3.29). As such,∥∥∥T#

∥∥∥
Lp(∂Ω,w)→Lp(∂Ω,w)

= ‖T‖Lp′ (∂Ω,w′)→Lp′ (∂Ω,w′)

≤ C
( ∑
|α|≤N

sup
Sn−1

|∂αk|
)
‖ν‖[BMO(∂Ω,σ)]n , (2.4.196)

thanks to (2.4.192) used with p′, w′ in place of p, w.

Remark 2.4.12. Of course, in the special case when w ≡ 1, Theorem 2.4.4 and Corol-
lary 2.4.11 yield estimates on ordinary Lebesgue spaces, Lp(∂Ω, σ) with p ∈ (1,∞). Via
real interpolation, these further imply similar estimates on the scale of Lorentz spaces on
∂Ω. Specifically, from (2.4.93), (2.4.192)-(2.4.193), and real interpolation (for sub-linear
operators) we conclude that for each p ∈ (1,∞) and q ∈ (0,∞] there exists a constant
C ∈ (0,∞), which depends only on n, p, q, the local John constants of Ω, and the Ahlfors
regularity constant of ∂Ω, with the property that

‖T∗‖Lp,q(∂Ω,σ)→Lp,q(∂Ω,σ) ≤ C
( ∑
|α|≤N

sup
Sn−1

|∂αk|
)
‖ν‖[BMO(∂Ω,σ)]n , (2.4.197)

‖T‖Lp,q(∂Ω,σ)→Lp,q(∂Ω,σ) ≤ C
( ∑
|α|≤N

sup
Sn−1

|∂αk|
)
‖ν‖[BMO(∂Ω,σ)]n , (2.4.198)

and ∥∥∥T#
∥∥∥
Lp,q(∂Ω,σ)→Lp,q(∂Ω,σ)

≤ C
( ∑
|α|≤N

sup
Sn−1

|∂αk|
)
‖ν‖[BMO(∂Ω,σ)]n . (2.4.199)

Remark 2.4.13. In the context of Corollary 2.4.11, estimates (2.4.192)-(2.4.193) remain
valid with a fixed constant C ∈ (0,∞) when the integrability exponent and the corre-
sponding Muckenhoupt weight are allowed to vary while retaining control. Concretely,
Remark 2.4.5 implies that for each compact interval I ⊂ (0,∞) and each number
W ∈ (0,∞) there exists a constant C ∈ (0,∞), which depends only on n, I, W , the
local John constants of Ω, and the Ahlfors regularity constant of ∂Ω, with the property
that (2.4.192)-(2.4.193) hold for each p ∈ I and each w ∈ Ap(∂Ω, σ) with [w]Ap ≤W .

Similar considerations apply to the estimates in (2.4.197)-(2.4.199).
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2.4.3 Norm estimates and invertibility results for double layers

We first recall a result (cf. [53, Theorem 2.16, p. 2603]) which is a combination of the
extrapolation theorem of Rubio de Francia with the commutator theorem of Coifman et
al., [27], suitably adapted to setting of spaces of homogeneous type.

Theorem 2.4.14. Let Σ ⊆ Rn be a closed Ahlfors regular set, and abbreviate σ :=
Hn−1bΣ. Fix p0 ∈ (1,∞) along with some non-decreasing function Φ : (0,∞) → (0,∞)
and let T be a linear operator which is bounded on Lp0(Σ, w) for every w ∈ Ap0(Σ, σ),
with operator norm ≤ Φ

(
[w]Ap0

)
.

Then for each integrability exponent p ∈ (1,∞) there exist C1, C2 ∈ (0,∞) which
depend exclusively on the dimension n, the exponents p0, p, and the Ahlfors regularity
constant of Σ, with the property that for any Muckenhoupt weight w ∈ Ap(Σ, σ) the
operator

T : Lp(Σ, w) −→ Lp(Σ, w) (2.4.200)

is well defined, linear, and bounded, with operator norm

‖T‖Lp(Σ,w)→Lp(Σ,w) ≤ C1 · Φ
(
C2 · [w]max{1,(p0−1)/(p−1)}

Ap

)
. (2.4.201)

In addition, given any p ∈ (1,∞) along with some w ∈ Ap(Σ, σ), there exists a con-
stant C = C(Σ, n, p0, p, [w]Ap) ∈ (0,∞) with the property that for every complex-valued
function b ∈ L∞(Σ, σ) one has (with C1 as before)

‖[Mb, T ]‖Lp(Σ,w)→Lp(Σ,w) ≤ C1 · Φ(C) ‖b‖BMO(Σ,σ) , (2.4.202)

where [Mb, T ] is the commutator of T considered as in (2.4.200) and the operator Mb of
pointwise multiplication on Lp(Σ, w) by the function b, i.e.,

[Mb, T ]f := bT (f)− T (bf) for each f ∈ Lp(Σ, w). (2.4.203)

In particular, from (2.4.202) with w ≡ 1 and real interpolation it follows that, for any
given p ∈ (1,∞) and q ∈ (0,∞], there exists a constant C = C(Σ, n, p, q) ∈ (0,∞) with
the property that for every complex-valued function b ∈ L∞(Σ, σ) one has

‖[Mb, T ]‖Lp,q(Σ,σ)→Lp,q(Σ,σ) ≤ C1 · Φ(C) ‖b‖BMO(Σ,σ) . (2.4.204)

Theorem 2.4.14 is a particular case of a more general result proved in Theorem 2.4.16,
stated just after the following remark.

Remark 2.4.15. Even though Theorem 2.4.14 suffices for the purposes we have in mind,
it is worth noting that there is a version of (2.4.202) in which the pointwise multiplier
b is allowed to belong to the larger space BMO(Σ, σ). The price to pay is that we now
no longer may regard [Mb, T ] as in (2.4.203) and, instead, have to interpret this as an
abstract extension (by density) of a genuine commutator. Specifically, given a real-valued
function b ∈ BMO(Σ, σ), for each N ∈ N define

bN := min
{

max{b,−N} , N
}

= max
{

min{b,N} , −N
}
, (2.4.205)



2. Singular integral operators and quantitative flatness 191

and note that there exists C ∈ (0,∞) such that

bN ∈ L∞(Σ, σ), thus bN ∈ BMO(Σ, σ), and

‖bN‖BMO(Σ,σ) ≤ 2‖b‖BMO(Σ,σ) for all N ∈ N,

|bN (x)| ≤ |b(x)| for all x ∈ Σ and N ∈ N,

lim
N→∞

bN (x) = b(x) for each x belonging to Σ.

(2.4.206)

Keeping in mind that BMO(Σ, σ) ⊆ Lp0
loc(Σ, σ), Lebesgue’s Dominated Convergence

Theorem then implies bN → b in Lp0
loc(Σ, σ) as N → ∞, hence bNf → bf in Lp0(Σ, σ)

as N → ∞ for any f in L∞comp(Σ, σ) (the space of essentially bounded functions with
compact support in Σ). For each such function f the hypotheses on T then imply that
T (bNf) → T (bf) in Lp0(Σ, σ) as N → ∞. Since we also have bNT (f) → bT (f) at each
point in Σ as N →∞, we ultimately conclude that

for each function f ∈ L∞comp(Σ, σ) there exists a strictly
increasing sequence {Nj}j∈N ⊆ N with the property that[
MbNj

, T
]
f →

[
Mb, T

]
f at σ-a.e. point in Σ as j →∞.

(2.4.207)

Having fix p ∈ (1,∞) along with w ∈ Ap(Σ, σ), for each such function f in L∞comp(Σ, σ)
we may now writeˆ

Σ

∣∣[Mb, T ]f
∣∣p dw =

ˆ
Σ

lim inf
j→∞

∣∣∣[MbNj
, T
]
f
∣∣∣p dw

≤ lim inf
j→∞

ˆ
Σ

∣∣∣[MbNj
, T
]
f
∣∣∣p dw

≤ lim inf
j→∞

(
C1 · Φ(C)

∥∥∥bNj∥∥∥BMO(Σ,σ)

)p
‖f‖Lp(Σ,w)

≤
(
C1 · Φ(C) ‖b‖BMO(Σ,σ)

)p
‖f‖Lp(Σ,w), (2.4.208)

where the equality comes from (2.4.207), the first inequality is implies by Fatou’s Lemma,
the second inequality is a consequence of (2.4.202) (bearing in mind the first property
in (2.4.206)), and the last inequality follows from the second line of (2.4.206). In turn,
(2.4.208) proves that [Mb, T ] maps L∞comp(Σ, σ), regarded as a subspace of Lp(Σ, w),
boundedly into Lp(Σ, w). Given that L∞comp(Σ, σ) is dense in Lp(Σ, w), we finally conclude
that [Mb, T ], acting as a commutator on L∞comp(Σ, σ), extends by density to a linear and
bounded mapping on Lp(Σ, w).

Here is a generalization of Theorem 2.4.14, involving the “maximal commutator”
associated with a given family of linear and bounded operators.

Theorem 2.4.16. Let Σ ⊆ Rn be a closed Ahlfors regular set, and abbreviate σ :=
Hn−1bΣ. Fix p0 ∈ (1,∞) and let {Tj}j∈N be a family of linear operators which are
bounded on Lp0(Σ, w) for every w ∈ Ap0(Σ, σ). Define the action of the maximal operator
associated with this family on each function f ∈ Lp0(Σ, w) with w ∈ Ap0(Σ, σ) as

Tmaxf(x) := sup
j∈N
|Tjf(x)| for each x ∈ Σ. (2.4.209)
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Assume that for each w ∈ Ap0(Σ, σ) the sub-linear operator Tmax maps Lp0(Σ, w) into
itself, and that there exists some non-decreasing function Φ : (0,∞) → (0,∞) with the
property that

‖Tmax‖Lp0 (Σ,w)→Lp0 (Σ,w) ≤ Φ
(
[w]Ap0

)
for each w ∈ Ap0(Σ, σ). (2.4.210)

Then the following statements are true.

(i) For each integrability exponent p ∈ (1,∞) there exist C1, C2 ∈ (0,∞) which depend
exclusively on the dimension n, the exponents p0, p, and the Ahlfors regularity
constant of Σ, with the property that for any Muckenhoupt weight w ∈ Ap(Σ, σ)
the operator

Tmax : Lp(Σ, w) −→ Lp(Σ, w) (2.4.211)

is well defined, sub-linear, and bounded, with operator norm

‖Tmax‖Lp(Σ,w)→Lp(Σ,w) ≤ C1 · Φ
(
C2 · [w]max{1,(p0−1)/(p−1)}

Ap

)
. (2.4.212)

In particular, for each j ∈ N the operator Tj is a well-defined, linear, and bounded
mapping on Lp(Σ, w) with operator norm satisfying a similar estimate to (2.4.212).

(ii) Pick an arbitrary p ∈ (1,∞) along with some w ∈ Ap(Σ, σ), and fix an arbitrary
complex-valued function b ∈ L∞(Σ, σ). Define the action of the “maximal com-
mutator” (associated with the given function b and the family {Tj}j∈N) on each
function f ∈ Lp(Σ, w) as

Cmaxf(x) := sup
j∈N

∣∣[Mb, Tj ]f(x)
∣∣ for each x ∈ Σ, (2.4.213)

where, as in the past, Mb denotes the operator of pointwise multiplication by the
function b. Then there exist two constants Ci = Ci(Σ, n, p0, p, [w]Ap) ∈ (0,∞),
i ∈ {1, 2}, independent of the function b and the family {Tj}j∈N, with the property
that

‖Cmax‖Lp(Σ,w)→Lp(Σ,w) ≤ C1 · Φ(C2) ‖b‖BMO(Σ,σ) . (2.4.214)

The particular case when all operators in the family {Tj}j∈N are identical to one
another corresponds to Theorem 2.4.14.

Proof of Theorem 2.4.16. The fact that for each p ∈ (1,∞) and w ∈ Ap(Σ, σ) the sub-
linear operator Tmax induces a bounded mapping on Lp(Σ, w) whose operator norm may
be estimated as in (2.4.212) follows from Rubio de Francia’s extrapolation theorem. The
specific format of the constant in (2.4.212) is seen from a straightforward adaptation to
the setting of measure metric spaces of the Euclidean argument in [35, Theorem 3.2], [28,
Theorem 3.22, p.40] (making use of (2.2.309)). This takes care of item (i).

To deal with item (ii), we shall adapt the argument in [27], [59], [53]. First, from
simple linearity and homogeneity considerations, there is no loss of generality in assuming
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that b ∈ L∞(Σ, σ) is actually real-valued and satisfies ‖b‖BMO (Σ,σ) = 1 (the case when
b is constant is trivial). Fix now p ∈ (1,∞) and w ∈ Ap(Σ, σ). From item (8) of
Proposition 2.2.42 we know that there exists some small ε = ε(Σ, p, [w]Ap) > 0 with the
property that for each complex number z with |z| ≤ ε we have

w · e(Re z)b ∈ Ap(Σ, σ) with
[
w · e(Re z)b]

Ap
≤ C, (2.4.215)

where the constant C = C(Σ, p, [w]Ap) ∈ (0,∞) is independent of z.
To proceed, denote by L (Lpw) the space of all linear and bounded operators from

Lp(Σ, w) into itself, equipped with the operator norm ‖ · ‖Lp(Σ,w)→Lp(Σ,w). The idea is
now to observe that, for each j ∈ N,

Φj :
{
z ∈ C : |z| < ε/2

}
−→ L (Lpw) defined as

Φj(z) := MezbTjMe−zb for each z ∈ C with |z| < ε/2,
(2.4.216)

is an analytic map which, for each z ∈ C with |z| < ε/2 and each f ∈ Lp(Σ, w), satisfies
ˆ

Σ

sup
j∈N

∣∣Φj(z)f(x)
∣∣pw(x) dσ(x)

=
ˆ

Σ

sup
j∈N

∣∣Tj(e−zbf)(x)
∣∣pw(x) · e(Re z)b(x) dσ(x)

=
ˆ

Σ

∣∣Tmax(e−zbf)(x)
∣∣pw(x) · e(Re z)b(x) dσ(x)

≤ ‖Tmax‖pLp(Σ,w·e(Re z)b)→Lp(Σ,w·e(Re z)b)×

×
ˆ

Σ

∣∣e−zb(x)f(x)
∣∣pw(x) · e(Re z)b(x) dσ(x)

≤ Cp1 · Φ
(
C2 · C max{1,(p0−1)/(p−1)}

)p
‖f‖pLp(Σ,w), (2.4.217)

thanks to (2.4.216), (2.4.209), (2.4.215), and (2.4.212). In addition, from (2.4.216) and
Cauchy’s reproducing formula for analytic functions we see that for each j ∈ N we have

[Mb, Tj ] = Φ′j(0) = 1
2πi

ˆ
|z|=ε/4

Φj(z)
z2 dz. (2.4.218)

Consequently, for each f ∈ Lp(Σ, w) and x ∈ Σ, we have

Cmaxf(x) = sup
j∈N

∣∣[Mb, Tj ]f(x)
∣∣ ≤ 8

πε2

ˆ
|z|=ε/4

sup
j∈N

∣∣Φj(z)f(x)
∣∣ dH1(z), (2.4.219)

hence ∣∣Cmaxf(x)
∣∣p ≤ ( 8

πε2

)p ˆ
|z|=ε/4

sup
j∈N

∣∣Φj(z)f(x)
∣∣p dH1(z). (2.4.220)

From the last property in item (i) and (2.4.213) we see that for each f ∈ Lp(Σ, w) the
function Cmaxf is σ-measurable. In concert with (2.4.220) and (2.4.217), this permits us
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to estimateˆ

Σ

∣∣Cmaxf(x)
∣∣p dw(x)

≤
( 8
πε2

)p ˆ
Σ

( ˆ

|z|=ε/4

sup
j∈N

∣∣Φj(z)f(x)
∣∣p dH1(z)

)
dw(x)

=
( 8
πε2

)p ˆ

|z|=ε/4

( ˆ

Σ

sup
j∈N

∣∣Φj(z)f(x)
∣∣p dw(x)

)
dH1(z)

≤
( 23p−1

πp−1ε2p−1

)
Cp1 · Φ

(
C2 · C max{1,(p0−1)/(p−1)}

)p
‖f‖pLp(Σ,w), (2.4.221)

and (2.4.214) readily follows from this.

We next discuss a companion result to Theorem 2.4.4, the novelty being the consid-
eration of a maximal “transposed” operator as defined below in (2.4.222).

Theorem 2.4.17. Let Ω ⊆ Rn be an Ahlfors regular domain satisfying a two-sided
local John condition. Abbreviate σ := Hn−1b∂Ω and denote by ν the geometric measure
theoretic outward unit normal to Ω. Fix an integrability exponent p ∈ (1,∞) along with a
Muckenhoupt weight w ∈ Ap(∂Ω, σ), and recall the earlier convention of using the same
same symbol w for the measure associated with the given weight w as in (2.2.292). Also,
consider a sufficiently large integer N = N(n) ∈ N. Given a complex-valued function
k ∈ CN (Rn \ {0}) which is even and positive homogeneous of degree −n, consider the
maximal operator T#

∗ whose action on each given function f ∈ Lp(∂Ω, w) is defined as

T#
∗ f(x) := sup

ε>0

∣∣T#
ε f(x)

∣∣ for σ-a.e. x ∈ ∂Ω, (2.4.222)

where, for each ε > 0,

T#
ε f(x) :=

ˆ

y∈∂Ω
|x−y|>ε

〈y − x, ν(x)〉k(x− y)f(y) dσ(y) for σ-a.e. x ∈ ∂Ω. (2.4.223)

Then there exists some C ∈ (0,∞), which depends only on n, p, [w]Ap, the local John
constants of Ω, and the Ahlfors regularity constant of ∂Ω, such that∥∥∥T#

∗

∥∥∥
Lp(∂Ω,w)→Lp(∂Ω,w)

≤ C
( ∑
|α|≤N

sup
Sn−1

|∂αk|
)
‖ν‖[BMO(∂Ω,σ)]n . (2.4.224)

In particular, Theorem 2.4.17 may be used to give a direct proof of (2.4.193), without
having to rely on duality.

Proof of Theorem 2.4.17. To get started, we make the observation that if Q+ denotes the
collection of all positive rational numbers, then for each function f ∈ L1(∂Ω , σ(x)

1+|x|n−1
)

we have
(T#
∗ f)(x) = sup

ε∈Q+

∣∣(T#
ε f)(x)

∣∣ for every x ∈ ∂∗Ω. (2.4.225)
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To justify this, pick some f ∈ L1(∂Ω , σ(x)
1+|x|n−1

)
. We claim that if x ∈ ∂∗Ω is arbitrary

and fixed then for each ε ∈ (0,∞) and each sequence {εj}j∈N ⊆ (0,∞) such that εj ↘ ε

as j →∞ we have

lim
j→∞

ˆ

y∈∂Ω
|x−y|>εj

〈y − x, ν(x)〉k(x− y)f(y) dσ(y)

=
ˆ

y∈∂Ω
|x−y|>ε

〈y − x, ν(x)〉k(x− y)f(y) dσ(y). (2.4.226)

To justify (2.4.226) note that

{y ∈ ∂Ω : |x− y| > εj} ↗ {y ∈ ∂Ω : |x− y| > ε} as j →∞, (2.4.227)

in the sense that

{y ∈ ∂Ω : |x− y| > ε} =
⋃
j∈N
{y ∈ ∂Ω : |x− y| > εj} and

{y ∈ ∂Ω : |x− y| > εj} ⊆ {y ∈ ∂Ω : |x− y| > εj+1} for every j ∈ N.
(2.4.228)

Then (2.4.226) follows from (2.4.227), the properties of k, and Lebesgue’s Dominated
Convergence Theorem. What we have just proved amounts to saying that for every
function f ∈ L1(∂Ω , σ(x)

1+|x|n−1
)
we have

lim
j→∞

(T#
εj f)(x) = (T#

ε f)(x) for every x ∈ ∂∗Ω, (2.4.229)

whenever ε ∈ (0,∞) and {εj}j∈N ⊆ (0,∞) are such that εj ↘ ε as j → ∞. Having
established this, (2.4.225) readily follows on account of the density of Q+ in (0,∞).

To proceed, let {εj}j∈N be an enumeration of Q+. Also, bring back the operators
(2.4.92) and observe that for each j ∈ N, each f ∈ Lp(∂Ω, w), and each x ∈ ∂∗Ω we have

T#
εj f(x) + Tεjf(x) =

ˆ

y∈∂Ω
|x−y|>εj

〈y − x, ν(x)− ν(y)〉k(x− y)f(y) dσ(y). (2.4.230)

Write (νi)1≤i≤n for the scalar components of the geometric measure theoretic outward
unit normal ν to Ω and, for every i ∈ {1, . . . , n}, every j ∈ N, and every f ∈ Lp(∂Ω, w)
set

T(i)
j f(x) :=

ˆ

y∈∂Ω
|x−y|>εj

(yi − xi)k(x− y)f(y) dσ(y) for each x ∈ ∂Ω. (2.4.231)

Then, for each j ∈ N and each f ∈ Lp(∂Ω, w) we may recast (2.4.230) as

T#
εj f(x) + Tεjf(x) =

n∑
i=1

[
Mνi , T

(i)
j

]
f(x) for each x ∈ ∂∗Ω. (2.4.232)
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If for each i ∈ {1, . . . , n} and each f ∈ Lp(∂Ω, w) we now define

C(i)
maxf(x) := sup

j∈N

∣∣∣[Mνi , T
(i)
j

]
f(x)

∣∣∣ for each x ∈ ∂∗Ω, (2.4.233)

then, thanks to Proposition 2.3.3, for each i ∈ {1, . . . , n} we may invoke Theorem 2.4.16
for the family

{
T(i)
j

}
j∈N to conclude that∥∥∥C(i)

max

∥∥∥
Lp(∂Ω,w)→Lp(∂Ω,w)

≤ C
( ∑
|α|≤N

sup
Sn−1

|∂αk|
)
‖ν‖[BMO(∂Ω,σ)]n , (2.4.234)

where C ∈ (0,∞), which depends only on n, p, [w]Ap , the local John constants of Ω,
and the Ahlfors regularity constant of ∂Ω. Also, from (2.4.232), (2.4.233), (2.4.225), and
(2.4.91) we deduce that for each f ∈ Lp(∂Ω, w) we have

T#
∗ f(x) ≤ T∗f(x) +

n∑
i=1

C(i)
maxf(x) for each x ∈ ∂∗Ω. (2.4.235)

At this stage, the estimate claimed in (2.4.224) becomes a consequence of (2.4.235),
(2.4.93), and (2.4.234), keeping in mind that, as is apparent from (2.4.225), the function
T#
∗ f is σ-measurable, and that we currently have σ

(
∂Ω \ ∂∗Ω

)
= 0 (cf. Definition 1.1.2

and (1.1.14)).

To discuss a significant application of Theorem 2.4.14 let us first formally introduce
the family of Riesz transforms {Rj}1≤j≤n on the boundary a UR domain Ω ⊆ Rn.
Specifically, with σ := Hn−1b∂Ω, for each j ∈ {1, . . . , n} the j-th Riesz transform Rj

acts on any given function f ∈ L1(∂Ω, σ(x)
1+|x|n−1

)
according to

Rjf(x) := lim
ε→0+

2
ωn−1

ˆ

y∈∂Ω
|x−y|>ε

xj − yj
|x− y|n

f(y) dσ(y) (2.4.236)

at σ-a.e. point x ∈ ∂Ω.

Theorem 2.4.18. Let Ω ⊆ Rn be an open set satisfying a two-sided local John condition
and whose topological boundary is an Ahlfors regular set. Abbreviate σ := Hn−1b∂Ω and
denote by ν = (νk)1≤k≤n the geometric measure theoretic outward unit normal to Ω.
Also, fix an integrability exponent p ∈ (1,∞) and a Muckenhoupt weight w ∈ Ap(∂Ω, σ).
Finally, recall the boundary-to-boundary harmonic double layer potential operator K∆
from (2.3.8), the Riesz transforms {Rj}1≤j≤n from (2.4.236), and for each k ∈ {1, . . . , n}
denote by Mνk the operator of pointwise multiplication by the k-th scalar component of
ν.

Then there exists some C ∈ (0,∞) which depends only on n, p, [w]Ap, the local John
constants of Ω, and the Ahlfors regularity constant of ∂Ω, such that

‖K∆‖Lp(∂Ω,w)→Lp(∂Ω,w)

+ max
1≤j,k≤n

∥∥[Mνk , Rj ]
∥∥
Lp(∂Ω,w)→Lp(∂Ω,w) ≤ C ‖ν‖[BMO(∂Ω,σ)]n . (2.4.237)
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Proof. The estimate claimed in (2.4.237) is implied by (2.3.8), Corollary 2.4.11, (2.4.236),
Proposition 2.3.3, and Theorem 2.4.14.

We shall, once again, see Theorem 2.4.14 in action shortly, in the proof of Theo-
rem 2.4.20 stated a little later. As a preamble, we recall the following lemma from [93],
which identifies the commutator between the double layer potential operator KA from
(2.3.4) and the first-order tangential derivative operators ∂τjk from (2.2.344) as being
yet another commutator, of the sort considered in Theorem 2.4.14 (with the function b
a scalar component of the outward unit normal ν).

Lemma 2.4.19. Suppose Ω ⊆ Rn is a UR domain. Abbreviate σ := Hn−1b∂Ω and denote
by ν = (ν1, . . . , νn) the geometric measure theoretic outward unit normal to Ω. Let L be a
homogeneous, second-order, constant complex coefficient, weakly ellipticM×M system in
Rn and consider the matrix-valued fundamental solution E = (Eαβ)1≤α,β≤M associated
with L as in Theorem 1.2.1. Also, pick a coefficient tensor A =

(
aαβjk

)
1≤α,β≤M
1≤j,k≤n

∈ AL

and bring in KA, the boundary-to-boundary double layer potential operator associated
with Ω and A as in (2.3.4). In addition, for each j, k ∈ {1, . . . , n} define the singular
integral operator Ujk acting on each given matrix-valued function F = (Fαs)1≤α≤M

1≤s≤n
with

entries belonging to L1(∂Ω, σ(x)
1+|x|n−1

)
as UjkF =

(
(UjkF )γ

)
1≤γ≤M where, for each index

γ ∈ {1, . . . ,M},

(UjkF )γ(x) := − lim
ε→0+

ˆ

y∈∂Ω
|x−y|>ε

[νk(x)− νk(y)]νj(y)aβαrs (∂rEγβ)(x− y)Fαs(y) dσ(y)

+ lim
ε→0+

ˆ

y∈∂Ω
|x−y|>ε

[νj(x)− νj(y)]νk(y)aβαrs (∂rEγβ)(x− y)Fαs(y) dσ(y)

+ lim
ε→0+

ˆ

y∈∂Ω
|x−y|>ε

[νk(y)− νk(x)]νs(y)aβαrs (∂rEγβ)(x− y)Fαj(y) dσ(y)

− lim
ε→0+

ˆ

y∈∂Ω
|x−y|>ε

[νj(y)− νj(x)]νs(y)aβαrs (∂rEγβ)(x− y)Fαk(y) dσ(y)

(2.4.238)

at σ-a.e. point x ∈ ∂Ω. Finally, fix some integrability exponents p, q ∈ (1,∞] and
consider a function

f ∈
[
L1(∂Ω, σ(x)

1+|x|n−1
)
∩ Lploc(∂Ω, σ)

]M
with the property that

∂τjkf ∈
[
L1(∂Ω, σ(x)

1+|x|n−1
)
∩ Lqloc(∂Ω, σ)

]M
for all j, k ∈ {1, . . . , n}.

(2.4.239)

Then for each j, k,∈ {1, . . . , n} one has

∂τjk(KAf) = KA(∂τjkf) + Ujk(∇tanf) at σ-a.e. point on ∂Ω, (2.4.240)
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where ∇tanf is regarded as the M × n matrix-valued function F = (Fαs)1≤α≤M
1≤s≤n

whose

entry Fαs is the s-th component of ∇tanfα.

In Theorem 2.4.20 below the focus is obtaining operator norm estimates for dou-
ble layer potentials associated with distinguished coefficient tensors on Muckenhoupt
weighted Lebesgue and Sobolev spaces, involving the BMO semi-norm of the unit normal
to the boundary of the underlying domain as a factor.

Theorem 2.4.20. Let Ω ⊆ Rn be an open set satisfying a two-sided local John condition
and whose topological boundary is an Ahlfors regular set. Abbreviate σ := Hn−1b∂Ω and
denote by ν the geometric measure theoretic outward unit normal to Ω. Also, let L be a
homogeneous, second-order, constant complex coefficient, weakly elliptic M ×M system
in Rn for which Adis

L 6= ∅. Pick A ∈ Adis
L and consider the boundary-to-boundary double

layer potential operators KA,K
#
A associated with Ω and the coefficient tensor A as in

(2.3.4) and (2.3.5), respectively. Finally, fix an integrability exponent p ∈ (1,∞) and a
Muckenhoupt weight w ∈ Ap(∂Ω, σ).

Then there exists some C ∈ (0,∞) which depends only on n, A, p, [w]Ap, the local
John constants of Ω, and the Ahlfors regularity constant of ∂Ω, such that

‖KA‖[Lp(∂Ω,w)]M→[Lp(∂Ω,w)]M ≤ C ‖ν‖[BMO(∂Ω,σ)]n , (2.4.241)

‖KA‖[Lp1(∂Ω,w)]M→[Lp1(∂Ω,w)]M ≤ C ‖ν‖[BMO(∂Ω,σ)]n , (2.4.242)

and ∥∥∥K#
A

∥∥∥
[Lp(∂Ω,w)]M→[Lp(∂Ω,w)]M

≤ C ‖ν‖[BMO(∂Ω,σ)]n . (2.4.243)

Note that the estimate in (2.4.241) implies that the operator KA becomes identically
zero whenever Ω is a half-space in Rn. From (i)⇔ (ii) in Proposition 2.3.7 we know that
this may only occur if A ∈ Adis

L . Hence, the assumption Adis
L 6= ∅ is actually necessary

in light of the conclusion in Theorem 2.4.20.

Proof of Theorem 2.4.20. The estimates claimed in (2.4.241) and (2.4.243) are direct
consequences of Corollary 2.4.11 and Proposition 2.3.7, bearing in mind (2.3.4) and
(2.3.5).

Turning to the task of proving (2.4.242), it is apparent from (2.4.238) that each Ujk
is a sum of operators of commutator type. Then, given any f ∈

[
Lp1(∂Ω, w)

]M , based on
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(2.4.240), (2.4.241), and Theorem 2.4.14 we may write

‖KAf‖[Lp1(∂Ω,w)]M = ‖KAf‖[Lp(∂Ω,w)]M +
n∑

j,k=1

∥∥∥∂τjk(KAf)
∥∥∥

[Lp(∂Ω,w)]M

= ‖KAf‖[Lp(∂Ω,w)]M +
n∑

j,k=1

(∥∥∥KA(∂τjkf)
∥∥∥

[Lp(∂Ω,w)]M
+ ‖Ujk(∇tanf)‖[Lp(∂Ω,w)]M

)

≤ C ‖ν‖[BMO(∂Ω,σ)]n ‖f‖[Lp(∂Ω,w)]M + C ‖ν‖[BMO(∂Ω,σ)]n
n∑

j,k=1

∥∥∥∂τjkf∥∥∥[Lp(∂Ω,w)]M

+ C ‖ν‖[BMO(∂Ω,σ)]n ‖∇tanf‖[Lp(∂Ω,w)]M

≤ C ‖ν‖[BMO(∂Ω,σ)]n ‖f‖[Lp1(∂Ω,w)]M , (2.4.244)

which finishes the proof.

Remark 2.4.21. The unweighted case (i.e., the scenario in which w ≡ 1) of Theorem 2.4.20
gives norm estimates for the double layer operator and its formal transposed on ordinary
Lebesgue and Sobolev spaces. By relying on (2.4.198)-(2.4.199), Lemma 2.4.19, (2.4.204),
and (2.2.351) we may also obtain similar estimates on Lorentz spaces and Lorentz-
based Sobolev spaces (cf. (2.2.352)-(2.2.353)). Specifically, in the same setting as
Theorem 2.4.20, the aforementioned result imply that for each p ∈ (1,∞) and q ∈ (0,∞]
there exists some C ∈ (0,∞) which depends only on n, A, p, q, the local John constants
of Ω, and the Ahlfors regularity constant of ∂Ω, such that

‖KA‖[Lp,q(∂Ω,σ)]M→[Lp,q(∂Ω,σ)]M ≤ C ‖ν‖[BMO(∂Ω,σ)]n , (2.4.245)

‖KA‖[Lp,q1 (∂Ω,σ)]M→[Lp,q1 (∂Ω,σ)]M ≤ C ‖ν‖[BMO(∂Ω,σ)]n , (2.4.246)

and ∥∥∥K#
A

∥∥∥
[Lp,q(∂Ω,σ)]M→[Lp,q(∂Ω,σ)]M

≤ C ‖ν‖[BMO(∂Ω,σ)]n . (2.4.247)

Remark 2.4.22. By reasoning much as in the proof of Theorem 2.4.20, we may also obtain
operator norm estimates for the double layer KA with A ∈ Adis

L on off-diagonal weighted
Sobolev spaces, i.e., when the integrability exponents and the weights for the Lebesgue
spaces to which the actual function and its tangential derivatives belong to are allowed
to be different. Specifically, given two integrability exponents p1, p2 ∈ (1,∞) along with
two Muckenhoupt weights w1 ∈ Ap1(∂Ω, σ) and w2 ∈ Ap2(∂Ω, σ), define the off-diagonal
weighted Sobolev space

Lp1;p2
1 (∂Ω, w1;w2) :=

{
f ∈ Lp1(∂Ω, w1) : ∂τjkf ∈ L

p2(∂Ω, w2), 1 ≤ j, k ≤ n
}
, (2.4.248)

equipped with the natural norm defined for each f ∈ Lp1;p2
1 (∂Ω, w1;w2) as

‖f‖Lp1;p2
1 (∂Ω,w1;w2) := ‖f‖Lp1 (∂Ω,w1) +

n∑
j,k=1

∥∥∥∂τjkf∥∥∥Lp2 (∂Ω,w2)
. (2.4.249)
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Then much as in (2.4.244) we now obtain

‖KA‖[Lp1;p2
1 (∂Ω,w1;w2)]M→[Lp1;p2

1 (∂Ω,w1;w2)]M ≤ C ‖ν‖[BMO(∂Ω,σ)]n , (2.4.250)

for some C ∈ (0,∞) which depends only on n, A, p1, p2, [w1]Ap1 , [w2]Ap2 , the local John
constants of Ω, and the Ahlfors regularity constant of ∂Ω.

Remark 2.4.23. In the setting of Theorem 2.4.20, estimates (2.4.241)-(2.4.243) continue
to hold with a fixed constant C ∈ (0,∞) when the integrability exponent and the
corresponding Muckenhoupt weight are permitted to vary with control. Specifically, from
Remark 2.4.13 and the proof of Theorem 2.4.20 we see that for each compact interval
I ⊂ (0,∞) and each number W ∈ (0,∞) there exists a constant C ∈ (0,∞), which
depends only on n, I, W , the local John constants of Ω, and the Ahlfors regularity
constant of ∂Ω, with the property that (2.4.241)-(2.4.243) hold for each p ∈ I and each
w ∈ Ap(∂Ω, σ) with [w]Ap ≤W .

Having proved Theorem 2.4.20, we may now establish invertibility results for certain
types of boundary layer potentials assuming Ω is a δ-SKT domain with δ suitably
small relative to the local John constants of Ω and the Ahlfors regularity constant of
∂Ω. As explained a little later, in Remark 2.4.28, the latter smallness condition is
actually in the nature of best possible as far as the invertibility results from Theo-
rem 2.4.24 are concerned.

Theorem 2.4.24. Let Ω ⊆ Rn be an open set satisfying a two-sided local John condition
and whose topological boundary is an Ahlfors regular set. Abbreviate σ := Hn−1b∂Ω
and denote by ν the geometric measure theoretic outward unit normal to Ω. Also, let
L be a homogeneous, second-order, constant complex coefficient, weakly elliptic M ×M
system in Rn for which Adis

L 6= ∅. Pick A ∈ Adis
L and consider the boundary-to-boundary

double layer potential operators KA,K
#
A associated with Ω and the coefficient tensor A

as in (2.3.4) and (2.3.5), respectively. Finally, fix an integrability exponent p ∈ (1,∞),
a Muckenhoupt weight w ∈ Ap(∂Ω, σ), and some number ε ∈ (0,∞).

Then there exists some small threshold δ0 ∈ (0, 1) which depends only on n, p, [w]Ap,
A, ε, the local John constants of Ω, and the Ahlfors regularity constant of ∂Ω, with the
property that if ‖ν‖[BMO(∂Ω,σ)]n < δ0 it follows that for each spectral parameter z ∈ C
with |z| ≥ ε the following operators are invertible:

zI +KA :
[
Lp(∂Ω, w)

]M −→ [
Lp(∂Ω, w)

]M
, (2.4.251)

zI +KA :
[
Lp1(∂Ω, w)

]M −→ [
Lp1(∂Ω, w)

]M
, (2.4.252)

zI +K#
A :

[
Lp(∂Ω, w)

]M −→ [
Lp(∂Ω, w)

]M
, (2.4.253)

Proof. If we pick δ0 := min
{
1 , ε/C

}
where C is the constant appearing in the estimates
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(2.4.241)-(2.4.243), then Theorem 2.4.20 ensures that

‖KA‖[Lp(∂Ω,w)]M→[Lp(∂Ω,w)]M < ε, (2.4.254)

‖KA‖[Lp1(∂Ω,w)]M→[Lp1(∂Ω,w)]M < ε, (2.4.255)∥∥∥K#
A

∥∥∥
[Lp(∂Ω,w)]M→[Lp(∂Ω,w)]M

< ε. (2.4.256)

In particular, the operators in (2.4.251)-(2.4.253) are invertible for each given z ∈ C with
|z| ≥ ε using a Neumann series, i.e.,

(
zI +KA

)−1 = z−1
∞∑
m=0

(
− z−1KA

)m (2.4.257)

with convergence in the space of linear and bounded operators on
[
Lp(∂Ω, w)

]M as well
as on

[
Lp1(∂Ω, w)

]M , and

(
zI +K#

A

)−1 = z−1
∞∑
m=0

(
− z−1K#

A

)m (2.4.258)

with convergence in the space of linear and bounded operators on
[
Lp(∂Ω, w)

]M .

Remark 2.4.25. In view of (2.4.245)-(2.4.247), and (2.4.250), invertibility results which
are similar to those proved in Theorem 2.4.24 may be established on Lorentz spaces
and Lorentz-based Sobolev spaces, as well as on the brand of off-diagonal Muckenhoupt
weighted Sobolev spaces defined as in (2.4.248)-(2.4.249).
Remark 2.4.26. It is of interest to contrast Theorem 2.4.24 with the precise invertibility
results known in the particular case when Ω is an infinite sector in the plane, with opening
angle θ ∈ (0, 2π) and when L = ∆ (the two-dimensional Laplacian). In such a setting, it
is known (cf. [109, Theorem 5, p. 192]) that

given p ∈ (1,∞), the operators ±1
2I +K∆ are invertible on

Lp(∂Ω, σ) if and only if p 6= 1 + |π − θ|/π (which amounts
to saying that p 6= 2π−θ

π for θ ∈ (0, π) and p 6= θ
π for θ ∈

(π, 2π)).

(2.4.259)

When θ = π (i.e., when Ω is a half-plane) then, of course, any p ∈ (1,∞) will do. In this
vein, see also [97, Lemma 4.5, p. 2042]. Consider next the case of the two-dimensional
Lamé system in an infinite sector of aperture θ ∈ (0, 2π), and recall from the discussion
at the end of Example 2.3.10 that pseudo-stress double layer potential operator for the
Lamé system is denoted by KΨ. Then there are two critical values of the integrability
exponent p ∈ (1,∞), which depend on θ and a specific combination of the Lamé moduli,
for which the invertibility of the operators ±1

2I + KΨ on
[
Lp(∂Ω, σ)

]2 fails. See [98,
Theorem 1.1(A.2) on pp. 153-154, and Theorem 1.3 on pp. 157-158] for more precise
information in this regard (including the location of these critical values, which are no
longer as explicit as in the case of the Laplacian, and certain monotonicity properties
with respect to the angle θ and the Lamé moduli). We shall revisit the case of the
two-dimensional Lamé system in Section 2.4.4.
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Remark 2.4.27. In the context of Theorem 2.4.24, the operators in (2.4.251)-(2.4.253)
continue to be invertible when the integrability exponent and the corresponding Muck-
enhoupt weight are permitted to vary while retaining control. More specifically, from
Remark 2.4.23 and the proof of Theorem 2.4.24 it follows that for each compact interval
I ⊂ (0,∞) and each number W ∈ (0,∞) there exists a threshold δ0 ∈ (0, 1), which
depends only on n, I, W , the local John constants of Ω, and the Ahlfors regularity
constant of ∂Ω, with the property that if

‖ν‖[BMO(∂Ω,σ)]n < δ0 (2.4.260)

then the operators (2.4.251)-(2.4.253) are invertible for each p ∈ I and each w ∈ Ap(∂Ω, σ)
with [w]Ap ≤W .

Remark 2.4.28. The more general version of Theorem 2.4.24 from Remark 2.4.27 is in the
nature of best possible, in the sense that the simultaneous invertibility result described
in Remark 2.4.27 forces ‖ν‖[BMO(∂Ω,σ)]n to be small (relative to the other geometric
characteristics of Ω). To illustrate this, consider the case when Ω = Ωθ, an infinite
sector in the plane with opening angle θ ∈ (0, 2π) (cf. (2.2.163)), and when L = ∆, the
two-dimensional Laplacian. We are interested in the geometric implications of having
the operators ±1

2I + K∆ are invertible on Lp(∂Ωθ, σθ) (where σθ := H1b∂Ωθ) for all p’s
belonging to a compact sub-interval of (1,∞).

Specifically, suppose the said operators are invertible whenever p ∈ Iη := [1 + η, 2]
for some fixed η ∈ (0, 1). From (2.4.259) we see that this forces θ 6= π(2− p) if θ ∈ (0, π)
and θ 6= πp if θ ∈ (π, 2π). As p swipes the interval [1 + η, 2], the set of prohibited values
for the aperture θ becomes

(
0, (1 − η)π

]
∪
[
(1 + η)π, 2π

)
. Hence, we necessarily have

θ ∈
(
(1− η)π, (1 + η)π

)
which further entails

− sin
(
η π2
)

= cos
(
(1 + η)π2

)
< cos(θ/2) < cos

(
(1− η)π2

)
= sin

(
η π2
)
. (2.4.261)

If ν denotes the outward unit normal vector to Ωθ, then from (2.4.261) and (2.2.164) we
conclude that

‖ν‖[BMO(∂Ωθ,σθ)]2 = | cos(θ/2)| < sin
(
η π2
)
−→ 0+ as η → 0+. (2.4.262)

This goes to show that, in general, the smallness of the BMO semi-norm of the geometric
measure theoretic outward unit normal stipulated in (2.4.260) cannot be dispensed with,
as far as the invertibility of the operator in (2.4.251) (in this case, with z ∈ {±1

2}, L = ∆,
A the identity matrix, M = 1, and w ≡ 1) for each p ∈ Iη is concerned.

The invertibility results from Theorem 2.4.24 may be further enhanced by allowing
the coefficient tensor to be a small perturbation of any distinguished coefficient tensor of
the given system. Concretely, by combining Theorem 2.4.20 with the continuity of the
operator-valued assignments in (2.3.64)-(2.3.66), we obtain the following result.

Theorem 2.4.29. Retain the original background assumptions on the set Ω from Theo-
rem 2.4.24 and, as before, fix an integrability exponent p ∈ (1,∞), a Muckenhoupt weight
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w ∈ Ap(∂Ω, σ), and some number ε ∈ (0,∞). Consider L ∈ Ldis (cf. (2.3.84)) and pick
an arbitrary Ao ∈ Adis

L . Then there exist some small threshold δ0 ∈ (0, 1) along with some
open neighborhood O of Ao in AWE, both of which depend only on n, p, [w]Ap, Ao, ε, the
local John constants of Ω, and the Ahlfors regularity constant of ∂Ω, with the property
that if ‖ν‖[BMO(∂Ω,σ)]n < δ0 then for each A ∈ O and each spectral parameter z ∈ C with
|z| ≥ ε, the operators (2.4.251)-(2.4.253) are invertible.

2.4.4 Another look at double layers for the two-dimensional Lamé sys-
tem

Throughout this section, we shall work in the two-dimensional case, i.e., when n = 2.
As a preamble, we introduce a singular integral operator which is going to be relevant
shortly. To set the stage, suppose Ω ⊆ R2 is a UR domain, abbreviate σ := H1b∂Ω,
and denote by ν = (ν1, ν2) the geometric measure theoretic outward unit normal to Ω.
Then for each function f ∈ L1(∂Ω, σ(x)

1+|x|
)
define

R∆f(x) := lim
ε→0+

1
2π

ˆ

y∈∂Ω
|x−y|>ε

ν1(y)(y2 − x2)− ν2(y)(y1 − x1)
|x− y|2

f(y) dσ(y), (2.4.263)

at σ-a.e. point x ∈ ∂Ω. Let us fix an integrability exponent p ∈ (1,∞) along with a
Muckenhoupt weight w ∈ Ap(∂Ω, σ). It has been proved in [93] that the singular integral
operator R∆ introduced in (2.4.263) is bounded on Lp(∂Ω, w) and satisfies

(R∆)2 =
(1

2I +K∆
)(
− 1

2I +K∆
)

on Lp(∂Ω, w), (2.4.264)

K∆R∆ +R∆K∆ = 0 on Lp(∂Ω, w), (2.4.265)

where K∆ is the harmonic double layer potential operator in this setting (i.e., K∆ is
as in (2.3.8) with n := 2).

Our main result in this section is Theorem 2.4.30 below, which elaborates on the
spectra of double layer potential operators, associated with the two-dimensional complex
Lamé system, when acting on Muckenhoupt weighted Lebesgue and Sobolev spaces on
the boundary of a δ-SKT unbounded domains in the plane.

Theorem 2.4.30. Let Ω ⊆ R2 be an open set satisfying a two-sided local John condition
and whose topological boundary is an Ahlfors regular set. Abbreviate σ := H1b∂Ω and
denote by ν the geometric measure theoretic outward unit normal to Ω. Fix two Lamé
moduli µ, λ ∈ C satisfying

µ 6= 0, 2µ+ λ 6= 0, (2.4.266)

and bring back the one-parameter family coefficient tensors from (2.3.101) (with n = 2),
i.e.,

A(ζ) =
(
aαβjk (ζ)

)
1≤j,k≤2
1≤α,β≤2

defined for each ζ ∈ C according to

aαβjk (ζ) := µδjkδαβ + (µ+ λ− ζ)δjαδkβ + ζδjβδkα, 1 ≤ j, k, α, β ≤ 2,
(2.4.267)
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which allows to represent the 2× 2 Lamé system Lµ,λ = µ∆ + (λ+ µ)∇div in R2 as

Lµ,λ =
(
aαβjk (ζ)∂j∂k

)
1≤α,β≤2

for each ζ ∈ C. (2.4.268)

Fix an integrability exponent p ∈ (1,∞) along with a Muckenhoupt weight w ∈ Ap(∂Ω, σ).
Finally, suppose z, ζ ∈ C are such that

z 6= ±µ(µ+ λ)− ζ(3µ+ λ)
4µ(2µ+ λ) , (2.4.269)

and associate the double layer potential operator KA(ζ) with the coefficient tensor A(ζ)
and the domain Ω as in (2.3.4).

Then there exists some small threshold δ ∈ (0, 1) which depends only on µ, λ, p,
[w]Ap, z, ζ, the local John constants of Ω, and the Ahlfors regularity constant of ∂Ω, with
the property that if ‖ν‖[BMO(∂Ω,σ)]2 < δ it follows that

the operator zI2×2 +KA(ζ) is invertible

both on
[
Lp(∂Ω, w)

]2 and on
[
Lp1(∂Ω, w)

]2
.

(2.4.270)

Before presenting the proof of this theorem, a few clarifications are in order. From
(2.4.251)-(2.4.252) in Theorem 2.4.24 and (2.3.103)-(2.3.104) we already know that, under
suitable geometric assumptions, the conclusion in (2.4.270) holds (and this is true in
all dimensions n ≥ 2) when

3µ+ λ 6= 0 and ζ = µ(µ+ λ)
3µ+ λ

. (2.4.271)

The point of Theorem 2.4.30 is that, for the two-dimensional Lamé system, the invertibil-
ity results from (2.4.251)-(2.4.252) holds with A = A(ζ) as in (2.3.101) for a much larger
range of ζ’s than the singleton in (2.4.271). (Parenthetically we wish to note that what is
special about the scenario described in (2.4.271) is that this makes ±µ(µ+λ)−ζ(3µ+λ)

4µ(2µ+λ) zero,
so (2.4.269) simply reads z ∈ C \ {0} in this case, as was assumed in Theorem 2.4.24.) It
should be also remarked that, in the setting on Theorem 2.4.30, the double layer KA(ζ)
does not necessarily have small operator norm, and this is in stark contrast with the case
of the double layer operators considered in Theorem 2.4.24.

We are now ready to present the proof of Theorem 2.4.30.

Proof of Theorem 2.4.30. Recall the numbers C1(ζ), C2(ζ) ∈ C associated with ζ, µ, λ as
in (2.3.109). From (2.3.8), (2.3.111), (2.3.112), and (2.4.263) we see that for each ζ ∈ C
we have

KA(ζ) = C1(ζ)K∆I2×2 − (1− C1(ζ))Q+ C2(ζ)

 0 R∆

−R∆ 0

 (2.4.272)

as operators on
[
Lp(∂Ω, w)

]2. Note that (2.4.264) implies 0 R∆

−R∆ 0

2

=
(1

4I − (K∆)2)I2×2 on
[
Lp(∂Ω, w)

]2
. (2.4.273)
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Staring with (2.4.272) and then using (2.4.273), (2.4.265) we may write, with all operators
acting on the space

[
Lp(∂Ω, w)

]2,
(
zI2×2 +KA(ζ)

)(
− zI2×2 +KA(ζ)

)
= (KA(ζ))2 − z2I2×2

=
[1

4C2(ζ)2 − z2]I2×2 + Tζ , (2.4.274)

for all z, ζ ∈ C, where Tζ is the operator

Tζ =
(
C1(ζ)2 − C2(ζ)2)K2

∆I2×2 + (1− C1(ζ))2Q2 (2.4.275)

− C1(ζ)(1− C1(ζ))(K∆I2×2)Q− C1(ζ)(1− C1(ζ))Q(K∆I2×2)

− C2(ζ)(1− C1(ζ))Q

 0 R∆

−R∆ 0

− C2(ζ)(1− C1(ζ))

 0 R∆

−R∆ 0

Q.
Fix now ζ ∈ C along with ε > 0 arbitrary. Note that Tζ in (2.4.275) is a finite linear
combination of compositions of pairs of singular integral operators such that, in each
case, at least one of them falls under the scope of Corollary 2.4.11. As a consequence of
this and Proposition 2.3.3, it follows that there exists δ ∈ (0, 1) small enough (relative to
µ, λ, ζ, ε, p, [w]Ap , the local John constants of Ω, and the Ahlfors regularity constant of
∂Ω), matters may be arranged so that, under the additional assumption that

‖ν‖[BMO(∂Ω,σ)]2 < δ, (2.4.276)

we have

‖Tζ‖[Lp(∂Ω,w)]2→[Lp(∂Ω,w)]2 ≤ ε2/2. (2.4.277)

Consider now

z ∈ C \
{
B
(1

2C2(ζ) , ε
)
∪B

(
− 1

2C2(ζ) , ε
)}
, (2.4.278)

which entails

∣∣1
4C2(ζ)2 − z2∣∣ =

∣∣1
2C2(ζ)− z

∣∣∣∣1
2C2(ζ) + z

∣∣ ≥ ε2. (2.4.279)

Then from (2.4.279), (2.4.277) it follows that
[1

4C2(ζ)2 − z2]I2×2 + Tζ is invertible on
[
Lp(∂Ω, w)

]2
for each z as in (2.4.278),

(2.4.280)

and ∥∥∥([1
4C2(ζ)2 − z2]I2×2 + Tζ

)−1
∥∥∥

[Lp(∂Ω,w)]2→[Lp(∂Ω,w)]2
≤ (ε2/2)−1

for each z as in (2.4.278).
(2.4.281)
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Since the operators zI2×2 +KA(ζ) and −zI2×2 +KA(ζ) commute with one another, from
(2.4.274) and (2.4.280) we ultimately conclude that

zI2×2 +KA(ζ) is invertible on
[
Lp(∂Ω, w)

]2 for each z as in (2.4.278). (2.4.282)

In relation to (2.4.282) we also claim that there exists some small number

c := c(Ω, ε, ζ, p, w) ∈ (0, 1] (2.4.283)

where the dependence of c on Ω manifests itself only through the local John constants of
Ω and the Ahlfors regularity constant of ∂Ω, with the property that

c‖f‖[Lp(∂Ω,w)]2 ≤
∥∥(zI2×2 +KA(ζ)

)
f
∥∥

[Lp(∂Ω,w)]2

for each z as in (2.4.278) and each f ∈
[
Lp(∂Ω, w)

]2
.

(2.4.284)

To prove this, first observe that

whenever |z| > 1 +
∥∥KA(ζ)

∥∥
[Lp(∂Ω,w)]2→[Lp(∂Ω,w)]2 then

zI2×2 +KA(ζ) is invertible on
[
Lp(∂Ω, w)

]2 and∥∥∥(zI2×2 +KA(ζ)
)−1

∥∥∥
[Lp(∂Ω,w)]2→[Lp(∂Ω,w)]2

< 1.

(2.4.285)

Hence, as long as |z| > 1+
∥∥KA(ζ)

∥∥
[Lp(∂Ω,w)]2→[Lp(∂Ω,w)]2 , the estimate in (2.4.284) is true

for any choice of c ∈ (0, 1]. As such, there remains to study the case in which

z is as in (2.4.278) and also satisfies

|z| ≤ 1 +
∥∥KA(ζ)

∥∥
[Lp(∂Ω,w)]2→[Lp(∂Ω,w)]2 .

(2.4.286)

Henceforth assume z is as in (2.4.286). From (2.4.274) and (2.4.281) we know that∥∥∥(zI2×2 +KA(ζ)
)−1(− zI2×2 +KA(ζ)

)−1
∥∥∥

[Lp(∂Ω,w)]2→[Lp(∂Ω,w)]2
≤ (ε2/2)−1. (2.4.287)

Write
(
zI2×2 +KA(ζ)

)−1 as[(
zI2×2 +KA(ζ)

)−1(− zI2×2 +KA(ζ)
)−1](− zI2×2 +KA(ζ)

)
, (2.4.288)

then use this formula and (2.4.287) to estimate∥∥∥(zI2×2 +KA(ζ)
)−1

∥∥∥
[Lp(∂Ω,w)]2→[Lp(∂Ω,w)]2

≤ (ε2/2)−1∥∥− zI2×2 +KA(ζ)
∥∥

[Lp(∂Ω,w)]2→[Lp(∂Ω,w)]2

≤ (ε2/2)−1
(
|z|+

∥∥KA(ζ)
∥∥

[Lp(∂Ω,w)]2→[Lp(∂Ω,w)]2
)

≤ C(Ω, ε, ζ, p, w), (2.4.289)

where the last inequality comes from (2.4.286), and

C(Ω, ε, ζ, p, w) := 2ε−2 + 4ε−2∥∥KA(ζ)
∥∥

[Lp(∂Ω,w)]2→[Lp(∂Ω,w)]2 . (2.4.290)
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Hence, if we define

c := c(Ω, ε, ζ, p, w) := min
{

1 ,
[
C(Ω, ε, ζ, p, w)

]−1} ∈ (0, 1], (2.4.291)

we may rely on (2.4.289) to write

c‖f‖[Lp(∂Ω,w)]2 ≤
∥∥(zI2×2 +KA(ζ)

)
f
∥∥

[Lp(∂Ω,w)]2 , ∀ f ∈
[
Lp(∂Ω, w)

]2
, (2.4.292)

finishing the proof of (2.4.284).
We next claim that, if the threshold δ ∈ (0, 1) appearing in (2.4.276) is taken

sufficiently small to begin with, we also have

zI2×2 +KA(ζ) invertible on
[
Lp1(∂Ω, w)

]2
for each z as in (2.4.278).

(2.4.293)

For starters, observe that for each z ∈ C, and each f ∈
[
Lp1(∂Ω, w)

]2, Lemma 2.4.19 gives

∂τ12

[(
zI2×2 +KA(ζ)

)
f
]

=
(
zI2×2 +KA(ζ)

)
(∂τ12f) + U ζ12(∇tanf) (2.4.294)

where the commutator U ζ12 is defined as in (2.4.238) with n = 2, j = 1, k = 2, and
the coefficient tensor A(ζ) as in (2.4.267). If z as in (2.4.278) then, on account of
(2.4.294), (2.4.284), and Theorem 2.4.14 (also keeping in mind Proposition 2.3.3) for
each f ∈

[
Lp1(∂Ω, w)

]2 we may estimate

c‖∂τ12f‖[Lp(∂Ω,w)]2 ≤
∥∥(zI2×2 +KA(ζ)

)
(∂τ12f)

∥∥
[Lp(∂Ω,w)]2

≤
∥∥∂τ12

[(
zI2×2 +KA(ζ)

)
f
]∥∥

[Lp(∂Ω,w)]2 +
∥∥U ζ12(∇tanf)

∥∥
[Lp(∂Ω,w)]2

≤
∥∥(zI2×2 +KA(ζ)

)
f
∥∥

[Lp1(∂Ω,w)]2 + Cδ‖∂τ12f‖[Lp(∂Ω,w)]2 , (2.4.295)

(since we presently have ∂τ11 = ∂τ22 = 0 and ∂τ12 = −∂τ21), where C ∈ (0,∞) depends
only on µ, λ, ζ, p, [w]Ap , the local John constants of Ω, and the Ahlfors regularity
constant of ∂Ω. Assuming δ < c/(2C) to begin with, the very last term above may be
absorbed in the left-most side of (2.4.295). By combing the resulting inequality with
(2.4.284) we therefore arrive at the conclusion that if δ in (2.4.276) is small enough then
we may find some small η > 0 with the property that

η‖f‖[Lp1(∂Ω,w)]2 ≤
∥∥(zI2×2 +KA(ζ)

)
f
∥∥

[Lp1(∂Ω,w)]2

for each z as in (2.4.278) and each f ∈
[
Lp1(∂Ω, w)

]2
.

(2.4.296)

In this scenario, (2.4.296) implies that the operator zI2×2 +KA(ζ) acting on
[
Lp1(∂Ω, w)

]2
is injective and has closed range for each z as in (2.4.278). Consequently, the operator
zI2×2 +KA(ζ) acting on

[
Lp1(∂Ω, w)

]2 is semi-Fredholm for each z as in (2.4.278). Since
this depends continuously on z, the homotopic invariance of the index on connected sets
then ensures that the index of zI2×2 +KA(ζ) on

[
Lp1(∂Ω, w)

]2 is independent of z in the
said range. Given that, via a Neumann series argument,

zI2×2 +KA(ζ) is invertible on
[
Lp1(∂Ω, w)

]2
if |z| >

∥∥KA(ζ)
∥∥

[Lp1(∂Ω,w)]2→[Lp1(∂Ω,w)]2 ,
(2.4.297)
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we may therefore conclude that the index of zI2×2+KA(ζ) on
[
Lp1(∂Ω, w)

]2 is zero for each
z as in (2.4.278). In view of the fact that, as already noted from (2.4.296), the operator
zI2×2 +KA(ζ) is injective on

[
Lp1(∂Ω, w)

]2 for each z as in (2.4.278), this ultimately proves
that zI2×2 + KA(ζ) is invertible on

[
Lp1(∂Ω, w)

]2 for each z as in (2.4.278). Hence, the
claim made in (2.4.293) is true. At this stage, the claim made in (2.4.270) readily follows
from (2.4.282) and (2.4.293).

It is of interest to single out the case z = ±1
2 in (2.4.270), and in Corollary 2.4.31

stated next we do just that.

Corollary 2.4.31. Let Ω ⊆ R2 be an open set satisfying a two-sided local John condition
and whose topological boundary is an Ahlfors regular set. Abbreviate σ := H1b∂Ω and
denote by ν the geometric measure theoretic outward unit normal to Ω. Fix two Lamé
moduli µ, λ ∈ C satisfying

µ 6= 0, 2µ+ λ 6= 0, 3µ+ λ 6= 0, (2.4.298)

and recall the one-parameter family coefficient tensors A(ζ) defined for each ζ ∈ C as
in (2.4.267). Fix an integrability exponent p ∈ (1,∞) along with a Muckenhoupt weight
w ∈ Ap(∂Ω, σ). Finally, pick some

ζ ∈ C \
{
− µ , µ(5µ+3λ)

3µ+λ

}
(2.4.299)

and associate double layer potential operator KA(ζ) with the coefficient tensor A(ζ) and
the domain Ω as in (2.3.4).

Then there exists some small threshold δ ∈ (0, 1) which depends only on µ, λ, p,
[w]Ap, ζ, the local John constants of Ω, and the Ahlfors regularity constant of ∂Ω, with
the property that if ‖ν‖[BMO(∂Ω,σ)]2 < δ it follows that

the operators ± 1
2I2×2 +KA(ζ) are invertible

both on
[
Lp(∂Ω, w)

]2 and on
[
Lp1(∂Ω, w)

]2
,

(2.4.300)

and

the operators ± 1
2I2×2 +K#

A(ζ) are invertible on
[
Lp(∂Ω, w)

]2
. (2.4.301)

As seen from (2.4.299) (also keeping in mind (2.4.298)), under the additional as-
sumption that µ + λ 6= 0 the value ζ := µ becomes acceptable in the formulation of
the conclusions in (2.4.300)-(2.4.301). This special choice leads to the conclusion that,
if Ω is sufficiently flat (relative to µ, λ, p, [w]Ap , the local John constants of Ω, and the
Ahlfors regularity constant of ∂Ω) then the operators

± 1
2I2×2 +KA(µ) :

[
Lp(∂Ω, w)

]2 −→ [
Lp(∂Ω, w)

]2
, (2.4.302)

± 1
2I2×2 +KA(µ) :

[
Lp1(∂Ω, w)

]2 −→ [
Lp1(∂Ω, w)

]2
, (2.4.303)

± 1
2I2×2 +K#

A(µ) :
[
Lp(∂Ω, w)

]2 −→ [
Lp(∂Ω, w)

]2
, (2.4.304)
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are all invertible whenever

µ 6= 0, µ+ λ 6= 0, 2µ+ λ 6= 0, 3µ+ λ 6= 0. (2.4.305)

This is relevant in the context of Remark 2.6.12.

Proof of Corollary 2.4.31. The claim in (2.4.300) follows at once from Theorem 2.4.30,
upon observing that when z = ±1/2 the demand in (2.4.269) becomes equivalent to the
condition stipulated in (2.4.299). The claim in (2.4.301) then follows from (2.4.300) and
duality.

2.5 Controlling the BMO semi-norm of the unit normal

In the previous chapter we have succeeded in estimating the size of a certain brand
of singular integrals operators (which includes the harmonic double layer operator; cf.
Theorem 2.4.20) in terms of the geometry of the underlying “surface.” A key characteristic
of these estimates (originating with Theorem 2.4.4) is the presence of the BMO semi-
norm of the unit normal to the surface as a factor in the right side. In particular,
the flatter the said surface, the smaller the norm of the singular integral operators in
question. Similar results are also valid for a specific type of commutators, of the sort
described in Theorem 2.4.14.

By way of contrast, the principal goal in this chapter is to proceed in the opposite
direction, and control geometry in terms of analysis. More specifically, we seek to quantify
flatness of a given “surface” (by estimating the BMO semi-norm of its unit normal) in
terms of analytic entities, such as the operator norms of the harmonic double layer and
the commutators of Riesz transforms with the operator of pointwise multiplication by
the (scalar components of the) unit normals, or various natural algebraic combinations
of the said Riesz transforms (where all singular integral operators just mentioned are
intrinsically defined on the given “surface”).

In this endeavor, the catalyst is the language of Clifford algebras which allows us
to glue together singular integral operators of the sort described above into a single,
Cauchy-like, singular integral which exhibits excellent non-degeneracy properties (i.e.,
up to normalization, such a Cauchy-Clifford operator is its own inverse; cf. (2.5.9)). We
therefore begin with a brief review about Cauchy-Clifford operators. This chapter ends
with Section 2.5.4 which contains results characterizing Muckenhoupt weights in terms of
the boundedness Riesz transforms. The Clifford algebra formalism turns out to be useful
in this regard, both as tool and as a mean to bring into play other types of operators,
like the Cauchy-Clifford singular integral operator alluded to above.

2.5.1 Cauchy-Clifford operators

Recall the Clifford algebras machinery introduced in Section 1.4 and consider an arbitrary
UR domain Ω ⊆ Rn. Abbreviate σ := Hn−1b∂Ω and denote by ν = (ν1, . . . , νn) its
geometric measure theoretic outward unit normal. For the goals we have in mind, it
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is natural to identify ν with the Clifford algebra-valued function ν = ν1e1 + · · · + νnen.
Bearing this identification in mind, we then recall the action of the boundary-to-boundary
Cauchy-Clifford operator of any given C̀ n-valued function f ∈ L1(∂Ω, σ(x)

1+|x|n−1
)
⊗ C̀ n as

Cf(x) := lim
ε→0+

1
ωn−1

ˆ

y∈∂Ω
|x−y|>ε

x− y
|x− y|n

� ν(y)� f(y) dσ(y), (2.5.1)

for σ-a.e. point x ∈ ∂Ω (cf. (5.4.21)). In particular, with Riesz transforms {Rj}1≤j≤n
on ∂Ω defined as in (2.4.236), for each function f ∈ L1(∂Ω, σ(x)

1+|x|n−1
)
⊗ C̀ n we have

Cf = 1
2

∑
1≤j,k≤n

ej � ek �Rj(νkf) at σ-a.e. point on ∂Ω. (2.5.2)

Another closely related integral operator which is of interest to us acts on each given
function f ∈ L1(∂Ω, σ(x)

1+|x|n−1
)
⊗ C̀ n according to

C#f(x) := − lim
ε→0+

1
ωn−1

ˆ

y∈∂Ω
|x−y|>ε

ν(x)� x− y
|x− y|n

� f(y) dσ(y) (2.5.3)

for σ-a.e. x ∈ ∂Ω. Analogously to (2.5.2), for each function f ∈ L1(∂Ω, σ(x)
1+|x|n−1

)
⊗C̀ n we

have

C#f = −1
2

∑
1≤j,k≤n

ek � ej � νkRjf at σ-a.e. point on ∂Ω. (2.5.4)

As is apparent from (2.5.2), (2.5.4), both C and C# are amenable to Proposition 2.3.3.
Hence, whenever p ∈ (1,∞) and w ∈ Ap(∂Ω, σ),

C : Lp(∂Ω, w)⊗ C̀ n −→ Lp(∂Ω, w)⊗ C̀ n (2.5.5)

and

C# : Lp(∂Ω, w)⊗ C̀ n −→ Lp(∂Ω, w)⊗ C̀ n (2.5.6)

are well defined, linear and bounded operators, with

‖C‖Lp(∂Ω,w)⊗C̀ n→Lp(∂Ω,w)⊗C̀ n , ‖C#‖Lp(∂Ω,w)⊗C̀ n→Lp(∂Ω,w)⊗C̀ n

controlled in terms of n, p, [w]Ap , and the UR character of ∂Ω.
(2.5.7)

In fact (see [53, Sections 4.6-4.7] and [93]),

the transposed of C from (2.5.5) is the operator C#

acting in the context of (2.5.6) with the exponent p
replaced by its Hölder conjugate p′ ∈ (1,∞) and the
weight w replaced by w1−p′ ∈ Ap′(∂Ω, σ).

(2.5.8)
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For this reason, it is natural to refer to C# as the “transposed” Cauchy-Clifford operator.
Moreover, with I denoting the identity operator, we have

C2 = 1
4I and

(
C#)2 = 1

4I, (2.5.9)

on Lp(∂Ω, σ) ⊗ C̀ n with p ∈ (1,∞) (cf. [53, Sections 4.6-4.7]). In view of (2.5.5)-
(2.5.7), a standard density argument then shows that these formulas remain valid on
Lp(∂Ω, w) ⊗ C̀ n whenever p ∈ (1,∞) and w ∈ Ap(∂Ω, σ).

Here we are interested in the difference C−C# which, up to multiplication by 2−1,
may be thought of as the antisymmetric part of the Cauchy-Clifford operator C. The
following lemma elaborates on the relationship between the antisymmetric part of the
Cauchy-Clifford operator, i.e., C−C#, and the harmonic boundary double layer potential
(cf. (2.3.8)) together with commutators between Riesz transforms (cf. (2.4.236)) and
operators of pointwise multiplication by scalar components of the unit vector. For a
proof see [53, Lemma 4.45].

Lemma 2.5.1. Let Ω ⊆ Rn be a UR domain. Abbreviate σ := Hn−1b∂Ω and denote
by ν = (ν1, . . . , νn) the geometric measure theoretic outward unit normal to Ω. For each
index j ∈ {1, . . . , n}, denote by Mνj the operator of pointwise multiplication by νj. Also,
recall the boundary-to-boundary harmonic double layer potential operator K∆ from (2.3.8)
and the family of Riesz transforms {Rj}1≤j≤n from (2.4.236). Then

(C−C#)f = −2
n∑
`=0

∑′

|I|=`
(K∆fI)eI

−
n∑
`=0

∑′

|I|=`

n∑
j,k=1

(
[Mνj , Rk]fI

)
ej � ek � eI (2.5.10)

for each C̀ n-valued function f =
∑n
`=0

∑′
|I|=` fI � eI belonging to the weighted Lebesgue

space L1(∂Ω, σ(x)
1+|x|n−1

)
⊗ C̀ n.

In turn, the structural result from Lemma 2.5.1 is a basic ingredient in the proof
of the following corollary.

Corollary 2.5.2. Let Ω ⊆ Rn be an open set satisfying a two-sided local John condition
and whose topological boundary is an Ahlfors regular set. Abbreviate σ := Hn−1b∂Ω
and denote by ν the geometric measure theoretic outward unit normal to Ω. Also, fix
an integrability exponent p ∈ (1,∞) and a Muckenhoupt weight w ∈ Ap(∂Ω, σ). Then
there exists some constant C ∈ (0,∞) which depends only on n, p, [w]Ap, the local John
constants of Ω, and the Ahlfors regularity constant of ∂Ω, such that∥∥∥C−C#

∥∥∥
Lp(∂Ω,w)⊗C̀ n→Lp(∂Ω,w)⊗C̀ n

≤ C ‖ν‖[BMO(∂Ω,σ)]n . (2.5.11)

Proof. This is a consequence of Lemma 2.5.1, Lemma 2.2.47, (2.3.8), Corollary 2.4.11,
(2.4.236), Proposition 2.3.3, and Theorem 2.4.14.
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2.5.2 Estimating the BMO semi-norm of the unit normal

The next goal is to establish a bound from below for the operator norm of C − C#

on Muckenhoupt weighted Lebesgue spaces on the boundary of a UR domain in terms
of the BMO semi-norm of the geometric measure theoretic outward unit normal vec-
tor to the said domain.

Proposition 2.5.3. Let Ω ⊆ Rn be a UR domain such that ∂Ω is unbounded. Abbreviate
σ := Hn−1b∂Ω and denote by ν the geometric measure theoretic outward unit normal
to Ω. Also, fix an integrability exponent p ∈ (1,∞) along with a Muckenhoupt weight
w ∈ Ap(∂Ω, σ). Then there exists some C ∈ (0,∞) which depends only on n, p, [w]Ap,
and the Ahlfors regularity constant of ∂Ω with the property that

‖ν‖[BMO(∂Ω,σ)]n ≤ C
∥∥∥C−C#

∥∥∥1/(2n−1)

Lp(∂Ω,w)⊗C̀ n→Lp(∂Ω,w)⊗C̀ n
. (2.5.12)

A couple of comments are in order. First, as a consequence of (2.5.12) and work in [52]
we see that

given a UR domain Ω ⊆ Rn such that ∂Ω is unbounded, and given
p ∈ (1,∞) together with w ∈ Ap(∂Ω, σ), we have C = C# as
operators on Lp(∂Ω, w)⊗ C̀ n if and only if Ω is a half-space.

(2.5.13)

Second, estimate (2.5.12) may fail without the assumption that ∂Ω is unbounded. Indeed,
from (2.5.1)-(2.5.3) one may easily check that C = C# if Ω is an open ball, or the
complement of a closed ball, in Rn and yet ‖ν‖[BMO(∂Ω,σ)]n > 0 in either case. In fact,
open balls, complements of closed balls, and half-spaces in Rn are the only UR domains
for which C = C# (see [48] for more on this).

Proof of Proposition 2.5.3. If
∥∥∥C−C#

∥∥∥
Lp(∂Ω,w)⊗C̀ n→Lp(∂Ω,w)⊗C̀ n

≥ 41−2n then (2.2.56)
implies

‖ν‖[BMO(∂Ω,σ)]n ≤ 1 ≤ 4
∥∥∥C−C#

∥∥∥1/(2n−1)

Lp(∂Ω,w)⊗C̀ n→Lp(∂Ω,w)⊗C̀ n
, (2.5.14)

so the estimate claimed in (2.5.12) holds in this case if C ≥ 4. Hence, there remains to
consider the scenario in which

∥∥∥C−C#
∥∥∥
Lp(∂Ω,w)⊗C̀ n→Lp(∂Ω,w)⊗C̀ n

< 41−2n. Assume this
is the case and pick a real number η > 0 such that∥∥∥C−C#

∥∥∥
Lp(∂Ω,w)⊗C̀ n→Lp(∂Ω,w)⊗C̀ n

< η < 41−2n. (2.5.15)

Fix a location x0 ∈ ∂Ω along with a scale R > 0, and define r := R · η−1/(2n−1) > 0.
If C ∈ [1,∞) is the Ahlfors regularity constant of ∂Ω (cf. (1.1.15)) then choosing some
λ ≥ 1 sufficiently large relative to C it follows that (here we make use of the fact that no
smallness condition on r is necessary since ∂Ω is unbounded)

σ
(
∆(x0, λr) \∆(x0, r)

)
= σ

(
∆(x0, λr)

)
− σ

(
∆(x0, r)

)
≥
( 1
C
λn−1 − C

)
rn−1 > 0. (2.5.16)
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In turn, this guarantees that ∆(x0, λr) \∆(x0, r) 6= ∅, hence we may choose some point
y0 ∈ ∆(x0, λr) \∆(x0, r). Define

δ := |x0 − y0| ∈ [r, λr) (2.5.17)

then set

r∗ := δ η1/(2n−1). (2.5.18)

In particular, the last estimate in (2.5.15) implies

r∗ < δ/4. (2.5.19)

Also,

R = r η1/(2n−1) ≤ δ η1/(2n−1) = r∗ < λrη1/(2n−1) = λR. (2.5.20)

Next, define

A := δn−2
( 

∆(y0,r∗)

x0 − y
|x0 − y|n

� ν(y) dσ(y)
)
� (x0 − y0) ∈ C̀ n. (2.5.21)

In relation to this we claim that

(  
∆(x0,r∗)

|ν(y)−A|p dw(y)
)1/p

≤ C η1/(2n−1) (2.5.22)

for some C ∈ (0,∞) which depends only on n, p, [w]Ap , and the Ahlfors regularity
constant of ∂Ω. Assuming this momentarily, we use (1.4.5), (2.5.20), and the fact that
w is a doubling measure to conclude that

(  
∆(x0,R)

|ν(y)−Aproj|p dw(y)
)1/p

≤
( 

∆(x0,R)
|ν(y)−A|p dw(y)

)1/p

≤ C
( 

∆(x0,r∗)
|ν(y)−A|p dw(y)

)1/p

≤ C η1/(2n−1), (2.5.23)

for some C ∈ (0,∞) which depends only on n, p, [w]Ap , and the Ahlfors regularity
constant of ∂Ω. As x0 ∈ ∂Ω and R > 0 are arbitrary, the estimate claimed in (2.5.12) is
obtained from (2.5.23) by recalling (2.2.49), Lemma 2.2.46, and passing to limit

η ↘
∥∥∥C−C#

∥∥∥
Lp(∂Ω,w)⊗C̀ n→Lp(∂Ω,w)⊗C̀ n

. (2.5.24)

It remains to prove (2.5.22). To this end, observe that for each point x ∈ ∆(x0, r∗)
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we have
ˆ

∆(y0,r∗)

{
x0 − y
|x0 − y|n

� ν(y) + ν(x)� x0 − y0
|x0 − y0|n

}
dσ(y)

=
ˆ

∆(y0,r∗)

{
x0 − y
|x0 − y|n

� ν(y)− x− y
|x− y|n

� ν(y)
}
dσ(y)

+
ˆ

∆(y0,r∗)

{
x− y
|x− y|n

� ν(y) + ν(x)� x− y
|x− y|n

}
dσ(y)

−
ˆ

∆(y0,r∗)

{
ν(x)� x− y

|x− y|n
− ν(x)� x0 − y

|x0 − y|n
}
dσ(y)

−
ˆ

∆(y0,r∗)

{
ν(x)� x0 − y

|x0 − y|n
− ν(x)� x0 − y0

|x0 − y0|n
}
dσ(y)

=: I + II− III− IV. (2.5.25)

Based on definitions, the second term above may be re-cast as

II = ωn−1 (C−C#)1∆(y0,r∗)(x). (2.5.26)

For the remaining terms in (2.5.25) we use (2.5.19) and the Mean Value Theorem to
estimate

|I|+ |III|+ |IV| ≤ C r∗
δn
rn−1
∗ = C

(r∗
δ

)n
, (2.5.27)

for some C ∈ (0,∞) which depends only on the Ahlfors regularity constant of ∂Ω. On
account of (2.5.25)-(2.5.27), (2.2.313), (2.5.19), and (2.5.18) we conclude that

 
∆(x0,r∗)

∣∣∣∣ ˆ
∆(y0,r∗)

{
x0 − y
|x0 − y|n

� ν(y) + ν(x)� x0 − y0
|x0 − y0|n

}
dσ(y)

∣∣∣∣p dw(x)

≤ C
(r∗
δ

)np
+ Cn,p

 
∆(x0,r∗)

|(C−C#)1∆(y0,r∗)(x)|p dw(x)

< C
(r∗
δ

)np
+ Cn,p · w

(
∆(x0, r∗)

)−1 · ηp ·
∥∥∥1∆(y0,r∗)

∥∥∥p
Lp(∂Ω,w)

= C
(r∗
δ

)np
+ Cn,p · ηp ·

w
(
∆(y0, r∗)

)
w
(
∆(x0, r∗)

)
≤ C

(r∗
δ

)np
+ Cn,p · ηp ·

w
(
∆(x0, r∗ + δ)

)
w
(
∆(x0, r∗)

)
≤ C

(r∗
δ

)np
+ Cn,p,w · ηp ·

(
σ
(
∆(x0, r∗ + δ)

)
σ
(
∆(x0, r∗)

) )p

≤ C
(r∗
δ

)np
+ C ηp

(
δ

r∗

)(n−1)p
= C η(np)/(2n−1), (2.5.28)

for some C ∈ (0,∞) which depends only on n, p, [w]Ap , and the Ahlfors regularity
constant of ∂Ω. Based on (1.4.1), (2.5.17), (1.4.10), (2.5.21), (2.5.28), and (2.5.18) we
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may then write 
∆(x0,r∗)

|ν(x)−A|p dw(x)

= δ(n−2)p
 

∆(x0,r∗)

∣∣∣∣(ν(x)−A)� x0 − y0
|x0 − y0|n

� (x0 − y0)
∣∣∣∣p dw(x)

= δ(n−2)p
 

∆(x0,r∗)

∣∣∣∣(ν(x)−A)� x0 − y0
|x0 − y0|n

∣∣∣∣p |x0 − y0|p dw(x)

= δ(n−1)p
 

∆(x0,r∗)

∣∣∣∣ν(x)� x0 − y0
|x0 − y0|n

−A� x0 − y0
|x0 − y0|n

∣∣∣∣p dw(x)

= δ(n−1)p
 

∆(x0,r∗)

∣∣∣∣∣
 

∆(y0,r∗)

{
ν(x)� x0 − y0

|x0 − y0|n

+ x0 − y
|x0 − y|n

� ν(y)
}
dσ(y)

∣∣∣∣∣
p

dw(x)

≤ C
( δ
r∗

)(n−1)p  
∆(x0,r∗)

∣∣∣∣∣
ˆ

∆(y0,r∗)

{
ν(x)� x0 − y0

|x0 − y0|n

+ x0 − y
|x0 − y|n

� ν(y)
}
dσ(y)

∣∣∣∣∣
p

dw(x)

≤ Cη−(np−p)/(2n−1) · η(np)/(2n−1) = C ηp/(2n−1), (2.5.29)

for some C ∈ (0,∞) which depends only on n, p, [w]Ap , and the Ahlfors regularity
constant of ∂Ω. From this (2.5.22) follows, completing the proof of the proposition.

Remark 2.5.4. In the unweighted case (i.e., for w ≡ 1 or, equivalently, when the measure
w coincides with σ) a slight variant of the above proof gives that, in the geometric context
of Proposition 2.5.3, one actually has

‖ν‖[BMO(∂Ω,σ)]n ≤ C
∥∥∥C−C#

∥∥∥1/n

Lp(∂Ω,σ)⊗C̀ n→Lp(∂Ω,σ)⊗C̀ n
. (2.5.30)

Specifically, the idea is to take r∗ := δ η1/n in place of (2.5.18) and run the same argument
as above bearing in mind that we now have w

(
∆(y0, r∗)

)/
w
(
∆(x0, r∗)

)
≤ C in the fourth

line of (2.5.28).

Our next result contains estimates in the opposite direction to those given in Theo-
rem 2.4.18.

Theorem 2.5.5. Let Ω ⊆ Rn be a UR domain. Abbreviate σ := Hn−1b∂Ω and denote
by ν = (νk)1≤k≤n the geometric measure theoretic outward unit normal to Ω. Also, fix
an integrability exponent p ∈ (1,∞) along with a Muckenhoupt weight w ∈ Ap(∂Ω, σ).
Finally, recall the boundary-to-boundary harmonic double layer potential operator K∆
from (2.3.8), the Riesz transforms {Rj}1≤j≤n on ∂Ω from (2.4.236), and for each index
k ∈ {1, . . . , n} denote by Mνk the operator of pointwise multiplication by the k-th scalar
component of ν.
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Then there exists some C ∈ (0,∞) which depends only on n, p, [w]Ap, and the Ahlfors
regularity constant of ∂Ω with the property that

‖ν‖[BMO(∂Ω,σ)]n ≤ C
{
‖K∆‖Lp(∂Ω,w)→Lp(∂Ω,w) (2.5.31)

+ max
1≤j,k≤n

‖[Mνk , Rj ]‖Lp(∂Ω,w)→Lp(∂Ω,w)

}1/(2n−1)
.

Moreover, in the unweighted case the exponent 1/(2n− 1) may be replaced by 1/n.

Proof. If ∂Ω is unbounded, then the estimate claimed in (2.5.31) is a direct consequence
of Proposition 2.5.3 and Lemma 2.5.1 (also bearing in mind Lemma 2.2.47). In the
case when ∂Ω is bounded, we have K∆1 = ±1

2 (cf. [93]) with the sign plus if Ω is
bounded, and the sign minus if Ω is unbounded, hence ‖K∆‖Lp(∂Ω,w)→Lp(∂Ω,w) ≥

1
2 in

such a scenario. Since from (2.2.56) we know that we always have ‖ν‖[BMO(∂Ω,σ)]n ≤ 1,
the estimate claimed in (2.5.31) holds in this case if we take C ≥ 21/(2n−1). Finally, that
in the unweighted case the exponent 1/(2n − 1) may be replaced by 1/n is seen from
Remark 2.5.4.

We conclude this section by presenting a characterization of δ-SKT domains in
terms of the size of the operator norms of the classical harmonic double layer and
commutators of Riesz transforms with pointwise multiplication by the scalar compo-
nents of the unit normal.

Corollary 2.5.6. Let Ω ⊆ Rn be an open set satisfying a two-sided local John condition
and whose topological boundary is an Ahlfors regular set. Abbreviate σ := Hn−1b∂Ω and
denote by ν = (νk)1≤j≤n the geometric measure theoretic outward unit normal to Ω. Also,
fix an integrability exponent p ∈ (1,∞) along with a Muckenhoupt weight w ∈ Ap(∂Ω, σ).
Finally, recall the boundary-to-boundary harmonic double layer potential operator K∆ on
∂Ω from (2.3.8), the Riesz transforms {Rj}1≤j≤n on ∂Ω from (2.4.236), and for each
k ∈ {1, . . . , n} denote by Mνk the operator of pointwise multiplication by the k-th scalar
component of ν.

Then there exists some C ∈ (0,∞) which depends only on n, p, [w]Ap, and the Ahlfors
regularity constant of ∂Ω with the property that if

‖K∆‖Lp(∂Ω,w)→Lp(∂Ω,w) + max
1≤j,k≤n

∥∥[Mνk , Rj ]
∥∥
Lp(∂Ω,w)→Lp(∂Ω,w) < δ (2.5.32)

then Ω is a (Cδ1/(2n−1))-SKT domain. Moreover, in the unweighted case the exponent
1/(2n− 1) may be replaced by 1/n.

Proof. Since the current hypotheses imply that Ω is a UR domain, all desired conclusions
follow from Theorem 2.5.5 and Definition 2.2.14.

2.5.3 Using Riesz transforms to quantify flatness

Recall from (2.1.13) that for each j ∈ {1, . . . , n} the j-th Riesz transform Rj associated
with a UR domain Ω ⊆ Rn is the formal convolution operator on ∂Ω with the kernel
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kj(x) := 2
ωn−1

xj
|x|n for x ∈ Rn \ {0}. From Proposition 2.3.3 we know that these are

bounded operators on Lp(∂Ω, w) for each p ∈ (1,∞) and w ∈ Ap(∂Ω, σ). The most
familiar setting is when Ω = Rn+, in which case it is well known that

n∑
j=1

R2
j = −I and RjRk = RkRj for all j, k ∈ {1, . . . , n}, (2.5.33)

when all operators are considered on Muckenhoupt weighted Lebesgue spaces. Indeed,
in such a setting, for the integrability exponent p = 2 and the weight w = 1 these are
immediate consequences of the fact that each Rj is a Fourier multiplier in ∂Ω ≡ Rn−1

corresponding to the symbol iξj/|ξ|, then the said identities extend to Lp(∂Ω, w) via a
density argument. For ease of reference, we shall refer to the formulas in (2.5.33) as
being URTI, i.e., the usual Riesz transform identities.

Remarkably, Theorem 2.5.7 below provides a stability result to the affect that if
Ω ⊆ Rn is a UR domain with an unbounded boundary for which the URTI are “almost”
true in the context of a Muckenhoupt weighted Lebesgue space, then ∂Ω is “almost” flat,
in that the BMO semi-norm of the outward unit normal to Ω is small.

Theorem 2.5.7. Let Ω ⊆ Rn be a UR domain with an unbounded boundary. Abbreviate
σ := Hn−1b∂Ω and denote by ν the geometric measure theoretic outward unit normal
to Ω. Also, fix an integrability exponent p ∈ (1,∞) along with a Muckenhoupt weight
w ∈ Ap(∂Ω, σ), and recall the Riesz transforms {Rj}1≤j≤n on ∂Ω from (2.4.236). Then
there exists some C ∈ (0,∞) which depends only on n, p, [w]Ap, and the UR character
of ∂Ω with the property that

‖ν‖[BMO(∂Ω,σ)]n ≤ C
{∥∥∥I +

n∑
j=1

R2
j

∥∥∥
Lp(∂Ω,w)→Lp(∂Ω,w)

(2.5.34)

+ max
1≤j,k≤n

∥∥[Rj , Rk]∥∥Lp(∂Ω,w)→Lp(∂Ω,w)

}1/(2n−1)
.

Moreover, in the unweighted case the exponent 1/(2n− 1) may be replaced by 1/n.

It is perhaps surprising (but nonetheless true; cf. [48]) that URTI are also valid in
the context of Muckenhoupt weighted Lebesgue spaces when Ω is an open ball, or the
complement of a closed ball in Rn. This shows that, in the context of Theorem 2.5.7, our
assumption that ∂Ω is unbounded is warranted, since otherwise (2.5.34) may fail.

Proof of Theorem 2.5.7. Formula [53, (4.6.46), p. 2752] (which is valid in any UR do-
main, irrespective of whether its boundary is compact or not) tells us that for each
f ∈ Lp(∂Ω, σ)⊗ C̀ n we have

(C−C#)f = C
(
I +

n∑
j=1

R2
j

)
f +

∑
1≤j<k≤n

C
(
([Rj , Rk]f)ej � ek

)
. (2.5.35)

Since
(
Lp(∂Ω, σ)∩Lp(∂Ω, w)

)
⊗ C̀ n is a dense subspace of Lp(∂Ω, w)⊗ C̀ n and since all

operators involved are continuous on Lp(∂Ω, w)⊗ C̀ n, we conclude that formula (2.5.35)
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continues to hold for each f ∈ Lp(∂Ω, w) ⊗ C̀ n. From this version of (2.5.35) we then
conclude that

C−C# = C
(
I +

n∑
j=1

R2
j

)
+

∑
1≤j<k≤n

C[Rj , Rk]ej � ek (2.5.36)

as operators on Lp(∂Ω, w)⊗ C̀ n. In concert with (2.5.7), this implies

‖C−C#‖Lp(∂Ω,w)⊗C̀ n→Lp(∂Ω,w)⊗C̀ n

≤ C
∥∥∥I +

n∑
j=1

R2
j

∥∥∥
Lp(∂Ω,w)→Lp(∂Ω,w)

+ C
∑

1≤j<k≤n

∥∥[Rj , Rk]∥∥Lp(∂Ω,w)→Lp(∂Ω,w) (2.5.37)

Then (2.5.34) becomes a consequence of (2.5.37) and Proposition 2.5.3. Finally, the very
last claim in the statement of the theorem follows from Remark 2.5.4.

Our next result contains estimates in the opposite direction to those from Theo-
rem 2.5.7. Collectively, Theorem 2.5.8 and Theorem 2.5.7 amount to saying that, under
natural background geometric assumptions on the set Ω, the URTI are “almost” true in
the context of a Muckenhoupt weighted Lebesgue space if and only if ∂Ω is “almost” flat
(in that the BMO semi-norm of the outward unit normal to Ω is small).

Theorem 2.5.8. Let Ω ⊆ Rn be an open set satisfying a two-sided local John condition
and whose topological boundary is an Ahlfors regular set. Abbreviate σ := Hn−1b∂Ω and
denote by ν the geometric measure theoretic outward unit normal to Ω. Also, fix an
integrability exponent p ∈ (1,∞) along with a Muckenhoupt weight w ∈ Ap(∂Ω, σ), and
recall the Riesz transforms {Rj}1≤j≤n on ∂Ω from (2.4.236).

Then there exists some constant C ∈ (0,∞) which depends only on n, p, [w]Ap, the
local John constants of Ω, and the Ahlfors regularity constant of ∂Ω, such that

∥∥∥I +
n∑
j=1

R2
j

∥∥∥
Lp(∂Ω,w)→Lp(∂Ω,w)

≤ C ‖ν‖[BMO(∂Ω,σ)]n , (2.5.38)

and

max
1≤j<k≤n

∥∥[Rj , Rk]∥∥Lp(∂Ω,w)→Lp(∂Ω,w) ≤ C ‖ν‖[BMO(∂Ω,σ)]n . (2.5.39)

Proof. From the Muckenhoupt version of (2.5.9) and (2.5.36) we see that for each f ∈
Lp(∂Ω, σ)⊗ C̀ n we have

C(C# −C)f = −1
4

(
I +

n∑
j=1

R2
j

)
f − 1

4
∑

1≤j<k≤n
([Rj , Rk]f)ej � ek. (2.5.40)

Fix an arbitrary scalar function f ∈ Lp(∂Ω, w) normalized so that ‖f‖Lp(∂Ω,w) = 1. In
particular, this entails f ∈ Lp(∂Ω, w) ⊗ C̀ n and ‖f‖Lp(∂Ω,w)⊗C̀ n = 1. Bearing this in
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mind, we may then write

max
{∥∥∥1

4

(
I +

n∑
j=1

R2
j

)
f
∥∥∥
Lp(∂Ω,w)

, max
1≤j<k≤n

∥∥∥1
4 [Rj , Rk]f

∥∥∥
Lp(∂Ω,w)

}

≤
∥∥∥∥∥
∣∣∣14(I +

n∑
j=1

R2
j

)
f
∣∣∣2 +

∑
1≤j<k≤n

∣∣∣14 [Rj , Rk]f
∣∣∣2


1/2 ∥∥∥∥∥
Lp(∂Ω,w)

=
∥∥∥1

4

(
I +

n∑
j=1

R2
j

)
f + 1

4
∑

1≤j<k≤n
([Rj , Rk]f)ej � ek

∥∥∥
Lp(∂Ω,w)⊗C̀ n

= ‖C(C# −C)f‖Lp(∂Ω,w)⊗C̀ n

≤ ‖C‖Lp(∂Ω,w)⊗C̀ n→Lp(∂Ω,w)⊗C̀ n

∥∥∥C−C#
∥∥∥
Lp(∂Ω,w)⊗C̀ n→Lp(∂Ω,w)⊗C̀ n

≤ C ‖ν‖[BMO(∂Ω,σ)]n , (2.5.41)

where the first inequality is trivial, the subsequent equality is implied by (1.4.7), the
second equality is seen from formula (2.5.40), the penultimate estimate uses the normal-
ization of f , while the last inequality is provided by (2.5.7) and (2.5.11). With (2.5.41)
in hand, the claims in (2.5.38)-(2.5.39) readily follow (in view of the arbitrariness of the
scalar-valued function f ∈ Lp(∂Ω, w) with ‖f‖Lp(∂Ω,w) = 1).

2.5.4 Using Riesz transforms to characterize Muckenhoupt weights

Assume Σ ⊆ Rn, where n ∈ N with n ≥ 2, is a closed UR set and abbreviate σ := Hn−1bΣ.
For j ∈ {1, . . . , n}, the j-th Riesz transform Rj on Σ is defined as the operator acting
on each f ∈ L1(Σ, σ(x)

1+|x|n−1
)
according to

Rjf(x) := lim
ε→0+

2
ωn−1

ˆ

y∈Σ
|x−y|>ε

xj − yj
|x− y|n

f(y) dσ(y) for σ-a.e. x ∈ Σ. (2.5.42)

From Proposition 2.3.3 we know that these Riesz transforms are well-defined in this
context, and that for each integrability exponent p ∈ (1,∞) and Muckenhoupt weight
w ∈ Ap(Σ, σ) they induce linear and bounded mappings on Lp(Σ, w). The goal in this
section is to show that the class of Muckenhoupt weights is the largest class of weights
for which the latter boundedness properties hold.

As a preamble, we note that for a variety of purposes it is convenient to glue together
all Riesz transforms {Rj}1≤j≤n from (2.5.42) into a unique operator now acting on
Clifford algebra-valued functions f ∈ L1(Σ, σ(x)

1+|x|n−1
)
⊗ C̀ n according to

Rf(x) := lim
ε→0+

2
ωn−1

ˆ

y∈Σ
|x−y|>ε

x− y
|x− y|n

� f(y) dσ(y)

= e1 �R1f(x) + · · ·+ en �Rnf(x) for σ-a.e. x ∈ Σ. (2.5.43)
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Theorem 2.5.9. Suppose Σ ⊆ Rn is a closed UR set and abbreviate σ := Hn−1bΣ. Fix
p ∈ (1,∞) and consider a weight w on Σ which belongs to L1

loc(Σ, σ) and has the property
that, for j ∈ {1, . . . , n}, the j-th Riesz transform Rj on Σ originally defined as in (2.5.42)
extends to a linear and bounded operator on Lp(Σ, w). Then necessarily w ∈ Ap(Σ, σ).

From assumptions and (2.2.291) we know that σ is a complete, locally finite (hence
also sigma-finite), separable, Borel-regular measure on Σ. Since the weight w belongs
to L1

loc(Σ, σ), it follows that

the measure dw := w dσ is complete, locally finite (hence
also sigma-finite), separable, and Borel-regular on Σ.

(2.5.44)

Granted this, results in [6], [93] then guarantee that the natural inclusion

X :=
{
φ
∣∣
Σ : φ ∈ C∞0 (Rn)

}
↪→ Lp(Σ, w) has dense range. (2.5.45)

From the preamble to Theorem 2.5.9 we know that the Riesz transforms (2.5.42) act
in a meaningful fashion on X , and this is the manner in which the Rj ’s are originally
considered in the context of Theorem 2.5.9. The point of the latter theorem is that if
the Rj ’s originally defined on X extend via density (cf. (2.5.45)) to linear and bounded
operators on Lp(Σ, w) then necessarily w ∈ Ap(Σ, σ).

Proof of Theorem 2.5.9. The fact that all Riesz transforms on Σ originally defined as in
(2.5.42) on functions f ∈ X :=

{
φ
∣∣
Σ : φ ∈ C∞0 (Rn)

}
induce (via density; cf. (2.5.45))

linear and bounded mappings on Lp(Σ, w), implies that the operator R from (2.5.43),
originally defined on functions f ∈ X ⊗ C̀ n induces (via density) a linear and bounded
mapping on Lp(Σ, w)⊗ C̀ n.

To proceed in earnest, fix a number λ ∈ (1,∞) which is sufficiently large relative to
the Ahlfors regularity constant of Σ. Much as in (2.5.16), this may be done as to ensure
that

∆(x, λR) \∆(x,R) 6= ∅ for each x ∈ Σ and R ∈
(
0 , diam (Σ)

/
λ
)
. (2.5.46)

Fix r ∈
(
0 , diam (Σ)

/
(10λ)

)
and suppose x1, x2 ∈ Σ are such that

10 r < |x1 − x2| < 10λr. (2.5.47)

Abbreviate
∆1 := ∆(x1, r) and ∆2 := ∆(x2, r). (2.5.48)

Next, select a real-valued function f ∈ X and set f± := max{±f, 0}. We then have
0 ≤ f± ≤ |f | = f+ + f− on Σ, and f± ∈ Lp(Σ, w) since X ⊆ Lp(Σ, w). To proceed,
define

g±(y) :=


− x2 − y
|x2 − y|

f±(y) for y ∈ ∆1,

0 for y ∈ Σ \∆1,

(2.5.49)
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so g± belong to Lp(Σ, w)⊗ C̀ n and are supported in ∆1. Consequently,

Rg±(x) = 2
ωn−1

ˆ
∆1

x− y
|x− y|n

� −(x2 − y)
|x2 − y|

f±(y) dσ(y) for each x ∈ ∆2. (2.5.50)

Recall that the scalar component uscal of a Clifford algebra element u ∈ C̀ n is defined as
in (1.4.6). For each x ∈ ∆2 and y ∈ ∆1 we may use (1.4.1), (1.4.7), (1.4.10), as well as
(2.5.47) to compute

( x− y
|x− y|n

� −(x2 − y)
|x2 − y|

)
scal

=
( x− y
|x− y|n

� −(x− y)
|x2 − y|

)
scal

+
( x− y
|x− y|n

� x− x2
|x2 − y|

)
scal

= 1
|x− y|n−2 · |x2 − y|

+
( x− y
|x− y|n

� x− x2
|x2 − y|

)
scal

≥ 1
|x− y|n−2 · |x2 − y|

− |x− x2|
|x− y|n−1 · |x2 − y|

= |x− y| − |x− x2|
|x− y|n−1 · |x2 − y|

≥ 7r
(10λr + 2r)n−1(10λr + r) = cn,λ · r1−n. (2.5.51)

Based on (2.5.50), (2.5.51), and the Ahlfors regularity of Σ we conclude that

∣∣Rg±∣∣ ≥ (Rg±)scal ≥ cn,λ
 

∆1

f± dσ on ∆2. (2.5.52)

In concert with the boundedness of R on Lp(Σ, w) ⊗ C̀ n (mentioned in the first part of
the proof), this permits us to estimate

cpn,λ

(  
∆1

f± dσ
)p
≤ 1
w(∆2)

ˆ
∆2

∣∣Rg±∣∣p dw ≤ 1
w(∆2)

ˆ
Σ

∣∣Rg±∣∣p dw
≤ C

w(∆2)

ˆ
Σ

∣∣g±∣∣p dw ≤ C

w(∆2)

ˆ
∆1

|f |p dw, (2.5.53)

for some constant C ∈ (0,∞) independent of f , x1, x2, and r. Combining the two
versions of (2.5.53), corresponding to f+ and f−, yields

cpn,λ

(  
∆1

|f | dσ
)p
≤ C

w(∆2)

ˆ
∆1

|f |p dw, (2.5.54)

for some constant C ∈ (0,∞) independent of f , x1, x2, and r. Specializing (2.5.54) to
the case when the real-valued function f ∈X is chosen such that f ≡ 1 on ∆1∪∆2 then
yields

cpn,λ ≤ C
w(∆1)
w(∆2) . (2.5.55)
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Running the same type of argument as above but with the roles of x1 and x2 (which are
interchangeable) reversed then produces, in place of (2.5.55),

cpn,λ ≤ C
w(∆2)
w(∆1) . (2.5.56)

From (2.5.56) and (2.5.54) we then conclude that for each real-valued function f ∈ X

we have  
∆1

|f | dσ ≤ C
( 

∆1

|f |p dw
)1/p

(2.5.57)

for some constant C ∈ (0,∞) independent of f , x1, and r.
Consider now an arbitrary function h ∈ Lploc(Σ, w). In particular, the extension of

h
∣∣
∆1

by zero to the rest of Σ belongs to Lp(Σ, w). Granted this, (2.5.45) guarantees the
existence of a sequence of functions {fj}j∈N ⊆X such that

fj
∣∣
∆1
→ h

∣∣
∆1

in Lp(∆1, w) as j →∞. (2.5.58)

By eventually passing to sub-sequences there is no loss of generality in also assuming
that lim

j→∞
fj(x) = h(x) for σ-a.e. x ∈ ∆1. Based on this, Fatou’s lemma, and (2.5.57) we

may then write
 

∆1

|h| dσ ≤ lim inf
j→∞

 
∆1

|fj | dσ ≤ C · lim inf
j→∞

( 
∆1

|fj |p dw
)1/p

≤ C
(  

∆1

|h|p dw
)1/p

. (2.5.59)

Ultimately, this goes to show that for each h ∈ Lploc(Σ, w) we have
 

∆1

|h| dσ ≤ C
( 

∆1

|h|p dw
)1/p

, (2.5.60)

with C ∈ (0,∞) independent of h, x1, and r.
Start now with an arbitrary point x ∈ Σ, and continue to assume that the scale r

belongs to
(
0 , diam (Σ)

/
(10λ)

)
. We may then employ (2.5.46) with R := 10 r to conclude

that there exists some x̃ ∈ ∆(x, 10λr) \∆(x, 10 r). We then have 10 r < |x − x̃| < 10λr
which, in light of (2.5.47), shows that we may run the argument so far with x1 := x and
x2 := x̃. In place of (2.5.60) we then arrive at the conclusion that there exists C ∈ (0,∞)
with the property that

 
∆(x,r)

|h| dσ ≤ C
( 

∆(x,r)
|h|p dw

)1/p
for each

h ∈ Lploc(Σ, w), x ∈ Σ, r ∈
(
0 , diam (Σ)

/
(10λ)

)
.

(2.5.61)

In the case when Σ is unbounded, from (2.5.61) (which now hold with no restriction
on the size of the scale r since diam (Σ) =∞) and the second part of Lemma 2.2.41 we
conclude that w ∈ Ap(Σ, σ) and [w]Ap ≤ Cp.



2. Singular integral operators and quantitative flatness 223

As such, there remains to treat the case when Σ is bounded. When is the case,
starting with (2.5.61), the argument in the proof of Lemma 2.2.41 that has led to (2.2.308)
presently gives (with p ′ denoting the Hölder conjugate exponent of p)( 

∆(x,r)
w dσ

)( 
∆(x,r)

w1−p ′ dσ

)p−1

≤ Cp

for each x ∈ Σ and r ∈
(
0 , diam (Σ)

/
(10λ)

)
.

(2.5.62)

To treat the case when

diam (Σ)
/
(10λ) ≤ r ≤ diam (Σ), (2.5.63)

observe that for each x ∈ Σ we may estimate, using the Ahlfors regularity of Σ and the
fact that r is comparable with diam (Σ),( 

∆(x,r)
w dσ

)( 
∆(x,r)

w1−p ′ dσ

)p−1

≤ CΣ,p

( 
Σ
w dσ

)( 
Σ
w1−p ′ dσ

)p−1
, (2.5.64)

for some constant CΣ,p ∈ (0,∞) which depends only on Σ and p. At this stage, there
remains to show that the right hand-side of (2.5.64) is finite. To this end, introduce
r0 := diam (Σ)

/
(20λ) and cover the compact set Σ with finitely surface balls of radius

r0, say Σ ⊆
⋃N
j=1 ∆(xj , r0) for some N ∈ N and {xj}1≤j≤N ⊆ Σ. Also, define

c∗ := inf
1≤j≤N

w(∆(xj , r0))
w(Σ) > 0. (2.5.65)

From (2.5.65) and (2.5.61) used with r := r0 ∈
(
0 , diam (Σ)

/
(10λ)

)
we then obtain that

for each h ∈ Lploc(Σ, w) we have
 

∆(xj ,r0)
|h| dσ ≤ C · c−1/p

∗
( 

Σ
|h|p dw

)1/p
for j ∈ {1, . . . , N}. (2.5.66)

Using the Ahlfors regularity of Σ and summing up in j further yields
 

Σ
|h| dσ ≤ CΣ · C · c

−1/p
∗

(  
Σ
|h|p dw

)1/p
for each h ∈ Lploc(Σ, w), (2.5.67)

where CΣ ∈ (0,∞) depends only on Σ. Having established (2.5.67), the argument in the
proof of Lemma 2.2.41 that has produced (2.2.308) then currently gives( 

Σ
w dσ

)( 
Σ
w1−p ′ dσ

)p−1
≤ (CΣ · C)p/c∗. (2.5.68)

In concert with (2.5.64) this finally proves that w ∈ Ap(Σ, σ).

In concert with earlier results, Theorem 2.5.9 yields the following remarkable char-
acterization of Muckenhoupt weights.
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Theorem 2.5.10. Let Ω ⊆ Rn be a UR domain and abbreviate σ := Hn−1b∂Ω. Fix
a function w ∈ L1

loc(∂Ω, σ) which is strictly positive σ-a.e. on ∂Ω, along with an
integrability exponent p ∈ (1,∞). Then the following statements are equivalent.

(1) The weight w belongs to the Muckenhoupt class Ap(∂Ω, σ).

(2) For each j ∈ {1, . . . , n}, the j-th Riesz transform Rj on ∂Ω (cf. (2.4.236)) induces
a linear and bounded operator on Lp(∂Ω, w).

(3) The Cauchy-Clifford operator C from (2.5.1) induces a linear and bounded mapping
on Lp(∂Ω, w)⊗ C̀ n.

(4) The “transposed” Cauchy-Clifford operator C# from (2.5.3) induces a linear and
bounded mapping on Lp(∂Ω, w)⊗ C̀ n.

(5) For each complex-valued function k ∈ C∞
(
Rn \ {0}

)
which is odd and positive ho-

mogeneous of degree 1−n, the integral operator originally defined for each function
f ∈ L1(∂Ω, σ(x)

1+|x|n−1
)
as

Tf(x) := lim
ε→0+

ˆ

y∈∂Ω
|x−y|>ε

k(x− y)f(y) dσ(y) for σ-a.e. x ∈ ∂Ω, (2.5.69)

induces a linear and bounded mapping on Lp(∂Ω, w).

Proof. The implications (1)⇒ (2) and (1)⇒ (5) are direct consequences of Proposi-
tion 2.3.3 and (2.4.236). From (2.4.236) it is also clear that (5)⇒ (2). To proceed,
let ν = (ν1, . . . , νn) denote the geometric measure theoretic outward unit normal to Ω.
Then (2.5.2) and (2.5.4) imply that the Cauchy-Clifford operator C from (2.5.1) as well
as the “transposed” Cauchy-Clifford operator C# from (2.5.3) induce linear and bounded
mappings on Lp(∂Ω, w)⊗C̀ n whenever all Riesz transforms on ∂Ω, i.e., Rj as in (2.4.236)
with 1 ≤ j ≤ n, induce linear and bounded operators on Lp(∂Ω, w). This takes care of
the implications (2)⇒ (3) and (2)⇒ (4).

Going further, bring in the integral operator R defined as in (2.5.43) for Σ := ∂Ω, i.e.,
Rf = e1�R1f+ · · ·+en�Rnf for each f ∈ L1(∂Ω, σ(x)

1+|x|n−1
)
⊗C̀ n, where {Rj}1≤j≤n are

Riesz transforms on ∂Ω defined in (2.4.236). From definitions and the fact that ν�ν = −1
at σ-a.e. point of ∂Ω (cf. (1.4.1)) we then see that for each f ∈ L1(∂Ω, σ(x)

1+|x|n−1
)
⊗ C̀ n

we have

ν �C#f = 1
2Rf, −C(ν � f) = 1

2Rf, Cf = ν �C#(ν � f),

C#f = −1
2ν �Rf, Cf = 1

2R(ν � f), C#f = ν �C(ν � f).
(2.5.70)

It is also clear that the statement in item (2) is equivalent to the demand that R induces a
linear and bounded operator on Lp(∂Ω, w)⊗C̀ n. On account of this and (2.5.70) we then
conclude that the implications (3)⇒ (2) and (4)⇒ (2) are valid. Finally, Theorem 2.5.9
gives the implication (2)⇒ (1). The proof of Theorem 2.5.10 is therefore complete.
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2.6 Boundary value problems in Muckenhoupt weighted
spaces

This section is devoted to studying the Dirichlet, Regularity, Neumann, and Transmission
boundary value problems in unbounded δ-SKT domains with boundary data in Mucken-
houpt weighted Lebesgue and Sobolev spaces. The technology that we bring to bear on
such problems also allows us to deal with similar boundary value problems formulated
in terms of ordinary Lorentz spaces and Lorentz-based Sobolev spaces.

As a preamble, in Theorem 2.6.1 below we recall from [93] a Poisson integral rep-
resentation formula for solutions of the Dirichlet Problem for a given weakly elliptic
second-order system L, in domains of a very general geometric nature, which involves the
conormal derivative of the Green function for the transposed system L> as integral kernel.
Stating this requires that we review a definition and a couple of related results. Specif-
ically, following [93] we shall say that a set Ω is globally pathwise nontangentially
accessible provided Ω is an open nonempty proper subset of Rn such that:

given any κ > 0 there exist κ̃ ≥ κ along with c ∈ [1,∞)
such that σ-a.e. point x ∈ ∂Ω has the property that any
y ∈ Γκ(x) may be joined by a rectifiable curve γx,y such that
γx,y \ {x} ⊂ Γκ̃(x) and whose length is ≤ c|x− y|.

(2.6.1)

It has been noted in [93] that

any one-sided NTA domain with unbounded boundary is
a globally pathwise nontangentially accessible set,

(2.6.2)

and that

any semi-uniform set (in the sense of Aikawa-Hirata; cf. [3])
is a globally pathwise nontangentially accessible set.

(2.6.3)

We are now ready to state the Poisson integral representation formula advertised
earlier (for a proof see [93]).

Theorem 2.6.1. Let Ω be an open nonempty proper subset of Rn (where n ∈ N with
n ≥ 2) which is globally pathwise nontangentially accessible (in the sense of (2.6.1)), and
such that ∂Ω is unbounded and Ahlfors regular. Abbreviate σ := Hn−1b∂Ω and denote by
ν = (ν1, . . . , νn) the geometric measure theoretic outward unit normal to Ω. Next, suppose
L is a weakly elliptic, homogeneous, constant (complex) coefficient, second-order, M×M
system in Rn. Fix an aperture parameter κ ∈ (0,∞), along with an arbitrary point
x0 ∈ Ω, and suppose 0 < ρ < 1

4 dist (x0, ∂Ω). Finally, define K := B(x0, ρ).
Then there exists some κ̃ > 0, which depends only on Ω and κ, with the following
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significance. Assume G is a matrix-valued function satisfying

G =
(
Gαβ

)
1≤α,β≤M ∈

[
L1

loc(Ω,Ln)
]M×M

,(
L>G.β

)
α

= −δx0δαβ in
[
D′(Ω)

]M for all α, β ∈ {1, . . . ,M},(
∇G

)∣∣̃κ−n.t.

∂Ω exists (in Cn·M2) at σ-a.e. point on ∂Ω,

G
∣∣̃κ−n.t.

∂Ω = 0 ∈ CM×M at σ-a.e. point on ∂Ω,

NΩ\K
κ̃

(∇G) < +∞ at σ-a.e. point on ∂Ω,

(2.6.4)

and assume u = (uβ)1≤β≤M is a CM -valued function in Ω satisfying

u ∈
[
C ∞(Ω)

]M
, Lu = 0 in Ω,

u
∣∣κ−n.t.

∂Ω exists at σ-a.e. point on ∂Ω,

Nκu < +∞ at σ-a.e. point on ∂Ω,
ˆ
∂Ω
Nκu · NΩ\K

κ̃
(∇G) dσ < +∞.

(2.6.5)

Then for any choice of a coefficient tensor A =
(
aαβrs

)
1≤r,s≤n

1≤α,β≤M
∈ AL one has the

Poisson integral representation formula

uβ(x0) = −
ˆ
∂∗Ω

〈
u
∣∣κ−n.t.

∂Ω , ∂A
>

ν G.β
〉
dσ, ∀β ∈ {1, . . . ,M}, (2.6.6)

where ∂A>ν stands for the conormal derivative associated with A>, acting on the columns
of the matrix-valued function G according to (compare with (2.3.20))

∂A
>

ν G.β :=
(
νra

γα
sr

(
∂sGγβ

)∣∣̃κ−n.t.

∂Ω

)
1≤α≤M

at σ-a.e. point on ∂∗Ω, (2.6.7)

for each β ∈ {1, . . . ,M}.

One remarkable feature of this result is that the only quantitative aspect of the
hypotheses made in its statement is the finiteness condition in the fourth line of (2.6.5).
Not only is this is most natural (in view of the conclusion in (2.6.6)), but avoiding to
specify separate memberships of Nκu and NΩ\K

κ̃
(∇G) to concrete dual function spaces on

∂Ω gives Theorem 2.6.1 a wide range of applicability. In particular, the various Poisson
integral representation formulas this provides in various contexts permits us to derive,
rather painlessly, uniqueness results for the Dirichlet Problem.

2.6.1 The Dirichlet Problem in weighted Lebesgue spaces

Theorem 2.6.2 below describes solvability, regularity, and well-posedness results for the
Dirichlet Problem in δ-SKT domains Ω ⊆ Rn with boundary data in Muckenhoupt
weighted Lebesgue spaces for weakly elliptic second-order homogeneous constant coef-
ficient systems L in Rn with the property that Adis

L 6= ∅ and/or Adis
L> 6= ∅. Examples
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of such systems include the Laplacian, all scalar weakly elliptic operators when n ≥ 3,
as well as the complex Lamé system Lµ,λ := µ∆ + (λ + µ)∇div with µ ∈ C \ {0}
and λ ∈ C \ {−2µ,−3µ}. In particular, the well-posedness result described in item (d)
of Theorem 2.6.2 holds in all these cases. Furthermore, we provide counterexamples
showing that our results are optimal, in the sense that the aforementioned assumptions
on the existence of distinguished coefficient tensors cannot be dispensed with.

Theorem 2.6.2. Let Ω ⊆ Rn be an open set satisfying a two-sided local John condition
and whose topological boundary is Ahlfors regular. Abbreviate σ := Hn−1b∂Ω and fix
an aperture parameter κ > 0. Also, pick an integrability exponent p ∈ (1,∞) and
a Muckenhoupt weight w ∈ Ap(∂Ω, σ). Given a homogeneous, second-order, constant
complex coefficient, weakly ellipticM×M system L in Rn, consider the Dirichlet Problem

u ∈
[
C∞(Ω)

]M
,

Lu = 0 in Ω,

Nκu ∈ Lp(∂Ω, w),

u
∣∣κ−n.t.

∂Ω = f ∈
[
Lp(∂Ω, w)

]M
.

(2.6.8)

The following claims are true:

(a) [Existence and Estimates] If Adis
L 6= ∅ and A ∈ Adis

L , then there exists δ0 ∈ (0, 1)
which depends only on n, p, [w]Ap, A, the local John constants of Ω, and the Ahlfors
regularity constant of ∂Ω with the property that if ‖ν‖[BMO(∂Ω,σ)]n < δ (a scenario
which ensures that Ω is a δ-SKT domain; cf. Definition 2.2.14) for some δ ∈ (0, δ0)
then 1

2I+KA is an invertible operator on the weighted Lebesgue space
[
Lp(∂Ω, w)

]M
and the function u : Ω→ CM defined as

u(x) :=
(
DA

(
1
2I +KA

)−1
f
)
(x) for all x ∈ Ω, (2.6.9)

is a solution of the Dirichlet Problem (2.6.8). Moreover, there exists some constant
C ∈ (0,∞) independent of f with the property that

‖f‖[Lp(∂Ω,w)]M ≤ ‖Nκu‖Lp(∂Ω,w) ≤ C ‖f‖[Lp(∂Ω,w)]M . (2.6.10)

(b) [Regularity] Under the background assumptions made in item (a), for the solution u
of the Dirichlet Problem (2.6.8) defined in (2.6.9), one has the following regularity
result. For any given q ∈ (1,∞) and ω ∈ Aq(∂Ω, σ), further decreasing δ0 ∈ (0, 1)
(relative to q and [ω]Aq), one has

Nκ(∇u) ∈ Lq(∂Ω, ω)⇐⇒ ∂τjkf ∈
[
Lq(∂Ω, ω)

]M
, 1 ≤ j, k ≤ n, (2.6.11)

and if either of these conditions holds then

(∇u
)∣∣κ−n.t.

∂Ω exists (in Cn·M ) at σ-a.e. point on ∂Ω,

and ‖Nκ(∇u)‖Lq(∂Ω,ω) ≈ ‖∇tanf‖[Lq(∂Ω,ω)]n·M .
(2.6.12)
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In particular, corresponding to q := p and ω := w, if δ0 ∈ (0, 1) is sufficiently small
to begin with then

Nκ(∇u) belongs to Lp(∂Ω, w) if and only if f belongs to[
Lp1(∂Ω, w)]M , and if either of these conditions holds then
‖Nκu‖Lp(∂Ω,w) + ‖Nκ(∇u)‖Lp(∂Ω,w) ≈ ‖f‖[Lp1(∂Ω,w)]M .

(2.6.13)

(c) [Uniqueness] Whenever Adis
L> 6= ∅, there exists δ0 ∈ (0, 1) which depends only on n,

p, [w]Ap, L, the local John constants of Ω, and the Ahlfors regularity constant of
∂Ω with the property that if ‖ν‖[BMO(∂Ω,σ)]n < δ (i.e., if Ω is a δ-SKT domain) for
some δ ∈ (0, δ0) then the Dirichlet Problem (2.6.8) has at most one solution.

(d) [Well-Posedness] If Adis
L 6= ∅ and Adis

L> 6= ∅ then there exists δ0 ∈ (0, 1) which
depends only on n, p, [w]Ap, L, the local John constants of Ω, and the Ahlfors
regularity constant of ∂Ω such that if if ‖ν‖[BMO(∂Ω,σ)]n < δ (in other words, if
Ω is a δ-SKT domain) for some δ ∈ (0, δ0) then the Dirichlet Problem (2.6.8)
is well posed (i.e., it is uniquely solvable and the solution satisfies the naturally
accompanying estimate formulated in (2.6.10)).

(e) [Sharpness] If Adis
L = ∅ then the Dirichlet Problem (2.6.8) may not be solvable.

Also, if Adis
L> = ∅ then the Dirichlet Problem (2.6.8) may have more than one

solution. In fact, there exists a homogeneous, second-order, constant real coefficient,
weakly elliptic 2 × 2 system L in R2 with Adis

L = Adis
L> = ∅ and which satisfies the

following two properties: (i) the Dirichlet Problem formulated for this system as
in (2.6.8) with Ω := R2

+ fails to have a solution for each non-zero boundary datum
belonging to an infinite-dimensional linear subspace of

[
Lp(∂Ω, w)

]2, and (ii) the
linear space of null-solutions for the Dirichlet Problem formulated for the system L

as in (2.6.8) with Ω := R2
+ is actually infinite dimensional.

From Example 2.2.43 we know that, once a point x0 ∈ ∂Ω has been fixed, then for
each power a ∈

(
1 − n, (p − 1)(n − 1)

)
the function

w : ∂Ω→ [0,∞], w(x) := |x− x0|a for each x ∈ ∂Ω, (2.6.14)

is a Muckenhoupt weight in the class Ap(∂Ω, σ). Boundary value problems for a real con-
stant coefficient system L satisfying the Legendre-Hadamard strong ellipticity condition
in a bounded Lipschitz domain Ω ⊆ Rn with boundary data in weighted (Lebesgue and
Sobolev) spaces on ∂Ω for a weight of the form (2.6.14) have been considered in [111].

More generally, Proposition 2.2.44 tells us that, for each d-set E ⊆ ∂Ω with d ∈
[0, n−1) and each power a ∈

(
d+1−n , (p−1)(n−1−d)

)
, the function w :=

[
dist (·, E)

]a is
a Muckenhoupt weight in the class Ap(∂Ω, σ). Theorem 2.6.2 may therefore be specialized
to this type of weights. A natural choice corresponds to the case when E is a subset of
the set of singularities of the “surface” ∂Ω. Weighted boundary value problems in which
the weight is a power of the distance to the singular set (of the boundary) have been
studied extensively in the setting of conical and polyhedral domains, for which there is
a vast amount of literature (see, e.g., [69] and the references therein).
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Finally, we wish to mention that, in the class of systems considered in Theorem 2.6.2,
the ensuing solvability, regularity, uniqueness, and well-posedness results are new even
in the standard case when Ω = Rn+.

Here is the proof of Theorem 2.6.2.

Proof of Theorem 2.6.2. To deal with the claims made in item (a) assume Adis
L 6= ∅ and

pick some A ∈ Adis
L . Then Theorem 2.4.24 guarantees the existence of some threshold

δ0 ∈ (0, 1), whose nature is as specified in the statement of the theorem, such that if
‖ν‖[BMO(∂Ω,σ)]n < δ (i.e., if Ω is a δ-SKT domain) for some δ ∈ (0, δ0) then the operator
1
2I +KA is invertible on

[
Lp(∂Ω, w)

]M . Granted this, from (2.3.3) and Proposition 2.3.4
(also keeping in mind (2.2.337)) we conclude that the function u defined as in (2.6.9)
solves the Dirichlet Problem (2.6.8) and satisfies (2.6.10).

Let us now prove the claims made in item (b) pertaining to the regularity of the
solution u just constructed. Retain the background assumptions made in item (a) and
fix some q ∈ (1,∞) along with some ω ∈ Aq(∂Ω, σ). As regards the equivalence claimed
in (2.6.11), assume first that f ∈

[
Lp(∂Ω, w)

]M is such that ∂τjkf ∈
[
Lq(∂Ω, ω)

]M for

each j, k ∈ {1, . . . , n}. Set g :=
(

1
2I +KA

)−1
f ∈

[
Lp(∂Ω, w)

]M where the inverse is con-

sidered in the space
[
Lp(∂Ω, w)

]M . As noted in Remark 2.4.25 (assuming δ0 is sufficiently
small), the operator 1

2I+KA is also invertible on the off-diagonal Muckenhoupt weighted
Sobolev space

[
Lp;q1 (∂Ω, w;ω)

]M (cf. (2.4.248)-(2.4.249)). Moreover, since the latter is a
subspace of

[
Lp(∂Ω, w)

]M , it follows that the inverse of 1
2I + KA on

[
Lp;q1 (∂Ω, w;ω)

]M
is compatible with the inverse of 1

2I +KA on
[
Lp(∂Ω, w)

]M . In particular, since we are
currently assuming that f ∈

[
Lp;q1 (∂Ω, w;ω)

]M , we conclude that g ∈
[
Lp;q1 (∂Ω, w;ω)

]M .
As a consequence of this membership and (2.2.337), we have

g = (gα)1≤α≤M ∈
[
L1
(
∂Ω ,

σ(x)
1 + |x|n−1

)]M
and

∂τjkg ∈
[
L1
(
∂Ω ,

σ(x)
1 + |x|n−1

)]M
for all j, k ∈ {1, . . . , n}.

(2.6.15)

Granted these, we may invoke Proposition 2.3.2 and from (2.3.13) we conclude that the
nontangential boundary trace (∇u

)∣∣κ−n.t.

∂Ω =
(
∇DAg

)∣∣κ−n.t.

∂Ω exists (in Cn·M ) at σ-a.e. point
on ∂Ω (hence, the first property listed in (2.6.12) holds). Also, formula (2.3.12) gives
that for each index ` ∈ {1, . . . , n} and each point x ∈ Ω we have

(∂`u)(x) = ∂`
(
DAg

)
(x)

=
(ˆ

∂Ω
aβαrs (∂rEγβ)(x− y)(∂τ`sgα)(y) dσ(y)

)
1≤γ≤M

(2.6.16)

if the coefficient tensor A is expressed as
(
aαβrs

)
1≤r,s≤n

1≤α,β≤M
, and if the fundamental solution

E = (Eαβ)1≤α,β≤M is as in Theorem 1.2.1. In concert with (2.3.31) and (2.2.348), this
proves that

‖Nκ(∇u)‖Lq(∂Ω,ω) ≤ C ‖∇tang‖[Lq(∂Ω,ω)]n·M

for some constant C ∈ (0,∞) independent of g.
(2.6.17)
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In particular, Nκ(∇u) belongs to Lq(∂Ω, ω), which finishes the justification of the right-
to-left implication in (2.6.11). Also, in light of (2.6.17), to justify the left-pointing
inequality in the equivalence claimed in (2.6.12), there remains to show that, for some
constant C ∈ (0,∞) independent of f ,

‖∇tang‖[Lq(∂Ω,ω)]n·M ≤ C ‖∇tanf‖[Lq(∂Ω,ω)]n·M . (2.6.18)

To this end, use (2.4.240) to write, for each j, k ∈ {1, . . . , n},

∂τjkf = ∂τjk
[(1

2I +KA

)
g
]

=
(1

2I +KA

)
(∂τjkg) + Ujk(∇tang)

=
(1

2I +KA

)
(∂τjkg) + Ujk

((
νr∂τrsgα

)
1≤α≤M
1≤s≤n

)
(2.6.19)

at σ-a.e. point on ∂Ω, where ν = (νr)1≤r≤n is the geometric measure theoretic outward
unit normal to Ω. Using the abbreviations

∇τf :=
(
∂τjkf

)
1≤j,k≤n, ∇τg :=

(
∂τjkg

)
1≤j,k≤n, (2.6.20)

we find it convenient to recast the collection of all formulas as in (2.6.19), corresponding
to all indices j, k ∈ {1, . . . , n}, simply as

∇τf =
(1

2I +R
)
(∇τg), (2.6.21)

where I is the identity and R is the operator acting from
[
Lq(∂Ω, ω)

]M ·n2
into itself

according to
R := KA +

(
Ujk ◦

(
Mνr ◦ παrs

)
1≤α≤M
1≤s≤n

)
1≤j,k≤n

. (2.6.22)

Above, we let KA act on each F =
(
Fαrs
)

1≤α≤M
1≤r,s≤n

∈
[
Lq(∂Ω, ω)

]M ·n2
by setting

KAF :=
(
KA

(
Fαrs
)
1≤α≤M

)
1≤r,s≤n

. (2.6.23)

Also, recall that each Mνr denotes the operator of pointwise multiplication by νr, the
r-th scalar component of ν. Finally, in (2.6.22) we let each παrs be the “coordinate-
projection” operator which acts as παrs(X) := Xα

rs for every X =
(
Xα
rs

)
1≤α≤M
1≤r,s≤n

∈ CM ·n2 .

From (2.6.22), (2.4.241), (2.4.238), Theorem 2.4.14, and (2.3.27), we then conclude that

‖R‖[Lq(∂Ω,ω)]M·n2→[Lq(∂Ω,ω)]M·n2 ≤ C ‖ν‖[BMO(∂Ω,σ)]n (2.6.24)

for some C ∈ (0,∞) which depends only on n, A, q, [ω]Aq , the local John constants of Ω,
and the Ahlfors regularity constant of ∂Ω. As a consequence of this, if we assume δ0 > 0
to be sufficiently small to begin with, a Neumann series argument gives that

1
2I +R is invertible on

[
Lq(∂Ω, ω)

]M ·n2
, (2.6.25)

and provides an estimate for the norm on the inverse. At this stage, the estimate claimed
in (2.6.18) follows from (2.6.21), (2.6.25), (2.6.20), and (2.2.347)-(2.2.348). As noted
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earlier, this concludes the proof of the left-pointing inequality in the equivalence claimed
in (2.6.12). To complete the treatment of item (b), there remains to observe that the
right-pointing implication in (2.6.11) together with the right-pointing inequality in the
equivalence claimed in (2.6.12) are consequences of Proposition 2.2.49 (bearing in mind
(2.2.347)).

Consider next the uniqueness result claimed in item (c). Suppose Adis
L> 6= ∅ and pick

some A ∈ AL such that A> ∈ Adis
L> . Also, denote by p′ ∈ (1,∞) the Hölder conjugate

exponent of p, and set w′ := w1−p′ ∈ Ap′(∂Ω, σ). From Theorem 2.4.24, presently used
with L replaced by L>, p′ in place of p, and w′ in place of w, we know that there exists
δ0 ∈ (0, 1), which depends only on n, p, [w]Ap , A, the local John constants of Ω, and the
Ahlfors regularity constant of ∂Ω, such that if Ω is a δ-SKT domain with 0 < δ < δ0

then
1
2I +KA> :

[
Lp
′

1 (∂Ω, w′)
]M −→ [

Lp
′

1 (∂Ω, w′)
]M (2.6.26)

is an invertible operator.
By eventually decreasing the value of δ0 ∈ (0, 1) if necessary, we may ensure that Ω

is an NTA domain with unbounded boundary (cf. Proposition 2.2.32 and Lemma 2.2.5).
In such a case, (2.6.2) guarantees that Ω is globally pathwise nontangentially accessible.

To proceed, let E =
(
Eαβ

)
1≤α,β≤M be the fundamental solution associated with the

system L as in Theorem 1.2.1. Fix x? ∈ Rn \ Ω along with x0 ∈ Ω, arbitrary. Also, pick
ρ ∈

(
0 , 1

4 dist (x0, ∂Ω)
)
and define K := B(x0, ρ). Finally, recall the aperture parameter

κ̃ > 0 associated with Ω and κ as in Theorem 2.6.1. Next, for each fixed β ∈ {1, . . . ,M},
consider the CM -valued function

f (β)(x) :=
(
Eβα(x− x0)− Eβα(x− x?)

)
1≤α≤M , ∀x ∈ ∂Ω. (2.6.27)

From (2.6.27), (2.2.349), (2.2.341), (2.2.335), (1.2.19), and the Mean Value Theorem we
then conclude that

f (β) ∈
[
Lp
′

1 (∂Ω, w′)
]M
. (2.6.28)

As a consequence, with
(

1
2I +KA>

)−1
denoting the inverse of the operator in (2.6.26),

vβ :=
(
vβα

)
1≤α≤M := DA>

( (
1
2I +KA>

)−1
f (β)

)
(2.6.29)

is a well-defined CM -valued function in Ω which, thanks to Proposition 2.3.4, satisfies

vβ ∈
[
C∞(Ω)

]M
, L>vβ = 0 in Ω,

Nκ̃vβ ∈ Lp
′(∂Ω, w′), Nκ̃(∇vβ) ∈ Lp′(∂Ω, w′),

and vβ
∣∣̃κ−n.t.

∂Ω = f (β) at σ-a.e. point on ∂Ω.

(2.6.30)

Moreover, from (2.6.28)-(2.6.29) and (2.3.60) we see that

(∇vβ
)∣∣̃κ−n.t.

∂Ω exists (in Cn·M ) at σ-a.e. point on ∂Ω. (2.6.31)
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Subsequently, for each pair of indices α, β ∈ {1, . . . ,M} define

Gαβ(x) := vβα(x)−
(
Eβα(x− x0)− Eβα(x− x?)

)
, ∀x ∈ Ω \ {x0}. (2.6.32)

If we now consider G :=
(
Gαβ

)
1≤α,β≤M as a CM×M -valued function defined Ln-a.e. in

Ω, then from (2.6.32) and Theorem 1.2.1 we see that G ∈
[
L1

loc(Ω,Ln)
]M×M . Also, by

design,
L>G = −δx0IM×M in

[
D′(Ω)

]M×M and

G
∣∣̃κ−n.t.

∂Ω = 0 at σ-a.e. point on ∂Ω,(
∇G

)∣∣̃κ−n.t.

∂Ω exists at σ-a.e. point on ∂Ω,

(2.6.33)

while if v :=
(
vβα

)
1≤α,β≤M then from (1.1.4), (1.2.19), and the Mean Value Theorem it

follows that at each point x ∈ ∂Ω we have(
NΩ\K
κ̃

G
)
(x) ≤

(
Nκ̃v

)
(x) + Cx0,ρ(1 + |x|)1−n and(

NΩ\K
κ̃

(∇G)
)
(x) ≤

(
Nκ̃(∇v)

)
(x) + Cx0,ρ(1 + |x|)−n,

(2.6.34)

where Cx0,ρ ∈ (0,∞) is independent of x. In view of (2.6.30), (2.6.34), and (2.2.335) we
see that the conditions listed in (2.6.4) are presently satisfied and, in fact,

NΩ\K
κ̃

(∇G) ∈ Lp′(∂Ω, w′) =
(
Lp(∂Ω, w)

)∗
. (2.6.35)

Suppose now that u = (uβ)1≤β≤M is a CM -valued function in Ω satisfying

u ∈
[
C ∞(Ω)

]M
, Lu = 0 in Ω,

u
∣∣κ−n.t.

∂Ω exists at σ-a.e. point on ∂Ω,

and Nκu belongs to the space Lp(∂Ω, w).

(2.6.36)

Since (2.6.35) implies ˆ
∂Ω
Nκu · NΩ\K

κ̃
(∇G) dσ < +∞, (2.6.37)

we may then invoke Theorem 2.6.1 to conclude that the Poisson integral representation
formula (2.6.6) holds. In particular, this proves that whenever u

∣∣κ−n.t.

∂Ω = 0 at σ-a.e. point
on ∂Ω we necessarily have u(x0) = 0. Given that x0 has been arbitrarily chosen in Ω,
this ultimately shows such a function u is actually identically zero in Ω. This finishes the
proof of the claim made in item (c).

Next, the well-posedness claim in item (d) is a consequence of what we have proved
in items (a) and (c). Finally, the two optimality results formulated in item (e) are seen
from Proposition 2.3.12, and from Example 2.3.11, respectively.

Remark 2.6.3. The approach used to prove Theorem 2.6.2 relies on mapping properties
and invertibility results for boundary layer potentials on Muckenhoupt weighted Lebesgue
and Sobolev spaces. Given that analogous of these results are also valid on Lorentz
spaces and Lorentz-based Sobolev spaces (cf. Remark 2.4.25, and the Lorentz space
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version of (2.3.31) obtained via real interpolation), the type of argument used to establish
Theorem 2.6.2 produces similar results for the Dirichlet Problem with data in Lorentz
spaces, i.e., for 

u ∈
[
C∞(Ω)

]M
,

Lu = 0 in Ω,

Nκu ∈ Lp,q(∂Ω, σ),

u
∣∣κ−n.t.

∂Ω = f ∈
[
Lp,q(∂Ω, σ)

]M
.

(2.6.38)

More specifically, for this boundary problem existence holds in the setting of item (a)
of Theorem 2.6.2 whenever p ∈ (1,∞) and q ∈ (0,∞], whereas uniqueness holds in
the setting of item (c) of Theorem 2.6.2 provided p ∈ (1,∞) and q ∈ (0,∞] (see [45,
Theorem 1.4.17, p. 52] for duality results for Lorentz spaces).

In particular, corresponding to q = ∞, whenever Adis
L 6= ∅ and Adis

L> 6= ∅ it follows
that for each p ∈ (1,∞) the weak-Lp Dirichlet Problem

u ∈
[
C∞(Ω)

]M
,

Lu = 0 in Ω,

Nκu ∈ Lp,∞(∂Ω, σ),

u
∣∣κ−n.t.

∂Ω = f ∈
[
Lp,∞(∂Ω, σ)

]M
,

(2.6.39)

is well posed assuming Ω is a δ-SKT domain for a sufficiently small δ > 0, relative to n,
p, L, the local John constants of Ω, and the Ahlfors regularity constant of ∂Ω. As in the
proof of Theorem 2.6.2, uniqueness is obtained relying on the Poisson integral represen-
tation formula from Theorem 2.6.1. This requires checking that the Green function with
components as in (2.6.32) is well defined and satisfies NΩ\K

κ̃
(∇G) ∈ Lp′,1(∂Ω, σ), where

p′ is the Hölder conjugate exponents of p. Once this task is accomplished, the fact that
Nκu ∈ Lp,∞(∂Ω, σ) =

(
Lp
′,1(∂Ω, σ)

)∗ (cf. [45, Theorem 1.4.17(v), p. 52]) guarantees that
the finiteness condition (2.6.37) presently holds, and the desired conclusion follows. In
turn, the membership of NΩ\K

κ̃
(∇G) to Lp′,1(∂Ω, σ) is seen from (2.6.34) and (2.6.29),

keeping in mind that the operator 1
2I +KA> (where A ∈ AL is such that A> ∈ Adis

L>) is
invertible on the Lorentz-based Sobolev space

[
Lp
′,1

1 (∂Ω, σ)
]M and, as seen from standard

real interpolation inclusions, (1 + |x|)−N ∈ Lp,q(∂Ω, σ) whenever N ≥ n− 1, p ∈ (1,∞),
and q ∈ (0,∞].

To offer an example, assume Ω ⊆ Rn is a δ-SKT domain and fix an arbitrary aperture
parameter κ > 0 along with some power a ∈ (0, n − 1). Set p := (n − 1)/a ∈ (1,∞).
Then, if δ ∈ (0, 1) is sufficiently small (relative to n, a, the Ahlfors regularity constant
of ∂Ω, and the local John constants of Ω), it follows that for each point xo ∈ ∂Ω
the Dirichlet Problem u ∈ C∞(Ω), ∆u = 0 in Ω, Nκu ∈ Lp,∞(∂Ω, σ),(

u
∣∣κ−n.t.

∂Ω

)
(x) = |x− xo|−a at σ-a.e. point on ∂Ω,

(2.6.40)
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is uniquely solvable. In addition, there exists a constant C(Ω, n, κ, a) ∈ (0,∞) with
the property that if uxo denotes the unique solution of (2.6.40) then we have the esti-
mate ‖Nκuxo‖Lp,∞(∂Ω,σ) ≤ C(Ω, n, κ, a) for each xo ∈ ∂Ω. Indeed, since the function
fxo(x) := |x − xo|−a for σ-a.e. point x ∈ ∂Ω belongs to the Lorentz space Lp,∞(∂Ω, σ)
and supxo∈∂Ω ‖fxo‖Lp,∞(∂Ω,σ) < ∞, the solvability result in Remark 2.6.3 applies. This
example is particularly relevant in view of the fact that the boundary datum |·−xo|−a does
not belong to any ordinary Lebesgue space on ∂Ω with respect to the “surface measure”
σ. In addition, since for each j, k ∈ {1, . . . , n} the boundary datum fxo satisfies

∂τjkfxo ∈ Lq,∞(∂Ω, σ) and supxo∈∂Ω
∥∥∂τjkfxo∥∥Lq,∞(∂Ω,σ) <∞,

where q := (n− 1)/(a+ 1) ∈ (1,∞),
(2.6.41)

given that, if (νi)1≤i≤n are the components of the geometric outward unit normal vector to
Ω,

(
∂τjkfxo

)
(x) = a

(x− xo)jνk(x)− (x− xo)kνj(x)
|x− xo|a+2 for σ-a.e. x ∈ ∂Ω, (2.6.42)

then the analogues of (2.6.11)-(2.6.12) in the current setting imply that the unique
solution uxo of the Dirichlet Problem (2.6.40) enjoys additional regularity. Specifically,
if δ ∈ (0, 1) is sufficiently small to begin with, then

for each xo ∈ ∂Ω, the nontangential boundary trace

(∇uxo
)∣∣κ−n.t.

∂Ω exists (in Rn) at σ-a.e. point on ∂Ω,

and sup
xo∈∂Ω

‖Nκ(∇uxo)‖Lq,∞(∂Ω,σ) < +∞ if q := n−1
a+1 .

(2.6.43)

In relation to the Dirichlet Problem with data in weak-Lebesgue spaces formulated in
(2.6.39), we also wish to note that, in contrast to the well-posedness result in the range p ∈
(1,∞), uniqueness no longer holds in the limiting case when p = 1. Indeed, if we take Ω :=
Rn+ and u(x) := xn/|x|n for each x = (x1, . . . , xn) ∈ Ω then, since under the identification
∂Ω ≡ Rn−1 we have

(
Nκu

)
(x′) ≈ |x′|1−n uniformly for x′ ∈ Rn−1 \ {0}, wee see that

u ∈ C∞(Ω),

∆u = 0 in Ω,

Nκu ∈ L1,∞(∂Ω, σ),

u
∣∣κ−n.t.

∂Ω = 0 at σ-a.e. point x ∈ ∂Ω,

(2.6.44)

and yet, obviously, u 6≡ 0 in Ω.

Moving on, it is remarkable that the solvability results described in Theorem 2.6.2
are also stable under small perturbations. This is made precise in the theorem below.

Theorem 2.6.4. Retain the original background assumptions on the set Ω from Theo-
rem 2.6.2 and, as before, fix an integrability exponent p ∈ (1,∞) along with a Mucken-
houpt weight w ∈ Ap(∂Ω, σ). Then the following statements are true.
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(a) [Existence] For each given system Lo ∈ Ldis (cf. (2.3.84)) there exist some small
threshold δ0 ∈ (0, 1) and some open neighborhood U of Lo in L, both of which depend
only on n, p, [w]Ap, Lo, the local John constants of Ω, and the Ahlfors regularity
constant of ∂Ω, with the property that if ‖ν‖[BMO(∂Ω,σ)]n < δ (i.e., if Ω is a δ-SKT
domain) for some δ ∈ (0, δ0) then for each system L ∈ U the Dirichlet Problem
(2.6.8) formulated for L is solvable.

(b) [Uniqueness] For each given system Lo ∈ L with L>o ∈ Ldis there exist some small
threshold δ0 ∈ (0, 1) and some open neighborhood U of Lo in L, both of which depend
only on n, p, [w]Ap, Lo, the local John constants of Ω, and the Ahlfors regularity
constant of ∂Ω, with the property that if ‖ν‖[BMO(∂Ω,σ)]n < δ (i.e., if Ω is a δ-SKT
domain) for some δ ∈ (0, δ0) then for each system L ∈ U the Dirichlet Problem
(2.6.8) formulated for L has at most one solution.

(c) [Well-Posedness] For each given system Lo ∈ Ldis with L>o ∈ Ldis there exist some
small threshold δ0 ∈ (0, 1) and some open neighborhood U of Lo in L, both of which
depend only on n, p, [w]Ap, Lo, the local John constants of Ω, and the Ahlfors
regularity constant of ∂Ω, with the property that if ‖ν‖[BMO(∂Ω,σ)]n < δ (i.e., if Ω
is a δ-SKT domain) for some δ ∈ (0, δ0) then for each system L ∈ U the Dirichlet
Problem (2.6.8) formulated for L is well posed.

Proof. To deal with the claim made in item (a), start by observing that the assumption
Lo ∈ Ldis guarantees the existence of some Ao ∈ Adis

Lo
. By Theorem 2.4.29 (used with,

say, ε := 1/4) then ensures the existence of some small threshold δ0 ∈ (0, 1) along with
some open neighborhood O of Ao in AWE , both of which depend only on n, p, [w]Ap ,
Ao, the local John constants of Ω, and the Ahlfors regularity constant of ∂Ω, with the
property that if ‖ν‖[BMO(∂Ω,σ)]n < δ0 then for each Ã ∈ O the operator 1

2I + K
Ã

is
invertible on

[
Lp(∂Ω, w)

]M . Pick ε > 0 such that {A ∈ A : ‖A − Ao‖ < ε} ⊆ O, and
define U := {L ∈ L : ‖L − Lo‖ < ε}. Choose now an arbitrary system L ∈ U . By
design, there exists A ∈ AL and B ∈ Aant such that ‖A − Ao − B‖ < ε. Hence, if we
now introduce Ã := A − B, then Ã ∈ AL and the fact that ‖Ã − Ao‖ < ε implies that
Ã ∈ O. In particular, the latter property permits us to conclude (in light of our earlier
discussion) that the operator 1

2I + K
Ã

is invertible on
[
Lp(∂Ω, w)

]M . Given that we
also have Ã ∈ AL, it follows (much as in the proof of Theorem 2.6.2) that the function
u : Ω→ CM defined as

u(x) :=
(
D
Ã

(
1
2I +K

Ã

)−1
f
)
(x) for all x ∈ Ω, (2.6.45)

is a solution of the Dirichlet Problem (2.6.8) formulated for the current system L. This
finishes the proof of the claim made in item (a).

On to the claim in item (b), pick some Ao ∈ ALo with A>o ∈ Adis
L>o

. Running the
same argument as above (with L>o playing the role of Lo, A>o playing the role of Ao, and
keeping in mind that transposition is an isometry) yields some small threshold δ0 ∈ (0, 1)
along with some open neighborhood U of Lo in L, both of which depend only on n, p,
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[w]Ap , Ao, the local John constants of Ω, and the Ahlfors regularity constant of ∂Ω, with
the property that if ‖ν‖[BMO(∂Ω,σ)]n < δ0 then for each system L ∈ U we may find a
coefficient tensor Ã ∈ AL with the property that the operator 1

2I+K(Ã)> is invertible on

the Muckenhoupt weighted Sobolev space
[
Lp
′

1 (∂Ω, w′)
]M . This is a perturbation of the

invertibility result in (2.6.26) and, once this has been established, the same argument as
in the proof of item (b) of Theorem 2.6.2 applies and gives the conclusion we presently
seek.

Finally, the claim in item (c) is a direct consequence of what we have proved in items
(a)-(b).

2.6.2 The Regularity Problem in weighted Sobolev spaces

Traditionally, the label “Regularity Problem” is intended for a version of the Dirichlet
Problem in which both the boundary datum and the solution sought are more “regular”
than in the standard formulation of the Dirichlet Problem. For us here, this means that
we shall now select boundary data from Muckenhoupt weighted Sobolev spaces and also
demand control of the nontangential maximal operator of the gradient of the solution.
This being said, the specific manner in which we have formulated the solvability result
for the Dirichlet Problem in Theorem 2.6.2, in particular, having already elaborated on
how extra regularity of the boundary datum affects the regularity of the solution (cf.
(2.6.11)), renders the Regularity Problem a “sub-problem” of the Dirichlet Problem. As
seen below, this makes light work of the treatment of the Regularity Problem.

Theorem 2.6.5. Let Ω ⊆ Rn be an open set satisfying a two-sided local John condition
and whose topological boundary is Ahlfors regular. Abbreviate σ := Hn−1b∂Ω and fix
an aperture parameter κ > 0. Also, pick an integrability exponent p ∈ (1,∞) and
a Muckenhoupt weight w ∈ Ap(∂Ω, σ). Given a homogeneous, second-order, constant
complex coefficient, weakly elliptic M × M system L in Rn, consider the Regularity
Problem 

u ∈
[
C∞(Ω)

]M
,

Lu = 0 in Ω,

Nκu, Nκ(∇u) ∈ Lp(∂Ω, w),

u
∣∣κ−n.t.

∂Ω = f ∈
[
Lp1(∂Ω, w)

]M
.

(2.6.46)

The following statements are true:

(a) [Existence and Estimates] If Adis
L 6= ∅ and A ∈ Adis

L , then there exists δ0 ∈ (0, 1)
which depends only on n, p, [w]Ap, A, the local John constants of Ω, and the
Ahlfors regularity constant of ∂Ω such that if Ω is a δ-SKT domain with 0 < δ < δ0

then 1
2I +KA is an invertible operator on the Muckenhoupt weighted Sobolev space[

Lp1(∂Ω, w)
]M and the function

u(x) :=
(
DA

(
1
2I +KA

)−1
f
)
(x), ∀x ∈ Ω, (2.6.47)
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is a solution of the Regularity Problem (2.6.46). In addition,

‖Nκu‖Lp(∂Ω,w) ≈ ‖f‖[Lp(∂Ω,w)]M , (2.6.48)

and
‖Nκ(∇u)‖Lp(∂Ω,w) ≈ ‖∇tanf‖[Lp(∂Ω,w)]n·M . (2.6.49)

In particular,

‖Nκu‖Lp(∂Ω,w) + ‖Nκ(∇u)‖Lp(∂Ω,w) ≈ ‖f‖[Lp1(∂Ω,w)]M . (2.6.50)

(b) [Uniqueness] Whenever Adis
L> 6= ∅, there exists δ0 ∈ (0, 1) which depends only on n,

p, [w]Ap, L, the local John constants of Ω, and the Ahlfors regularity constant of
∂Ω such that if Ω is a δ-SKT domain with 0 < δ < δ0 then the Regularity Problem
(2.6.46) has at most one solution.

(c) [Well-Posedness] If Adis
L 6= ∅ and Adis

L> 6= ∅ then there exists δ0 ∈ (0, 1) which
depends only on n, p, [w]Ap, L, the local John constants of Ω, and the Ahlfors
regularity constant of ∂Ω such that if Ω is a δ-SKT domain with 0 < δ < δ0

then the Regularity Problem (2.6.46) is uniquely solvable and the solution satisfies
(2.6.48)-(2.6.50).

(d) [Sharpness] If Adis
L = ∅ the Regularity Problem (2.6.46) may fail to be solvable, and

if Adis
L> = ∅ the Regularity Problem (2.6.46) may posses more than one solution. In

particular, if either Adis
L = ∅, or Adis

L> = ∅, then the Regularity Problem (2.6.46)
may fail to be well posed.

Proof. All claims in items (a)-(c) are direct consequences of Theorem 2.4.24 and The-
orem 2.6.2. As regards the sharpness results formulated in item (d), the fact that
the Regularity Problem (2.6.46) may fail to be solvable when Adis

L = ∅ is seen from
Proposition 2.3.14 and (2.3.140). Finally, that the Regularity Problem (2.6.46) for L
may have more than one solution if Adis

L> = ∅ is seen from Example 2.3.11.

Remark 2.6.6. From Remark 2.6.3 we see that the Regularity Problem with data in
Lorentz-based Sobolev spaces, i.e.,

u ∈
[
C∞(Ω)

]M
,

Lu = 0 in Ω,

Nκu, Nκ(∇u) ∈ Lp,q(∂Ω, σ),

u
∣∣κ−n.t.

∂Ω = f ∈
[
Lp,q1 (∂Ω, σ)

]M
,

(2.6.51)

enjoys similar solvability and well-posedness results to those described in Theorem 2.6.5.
Concretely, for this boundary problem we have existence in the setting of item (a) of
Theorem 2.6.5 whenever p ∈ (1,∞) and q ∈ (0,∞], and we have uniqueness in the
setting of item (b) of Theorem 2.6.5 whenever p, q ∈ (1,∞).
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Remark 2.6.7. An inspection of the proof of Theorem 2.6.5 reveals that similar solvability
and well-posedness results are valid in the case when the boundary data belong to the off-
diagonal Muckenhoupt weighted Sobolev spaces discussed in (2.4.248)-(2.4.249). More
specifically, given two integrability exponents p1, p2 ∈ (1,∞) along with two Mucken-
houpt weights w1 ∈ Ap1(∂Ω, σ) and w2 ∈ Ap2(∂Ω, σ), the off-diagonal Regularity Problem



u ∈
[
C∞(Ω)

]M
,

Lu = 0 in Ω,

Nκu ∈ Lp1(∂Ω, w1),

Nκ(∇u) ∈ Lp2(∂Ω, w2),

u
∣∣κ−n.t.

∂Ω = f ∈
[
Lp1;p2

1 (∂Ω, w1;w2)
]M
,

(2.6.52)

continues to enjoy similar solvability and well-posedness results to those described in
Theorem 2.6.5. Of course, this time, the a priori estimates (2.6.48)-(2.6.49) read

‖Nκu‖Lp1 (∂Ω,w1) ≈ ‖f‖[Lp1 (∂Ω,w1)]M , (2.6.53)

and
‖Nκ(∇u)‖Lp2 (∂Ω,w2) ≈ ‖∇tanf‖[Lp2 (∂Ω,w2)]n·M . (2.6.54)

Remark 2.6.8. Once again, in the class of systems considered in Theorem 2.6.5, the
solvability, uniqueness, and well-posedness results for the Regularity Problem (2.6.46)
are new even in the standard case when Ω = Rn+.

As in the case of the Dirichlet Problem, it turns out that the solvability results pre-
sented in Theorem 2.6.5 are stable under small perturbations, of the sort described below.

Theorem 2.6.9. Retain the original background assumptions on the set Ω from Theo-
rem 2.6.5 and, as before, fix an integrability exponent p ∈ (1,∞) along with a Mucken-
houpt weight w ∈ Ap(∂Ω, σ). Then the following statements are true.

(a) [Existence] Given any system Lo ∈ Ldis (cf. (2.3.84)), there exist a threshold δ0 ∈
(0, 1) and an open neighborhood U of Lo in L, both of which depend only on n,
p, [w]Ap, Lo, the local John constants of Ω, and the Ahlfors regularity constant of
∂Ω, with the property that if ‖ν‖[BMO(∂Ω,σ)]n < δ (i.e., if Ω is a δ-SKT domain)
for some δ ∈ (0, δ0) then for each system L ∈ U the Regularity Problem (2.6.46)
formulated for L is solvable.

(b) [Uniqueness] Given any system Lo ∈ L with L>o ∈ Ldis there exist a threshold
δ0 ∈ (0, 1) and an open neighborhood U of Lo in L, both of which depend only on
n, p, [w]Ap, Lo, the local John constants of Ω, and the Ahlfors regularity constant
of ∂Ω, with the property that if ‖ν‖[BMO(∂Ω,σ)]n < δ (i.e., if Ω is a δ-SKT domain)
for some δ ∈ (0, δ0) then for each system L ∈ U the Regularity Problem (2.6.46)
formulated for L has at most one solution.
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(c) [Well-Posedness] Given any system Lo ∈ Ldis with L>o ∈ Ldis there exist a threshold
δ0 ∈ (0, 1) and an open neighborhood U of Lo in L, both of which depend only on
n, p, [w]Ap, Lo, the local John constants of Ω, and the Ahlfors regularity constant
of ∂Ω, with the property that if ‖ν‖[BMO(∂Ω,σ)]n < δ (i.e., if Ω is a δ-SKT domain)
for some δ ∈ (0, δ0) then for each system L ∈ U the Regularity Problem (2.6.46)
formulated for L is well posed.

Proof. The same type of argument used in the proof of Theorem 2.6.4 continues to work
in this setting.

2.6.3 The Neumann Problem in weighted Lebesgue spaces

To set the stage, recall the definition of the conormal derivative operator from (2.3.20).

Theorem 2.6.10. Let Ω ⊆ Rn be an open set satisfying a two-sided local John condition
and whose topological boundary is Ahlfors regular. Denote by ν the geometric measure
theoretic outward unit normal ν to Ω, abbreviate σ := Hn−1b∂Ω, and fix an aperture
parameter κ > 0. Also, pick an integrability exponent p ∈ (1,∞) and a Muckenhoupt
weight w ∈ Ap(∂Ω, σ).

Suppose L is a homogeneous, second-order, constant complex coefficient, weakly el-
liptic M ×M system in Rn, with the property that Adis

L> 6= ∅. Select A ∈ AL such that
A> ∈ Adis

L> and consider the Neumann Problem

u ∈
[
C∞(Ω)

]M
,

Lu = 0 in Ω,

Nκ(∇u) ∈ Lp(∂Ω, w),

∂Aν u = f ∈
[
Lp(∂Ω, w)

]M
.

(2.6.55)

Then there exists δ0 ∈ (0, 1) which depends only on n, p, [w]Ap, A, the local John
constants of Ω, and the Ahlfors regularity constant of ∂Ω such that if Ω is a δ-SKT
domain with 0 < δ < δ0 then −1

2I + K#
A>

is an invertible operator on the Muckenhoupt
weighted Lebesgue space

[
Lp(∂Ω, w)

]M and the function u : Ω→ CM defined as

u(x) :=
(
Smod

(
−1

2I +K#
A>

)−1
f
)
(x) for all x ∈ Ω, (2.6.56)

is a solution of the Neumann Problem (2.6.55) which satisfies

‖Nκ(∇u)‖Lp(∂Ω,w) ≤ C ‖f‖[Lp(∂Ω,w)]M . (2.6.57)

for some constant C ∈ (0,∞) independent of f .

Proof. From the current assumptions and Theorem 2.4.24 we know that there exists some
threshold δ0 ∈ (0, 1), whose nature is as specified in the statement of the theorem, such
that if Ω is a δ-SKT domain with 0 < δ < δ0 then the operator −1

2I +K#
A>

is invertible
on
[
Lp(∂Ω, w)

]M . Granted this, item (c) in Proposition 2.3.4 then guarantees that the
function (2.6.56) solves the Neumann Problem (2.6.55) and satisfies (2.6.57).
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Remark 2.6.11. For similar reasons as in past situations, a solvability result which is
analogous to the one described in Theorem 2.6.10 also holds for the Neumann Problem
with data in Lorentz spaces, i.e., for

u ∈
[
C∞(Ω)

]M
,

Lu = 0 in Ω,

Nκ(∇u) ∈ Lp,q(∂Ω, σ),

∂Aν u = f ∈
[
Lp,q(∂Ω, σ)

]M
,

(2.6.58)

with p ∈ (1,∞) and q ∈ (0,∞].

Remark 2.6.12. In light of the remarks made in (2.3.103)-(2.3.104), Theorem 2.6.10
applies in the case of the Lamé system Lµ,λ = µ∆ + (λ + µ)∇div in Rn with n ≥ 2,
assuming µ 6= 0, 2µ+ λ 6= 0, and 3µ+ λ 6= 0. Specifically, if Ω ⊆ Rn is a δ-SKT domain,
and w ∈ Ap(∂Ω, σ) with p ∈ (1,∞), then if δ ∈ (0, 1) sufficiently small (relative to µ, λ,
p, [w]Ap , the local John constants of Ω, and the Ahlfors regularity constant of ∂Ω) the
Neumann Problem (2.6.55), which in this case reads

u ∈
[
C∞(Ω)

]n
,

µ∆u+ (λ+ µ)∇divu = 0 in Ω,

Nκ(∇u) ∈ Lp(∂Ω, w),

∂
A(ζ)
ν u =

[
µ(∇u)> + ζ(∇u)

]∣∣∣κ−n.t.

∂Ω
ν + (µ+ λ− ζ)(divu)

∣∣κ−n.t.

∂Ω ν = f

(2.6.59)

is solvable (in the manner described in (2.6.56)) for each given function f ∈
[
Lp(∂Ω, w)

]n,
provided

ζ = µ(µ+ λ)
3µ+ λ

. (2.6.60)

By way of contrast, in the two-dimensional case, Corollary 2.4.31 ensures that the Neu-
mann Problem (2.6.59) is actually solvable (again, in the manner described in (2.6.56))
for each given function f ∈

[
Lp(∂Ω, w)

]2, in the much larger range

ζ ∈ C \
{
− µ , µ(5µ+3λ)

3µ+λ

}
. (2.6.61)

In particular, if we also demand that µ+λ 6= 0 then ζ := µ becomes an admissible value,
as far as (2.6.61) is concerned, and from (2.4.304), (2.6.56) we see that the Neumann
Problem (2.6.59) with ζ := µ is solvable for each given function f ∈

[
Lp(∂Ω, w)

]2. This is
of interest since the said problem involves the so-called traction conormal derivative,
i.e.,

∂A(µ)
ν u = µ

[
(∇u)> + (∇u)

]∣∣∣κ−n.t.

∂Ω
ν + λ(divu)

∣∣κ−n.t.

∂Ω ν, (2.6.62)

which is particularly relevant in physics and engineering.

It is also of interest to note that the solvability result from Theorem 2.6.10 is sta-
ble under small perturbations. Specifically, by reasoning similarly as in the proof of
Theorem 2.6.4 yields the following theorem.
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Theorem 2.6.13. Retain the original background assumptions on the set Ω from The-
orem 2.6.10 and, as before, fix an integrability exponent p ∈ (1,∞) along with a Muck-
enhoupt weight w ∈ Ap(∂Ω, σ). Also, consider a system Lo ∈ L with L>o ∈ Ldis (cf.
(2.3.84)). Then for any Ao ∈ ALo with A>o ∈ Adis

L>o
there exist a threshold δ0 ∈ (0, 1) and

an open neighborhood U of Ao in A, both of which depend only on n, p, [w]Ap, Ao, the
local John constants of Ω, and the Ahlfors regularity constant of ∂Ω, with the property
that if ‖ν‖[BMO(∂Ω,σ)]n < δ (i.e., if Ω is a δ-SKT domain) for some δ ∈ (0, δ0) then for
each coefficient tensor A ∈ U the Neumann Problem (2.6.55) formulated for the system
LA (cf. (1.2.10)) and the conormal derivative associated with A (cf. (2.3.20)) is actually
solvable.

2.6.4 The Transmission Problem in weighted Lebesgue spaces

The trademark characteristic of a Transmission problem is the fact that one now seeks two
functions, defined on either side of an interface, whose traces and conormal derivatives
couple in a specific fashion along the common interface.

Theorem 2.6.14. Let Ω ⊆ Rn be an open set satisfying a two-sided local John condition
and whose topological boundary is Ahlfors regular. Denote by ν the geometric measure
theoretic outward unit normal to Ω, abbreviate σ := Hn−1b∂Ω, and set

Ω+ := Ω, Ω− := Rn \ Ω. (2.6.63)

Also, pick an integrability exponent p ∈ (1,∞), a Muckenhoupt weight w ∈ Ap(∂Ω, σ),
an aperture parameter κ > 0, and a transmission parameter η ∈ C \ {±1}.

Assume L is a homogeneous, second-order, constant complex coefficient, weakly el-
liptic M ×M system in Rn, with the property that Adis

L> 6= ∅. Select A ∈ AL such that
A> ∈ Adis

L> and consider the Transmission Problem

u± ∈
[
C∞(Ω±)

]M
,

Lu± = 0 in Ω±,

Nκ(∇u±) ∈ Lp(∂Ω, w),

u+∣∣κ−n.t.

∂Ω = u−
∣∣κ−n.t.

∂Ω at σ-a.e. point on ∂Ω,

∂Aν u
+ − η · ∂Aν u− = f ∈

[
Lp(∂Ω, w)

]M
.

(2.6.64)

Then there exists δ0 ∈ (0, 1) which depends only on n, η, p, [w]Ap, A, the local
John constants of Ω, and the Ahlfors regularity constant of ∂Ω such that if Ω is a δ-SKT
domain with 0 < δ < δ0 then η+1

2(η−1)I+K#
A>

is an invertible operator on the Muckenhoupt
weighted Lebesgue space

[
Lp(∂Ω, w)

]M and the functions u± : Ω± → CM defined as

u±(x) := (1− η)−1
(
Smod

(
η+1

2(η−1)I +K#
A>

)−1
f
)
(x) for all x ∈ Ω± (2.6.65)

solve the Transmission Problem (2.6.64) and satisfy∥∥Nκ(∇u±)
∥∥
Lp(∂Ω,w) ≤ C ‖f‖[Lp(∂Ω,w)]M . (2.6.66)

for some constant C ∈ (0,∞) independent of f .
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A few clarifications are in order here. First, work in [93] shows that

Ω− is an open set in Rn satisfying a two-sided local John condi-
tion, whose topological boundary is Ahlfors regular and actually
coincides ∂Ω, and whose geometric measure theoretic boundary
agrees with that of Ω (hence, ∂(Ω−) = ∂Ω and ∂∗(Ω−) = ∂∗Ω); in
addition, the geometric measure theoretic outward unit normal to
Ω− is −ν at σ-a.e. point on ∂Ω.

(2.6.67)

In particular, this makes it meaningful to talk about the nontangential boundary trace
u−
∣∣κ−n.t.

∂Ω , here understood as u−
∣∣κ−n.t.

∂(Ω−). Second, the existence of u±
∣∣κ−n.t.

∂Ω at σ-a.e. point
on ∂Ω is an implicit demand in the formulation of the Transmission Problem (2.6.64).
Third, the conormal derivative ∂Aν u+ is defined as in (2.3.20), while in light of the last
property in (2.6.67) we take ∂Aν u− to be the opposite of (i.e.,−1 times) the conormal
derivative operator from (2.3.20) for the domain Ω− acting on the function u−, i.e.,

∂Aν u
− := −∂A(−ν)u

−. (2.6.68)

We now turn to the task of giving the proof of Theorem 2.6.14.

Proof of Theorem 2.6.14. The present assumptions and Theorem 2.4.24 (currently used
for the spectral parameter z := η+1

2(η−1) ∈ C \ {0}) ensure the existence of some threshold
δ0 ∈ (0, 1), whose nature is as specified in the statement of the theorem, such that if
Ω is a δ-SKT domain with 0 < δ < δ0 then the operator η+1

2(η−1)I + K#
A>

is invertible
on
[
Lp(∂Ω, w)

]M . In particular, it is meaningful to define u± as in (2.6.65). In view of
(2.6.67) and item (c) in Proposition 2.3.4 (used both for Ω+ and Ω−), these functions
satisfy the first three conditions in (2.6.64), the estimates claimed in (2.6.66), and we
have (keeping (2.6.68) and (2.6.67) in mind)

∂Aν u
+ − η · ∂Aν u− = (1− η)−1(− 1

2I +K#
A>

) ( η+1
2(η−1)I +K#

A>

)−1
f

− η(1− η)−1(−1)
(
− 1

2I −K
#
A>

) ( η+1
2(η−1)I +K#

A>

)−1
f

=
(

η+1
2(η−1)I +K#

A>

) (
η+1

2(η−1)I +K#
A>

)−1
f

= f at σ-a.e. point on ∂Ω. (2.6.69)

Finally, thanks to (2.3.17)-(2.3.19), (2.2.337), and (2.6.67), we see that

u+∣∣κ−n.t.

∂Ω = (1− η)−1Smod

(
η+1

2(η−1)I +K#
A>

)−1
f = u−

∣∣κ−n.t.

∂Ω

at σ-a.e. point on ∂Ω.
(2.6.70)

Hence, the functions u± defined as in (2.6.65) solve the Transmission Problem (2.6.64)
and satisfy the estimates demanded in (2.6.66).
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Remark 2.6.15. Once again, for familiar reasons, a similar solvability result to the one
established in Theorem 2.6.14 turns out to be true for the Transmission Problem with
data in Lorentz spaces, i.e., for

u± ∈
[
C∞(Ω±)

]M
,

Lu± = 0 in Ω±,

Nκ(∇u±) ∈ Lp,q(∂Ω, σ),

u+∣∣κ−n.t.

∂Ω = u−
∣∣κ−n.t.

∂Ω at σ-a.e. point on ∂Ω,

∂Aν u
+ − η · ∂Aν u− = f ∈

[
Lp,q(∂Ω, σ)

]M
,

(2.6.71)

with p ∈ (1,∞) and q ∈ (0,∞].

Remark 2.6.16. Thanks to (2.3.103)-(2.3.104), Theorem 2.6.14 is applicable to the Lamé
system Lµ,λ = µ∆ + (λ + µ)∇div in Rn with n ≥ 2, assuming µ 6= 0, 2µ + λ 6= 0,
3µ+ λ 6= 0, provided we work with the coefficient tensor A(ζ) defined as in (2.3.101) for
the choice ζ = µ(µ+λ)

3µ+λ . In addition, when n = 2, we may rely on the invertibility result
from Theorem 2.4.30 (and duality) to conclude that the transmission boundary problem
for the two-dimensional Lamé system in sufficiently flat δ-SKT domains in the plane is
solvable when formulated in a similar fashion to (2.6.64) with A := A(ζ), for a much
larger range of ζ’s, namely

ζ ∈ C \
{
± η + 1
η − 1

[2µ(2µ+ λ)
3µ+ λ

]
+ µ(µ+ λ)

3µ+ λ

}
. (2.6.72)

Remark 2.6.17. In the two-dimensional setting, for L = ∆ the Laplacian and Ω an
infinite sector in the plane, counterexamples to the well-posedness of the Transmission
Problem (2.6.64) for certain values of p (related to the aperture of Ω and the transmission
parameter appearing in the formulation of the problem) have been given in [97].

Finally, it is possible to enhance the solvability result from Theorem 2.6.14 via
perturbations, and our next theorem elaborates on this aspect.

Theorem 2.6.18. Retain the original background assumptions on the set Ω from Theo-
rem 2.6.14 and, as before, fix an integrability exponent p ∈ (1,∞) along with a Mucken-
houpt weight w ∈ Ap(∂Ω, σ) and a transmission parameter η ∈ C\{±1}. Also, consider a
system Lo ∈ L with L>o ∈ Ldis (cf. (2.3.84)). Then for any Ao ∈ ALo with A>o ∈ Adis

L>o
there

exist a threshold δ0 ∈ (0, 1) and an open neighborhood U of Ao in A, both of which depend
only on n, η, p, [w]Ap, Ao, the local John constants of Ω, and the Ahlfors regularity
constant of ∂Ω, with the property that if ‖ν‖[BMO(∂Ω,σ)]n < δ (i.e., if Ω is a δ-SKT
domain) for some δ ∈ (0, δ0) then for each coefficient tensor A ∈ U the Transmission
Problem (2.6.64) formulated for the system LA (cf. (1.2.10)) and the conormal derivative
associated with A (cf. (2.3.20)) is actually solvable.

Proof. This is seen by reasoning as in the proofs of Theorem 2.6.4 and Theorem 2.6.14.
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2.7 Singular integrals and boundary problems in Morrey
and block spaces

The spaces which bear the name of Morrey have been introduced by C. Morrey in 1930’s
in relation to regularity problems for solutions to partial differential equations in the
Euclidean setting. Membership of a function to a Morrey space amounts to a bound on
the size of the Lp-integral average of the said function over an arbitrary ball in terms of a
fixed power of its radius. Since these are all measure-metric considerations, this brand of
space naturally adapts to the more general setting of spaces of homogeneous type. Here
we are concerned with the space of Morrey spaces when the ambient is the boundary of a
uniformly rectifiable domain Ω ⊆ Rn. We make use of the Calderón-Zygmund theory for
singular integral operators acting on Morrey spaces in such a setting as a platform that
allows us to build in the direction of solving boundary value problems for weakly elliptic
systems in δ-SKT domains with boundary data in Morrey spaces (and their pre-duals).

2.7.1 Boundary layer potentials on Morrey and block spaces

The material in this section closely follows [93]. We begin by discussing the scale of
Morrey spaces on Ahlfors regular sets. To set the stage, assume Σ ⊆ Rn (where, as in
the past, n ∈ N with n ≥ 2) is a closed Ahlfors regular set, and abbreviate σ := Hn−1bΣ.
Given p ∈ (0,∞) and λ ∈ (0, n− 1), we then define the Morrey space Mp,λ(Σ, σ) as

Mp,λ(Σ, σ) :=
{
f : Σ→ C : f is σ-measurable and ‖f‖Mp,λ(Σ,σ) < +∞

}
(2.7.1)

where, for each σ-measurable function f on Σ, we have set

‖f‖Mp,λ(Σ,σ) := sup
x∈Σ and

0<R<2 diam(Σ)

{
R
n−1−λ

p
(  

Σ∩B(x,R)
|f |p dσ

) 1
p

}
. (2.7.2)

The space Mp,λ(Σ, σ) is complete, hence Banach (though not separable) when equipped
with the norm (2.7.2), and (cf. [93] for a proof)

Mp,λ(Σ, σ) ↪→ Lploc(Σ, σ) ∩ L1
(
Σ ,

σ(x)
1 + |x|n−1

)
whenever p ∈ [1,∞) and λ ∈ (0, n− 1).

(2.7.3)

As may be seen from (2.7.1)-(2.7.2), we also have

Ls(Σ, σ) ↪→Mp,λ(Σ, σ) continuously, with s := p(n−1)
n−1−λ ∈ (p,∞). (2.7.4)

In particular, there exists some C ∈ (0,∞) which depends only on n, p, λ, and the Ahlfors
regularity constant of Σ, with the property that for each σ-measurable set E ⊆ Σ we have∥∥1E∥∥Mp,λ(Σ,σ) ≤ C

∥∥1E∥∥Ls(Σ,σ) = C · σ(E)(n−1−λ)/[p(n−1)]. (2.7.5)

As a consequence, 1E belongs to Mp,λ(Σ, σ) whenever E ⊆ Σ is a σ-measurable set
with σ(E) < +∞. Other examples of functions belonging to Morrey spaces are pre-
sented below (see [93]).
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Example 2.7.1. Let Σ, σ be as above, and for each fixed point xo ∈ Σ consider the
function fxo : Σ→ R defined for each x ∈ Σ \ {xo} as fxo(x) := |x−xo|−(n−1−λ)/p. Then
each fxo belongs to the Morrey space Mp,λ(Σ, σ) and, in fact,

sup
xo∈Σ

‖fxo‖Mp,λ(Σ,σ) < +∞. (2.7.6)

This being said, each fxo fails to be in Ls(Σ, σ) with s := p(n−1)
n−1−λ , so the inclusion in

(2.7.4) is strict.

In view of (2.7.4) it is of interest to define the space

M̊p,λ(Σ, σ) := the closure of Ls(Σ, σ) with s := p(n−1)
n−1−λ in Mp,λ(Σ, σ). (2.7.7)

Hence, by design,

M̊p,λ(Σ, σ) is a closed linear subspace of Mp,λ(Σ, σ) with
the property that Ls(Σ, σ) ↪→ M̊p,λ(Σ, σ) continuously
and densely.

(2.7.8)

Thus, when equipped with the norm inherited from the larger ambient Mp,λ(Σ, σ),
the space M̊p,λ(Σ, σ) is complete (hence Banach). As a consequence of (2.7.8) and
(2.2.291) we also see that

the space M̊p,λ(Σ, σ) is separable. (2.7.9)

As noted in [93],

the operator of pointwise multiplication by a function b ∈
L∞(Σ, σ) is a bounded mapping from the space M̊p,λ(Σ, σ)
into itself, with operator norm ≤ ‖b‖L∞(Σ,σ).

(2.7.10)

and

if f, g : Σ → C are two σ-measurable functions with
the property that |g| ≤ |f | at σ-a.e. point on Σ and
f ∈ M̊p,λ(Σ, σ), then g also belongs to M̊p,λ(Σ, σ).

(2.7.11)

In relation to the space introduced in (2.7.7), we also wish to remark that since Lipcomp(Σ)
(the space of Lipschitz functions with compact support on Σ) is dense in Ls(Σ, σ) and
since, according to (2.7.4), the latter space embeds continuously intoMp,λ(Σ, σ), we have

M̊p,λ(Σ, σ) = the closure of Lipcomp(Σ) in Mp,λ(Σ, σ). (2.7.12)

An immediate corollary of the latter description of the space M̊p,λ(Σ, σ) worth mentioning
is that functions f belonging to M̊p,λ(Σ, σ) enjoy the “vanishing” property

lim
ρ→0+

sup
x∈Σ and
R∈(0,ρ)

{
R
n−1−λ

p
(  

Σ∩B(x,R)
|f |p dσ

) 1
p

}
= 0. (2.7.13)
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As such, it is natural to refer to M̊p,λ(Σ, σ) as being a vanishing Morrey space.
The topic addressed next pertains to the pre-duals of Morrey spaces, and the duals

of vanishing Morrey spaces. Continue to assume that Σ ⊆ Rn is a closed Ahlfors regular
set and define σ := Hn−1bΣ. To set the stage, given an integrability exponent q ∈
(1,∞) and a parameter λ ∈ (0, n − 1), a function b ∈ Lq(Σ, σ) is said to be a Bq,λ-
block on Σ (or, simply, a block) provided there exist some point xo ∈ Σ and some
radius R ∈

(
0, 2 diam (Σ)

)
such that

supp b ⊆ B(xo, R) ∩ Σ and ‖b‖Lq(Σ,σ) ≤ R
λ
(1
q−1

)
. (2.7.14)

With r := q(n−1)
n−1+λ(q−1) ∈ (1, q) we then define the block space

Bq,λ(Σ, σ) :=
{
f ∈ Lr(Σ, σ) : there exist a numerical sequence {λj}j∈N ∈ `1(N)

and a family {bj}j∈N of Bq,λ-blocks on Σ with

f =
∞∑
j=1

λjbj in Lr(Σ, σ)
}
, (2.7.15)

and for each f ∈ Bq,λ(Σ, σ) define

‖f‖Bq,λ(Σ,σ) := inf
{ ∞∑
j=1
|λj | : f =

∞∑
j=1

λjbj in Lr(Σ, σ) with (2.7.16)

{λj}j∈N ∈ `1(N) and each bj a Bq,λ-block on Σ
}
.

Work in [93] gives that(
Bq,λ(Σ, σ) , ‖ · ‖Bq,λ(Σ,σ)

)
is a separable Banach space,

and Bq,λ(Σ, σ) ↪→ Lr(Σ, σ) with r := q(n−1)
n−1+λ(q−1) ∈ (1, q).

(2.7.17)

and
the operator of pointwise multiplication by a function b ∈
L∞(Σ, σ) is a bounded mapping from the space Bq,λ(Σ, σ)
into itself, with operator norm ≤ ‖b‖L∞(Σ,σ).

(2.7.18)

Note that the latter property further implies that

if f, g : Σ −→ C are two σ-measurable functions such that
|g| ≤ |f | at σ-a.e. point on Σ and f ∈ Bq,λ(Σ, σ), then we
have g ∈ Bq,λ(Σ, σ) and ‖g‖Bq,λ(Σ,σ) ≤ ‖f‖Bq,λ(Σ,σ).

(2.7.19)

Examples of functions in the block space (2.7.15) may be produced using the following re-
sult from [93].

Proposition 2.7.2. Let Σ ⊆ Rn be a closed Ahlfors regular set and define σ := Hn−1bΣ.
Also, fix q ∈ (1,∞) along with λ ∈ (0, n−1). Then for each a > λ one has the continuous
and dense embedding

Lq
(
Σ , (1 + |x|)a(q−1)σ(x)

)
↪→ Bq,λ(Σ, σ). (2.7.20)
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In particular,

if N > λ(q−1)+n−1
q and fN (x) := (1 + |x|)−N for x ∈ Σ,

then the function fN belongs to the space Bq,λ(Σ, σ).
(2.7.21)

Our primary interest in the space (2.7.15) stems from the fact that this turns out to
be the pre-dual of a Morrey space. In turn, vanishing Morrey spaces are pre-duals of
block spaces. Specifically, we have the following result proved in [93].

Proposition 2.7.3. Let Σ ⊆ Rn be a closed Ahlfors regular set and define σ := Hn−1bΣ.
Fix two integrability exponents p, q ∈ (1,∞) satisfying 1/p + 1/q = 1, along with a
parameter λ ∈ (0, n−1). Then there exists C ∈ (0,∞) which depends only on the Ahlfors
regularity constant of Σ, n, p, and λ, with the property that

ˆ
Σ
|f ||g| dσ ≤ C‖f‖Mp,λ(Σ,σ)‖g‖Bq,λ(Σ,σ)

for all f ∈Mp,λ(Σ, σ) and g ∈ Bq,λ(Σ, σ).
(2.7.22)

In addition, the mapping

Mp,λ(Σ, σ) 3 f 7−→ Λf ∈
(
Bq,λ(Σ, σ)

)∗ given by

Λf (g) :=
ˆ

Σ
fg dσ for each g ∈ Bq,λ(Σ, σ)

(2.7.23)

is a well-defined, linear, bounded isomorphism, with bounded inverse. Simply put, the
integral paring yields the quantitative identification

(
Bq,λ(Σ, σ)

)∗ = Mp,λ(Σ, σ). (2.7.24)

Furthermore, regarding M̊p,λ(Σ, σ) as a Banach space equipped with the norm inher-
ited from Mp,λ(Σ, σ), the mapping

Bq,λ(Σ, σ) 3 g 7−→ Λg ∈
(
M̊p,λ(Σ, σ)

)∗ given by

Λg(f) :=
ˆ

Σ
fg dσ for each f ∈ M̊p,λ(Σ, σ)

(2.7.25)

is a well-defined, linear, bounded isomorphism, with bounded inverse. As such, the
integral paring yields the identification

(
M̊p,λ(Σ, σ)

)∗ = Bq,λ(Σ, σ). (2.7.26)

In the setting of Proposition 2.7.3, from (2.7.24), (2.7.17), and the Sequential Banach-
Alaoglu Theorem we conclude that any bounded sequence in Mp,λ(Σ, σ) has a sub-
sequence which is weak-∗ convergent. A result in this spirit in which a stronger conclusion
is reached, provided one assumes more than mere boundedness for the said sequence,
has been proved in [93].
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Proposition 2.7.4. Let Σ ⊆ Rn be a closed Ahlfors regular set and define σ := Hn−1bΣ.
Fix two integrability exponents p, q ∈ (1,∞) satisfying 1/p + 1/q = 1, along with a
parameter λ ∈ (0, n− 1). In this setting, suppose {fj}j∈N ⊆Mp,λ(Σ, σ) is a sequence of
functions with the property that

f(x) := lim
j→∞

fj(x) exists for σ-a.e. x ∈ Σ, and

there exists some g ∈Mp,λ(Σ, σ) such that for each

j ∈ N one has |fj(x)| ≤ |g(x)| for σ-a.e. x ∈ Σ.

(2.7.27)

Then f ∈Mp,λ(Σ, σ) and fj → f as j →∞ weak-∗ in Mp,λ(Σ, σ), i.e.,

lim
j→∞

ˆ
Σ
fjh dσ =

ˆ
Σ
fh dσ for each h ∈ Bq,λ(Σ, σ). (2.7.28)

Remarkably, certain types of estimates on Muckenhoupt weighted Lebesgue space
imply estimates on Morrey spaces. Here is a basic result of this flavor from [93] (cf. also
[36] for related results in the Euclidean setting).

Proposition 2.7.5. Let Σ be a closed Ahlfors regular set in Rn and define σ := Hn−1bΣ.
Fix an integrability exponent p ∈ (1,∞) along with some parameter λ ∈ (0, n − 1), and
assume that some assignment (not necessarily linear) f 7→ Θ(f), mapping functions
f ∈ L1(Σ, σ(x)

1+|x|n−1
)
into σ-measurable functions on Σ has been given, with the property

that

for each Muckenhoupt weight w ∈ A1(Σ, σ) one may find
some constant Cw = C([w]A1) ∈ (0,∞) (which depends in a
non-decreasing fashion on the characteristic [w]A1) such that
‖Θ(f)‖Lp(Σ,w) ≤ Cw‖f‖Lp(Σ,w) for each function f belonging to
the weighted Lebesgue space Lp(Σ, w).

(2.7.29)

Then there exist two constants CΣ,p ∈ (0,∞) (which depends only on the Ahlfors
regularity constant of Σ and p), and Wn,λ ∈ (0,∞) (which depends only on n and λ) with
the property that if one abbreviates

CΘ := CΣ,p · sup
w∈A1(Σ,σ)

[w]A1≤Wn,λ

Cw (2.7.30)

then
‖Θ(f)‖Mp,λ(Σ,σ) ≤ CΘ‖f‖Mp,λ(Σ,σ) for each f

belonging to the Morrey space Mp,λ(Σ, σ).
(2.7.31)

Based on Proposition 2.7.5, Proposition 2.3.3, Proposition 2.7.3 (as well as Coltar’s
inequality and boundedness results for the Hardy-Littlewood maximal operator on Mor-
rey and block spaces), the following result has been established in [93].

Proposition 2.7.6. Let Ω ⊆ Rn be an open set such that ∂Ω is a UR set and abbreviate
σ := Hn−1b∂Ω. Assume N = N(n) ∈ N is a sufficiently large integer and consider a
complex-valued function k ∈ CN

(
Rn \ {0}

)
which is odd and positive homogeneous of
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degree 1−n. Also, fix two integrability exponents p, q ∈ (1,∞) with 1/p+ 1/q = 1, along
with a parameter λ ∈ (0, n − 1), and pick an aperture parameter κ > 0. In this setting,
for each f belonging to either Mp,λ(∂Ω, σ), M̊p,λ(∂Ω, σ), Bq,λ(∂Ω, σ) define

Tεf(x) :=
ˆ

y∈∂Ω
|x−y|>ε

k(x− y)f(y) dσ(y) for each x ∈ ∂Ω, (2.7.32)

T∗f(x) := sup
ε>0
|Tεf(x)| for each x ∈ ∂Ω, (2.7.33)

Tf(x) := lim
ε→0+

Tεf(x) for σ-a.e. x ∈ ∂Ω, (2.7.34)

T f(x) :=
ˆ
∂Ω
k(x− y)f(y)dσ(y) for each x ∈ Ω. (2.7.35)

Then there exists a constant C ∈ (0,∞) which depends exclusively on n, p, λ, and
the UR constants of ∂Ω with the property that for each f ∈Mp,λ(∂Ω, σ) one has

‖T∗f‖Mp,λ(∂Ω,σ) ≤ C
( ∑
|α|≤N

sup
Sn−1

|∂αk|
)
‖f‖Mp,λ(∂Ω,σ) , (2.7.36)

‖Nκ(T f)‖Mp,λ(∂Ω,σ) ≤ C
( ∑
|α|≤N

sup
Sn−1

|∂αk|
)
‖f‖Mp,λ(∂Ω,σ) , (2.7.37)

for each f ∈ M̊p,λ(∂Ω, σ) one has

‖T∗f‖M̊p,λ(∂Ω,σ) ≤ C
( ∑
|α|≤N

sup
Sn−1

|∂αk|
)
‖f‖M̊p,λ(∂Ω,σ) , (2.7.38)

‖Nκ(T f)‖M̊p,λ(∂Ω,σ) ≤ C
( ∑
|α|≤N

sup
Sn−1

|∂αk|
)
‖f‖M̊p,λ(∂Ω,σ) , (2.7.39)

and for each f ∈ Bq,λ(∂Ω, σ) one has

‖T∗f‖Bq,λ(∂Ω,σ) ≤ C
( ∑
|α|≤N

sup
Sn−1

|∂αk|
)
‖f‖Bq,λ(∂Ω,σ) , (2.7.40)

‖Nκ(T f)‖Bq,λ(∂Ω,σ) ≤ C
( ∑
|α|≤N

sup
Sn−1

|∂αk|
)
‖f‖Bq,λ(∂Ω,σ) . (2.7.41)

Furthermore, for each function f belonging to either Mp,λ(∂Ω, σ), M̊p,λ(∂Ω, σ), or
Mp,λ(∂Ω, σ) the limit defining Tf(x) in (2.7.34) exists at σ-a.e. x ∈ ∂Ω and the operators

T : Mp,λ(∂Ω, σ) −→Mp,λ(∂Ω, σ), (2.7.42)

T : M̊p,λ(∂Ω, σ) −→ M̊p,λ(∂Ω, σ), (2.7.43)

T : Bq,λ(∂Ω, σ) −→ Bq,λ(∂Ω, σ), (2.7.44)

are well defined, linear, and bounded. In addition,
the (real) transposed of the operator (2.7.43) is the operator −T
with T as in (2.7.44), and the (real) transposed of the operator
(2.7.44) is the operator −T with T as in (2.7.42).

(2.7.45)
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In particular, the results from Proposition 2.7.6 are directly applicable to the Riesz
transforms {Rj}1≤j≤n defined as in (2.4.236) on the boundary of a UR domain Ω ⊆ Rn.
This proves that, in such a setting, for each p, q ∈ (1,∞) and λ ∈ (0, n − 1)

the operators {Rj}1≤j≤n are well defined, linear, and
bounded on Mp,λ(∂Ω, σ), M̊p,λ(∂Ω, σ), and Bq,λ(∂Ω, σ).

(2.7.46)

In concert with Theorem 2.4.14, (2.7.7), and duality (cf. Proposition 2.7.3), Propo-
sition 2.7.5 also yields the following version of the commutator theorem from [27], in
Morrey and block spaces.

Theorem 2.7.7. Let Σ ⊆ Rn be a closed Ahlfors regular set, and abbreviate σ :=
Hn−1bΣ. Fix p0 ∈ (1,∞) along with some non-decreasing function Φ : (0,∞) → (0,∞)
and let T be a linear operator which is bounded on Lp0(Σ, w) for every w ∈ Ap0(Σ, σ),
with operator norm ≤ Φ

(
[w]Ap0

)
.

Then for each integrability exponent p ∈ (1,∞) and each parameter λ ∈ (0, n− 1) the
operator T induces well-defined, linear, and bounded mappings in the contexts

T : Mp,λ(Σ, σ) −→Mp,λ(Σ, σ), (2.7.47)

T : M̊p,λ(Σ, σ) −→ M̊p,λ(Σ, σ). (2.7.48)

In addition, given any p ∈ (1,∞) along with some λ ∈ (0, n−1), there exist two constants,
C1 = C1(Σ, n, p0, p, λ) ∈ (0,∞) and C2 = C2(Σ, n, p0, p) ∈ (0,∞), with the property that
for every complex-valued function b ∈ L∞(Σ, σ) one has

‖[Mb, T ]‖M̊p,λ(Σ,σ)→M̊p,λ(Σ,σ) ≤ ‖[Mb, T ]‖Mp,λ(Σ,σ)→Mp,λ(Σ,σ)

≤ C1Φ(C2) ‖b‖BMO(Σ,σ) , (2.7.49)

where [Mb, T ] := bT (·)− T (b ·) is the commutator of T (considered either as in (2.7.47),
or as in (2.7.48)) and the operator Mb of pointwise multiplication (either on Mp,λ(Σ, σ),
or on M̊p,λ(Σ, σ)) by the function b.

Moreover, if T> is the (real) transposed of the original operator T , then for each
q ∈ (1,∞) and λ ∈ (0, n−1) the operator T> induces a well-defined, linear, and bounded
mapping

T> : Bq,λ(Σ, σ) −→ Bq,λ(Σ, σ). (2.7.50)

Finally, for each q ∈ (1,∞) and λ ∈ (0, n−1) there exist two positive finite constants,
C1 = C1(Σ, n, p0, q, λ) and C2 = C2(Σ, n, p0, q), with the property that for every complex-
valued function b ∈ L∞(Σ, σ) one has∥∥∥[Mb, T

>]
∥∥∥
Bq,λ(Σ,σ)→Bq,λ(Σ,σ)

≤ C1Φ(C2) ‖b‖BMO(Σ,σ) . (2.7.51)

For example, if Ω ⊆ Rn is a UR domain then, for each complex-valued function
k ∈ CN

(
Rn \ {0}

)
(where N = N(n) ∈ N is sufficiently large) which is odd and positive



2. Singular integral operators and quantitative flatness 251

homogeneous of degree 1−n, Theorem 2.7.7 applies with Σ := ∂Ω and T as in (2.7.34). In
such a scenario, from (2.7.51) and (2.7.45) we see that for each b ∈ L∞(∂Ω, σ), q ∈ (1,∞),
and λ ∈ (0, n − 1), the following commutator estimate holds:

‖[Mb, T ]‖Bq,λ(∂Ω,σ)→Bq,λ(∂Ω,σ) ≤ C
( ∑
|α|≤N

sup
Sn−1

|∂αk|
)
‖b‖BMO(∂Ω,σ) , (2.7.52)

where C ∈ (0,∞) depends exclusively on n, q, λ, and the UR character of ∂Ω.
Following [93], we may also consider Morrey-based Sobolev spaces on the boundaries

of Ahlfors regular domains. Specifically, if Ω ⊆ Rn is an Ahlfors regular domain and
σ := Hn−1b∂Ω, then for each p ∈ (1,∞) and λ ∈ (0, n − 1) we define

Mp,λ
1 (∂Ω, σ) :=

{
f ∈Mp,λ(∂Ω, σ) ∩ L1

1,loc(∂Ω, σ) : ∂τjkf ∈M
p,λ(∂Ω, σ) (2.7.53)

for each j, k ∈ {1, . . . , n}
}
,

equipped with the natural norm

Mp,λ
1 (∂Ω, σ) 3 f 7−→ ‖f‖Mp,λ(∂Ω,σ) +

n∑
j,k=1

∥∥∂τjkf∥∥Mp,λ(∂Ω,σ). (2.7.54)

A significant closed subspace of Mp,λ
1 (∂Ω, σ) is the vanishing Morrey-based Sobolev

space

M̊p,λ
1 (∂Ω, σ) :=

{
f ∈ M̊p,λ

1 (∂Ω, σ) : for each j, k ∈ {1, . . . , n} (2.7.55)

one has ∂τjkf ∈ M̊
p,λ(∂Ω, σ)

}
.

In the same vein, for each q ∈ (1,∞) let us also define the block-based Sobolev space

Bq,λ1 (∂Ω, σ) :=
{
f ∈ Bq,λ(∂Ω, σ) : for each j, k ∈ {1, . . . , n} (2.7.56)

one has ∂τjkf ∈ B
q,λ(∂Ω, σ)

}
,

and endowed with the norm

Bq,λ1 (∂Ω, σ) 3 f 7−→ ‖f‖Bq,λ(∂Ω,σ) +
n∑

j,k=1

∥∥∂τjkf∥∥Bq,λ(∂Ω,σ). (2.7.57)

It has been noted in [93] that by combining Proposition 2.7.5 with Proposition 2.3.4
(while also keeping in mind Lemma 2.4.19, (2.7.3), (2.7.8), (2.7.17), (2.7.18), (2.7.52))
one obtains the following result pertaining to the action of boundary layer potentials
associated with weakly elliptic second-order systems in UR domains, on the scales of
spaces discussed earlier.

Theorem 2.7.8. Suppose Ω ⊆ Rn is a UR domain. Define σ := Hn−1b∂Ω and denote
by ν the geometric measure theoretic outward unit normal to Ω. Let L be a homogeneous,
weakly elliptic, constant complex coefficient, second-order M×M system in Rn (for some
M ∈ N) and recall the modified single layer potential operator Smod associated with L
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and Ω as in (2.3.14). Also, pick a coefficient tensor A ∈ AL and consider the double
layer potential operators DA, KA, K#

A associated with the coefficient tensor A and the
set Ω as in (2.3.2), (2.3.4), and (2.3.5), respectively. Finally, select p ∈ (1,∞) along with
λ ∈ (0, n− 1) and some aperture parameter κ > 0.

Then the operators

KA,K
#
A :

[
Mp,λ(∂Ω, σ)

]M −→ [
Mp,λ(∂Ω, σ)

]M (2.7.58)

are well defined, linear, and bounded. Additionally, the operators KA,K
#
A in the context

of (2.7.58) depend continuously on the underlying coefficient tensor A. Specifically, with
the piece of notation introduced in (1.2.16), the following operator-valued assignments
are continuous:

AWE 3 A 7−→ KA ∈ Bd
([
Mp,λ(∂Ω, σ)

]M)
, (2.7.59)

AWE 3 A 7−→ K#
A ∈ Bd

([
Mp,λ(∂Ω, σ)

]M)
. (2.7.60)

Furthermore, there exists a constant C ∈ (0,∞), depending only on the UR character
of ∂Ω, L, n, κ, p, and λ, with the property that∥∥Nκ(DAf)∥∥Mp,λ(∂Ω,σ) +

∥∥Nκ(∇(Smodf)
)∥∥
Mp,λ(∂Ω,σ) ≤ C‖f‖[Mp,λ(∂Ω,σ)]M

for each function f ∈
[
Mp,λ(∂Ω, σ)

]M .
(2.7.61)

Moreover, for each given function f in the Morrey space
[
Mp,λ(∂Ω, σ)

]M the following
nontangential boundary trace formulas hold (with I denoting the identity operator)

DAf
∣∣∣κ−n.t.

∂Ω
=
(1

2I +KA

)
f at σ-a.e. point on ∂Ω, (2.7.62)

and

∂Aν Smodf =
(
− 1

2I +K#
A>

)
f at σ-a.e. point in ∂Ω, (2.7.63)

where K#
A>

is the singular integral operator associated as in (2.3.5) with the set Ω and
the transposed coefficient tensor A>.

In addition, for each function f in the Morrey-based Sobolev space
[
Mp,λ

1 (∂Ω, σ)
]M

it follows that

the nontangential boundary trace
(
∂`DAf

)∣∣κ−n.t.

∂Ω exists (in
CM ) at σ-a.e. point on ∂Ω, for each ` ∈ {1, . . . , n},

(2.7.64)

and there exits some finite constant C > 0, depending only on ∂Ω, L, n, κ, p, λ, such
that ∥∥Nκ(DAf)

∥∥
Mp,λ(∂Ω,σ) +

∥∥Nκ(∇DAf)
∥∥
Mp,λ(∂Ω,σ) ≤ C‖f‖[Mp,λ

1 (∂Ω,σ)]M . (2.7.65)

In fact, similar results are valid with the Morrey space Mp,λ(∂Ω, σ) replaced throughout
by the vanishing Morrey space M̊p,λ(∂Ω, σ) (defined as in (2.7.7) with Σ := ∂Ω), or by
the block space Bq,λ(Σ, σ) with q ∈ (1,∞) (defined as in (2.7.15)-(2.7.16) with Σ := ∂Ω).
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Finally, the operators

KA :
[
Mp,λ

1 (∂Ω, σ)
]M −→ [

Mp,λ
1 (∂Ω, σ)

]M
, (2.7.66)

KA :
[
M̊p,λ

1 (∂Ω, σ)
]M −→ [

M̊p,λ
1 (∂Ω, σ)

]M
, (2.7.67)

are well defined, linear, bounded and, for each q ∈ (1,∞), so is

KA :
[
Bq,λ1 (∂Ω, σ)

]M −→ [
Bq,λ1 (∂Ω, σ)

]M
. (2.7.68)

Also, much as in (2.7.59)-(2.7.60), the operator KA in the context of (2.7.66)-(2.7.68)
depends in a continuous fashion on the underlying coefficient tensor A.

2.7.2 Inverting double layer operators on Morrey and block spaces

The starting point is deriving estimates for the operator norms of singular integral
operators whose integral kernels contain, as a factor, the crucial inner product between
the unit normal and the “chord” (cf. (2.7.69), (2.7.70)), of the sort obtained earlier in
Theorem 2.4.4 and Corollary 2.4.11 in the context of Muckenhoupt weighted Lebesgue
spaces, but now working in the framework of Morrey spaces, vanishing Morrey spaces,
and block spaces. We carry out this task in Theorem 2.7.9 below.

Theorem 2.7.9. Let Ω ⊆ Rn be an Ahlfors regular domain satisfying a two-sided local
John condition. Abbreviate σ := Hn−1b∂Ω and denote by ν the geometric measure
theoretic outward unit normal to Ω. Fix an integrability exponent p ∈ (1,∞) along with a
parameter λ ∈ (0, n−1). Also, consider a complex-valued function k ∈ CN (Rn \{0}) (for
a sufficiently large integer N = N(n) ∈ N) which is even and positive homogeneous of
degree −n. In this setting consider the principal-value singular integral operators T, T#

acting on each function f ∈Mp,λ(∂Ω, σ) according to

Tf(x) := lim
ε→0+

ˆ

y∈∂Ω
|x−y|>ε

〈x− y, ν(y)〉k(x− y)f(y) dσ(y), (2.7.69)

and
T#f(x) := lim

ε→0+

ˆ

y∈∂Ω
|x−y|>ε

〈y − x, ν(x)〉k(x− y)f(y) dσ(y), (2.7.70)

at σ-a.e. point x ∈ ∂Ω. Also, define the action of the maximal operator T∗ on each given
function f ∈Mp,λ(∂Ω, σ) as

T∗f(x) := sup
ε>0

∣∣∣∣∣
ˆ

y∈∂Ω
|x−y|>ε

〈x− y, ν(y)〉k(x− y)f(y) dσ(y)
∣∣∣∣∣ for each x ∈ ∂Ω. (2.7.71)

Then the following are well-defined, bounded operators

T∗, T, T
# : Mp,λ(∂Ω, σ) −→Mp,λ(∂Ω, σ), (2.7.72)

T∗, T, T
# : M̊p,λ(∂Ω, σ) −→ M̊p,λ(∂Ω, σ), (2.7.73)
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and there exists some C ∈ (0,∞), which depends only on n, p, λ, the local John constants
of Ω, and the Ahlfors regularity constant of ∂Ω, such that

max
{
‖T∗‖Mp,λ(∂Ω,σ)→Mp,λ(∂Ω,σ) , ‖T∗‖M̊p,λ(∂Ω,σ)→M̊p,λ(∂Ω,σ)

}
≤ C

( ∑
|α|≤N

sup
Sn−1

|∂αk|
)
‖ν‖[BMO(∂Ω,σ)]n , (2.7.74)

max
{
‖T‖Mp,λ(∂Ω,σ)→Mp,λ(∂Ω,σ) , ‖T‖M̊p,λ(∂Ω,σ)→M̊p,λ(∂Ω,σ)

}
≤ C

( ∑
|α|≤N

sup
Sn−1

|∂αk|
)
‖ν‖[BMO(∂Ω,σ)]n , (2.7.75)

max
{∥∥∥T#

∥∥∥
Mp,λ(∂Ω,σ)→Mp,λ(∂Ω,σ)

,
∥∥∥T#

∥∥∥
M̊p,λ(∂Ω,σ)→M̊p,λ(∂Ω,σ)

}
≤ C

( ∑
|α|≤N

sup
Sn−1

|∂αk|
)
‖ν‖[BMO(∂Ω,σ)]n . (2.7.76)

Furthermore, for each q ∈ (1,∞) the operators

T, T# : Bq,λ(∂Ω, σ) −→ Bq,λ(∂Ω, σ) (2.7.77)

are well defined, linear, bounded, and there exists some C ∈ (0,∞), which depends only
on n, q, λ, the local John constants of Ω, and the Ahlfors regularity constant of ∂Ω, such
that

max
{
‖T‖Bq,λ(∂Ω,σ)→Bq,λ(∂Ω,σ) ,

∥∥∥T#
∥∥∥
Bq,λ(∂Ω,σ)→Bq,λ(∂Ω,σ)

}
≤ C

( ∑
|α|≤N

sup
Sn−1

|∂αk|
)
‖ν‖[BMO(∂Ω,σ)]n . (2.7.78)

Proof. The claims made in (2.7.72)-(2.7.76) follow from Theorem 2.4.4, Corollary 2.4.11,
and Proposition 2.7.5 (also keeping in mind (2.7.3) and (2.7.7)). Then the claims in
(2.7.77)-(2.7.78) become consequences of what we have just proved and duality (cf.
Proposition 2.7.3 and (2.7.45)).

In concert with the commutator estimates discussed earlier (cf. Theorem 2.7.7),
Theorem 2.7.9 implies the following result, which is the Morrey space (respectively,
vanishing Morrey space, and block space) counterpart of Theorem 2.4.18.

Corollary 2.7.10. Let Ω ⊆ Rn be an open set satisfying a two-sided local John condition
and whose topological boundary is an Ahlfors regular set. Abbreviate σ := Hn−1b∂Ω and
denote by ν = (νk)1≤k≤n the geometric measure theoretic outward unit normal to Ω. Also,
fix two integrability exponents p, q ∈ (1,∞) and a parameter λ ∈ (0, n−1). Finally, recall
the boundary-to-boundary harmonic double layer potential operator K∆ from (2.3.8), the
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Riesz transforms {Rj}1≤j≤n from (2.4.236), and for each k ∈ {1, . . . , n} denote by Mνk

the operator of pointwise multiplication by the k-th scalar component of ν.
Then there exists some C ∈ (0,∞) which depends only on n, p, q, λ, the local John

constants of Ω, and the Ahlfors regularity constant of ∂Ω, such that

‖K∆‖Mp,λ(∂Ω,σ)→Mp,λ(∂Ω,σ)

+ max
1≤j,k≤n

‖[Mνk , Rj ]‖Mp,λ(∂Ω,σ)→Mp,λ(∂Ω,σ) ≤ C ‖ν‖[BMO(∂Ω,σ)]n , (2.7.79)

‖K∆‖M̊p,λ(∂Ω,σ)→M̊p,λ(∂Ω,σ)

+ max
1≤j,k≤n

‖[Mνk , Rj ]‖M̊p,λ(∂Ω,σ)→M̊p,λ(∂Ω,σ) ≤ C ‖ν‖[BMO(∂Ω,σ)]n , (2.7.80)

and

‖K∆‖Bq,λ(∂Ω,σ)→Bq,λ(∂Ω,σ)

+ max
1≤j,k≤n

‖[Mνk , Rj ]‖Bq,λ(∂Ω,σ)→Bq,λ(∂Ω,σ) ≤ C ‖ν‖[BMO(∂Ω,σ)]n . (2.7.81)

Proof. The estimates claimed in (2.7.79)-(2.7.81) are implied by (2.3.8), Theorem 2.7.9,
(2.4.236), Proposition 2.3.3, and Theorem 2.7.7.

We shall revisit Corollary 2.7.10 later, in Theorem 2.7.17, which contains estimates
in the opposite direction to those obtained in (2.7.79)-(2.7.81).

For the time being, we take up the task of establishing estimates akin to those obtained
in Theorem 2.4.20 for Muckenhoupt weighted Lebesgue and Sobolev spaces, now working
in the setting of Morrey spaces, vanishing Morrey spaces, block spaces, as well as the
brands of Sobolev spaces naturally associated with these scales.

Theorem 2.7.11. Let Ω ⊆ Rn be an open set satisfying a two-sided local John condition
and whose topological boundary is an Ahlfors regular set. Abbreviate σ := Hn−1b∂Ω and
denote by ν the geometric measure theoretic outward unit normal to Ω. Also, let L be a
homogeneous, second-order, constant complex coefficient, weakly elliptic M ×M system
in Rn for which Adis

L 6= ∅. Pick A ∈ Adis
L and consider the boundary-to-boundary double

layer potential operators KA,K
#
A associated with Ω and the coefficient tensor A as in

(2.3.4) and (2.3.5), respectively. Finally, fix two integrability exponents p, q ∈ (1,∞) and
a parameter λ ∈ (0, n− 1).

Then there exists some constant C ∈ (0,∞) which depends only on n, A, p, q, λ, the
local John constants of Ω, and the Ahlfors regularity constant of ∂Ω, such that

‖KA‖[Mp,λ(∂Ω,σ)]M→[Mp,λ(∂Ω,σ)]M ≤ C ‖ν‖[BMO(∂Ω,σ)]n , (2.7.82)

‖KA‖[M̊p,λ(∂Ω,σ)]M→[M̊p,λ(∂Ω,σ)]M ≤ C ‖ν‖[BMO(∂Ω,σ)]n , (2.7.83)

‖KA‖[Bq,λ(∂Ω,σ)]M→[Bq,λ(∂Ω,σ)]M ≤ C ‖ν‖[BMO(∂Ω,σ)]n , (2.7.84)



256 2.7. Singular integrals and boundary problems in Morrey and block spaces

‖KA‖[Mp,λ
1 (∂Ω,σ)]M→[Mp,λ

1 (∂Ω,σ)]M ≤ C ‖ν‖[BMO(∂Ω,σ)]n , (2.7.85)

‖KA‖[M̊p,λ
1 (∂Ω,σ)]M→[M̊p,λ

1 (∂Ω,σ)]M ≤ C ‖ν‖[BMO(∂Ω,σ)]n , (2.7.86)

‖KA‖[Bq,λ1 (∂Ω,σ)]M→[Bq,λ1 (∂Ω,σ)]M ≤ C ‖ν‖[BMO(∂Ω,σ)]n , (2.7.87)

as well as ∥∥∥K#
A

∥∥∥
[Mp,λ(∂Ω,σ)]M→[Mp,λ(∂Ω,σ)]M

≤ C ‖ν‖[BMO(∂Ω,σ)]n , (2.7.88)

∥∥∥K#
A

∥∥∥
[M̊p,λ(∂Ω,σ)]M→[M̊p,λ(∂Ω,σ)]M

≤ C ‖ν‖[BMO(∂Ω,σ)]n , (2.7.89)

∥∥∥K#
A

∥∥∥
[Bq,λ(∂Ω,σ)]M→[Bq,λ(∂Ω,σ)]M

≤ C ‖ν‖[BMO(∂Ω,σ)]n . (2.7.90)

Proof. All claims are justified as in the proof of Theorem 2.4.20, now making use of The-
orem 2.7.9, Lemma 2.4.19, Theorem 2.7.7, (2.7.53)-(2.7.54), (2.7.55), (2.7.56)-(2.7.57), as
well as (2.7.3), (2.7.8), (2.7.10), (2.7.17), (2.7.18).

The stage is now set for obtaining invertibility results for certain types of double layer
potential operators acting on Morrey spaces, vanishing Morrey spaces, block spaces, as
well as on the brands of Sobolev spaces naturally associated with these scales.

Theorem 2.7.12. Let Ω ⊆ Rn be an open set satisfying a two-sided local John condition
and whose topological boundary is an Ahlfors regular set. Abbreviate σ := Hn−1b∂Ω and
denote by ν the geometric measure theoretic outward unit normal to Ω. Also, let L be a
homogeneous, second-order, constant complex coefficient, weakly elliptic M ×M system
in Rn for which Adis

L 6= ∅. Pick A ∈ Adis
L and consider the boundary-to-boundary double

layer potential operators KA,K
#
A associated with Ω and the coefficient tensor A as in

(2.3.4) and (2.3.5), respectively. Finally, fix two integrability exponents p, q ∈ (1,∞)
along with a parameter λ ∈ (0, n− 1), and some number ε ∈ (0,∞).

Then there exists some small threshold δ0 ∈ (0, 1) which depends only on n, p, q, λ,
A, ε, the local John constants of Ω, and the Ahlfors regularity constant of ∂Ω, with the
property that if ‖ν‖[BMO(∂Ω,σ)]n < δ0 it follows that for each spectral parameter z ∈ C
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with |z| ≥ ε the following operators are invertible:

zI +KA :
[
Mp,λ(∂Ω, σ)

]M −→ [
Mp,λ(∂Ω, σ)

]M
, (2.7.91)

zI +KA :
[
M̊p,λ(∂Ω, σ)

]M −→ [
M̊p,λ(∂Ω, σ)

]M
, (2.7.92)

zI +KA :
[
Bq,λ(∂Ω, σ)

]M −→ [
Bq,λ(∂Ω, σ)

]M
, (2.7.93)

zI +KA :
[
Mp,λ

1 (∂Ω, σ)
]M −→ [

Mp,λ
1 (∂Ω, σ)

]M
, (2.7.94)

zI +KA :
[
M̊p,λ

1 (∂Ω, σ)
]M −→ [

M̊p,λ
1 (∂Ω, σ)

]M
, (2.7.95)

zI +KA :
[
Bq,λ1 (∂Ω, σ)

]M −→ [
Bq,λ1 (∂Ω, σ)

]M
, (2.7.96)

zI +K#
A :

[
Mp,λ(∂Ω, σ)

]M −→ [
Mp,λ(∂Ω, σ)

]M
, (2.7.97)

zI +K#
A :

[
M̊p,λ(∂Ω, σ)

]M −→ [
M̊p,λ(∂Ω, σ)

]M
, (2.7.98)

zI +K#
A :

[
Bq,λ(∂Ω, σ)

]M −→ [
Bq,λ(∂Ω, σ)

]M
. (2.7.99)

Proof. This is a direct consequence of Theorem 2.7.11, reasoning as in the proof of
Theorem 2.4.24.

We may be further enhance the invertibility results from Theorem 2.7.12 by allowing
the coefficient tensor to be a small perturbation of any distinguished coefficient tensor
of the given system. Specifically, Theorem 2.7.11 in concert with the continuity of the
operator-valued assignments AWE 3 A 7→ KA and AWE 3 A 7→ K#

A , considered in all
contexts discussed in Theorem 2.7.8, yield the following result.

Theorem 2.7.13. Retain the original background assumptions on the set Ω from The-
orem 2.7.12 and, as before, fix some integrability exponents p, q ∈ (1,∞), a parameter
λ ∈ (0, n−1), and some number ε ∈ (0,∞). Consider L ∈ Ldis (cf. (2.3.84)) and pick an
arbitrary Ao ∈ Adis

L . Then there exist some small threshold δ0 ∈ (0, 1) along with some
open neighborhood O of Ao in AWE, both of which depend only on n, p, q, λ, Ao, ε, the
local John constants of Ω, and the Ahlfors regularity constant of ∂Ω, with the property
that if ‖ν‖[BMO(∂Ω,σ)]n < δ0 then for each A ∈ O and each spectral parameter z ∈ C with
|z| ≥ ε, the operators (2.7.91)-(2.7.99) are invertible.

We close this section with the following remark.
Remark 2.7.14. In the two-dimensional setting, more can be said about the Lamé system.
Specifically, the versions of Theorem 2.4.30 and Corollary 2.4.31 naturally formulated in
terms of Morrey spaces, vanishing Morrey spaces, block spaces, as well as their associated
Sobolev spaces, continue to hold, virtually with the same proofs (now making use of
Proposition 2.7.6, Theorem 2.7.7, Theorem 2.7.8, and Theorem 2.7.9).

2.7.3 Characterizing flatness in terms of Morrey and block spaces

How do the quantitative aspects of the analysis of a certain geometric environment affect
the very geometric features of the said environment? Here we address a specific aspect
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of this general question by characterizing the flatness of a “surface” in terms of the
size of the norms of certain singular integral operators acting on Morrey and block
spaces considered on this surface.

In order be able to elaborate on this topic, we need some notation. Given a UR
domain Ω ⊆ Rn, denote by ν its geometric measure theoretic outward unit normal and
abbreviate σ := Hn−1b∂Ω. From Proposition 2.7.5 (more specifically, from a version of
it using the formalism of pairs of functions as in [28, p. 30]) and (2.5.5)-(2.5.7) we then
conclude that whenever p ∈ (1,∞) and λ ∈ (0, n − 1), the operators

C : Mp,λ(∂Ω, σ)⊗ C̀ n −→Mp,λ(∂Ω, σ)⊗ C̀ n, (2.7.100)

C : M̊p,λ(∂Ω, σ)⊗ C̀ n −→ M̊p,λ(∂Ω, σ)⊗ C̀ n, (2.7.101)

and

C# : Mp,λ(∂Ω, σ)⊗ C̀ n −→Mp,λ(∂Ω, σ)⊗ C̀ n, (2.7.102)

C# : M̊p,λ(∂Ω, σ)⊗ C̀ n −→ M̊p,λ(∂Ω, σ)⊗ C̀ n, (2.7.103)

are all well defined, linear, and continuous, with

‖C‖Mp,λ(∂Ω,σ)⊗C̀ n→Mp,λ(∂Ω,σ)⊗C̀ n , ‖C
#‖Mp,λ(∂Ω,σ)⊗C̀ n→Mp,λ(∂Ω,σ)⊗C̀ n ,

‖C‖M̊p,λ(∂Ω,σ)⊗C̀ n→M̊p,λ(∂Ω,σ)⊗C̀ n , ‖C
#‖M̊p,λ(∂Ω,σ)⊗C̀ n→M̊p,λ(∂Ω,σ)⊗C̀ n ,

bounded exclusively in terms of n, p, λ, and the UR character of ∂Ω.

(2.7.104)

Granted these, via duality (cf. (2.5.8) and Proposition 2.7.3) we also obtain that for
each q ∈ (1,∞) and λ ∈ (0, n − 1) the operators

C : Bq,λ(∂Ω, σ)⊗ C̀ n −→ Bq,λ(∂Ω, σ)⊗ C̀ n, (2.7.105)

C# : Bq,λ(∂Ω, σ)⊗ C̀ n −→ Bp,λ(∂Ω, σ)⊗ C̀ n (2.7.106)

are all well defined, linear, and bounded, with

‖C‖Bq,λ(∂Ω,σ)⊗C̀ n→Bp,λ(∂Ω,σ)⊗C̀ n , ‖C
#‖Bq,λ(∂Ω,σ)⊗C̀ n→Bq,λ(∂Ω,σ)⊗C̀ n

controlled only in terms of n, q, λ, and the UR character of ∂Ω.
(2.7.107)

In addition, from (2.5.9) and duality (cf. (2.5.8) and Proposition 2.7.3) we conclude
that, for each p, q ∈ (1,∞) and λ ∈ (0, n − 1),

the operator identities C2 = 1
4I and

(
C#)2 = 1

4I

are valid on either of the spaces Mp,λ(∂Ω, σ) ⊗ C̀ n,
M̊p,λ(∂Ω, σ)⊗ C̀ n, and Bq,λ(∂Ω, σ)⊗ C̀ n.

(2.7.108)

More delicate estimates than (2.7.104), (2.7.107) turn out to hold for the antisym-
metric part of the Cauchy-Clifford operator, i.e., for the difference C −C#, of the sort
described in the proposition below.
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Proposition 2.7.15. Let Ω ⊆ Rn be an open set satisfying a two-sided local John condi-
tion and whose topological boundary is an Ahlfors regular set. Abbreviate σ := Hn−1b∂Ω
and denote by ν the geometric measure theoretic outward unit normal to Ω. Also, fix two
integrability exponents p, q ∈ (1,∞) and a parameter λ ∈ (0, n − 1). Then there exists
some constant C ∈ (0,∞) which depends only on n, p, q, λ, the local John constants of
Ω, and the Ahlfors regularity constant of ∂Ω, such that∥∥∥C−C#

∥∥∥
Mp,λ(∂Ω,σ)⊗C̀ n→Mp,λ(∂Ω,σ)⊗C̀ n

≤ C ‖ν‖[BMO(∂Ω,σ)]n , (2.7.109)
∥∥∥C−C#

∥∥∥
M̊p,λ(∂Ω,σ)⊗C̀ n→M̊p,λ(∂Ω,σ)⊗C̀ n

≤ C ‖ν‖[BMO(∂Ω,σ)]n , (2.7.110)
∥∥∥C−C#

∥∥∥
Bq,λ(∂Ω,σ)⊗C̀ n→Bq,λ(∂Ω,σ)⊗C̀ n

≤ C ‖ν‖[BMO(∂Ω,σ)]n . (2.7.111)

Proof. This is implied by the structural result from Lemma 2.5.1 (bearing in mind (2.7.3),
(2.7.8), (2.7.17)), together with Theorem 2.7.7, Theorem 2.7.9, and (2.3.8).

Remarkably, it is also possible to establish bounds from below for the operator norm
of C −C# on Morrey spaces and their pre-duals, considered on the boundary of a UR
domain, in terms of the BMO semi-norm of the geometric measure theoretic outward
unit normal vector to the said domain.

Proposition 2.7.16. Let Ω ⊆ Rn be a UR domain such that ∂Ω is unbounded. Abbreviate
σ := Hn−1b∂Ω and denote by ν the geometric measure theoretic outward unit normal to
Ω. Also, fix an integrability exponent p ∈ (1,∞) along with a parameter λ ∈ (0, n − 1).
Then there exists some C ∈ (0,∞) which depends only on n, p, λ, and the Ahlfors
regularity constant of ∂Ω with the property that

‖ν‖[BMO(∂Ω,σ)]n ≤ C
∥∥∥C−C#

∥∥∥1/n

M̊p,λ(∂Ω,σ)⊗C̀ n→M̊p,λ(∂Ω,σ)⊗C̀ n

≤ C
∥∥∥C−C#

∥∥∥1/n

Mp,λ(∂Ω,σ)⊗C̀ n→Mp,λ(∂Ω,σ)⊗C̀ n
. (2.7.112)

Furthermore, for each q ∈ (1,∞) and λ ∈ (0, n − 1) there exists some C ∈ (0,∞)
which depends only on n, q, λ, and the Ahlfors regularity constant of ∂Ω with the property
that

‖ν‖[BMO(∂Ω,σ)]n ≤ C
∥∥∥C−C#

∥∥∥1/n

Bq,λ(∂Ω,σ)⊗C̀ n→Bq,λ(∂Ω,σ)⊗C̀ n
. (2.7.113)

Proof. The argument largely follows the proof of the unweighted version of Proposi-
tion 2.5.3 (i.e., when w ≡ 1), so we will only indicate the main changes. First, in place
of (2.5.15) we now consider∥∥∥C−C#

∥∥∥
M̊p,λ(∂Ω,σ)⊗C̀ n→M̊p,λ(∂Ω,σ)⊗C̀ n

< η < 4−n. (2.7.114)

Second, we now take r∗ := δ η1/n in place of (2.5.18). Lastly, in place of (2.5.28) we
now write (making use of (2.5.25)-(2.5.27), (2.7.2), (2.7.114), the fact that 1∆(y0,r∗) ∈
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M̊p,λ(∂Ω, σ), and (2.7.5))
 

∆(x0,r∗)

∣∣∣∣ ˆ
∆(y0,r∗)

{
x0 − y
|x0 − y|n

� ν(y) + ν(x)� x0 − y0
|x0 − y0|n

}
dσ(y)

∣∣∣∣p dσ(x)

≤ C
(r∗
δ

)np
+ Cn,p

 
∆(x0,r∗)

|(C−C#)1∆(y0,r∗)(x)|p dσ(x)

≤ C
(r∗
δ

)np
+ Cn,p · r−(n−1−λ)

∗
∥∥(C−C#)1∆(y0,r∗)

∥∥p
Mp,λ(∂Ω,σ)

< C
(r∗
δ

)np
+ Cn,p · ηp · r−(n−1−λ)

∗
∥∥∥1∆(y0,r∗)

∥∥∥p
Mp,λ(∂Ω,σ)

≤ C
(r∗
δ

)np
+ C · ηp · r−(n−1−λ)

∗ σ
(
∆(y0, r∗)

)(n−1−λ)/(n−1)

≤ C
(r∗
δ

)np
+ C · ηp = C · ηp, (2.7.115)

for some C ∈ (0,∞) which depends only on n, p, λ, and the Ahlfors regularity constant
of ∂Ω. Having established this, after running the same argument as in (2.5.29), in place
of (2.5.22) we presently arrive at the conclusion that

(  
∆(x0,r∗)

|ν(y)−A|p dσ(y)
)1/p

≤ C · η1/n, (2.7.116)

for some C ∈ (0,∞) which depends only on n, p, λ, and the Ahlfors regularity constant of
∂Ω. With this in hand, the first estimate claimed in (2.7.112) now follows upon passing
to limit η ↘

∥∥∥C−C#
∥∥∥
M̊p,λ(∂Ω,σ)⊗C̀ n→M̊p,λ(∂Ω,σ)⊗C̀ n

and reasoning as in (2.5.23). The
second estimate in (2.7.112) is a direct consequence of (2.7.8).

Finally, the estimate claimed in (2.7.113) follows from the first inequality in (2.7.112),
plus the fact that whenever p, q ∈ (1,∞) are such that 1/p + 1/q = 1 then the (real)
transposed of

C−C# : M̊p,λ(∂Ω, σ)⊗ C̀ n −→ M̊p,λ(∂Ω, σ)⊗ C̀ n (2.7.117)

is the operator

C# −C : Bq,λ(∂Ω, σ)⊗ C̀ n −→ Bq,λ(∂Ω, σ)⊗ C̀ n. (2.7.118)

See (2.5.8) and Proposition 2.7.3 in this regard.

The next result contains estimates in the opposite direction to those presented in
Corollary 2.7.10.

Theorem 2.7.17. Let Ω ⊆ Rn be a UR domain. Abbreviate σ := Hn−1b∂Ω and denote
by ν = (νk)1≤j≤n the geometric measure theoretic outward unit normal to Ω. Also, fix two
integrability exponent p, q ∈ (1,∞) along with a parameter λ ∈ (0, n− 1). Finally, recall
the boundary-to-boundary harmonic double layer potential operator K∆ from (2.3.8), the
Riesz transforms {Rj}1≤j≤n on ∂Ω from (2.4.236), and for each index k ∈ {1, . . . , n}
denote by Mνk the operator of pointwise multiplication by the k-th scalar component of
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ν. Then there exists some C ∈ (0,∞) which depends only on n, p, q, λ, and the Ahlfors
regularity constant of ∂Ω with the property that

‖ν‖[BMO(∂Ω,σ)]n ≤ C
{
‖K∆‖Mp,λ(∂Ω,σ)→Mp,λ(∂Ω,σ) (2.7.119)

+ max
1≤j,k≤n

‖[Mνk , Rj ]‖Mp,λ(∂Ω,σ)→Mp,λ(∂Ω,σ)

}1/n
,

‖ν‖[BMO(∂Ω,σ)]n ≤ C
{
‖K∆‖M̊p,λ(∂Ω,σ)→M̊p,λ(∂Ω,σ) (2.7.120)

+ max
1≤j,k≤n

‖[Mνk , Rj ]‖M̊p,λ(∂Ω,σ)→M̊p,λ(∂Ω,σ)

}1/n
,

and

‖ν‖[BMO(∂Ω,σ)]n ≤ C
{
‖K∆‖Bq,λ(∂Ω,σ)→Bq,λ(∂Ω,σ) (2.7.121)

+ max
1≤j,k≤n

‖[Mνk , Rj ]‖Bq,λ(∂Ω,σ)→Bq,λ(∂Ω,σ)

}1/n
.

Proof. If ∂Ω is unbounded then all estimates are implied by Proposition 2.7.16 and the
structural result from Lemma 2.5.1 (keeping in mind (2.7.3), (2.7.8), (2.7.17)). When ∂Ω
is bounded, we have K∆1 = ±1

2 (cf. [93]) with the sign plus if Ω is bounded, and the
sign minus if Ω is unbounded, hence the norm of K∆ on eitherMp,λ(∂Ω, σ), M̊p,λ(∂Ω, σ),
or Bq,λ(∂Ω, σ) is ≥ 1

2 in such a case. Given that ‖ν‖[BMO(∂Ω,σ)]n ≤ 1 (cf. (2.2.56)), the
estimates claimed in (2.7.119)-(2.7.121) are valid in this case if we take C ≥ 21/n.

In turn, the results established in Theorem 2.7.17 may be used to characterize the class
of δ-SKT domains in Rn, in the spirit of Corollary 2.5.6, using Morrey spaces and their
pre-duals.

By way of contrast, Theorem 2.7.18 discussed next is a stability result stating that if
Ω ⊆ Rn is a UR domain with an unbounded boundary for which the URTI (cf. (2.5.33))
are “almost” true in the context of either Morrey or block spaces, then ∂Ω is “almost”
flat, in that the BMO semi-norm of the outward unit normal to Ω is small.

Theorem 2.7.18. Let Ω ⊆ Rn be a UR domain with an unbounded boundary. Abbreviate
σ := Hn−1b∂Ω and denote by ν the geometric measure theoretic outward unit normal to
Ω. Also, fix p, q ∈ (1,∞) along with λ ∈ (0, n − 1), and recall the Riesz transforms
{Rj}1≤j≤n on ∂Ω from (2.4.236). Then there exists some C ∈ (0,∞) which depends only
on n, p, q, λ, and the UR character of ∂Ω with the property that

‖ν‖[BMO(∂Ω,σ)]n ≤ C
{∥∥∥I +

n∑
j=1

R2
j

∥∥∥
Mp,λ(∂Ω,σ)→Mp,λ(∂Ω,σ)

(2.7.122)

+ max
1≤j,k≤n

‖[Rj , Rk]‖Mp,λ(∂Ω,σ)→Mp,λ(∂Ω,σ)

}1/n
,

plus similar estimates with the Morrey space Mp,λ(∂Ω, σ) replaced by the vanishing Mor-
rey space M̊p,λ(∂Ω, σ), or the block space Bq,λ(∂Ω, σ).
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Proof. A key ingredient is the fact that we have the operator identities

C−C# = C
(
I +

n∑
j=1

R2
j

)
+

∑
1≤j<k≤n

C[Rj , Rk]ej � ek

on Mp,λ(∂Ω, σ)⊗ C̀ n, M̊p,λ(∂Ω, σ)⊗ C̀ n, Bq,λ(∂Ω, σ)⊗ C̀ n.
(2.7.123)

These are proved much like formula [53, (4.6.46), p. 2752], now making use of (2.7.108).
Once (2.7.123) has been established, Proposition 2.7.16 and (2.7.100)-(2.7.107) to con-
clude (much as in the proof of Theorem 2.5.7) that the estimate claimed in (2.7.122) as
well as its related versions on vanishing Morrey spaces and block spaces are all true.

The last result in this section contains estimates in the opposite direction to those from
Theorem 2.7.18. Together, Theorem 2.7.19 and Theorem 2.7.18 amount to saying that,
under natural background geometric assumptions on the set Ω, the URTI are “almost”
true on Morrey spaces or block spaces if and only if ∂Ω is “almost” flat (in that the BMO
semi-norm of the outward unit normal to Ω is small).

Theorem 2.7.19. Let Ω ⊆ Rn be an open set satisfying a two-sided local John condition
and whose topological boundary is an Ahlfors regular set. Abbreviate σ := Hn−1b∂Ω
and denote by ν the geometric measure theoretic outward unit normal to Ω. Also, fix
p, q ∈ (1,∞) along with λ ∈ (0, n− 1), and recall the Riesz transforms {Rj}1≤j≤n on ∂Ω
from (2.4.236).

Then there exists some constant C ∈ (0,∞) which depends only on n, p, q, λ, the
local John constants of Ω, and the Ahlfors regularity constant of ∂Ω, such that

∥∥∥I +
n∑
j=1

R2
j

∥∥∥
Mp,λ(∂Ω,σ)→Mp,λ(∂Ω,σ)

≤ C ‖ν‖[BMO(∂Ω,σ)]n , (2.7.124)

max
1≤j<k≤n

∥∥[Rj , Rk]∥∥Mp,λ(∂Ω,σ)→Mp,λ(∂Ω,σ) ≤ C ‖ν‖[BMO(∂Ω,σ)]n , (2.7.125)

plus similar estimates with the Morrey space Mp,λ(∂Ω, σ) replaced by the vanishing Mor-
rey space M̊p,λ(∂Ω, σ), or the block space Bq,λ(∂Ω, σ).

Proof. The starting point is to observe that we have the operator identities

C(C# −C) = −1
4

(
I +

n∑
j=1

R2
j

)
− 1

4
∑

1≤j<k≤n
[Rj , Rk]ej � ek,

on Mp,λ(∂Ω, σ)⊗ C̀ n, M̊p,λ(∂Ω, σ)⊗ C̀ n, Bq,λ(∂Ω, σ)⊗ C̀ n,
(2.7.126)

which are themselves consequences of (2.7.123) and (2.7.108). With (2.7.126) in hand, the
estimates claimed in the statement of the theorem may then be justified via an estimate
similar in spirit to (2.5.41), and also invoking Proposition 2.7.15 (as well as (2.7.104),
(2.7.107)) in the process.
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2.7.4 Boundary value problems in Morrey and block spaces

We begin by discussing the Dirichlet Problem for weakly elliptic systems in δ-SKT do-
mains with boundary data in ordinary Morrey spaces, vanishing Morrey spaces, and block
spaces.

Theorem 2.7.20. Let Ω ⊆ Rn be an open set satisfying a two-sided local John condition
and whose topological boundary is Ahlfors regular. Abbreviate σ := Hn−1b∂Ω and fix an
aperture parameter κ > 0. Also, pick an integrability exponent p ∈ (1,∞) and a parameter
λ ∈ (0, n− 1). Given a homogeneous, second-order, constant complex coefficient, weakly
elliptic M ×M system L in Rn, consider the Dirichlet Problem

u ∈
[
C∞(Ω)

]M
,

Lu = 0 in Ω,

Nκu ∈Mp,λ(∂Ω, σ),

u
∣∣κ−n.t.

∂Ω = f ∈
[
Mp,λ(∂Ω, σ)

]M
.

(2.7.127)

The following claims are true:

(a) [Existence, Regularity, and Estimates] If Adis
L 6= ∅ and A ∈ Adis

L , then there exists
δ0 ∈ (0, 1) which depends only on n, p, λ, A, the local John constants of Ω, and the
Ahlfors regularity constant of ∂Ω such that if Ω is a δ-SKT domain with 0 < δ < δ0

then 1
2I + KA is an invertible operator on the Morrey space

[
Mp,λ(∂Ω, σ)

]M and
the function u : Ω→ CM defined as

u(x) :=
(
DA

(
1
2I +KA

)−1
f
)
(x) for all x ∈ Ω, (2.7.128)

is a solution of the Dirichlet Problem (2.7.127). Moreover,

‖Nκu‖Mp,λ(∂Ω,σ) ≈ ‖f‖[Mp,λ(∂Ω,σ)]M . (2.7.129)

Furthermore, the function u defined in (2.7.128) satisfies the following regularity
result

Nκ(∇u) ∈Mp,λ(∂Ω, σ)⇐⇒ f ∈
[
Mp,λ

1 (∂Ω, σ)
]M
, (2.7.130)

and if either of these conditions holds then

(∇u
)∣∣κ−n.t.

∂Ω exists (in Cn·M ) at σ-a.e. point on ∂Ω and

‖Nκu‖Mp,λ(∂Ω,σ) + ‖Nκ(∇u)‖Mp,λ(∂Ω,σ) ≈ ‖f‖[Mp,λ
1 (∂Ω,σ)]M .

(2.7.131)

(b) [Uniqueness] Whenever Adis
L> 6= ∅, there exists δ0 ∈ (0, 1) which depends only on

n, p, λ, L, the local John constants of Ω, and the Ahlfors regularity constant of
∂Ω such that if Ω is a δ-SKT domain with 0 < δ < δ0 then the Dirichlet Problem
(2.7.127) has at most one solution.
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(c) [Well-Posedness] If Adis
L 6= ∅ and Adis

L> 6= ∅ then there exists δ0 ∈ (0, 1) which
depends only on n, p, λ, L, the local John constants of Ω, and the Ahlfors regularity
constant of ∂Ω such that if Ω is a δ-SKT domain with 0 < δ < δ0 then the Dirichlet
Problem (2.7.127) is uniquely solvable and the solution satisfies (2.7.129).

(d) [Sharpness] If Adis
L = ∅ then the Dirichlet Problem (2.7.127) may fail to be solvable

(actually for boundary data belonging to an infinite dimensional subspace of the cor-
responding Morrey space). Also, if Adis

L> = ∅ then the Dirichlet Problem (2.7.127)
may have more than one solution (in fact, the linear space of null-solutions may
actually be infinite dimensional).

(e) [Other Spaces of Boundary Data] Similar results to those described in items (a)-(d)
above hold with the Morrey space Mp,λ(∂Ω, σ) replaced by the vanishing Morrey
space M̊p,λ(∂Ω, σ), or the block space Bq,λ(∂Ω, σ) with q ∈ (1,∞).

To give an example, suppose Ω ⊆ Rn is a δ-SKT domain and fix an arbitrary aperture
parameter κ > 0 along with some power a ∈ (0, n − 1). In addition, choose a number
λ ∈ (0, n−1−a) and define p := (n−1−λ)/a ∈ (1,∞). Then, if δ > 0 is sufficiently small
(relative to n, a, λ, the Ahlfors regularity constant of ∂Ω, and the local John constants
of Ω), it follows that for each point xo ∈ ∂Ω the Dirichlet Problem u ∈ C∞(Ω), ∆u = 0 in Ω, Nκu ∈Mp,λ(∂Ω, σ),(

u
∣∣κ−n.t.

∂Ω

)
(x) = |x− xo|−a at σ-a.e. point on ∂Ω,

(2.7.132)

has a unique solution. Moreover, there exists a constant C(Ω, n, κ, a, λ) ∈ (0,∞) with the
property that the said solution satisfies ‖Nκu‖Mp,λ(∂Ω,σ) ≤ C(Ω, n, κ, a, λ). The reason is
that, as seen from Example 2.7.1, the function fxo(x) := |x−xo|−a for σ-a.e. point x ∈ ∂Ω
belongs to the Morrey spaceMp,λ(∂Ω, σ) and we have supxo∈∂Ω ‖fxo‖Mp,λ(∂Ω,σ) <∞. As
such, the result in item (c) of Theorem 2.7.20 applies and yields the desired conclusion.

In addition, there is a naturally accompanying regularity result. To formulate it,
assume q ∈ (1,∞) and µ ∈ (0, n − 1) are such that a + 1 = (n − 1 − µ)/q. Starting
from the realization that the boundary datum fxo actually actually belongs to a suitably
defined off-diagonal Morrey-based Sobolev space on ∂Ω, from (2.6.42) and Example 2.7.1
we see that actually there exists C(Ω, n, κ, a, q, µ) ∈ (0,∞) independent of xo ∈ ∂Ω such
that, if δ > 0 is sufficiently small to begin with, then the unique solution of the Dirichlet
Problem (2.7.132) satisfies the following additional regularity properties

(∇u
)∣∣κ−n.t.

∂Ω exists (in Rn) at σ-a.e. point on ∂Ω,

and ‖Nκ(∇u)‖Mq,µ(∂Ω,σ) ≤ C(Ω, n, κ, a, q, µ).
(2.7.133)

In closing, let us also mention that boundary value problems in a bounded Lipschitz
domain Ω ⊆ Rn with boundary data with components in the Morrey spaces M2,λ(∂Ω, σ)
(with λ belonging to a certain sub-interval of (0, n − 1)) for symmetric, homogeneous,
second-order, systems with constant real coefficients satisfying the Legendre-Hadamard
strong ellipticity condition have been considered in [110].



2. Singular integral operators and quantitative flatness 265

After this digression we turn to the task of giving the proof of Theorem 2.7.20.

Proof of Theorem 2.7.20. The argument parallels the proof of Theorem 2.6.2. First,
Theorem 2.7.12 shows that there exists some δ0 ∈ (0, 1), whose nature is as specified in the
statement of the theorem, with the property that if Ω is a δ-SKT domain with 0 < δ < δ0

then the operator 1
2I + KA is invertible on the Morrey space

[
Mp,λ(∂Ω, σ)

]M . Hence,
the function u in (2.7.128) is meaningfully defined, and according to (2.3.3), (2.7.3),
and Theorem 2.7.8, we have u ∈

[
C∞(Ω)

]M , Lu = 0 in Ω, Nκu ∈ Mp,λ(∂Ω, σ), and
(2.7.129) holds. Concerning the equivalence claimed in (2.7.130), if f ∈

[
Mp,λ

1 (∂Ω, σ)
]M

then Theorem 2.7.12 gives (assuming δ0 is sufficiently small) that
(

1
2I +KA

)−1
f ∈[

Mp,λ
1 (∂Ω, σ)

]M . With this in hand, (2.7.64)-(2.7.65) then imply that the function u

defined as in (2.7.128) satisfies Nκ(∇u) ∈Mp,λ(∂Ω, σ), the nontangential boundary trace
(∇u

)∣∣κ−n.t.

∂Ω exists σ-a.e. on ∂Ω, and the left-pointing inequality in the equivalence claimed
in (2.7.131) holds. In particular, this justifies the left-pointing implication in (2.7.130).
The right-pointing implication in (2.7.130) together with the right-pointing inequality in
the equivalence claimed in (2.7.131) are consequences of (2.7.3) and Proposition 2.2.48.

Turning our attention to the uniqueness result claimed in item (b), suppose Adis
L> 6= ∅

and pick some A ∈ AL such that A> ∈ Adis
L> . Also, denote by q ∈ (1,∞) the Hölder

conjugate exponent of p. From Theorem 2.7.12, presently used with L replaced by L>,
we know that there exists δ0 ∈ (0, 1), which depends only on n, p, λ, A, the local John
constants of Ω, and the Ahlfors regularity constant of ∂Ω, such that if Ω is a δ-SKT
domain with 0 < δ < δ0 then the following operator is invertible:

1
2I +KA> :

[
Bq,λ1 (∂Ω, σ)

]M −→ [
Bq,λ1 (∂Ω, σ)

]M
. (2.7.134)

Also, decreasing the value of δ0 ∈ (0, 1) if necessary guarantees that Ω is an NTA domain
with unbounded boundary (cf. Proposition 2.2.32 and Lemma 2.2.5). In such a case,
(2.6.2) ensures that Ω is globally pathwise nontangentially accessible.

Moving on, recall the fundamental solution E =
(
Eαβ

)
1≤α,β≤M associated with the

system L as in Theorem 1.2.1. Pick x? ∈ Rn \ Ω along with x0 ∈ Ω, arbitrary. Also, fix
ρ ∈

(
0 , 1

4 dist (x0, ∂Ω)
)
and define K := B(x0, ρ). Finally, recall the aperture parameter

κ̃ > 0 associated with Ω and κ as in Theorem 2.6.1. To proceed, for each fixed index
β ∈ {1, . . . ,M}, consider the CM -valued function

f (β)(x) :=
(
Eβα(x− x0)− Eβα(x− x?)

)
1≤α≤M , ∀x ∈ ∂Ω. (2.7.135)

Based on (2.7.19), (2.7.135), (2.7.56), (2.2.341), (2.7.21), (1.2.19), and the Mean Value
Theorem we then conclude that

f (β) ∈
[
Bq,λ1 (∂Ω, σ)

]M
. (2.7.136)

Consequently, with
(

1
2I +KA>

)−1
denoting the inverse of the operator in (2.7.134),

vβ :=
(
vβα

)
1≤α≤M := DA>

( (
1
2I +KA>

)−1
f (β)

)
(2.7.137)
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is a well-defined CM -valued function in Ω which, by virtue of Theorem 2.7.8, satisfies

vβ ∈
[
C∞(Ω)

]M
, L>vβ = 0 in Ω,

Nκ̃vβ ∈ Bq,λ(∂Ω, σ), Nκ̃(∇vβ) ∈ Bq,λ(∂Ω, σ),

and vβ
∣∣̃κ−n.t.

∂Ω = f (β) at σ-a.e. point on ∂Ω.

(2.7.138)

In addition, from (2.7.136)-(2.7.137) and (2.7.64) we see that

(∇vβ
)∣∣̃κ−n.t.

∂Ω exists (in Cn·M ) at σ-a.e. point on ∂Ω. (2.7.139)

For each pair of indices α, β ∈ {1, . . . ,M} let us now define

Gαβ(x) := vβα(x)−
(
Eβα(x− x0)− Eβα(x− x?)

)
, ∀x ∈ Ω \ {x0}. (2.7.140)

Regarding G :=
(
Gαβ

)
1≤α,β≤M as a CM×M -valued function defined Ln-a.e. in Ω, from

(2.7.140) and Theorem 1.2.1 we then see that G ∈
[
L1

loc(Ω,Ln)
]M×M . Furthermore, by

design,
L>G = −δx0IM×M in

[
D′(Ω)

]M×M and

G
∣∣̃κ−n.t.

∂Ω = 0 at σ-a.e. point on ∂Ω,(
∇G

)∣∣̃κ−n.t.

∂Ω exists at σ-a.e. point on ∂Ω,

(2.7.141)

while if v :=
(
vβα

)
1≤α,β≤M then from (1.1.4), (1.2.19), and the Mean Value Theorem it

follows that at each point x ∈ ∂Ω we have(
NΩ\K
κ̃

G
)
(x) ≤

(
Nκ̃v

)
(x) + Cx0,ρ(1 + |x|)1−n and(

NΩ\K
κ̃

(∇G)
)
(x) ≤

(
Nκ̃(∇v)

)
(x) + Cx0,ρ(1 + |x|)−n,

(2.7.142)

where Cx0,ρ ∈ (0,∞) is independent of x. From (2.7.138), (2.7.142), (2.7.21), and (2.7.19)
we see that the conditions listed in (2.6.4) are presently satisfied and, in fact,

NΩ\K
κ̃

(∇G) ∈ Bq,λ(∂Ω, σ). (2.7.143)

Assume now that u = (uβ)1≤β≤M is a CM -valued function in Ω satisfying

u ∈
[
C ∞(Ω)

]M
, Lu = 0 in Ω,

u
∣∣κ−n.t.

∂Ω exists at σ-a.e. point on ∂Ω,

and Nκu belongs to the space Mp,λ(∂Ω, σ).

(2.7.144)

Since (2.7.143) and (2.7.22) imply
ˆ
∂Ω
Nκu·NΩ\K

κ̃
(∇G) dσ

≤ C
∥∥Nκu∥∥Mp,λ(∂Ω,σ)

∥∥NΩ\K
κ̃

(∇G)
∥∥
Bq,λ(∂Ω,σ) <∞, (2.7.145)
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we may rely on Theorem 2.6.1 to conclude that the Poisson integral representation
formula (2.6.6) holds. In particular, the said formula proves that whenever u

∣∣κ−n.t.

∂Ω = 0
at σ-a.e. point on ∂Ω we necessarily have u(x0) = 0. Given that x0 has been arbitrarily
chosen in Ω, this ultimately shows such a function u is actually identically zero in Ω.
This finishes the proof of the uniqueness claim made in item (b). The well-posedness
claim in item (c) is a consequence of what we have already proved in items (a)-(b).

Going further, the first claim in item (d), regarding the potential failure of solvability
of the Dirichlet Problem (2.7.127), is a consequence of Proposition 2.3.12 formulated for
Morrey spaces. Its proof goes through virtually unchanged, with one caveat. Specifically,
to justify (2.3.167), instead of Lebesgue’s Dominated Convergence Theorem on Mucken-
houpt weighted Lebesgue spaces we now use the weak-∗ convergence on Morrey spaces
from Proposition 2.7.4 (bearing in mind the continuity and skew-symmetry of the Hilbert
transform on Morrey and block spaces on the real line). Also, the second claim in item
(d), regarding the potential failure of uniqueness for the Dirichlet Problem (2.7.127), is
a consequence of Example 2.3.11 (keeping in mind (2.3.134) and (2.7.4)).

Consider next the claim made in item (e). When the Morrey space Mp,λ(∂Ω, σ)
is replaced by the vanishing Morrey space M̊p,λ(∂Ω, σ), virtually the same proof goes
through, given that matters may be arranged (by taking δ0 sufficiently small) so that
the operator 1

2I + KA is invertible on
[
M̊p,λ(∂Ω, σ)

]M and
[
M̊p,λ

1 (∂Ω, σ)
]M (cf. Theo-

rem 2.7.12). Finally, in the scenario in which the Morrey space Mp,λ(∂Ω, σ) is replaced
by the block space Bq,λ(∂Ω, σ) for some given q ∈ (1,∞), the same line of reasoning
applies, with a few notable changes. First, if p is the Hölder conjugate exponent of q,
then taking δ0 sufficiently small we may ensure that the operator 1

2I + KA is invertible
on
[
Bq,λ(∂Ω, σ)

]M ,
[
Bq,λ1 (∂Ω, σ)

]M , and
[
Mp,λ

1 (∂Ω, σ)
]M (cf. Theorem 2.7.12). Second,

with f (β) as in (2.7.135), thanks to (2.7.4) in place of (2.7.136) we now have

f (β) ∈
[
Mp,λ

1 (∂Ω, σ)
]M
. (2.7.146)

In place of (2.7.143), this eventually implies

NΩ\K
κ̃

(∇G) ∈Mp,λ(∂Ω, σ), (2.7.147)

so in place of (2.7.145) we now have (again, thanks to (2.7.22))ˆ
∂Ω
Nκu·NΩ\K

κ̃
(∇G) dσ

≤ C
∥∥Nκu∥∥Bq,λ(∂Ω,σ)

∥∥NΩ\K
κ̃

(∇G)
∥∥
Mp,λ(∂Ω,σ) <∞. (2.7.148)

As before, this allows us to invoke Theorem 2.6.1 to conclude that the Poisson integral
representation formula (2.6.6) holds. Ultimately, this readily implies the uniqueness
result we presently seek. Finally, the versions of the claims in item (d) for vanishing
Morrey spaces and block spaces are dealt with much as before (for the former scale, use
(2.7.8); in the case of block spaces, it is useful to observe that (2.7.17) and Lebesgue’s
Dominated Convergence Theorem yield, in place of (2.3.167), that lim

ε→0+
hε = f1 + if2 in

Lr(R,L1) where r is as in (2.7.17), and this suffices to conclude that (2.3.168) holds in
this case). The proof of Theorem 2.7.20 is therefore complete.
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It turns out that the solvability results established in Theorem 2.7.20 may be further
enhanced, via perturbation arguments, as described in our next theorem.

Theorem 2.7.21. Retain the original background assumptions on the set Ω from The-
orem 2.7.20 and, as before, fix two integrability exponents p, q ∈ (1,∞) along with a
parameter λ ∈ (0, n− 1). Then the following statements are true.

(a) [Existence] For each given system Lo ∈ Ldis (cf. (2.3.84)) there exist some small
threshold δ0 ∈ (0, 1) and some open neighborhood U of Lo in L, both of which
depend only on n, p, q, λ, Lo, the local John constants of Ω, and the Ahlfors
regularity constant of ∂Ω, with the property that if ‖ν‖[BMO(∂Ω,σ)]n < δ (i.e., if Ω
is a δ-SKT domain) for some δ ∈ (0, δ0) then for each system L ∈ U the Dirichlet
Problem (2.7.127), along with its versions in which the Morrey spaceMp,λ(∂Ω, σ) is
replaced by the vanishing Morrey space M̊p,λ(∂Ω, σ) or the block space Bq,λ(∂Ω, σ),
are all solvable.

(a) [Uniqueness] For each given system Lo ∈ L with L>o ∈ Ldis there exist some small
threshold δ0 ∈ (0, 1) and some open neighborhood U of Lo in L, both of which depend
only on n, p, q, λ, Lo, the local John constants of Ω, and the Ahlfors regularity
constant of ∂Ω, with the property that if ‖ν‖[BMO(∂Ω,σ)]n < δ (i.e., if Ω is a δ-SKT
domain) for some δ ∈ (0, δ0) then for each system L ∈ U the Dirichlet Problem
(2.7.127) along with its versions in which the Morrey space Mp,λ(∂Ω, σ) is replaced
by the vanishing Morrey space M̊p,λ(∂Ω, σ) or the block space Bq,λ(∂Ω, σ), have at
most one solution.

(c) [Well-Posedness] For each given system Lo ∈ Ldis with L>o ∈ Ldis there exist some
small threshold δ0 ∈ (0, 1) and some open neighborhood U of Lo in L, both of which
depend only on n, p, q, λ, Lo, the local John constants of Ω, and the Ahlfors
regularity constant of ∂Ω, with the property that if ‖ν‖[BMO(∂Ω,σ)]n < δ (i.e., if Ω
is a δ-SKT domain) for some δ ∈ (0, δ0) then for each system L ∈ U the Dirichlet
Problem (2.7.127) along with its versions in which the Morrey space Mp,λ(∂Ω, σ) is
replaced by the vanishing Morrey space M̊p,λ(∂Ω, σ) or the block space Bq,λ(∂Ω, σ),
are all well posed.

Proof. This may be justified by reasoning as in the proof of Theorem 2.6.4, now making
use of the invertibility results from Theorem 2.7.13.

We continue by discussing the Regularity Problem for weakly elliptic systems in
δ-SKT domains with boundary data in Morrey-based Sobolev spaces, vanishing Morrey-
based Sobolev spaces, as well as block-based Sobolev spaces.

Theorem 2.7.22. Let Ω ⊆ Rn be an open set satisfying a two-sided local John condition
and whose topological boundary is Ahlfors regular. Abbreviate σ := Hn−1b∂Ω and fix an
aperture parameter κ > 0. Also, pick an integrability exponent p ∈ (1,∞) and a parameter
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λ ∈ (0, n− 1). Given a homogeneous, second-order, constant complex coefficient, weakly
elliptic M ×M system L in Rn, consider the Regularity Problem

u ∈
[
C∞(Ω)

]M
,

Lu = 0 in Ω,

Nκu, Nκ(∇u) ∈Mp,λ(∂Ω, σ),

u
∣∣κ−n.t.

∂Ω = f ∈
[
Mp,λ

1 (∂Ω, σ)
]M
.

(2.7.149)

The following statements are true:

(a) [Existence and Estimates] If Adis
L 6= ∅ and A ∈ Adis

L , then there exists some δ0 ∈
(0, 1) which depends only on n, p, λ, A, the local John constants of Ω, and the
Ahlfors regularity constant of ∂Ω such that if Ω is a δ-SKT domain with 0 <

δ < δ0 then 1
2I + KA is an invertible operator on the Morrey-based Sobolev space[

Mp,λ
1 (∂Ω, σ)

]M and the function

u(x) :=
(
DA

(
1
2I +KA

)−1
f
)
(x), ∀x ∈ Ω, (2.7.150)

is a solution of the Regularity Problem (2.7.149). In addition,

‖Nκu‖Mp,λ(∂Ω,σ) ≈ ‖f‖[Mp,λ(∂Ω,σ)]M and

‖Nκu‖Mp,λ(∂Ω,σ) + ‖Nκ(∇u)‖Mp,λ(∂Ω,σ) ≈ ‖f‖[Mp,λ
1 (∂Ω,σ)]M .

(2.7.151)

(b) [Uniqueness] Whenever Adis
L> 6= ∅, there exists δ0 ∈ (0, 1) which depends only on n,

p, λ, L, the local John constants of Ω, and the Ahlfors regularity constant of ∂Ω
such that if Ω is a δ-SKT domain with 0 < δ < δ0 then the Regularity Problem
(2.7.149) has at most one solution.

(c) [Well-Posedness] If Adis
L 6= ∅ and Adis

L> 6= ∅ then there exists δ0 ∈ (0, 1) which
depends only on n, p, λ, L, the local John constants of Ω, and the Ahlfors regularity
constant of ∂Ω such that if Ω is a δ-SKT domain with 0 < δ < δ0 then the Regularity
Problem (2.7.149) is uniquely solvable and the solution satisfies (2.7.151).

(d) [Other Spaces of Boundary Data] Analogous results to those described in items (a)-
(c) above are also valid for the Regularity Problem formulated with boundary data
in the vanishing Morrey-based Sobolev space

[
M̊p,λ

1 (∂Ω, σ)
]M , or the block-based

Sobolev space
[
Bq,λ1 (∂Ω, σ)

]M with q ∈ (1,∞).

(e) [Perturbation Results] In each of the cases considered in items (a)-(d), there are
naturally accompanying perturbation results of the sort described in Theorem 2.7.21.

(f) [Sharpness] If Adis
L = ∅ the Regularity Problem (2.7.149) (and its variants involving

vanishing Morrey-based Sobolev spaces, or block-based Sobolev spaces) may fail
to be solvable, and if Adis

L> = ∅ the Regularity Problem (2.7.149) (along with its
aforementioned variants) may posses more than one solution.
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Proof. The claims in items (a)-(d) are implied by Theorem 2.7.12 and Theorem 2.7.20,
while the claim in item (e) may be justified by reasoning as in the proof of Theorem 2.6.4,
now making use of the invertibility results from Theorem 2.7.13. Finally, the claims
in item (f) are consequences of the versions of Example 2.3.11 and Proposition 2.3.14
formulated for Morrey spaces, as well as vanishing Morrey spaces and block spaces (whose
proofs naturally adapt to these spaces; see the discussion in the proof of item (d) in
Theorem 2.7.20).

Remark 2.7.23. Much as in discussed in Remark 2.6.7, similar solvability and well-
posedness results as in Theorem 2.7.22 hold for the versions of the Regularity Prob-
lem (2.7.149) formulated with boundary data belonging to suitably defined off-diagonal
Morrey-based Sobolev spaces (as well as off-diagonal vanishing Morrey-based Sobolev
spaces, and off-diagonal block-based Sobolev spaces).

We next treat the Neumann Problem for weakly elliptic systems in δ-SKT domains
with boundary data in Morrey spaces, vanishing Morrey spaces, and block spaces.

Theorem 2.7.24. Let Ω ⊆ Rn be an open set satisfying a two-sided local John condition
and whose topological boundary is Ahlfors regular. Denote by ν the geometric measure
theoretic outward unit normal ν to Ω, abbreviate σ := Hn−1b∂Ω, and fix an aperture
parameter κ > 0. Also, pick an integrability exponent p ∈ (1,∞) and a parameter
λ ∈ (0, n− 1).

Suppose L is a homogeneous, second-order, constant complex coefficient, weakly el-
liptic M ×M system in Rn, with the property that Adis

L> 6= ∅. Select A ∈ AL such that
A> ∈ Adis

L> and consider the Neumann Problem

u ∈
[
C∞(Ω)

]M
,

Lu = 0 in Ω,

Nκ(∇u) ∈Mp,λ(∂Ω, σ),

∂Aν u = f ∈
[
Mp,λ(∂Ω, σ)

]M
.

(2.7.152)

Then there exists δ0 ∈ (0, 1) which depends only on n, p, λ, A, the local John constants
of Ω, and the Ahlfors regularity constant of ∂Ω such that if Ω is a δ-SKT domain with
0 < δ < δ0 then −1

2I+K#
A>

is an invertible operator on the Morrey space
[
Mp,λ(∂Ω, σ)

]M
and the function u : Ω→ CM defined as

u(x) :=
(
Smod

(
−1

2I +K#
A>

)−1
f
)
(x) for all x ∈ Ω, (2.7.153)

is a solution of the Neumann Problem (2.7.152) which satisfies

‖Nκ(∇u)‖Mp,λ(∂Ω,σ) ≤ C ‖f‖[Mp,λ(∂Ω,σ)]M . (2.7.154)

for some constant C ∈ (0,∞) independent of f .
Moreover, similar results are valid with the Morrey space Mp,λ(∂Ω, σ) replaced by the

vanishing Morrey space M̊p,λ(∂Ω, σ), or the block space Bq,λ(∂Ω, σ) with q ∈ (1,∞).
Finally, in each of these cases there are naturally accompanying perturbation results

of the sort described in Theorem 2.7.21.
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Proof. Theorem 2.7.12 guarantees the existence of some threshold δ0 ∈ (0, 1), whose
nature is as specified in the statement of the theorem, with the property that if Ω
is a δ-SKT domain with 0 < δ < δ0 then the operator −1

2I + K#
A>

is invertible on[
Mp,λ(∂Ω, σ)

]M ,
[
M̊p,λ(∂Ω, σ)

]M , and
[
Bq,λ(∂Ω, σ)

]M (assuming q ∈ (1,∞) has been
fixed to begin with). Granted this, all desired conclusions follow from Theorem 2.7.8 and
Theorem 2.7.13.

In relation to Theorem 2.7.24, we wish to note that in the formulation of the Neu-
mann Problem (2.7.152) for the two-dimensional Lamé system we may allow conormal
derivatives associated with coefficient tensors of the form A = A(ζ) as in (2.4.267) for
any ζ as in (2.6.61) (see Remark 2.7.14 and Remark 2.6.12 in this regard).

Finally, we formulate and solve the Transmission Problem for weakly elliptic systems
in δ-SKT domains with boundary data in Morrey spaces, vanishing Morrey spaces, and
block spaces. In the formulation on this problem, the clarifications made right after the
statement of Theorem 2.6.14 continue to remain relevant.

Theorem 2.7.25. Let Ω ⊆ Rn be an open set satisfying a two-sided local John condition
and whose topological boundary is Ahlfors regular. Denote by ν the geometric measure
theoretic outward unit normal to Ω, abbreviate σ := Hn−1b∂Ω, and set

Ω+ := Ω, Ω− := Rn \ Ω. (2.7.155)

Also, pick an integrability exponent p ∈ (1,∞) along with a parameter λ ∈ (0, n− 1), an
aperture parameter κ > 0, and a transmission parameter µ ∈ C \ {±1}.

Assume L is a homogeneous, second-order, constant complex coefficient, weakly el-
liptic M ×M system in Rn, with the property that Adis

L> 6= ∅. Select A ∈ AL such that
A> ∈ Adis

L> and consider the Transmission Problem

u± ∈
[
C∞(Ω±)

]M
,

Lu± = 0 in Ω±,

Nκ(∇u±) ∈Mp,λ(∂Ω, σ),

u+∣∣κ−n.t.

∂Ω = u−
∣∣κ−n.t.

∂Ω at σ-a.e. point on ∂Ω,

∂Aν u
+ − µ · ∂Aν u− = f ∈

[
Mp,λ(∂Ω, σ)

]M
.

(2.7.156)

Then there exists some number δ0 ∈ (0, 1) which depends only on n, µ, p, λ, A, the
local John constants of Ω, and the Ahlfors regularity constant of ∂Ω such that if the set
Ω is a δ-SKT domain with 0 < δ < δ0 then µ+1

2(µ−1)I + K#
A>

is an invertible operator on
the Morrey space

[
Mp,λ(∂Ω, σ)

]M and the functions u± : Ω± → CM defined as

u±(x) := (1− µ)−1
(
Smod

(
µ+1

2(µ−1)I +K#
A>

)−1
f
)
(x) for all x ∈ Ω± (2.7.157)

solve the Transmission Problem (2.7.156) and satisfy∥∥Nκ(∇u±)
∥∥
Mp,λ(∂Ω,σ) ≤ C ‖f‖[Mp,λ(∂Ω,σ)]M . (2.7.158)
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for some constant C ∈ (0,∞) independent of f .
Furthermore, analogous results hold with the Morrey space Mp,λ(∂Ω, σ) replaced by

the vanishing Morrey space M̊p,λ(∂Ω, σ), or the block space Bq,λ(∂Ω, σ) with q ∈ (1,∞).
In addition, in each of these cases there are naturally accompanying perturbation results
of the sort described in Theorem 2.7.21.

Proof. From the current assumptions and Theorem 2.7.12 (used for the spectral param-
eter z := µ+1

2(µ−1) ∈ C \ {0}) we conclude that there exists some threshold δ0 ∈ (0, 1),
whose nature is as specified in the statement of the theorem, with the property that if
Ω is a δ-SKT domain with 0 < δ < δ0 then the operator µ+1

2(µ−1)I + K#
A>

is invertible
on
[
Mp,λ(∂Ω, σ)

]M ,
[
M̊p,λ(∂Ω, σ)

]M , and
[
Bq,λ(∂Ω, σ)

]M (assuming q ∈ (1,∞) has been
fixed to begin with). With this in hand, the same type of argument as in the proof of
Theorem 2.6.14 (which now relies on Theorem 2.7.8) and the proof of Theorem 2.6.4
(which now makes use of Theorem 2.7.13) yields all desired conclusions.

We close by noting that, in the formulation of the Transmission Problem (2.7.156) for
the two-dimensional Lamé system, we may allow conormal derivatives associated with
coefficient tensors of the form A = A(ζ) as in (2.4.267) for any ζ as in (2.6.72) (see
Remark 2.7.14 and Remark 2.6.16 in this regard).



CHAPTER 3

A Fatou theorem and Poisson’s integral representation
formula in the upper-half space

Let L be a second-order, homogeneous, constant (complex) coefficient elliptic system in
Rn. The goal of this chapter is to prove a Fatou-type result, regarding the a.e. existence
of the nontangential boundary limits of any null-solution u of L in the upper-half space,
whose nontangential maximal function satisfies an integrability condition with respect
to the weighted Lebesgue measure (1 + |x′|n−1)−1dx′ in Rn−1 ≡ ∂Rn+. This is the best
result of its kind in the literature. In addition, we establish a naturally accompanying
integral representation formula involving the Agmon-Douglis-Nirenberg Poisson kernel
for the system L. Finally, we use this machinery to derive well-posedness results for the
Dirichlet boundary value problem for L in Rn+ formulated in a manner which allows for
the simultaneous treatment of a variety of function spaces.

The material in this chapter is based on joint work with J.M. Martell, D. Mitrea,
I. Mitrea, and M. Mitrea (cf. [76]).

Contents
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3.3 Proofs of main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

3.1 Introduction

As is known from the classical work of S.Agmon, A.Douglis, and L.Nirenberg in [1]
and [2], every operator L as in (1.2.1) satisfying (1.2.4) has a Poisson kernel, denoted
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by PL (an object whose properties mirror the most basic characteristics of the classical
harmonic Poisson kernel). For details, see Theorem 1.2.4 above.

The main goal of this chapter is to establish a Fatou-type theorem and a naturally
accompanying Poisson integral representation formula for null-solutions of an elliptic
system L in the upper-half space. Among other things, this is going to yield versatile
well-posedness results for the Dirichlet Problem in Rn+ for such systems.

Theorem 3.1.1 (A Fatou-Type Theorem and Poisson’s Integral Formula). Let L be an
M ×M system with constant complex coefficients as in (1.2.1) satisfying (1.2.4), and fix
some aperture parameter κ > 0. Then

u ∈
[
C∞(Rn+)

]M
, Lu = 0 in Rn+,ˆ

Rn−1

(
Nκu

)
(x′) dx′

1 + |x′|n−1 <∞,
(3.1.1)

implies that 

u
∣∣κ−n.t.

∂Rn+
exists at Ln−1-a.e. point in Rn−1,

u
∣∣κ−n.t.

∂Rn+
belongs to

[
L1
(
Rn−1 ,

dx′

1 + |x′|n−1

)]M
,

u(x′, t) =
(
PLt ∗

(
u
∣∣κ−n.t.

∂Rn+

))
(x′) for each (x′, t) ∈ Rn+,

(3.1.2)

where PL =
(
PLβα

)
1≤β,α≤M is the Agmon-Douglis-Nirenberg Poisson kernel for the system

L in Rn+ and PLt (x′) := t1−nPL(x′/t) for each x′ ∈ Rn−1 and t > 0.

This refines [82, Theorem 6.1, p. 956]. We also wish to remark that even in the classical
case when L := ∆, the Laplacian in Rn, Theorem 3.1.1 is more general (in the sense that it
allows for a larger class of functions) than the existing results in the literature. Indeed, the
latter typically assume an Lp integrability condition for the harmonic function which, in
the range p ∈ (1,∞), implies our weighted L1 integrability condition for the nontangential
maximal function demanded in (3.1.1). In this vein see, e.g., [42, Theorems 4.8-4.9,
pp. 174-175], [115, Corollary, p. 200], [116, Proposition 1, p. 119].

A special case of Theorem 3.1.1 worth singling out is as follows. Recall the Agmon-
Douglis-Nirenberg kernel function

KL ∈
⋂
ε>0

[
C∞

(
Rn+ \B(0, ε)

)]M×M
,

KL(x) := PLt (x′) for all x = (x′, t) ∈ Rn+,
(3.1.3)

associated with the elliptic system L as in Theorem 1.2.4. Fix some to > 0 and define

u(x) := KL(x′, t+ to) = PLt+to(x
′) for all x = (x′, t) ∈ Rn+. (3.1.4)

Then

u ∈
[
C∞

(
Rn+

)]M×M
, Lu = 0 in Rn+, u

∣∣
∂Rn+

= PLto on Rn−1. (3.1.5)
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In addition, (1.2.30) ensures that there exists a finite constant Cto > 0 with the property
that |u(x)| ≤ Cto(1 + |x|)1−n for each x ∈ Rn+. For each fixed κ > 0 this readily entails

(
Nκu

)
(x′) ≤ C

1 + |x′|n−1 , ∀x′ ∈ Rn−1. (3.1.6)

This, in turn, guarantees that the finiteness condition demanded in (3.1.6) is presently
satisfied. Having verified all hypotheses of Theorem 3.1.1, from the Poisson integral
representation formula in the last line of (3.1.2) and (3.1.4)-(3.1.5) we conclude that

PLt+to(x
′) = u(x′, t) =

(
PLt ∗ PLto

)
(x′) for all (x′, t) ∈ Rn+, (3.1.7)

where the convolution between the two matrix-valued functions in (3.1.7) is understood
in a natural fashion, taking into account the algebraic multiplication of matrices. Ul-
timately, this provides an elegant proof of the following result (first established in [82,
Theorem 5.1] via a conceptually different argument):

the Agmon-Douglis-Nirenberg Poisson kernel PL associated
with any given elliptic system L as in Theorem 1.2.4 satisfies
the semi-group property PLt0+t1 = PLt0 ∗ P

L
t1 for all t0, t1 > 0.

(3.1.8)

Here is another important corollary of Theorem 3.1.1, which refines [82, Theorem 3.2,
p. 935].

Corollary 3.1.2 (A General Uniqueness Result). Let L be an M × M system with
constant complex coefficients as in (1.2.1) satisfying (1.2.4), and fix an aperture parameter
κ > 0. Then

u ∈
[
C∞(Rn+)

]M
, Lu = 0 in Rn+,ˆ

Rn−1

(
Nκu

)
(x′) dx′

1 + |x′|n−1 < +∞,

u
∣∣κ−n.t.

∂Rn+
= 0 at Ln−1-a.e. point on Rn−1,


=⇒ u = 0 in Rn+. (3.1.9)

Theorem 3.1.1 also interfaces tightly with the topic of boundary value problems.
To elaborate on this aspect, we need more notation. Denote by M the collection of
all (equivalence classes of) Lebesgue measurable functions f : Rn−1 → [−∞,∞] such
that |f | < ∞ at Ln−1-a.e. point in Rn−1. Also, call a subset Y of M a function
lattice if the following properties hold:

(i) whenever f, g ∈ M satisfy 0 ≤ f ≤ g at Ln−1-a.e. point in Rn−1 and g ∈ Y then
necessarily f ∈ Y;

(ii) 0 ≤ f ∈ Y implies λf ∈ Y for every λ ∈ (0,∞);

(iii) 0 ≤ f, g ∈ Y implies max{f, g} ∈ Y.
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In passing, note that, granted (i), one may replace (ii)-(iii) above by the condition:
0 ≤ f, g ∈ Y implies f + g ∈ Y. As usual, we set log+ t := max

{
0 , ln t

}
for each

t ∈ (0,∞). Also, the symbol M is reserved for the Hardy-Littlewood maximal operator
in Rn−1; see (3.2.1).

We are now in a position to discuss the following refinement of [82, Theorem 1.1,
p. 915].

Corollary 3.1.3 (A Template for the Dirichlet Problem). Let L be an M ×M system
with constant complex coefficients as in (1.2.1) satisfying (1.2.4), and fix an aperture
parameter κ > 0. Also, assume that

Y ⊆ L1
(
Rn−1 ,

dx′

1 + |x′|n−1

)
, Y is a function lattice, (3.1.10)

and that

X is a collection of CM -valued measurable
functions on Rn−1 satisfying MX ⊆ Y.

(3.1.11)

Then the (X,Y)-Dirichlet boundary value problem for the system L in the upper-half
space, formulated as 

u ∈
[
C∞(Rn+)

]M
,

Lu = 0 in Rn+,

Nκu ∈ Y,

u
∣∣κ−n.t.

∂Rn+
= f ∈ X,

(3.1.12)

has a unique solution. Moreover, the solution u of (3.1.12) is given by

u(x) = (PLt ∗ f)(x′) for all x = (x′, t) ∈ Rn−1 × (0,∞) = Rn+, (3.1.13)

where PL is the Poisson kernel for L in Rn+, and satisfies(
Nκu

)
(x′) ≤ CMf(x′), ∀x′ ∈ Rn−1, (3.1.14)

for some constant C ∈ (0,∞) that depends only on L, n, and κ.

Corollary 3.1.3 contains as particular cases a multitude of well-posedness results
for elliptic systems in the upper-half space. For example, one may take Muckenhoupt
weighted Lebesgue spaces X :=

[
Lp(Rn−1, wLn−1)

]M and Y := Lp(Rn−1, wLn−1) with
p ∈ (1,∞) and w ∈ Ap, or Morrey spaces in Rn−1; for more on this, as well as
other examples, see [82].

Here we wish to identify the most inclusive setting in which Corollary 3.1.3 yields a
well-posedness result. Specifically, in view of the assumptions made in (3.1.10)-(3.1.11)
it is natural to consider the linear space

Z :=
{
f ∈

[
L1(Rn−1 , dx′

1+|x′|n−1
)]M : Mf ∈ L1(Rn−1 , dx′

1+|x′|n−1
)}

=
{
f : Rn−1 → CM : measurable and Mf ∈ L1(Rn−1 , dx′

1+|x′|n−1
)}

(3.1.15)
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(recall that M is the Hardy-Littlewood maximal operator in Rn−1) equipped with the
norm

‖f‖Z := ‖f‖[L1(Rn−1, dx′
1+|x′|n−1 )]M + ‖Mf‖

L1
(
Rn−1, dx′

1+|x′|n−1

)
≈ ‖Mf‖

L1
(
Rn−1, dx′

1+|x′|n−1

), ∀ f ∈ Z . (3.1.16)

Then, Corollary 3.1.3 applied with X := Z and Y := L1(Rn−1 , dx′|
1+|x′|n−1

)
yields the fol-

lowing result.

Corollary 3.1.4 (The Most Inclusive Well-Posedness Result). Let L be anM×M system
with constant complex coefficients as in (1.2.1) satisfying (1.2.4), and fix an aperture
parameter κ > 0. Then the following boundary-value problem is well-posed:

u ∈
[
C∞(Rn+)

]M
, Lu = 0 in Rn+,ˆ

Rn−1

(
Nκu

)
(x′) dx′

1 + |x′|n−1 <∞,

u
∣∣κ−n.t.

∂Rn+
= f ∈ Z .

(3.1.17)

The relevance of the fact that (3.1.1) implies (3.1.2) in the context of all the afore-
mentioned boundary value problems (cf. (3.1.12), (3.1.17)) is that the nontangential
boundary trace u

∣∣κ−n.t.

∂Rn+
is guaranteed to exist by the other conditions imposed on the

function u in the formulation of the said problems, and that the solution may be re-
covered from the boundary datum via convolution with the Poisson kernel canonically
associated with the system L.

The type of boundary value problems treated here, in which the size of the solution
is measured in terms of its nontangential maximal function and its trace is taken in a
nontangential pointwise sense, has been dealt with in the particular case when L = ∆, the
Laplacian in Rn, in a number of monographs, including [8], [42], [115], [116], and [117].
In all these works, the existence part makes use of the explicit form of the harmonic
Poisson kernel, while the uniqueness relies on either the Maximum Principle, or the
Schwarz reflection principle for harmonic functions. Neither of the latter techniques
may be adapted successfully to prove uniqueness in the case of general systems treated
here, and our approach is more in line with the work in [82] (which involves Green
function estimates and a sharp version of the Divergence Theorem), with some significant
refinements. A remarkable aspect is that our approach works for the entire class of
elliptic systems L as in (1.2.1) satisfying (1.2.4).

3.2 Preliminary matters

Recall the notation related to the upper-half space introduced in Section 4.1. Addition-
ally, the origin in Rn−1 is denoted by 0′ and we let Bn−1(x′, r) stand for the (n − 1)-
dimensional Euclidean ball of radius r centered at x′ ∈ Rn−1. With this terminology, the
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action of the Hardy-Littlewood maximal operator in Rn−1 on any Lebesgue measurable
function f defined in Rn−1 is given by

(
Mf

)
(x′) := sup

r>0

 
Bn−1(x′,r)

|f | dLn−1, ∀x′ ∈ Rn−1, (3.2.1)

where, as usual, the barred integral denotes mean average (for functions which are CM -
valued the average is taken componentwise).

We next recall a useful weak compactness result from [82, Lemma 6.2, p. 956]. To state
it, denote by Cvan(Rn−1) the space of continuous functions in Rn−1 vanishing at infinity.

Lemma 3.2.1. Let v : Rn−1 → (0,∞) be a Lebesgue measurable function and consider
a sequence {fj}j∈N in the weighted Lebesgue space L1(Rn−1 , vLn−1) such that

F := sup
j∈N
|fj | ∈ L1(Rn−1 , vLn−1). (3.2.2)

Then there exists a subsequence
{
fjk
}
k∈N of {fj}j∈N and f ∈ L1(Rn−1 , vLn−1) with

the property that
ˆ
Rn−1

fjk(x′)ϕ(x′)v(x′) dx′ −→
ˆ
Rn−1

f(x′)ϕ(x′)v(x′) dx′ as k →∞, (3.2.3)

for every ϕ ∈ Cvan(Rn−1).

A key ingredient in the proof of our main result is understanding the nature of the
Green function associated with a given elliptic system. While we elaborate on this topic
in Theorem 3.2.3 below, we begin by providing a suitable definition for the said Green
function (which, in particular, is going to ensure its uniqueness). To set the stage,
denote by D′(Rn+) the space of distributions in Rn+.

Definition 3.2.2. Let L be an M ×M system with constant complex coefficients as in
(1.2.1) satisfying (1.2.4). Call GL(·, ·) : Rn+ × Rn+ \ diag → CM×M a Green function
for L in Rn+ provided for each y = (y′, yn) ∈ Rn+ the following properties hold (for some
aperture parameter κ > 0):

GL(· , y) ∈
[
L1

loc(Rn+)
]M×M

, (3.2.4)

GL(· , y)
∣∣κ−n.t.

∂Rn+
= 0 at Ln−1-a.e. point in Rn−1 ≡ ∂Rn+, (3.2.5)

ˆ
Rn−1

(
N Rn+\B(y,yn/2)
κ GL(· , y)

)
(x′) dx′

1 + |x′|n−1 <∞, (3.2.6)

L
[
GL(· , y)

]
= −δy IM×M in

[
D′(Rn+)

]M×M
, (3.2.7)

where the M ×M system L acts in the “dot” variable on the columns of G.

The existence and basic properties of the Green function just defined are discussed in
our next theorem (a proof of which may be found in [83]). Before stating it, we make two
conventions regarding notation. First, we agree to abbreviate diag := {(x, x) : x ∈ Rn+}
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for the diagonal in the Cartesian product Rn+ × Rn+. Second, given a function G(·, ·) of
two vector variables, (x, y) ∈ Rn+ × Rn+ \ diag, for each k ∈ {1, . . . , n} we agree to write
∂XkG and ∂YkG, respectively, for the partial derivative of G with respect to xk, and yk.
This convention may be iterated, lending a natural meaning to ∂αX∂

β
YG, for each pair of

multi-indices α, β ∈ Nn0 . We are now ready to present the result alluded to above.

Theorem 3.2.3. Assume that L is an M ×M system with constant complex coefficient
as in (1.2.1) satisfying (1.2.4). Then there exists a unique Green function GL(·, ·) for L
in Rn+, in the sense of Definition 3.2.2. Moreover, this Green function also satisfies the
following additional properties:

(1) Given κ > 0, for each y ∈ Rn+ and each compact neighborhood K of y in Rn+ there
exists a finite constant Cy = C(n,L, κ,K, y) > 0 such that for every x′ ∈ Rn−1

there holds
N

Rn+\K

κ

(
GL(·, y)

)
(x′) ≤ Cy

1 + log+ |x′|
1 + |x′|n−1 . (3.2.8)

Moreover, for any multi-indices α, β ∈ Nn0 such that |α|+ |β| > 0, there exists some
constant Cy = C(n,L, κ, α, β,K, y) ∈ (0,∞) such that

N Rn+\K
κ

(
(∂αX∂

β
YG

L)(·, y)
)
(x′) ≤ Cy

1 + |x′|n−2+|α|+|β| . (3.2.9)

(2) For each fixed y ∈ Rn+, there holds

GL(· , y) ∈
[
C∞

(
Rn+ \B(y, ε)

)]M×M for every ε > 0. (3.2.10)

As a consequence of (3.2.10) and (3.2.5), for each fixed y ∈ Rn+ one has

GL(·, y)
∣∣∣
∂Rn+

= 0 everywhere on Rn−1. (3.2.11)

(3) For each α, β ∈ Nn0 the function ∂αX∂
β
YG

L is translation invariant in the tangential
variables, in the sense that(

∂αX∂
β
YG

L
)(
x− (z′, 0), y − (z′, 0)

)
=
(
∂αX∂

β
YG

L
)
(x, y)

for each (x, y) ∈ Rn+ × Rn+ \ diag and z′ ∈ Rn−1,
(3.2.12)

and is positive homogeneous, in the sense that(
∂αX∂

β
YG

L
)
(λx, λy) = λ2−n−|α|−|β|(∂αX∂βYGL)(x, y)

for each x, y ∈ Rn+ with x 6= y and λ ∈ (0,∞),

provided either n ≥ 3, or |α|+ |β| > 0.

(3.2.13)

(4) If GL>(·, ·) denotes the (unique, by the first part of the statement) Green function
for L> (the transposed of L) in Rn+, then

GL(x, y) =
[
GL
>(y, x)

]>
, ∀ (x, y) ∈ Rn+ × Rn+ \ diag. (3.2.14)
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Hence, as a consequence of (3.2.14), (3.2.5), and (3.2.10), for each fixed x ∈ Rn+
and ε > 0,

GL(x, ·) ∈
[
C∞

(
Rn+ \B(x, ε)

)]M×M and GL(x, ·)
∣∣∣
∂Rn+

= 0 on Rn−1. (3.2.15)

(5) For any multi-indices α, β ∈ Nn0 there exists a finite constant Cαβ > 0 such that∣∣(∂αX∂βYGL)(x, y)
∣∣ ≤ Cαβ|x− y|2−n−|α|−|β|,

∀ (x, y) ∈ Rn+ × Rn+ \ diag, if either n ≥ 3, or |α|+ |β| > 0,
(3.2.16)

and, corresponding to |α| = |β| = 0 and n = 2, there exists C ∈ (0,∞) such that∣∣GL(x, y)
∣∣ ≤ C + C

∣∣ln |x− y|∣∣, ∀ (x, y) ∈ R2
+ × R2

+ \ diag, (3.2.17)

where y := (y′,−yn) ∈ Rn is the reflexion of y = (y′, yn) ∈ Rn+ across the boundary
of the upper-half space.

(6) The Agmon-Douglis-Nirenberg Poisson kernel PL =
(
PLγα

)
1≤γ,α≤M for L in Rn+

from Theorem 1.2.4 is related to the Green function GL for L in Rn+ according to
the formula

PLγα(z′) = aβαnn
(
∂YnG

L
γβ

)(
(z′, 1), 0

)
, ∀ z′ ∈ Rn−1,

for each α, γ ∈ {1, . . . ,M}.
(3.2.18)

We conclude by recording a suitable version of the divergence theorem recently ob-
tained in [93]. To state it requires a few preliminaries which we dispense with first. Recall
first that we write E ′(Rn+) for the subspace of D′(Rn+) consisting of those distributions
which are compactly supported. Hence,

E ′(Rn+) ↪→ D′(Rn+) and L1
loc(Rn+) ↪→ D′(Rn+). (3.2.19)

For each compact set K ⊂ Rn+, define E ′K(Rn+) :=
{
u ∈ E ′(Rn+) : suppu ⊂ K

}
and con-

sider

E ′K(Rn+) + L1(Rn+) :=
{
u ∈ D′(Rn+) : ∃ v1 ∈ E ′K(Rn+) and ∃ v2 ∈ L1(Rn+)

such that u = v1 + v2 in D′(Rn+)
}
. (3.2.20)

Also, introduce C∞b (Rn+) := C∞(Rn+)∩L∞(Rn+) and let
(
C∞b (Rn+)

)∗ denote its algebraic
dual. Moreover, we let (C∞

b
(Rn+))∗

(
· , ·
)
C∞
b

(Rn+) denote the natural duality pairing between
these spaces. It is useful to observe that for every compact set K ⊂ Rn+ one has

E ′K(Rn+) + L1(Rn+) ⊂
(
C∞b (Rn+)

)∗
. (3.2.21)

Theorem 3.2.4 ([93]). Assume that K ⊂ Rn+ is a compact set and that ~F ∈
[
L1

loc(Rn+)
]n

is a vector field satisfying the following conditions (for some aperture parameter κ > 0):
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(a) div ~F ∈ E ′K(Rn+) + L1(Rn+), where the divergence is taken in the sense of distribu-
tions;

(b) the nontangential maximal function N Rn+\K
κ

~F belongs to L1(Rn−1);

(c) the nontangential boundary trace ~F
∣∣κ−n.t.

∂Rn+
exists (in Cn) at Ln−1-a.e. point in Rn−1.

Then, with en := (0, . . . , 0, 1) ∈ Rn and “dot" denoting the standard inner product in Rn,

(C∞
b

(Rn+))∗
(
div ~F, 1

)
C∞
b

(Rn+) = −
ˆ
Rn−1

en ·
(
~F
∣∣κ−n.t.

∂Rn+

)
dLn−1. (3.2.22)

3.3 Proofs of main results

We take on the task of presenting the proof of Theorem 3.1.1.

Proof of Theorem 3.1.1. Fix an arbitrary point x? ∈ Rn+ and bring in GL
>( · , x?), the

Green function with pole at x? for L>, the transposed of the operator L (cf. Defini-
tion 3.2.2 and Theorem 3.2.3 for details on this matter). For ease of notation, abbreviate

G(·) := GL
>( · , x?) in Rn+ \ {x?}. (3.3.1)

By design, this is a matrix-valued function, say G = (Gαγ)1≤α,γ≤M . We shall apply
Theorem 3.2.4 to a suitably chosen vector field. To set the stage, consider the compact
set

K? := B(x?, r) ⊂ Rn+, where r := dist (x?, ∂Rn+) · κ
2
√

4+κ2 . (3.3.2)

For each ε > 0 consider the function uε : Rn+ → CM given by

uε(x) := u(x′, xn + ε) for all x = (x′, xn) ∈ Rn+. (3.3.3)

Then

uε ∈
[
C ∞(Rn+ )

]M
, Luε = 0 in Rn+, and Nκuε ≤ Nκu on Rn−1. (3.3.4)

Fix ε > 0 along with some β ∈ {1, . . . ,M} and, using the summation convention over
repeated indices, define the vector field

~F :=
(
uεα a

γα
kj ∂kGγβ −Gαβ a

αγ
jk ∂ku

ε
γ

)
1≤j≤n

at Ln-a.e. point in Rn+. (3.3.5)

From (3.3.5), Theorem 3.2.3, and the fact that uε ∈
[
C ∞(Rn+ )

]M it follows that

~F ∈
[
L1

loc(Rn+)
]n ∩ [C∞(Rn+ \K?)

]n (3.3.6)

and, on account of (3.2.11) (used for L> in place of L), we have

~F
∣∣∣
∂Rn+

=
((
uεα
∣∣
∂Rn+

)
aγαkj

(
∂kGγβ

)∣∣
∂Rn+

)
1≤j≤n

. (3.3.7)
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Next, in the sense of distributions in Rn+, we may compute

div ~F = (∂juεα) aγαkj (∂kGγβ) + uεα a
γα
kj (∂j∂kGγβ)

− (∂jGαβ) aαγjk (∂kuεγ)−Gαβ aαγjk (∂j∂kuεγ)

=: I1 + I2 + I3 + I4, (3.3.8)

where the last equality defines the Ii’s. Changing variables j′ = k, k′ = j, α′ = γ, and
γ′ = α in I3 yields

I3 = −(∂k′Gγ′β) aγ
′α′

k′j′ (∂j′uεα′) = −I1. (3.3.9)

As regards I4, we have
I4 = −Gαβ (Luε)α = 0, (3.3.10)

by (3.3.4). Finally,

I2 = uεα(LA>G·β)α = uεα(L>G·β)α

= −uεαδαβδx? = −uεβ δx? = −uεβ(x?) δx? . (3.3.11)

Collectively, these equalities permit us to conclude that, in the sense of distributions in
Rn+,

div ~F = −uεβ(x?) δx? ∈ E ′(Rn+). (3.3.12)

In particular,

div ~F ∈ D′(Rn+) induces a continuous functional in
(
C∞b (Rn+)

)∗
. (3.3.13)

Moving on, fix x′ ∈ Rn−1 ≡ ∂Rn+ and pick an arbitrary point

y = (y′, yn) ∈ Γκ/2(x′) \K?. (3.3.14)

Choose a rectifiable path γ : [0, 1]→ Rn+ joining (x′, 0) with y in Γκ/2(x′)\K? and whose
length is ≤ Cyn. Then, for some constant C ∈ (0,∞) independent of x′ and y, we may
estimate

|G(y)| = |G(y)−G(x′, 0)| =
∣∣∣ ˆ 1

0

d

dt
[G(γ(t))] dt

∣∣∣
=
∣∣∣ ˆ 1

0
(∇G)(γ(t)) · γ′(t) dt

∣∣∣ ≤ ( sup
ξ∈γ((0,1))

|(∇G)(ξ)|
)ˆ 1

0
|γ′(t)| dt

≤ Cyn · N
Rn+\K?
κ/2 (∇G)(x′), (3.3.15)

using the fact that G vanishes on ∂Rn+, the Fundamental Theorem of Calculus, Chain
Rule, and (1.1.4). Next, define

a := κ

2(κ+ 1) ∈
(
0, 1

2
)

(3.3.16)
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and write, using interior estimates (cf. Theorem 1.2.2) for the function uε,

|(∇uε)(y)| ≤ C

yn

 
B(y,a·yn)

|uε(z)| dz

≤ Cy−1
n · sup

z∈Γκ(x′)
|uε(z)| ≤ Cy−1

n ·
(
Nκuε

)
(x′), (3.3.17)

since having z = (z′, zn) ∈ B(y, a · yn) entails

yn ≤ zn + |z − y| < zn + a · yn =⇒ yn < (1− a)−1zn, (3.3.18)

which, bearing in mind that y is as in (3.3.14), permits us to conclude that

|z′ − x′| ≤ |z′ − y′|+ |y′ − x′| ≤ |z − y|+ (κ/2)yn < a · yn + (κ/2)yn

= (κ/2 + a)yn <
κ/2 + a

1− a zn = κzn, hence z ∈ Γκ(x′). (3.3.19)

Then combining (3.3.15) with (3.3.17) gives, on account of (3.2.9),

N Rn+\K?
κ/2

(
|G||∇uε|

)
(x′) ≤ C

(
N Rn+\K?
κ/2 (∇G)

)
(x′)

(
Nκuε

)
(x′)

≤ C
(
Nκu

)
(x′) 1

1 + |x′|n−1 at each point x′ ∈ Rn−1. (3.3.20)

Since we also have

N Rn+\K?
κ/2

(
|∇G||uε|

)
(x′) ≤

(
N Rn+\K?
κ/2 (∇G)

)
(x′)

(
Nκuε

)
(x′)

≤ C
(
Nκu

)
(x′) 1

1 + |x′|n−1 at each point x′ ∈ Rn−1, (3.3.21)

we conclude from (3.3.5), (3.3.20), (3.3.21), and the second line in (3.1.1) that

N Rn+\K?
κ/2

~F ∈ L1(Rn−1). (3.3.22)

Having established (3.3.6), (3.3.7), (3.3.13), and (3.3.22), Theorem 3.2.4 applies. To
write the Divergence Formula (3.2.22) in this case, express x? as (x′, t) ∈ Rn−1 × (0,∞).
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Then, in view of (3.3.12) and (3.3.7) we may write

uβ(x? + εen) = uεβ(x?) = −(C∞
b

(Rn+))∗
(
div ~F , 1

)
C∞
b

(Rn+)

=
ˆ
Rn−1

en ·
(
~F
∣∣
∂Rn+

)
dLn−1

=
ˆ
Rn−1

uα(y′, ε)aγαkn
(
∂kGγβ

)
(y′, 0) dy′

=
ˆ
Rn−1

uα(y′, ε)aγαnn
(
∂nGγβ

)
(y′, 0) dy′

=
ˆ
Rn−1

uα(y′, ε)aγαnn(∂XnGL
>

γβ )
(
(y′, 0), x?

)
dy′

=
ˆ
Rn−1

uα(y′, ε)aγαnn(∂YnGLβγ)
(
x?, (y′, 0)

)
dy′

=
ˆ
Rn−1

uα(y′, ε)aγαnn(∂YnGLβγ)
(
(x′ − y′, t), 0

)
dy′

=
ˆ
Rn−1

uα(y′, ε)t1−naγ αnn (∂YnGLβγ)
(
((x′ − y′)/t, 1), 0

)
dy′

=
ˆ
Rn−1

uα(y′, ε)(PLβα)t(x′ − y′) dy′, (3.3.23)

where the fifth equality uses the observation that (∂kG)(y′, 0) = 0 whenever k < n since
G vanishes (in a smooth fashion) on Rn−1 × {0}, the sixth equality is a consequence
of (3.3.1), the seventh equality is implied by (3.2.14), the eighth equality makes use of
(3.2.12) (bearing in mind that x? = (x′, t)), the ninth equality is seen from (3.2.13), and
the last equality comes from (3.2.18).

Since β ∈ {1, . . . ,M} and x? = (x′, t) ∈ Rn+ have been arbitrarily chosen, the
argument so far shows that

u(x′, t+ ε) =
ˆ
Rn−1

PLt (x′ − y′)fε(y′) dy′ for each x = (x′, t) ∈ Rn+, (3.3.24)

where we have abbreviated

fε := u(·, ε) : Rn−1 −→ CM for each ε > 0. (3.3.25)

If we also consider the weight υ : Rn−1 → (0,∞) defined as v(x′) := (1 + |x′|n−1)−1 for
each x′ ∈ Rn−1, then the last condition in (3.1.1) entails

sup
ε>0
|fε| ≤ Nκu ∈ L1(Rn−1 , vLn−1). (3.3.26)

Granted this, the weak-∗ convergence result in Lemma 3.2.1 may be used for the sequence{
fε
}
ε>0 ⊂ L1(Rn−1 , vLn−1) to conclude that there is some f ∈ L1(Rn−1 , vLn−1) and

some sequence {εj}j∈N ⊂ (0,∞) which converges to zero with the property that

lim
j→∞

ˆ
Rn−1

ϕ(y′)fεj (y′)
dy′

1 + |y′|n−1 =
ˆ
Rn−1

ϕ(y′)f(y′) dy′

1 + |y′|n−1 (3.3.27)
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for every continuous function ϕ ∈ Cvan(Rn−1). The fact that there exists a constant
C ∈ (0,∞) for which

|PL(z′)| ≤ C

(1 + |z′|2)n/2
for each z′ ∈ Rn−1 (3.3.28)

(see (1.2.26)) ensures for each fixed point (x′, t) ∈ Rn+ the assignment

Rn−1 3 y′ 7→ ϕ(y′) := (1 + |y′|n−1)PLt (x′ − y′) ∈ CM×M

is a continuous function which vanishes at infinity.
(3.3.29)

At this stage, from (3.3.24) and (3.3.27) used for the function ϕ defined in (3.3.29) we
obtain (bearing in mind that u is continuous in Rn+) that

u(x′, t) =
ˆ
Rn−1

PLt (x′ − y′)f(y′) dy′ for each x = (x′, t) ∈ Rn+. (3.3.30)

With this in hand, and since L1(Rn−1 , vLn−1) ⊆ L1
(
Rn−1 ,

dx′

1 + |x′|n
)
, we may invoke

Theorem 1.2.4(c) to conclude that

u
∣∣κ−n.t.

∂Rn+
exists and equals f at Ln−1-a.e. point in Rn−1. (3.3.31)

Once this has been established, all conclusions in (3.1.2) are implied by (3.3.30)-(3.3.31).

We close by presenting the proof of Corollary 3.1.3.

Proof of Corollary 3.1.3. As a preamble, let us first show that

X ⊆
[
L1
(
Rn−1 ,

dx′

1 + |x′|n
)]M

. (3.3.32)

To justify this, pick some arbitrary f ∈ X. Then the inclusion in (3.1.11) gives that
Mf ∈ Y, hence Mf is not identically +∞. This implies that f ∈ [L1

loc(Rn−1)]M which,
in concert with Lebesgue’s Differentiation Theorem, implies that |f | ≤Mf at Ln−1-a.e.
point in Rn−1. Since Y is a function lattice, it follows that |f | ∈ Y. Thus, ultimately,
(3.3.32) holds by virtue of the inclusion in (3.1.10).

To prove the existence of a solution for (3.1.12), given any f ∈ X define u as in
(3.1.13). Note that (3.3.32) ensures that Theorem 1.2.4(c) is applicable. In turn, this
guarantees that u is a well-defined null-solution of L belonging to

[
C∞(Rn+)

]M , satisfying
the boundary condition u

∣∣κ−n.t.

∂Rn+
= f at Ln−1-a.e. point in Rn−1, as well as the pointwise

estimate in (3.1.14). The latter property, together with the last conditions imposed in
(3.1.11) and (3.1.10), guarantees Nκu ∈ Y. Thus, u is indeed a solution for (3.1.12).

At this stage, there remains to establish that the boundary value problem (3.1.12)
can have at most one solution. To this end, assume that both u1 and u2 solve (3.1.12)
for the same datum f ∈ X and set u := u1 − u2 ∈

[
C∞(Rn+)

]M . Then Lu = 0 in Rn+
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and u
∣∣κ−n.t.

∂Rn+
= 0 at Ln−1-a.e. point in Rn−1. Since we also have Nκu1,Nκu2 ∈ Y, the

pointwise estimate

0 ≤ Nκu ≤ Nκu1 +Nκu2 ≤ 2 max
{
Nκu1 , Nκu2

}
on Rn−1 (3.3.33)

forces Nκu ∈ Y by the properties of the function lattice Y. Granted this, Corollary 3.1.2
applies (thanks to the first condition in (3.1.10)) and gives that u ≡ 0 in Rn+. Hence
u1 = u2, as wanted.



CHAPTER 4

The generalized Hölder and Morrey-Campanato Dirichlet
problems for elliptic systems in the upper-half space

We prove well-posedness results for the Dirichlet Problem in the upper-half space Rn+ for
homogeneous, second-order, constant complex coefficient elliptic systems with boundary
data in generalized Hölder spaces C ω(Rn−1,CM ) and in generalized Morrey-Campanato
spaces E ω,p(Rn−1,CM ) under certain assumptions on the growth function ω. We also
identify a class of growth functions ω for which C ω(Rn−1,CM ) = E ω,p(Rn−1,CM ) and
for which the aforementioned well-posedness results are equivalent, in the sense that they
have the same unique solution, satisfying natural regularity properties and estimates.

The material in this chapter is based on joint work with J.M. Martell and M. Mitrea
(cf. [79]).
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4.1 Introduction

This chapter is devoted to studying the Dirichlet Problem for elliptic systems in the
upper-half space with data in generalized Hölder and generalized Morrey-Campanato
spaces. As a byproduct of the PDE-based techniques developed here, we are able
to establish the equivalence of these function spaces. To be more specific requires
introducing some notation.

With each system L as in (1.2.1) satisfying (1.2.4) one may associate a Poisson
kernel, PL, which is a CM×M -valued function defined in Rn−1 described in detail in
Theorem 1.2.4. This Poisson kernel has played a pivotal role in the treatment of the
Dirichlet Problem with data in Lp, BMO, VMO and Hölder spaces (see [82, 85]). For
now, we make the observation that the Poisson kernel gives rise to a nice approximation
to the identity in Rn−1 by setting PLt (x′) = t1−nPL(x′/t) for every x′ ∈ Rn−1 and t > 0.

For every point x ∈ Rn write x = (x′, t), where x′ ∈ Rn−1 corresponds to the first
n − 1 coordinates of x, and t ∈ R is the last coordinate of x. As is customary, we shall
let Rn+ := {x = (x′, t) ∈ Rn : x′ ∈ Rn−1, t > 0} denote the upper-half space in Rn,
and typically identify its boundary with (n− 1)-dimensional Euclidean space, via ∂Rn+ 3
(x′, 0) ≡ x′ ∈ Rn−1. In this case, the nontangential approach regions defined in (1.1.1) are
cones and we agree to denote the cone with vertex at x′ ∈ Rn−1 and aperture κ > 0 as

Γκ(x′) := {y = (y′, t) ∈ Rn+ : |x′ − y′| < κt}. (4.1.1)

The nontangential limit of u at x′ ∈ Rn−1 (that is, the limit from within the cone Γκ(x′)
defined as in (4.1.1)) is denoted by

(
u
∣∣κ−n.t.

∂Ω
)
(x′) following the terminology introduced

in Section 1.1. The unrestricted pointwise trace of a vector-valued function u defined
in Rn+ at each x′ ∈ ∂Rn+ ≡ Rn−1 is taken to be

(u|∂Rn+)(x′) := lim
Rn+3y→(x′,0)

u(y), x′ ∈ Rn−1, (4.1.2)

whenever such a limit exists exists.
Remember the definitions of growth function and generalized Hölder space in Defini-

tions 1.3.1 and 1.3.5. Growth functions are always defined on (0,∞) throughout this chap-
ter.

Definition 4.1.1. Given a growth function ω along with some integrability exponent
p ∈ [1,∞), the associated generalized Morrey-Campanato space in Rn−1 is defined as

E ω,p(Rn−1,CM ) :=
{
f ∈

[
L1

loc(Rn−1)
]M : ‖f‖E ω,p(Rn−1,CM ) <∞

}
, (4.1.3)

where ‖f‖E ω,p(Rn−1,CM ) stands for the semi-norm

‖f‖E ω,p(Rn−1,CM ) := sup
Q⊆Rn−1

1
ω(`(Q))

(  
Q
|f(x′)− fQ|p dx′

)1/p
. (4.1.4)
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The choice ω(t) := tα with α ∈ (0, 1) corresponds to the classical Morrey-Campanato
spaces, while the special case ω(t) := 1 yields the usual space of functions of bounded
mean oscillations (BMO). We also define, for every u ∈

[
C 1(Rn+)

]M and q ∈ (0,∞),

‖u‖(ω,q)∗∗ := sup
Q⊆Rn−1

1
ω(`(Q))

(  
Q

( ˆ `(Q)

0
|(∇u)(x′, t)|2 t dt

)q/2
dx′
)1/q

. (4.1.5)

As far as this semi-norm is concerned, there are two reasonable candidates for the end-
point q = ∞ (see Proposition 4.3.1 and Lemma 4.4.1). First, we may consider

‖u‖(ω,exp)
∗∗ := sup

Q⊆Rn−1

1
ω(`(Q))

∥∥∥∥(ˆ `(Q)

0
|(∇u)(·, t)|2 t dt

)1/2∥∥∥∥
expL,Q

(4.1.6)

where ‖ · ‖expL,Q is the version of the norm in the Orlicz space expL localized and
normalized relative to Q, i.e.,

‖f‖expL,Q := inf
{
t > 0 :

 
Q

(
e
|f(x′)|
t − 1

)
dx′ ≤ 1

}
. (4.1.7)

Second, corresponding to the limiting case q = ∞ we may consider

‖u‖(ω,∞)
∗∗ := sup

(x′,t)∈Rn+

t

ω(t) |(∇u)(x′, t)|. (4.1.8)

We are ready to describe our main result concerning the Dirichlet problems with
data in generalized Hölder and generalized Morrey-Campanato spaces for homogeneous
second-order strongly elliptic systems of differential operators with constant complex
coefficients (cf. (1.2.1) and (1.2.4)). In Section 4.7 (cf. Theorems 4.7.1-4.7.2), we weaken
the condition (4.1.9) and still prove well-posedness for the two Dirichlet problems. The
main difference is that in that case they are no longer equivalent as (4.1.15) might
fail (see Example 4.7.4).

Theorem 4.1.2. Consider a strongly elliptic constant complex coefficient second-order
M ×M system L, as in (1.2.1) satisfying (1.2.4). Also, fix an aperture parameter κ > 0,
p ∈ [1,∞) along with q ∈ (0,∞], and let ω be a growth function satisfying, for some finite
constant Cω ≥ 1,

ˆ t

0
ω(s)ds

s
+ t

ˆ ∞
t

ω(s)
s

ds

s
≤ Cω ω(t) for each t ∈ (0,∞). (4.1.9)

Then the following statements are true.

(a) The generalized Hölder Dirichlet Problem for the system L in Rn+, i.e.,

u ∈
[
C∞(Rn+)

]M
,

Lu = 0 in Rn+,

[u]Ċω(Rn+,CM ) <∞,

u|∂Rn+ = f ∈ Ċ ω(Rn−1,CM ) on Rn−1,

(4.1.10)
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is well-posed. More specifically, there is a unique solution which is given by

u(x′, t) = (PLt ∗ f)(x′), ∀ (x′, t) ∈ Rn+, (4.1.11)

where PL denotes the Poisson kernel for L in Rn+ from Theorem 1.2.4. In addition,
u belongs to the space Ċ ω(Rn+,CM ), satisfies u|∂Rn+ = f , and there exists a finite
constant C = C(n,L, ω) ≥ 1 such that

C−1[f ]Ċω(Rn−1,CM ) ≤ [u]Ċω(Rn+,CM ) ≤ C[f ]Ċω(Rn−1,CM ). (4.1.12)

(b) The generalized Morrey-Campanato Dirichlet Problem for L in Rn+, formulated as

u ∈
[
C∞(Rn+)

]M
,

Lu = 0 in Rn+,

‖u‖(ω,q)∗∗ <∞,

u|
κ−n.t.

∂Rn+
= f ∈ E ω,p(Rn−1,CM ) a.e. on Rn−1,

(4.1.13)

is well-posed. More precisely, there is a unique solution (4.1.13) which is given by
(4.1.11). In addition, u belongs to Ċ ω(Rn+,CM ), satisfies u|∂Rn+ = f a.e. on Rn−1,
and there exists a finite constant C = C(n,L, ω, p, q) ≥ 1 such that

C−1 ‖f‖E ω,p(Rn−1,CM ) ≤ ‖u‖
(ω,q)
∗∗ ≤ C ‖f‖E ω,p(Rn−1,CM ) . (4.1.14)

Furthermore, all these properties remain true if ‖·‖(ω,q)∗∗ is replaced everywhere by
‖·‖(ω,exp)
∗∗ .

(c) The following equality between vector spaces holds

Ċ ω(Rn−1,CM ) = E ω,p(Rn−1,CM ) (4.1.15)

with equivalent norms, where the right-to-left inclusion is understood in the sense
that for each f ∈ E ω,p(Rn−1,CM ) there exists a unique f̃ ∈ Ċ ω(Rn−1,CM ) with
the property that f = f̃ a.e. in Rn−1.

As a result, the Dirichlet problems (4.1.10) and (4.1.13) are equivalent. Specifically,
for any pair of boundary data which may be identified in the sense of (4.1.15) these
problems have the same unique solution (given by (4.1.11)).

A few comments regarding the previous result. In Lemma 4.2.1 we shall prove
that, for growth functions as in (4.1.9), each u ∈ Ċ ω(Rn+,CM ) extends uniquely to a
function u ∈ Ċ ω(Rn+,CM ). Hence, the ordinary restriction u|∂Rn+ is well-defined in the
context of item (a) of Theorem 4.1.2. In item (b) the situation is slightly different.
One can first show that u extends to a continuous function up to, and including, the
boundary. Hence, the non-tangential pointwise trace agrees with the restriction to
the boundary everywhere. However, since functions in E ω,p(Rn−1,CM ) are canonically
identified whenever they agree outside of a set of zero Lebesgue measure, the boundary
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condition in (4.1.13) is most naturally formulated by asking that the non-tangential
boundary trace agrees with the boundary datum almost everywhere. The same type
of issue arises when interpreting (4.1.15). Specifically, while the left-to-right inclusion
has a clear meaning, the converse inclusion should be interpreted as saying that each
equivalence class in E ω,p(Rn−1,CM ) (induced by the aforementioned identification) has
a unique representative from Ċ ω(Rn−1,CM ).

The following result, providing a characterization of the generalized Hölder and
generalized Morrey-Campanato spaces in terms of the boundary traces of solutions, is
a byproduct of the proof of the above theorem.

Corollary 4.1.3. Let L be a strongly elliptic, constant complex coefficient, second-order
M × M system in Rn. Fix p ∈ [1,∞) along with q ∈ (0,∞), and let ω be a growth
function for which (4.1.9) holds. Then for every function u ∈

[
C∞(Rn+)

]M satisfying
Lu = 0 in Rn+ one has

‖u‖(ω,q)∗∗ ≈ ‖u‖(ω,exp)
∗∗ ≈ ‖u‖(ω,∞)

∗∗ ≈ [u]Ċω(Rn+,CM ) (4.1.16)

where the implicit proportionality constants depend only on L, n, q, and the constant Cω
in (4.1.9). Moreover,

Ċ ω(Rn−1,CM ) =
{
u|∂Rn+ : u ∈

[
C∞(Rn+)

]M
, Lu = 0 in Rn+, [u]Ċω(Rn+,CM ) <∞

}
=
{
u|∂Rn+ : u ∈

[
C∞(Rn+)

]M
, Lu = 0 in Rn+, ‖u‖

(ω,q)
∗∗ <∞

}
=
{
u|∂Rn+ : u ∈

[
C∞(Rn+)

]M
, Lu = 0 in Rn+, ‖u‖

(ω,exp)
∗∗ <∞

}
=
{
u|∂Rn+ : u ∈

[
C∞(Rn+)

]M
, Lu = 0 in Rn+, ‖u‖

(ω,∞)
∗∗ <∞

}
. (4.1.17)

The plan of the chapter is as follows. In Section 4.2 we present some properties of the
growth functions and study some of the features of the generalized Hölder and Morrey-
Campanato spaces which are relevant to this work. Section 4.3 is reserved for collecting
some known results for elliptic systems, and for giving the proof of Proposition 4.3.1,
where some a priori estimates for the null-solutions of such systems are established.
In turn, these estimates allow us to compare the semi-norm ‖·‖(ω,q)∗∗ (corresponding to
various values of q) with [·]Ċω(Rn+,CM ). In Section 4.4 we present a John-Nirenberg type
inequality of real-variable nature, generalizing some results in [50, 49] by allowing more
flexibility due to the involvement of growth functions. This is interesting and useful in
its own right. In addition, we are able to show exponential decay for the measure of the
associated level sets which, in turn, permits deriving estimates not only in arbitrary Lq

spaces but also in the space expL. Our approach for deriving such results is different from
[50, 49], and uses some ideas which go back to a proof of the classical John-Nirenberg
exponential integrability for BMO functions due to Calderón. As a matter of fact, our
abstract method yields easily Calderón’s classical result. In Section 4.5 we prove the
existence of solutions for the Dirichlet problems with boundary data in Ċ ω(Rn−1,CM )
and E ω,p(Rn−1,CM ). Section 4.6 contains a Fatou-type result for null-solutions of a
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strongly elliptic system L belonging to the space Ċ ω(Rn−1,CM ), which will be a key
ingredient when establishing uniqueness for the boundary value problems formulated
in Theorem 4.1.2. Finally, in Section 4.7, combining the main results of the previous
two sections yields two well-posedness results under different assumptions on the growth
function: one for boundary data in Ċ ω(Rn−1,CM ) and solutions in Ċ ω(Rn+,CM ), and
another one for boundary data in E ω,p(Rn−1,CM ) and solutions satisfying ‖u‖(ω,q)∗∗ <∞
for some 0 < q ≤ ∞, or even in the case where q is replaced by exp. In concert, these
two results cover all claims of Theorem 4.1.2.

4.2 Growth functions, generalized Hölder and Morrey-
Campanato spaces

We begin by studying some basic properties of growth functions. As explained in the
introduction, we ultimately wish to work with growth functions satisfying conditions
weaker than (4.1.9). Indeed, the two mains conditions that we will consider are

ˆ 1

0
ω(s)ds

s
<∞, (4.2.1)

and

t

ˆ ∞
t

ω(s)
s

ds

s
≤ C ′ω ω(t), ∀ t ∈ (0,∞), (4.2.2)

for some finite constant C ′ω ≥ 1. In what follows, C ′ω will always denote the constant in
(4.2.2). Clearly, if ω satisfies it satisfies (4.1.9) then both (4.2.1) and (4.2.2) hold but the
reverse implication is not true in general (see Example 4.7.4 in this regard).

Later on, we will need the auxiliary function W defined as

W (t) :=
ˆ t

0
ω(s)ds

s
for each t ∈ (0,∞). (4.2.3)

Note that (4.2.1) gives that W (t) <∞ for every t > 0. Then (4.1.9) holds if and only if
(4.2.2) holds and there exists C ∈ (0,∞) such that W (t) ≤ C ω(t) for each t ∈ (0,∞).

The following lemma gathers some useful properties on growth functions satisfy-
ing condition (4.2.2).

Lemma 4.2.1. Given a growth function ω satisfying (4.2.2), the following statements
are true.

(a) Whenever 0 < t1 ≤ t2 <∞, one has

ω(t2)
t2
≤ C ′ω

ω(t1)
t1

. (4.2.4)

(b) For every t ∈ (0,∞) one has

ω(2t) ≤ 2C ′ω ω(t). (4.2.5)
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(c) One has limt→∞ ω(t)/t = 0.

(d) For each set E ⊆ Rn one has Ċ ω(E,CM ) = Ċ ω(E,CM ), with equivalent norms.
More specifically, the restriction map

Ċ ω(E,CM ) 3 u 7−→ u
∣∣
E
∈ Ċ ω(E,CM ) (4.2.6)

is a linear isomorphism which is continuous in the precise sense that, under the
canonically identification of functions u ∈ Ċ ω(E,CM ) with u

∣∣
E
∈ Ċ ω(E,CM ), one

has
[u]Ċω(E,CM ) ≤ [u]Ċω(E,CM ) ≤ 2C ′ω[u]Ċω(E,CM ) (4.2.7)

for each u ∈ Ċ ω(E,CM ).

Proof. We start observing that for every t > 0
ω(t)
t
≤
ˆ ∞
t

ω(s)
s

ds

s
≤ C ′ω

ω(t)
t
. (4.2.8)

The first inequality uses that ω is non-decreasing and the second is just (4.2.2). Then,
given t1 ≤ t2, we may write

ω(t2)
t2
≤
ˆ ∞
t2

ω(s)
s

ds

s
≤
ˆ ∞
t1

ω(s)
s

ds

s
≤ C ′ω

ω(t1)
t1

, (4.2.9)

proving (a). The doubling property in (b) follows at once from (a) by taking t2 := 2t1 in
(4.2.4). Next, the claim in (c) is justified by passing to limit t→∞ in the first inequality
in (4.2.8) and using Lebesgue’s Dominated Convergence Theorem.

Turning our attention to (d), fix an arbitrary u ∈ C ω(E,CM ). As noted earlier,
this membership ensures that u is uniformly continuous, hence u extends uniquely to a
continuous function v on E. To show that v belongs to Ċ ω(E,CM ) pick two arbitrary
distinct points y, z ∈ E and choose two sequences {yk}k∈N, {zk}k∈N of points in E such
that yk → x and zk → z as k → ∞. By discarding finitely many terms, there is no loss
of generality in assuming that |yk − zk| < 2|y − z| for each k ∈ N. Relying on the fact
that ω is non-decreasing and (4.2.5), we may then write

|v(y)− v(z)| = lim
k→∞

|u(yk)− u(zk)| ≤ [u]Ċω(E,CM ) lim sup
k→∞

ω(|yk − zk|)

≤ [u]Ċω(E,CM ) ω(2|y − z|) ≤ 2C ′ω[u]Ċω(E,CM ) ω(|y − z|). (4.2.10)

From this, all claims in (d) follow, completing the proof of the lemma.

In the following lemma we treat W defined in (4.2.3) as a growth function depend-
ing on the original ω.

Lemma 4.2.2. Let ω be a growth function satisfying (4.2.1) and (4.2.2), and let W (t) be
defined as in (4.2.3). Then W : (0,∞) → (0,∞) is a growth function satisfying (4.2.2)
with

C ′W ≤ 1 + (C ′ω)2. (4.2.11)

Moreover,
ω(t) ≤ C ′ωW (t) for each t ∈ (0,∞). (4.2.12)
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Proof. By design, W is a non-decreasing function and, thanks to Lebesgue’s Dominated
Convergence Theorem and (4.2.1) we have W (t) → 0 as t → 0+. Also, on account of
(4.2.4), for each t ∈ (0,∞) we may write

ω(t) =
ˆ t

0

ω(t)
t

ds ≤ C ′ω
ˆ t

0

ω(s)
s

ds = C ′ωW (t), (4.2.13)

proving (4.2.12). In turn, Fubini’s Theorem, (4.2.2), and (4.2.12) permit us to estimate

t

ˆ ∞
t

W (s)
s

ds

s
= t

ˆ ∞
t

(ˆ s

0
ω(λ)dλ

λ

)
ds

s2

= t

ˆ t

0

(ˆ ∞
t

ds

s2

)
ω(λ)dλ

λ
+ t

ˆ ∞
t

(ˆ ∞
λ

ds

s2

)
ω(λ)dλ

λ

= t

ˆ t

0

1
t
ω(λ)dλ

λ
+ t

ˆ ∞
t

ω(λ)
λ

dλ

λ

≤W (t) + C ′ω ω(t)

≤
(
1 + (C ′ω)2

)
W (t), (4.2.14)

for each t ∈ (0,∞). This shows thatW satisfies (4.2.2) with constant C ′W ≤ 1+(C ′ω)2.

Remember the definition of Lp-based mean oscillation in (1.2.25). The following
lemma gathers some results from [85, Lemmas 2.1 and 2.2].

Lemma 4.2.3. Let f ∈
[
L1

loc(Rn−1)
]M .

(a) For every p, q ∈ [1,∞) there exists some finite C = C(p, q, n) > 1 such that

C−1 oscp(f ; r) ≤ oscq(f ; r) ≤ C oscp(f ; r), ∀ r > 0. (4.2.15)

(b) For every ε > 0,
ˆ ∞

1
osc1(f ; s) ds

s1+ε <∞ =⇒ f ∈
[
L1
(
Rn−1,

dx′

1 + |x′|n−1+ε

)]M
. (4.2.16)

We augment Lemma 4.2.3 with similar results which involve generalized Morrey-
Campanato spaces and generalized Hölder spaces.

Lemma 4.2.4. Let ω be a growth function and fix p ∈ [1,∞). Then the following
properties are valid.

(a) If f ∈ E ω,p(Rn−1,CM ), then

oscp(f ; r) ≤ ω(r) ‖f‖E ω,p(Rn−1,CM ) for each r ∈ (0,∞). (4.2.17)

(b) If ω satisfies (4.2.2), then for each f ∈ E ω,p(Rn−1,CM ) one has

‖f‖E ω,p(Rn−1,CM ) ≤
√
n− 1C ′ω[f ]Ċω(Rn−1,CM ) (4.2.18)
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and

Ċ ω(Rn−1,CM ) ⊆ E ω,p(Rn−1,CM ) ⊆
[
L1
(
Rn−1,

dx′

1 + |x′|n
)]M

. (4.2.19)

Proof. Note that given any f ∈ E ω,p(Rn−1,CM ) and r > 0, based on (1.2.25), the fact
that ω is non-decreasing, and (4.1.4) we may write

oscp(f ; r) = sup
Q⊆Rn−1

`(Q)≤r

ω(`(Q)) 1
ω(`(Q))

(  
Q
|f(x′)− fQ|p dx′

)1/p

≤ ω(r) ‖f‖E ω,p(Rn−1,CM ) , (4.2.20)

proving (a). Consider next the claims in (b). Given any f ∈ Ċ ω(Rn−1,CM ), a combina-
tion of (4.1.4), (1.3.17), and (4.2.4) yields

‖f‖E ω,p(Rn−1,CM ) ≤ sup
Q⊆Rn−1

( 
Q

 
Q

( |f(x′)− f(y′)|
ω(`(Q))

)p
dx′ dy′

)1/p

≤ sup
Q⊆Rn−1

ω(
√
n− 1`(Q))
ω(`(Q)) [f ] ˙Cω(Rn−1,CM )

≤
√
n− 1C ′ω[f ] ˙Cω(Rn−1,CM ). (4.2.21)

This establishes (4.2.18), hence also the first inclusion in (4.2.19). For the second inclusion
in (4.2.19), using Jensen’s inequality, (4.2.17), and (4.2.2) we may write

ˆ ∞
1

osc1(f ; s)ds
s2 ≤ ‖f‖E ω,p(Rn−1,CM )

ˆ ∞
1

ω(s)ds
s2

≤ C ′ω ω(1) ‖f‖E ω,p(Rn−1,CM ) <∞. (4.2.22)

The desired inclusion now follows from this and (4.2.16) with ε := 1.

4.3 Properties of elliptic systems and their solutions

Our next proposition contains a number of a priori estimates comparing ‖u‖(ω,q)∗∗ , corre-
sponding to different values of q, for solutions of Lu = 0 in Rn+. To set the stage, we first
state some simple estimates which are true for any function u ∈

[
C 1(Rn+)

]M :

‖u‖(ω,p)∗∗ ≤ ‖u‖(ω,q)∗∗ ≤ C ‖u‖(ω,exp)
∗∗ , 0 < p ≤ q <∞, (4.3.1)

where C = C(q) ≥ 1. Indeed, the first estimate follows at once from Jensen’s inequality.
The second estimate is a consequence of the fact that tmax{1,q} ≤ C(et − 1) (with C > 0
depending on max{1, q}) for each t ∈ (0,∞) and the definition of ‖ · ‖expL,Q (cf. (4.1.6)).

Proposition 4.3.1. Let L be a constant complex coefficient system as in (1.2.1) satisfying
the strong ellipticity condition (1.2.4), and let u ∈

[
C∞(Rn+)

]M be such that Lu = 0 in
Rn+. Then the following statements hold.
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(a) For every q ∈ (0,∞) there there exists a finite constant C = C(L, n, q) ≥ 1 such
that for each (x′, t) ∈ Rn+ one has

t |(∇u)(x′, t)| ≤ C
( 
|x′−y′|< t

2

( ˆ 3t/2

t/2
|(∇u)(y′, s)|2 s ds

)q/2
dy′
)1/q

. (4.3.2)

(b) There exists a finite constant C = C(L, n) ≥ 1 such that for each cube Q ⊆ Rn−1

and each x′ ∈ Rn−1 one has( ˆ `(Q)

0
|(∇u)(x′, t)|2 t dt

)1/2
≤ C

( ˆ 2`(Q)

0

ˆ
|x′−y′|<s

|(∇u)(y′, s) s|2 dy′ds
sn

)1/2
.

(4.3.3)

Furthermore, whenever 2 ≤ q <∞ there exists a finite constant C = C(L, n, q) ≥ 1
such that for each cube Q ⊆ Rn−1 and each x′ ∈ Rn−1 one has(  

Q

( ˆ `(Q)

0

ˆ
|x′−y′|<s

|(∇u)(y′, s) s|2 dy′ds
sn

)q/2
dx′
)1/q

≤ C
(  

3Q

( ˆ 3`(Q)

0
|(∇u)(x′, t)|2 t dt

)q/2
dx′
)1/q

. (4.3.4)

(c) There exists a finite constant C = C(L, n) ≥ 1 such that for each growth function
ω one has

‖u‖(ω,∞)
∗∗ ≤ C[u] ˙Cω(Rn+,CM ). (4.3.5)

(d) For every q ∈ (0,∞) there exists a finite constant C = C(L, n, q) ≥ 1 such that for
each growth function ω satisfying (4.2.2) one has

‖u‖(ω,∞)
∗∗ ≤ C C ′ω ‖u‖

(ω,q)
∗∗ . (4.3.6)

(e) There exists a finite constant C = C(L, n) ≥ 1 such that for each growth function
ω satisfying (4.2.2) one has

‖u‖(ω,exp)
∗∗ ≤ C(C ′ω)2 ‖u‖(ω,2)

∗∗ . (4.3.7)

(f) Let ω be a growth function satisfying (4.2.1) as well as (4.2.2), and define W (t) as
in (4.2.3). Then

[u]ĊW (Rn+,CM ) ≤ C
′
ω(2 + C ′ω) ‖u‖(ω,∞)

∗∗ , (4.3.8)

and, if the latter quantity is finite, u ∈ ĊW (Rn+,CM ) in the sense described in
Lemma 4.2.1(d).

(g) Let ω be a growth function satisfying
ˆ t

0
ω(s)ds

s
≤ C ′′ω ω(t), ∀ t ∈ (0,∞), (4.3.9)

for some finite constant C ′′ω > 1. Then

‖u‖(ω,exp)
∗∗ ≤ (C ′′ω)1/2 ‖u‖(ω,∞)

∗∗ . (4.3.10)
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(h) Let ω be a growth function satisfying (4.1.9). Then for every q ∈ (0,∞)

‖u‖(ω,q)∗∗ ≈ ‖u‖(ω,exp)
∗∗ ≈ ‖u‖(ω,∞)

∗∗ ≈ [u]Ċω(Rn+,CM ) (4.3.11)

where the implicit constants depend only on L, n, q, and the constant Cω in (4.1.9).
In particular, if ‖u‖(ω,q)∗∗ < ∞ for some q ∈ (0,∞], or ‖u‖(ω,exp)

∗∗ < ∞, then u ∈
Ċ ω(Rn+,CM ) in the sense of Lemma 4.2.1(d).

Proof. We start by proving (a). Fix (x′, t) ∈ Rn+ and let Qx′,t be the cube in Rn−1

centered at x′ with side-length t. Then from Theorem 1.2.2 (presently used with m := 0
and p := min{q, 2}) and Jensen’s inequality we obtain

|(∇u)(x′, t)| ≤ C
( 
|(y′,s)−(x′,t)|< t

2

|(∇u)(y′, s)|p dy′ ds
)1/p

≤ C
( 
|x′−y′|< t

2

(  
(t/2,3t/2)

|(∇u)(y′, s)|2 ds
)p/2

dy′
)1/p

≤ C
(  
|x′−y′|< t

2

(  
(t/2,3t/2)

|(∇u)(y′, s)|2 ds
)q/2

dy′
)1/q

= Ct−1
( 
|x′−y′|< t

2

( ˆ 3t/2

t/2
|(∇u)(y′, s)|2 s ds

)q/2
dy′
)1/q

, (4.3.12)

proving (4.3.2). Turning our attention to (b), fix a cube Q ⊆ Rn−1 along with a point
x′ ∈ Rn−1. First, integrating (4.3.2) written for q := 2 yields

ˆ `(Q)

0
|(∇u)(x′, t)|2 t dt ≤ C

ˆ `(Q)

0

1
tn+1

ˆ 3t/2

t/2

ˆ
|x′−y′|<s

|(∇u)(y′, s)|2 s dy′ ds t dt

≤ C
ˆ 2`(Q)

0

ˆ
|x′−y′|<s

|(∇u)(y′, s)|2
ˆ 2s

2s/3
t−n dt dy′ s ds

= C

ˆ 2`(Q)

0

ˆ
|x′−y′|<s

|(∇u)(y′, s) s|2 dy′ ds
sn
, (4.3.13)

and this readily leads to the estimate in (4.3.3). To justify (4.3.4), observe that for each
nonnegative function h ∈ L1

loc(Rn−1) we have
 
Q

( ˆ `(Q)

0

ˆ
|x′−y′|<s

|(∇u)(y′, s) s|2 dy′ds
sn

)
h(x′) dx′

≤ 3n
 

3Q

ˆ `(Q)

0

( 1
sn−1

ˆ
|y′−x′|<s

h(x′) dx′
)
|(∇u)(y′, s)|2 s ds dy′

≤ Cn
 

3Q

( ˆ 3`(Q)

0
|(∇u)(y′, s)|2 s ds

)
(Mh)(x′) dx′, (4.3.14)

where M is the Hardy-Littlewood maximal operator in Rn−1. Note that if q = 2 then
(4.3.14) gives at once (4.3.4) by taking h = 1 in Q and using that Mh ≤ 1. On the other
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hand, if q > 2, we impose the normalization condition ‖h‖L(q/2)′ (Q,dx′/|Q|) = 1 and then
rely on (4.3.14) and Hölder’s inequality to write

 
Q

( ˆ `(Q)

0

ˆ
|x′−y′|<s

|(∇u)(y′, s) s|2 dy′ds
sn

)
h(x′) dx′

≤ Cn
(  

3Q

( ˆ 3`(Q)

0
|(∇u)(y′, s)|2 s ds

)q/2
dx′
)2/q

‖Mh‖L(q/2)′ (Q,dx′/|Q|)

≤ C
(  

3Q

( ˆ 3`(Q)

0
|(∇u)(y′, s)|2 s ds

)q/2
dx′
)2/q

, (4.3.15)

bearing in mind that M is bounded in L(q/2)′(Rn−1), given that q > 2. Taking now the
supremum over all such functions h yields (4.3.4) on account of Riesz’ duality theorem.

As regards (c), fix (x′, t) ∈ Rn+ and use Theorem 1.2.2 together with the fact that ω
is a non-decreasing function to write

|(∇u)(x′, t)| =
∣∣∇(u(·)− u(x′, t))(x′, t)

∣∣
≤ C

t

 
|(y′,s)−(x′,t)|<t/2

|u(y′, s)− u(x′, t)| dy′ ds

≤ C[u] ˙Cω(Rn+,CM )
ω(t)
t
. (4.3.16)

In view of (4.1.8), this readily establishes (4.3.5).
The claim in (d) is proved by combining (4.3.2) and (4.2.5), which permit us to

estimate (recall that Qx′,t denotes the cube in Rn−1 centered at x′ with side-length t)

‖u‖(ω,∞)
∗∗ ≤ C sup

(x′,t)∈Rn+

1
ω(t)

(  
(3/2)Qx′,t

( ˆ 3t/2

0
|(∇u)(y′, s)|2 s ds

)q/2
dy′
)1/q

≤ C C ′ω ‖u‖
(ω,q)
∗∗ . (4.3.17)

Going further, consider the claim in (e). For starters, observe that the convexity of
the function t 7→ et − 1 readily implies that 2n−1(et − 1) ≤ e2n−1t − 1 for every t > 0
which, in view of (4.1.7), allows us to write

‖f‖expL,Q ≤ 2n−1 ‖f‖expL,2Q (4.3.18)

for each cube Q in Rn−1 and each Lebesgue measurable function f on Q.
Turning to the proof of (4.3.7) in earnest, by homogeneity we may assume that

‖u‖(ω,2)
∗∗ = 1 to begin with. We are going to use Lemma 4.4.1. As a prelude, define

F (y′, s) := |(∇u)(y′, s) s|, ∀ (y′, s) ∈ Rn+, (4.3.19)

and, for each cube Q in Rn−1 and each threshold N ∈ (0,∞), consider the set

EN,Q :=
{
x′ ∈ Q : 1

ω(`(Q))

( ˆ `(Q)

0

ˆ
|x′−y′|<κs

|F (y′, s)|2 dy′ds
sn

)1/2
> N

}
. (4.3.20)
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where κ := 1 + 2
√
n− 1. Denoting Q∗ := (2κ + 1)Q = (3 + 4

√
n− 1)Q, then using

Chebytcheff’s inequality, and (4.2.4), for each cube Q in Rn−1 and each N > 0 we may
write

|EN,Q| ≤
1
N2

1
ω(`(Q))2

ˆ
Q

ˆ `(Q)

0

ˆ
|x′−y′|<κs

|F (y′, s)|2 dy′ds
sn
dx′

≤ 1
N2

1
ω(`(Q))2

ˆ
Q∗

ˆ `(Q)

0

(ˆ
|y′−x′|<κs

dx′
)
|F (y′, s)|2ds

sn
dy′

≤ C 1
N2

1
ω(`(Q))2

ˆ
Q∗

ˆ `(Q∗)

0
|(∇u)(y′, s) s|2ds

s
dy′

≤ C |Q
∗|

N2
ω(`(Q∗))2

ω(`(Q))2
(
‖u‖(ω,2)

∗∗
)2 = C

|Q∗|
N2

[ω(`(Q∗))
ω(`(Q))

]2
≤ C0(C ′ω)2 1

N2 |Q|, (4.3.21)

for some finite constant C0 > 0. Therefore, taking N :=
√

2C0C
′
ω > 0, we conclude that

|EN,Q| ≤
1
2 |Q|. (4.3.22)

This allows us to invoke Lemma 4.4.1 with ϕ := ω, which together with (4.3.3), (4.2.5),
and (4.3.18), gives

‖u‖(ω,exp)
∗∗ ≤ C sup

Q⊆Rn−1

1
ω(`(Q))

∥∥∥∥( ˆ `(2Q)

0

ˆ
| · −y′|<s

|F (y′, s)|2 dy′ds
sn

)1/2∥∥∥∥
expL,Q

≤ C(C ′ω)2. (4.3.23)

This completes the proof of (e).
Turning our attention to (f), fix x = (x′, t) and y = (y′, s) in Rn+, and abbreviate

r := |x− y|. Then,

|u(x)− u(y)|
W (|x− y|) ≤

1
W (r) |u(x′, t)− u(x′, t+ r)|+ 1

W (r) |u(x′, t+ r)− u(y′, s+ r)|

+ 1
W (r) |u(y′, s+ r)− u(y′, s)|

=: I + II + III. (4.3.24)

To bound I, we use the Fundamental Theorem of Calculus, (4.2.4), and (4.2.3) and obtain

I = 1
W (r)

∣∣∣∣ˆ r

0
(∂nu)(x′, t+ ξ) dξ

∣∣∣∣ ≤ ‖u‖(ω,∞)
∗∗

1
W (r)

ˆ r

0

ω(t+ ξ)
t+ ξ

dξ

≤ C ′ω ‖u‖
(ω,∞)
∗∗

1
W (r)

ˆ r

0

ω(ξ)
ξ

dξ = C ′ω ‖u‖
(ω,∞)
∗∗ . (4.3.25)
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Note that III is bounded analogously replacing x′ by y′ and t by s. For II, we use again
the Fundamental Theorem of Calculus, together with (4.2.4) and (4.2.12), to write

II = 1
W (r)

∣∣∣∣∣
ˆ 1

0

d

dθ
[u(θ(x′, t+ r) + (1− θ)(y′, s+ r))] dθ

∣∣∣∣∣
= 1
W (r)

∣∣∣∣∣
ˆ 1

0
(x′ − y′, t− s) · (∇u)

(
θ(x′, t+ r) + (1− θ)(y′, s+ r)

)
dθ

∣∣∣∣∣
≤ ‖u‖(ω,∞)

∗∗
r

W (r)

ˆ 1

0

ω
(
(1− θ)s+ θt+ r

)
(1− θ)s+ θt+ r

dθ

≤ C ′ω ‖u‖
(ω,∞)
∗∗

r

W (r)

ˆ 1

0

ω(r)
r

dθ

≤ (C ′ω)2 ‖u‖(ω,∞)
∗∗ . (4.3.26)

As x and y were chosen arbitrarily, (4.3.24), (4.3.25), and (4.3.26) collectively justify
(4.3.8).

To justify (g), observe that since ω is non-decreasing and satisfies (4.3.9) we may
write(  

Q

( ˆ `(Q)

0
|(∇u)(x′, t)|2 t dt

)q/2
dx′
)1/q

≤
( ˆ `(Q)

0
ω(t)2dt

t

)1/2
‖u‖(ω,∞)

∗∗

≤ (C ′′ω)1/2ω(`(Q)) ‖u‖(ω,∞)
∗∗ , (4.3.27)

which readily leads to the desired inequality.
As regards (h), the idea is to combine (4.3.1), (g), and (d) for the first three equiv-

alences. In concert, (c), the fact that (4.1.9) gives W ≤ Cω ω, and (f) also give the last
equivalence in (h). The proof of Proposition 4.3.1 is therefore complete.

4.4 John-Nirenberg’s inequality adapted to growth func-
tions

In what follows we assume that all cubes are half-open, that is, they can be written in
the form Q = [a1, a1 + `(Q)) × · · · × [an−1, an−1 + `(Q)) with ai ∈ Rn−1 and `(Q) > 0.
Notice that since ∂Q has Lebesgue measure zero the half-open assumption is harmless.
Subdividing dydically yields the collection of (half-open) dyadic-subcubes of a given
cube Q, which we shall denote by DQ. For the following statement, and with the aim of
considering global results, it is also convenient to consider the case Q = Rn−1 in which
scenario we take DQ to be the classical dyadic grid generated by [0, 1)n−1, or any other
dyadic grid. Let us also recall the definition of the dyadic Hardy-Littlewood maximal
function localized to a given cube Q, i.e.,

(
Md
Qf
)
(x) := sup

x∈Q′∈DQ

 
Q′
|f(y′)| dy′, x ∈ Q, (4.4.1)
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for each f ∈ L1(Q). The following result is an extension of the John-Nirenberg inequality
obtained in [50], [49] (when ω ≡ 1) adapted to our growth function.

Lemma 4.4.1. Let F ∈ L2
loc(Rn+) and let ϕ : [0,∞) → [0,∞) be a non-decreasing

function. Let Q0 ⊆ Rn−1 be an arbitrary half-open cube, or Q0 = Rn−1. Assume that
there are numbers α ∈ (0, 1) and N ∈ (0,∞) such that∣∣∣∣{x′ ∈ Q : 1

ϕ(`(Q))

( ˆ `(Q)

0

ˆ
|x′−y′|<κs

|F (y′, s)|2 dy′ds
sn

)1/2
> N

}∣∣∣∣ ≤ α|Q| (4.4.2)

for every cube Q ∈ DQ0 and κ := 1 + 2
√
n− 1. Then, for every t > 0

sup
Q∈DQ0

1
|Q|

∣∣∣∣{x′ ∈ Q : 1
ϕ(`(Q))

( ˆ `(Q)

0

ˆ
|x′−y′|<κs

|F (y′, s)|2 dy′ds
sn

)1/2
> t

}∣∣∣∣
≤ 1
α
e−

log(α−1)
N t. (4.4.3)

Hence, for each q ∈ (0,∞) there exists a finite constant C = C(α, q) ≥ 1 such that

sup
Q∈DQ0

1
ϕ(`(Q))

( 
Q

( ˆ `(Q)

0

ˆ
|x′−y′|<s

|F (y′, s)|2 dy′ds
sn

)q/2
dx′
)1/q

≤ CN. (4.4.4)

Moreover, there exists some finite C = C(α) ≥ 1 such that

sup
Q∈DQ0

1
ϕ(`(Q))

∥∥∥∥( ˆ `(Q)

0

ˆ
| · −y′|<s

|F (y′, s)|2 dy′ds
sn

)1/2∥∥∥∥
expL,Q

≤ CN. (4.4.5)

The previous result can be proved using the arguments in [50], [49] with appropriate
modifications. Here we present an alternative abstract argument based on ideas that
go back to Calderón, as presented in [102] (see also [103], [74]). This also contains
as a particular case the classical John-Nirenberg result concerning the exponential in-
tegrability of BMO functions.

Proposition 4.4.2. Let Q0 ⊆ Rn−1 be an arbitrary half-open cube, or Q0 = Rn−1. For
every Q ∈ DQ0 assume that there exist two non-negative functions GQ, HQ ∈ L1

loc(Rn−1)
such that

GQ(x′) ≤ HQ(x′) for almost every x′ ∈ Q, (4.4.6)

and, for every Q′ ∈ DQ \ {Q},

GQ(x′) ≤ GQ′(x′) +HQ(y′) for a.e. x ∈ Q′ and for a.e. y′ ∈ Q̂′, (4.4.7)

where Q̂′ is the dyadic parent of Q′. For each α ∈ (0, 1) define

mα := sup
Q∈DQ0

inf
{
λ > 0 : |{x′ ∈ Q : HQ(x′) > λ}| ≤ α|Q|

}
. (4.4.8)

Then, for every α ∈ (0, 1) one has

sup
Q∈DQ0

|{x ∈ Q : GQ(x′) > t}|
|Q|

≤ 1
α
e
− log(α−1) t

mα , ∀ t > 0. (4.4.9)
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As a consequence,

sup
Q∈DQ0

‖GQ‖expL,Q ≤
1 + α−1

log(α−1) mα (4.4.10)

and for every q ∈ (0,∞) there exists a finite constant C = C(q) > 0 such that

sup
Q∈DQ0

(  
Q
GQ(x′)q dx′

)1/q
≤ Cq

1
α1/q log(α−1)

mα. (4.4.11)

Before proving this result and Lemma 4.4.1, let us illustrate how Proposition 4.4.2
yields the classical John-Nirenberg result regarding the exponential integrability of BMO
functions. Concretely, pick f ∈ BMO(Rn−1). Fix an arbitrary cube Q0 and for every
Q ∈ DQ0 define GQ := |f − fQ| and HQ := 2n−1Md

Q

(
|f − fQ|

)
(cf. (4.4.1)). Clearly,

(4.4.6) holds by Lebesgue’s Differentiation Theorem. Moreover, for every Q′ ∈ DQ \
Q, x′ ∈ Q′, and y′ ∈ Q̂′ we have

GQ(x′) ≤ |f(x′)− fQ′ |+ |f ′Q − fQ| ≤ GQ′(x′) +
 
Q′
|f(z′)− fQ| dz′

≤ GQ′(x′) + 2n−1
 
Q̂′
|f(z′)− fQ| dz′ ≤ GQ′(x′) +HQ′(y′), (4.4.12)

and (4.4.7) follows. Going further, by the weak-type (1, 1) of the dyadic Hardy-Littlewood
maximal function, for every λ > 0 we may write

|{x′ ∈ Q : HQ(x′) > λ}| ≤ 2n−1

λ

ˆ
Q
|f(y′)− fQ| dy′ ≤

2n−1‖f‖BMO(Rn−1)
λ

|Q|. (4.4.13)

In particular, choosing for instance α := e−1, if we use the previous estimate with λ :=
2n−1‖f‖BMO(Rn−1)/α we obtain mα ≤ 2n−1‖f‖BMO(Rn−1)/α. Thus, (4.4.9) yields

|{x ∈ Q0 : |f(x′)− fQ0 | > t}|
|Q0|

≤ 1
α
e
−α log(α−1)

2n−1
t

‖f‖BMO(Rn−1)

= e · e
− 1

2n−1e
t

‖f‖BMO(Rn−1) (4.4.14)

while (4.4.10) gives

‖f − fQ0‖expL,Q0 ≤ (1 + e) e 2n−1‖f‖BMO(Rn−1) (4.4.15)

which are the well-known John-Nirenberg inequalities.
We now turn to the proof of Lemma 4.4.1.

Proof of Lemma 4.4.1. Let F , α, and N be fixed as in the statement of the lemma. For
every Q ∈ DQ0 and x′ ∈ Rn−1, define

GQ(x′) := 1
ϕ(`(Q))

(ˆ `(Q)

0

ˆ
|x′−z′|<s

|F (z′, s)|2 dz′ds
sn

)1/2
(4.4.16)
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and
HQ(x′) = 1

ϕ(`(Q))
(ˆ `(Q)

0

ˆ
|x′−z′|<κs

|F (z′, s)|2 dz′ds
sn

)1/2
. (4.4.17)

Note that (4.4.6) is trivially verified since κ > 1. To proceed, fix Q′ ∈ DQ along with
x′ ∈ Q′ and y′ ∈ Q̂′. If |x′ − z′| < s with `(Q′) ≤ s ≤ `(Q) then

|y′ − z′| ≤ |y′ − x′|+ |x′ − z′| < 2
√
n− 1 `(Q′) + s ≤ κs. (4.4.18)

Therefore, since ϕ is non-decreasing,

GQ(x′) ≤ ϕ(`(Q′))
ϕ(`(Q)) GQ

′(x′) + 1
ϕ(`(Q))

(ˆ `(Q)

`(Q′)

ˆ
|x′−z′|<s

|F (z′, s)|2 dz′ds
sn

)1/2

≤ GQ′(x′) +HQ(y′), (4.4.19)

establishing (4.4.7). Moreover, (4.4.2) gives immediately that mα ≤ N . Granted this,
(4.4.9), (4.4.11), and (4.4.10), (with α ∈ (0, 1) given by (4.4.2)) prove, respectively (4.4.3),
(4.4.4), and (4.4.5).

Finally, we give the proof of Proposition 4.4.2.

Proof of Proposition 4.4.2. We start by introducing some notation. Set

Ξ(t) := sup
Q∈DQ0

|EQ(t)|
|Q|

:= sup
Q∈DQ0

|{x′ ∈ Q : GQ(x′) > t}|
|Q|

, 0 < t <∞. (4.4.20)

Fix α ∈ (0, 1), let ε > 0 be arbitrary, and write λε = mα + ε. From (4.4.8) it follows that

|FQ,ε| := |{x′ ∈ Q : HQ(x′) > λε}| ≤ α|Q|, ∀Q ∈ DQ0 . (4.4.21)

Fix now Q ∈ DQ0 , β ∈ (α, 1) (we will eventually let β → 1+) and set

ΩQ := {x′ ∈ Q : Md
Q(1FQ,ε)(x

′) > β}. (4.4.22)

Note that (4.4.21) ensures that
 
Q

1FQ,ε(y
′) dy′ = |FQ,ε|

|Q|
≤ α < β, (4.4.23)

hence we can extract a family of pairwise disjoint stopping-time cubes {Qj}j ⊆ DQ \{Q}
so that ΩQ = ∪jQj and for every j

|FQ,ε ∩Qj |
|Qj |

> β,
|FQ,ε ∩Q′|
|Q′|

≤ β, Qj ( Q′ ∈ DQ. (4.4.24)

Let t > λε and note that (4.4.6) gives

λε < t < GQ(x′) ≤ HQ(x′) for a.e. x′ ∈ EQ(t). (4.4.25)

which implies that

β < 1 = 1FQ,ε(x
′) ≤Md

Q

(
1FQ,ε

)
(x′) for a.e. x′ ∈ EQ(t). (4.4.26)
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Hence,
|EQ(t)| = |EQ(t) ∩ ΩQ| =

∑
j

|EQ(t) ∩Qj |. (4.4.27)

For every j, by the second estimate in (4.4.24) applied to Q̂j , the dyadic parent of Qj ,
we have |FQ,ε ∩ Q̂j |/|Q̂j | ≤ β < 1, therefore |Q̂j \ FQ,ε|/|Q̂j | > 1− β > 0. In particular,
(4.4.7) guarantees that we can find x̂′j ∈ Q̂j \ FQ,ε, such that for a.e. x′ ∈ Qj we have

GQ(x′) ≤ GQj (x′) +HQ(x̂′j) ≤ GQj (x′) + λε. (4.4.28)

Consequently, GQj (x′) > t− λε for a.e. x′ ∈ EQ(t) ∩Qj which further implies

|EQ(t) ∩Qj | ≤ |{x′ ∈ Qj : GQj (x′) > t− λε}| ≤ Ξ(t− λε)|Qj |. (4.4.29)

In turn, this permits us to estimate

|EQ(t)| =
∑
j

|EQ(t) ∩Qj | ≤ Ξ(t− λε)
∑
j

|Qj | ≤ Ξ(t− λε)
1
β

∑
j

|FQ,ε ∩Qj |

≤ Ξ(t− λε)
1
β
|FQ,ε| ≤ Ξ(t− λε)

α

β
|Q|, (4.4.30)

where we have used (4.4.24), that the cubes {Qj}j are pairwise disjoint and, finally,
(4.4.21). Dividing by |Q| and taking the supremum over all Q ∈ DQ0 we arrive at

Ξ(t) ≤ α

β
Ξ(t− λε), t > λε. (4.4.31)

Since this is valid for all β ∈ (α, 1), we can now let β → 1+, iterate the previous
expression, and use the fact that Ξ(t) ≤ 1 to conclude that

Ξ(t) ≤ 1
α
α

t
λε = 1

α
e− log(α−1) t

λε , t > 0. (4.4.32)

Recalling that λε = mα + ε and letting ε→ 0+ establishes (4.4.9).
We shall next indicate how (4.4.9) implies (4.4.10). Concretely, if we take t :=

1+α−1

log(α−1) mα we see that (4.4.9) gives

 
Q

(
e
GQ(x′)

t − 1
)
dx′ =

ˆ ∞
0

|{x′ ∈ Q : GQ(x′)/t > λ}|
|Q|

eλ dλ

≤ 1
α

ˆ ∞
0

e− log(α−1) λt
mα eλ dλ = 1

α

ˆ ∞
0

e−α
−1λ dλ = 1. (4.4.33)

With this in hand, (4.4.10) follows with the help of (4.1.7).
At this stage, there remains to justify (4.4.11). This can be done invoking again

(4.4.9):
 
Q
GQ(x′)q dx′ =

ˆ ∞
0

|{x′ ∈ Q : GQ(x′) > λ}|
|Q|

q λq
dλ

λ
≤ 1
α

ˆ ∞
0

e− log(α−1) λ
mα q λq

dλ

λ

= 1
α

(
mα

log(α−1)

)q ˆ ∞
0

e−λ q λq
dλ

λ
= Cq

1
α

(
mα

log(α−1)

)q
. (4.4.34)

This completes the proof of Proposition 4.4.2.
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4.5 Existence results

In this section we develop the main tools used to establish the existence of solutions for
the boundary value problems formulated in the statement of Theorem 4.1.2. We start
with the generalized Hölder Dirichlet Problem.

Proposition 4.5.1. Let L be a constant complex coefficient system as in (1.2.1) satisfying
the strong ellipticity condition formulated in (1.2.4), fix an aperture parameter κ > 0
and let ω be a growth function satisfying (4.2.2). Given f ∈ Ċ ω(Rn−1,CM ), define
u(x′, t) := (PLt ∗ f)(x′) for every (x′, t) ∈ Rn+. Then u is meaningfully defined via an
absolutely convergent integral and satisfies

u ∈
[
C∞(Rn+)

]M
, Lu = 0 in Rn+, u|

κ−n.t.

∂Rn+
= f a.e. on Rn−1. (4.5.1)

Moreover, there exists a finite constant C = C(L, n) > 0 such that

[u]Ċω(Rn+,CM ) ≤ C C
′
ω(1 + C ′ω)[f ]Ċω(Rn−1,CM ), (4.5.2)

and u ∈ Ċ ω(Rn+,CM ) with u|∂Rn+ = f .

Proof. Let f ∈ Ċ ω(Rn−1,CM ) and define u(x′, t) := (PLt ∗ f)(x′) for every (x′, t) ∈ Rn+.
By (4.2.19) and Theorem 1.2.4(c), u satisfies all properties listed in (4.5.1). To prove the
estimate in (4.5.2), we first notice that for any (x′, t) ∈ Rn+, we can write

(PLt ∗ f)(x′) =
ˆ
Rn−1

PLt (x′ − y′)f(y′) dy′ =
ˆ
Rn−1

t1−nPL
(
x′ − y′

t

)
f(y′) dy′

=
ˆ
Rn−1

PL(z′)f(x′ − tz′) dz′. (4.5.3)

Fix now x = (x′, t) and y = (y′, s) arbitrary in Rn+, and set r := |x− y|. By (1.2.26) and
the fact that ω is non-decreasing we obtain

|u(x′, t)− u(y′, s)| = |(PLt ∗ f)(x′)− (PLs ∗ f)(y′)|

≤ C
ˆ
Rn−1

1
(1 + |z′|2)n/2

|f(x′ − tz′)− f(y′ − sz′)| dz′

≤ C[f ]Ċω(Rn−1,CM )

ˆ
Rn−1

1
(1 + |z′|2)n/2

ω((1 + |z′|)r) dz′

≤ C[f ]Ċω(Rn−1,CM )

ˆ ∞
0

1
(1 + λ2)n/2

ω
(
(1 + λ)r

)
λn−1dλ

λ

≤ C[f ]Ċω(Rn−1,CM )

( ˆ 1

0
ω(2r)λn−1dλ

λ
+
ˆ ∞

1

ω(2λr)
λ

dλ

λ

)

= C[f ]Ċω(Rn−1,CM )

(
ω(2r) + 2r

ˆ ∞
2r

ω(λ)
λ

dλ

λ

)
≤ C C ′ω(1 + C ′ω)ω(r)[f ]Ċω(Rn−1,CM ), (4.5.4)
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where in the last inequality we have used (4.2.2) and (4.2.5). Hence, (4.5.2) holds. In
particular, u ∈ Ċ ω(Rn+,CM ) by Lemma 4.2.1(d). This and the fact that u|

κ−n.t.

∂Rn+
= f a.e.

in Rn−1 with f ∈ Ċ ω(Rn−1,CM ) then prove that, indeed, u|∂Rn+ = f .

The result below is the main tool in the proof of existence of solutions for the
generalized Morrey-Campanato Dirichlet Problem.

Proposition 4.5.2. Let L be a constant complex coefficient system as in (1.2.1) satisfying
the strong ellipticity condition stated in (1.2.4), fix an aperture parameter κ > 0, and let
ω be a growth function satisfying (4.2.2). Given 1 ≤ p <∞, let f ∈ E ω,p(Rn−1,CM ) and
define u(x′, t) := (PLt ∗ f)(x′) for every (x′, t) ∈ Rn+. Then u is meaningfully defined via
an absolutely convergent integral and satisfies

u ∈
[
C∞(Rn+)

]M
, Lu = 0 in Rn+, u|

κ−n.t.

∂Rn+
= f a.e. on Rn−1. (4.5.5)

Moreover, for every q ∈ (0,∞] there exists a finite constant C = C(L, n, p, q) > 0 such
that

‖u‖(ω,q)∗∗ ≤ C(C ′ω)4 ‖f‖E ω,p(Rn−1,CM ) . (4.5.6)

Furthermore, the same is true if ‖·‖(ω,q)∗∗ is replaced by ‖·‖(ω,exp)
∗∗ .

Proof. Given f ∈ E ω,p(Rn−1,CM ), if u(x′, t) := (PLt ∗ f)(x′) for every (x′, t) ∈ Rn+, from
(4.2.19) and Theorem 1.2.4(c) we see that u satisfies all properties listed in (4.5.5).

Next, having fixed an arbitrary exponent q ∈ (0,∞), based on Proposition 4.3.1(d),
(4.3.1), Proposition 4.3.1(e), (1.2.35), (4.2.15), (4.2.17) and (4.2.2) we may write

‖u‖(ω,∞)
∗∗ ≤ C C ′ω ‖u‖

(ω,q)
∗∗ ≤ C C ′ω ‖u‖

(ω,exp)
∗∗

≤ C(C ′ω)3 ‖u‖(ω,2)
∗∗ ≤ C(C ′ω)3 sup

t>0

1
ω(t)

ˆ ∞
1

osc1(f, st)ds
s2

= C(C ′ω)3 ‖f‖E ω,p(Rn−1,CM ) sup
t>0

t

ω(t)

ˆ ∞
t

ω(s)ds
s2

≤ C(C ′ω)4 ‖f‖E ω,p(Rn−1,CM ) , (4.5.7)

which proves (4.5.6) and the corresponding estimate for ‖u‖(ω,exp)
∗∗ .

4.6 A Fatou-type result and uniqueness of solutions

We shall now prove a Fatou-type result which is going to be the main ingredient in estab-
lishing the uniqueness of solutions for the boundary value problems we are presently con-
sidering. More precisely, the following result establishes that any solution in Ċ ω(Rn+,CM )
can be obtained as a convolution of its trace with the associated Poisson kernel.

Proposition 4.6.1. Let L be a constant complex coefficient system as in (1.2.1) satisfying
the strong ellipticity condition stated in (1.2.4), and let ω be a growth function satisfying
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(4.2.2). If u ∈
[
C∞(Rn+)

]M ∩ Ċ ω(Rn+,CM ) is a function satisfying Lu = 0 in Rn+, then
u|∂Rn+ ∈ Ċ ω(Rn−1,CM ) and

u(x′, t) =
(
PLt ∗ (u|∂Rn+)

)
(x′), ∀ (x′, t) ∈ Rn+. (4.6.1)

Proof. Let u ∈
[
C∞(Rn+)

]M ∩ Ċ ω(Rn+,CM ) satisfy Lu = 0 in Rn+. By Lemma 4.2.1(d),
it follows that u can be continuously extended to a function (which we call again u)
u ∈ Ċ ω(Rn+,CM ). In particular, the trace u|∂Rn+ is well-defined and belongs to the space
Ċ ω(Rn−1,CM ). To proceed, fix an arbitrary ε > 0 and define uε = u(·+εen) in Rn+, where
en = (0, . . . , 0, 1) ∈ Rn. Then, by design, uε ∈

[
C∞(Rn+)

]M ∩ Ċ ω(Rn+,CM ), Luε = 0 in
Rn+, and [uε] ˙Cω(Rn+,CM ) ≤ [u] ˙Cω(Rn+,CM ). Moreover, using Proposition 4.3.1(c) and (4.2.4)
we obtain

sup
(x′,t)∈Rn+

|(∇uε)(x′, t)| = sup
(x′,t)∈Rn+

|(∇u)(x′, t+ ε)|

≤ C[u] ˙Cω(Rn+,CM ) sup
(x′,t)∈Rn+

ω(t+ ε)
t+ ε

≤ C C ′ω[u] ˙Cω(Rn+,CM )
ω(ε)
ε
. (4.6.2)

This implies that ∇uε is bounded in Rn+, hence uε ∈
[
W 1,2

bdd(Rn+)
]M .

Define next fε(x′) := u(x′, ε) ∈ Ċ ω(Rn−1,CM ) and wε(x′, t) := (PLt ∗ fε)(x′) for each
(x′, t) ∈ Rn+. Then, Proposition 4.5.1 implies that that wε ∈

[
C∞(Rn+)

]M ∩ Ċ ω(Rn+,CM ),
Lwε = 0 in Rn+ and wε|∂Rn+ = fε. Moreover, for every pair of points x′, y′ ∈ Rn−1 we
have, on the one hand,

|fε(x′)− fε(y′)| = |u(x′, ε)− u(y′, ε)| ≤ [u] ˙Cω(Rn+,CM ) ω(|x′ − y′|), (4.6.3)

and, on the other hand, using the Mean Value Theorem and Proposition 4.3.1(c),

|fε(x′)− fε(y′)| = |u(x′, ε)− u(y′, ε)|

≤ |x′ − y′| sup
z′∈[x′,y′]

|(∇u)(z′, ε)|

≤ C |x′ − y′| [u] ˙Cω(Rn+,CM )
ω(ε)
ε
. (4.6.4)

Therefore, we conclude that fε ∈ Ċ Ψ(Rn−1,CM ), with norm depending (unfavorably) on
the parameter ε, where the growth function Ψ is given by

Ψ(t) := min
{
t,
ω(t)
ω(1)

}
=

 t if t ≤ 1,

ω(t)/ω(1) if t > 1.
(4.6.5)

For every R > 1 and x = (x′, t), let us now invoke (1.2.34), (4.2.15) and (4.2.17), with Ψ
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in place of ω, to write
ˆ
B(0,R)∩Rn+

|(∇wε)(x)|2 dx ≤
ˆ
B(0,R)∩Rn+

(
C

t

ˆ ∞
1

osc1(fε; st)
ds

s2

)2
dx

≤ C ‖fε‖E Ψ,p(Rn−1,CM )

ˆ
B(0,R)∩Rn+

(ˆ ∞
1

Ψ(st)
st

ds

s

)2
dx

≤ C ‖fε‖E Ψ,p(Rn−1,CM )R
n−1

ˆ R

0

(ˆ ∞
t

Ψ(s)
s

ds

s

)2
dt, (4.6.6)

and then use (4.2.2) to observe that
ˆ R

0

(ˆ ∞
t

Ψ(s)
s

ds

s

)2
dt ≤

ˆ 1

0

(ˆ 1

t

ds

s
+ 1
ω(1)

ˆ ∞
1

ω(s)
s

ds

s

)2

dt

+
ˆ R

1

( 1
ω(1)

ˆ ∞
1

ω(s)
s

ds

s

)2
dt

≤
ˆ 1

0

(
log(1/t) + C ′ω

)2
dt+ (R− 1)(C ′ω)2 <∞, (4.6.7)

Collectively, (4.6.6) and (4.6.7) show that wε ∈
[
W 1,2

bdd(Rn+)
]M .

We now consider vε := uε−wε ∈
[
C∞(Rn+)

]M ∩ Ċ ω(Rn+,CM )∩
[
W 1,2

bdd(Rn+)
]M , which

satisfies Lvε = 0 in Rn+ and vε|∂Rn+ = 0. Hence, Tr vε = 0 on Rn−1 (see (1.2.22)) and for
each x ∈ Rn we have

|vε(x)| ≤ |vε(x)− vε(0)|+ |vε(0)|

≤ max
{
[vε] ˙Cω(Rn+,CM ) , |vε(0)|

}
(1 + ω(|x|)). (4.6.8)

From this and Proposition 1.2.3 we then conclude that

sup
Rn+∩B(0,r)

|∇vε| ≤
C

r
sup

Rn+∩B(0,2r)
|vε| ≤ Cε

1 + ω(2r)
r

, (4.6.9)

and from Lemma 4.2.1(c) we see that the right side of (4.6.9) tends to 0 as r →∞. This
forces ∇vε ≡ 0, and since vε ∈

[
C∞(Rn+)

]M ∩Ċ ω(Rn+,CM ) with vε|∂Rn+ = 0 we ultimately
conclude that vε ≡ 0. Consequently,

u(x′, t+ ε) = (PLt ∗ fε)(x′), ∀ (x′, t) ∈ Rn+. (4.6.10)

Since, as noted earlier, u|∂Rn+ ∈ Ċ ω(Rn−1,CM ), for every x′ ∈ Rn−1 and ε > 0 we may
now write∣∣u(x′, t+ ε)−

(
PLt ∗ (u|∂Rn+)

)
(x′)

∣∣ =
∣∣(PLt ∗ (fε − u|∂Rn+)

)
(x′)

∣∣
≤ ‖PLt ‖L1(Rn−1) sup

y′∈Rn−1

∣∣fε(y′)− u|∂Rn+ (y′)
∣∣

= ‖PL‖L1(Rn−1) sup
y′∈Rn−1

∣∣u(y′, ε)− u|∂Rn+ (y′)
∣∣

≤ ‖PL‖L1(Rn−1)[u] ˙Cω(Rn+,CM ) ω(ε). (4.6.11)
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From (1.2.26) we know that ‖PL‖L1(Rn−1) < ∞. Upon letting ε → 0+ and using that ω
vanishes in the limit at the origin, we see that (4.6.11) implies (4.6.1). This finishes the
proof of Proposition 4.6.1.

4.7 Well-posedness results

We are now ready to prove well-posedness results. We first consider the case in which the
boundary data belong to generalized Hölder spaces and we note that, in such a scenario,
the only requirement on the growth function is (4.2.2).

Theorem 4.7.1. Let L be a constant complex coefficient M ×M system as in (1.2.1)
satisfying the strong ellipticity condition (1.2.4). Also, let ω be a growth function satis-
fying (4.2.2). Then the generalized Hölder Dirichlet Problem for L in Rn+, formulated as

u ∈
[
C∞(Rn+)

]M
,

Lu = 0 in Rn+,

[u]Ċω(Rn+,CM ) <∞,

u|∂Rn+ = f ∈ Ċ ω(Rn−1,CM ) on Rn−1,

(4.7.1)

is well-posed. More specifically, there exists a unique solution which is given by

u(x′, t) = (PLt ∗ f)(x′), ∀ (x′, t) ∈ Rn+, (4.7.2)

where PL denotes the Poisson kernel for the system L in Rn+ from Theorem 1.2.4. In
addition, u extends to a function in Ċ ω(Rn+,CM ) with u|∂Rn+ = f , and there exists a
finite constant C = C(n,L, ω) ≥ 1 such that

C−1[f ]Ċω(Rn−1,CM ) ≤ [u]Ċω(Rn+,CM ) ≤ C[f ]Ċω(Rn−1,CM ). (4.7.3)

Proof. Given f ∈ Ċ ω(Rn−1,CM ), define u as in (4.7.2). Proposition 4.5.1 then implies
that u satisfies all conditions in (4.7.1). Also, u extends to a function in Ċ ω(Rn+,CM )
with u|∂Rn+ = f , and the second inequality in (4.7.3) holds. Moreover, (4.2.7) yields

[f ]Ċω(Rn−1,CM ) = [u|∂Rn+ ]Ċω(Rn−1,CM ) ≤ [u]Ċω(Rn+,CM ) ≤ 2C ′ω[u]Ċω(Rn+,CM ), (4.7.4)

so that the first inequality in (4.7.3) follows.
It remains to prove that the solution is unique. However, this follows at once from

Proposition 4.6.1. Indeed, the first three conditions in (4.7.1) imply (4.6.1) and since
u|∂Rn+ = f we conclude that necessarily u(x′, t) =

(
PLt ∗ f

)
(x′) for every (x′, t) ∈ Rn+.

Here is the well-posedness for the generalized Morrey-Campanato Dirichlet Problem.
In this case, the growth function is assumed to satisfy both (4.2.1) and (4.2.2).

Theorem 4.7.2. Let L be a constant complex coefficient M ×M system as in (1.2.1)
satisfying the strong ellipticity condition (1.2.4). Fix an aperture parameter κ > 0,
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p ∈ [1,∞) along with q ∈ (0,∞], and let ω be a growth function satisfying (4.2.1) and
(4.2.2). Then the generalized Morrey-Campanato Dirichlet Problem for L in Rn+, namely

u ∈
[
C∞(Rn+)

]M
,

Lu = 0 in Rn+,

‖u‖(ω,q)∗∗ <∞,

u|
κ−n.t.

∂Rn+
= f ∈ E ω,p(Rn−1,CM ) a.e. on Rn−1,

(4.7.5)

is well-posed. More specifically, there exists a unique solution which is given by

u(x′, t) = (PLt ∗ f)(x′), ∀ (x′, t) ∈ Rn+, (4.7.6)

where PL denotes the Poisson kernel for the system L in Rn+ from Theorem 1.2.4. More-
over, with W defined as in (4.2.3), the solution u extends to a function in ĊW (Rn+,CM )
with u|∂Rn+ = f a.e. on Rn−1, and there exists a finite constant C = C(n,L, ω, p, q) ≥ 1
for which

C−1 ‖f‖EW,p(Rn−1,CM ) ≤ ‖u‖
(ω,q)
∗∗ ≤ C ‖f‖E ω,p(Rn−1,CM ) . (4.7.7)

Furthermore, all results remain valid if ‖·‖(ω,q)∗∗ is replaced everywhere by ‖·‖(ω,exp)
∗∗ .

Proof. Having fixed f ∈ E ω,p(Rn−1,CM ), if u is defined as in (4.7.6) then Proposi-
tion 4.5.2 implies the validity of all conditions in (4.7.5) and also of the second inequality
in (4.7.7) (even replacing q by exp). In the case q =∞ we invoke Proposition 4.3.1(f) to
obtain that u ∈ ĊW (Rn+,CM ) in the sense of Lemma 4.2.1(d). Note that we also have

[u|∂Rn+ ]ĊW (Rn−1,CM ) ≤ [u]ĊW (Rn+,CM ) ≤ 2C ′W [u]ĊW (Rn+,CM ) ≤ C(C ′ω)4 ‖u‖(ω,∞)
∗∗ (4.7.8)

thanks to (4.2.7) (for the growth function W ), Lemma 4.2.2, and (4.3.8).
Given that, on the one hand, u|∂Rn+ = u|

κ−n.t.

∂Rn+
everywhere in Rn−1 because u ∈

ĊW (Rn+,CM ), and that, on the other hand, u|
κ−n.t.

∂Rn+
= f a.e. in Rn−1, we conclude that

u|∂Rn+ = f a.e. in Rn−1. In addition, (4.2.18) (applied to W ), Lemma 4.2.2, and (4.7.8)
permit us to estimate

‖f‖EW,p(Rn−1,CM ) = ‖ u|∂Rn+ ‖EW,p(Rn−1,CM ) ≤
√
n− 1C ′W [u|∂Rn+ ] ˙C W (Rn−1,CM )

≤ C(C ′ω)6 ‖u‖(ω,∞)
∗∗ ≤ C(C ′ω)7 ‖u‖(ω,q)∗∗ ≤ C(C ′ω)7 ‖u‖(ω,exp)

∗∗ , (4.7.9)

where 0 < q <∞ and where we have also used Proposition 4.3.1(d) and (4.3.1).
To prove that the solution is unique, we note that having ‖u‖(ω,q)∗∗ < ∞ for a given

q ∈ (0,∞], or even ‖u‖(ω,exp)
∗∗ < ∞, implies that ‖u‖(ω,∞)

∗∗ < ∞ by Proposition 4.3.1(d)
and (4.3.1). Having established this, Proposition 4.3.1(f) applies and yields that u ∈
ĊW (Rn+,CM ). Consequently, u|∂Rn+ = u|

κ−n.t.

∂Rn+
everywhere in Rn−1, and if we also take

into account the boundary condition from (4.7.5), we conclude that u|∂Rn+ = f a.e. on
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Rn−1. Moreover, since Lemma 4.2.2 ensures that W is a growth function satisfying
(4.2.2), we may invoke Proposition 4.6.1 to write

u(x′, t) =
(
PLt ∗ (u|∂Rn+)

)
(x′) =

(
PLt ∗ f

)
(x′), ∀ (x′, t) ∈ Rn+. (4.7.10)

The proof of the theorem is therefore finished.

Remark 4.7.3. Theorems 4.7.1 and 4.7.2 are closely related. To elaborate in this, fix a
growth function ω satisfying (4.2.1) and (4.2.2). From (4.2.18) and Proposition 4.5.2 it
follows that, given any f ∈ Ċ ω(Rn−1,CM ), the unique solution of the boundary value
problem (4.7.1), i.e., u(x′, t) = (PLt ∗ f)(x′) for (x′, t) ∈ Rn+, also solves (4.7.5), regarding
now f as a function in E ω,p(Rn−1,CM ) (cf. (4.2.19)) with p ∈ [1,∞) and q ∈ (0,∞]
arbitrary (and even with ‖·‖(ω,q)∗∗ replaced by ‖·‖(ω,exp)

∗∗ ). As such, u satisfies (4.7.7)
whenever (4.2.1) holds.

This being said, the fact that f ∈ E ω,p(Rn−1,CM ) does not guarantee, in general, that
the corresponding solution satisfies u ∈ Ċ ω(Rn+,CM ), even though we have established
above that the solution to the boundary value problem (4.7.5) belongs to ĊW (Rn+,CM ).
Note that, as seen from (1.3.17)-(1.3.18) and (4.2.12), the space ĊW (Rn+,CM ) contains
Ċ ω(Rn+,CM ).

This aspect is fully clarified with the help of Example 4.7.4 discussed further below,
where we construct some growth function ω satisfying (4.2.1), (4.2.2), and for which the
space E ω,1(Rn−1,C) is strictly bigger than Ċ ω(Rn−1,C). Its relevance for the issue at
hand is as follows. Consider the boundary problem (4.7.5) formulated with L being the
Laplacian in Rn and with f ∈ E ω,1(Rn−1,C) \ Ċ ω(Rn−1,C) as boundary datum. Its
solution u then necessarily satisfies u /∈ Ċ ω(Rn+,C), for otherwise Lemma 4.2.1(d) would
imply u ∈ Ċ ω(Rn+,CM ) and since u|∂Rn+ = u|

κ−n.t.

∂Rn+
= f a.e. on Rn−1 and f is continuous

in Rn−1 we would conclude that f coincides everywhere with u|∂Rn+ ∈ Ċ ω(Rn−1,C), a
contradiction.

In spite of the previous remark, Theorem 4.1.2 states that the boundary problems
(4.7.1) and (4.7.5) are actually equivalent under the stronger assumption (4.1.9) on the
growth function. Here is the proof of Theorem 4.1.2.

Proof of Theorem 4.1.2. We start with the observation that (4.1.9) and Lemma 4.2.2
yield C−1

ω W (t) ≤ ω(t) ≤ CωW (t) for each t ∈ (0,∞). Therefore,

Ċ ω(Rn+,CM ) = ĊW (Rn+,CM ), Ċ ω(Rn+,CM ) = ĊW (Rn+,CM ), (4.7.11)

and
E ω,p(Rn−1,CM ) = EW,p(Rn−1,CM ), (4.7.12)

as vector spaces, with equivalent norms.
Having made these identifications, we now proceed to observe that (a) follows directly

from Theorem 4.7.1, while (b) is implied by Theorem 4.7.2 with the help of (4.7.11) and
(4.7.12). To deal with (c), we first observe that the left-to-right inclusion follows from
Lemma 4.2.4(b), whereas (4.2.18) provides the accompanying estimate for the norms.
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For the converse inclusion, fix f ∈ E ω,p(Rn−1,CM ) and set u(x′, t) := (PLt ∗ f)(x′) for
every (x′, t) ∈ Rn+. Theorem 4.7.2 and (4.7.11) then imply that u ∈ Ċ ω(Rn+,CM ) with
u|∂Rn+ = f a.e. on Rn−1. Introduce f̃ := u|∂Rn+ and note that f̃ ∈ Ċ ω(Rn−1,CM ) with
f̃ = f a.e. on Rn−1. Then u(x′, t) = (PLt ∗ f̃)(x′) and, thanks to (4.7.3), (4.3.11), and
(4.7.7), we have

[f̃ ]Ċω(Rn−1,CM ) ≤ C[u]Ċω(Rn+,CM ) ≤ C ‖f‖E ω,p(Rn−1,CM ) . (4.7.13)

This completes the treatment of (c), and finishes the proof of Theorem 4.1.2.

We are now in a position to give the proof of Corollary 4.1.3.

Proof of Corollary 4.1.3. We start by observing that (4.1.16) is a direct consequence of
Proposition 4.3.1(h). In particular, the last three equalities in (4.1.17) follow at once.
Also, the fact that the second set in the first line of (4.1.17) is contained in Ċ ω(Rn−1,CM )
is a consequence of Lemma 4.2.1(d). Finally, given any f ∈ Ċ ω(Rn−1,CM ), if u is the
solution of (4.1.10) corresponding to this choice of boundary datum, then u|∂Rn+ = f and
u also satisfies the required conditions to be an element in the second set displayed in
(4.1.17).

The following example shows that conditions (4.2.1) and (4.2.2) do not imply (4.1.15).

Example 4.7.4. Fix two real numbers α, β ∈ (0, 1) and consider the growth function
ω : (0,∞)→ (0,∞) defined for each t > 0 as

ω(t) :=

 tα, if t ≤ 1,

1 + (log t)β, if t > 1.
(4.7.14)

Clearly, ω satisfies (4.2.1), and we also claim that ω satisfies (4.2.2). Indeed, for t ≤ 1,
ˆ ∞
t

ω(s)
s

ds

s
=
ˆ 1

t
sα−1ds

s
+
ˆ ∞

1

1 + (log s)β

s2 ds ≤ C(tα−1 + 1) ≤ 2C tα−1. (4.7.15)

For t ∈ [1,∞), define

F (t) :=
t

ˆ ∞
t

ω(s)
s

ds

s

ω(t) =

ˆ ∞
t

1 + (log s)β

s2 ds

1 + (log t)β

t

, (4.7.16)

which is a continuous function in [1,∞) and satisfies F (1) < ∞. Moreover, using
L’Hôpital’s rule,

lim
t→∞

F (t) = lim
t→∞

−(1 + (log t)β)
β(log t)β−1 − (1 + (log t)β) = 1. (4.7.17)

Hence, F is bounded, which amounts to having ω satisfy (4.2.2). The functionW , defined
as in (4.2.3), is currently given by

W (t) =


1
α
tα, if t ≤ 1,

1
α

+ 1
β + 1(log t)β+1 + log t, if t > 1.

(4.7.18)
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Since (4.1.9) would imply W (t) ≤ Cω(t) which is not the case for t sufficiently large, we
conclude that the growth function ω satisfies (4.2.1) and (4.2.2) but it does not satisfy
(4.1.9).

For this choice of ω, we now proceed to check that E ω,1(Rn−1,C) 6= Ċ ω(Rn−1). To
this end, consider the function

f(x) := log+ |x1|, ∀x = (x1, x2, . . . , xn−1) ∈ Rn−1, (4.7.19)

where log+ t := max{0, log t}. With e1 =: (1, 0, . . . , 0) ∈ Rn−1 we then have

sup
x 6=y

|f(x)− f(y)|
ω(|x− y|) ≥ lim

x1→∞
|f(x1e1)− f(e1)|
ω(|x1e1 − e1|)

= lim
x1→∞

log x1
1 + (log(x1 − 1))β =∞, (4.7.20)

since β < 1. This means that f /∈ Ċ ω(Rn−1). To prove that f ∈ E ω,1(Rn−1,C), consider
Q̃ := (a, b)×Q ⊆ Rn−1, where Q is an arbitrary cube in Rn−2 and a, b ∈ R are arbitrary
numbers satisfying a < b. Then,

‖f‖E ω,1(Rn−1,C) ≤ sup
Q̃⊆Rn−1

1
ω(`(Q̃))

 
Q̃

 
Q̃
|f(x)− f(y)| dx dy

≤ sup
a<b

1
ω(b− a)H(a, b), (4.7.21)

where
H(a, b) :=

 b

a

 b

a

∣∣ log+ |x1| − log+ |y1|
∣∣ dx1 dy1. (4.7.22)

We shall now prove that the right-hand side of (4.7.21) is finite considering several
different cases.

Case I: 1 ≤ a < b. In this scenario, define

G(λ) := 1 + 2λ− 2λ(λ+ 1) log
(

1 + 1
λ

)
, ∀λ > 0. (4.7.23)

Note that G is continuous in (0,∞), G(0) = 1, and by L’Hôpital’s rule, limλ→∞G(λ) = 0,
hence G is bounded. Also,

H(a, b) = b2 − a2 − 2ab log(b/a)
(b− a)2 = G

(
a/(b− a)

)
. (4.7.24)

Consequently, whenever b− a ≥ 1 we have

H(a, b) = G
(
a/(b− a)

)
≤ C ≤ C

(
1 + (log(b− a)

)β) = Cω(b− a). (4.7.25)

Again by L’Hôpital’s rule, limλ→∞ λ
αG(λ) = 0, hence λαG(λ) ≤ C for every λ > 0.

Therefore, whenever 0 < b− a < 1 we may write

H(a, b) = G
(
a/(b− a)

)
≤ C

(
b− a
a

)α
≤ C(b− a)α = Cω(b− a). (4.7.26)

All these show that H(a, b) ≤ Cω(b− a) in this case.
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Case II: a < b ≤ −1. This case is analogous to the previous one by symmetry.

Case III: −1 ≤ a < b ≤ 1. This case is straightforward since H(a, b) = 0, given that
log+ |x1| = log+ |y1| = 0 whenever a < x1, y1 < b.

Case IV: −1 < a < 1 < b. In this case we obtain

H(a, b) = 1
(b− a)2

ˆ b

1

ˆ b

1
| log x1 − log y1| dx1 dy1

+ 1
(b− a)2

ˆ 1

a

ˆ b

1
log x1 dx1 dy1 + 1

(b− a)2

ˆ b

1

ˆ 1

a
log y1 dx1 dy1

≤ (b− 1)2

(b− a)2H(1, b) + 2(1− a)(b log b− b+ 1)
(b− a)2 . (4.7.27)

For the first term in the right-hand side of (4.7.27), we use (4.7.25) and (4.7.26) (written
with a := 1) and obtain, keeping in mind that in this case a < 1,

(b− 1)2

(b− a)2H(1, b) ≤ Cω(b− 1)
(
b− 1
b− a

)2
≤ Cω(b− a). (4.7.28)

To bound the second term in the right-hand side of (4.7.27), we first use the fact that
1− a < 2 and log t ≤ t− 1 for every t ≥ 1 to obtain

(1− a)(b log b− b+ 1)
(b− a)2 ≤ 2b(b− 1)− b+ 1

(b− a)2 ≤ 2
(
b− 1
b− a

)2
≤ 2

≤ 2
(
1 + (log(b− a))β

)
= 2ω(b− a), (4.7.29)

whenever b− a ≥ 1. To study the case when b− a < 1, bring in the auxiliary function

G̃(λ) := λ log λ− λ+ 1
(λ− 1)1+α , ∀λ > 1. (4.7.30)

By L’Hôpital’s rule, limλ→1+ G̃(λ) = 0, hence G̃(λ) ≤ C for each λ ∈ (1, 2]. If b− a < 1,
we clearly have 1 < b ≤ 2 which, in turn, permits us to estimate

(1− a)(b log b− b+ 1)
(b− a)2 = (1− a)(b− 1)1+αG(b)

(b− a)2

≤ C(b− 1)1+α

b− a
≤ C(b− a)α = Cω(b− a). (4.7.31)

Consequently, we have obtained that H(a, b) ≤ Cω(b− a) in this case as well.

Case V: a < −1 < b < 1. This is analogue to Case IV, again by symmetry.

Case VI: a < −1, b > 1. We break the interval (a, b) into two intervals (a, 0) and
(0, b) to obtain

H(a, b) ≤ 1
(b− a)2 (I + II), (4.7.32)
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where, using Case IV and Case V,

I :=
ˆ 0

a

ˆ 0

a

∣∣ log+ |x1| − log+ |y1|
∣∣ dx1 dy1 +

ˆ b

0

ˆ b

0
| log+ x1 − log+ y1| dx1 dy1

= H(a, 0)(0− a)2 +H(0, b)(b− 0)2 ≤ C|a|2ω(|a|) + C b2ω(b)

≤ 2C(b− a)2ω(b− a). (4.7.33)

Similarly, by Case IV,

II :=
ˆ 0

a

ˆ b

0

∣∣ log+ |x1| − log+ |y1|
∣∣ dx1 dy1 +

ˆ b

0

ˆ 0

a

∣∣ log+ |x1| − log+ |y1|
∣∣ dx1 dy1

≤ 2
(

max{|a|, b} − 0
)2
H
(

max{|a|, b}, 0
)

≤ 2C max{|a|, b}2 ω(max{|a|, b})

≤ 2C(b− a)2 ω(b− a). (4.7.34)

Thus, H(a, b) ≤ Cω(b− a) in this case also.
Collectively, the results in Cases I-VI prove that f ∈ E ω,1(Rn−1,C).
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CHAPTER 5

Characterizations of Lyapunov domains in terms of Riesz
transforms and generalized Hölder spaces

We prove several characterizations of C 1,ω-domains (aka Lyapunov domains), where ω
is a growth function satisfying natural assumptions. For example, given an Ahlfors
regular domain Ω ⊆ Rn, we show that the modulus of continuity of the geometric
measure theoretic outward unit normal ν to Ω is dominated by (a multiple of) ω if
and only if the action of each Riesz transform Rj associated with ∂Ω on the constant
function 1 has a modulus of continuity dominated by (a multiple of) ω. We also establish
estimates for certain classes of singular integral operators on generalized Hölder space
on Lyapunov domains.

The material in this chapter is based on joint work with J.M. Martell and M. Mitrea
(cf. [78]).

Contents

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
5.2 More on growth functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
5.3 Singular integrals on generalized Hölder spaces . . . . . . . . . . . . . . 325
5.4 Cauchy-Clifford operators on C ω(∂Ω)⊗ C̀ n . . . . . . . . . . . . . . . . . 331
5.5 Proof of Theorem 5.1.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340

5.1 Introduction

The principal aim of this chapter is to characterize Lyapunov C 1,ω-domains in Rn, n ≥
2. One way to think of such a domain Ω ⊆ Rn is as an open set of locally finite
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perimeter whose geometric measure theoretic outward unit normal ν, after possibly being
redefined on a set of σ-measure zero, belongs to C ω(∂Ω). Here, C ω(∂Ω) is a generalized
Hölder space, quantifying continuity in terms of the modulus, or “growth” function, ω
(cf. Definition 1.3.5), and σ := Hn−1b∂Ω is the “surface measure” on ∂Ω (with Hn−1

denoting the (n − 1)-dimensional Hausdorff measure in Rn). Thanks to work in [52],
the above class of domains may be equivalently described as the collection of all open
subsets of Rn which locally coincide (up to a rigid transformation of the space) with the
upper-graph of a real-valued continuously differentiable function defined in Rn−1 whose
first-order partial derivatives belong to C ω(Rn−1).

Definition 5.1.1. Let ω be a growth function. A nonempty, proper, open subset Ω of Rn

is called a Lyapunov C 1,ω-domain (or simply a C 1,ω-domain) if there exist r, h > 0 such
that for every point x0 ∈ ∂Ω there exists a coordinate system (x′, xn) ∈ Rn−1 ×R which
is isometric to the canonical one and has x0 as its origin, and a function ϕ ∈ C 1,ω(Rn−1)
such that

Ω ∩ C(r, h) =
{
x = (x′, xn) ∈ Rn−1 × R : |x′| < r, ϕ(x′) < xn < h

}
, (5.1.1)

where C(r, h) is the cylinder defined as

C(r, h) =
{
x = (x′, xn) ∈ Rn−1 × R : |x′| < r, −h < xn < h

}
. (5.1.2)

Remark 5.1.2. Any C 1,ω-domain with compact boundary is, in particular, simultaneously
a UR domain and a uniform domain.

Remark 5.1.3. Analogously to the characterization of C 1 domains given in [52], one can
prove that C 1,ω-domain are those open sets of locally finite perimeter with the property
that the geometric measure theoretic outward unit normal ν to Ω, after possibly being
altered on a set of σ-measure zero, belongs to C ω(∂Ω). See [52, Theorem 2.19] for the
proof in the case ω(t) = tα for each t ∈ (0,∞) with α ∈ (0, 1), which is easily adapted to
our scenario.

The characterizations of the class of Lyapunov domains we presently seek are in terms
of the boundedness properties of certain classes of singular integral operators acting
on generalized Hölder spaces. The most prominent examples of such singular integral
operators are offered by the Riesz transforms on the boundary of an Ahlfors regular
domain Ω ⊆ Rn with compact boundary (cf. Definition 1.1.2). Specifically, for each
j ∈ {1, . . . , n} we define the j-th distributional Riesz transform on ∂Ω as the operator

Rj : C ω(∂Ω) −→
(
C ω(∂Ω)

)∗ satisfying, for every f, g ∈ C ω(∂Ω),

〈Rjf, g〉 = 1
2$n−1

ˆ
∂Ω

ˆ
∂Ω

xj − yj
|x− y|n

(
f(y)g(x)− f(x)g(y)

)
dσ(y) dσ(x),

(5.1.3)

where $n−1 stands for the area of the unit sphere Sn−1 in Rn, and 〈·, ·〉 denotes the
natural duality pairing between

(
C ω(∂Ω)

)∗ and C ω(∂Ω). From the T (1) theorem for
spaces of homogeneous type (cf., e.g., [21]) we know that for each j ∈ {1, . . . , n} the
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operator Rj extends to a bounded linear mapping on L2(∂Ω, σ) if and only if Rj1 belongs
to BMO(∂Ω, σ), the John-Nirenberg space of functions with bounded mean oscillation
on ∂Ω (with respect to the measure σ). Moreover, having Rj1 ∈ BMO(∂Ω, σ) is actually
equivalent to ∂Ω being uniformly rectifiable (cf. [101]). Ultimately this goes to show that
the aforementioned extension of Rj from (5.1.3) to a bounded mapping on L2(∂Ω, σ) is
given by the principal-value integral operator acting on each f ∈ L2(∂Ω, σ) according to

(Rjf)(x) := lim
ε→0+

1
$n−1

ˆ

y∈∂Ω
|x−y|>ε

xj − yj
|x− y|n

f(y) dσ(y) for σ-a.e. x ∈ ∂Ω. (5.1.4)

In this chapter, we find it convenient to make two terminology changes with respect to
the previous chapters: the area of the unit sphere is denoted by $n−1 (in place of ωn−1),
and the definition of the Riesz transform Rjf above differs from the Riesz transform
defined in Chapter 2 by a constant).

Our main result in this regard is the following theorem. For all relevant definitions,
the reader is referred to Sections 1.1, 1.3, and 5.2.

Theorem 5.1.4. Suppose Ω ⊆ Rn is an Ahlfors regular domain whose boundary is
compact. Abbreviate σ := Hn−1b∂Ω and denote by ν the geometric measure theoretic
outward unit normal to Ω. Also, define Ω+ := Ω and Ω− := Rn \ Ω. Finally, let
ω :

(
0, diam(∂Ω)

)
→ (0,∞) be a bounded, non-decreasing function, whose limit at the

origin vanishes, and satisfying

sup
0<t<diam(∂Ω)

{
1
ω(t)

( ˆ t

0
ω(s)ds

s
+ t

ˆ diam(∂Ω)

t

ω(s)
s

ds

s

)}
< +∞. (5.1.5)

Then the following statements are equivalent:

(a) After possibly being altered on a set of σ-measure zero, the outward unit normal ν to
Ω belongs to the generalized Hölder space C ω(∂Ω) (i.e. the set Ω is a C 1,ω-domain;
cf. Remark 5.1.3).

(b) The Riesz transforms on ∂Ω satisfy

Rj1 ∈ C ω(∂Ω) for each j ∈ {1, . . . , n}. (5.1.6)

(c) The set Ω is a UR domain (in the sense of Definition 1.1.5), and given any odd
homogenous polynomial P of degree ` ≥ 1 in Rn the singular integral operator acting
on each function f ∈ C ω(∂Ω) according to

(Tf)(x) :=
ˆ

y∈∂Ω
|x−y|>ε

P (x− y)
|x− y|n−1+` f(y) dσ(y) for σ-a.e. x ∈ ∂Ω (5.1.7)

is well-defined and maps the generalized Hölder space C ω(∂Ω) boundedly into itself.
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(d) The set Ω is a UR domain, and the boundary-to-domain version of the Riesz trans-
forms defined for each j ∈ {1, . . . , n} and each f ∈ L1(∂Ω, σ) as

(
R±j f

)
(x) := 1

$n−1

ˆ
∂Ω

xj − yj
|x− y|n

f(y) dσ(y), ∀x ∈ Ω±, (5.1.8)

satisfy
R±j 1 ∈ C ω(Ω±) for each j ∈ {1, . . . , n}. (5.1.9)

(e) The set Ω is a UR domain, and given any odd homogenous polynomial P of degree
` ≥ 1 in Rn, the integral operators acting on each function f ∈ C ω(∂Ω) according
to

T±f(x) :=
ˆ
∂Ω

P (x− y)
|x− y|n−1+` f(y) dσ(y), ∀x ∈ Ω±, (5.1.10)

map the generalized Hölder space C ω(∂Ω) continuously into C ω(Ω±).

In addition, if Ω is a C 1,ω-domain, there exists a constant C ∈ (0,∞), depending
only on n, ω, and Ω, with the property that

‖T±f‖Cω(Ω±) ≤ C` 2`2‖P‖L2(Sn−1,Hn−1)‖f‖Cω(∂Ω), ∀ f ∈ C ω(∂Ω), (5.1.11)

and

‖Tf‖Cω(∂Ω) ≤ C` 2`2‖P‖L2(Sn−1,Hn−1)‖f‖Cω(∂Ω), ∀ f ∈ C ω(∂Ω). (5.1.12)

This generalizes earlier work in [96] where similar characterizations for domains of
class C 1+α, with α ∈ (0, 1), have been obtained. The latter scenario presently corresponds
to the particular choice ω(t) := tα for each t > 0 in Theorem 5.1.4. Our present work
adds further credence to the heuristic principle that the action of the distributional Riesz
transforms (5.1.3) on the constant function 1 encapsulates much information, both of
analytic and geometric flavor, about the underlying Ahlfors regular domain Ω ⊆ Rn (with
compact boundary). At the most basic level, the main result of F. Nazarov, X. Tolsa,
and A. Volberg in [101] states that

∂Ω is a UR set ⇐⇒ Rj1 ∈ BMO(∂Ω, σ) for each j ∈ {1, . . . , n}, (5.1.13)

and it has been noted in [96] that

ν ∈ VMO(∂Ω, σ)

and ∂Ω is a UR set

⇐⇒ Rj1 ∈ VMO(∂Ω, σ) for all j ∈ {1, . . . , n}, (5.1.14)

where VMO(∂Ω, σ) stands for the Sarason space of functions with vanishing mean oscil-
lation on ∂Ω, with respect to the measure σ. By further assigning additional regularity
for the functionals {Rj1}1≤j≤n yields the following result (proved in [96])

Ω is a domain

of class C 1+α

⇐⇒ Rj1 ∈ C α(∂Ω) for all j ∈ {1, . . . , n}, (5.1.15)
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where α ∈ (0, 1) and C α(∂Ω) is the classical Hölder space of order α on ∂Ω.
Theorem 5.1.4 provides a satisfactory generalization of (5.1.15) by allowing consid-

erably more flexible scales of spaces measuring Hölder regularity (see the discussion in
Example 1.3.4 in this regard). To place this in perspective, observe that the opera-
tors described in (5.1.7) may be thought of as generalized Riesz transforms since they
correspond to (5.1.4) in the case when

P (x) := xj/$n−1 for x = (x1, . . . , xn) ∈ Rn, j ∈ {1, . . . , n}. (5.1.16)

As such, our result may be interpreted as roughly saying that the classical Riesz trans-
forms are bounded on a generalized Hölder space if and only if all generalized Riesz
transforms are bounded on a generalized Hölder space if and only if the underlying
domain is Lyapunov.

Due to their significant role in Partial Differential Equations, Lyapunov domains
have received a good deal of attention in the literature, and a number of alternative
characterizations have been discovered. For example, Theorem 5.1.4 should be compared
with the following purely geometric characterization of Lyapunov domains obtained in
[5], which amounts to the ability of threading the boundary of the said domain in between
the two rounded components of an “hour-glass” shaped solid.

Proposition 5.1.5. Fix D ∈ (0,∞) and let ω : (0, D]→ [0,∞) be a continuous, strictly
increasing function, with the property that

lim
λ→0+

(
sup

t∈(0,min{D,D/λ}]

ω(λ t)
ω(t)

)
= 0. (5.1.17)

Define the pseudo-ball associated with ω having apex at a point x ∈ Rn, axis of symmetry
along some vector h ∈ Sn−1, height b > 0, and aperture a > 0, as the set

G ω
a,b(x, h) :=

{
y ∈ B(x,D) \ {x} : a|y − x|ω(|y − x|) < h · (y − x) < b

}
. (5.1.18)

Then a nonempty, open, proper subset Ω of Rn, with compact boundary is a C 1,ω-
domain if and only if there exist a > 0, b > 0 and a function h : ∂Ω → Sn−1 with the
property that

G ω
a,b(x, h(x)) ⊆ Ω and G ω

a,b(x,−h(x)) ⊆ Rn \ Ω for each x ∈ ∂Ω. (5.1.19)

In [5] this was used to prove a sharper version of the Hopf-Oleinik Boundary Point
Principle in domains satisfying an “pseudo-ball condition” (in place of the classical
interior ball condition).

The layout of the chapter is as follows. In Section 5.2 we study growth functions
and generalized Hölder spaces, extending the results in Section 1.3. We then proceed
to study singular integrals on generalized Hölder spaces in Section 5.3. Following [96],
our approach relies on Clifford algebra techniques. In Section 5.4 we prove some basic
estimates for the Cauchy-Clifford operators acting on generalized Hölder spaces. Finally,
Section 5.5 contains the proof of our main result, Theorem 5.1.4, which proceeds by
induction on the degree ` of the polynomial P involved in (5.1.7) and (5.1.10).
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5.2 More on growth functions

Given a growth function ω, in the lemma below we study some of the implications of
(1.3.6) for the function ω̃ associated with ω as in Remark 1.3.2.

Lemma 5.2.1. Suppose D ∈ (0,∞] and let ω be a growth function on (0, D) satisfying
(1.3.6). If ω̃ is associated with ω as in Remark 1.3.2, then the following statements are
true.

(a) For each N ∈ [1,∞) one has
ˆ t

0
ω̃(s)ds

s
≤ C1ω̃(t) for all t ∈ (0, ND), (5.2.1)

with C1 := Cω + lnN if D <∞ and C1 := Cω if D =∞.

(b) One has

t

ˆ ∞
t

ω̃(s)
s

ds

s
≤ C2ω̃(t) for all t ∈ (0,∞), (5.2.2)

with C2 := Cω + max{1, Cω} ω(D)
ω(D/2) if D <∞ and C2 := Cω if D =∞.

(c) As a consequence of Remark 1.3.2 and (a)-(b), one concludes that ω̃ is growth
function on (0,∞) which satisfies (1.3.6) with

Cω̃ ≤ C1 + C2, (5.2.3)

where C1, C2 ∈ (0,∞) are as above.

(d) Whenever 0 < t1 ≤ t2 <∞ one has

ω̃(t2)
t2
≤ C2

ω̃(t1)
t1

, (5.2.4)

with C2 as in part (b). In particular, ω̃ is doubling with constant

sup
0<t<∞

ω̃(2t)
ω̃(t) ≤ 2C2. (5.2.5)

Proof. If D =∞, then the claims in (a) and (b) are direct consequences of (1.3.7), since
ω̃ = ω on (0,∞) in this case. Henceforth assume D <∞. In such a scenario, if t ∈ (0, D)
then the claim in (a) follows at once from (1.3.7) since ω̃ = ω on (0, D). On the other
hand, if t ∈ [D,ND) for some N ∈ [1,∞), then

ˆ t

0
ω̃(s)ds

s
=
ˆ D

0
ω(s)ds

s
+
ˆ ND

D
ω(D)ds

s
≤ Cωω(D) + ω(D) lnN

= (Cω + lnN)ω̃(t), (5.2.6)

keeping in mind that, as noted earlier, (1.3.7) extends to t = D in this case.
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As regards item (b), we first claim that

t ≤ max{1, Cω}D
ω(D/2) ω(t) for each t ∈ (0, D). (5.2.7)

Indeed, if t ∈ (0, D/2] we may estimate

t
ω(D/2)
D

≤ t
ˆ D

D/2

ω(s)
s

ds

s
≤ t

ˆ D

t

ω(s)
s

ds

s
≤ Cωω(t), (5.2.8)

which suits our purposes. If t ∈ (D/2, D), the fact hat ω is a non-decreasing function
entails ω(D/2)/D ≤ ω(t)/t, finishing the proof of (5.2.7). In turn, on account of (5.2.7)
we see that for each t ∈ (0, D) we have

t

ˆ ∞
t

ω̃(s)
s

ds

s
= t

ˆ D

t

ω(s)
s

ds

s
+ t

ˆ ∞
D

ω(D)
s

ds

s
≤ Cωω(t) + t

ω(D)
D

≤
(
Cω + max{1, Cω}

ω(D)
ω(D/2)

)
ω(t). (5.2.9)

To finish the proof of (5.2.2) there remains to observe that, if t ≥ D,

t

ˆ ∞
t

ω̃(s)
s

ds

s
= ω(D) = ω̃(t). (5.2.10)

Next, the claims in item (c) are direct consequences of Remark 1.3.2 and parts (a)-(b).
Turning our attention to item (d), if 0 < t1 ≤ t2 <∞ then (5.2.2) implies

ω̃(t2)
t2
≤
ˆ ∞
t2

ω̃(s)
s

ds

s
≤
ˆ ∞
t1

ω̃(s)
s

ds

s
≤ C2

ω̃(t1)
t1

, (5.2.11)

and the assertion in (5.2.5) follows by specializing this to the case when t1 := t and
t2 := 2t.

In the classical case when, for some α ∈ (0, 1), the growth function is defined as
ω(t) := tα for each t ∈ (0,∞), the function V (t) := tα−1 for each t ∈ (0,∞) plays a
significant role in ensuing analysis. Below we identify the general format of the latter
function associated with general growth functions.

Lemma 5.2.2. Given D ∈ (0,∞], let ω be a growth function on (0, D) and recall the
function ω̃ from Remark 1.3.2, defined as ω̃(t) := ω(min{t,D}) for each t ∈ (0,∞). Set

V (t) :=
ˆ ∞
t

ω̃(s)
s

ds

s
for each t ∈ (0,∞). (5.2.12)

Then V : (0,∞)→ (0,∞] is a non-increasing function which satisfies

ω̃(t)
t
≤ V (t) for each t ∈ (0,∞). (5.2.13)

Moreover, if D <∞ then V takes only finite values.
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Proof. By design, V is a non-increasing function. Bearing in mind that ω̃ is non-
decreasing, for every t ∈ (0,∞) we may write

ω̃(t)
t

=
ˆ ∞
t

ω̃(t)
s

ds

s
≤
ˆ ∞
t

ω̃(s)
s

ds

s
= V (t), (5.2.14)

proving (5.2.13). Also, when D ∈ (0,∞), for each t ∈ (0, D) we have

V (t) =
ˆ ∞
D

ω̃(s)
s

ds

s
+
ˆ D

t

ω̃(s)
s

ds

s
= ω(D)

D
+
ˆ D

t

ω̃(s)
s

ds

s

≤ ω(D)
D

+ ω(D)
(1
t
− 1
D

)
. (5.2.15)

As V (t) is non-increasing, this proves that V only takes finite values.

We close this section by proving some useful integral estimates on upper Ahlfors
regular sets involving growth functions. Here and elsewhere, for each number a ∈ R
we agree to abbreviate (a)+ := max{a, 0}.

Lemma 5.2.3. Suppose Σ is closed subset of Rn satisfying an upper Ahlfors regularity
condition with constant C ∈ (0,∞). Define σ := Hn−1bΣ. Also, assume ω is a growth
function on (0,∞). Then for each x ∈ Σ, r ∈

(
0 , diam(Σ)

)
, and d ∈ R one has

ˆ
Σ∩B(x,r)

ω(|x− y|)
|x− y|n−1+d dσ(y) ≤ C 2n−1+d · 2d+ · 2(1−n−d)+

ln 2

ˆ 2 r

0

ω(s)
sd

ds

s
, (5.2.16)

ˆ
Σ\B(x,r)

ω(|x− y|)
|x− y|n−1+d dσ(y) ≤ C 2n−1+d · 2d+ · 2(1−n−d)+

ln 2

ˆ 4 diam(Σ)

2 r

ω(s)
sd

ds

s
. (5.2.17)

Proof. Fix x ∈ Σ and r ∈
(
0 , diam(Σ)

)
then abbreviate B := B(x, r). Using the fact

that ω is non-decreasing and the upper Ahlfors regularity of Σ we may estimate
ˆ

Σ∩B

ω(|x− y|)
|x− y|n−1+d dσ(y) =

∞∑
k=0

ˆ
Σ∩(2−kB\2−k−1B)

ω(|x− y|)
|x− y|n−1+d dσ(y)

≤
∞∑
k=0

2(1−n−d)+ ω(2−kr)
(2−k−1 r)n−1+d σ(Σ ∩ 2−kB)

≤ C 2n−1+d · 2(d)+ · 2(1−n−d)+

ln 2

∞∑
k=0

ˆ 2−k+1 r

2−k r

ω(s)
sd

ds

s

= C
2n−1+d · 2d+ · 2(1−n−d)+

ln 2

ˆ 2 r

0

ω(s)
sd

ds

s
, (5.2.18)

proving (5.2.16).
Let us now turn to (5.2.17). We may assume that Σ \ B 6= ∅, otherwise there is

nothing to prove. Set N := [log2 (diam(Σ)/r)] ∈ N0 ∪ {∞}, so that ∂Ω \ 2kB = ∅
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for every integer k > N . Then, using that ω is non-decreasing and the upper Ahlfors
regularity of Σ we may write

ˆ
Σ\B

ω(|x− y|)
|x− y|n−1+d dσ(y) ≤

N∑
k=0

ˆ
Σ∩(2k+1B\2kB)

ω(|x− y|)
|x− y|n−1+d dσ(y)

≤
N∑
k=0

2(1−n−d)+ ω(2k+1 r)
(2k r)n−1+d σ(Σ ∩ 2k+1B)

≤ C 2n−1+d · 2(d)+ · 2(1−n−d)+

ln 2

N∑
k=0

ˆ 2k+2 r

2k+1 r

ω(s)
sd

ds

s

≤ C 2n−1+d · 2(d)+ · 2(1−n−d)+

ln 2

ˆ 4 diam(Σ)

2 r

ω(s)
sd

ds

s
, (5.2.19)

proving (5.2.17).

5.3 Singular integrals on generalized Hölder spaces

We first recall a basic result pertaining to the behavior of singular integral operators on
UR sets, which is a direct consequence of Proposition 2.3.3 with w ≡ 1 (except for the
formula in (5.3.3), which is proved in [93]).

Theorem 5.3.1. Suppose Ω ⊆ Rn is an open set such that ∂Ω is a UR set. Abbreviate
σ := Hn−1b∂Ω and denote by ν the geometric measure theoretic outward unit normal to Ω.
Also, assume N = N(n) ∈ N is a sufficiently large integer and consider a complex-valued
function k ∈ CN

(
Rn\{0}

)
which is odd and positive homogeneous of degree 1−n. Finally,

fix an aperture parameter κ > 0. In this setting, for each function f ∈ L1(∂Ω, σ(x)
1+|x|n−1

)
define

T f(x) :=
ˆ
∂Ω
k(x− y)f(y) dσ(y) for each x ∈ Ω, (5.3.1)

Tf(x) := lim
ε→0+

ˆ

y∈∂Ω
|x−y|>ε

k(x− y)f(y) dσ(y) for σ-a.e. x ∈ ∂Ω. (5.3.2)

Then for each f ∈ L1(∂Ω, σ(x)
1+|x|n−1

)
the limit in (5.3.2) exists σ-a.e. and one has the

jump-formula
(T f)

∣∣κ−n.t.

∂Ω (x) = 1
2i k̂(ν(x))f(x) + Tf(x), (5.3.3)

for σ-a.e. x ∈ ∂∗Ω, where k̂ denotes the Fourier transform of k in Rn and i :=
√
−1 ∈ C.

Also, for each integrability exponent p ∈ (1,∞) there exists a finite constant C > 0
such that for each function f ∈ Lp(∂Ω, σ) one has

‖Nκ(T f)‖Lp(∂Ω,σ) ≤ C ‖f‖Lp(∂Ω,σ) , (5.3.4)

‖Tf‖Lp(∂Ω,σ) ≤ C ‖f‖Lp(∂Ω,σ) . (5.3.5)
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We now turn to the task of estimating singular integral operators acting on gen-
eralized Hölder spaces.

Lemma 5.3.2. Suppose Ω is a nonempty, proper, open subset of Rn with compact
boundary, satisfying an upper Ahlfors regularity condition with constant C ∈ (0,∞) and
abbreviate σ := Hn−1b∂Ω. Consider a function k : Ω × ∂Ω → R with the property that
k(x, ·) is a σ-measurable function for each fixed point x ∈ Ω, and there exists some finite
constant C0 > 0 such that

|k(x, y)| ≤ C0
|x− y|n−1 for each x ∈ Ω and σ-a.e. y ∈ ∂Ω. (5.3.6)

Define an integral operator acting on each f ∈ L1(∂Ω, σ) according to

T f(x) :=
ˆ
∂Ω
k(x, y)f(y) dσ(y) for all x ∈ Ω, (5.3.7)

and assume
C1 := sup

x∈Ω
|T 1(x)| < +∞. (5.3.8)

Finally, with D := diam(∂Ω), let ω be a growth function on (0, D) for which

C2 :=
ˆ D

0
ω(s) ds

s
<∞. (5.3.9)

Then for every f ∈ C ω(∂Ω) one has

sup
x∈Ω
|T f(x)| ≤ C C0 2n−1

[
(1 + 2n)ω(D) + 2n

ln 4 C2
]

[f ]
Ċ ω̃(∂Ω)

+ max{C1 , C C0} · sup
∂Ω
|f |. (5.3.10)

Proof. As in Remark 1.3.2, set ω̃(t) := ω(min{t,D}) for each t ∈ (0,∞). Pick an
arbitrary function f ∈ C ω(∂Ω) ⊆ L1(∂Ω, σ) and fix some point x ∈ Ω. If dist(x, ∂Ω) ≥ D
use (5.3.6) to estimate

|T f(x)| ≤ C0
Dn−1σ(∂Ω) · sup

∂Ω
|f | ≤ C C0 · sup

∂Ω
|f |. (5.3.11)

Consider next the case when dist(x, ∂Ω) < D. Pick x∗ ∈ ∂Ω such that

|x− x∗| = dist(x, ∂Ω) =: r ∈ (0, D), (5.3.12)

and abbreviate B∗ := B(x∗, r). Then we may decompose T f(x) = I + II + III, where

I :=
ˆ
∂Ω∩ 2B∗

k(x, y)
[
f(y)− f(x∗)

]
dσ(y), (5.3.13)

II :=
ˆ
∂Ω\2B∗

k(x, y)
[
f(y)− f(x∗)

]
dσ(y), (5.3.14)

III := (T 1)(x) f(x∗). (5.3.15)
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Start by estimating the first term above:

|I| ≤ C0 [f ]
Ċ ω̃(∂Ω)

ˆ
∂Ω∩ 2B∗

ω̃(|y − x∗|)
|x− y|n−1 dσ(y)

≤ C0 [f ]
Ċ ω̃(∂Ω)

ω̃(D)
rn−1 σ(∂Ω ∩ 2B∗)

≤ C C0 2n−1 ω(D) [f ]Ċω(∂Ω). (5.3.16)

where we have used that ω is non-decreasing, that r = dist(x, ∂Ω) ≤ |x − y| for every
y ∈ ∂Ω ∩ 2B∗, and the upper Ahlfors regularity of ∂Ω.

Let us now estimate II. When ∂Ω \ 2B∗ = ∅ we have II = 0. When ∂Ω \ 2B∗ 6= ∅ it
follows that 2r < D, hence (5.2.17) may be employed. Since for each y ∈ ∂Ω \ 2B∗ we
have |y − x∗| ≤ 2 |y − x|, this permits us to estimate

|II| ≤ C0 [f ]
Ċ ω̃(∂Ω)

ˆ
∂Ω\2B∗

ω̃(|y − x∗|)
|x− y|n−1 dσ(y)

≤ 2n−1C0 [f ]
Ċ ω̃(∂Ω)

ˆ
∂Ω\2B∗

ω̃(|y − x∗|)
|y − x∗|n−1 dσ(y)

≤ 22 (n−1)

ln 2 C C0[f ]
Ċ ω̃(∂Ω)

ˆ 4D

4 r
ω̃(s)ds

s
,

≤ 22 (n−1)

ln 2 C C0
(
C2 + ω(D) ln 4

)
[f ]

Ċ ω̃(∂Ω)
. (5.3.17)

Finally,
|III| ≤ C1 sup

∂Ω
|f |, (5.3.18)

so (5.3.10) follows from (5.3.11) and (5.3.16)-(5.3.18).

Here is a companion result to Lemma 5.3.2, for integral operators whose kernel
exhibits a stronger singularity at the boundary (compared to (5.3.6)).

Lemma 5.3.3. Assume Ω is a nonempty, proper, open subset of Rn with a compact
boundary satisfying an upper Ahlfors regularity condition with constant C ∈ (0,∞), and
abbreviate σ := Hn−1b∂Ω. Consider a function q : Ω × ∂Ω → R with the property that
there exists some finite constant C3 > 0 such that

|q(x, y)| ≤ C3
|x− y|n

for each x ∈ Ω and σ-a.e. y ∈ ∂Ω, (5.3.19)

and such that q(x, ·) is a σ-measurable function for each fixed point x ∈ Ω. Use this to
define an integral operator acting on each f ∈ L1(∂Ω, σ) according to

Qf(x) :=
ˆ
∂Ω
q(x, y)f(y) dσ(y) for each x ∈ Ω. (5.3.20)

Going further, let ω be a growth function on (0,diam(∂Ω)). Associate with it the function
V : (0,∞) → (0,∞) defined as in (5.2.12), and also the growth function ω̃ as in
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Remark 1.3.2. Finally, set ρ(x) := dist(x, ∂Ω) for every x ∈ Ω, and make the assumption
that

C4 := sup
x∈Ω

|Q1(x)|
V (ρ(x)) < +∞. (5.3.21)

Then for each function f ∈ C ω(∂Ω) one has

sup
x∈Ω

|Qf(x)|
V (ρ(x)) ≤ 2nC C3

(
1 + 2n+1

ln 2
)
[f ]

Ċ ω̃(∂Ω)
+ C4 · sup

∂Ω
|f |. (5.3.22)

Proof. Choose an arbitrary function f ∈ C ω(∂Ω) and fix some point x ∈ Ω. Next, pick
x∗ ∈ ∂Ω such that

|x− x∗| = dist(x, ∂Ω) = ρ(x) =: r, (5.3.23)

and abbreviate B∗ := B(x∗, r). Then we may decompose Qf(x) = I + II + III, where

I :=
ˆ
∂Ω∩ 2B∗

q(x, y)
[
f(y)− f(x∗)

]
dσ(y), (5.3.24)

II :=
ˆ
∂Ω\2B∗

q(x, y)
[
f(y)− f(x∗)

]
dσ(y), (5.3.25)

III := (Q1)(x) f(x∗). (5.3.26)

Set D := diam(∂Ω) and recall from Remark 1.3.2 the growth function ω̃, extending
ω to (0,∞) according to ω̃(t) = ω(min{t,D}) for each t ∈ (0,∞). We may then estimate

|I| ≤ C3 [f ]
Ċ ω̃(∂Ω)

ˆ
∂Ω∩ 2B∗

ω(|y − x∗|)
|x− y|n

dσ(y)

≤ C3 [f ]
Ċ ω̃(∂Ω)

ω̃(2r)
rn

σ(∂Ω ∩ 2B∗)

≤ 2n−1C C3 [f ]
Ċ ω̃(∂Ω)

ω̃(2r)
r

≤ 2nC C3 V (r) [f ]
Ċ ω̃(∂Ω)

, (5.3.27)

using that ω is non-decreasing, that r = dist(x, ∂Ω) ≤ |x−y| for every y ∈ ∂Ω, the upper
Ahlfors regularity of ∂Ω, (5.2.13), and the fact that V is non-increasing.

Next, note that II = 0 if ∂Ω \ 2B∗ = ∅. Consider the case when ∂Ω \ 2B∗ 6= ∅. Since
in this scenario 2 r ≤ D and |y − x∗| ≤ 2 |x− y| for each y ∈ ∂Ω \ 2B∗, we may estimate

|II| ≤ C3 [f ]
Ċ ω̃(∂Ω)

ˆ
∂Ω\2B∗

ω̃(|y − x∗|)
|x− y|n

dσ(y)

≤ 2nC3 [f ]
Ċ ω̃(∂Ω)

ˆ
∂Ω\2B∗

ω̃(|y − x∗|)
|y − x∗|n

dσ(y)

≤ 22n+1

ln 2 C C3 V (r) [f ]
Ċ ω̃(∂Ω)

, (5.3.28)

where we have used (5.2.17) with d := 1, and the fact that V is non-increasing. Finally,
(5.3.21) gives

|III| ≤ C4 V (r) · sup
∂Ω
|f |. (5.3.29)

Gathering (5.3.27), (5.3.28), (5.3.29) then yields (5.3.22).
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From Lemmas 5.3.2-5.3.3 we then immediately derive the following result.

Lemma 5.3.4. Let Ω be a nonempty, proper, open subset of Rn with a compact boundary
satisfying an upper Ahlfors regularity condition with constant C ∈ (0,∞), and abbreviate
σ := Hn−1b∂Ω. Consider function K : Ω× ∂Ω→ R, which is continuously differentiable
in the first argument, with the property that there exists some finite constant A0 > 0 such
that

|K(x, y)|+ |x− y| |∇xK(x, y)| ≤ A0|x− y|1−n

for each x ∈ Ω and σ-a.e. y ∈ ∂Ω,
(5.3.30)

and such that K(x, ·) is a σ-measurable function for each fixed point x ∈ Ω. Define an
integral operator acting on each function f ∈ L1(∂Ω, σ) according to

T f(x) :=
ˆ
∂Ω
K(x, y)f(y) dσ(y) for each x ∈ Ω. (5.3.31)

With D := diam(∂Ω), let ω be a growth function on (0, D). Bring in the function V

associated with ω as in (5.2.12), and the growth function ω̃ associated with ω as in
Remark 1.3.2. In relation to these, assume

A1 :=
ˆ D

0
ω(s) ds

s
< +∞, (5.3.32)

and, if ρ(x) := dist(x, ∂Ω) for each x ∈ Ω,

A2 := sup
x∈Ω
|(T 1)(x)|+ sup

x∈Ω

|∇(T 1)(x)|
V (ρ(x)) < +∞. (5.3.33)

Then for every f ∈ C ω(∂Ω) one has

sup
x∈Ω
|(T f)(x)|+ sup

x∈Ω

|∇(T f)(x)|
V (ρ(x))

≤ C A0 2n−1
[
(1 + 2n)ω(D) + 2n

ln 4 A1 + 2 + 2n+2

ln 2
]

[f ]
Ċ ω̃(∂Ω)

+
(
2A2 + C A0

)
sup
∂Ω
|f |. (5.3.34)

As a consequence, there exists a finite constant CΩ,n,ω > 0 with the property that for
each function f ∈ C ω(∂Ω) one has

sup
x∈Ω
|(T f)(x)|+ sup

x∈Ω

|∇(T f)(x)|
V (ρ(x)) ≤ CΩ,n,ω

(
A0 (1 +A1) +A2

)
‖f‖Cω(∂Ω). (5.3.35)

We conclude this section by estimating the generalized Hölder norm of a C 1 function
defined in a uniform domain (cf. Definition 1.1.9).

Lemma 5.3.5. Let Ω ⊆ Rn be a uniform domain. Recall the constant κ ∈ [1,∞) ap-
pearing in (1.1.25) and abbreviate D := diam(∂Ω) ∈ (0,∞]. Also, set ρ(x) := dist(x, ∂Ω)
for each x ∈ Ω. In addition, consider a growth function ω on (0, D) satisfying (1.3.6)
and associate with it the function V as in (5.2.12).
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Then there exists a finite constant C = C(Cω, D) > 0 with the property that for each
function u ∈ C 1(Ω) one has

‖u‖Cω(Ω) ≤ C
(

sup
x∈Ω
|u(x)|+ κ sup

x∈Ω

|(∇u)(x)|
V (ρ(x))

)
. (5.3.36)

Proof. Fix x, y ∈ Ω and assume first that |x − y| ≤ D. Since Ω is a uniform domain
with constant κ ∈ [1,∞), there exists a rectifiable curve γ : [0, L]→ Ω (in the arc-length
parametrization) joining x with y and satisfying L = length(γ) ≤ κ|x− y| as well as

min{s, L− s} ≤ κ dist(γ(s), ∂Ω) = κ ρ(γ(s)), 0 ≤ s ≤ L. (5.3.37)

Since γ is a.e. differentiable and |dγ/ds| = 1 for almost every s ∈ (0, L), for any given
function u ∈ C 1(Ω) we may write

|u(x)− u(y)| =
∣∣∣∣∣
ˆ L

0

d

ds

[
u(γ(s))] ds

∣∣∣∣∣ ≤
ˆ L

0
|(∇u)(γ(s))| ds

≤ sup
x∈Ω

|∇u(x)|
V (ρ(x))

ˆ L

0
V
(
ρ(γ(s))

)
ds. (5.3.38)

On the other hand, since V is non-increasing and L ≤ κ|x − y|, on account of (5.3.37)
we may write

ˆ L

0
V
(
ρ(γ(s))

)
ds ≤

ˆ L

0
V
(
κ−1 min{s, L− s}

)
ds

= 2
ˆ L

2

0
V (κ−1 s) ds = 2κ

ˆ L
2κ

0
V (s) ds ≤ 2κ

ˆ |x−y|
0

V (s) ds. (5.3.39)

As in Remark 1.3.2, set ω̃(t) := ω(min{t,D}) for each t ∈ (0,∞). Then
ˆ |x−y|

0
V (s) ds =

ˆ |x−y|
0

( ˆ |x−y|
s

ω̃(t)
t

dt

t

)
ds+

ˆ |x−y|
0

(ˆ ∞
|x−y|

ω̃(t)
t

dt

t

)
ds

=
ˆ |x−y|

0
ω̃(t) dt

t
+ |x− y|

ˆ ∞
|x−y|

ω̃(t)
t

dt

t

≤ C ω̃(|x− y|), (5.3.40)

for some finite constant C = C(Cω, D) > 0, where in the last estimate we have used
(1.3.7) and Lemma 5.2.1. Gathering (5.3.38), (5.3.39), and (5.3.40) we conclude that

|u(x)− u(y)| ≤ 2κC
(

sup
x∈Ω

|∇u(x)|
V (ρ(x))

)
ω(|x− y|) (5.3.41)

for every x, y ∈ Ω such that |x−y| ≤ D. If diam(Ω) > D, then for any x, y ∈ Ω satisfying
|x− y| > D we obtain

|u(x)− u(y)|
ω̃(|x− y|) ≤ 2

ω(D) sup
x∈Ω
|u(x)|. (5.3.42)

From (5.3.41) and (5.3.42) the desired estimate now follows.
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5.4 Cauchy-Clifford operators on C ω(∂Ω) ⊗ C̀ n

The last part of our auxiliary results deals with Clifford algebras and the properties of
Cauchy-Clifford operators. This complements the preliminary results and terminology
introduced in Section 1.4. We recall the definition of the Dirac operator D :=

∑n
j=1 ej∂j .

Given an open set Ω ⊆ Rn, we shall denote by DL and DR the action of D on functions
u ∈ C 1(Ω) ⊗ C̀ n from the left and from the right, respectively. More precisely, if u
is written as in (1.4.4) then

DLu :=
n∑
`=0

∑′

|I|=`

n∑
j=1

∂uI
∂xj

ej � eI , DRu :=
n∑
`=0

∑′

|I|=`

n∑
j=1

∂uI
∂xj

eI � ej . (5.4.1)

If Ω ⊆ Rn is an Ahlfors regular domain, σ := Hn−1b∂Ω, and ν = (ν1, . . . , νn) is the
geometric measure theoretic outward unit normal to Ω, we agree to identify the latter
vector field with the Clifford algebra valued function defined at σ-a.e. point x ∈ ∂Ω as
ν(x) = ν1(x)e1 + · · ·+νn(x)en ∈ C̀ n. In this context, for any u, v ∈ C 1

0 (Rn)⊗C̀ n formula
(1.1.12) implies the following integration by parts holds:
ˆ
∂Ω
u(x)� ν(x)� v(x) dσ(x) =

ˆ
Ω

(
(DRu)(x)� v(x) + u(x)� (DLv)(x)

)
dx. (5.4.2)

The following lemma is proved in [96, Lemma 4.2]. To state it, we set

[x]s := xs for each x = (x1, . . . , xn) ∈ Rn and s ∈ {1, . . . , n}. (5.4.3)

Lemma 5.4.1. Fix n ≥ 2 and consider an odd, harmonic, homogeneous polynomial P (x),
with x ∈ Rn, of degree ` ≥ 3. Associate with it the family Prs(x) with r, s ∈ {1, . . . , n} of
harmonic homogeneous polynomials of degree `− 2 given by the formula

Prs(x) := 1
`(`− 1)(∂r∂sP )(x), x ∈ Rn. (5.4.4)

Then there exists a family of odd, C∞ functions

krs : Rn \ {0} → Rn ↪→ C̀ n, r, s ∈ {1, . . . , n}, (5.4.5)

which are homogeneous of degree 1 − n, such that for each r, s ∈ {1, . . . , n} and each
x ∈ R \ {0} one has

P (x)
|x|n−1+` =

n∑
r,s=1

[
krs(x)

]
s

(cf. (5.4.3)), (5.4.6)

(DRkrs)(x) = `− 1
n+ `− 3

∂

∂xr

(
Prs(x)
|x|n+`−3

)
. (5.4.7)

Moreover, there exists a finite dimensional constant cn > 0 such that

max
1≤r,s≤n

sup
Sn−1

|krs|+ max
1≤r,s≤n

sup
Sn−1

|∇krs| ≤ cn2` ‖P‖L1(Sn−1,Hn−1) . (5.4.8)
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Remark 5.4.2. Let P be an odd, harmonic homogeneous polynomial of degree ` ≥ 1.
Then for each multi-index γ ∈ Nn0 there exists a finite constant cn,γ > 0 such that

‖∂γP‖L∞(Sn−1,Hn−1) ≤ cn,γ
ˆ
B(0,2)

|P (x)| dx

= cn,γ

ˆ
Sn−1

|P (υ)|
(ˆ 2

0
rn−1+` dr

)
dHn−1(υ)

= cn,γ
2`

n+ `
‖P‖L1(Sn−1,Hn−1) , (5.4.9)

where we have used interior estimates for the harmonic function P and its homogeneity
of degree `.

We continue to assume that Ω ⊆ Rn is an Ahlfors regular domain, and abbreviate
σ := Hn−1b∂Ω. As before, we identify the geometric measure theoretic outward unit
normal ν = (ν1, . . . , νn) to Ω with the Clifford algebra valued function defined at σ-
a.e. point x ∈ ∂Ω as ν(x) = ν1(x)e1 + · · · + νn(x)en ∈ C̀ n. With $n−1 denoting
the surface area of the unit sphere in Rn, define the action of the boundary-to-domain
Cauchy-Clifford operator on any function f ∈ L1(∂Ω, σ(x)

1+|x|n−1
)
⊗ C̀ n as

(Cf)(x) := 1
$n−1

ˆ
∂Ω

x− y
|x− y|n

� ν(y)� f(y) dσ(y) for each x ∈ Ω. (5.4.10)

There is a remarkable Cauchy Reproducing Formula involving the above integral op-
erator. Specifically, with Ω as above, if the function u ∈ C∞(Ω) ⊗ C̀ n satisfies (for
some fixed aperture parameter κ > 0)

Du = 0 in Ω, Nκu ∈ L1(∂Ω, σ(x)
1+|x|n−1

)
, and

u
∣∣κ−n.t.

∂Ω exists at σ-a.e. point on ∂Ω,
(5.4.11)

then (cf. [93])

u = C
(
u
∣∣κ−n.t.

∂Ω
)

in Ω. (5.4.12)

Before proving boundedness properties for the Cauchy-Clifford integral operator in-
troduced above, we need two lemmas. Their proofs may be found in [96, Lemmas 2.5, 5.2,
and 5.3].

Lemma 5.4.3. Let Ω ⊆ Rn be an Ahlfors regular domain whose boundary is compact.
Abbreviate σ := Hn−1b∂Ω and denote by ν the geometric measure theoretic outward unit
normal to Ω. Also, fix an aperture parameter κ > 0. Then for each x ∈ ∂∗Ω there exists
a Lebesgue measurable set Ox ⊆ (0, 1) satisfying

lim
ε→0+

L1(Ox ∩ (0, ε))
ε

= 1, (5.4.13)
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with the property that

lim
Ox3ε→0+

lim
Γκ(x)3z→x

1
$n−1

ˆ

y∈∂Ω
|x−y|<ε

z − y
|z − y|n

� ν(y) dσ(y)

= lim
Ox3ε→0+

Hn−1(∂B(x, ε) \ Ω)
$n−1εn−1 = 1

2 . (5.4.14)

Here is the second lemma from [96] alluded to above.

Lemma 5.4.4. Let Ω ⊆ Rn be a set of locally finite perimeter whose boundary is compact
and upper Ahlfors regular. Abbreviate σ := Hn−1b∂Ω and denote by ν the geometric
measure theoretic outward unit normal to Ω. Then there exists some finite constant
C∂Ω,n > 0, depending only on the dimension n and the upper Ahlfors regularity constant
of ∂Ω, such that ∣∣∣∣∣

ˆ
∂∗Ω\B(x,r)

x− y
|x− y|n

� ν(y) dσ(y)
∣∣∣∣∣ ≤ C∂Ω,n (5.4.15)

for every x ∈ Rn and r > 0. Moreover, if Ω is bounded,ˆ
∂∗Ω\B(x,r)

x− y
|x− y|n

� ν(y) dσ(y) = H
n−1(Ω ∩ ∂B(x, r))

rn−1 (5.4.16)

for every x ∈ Rn and L1-a.e. r > 0.
As a consequence, if Ω ⊆ Rn is an Ahlfors regular domain whose boundary is compact,

then for each x ∈ Rn one has

C1(x) =

 1 if Ω is bounded,

0 if Ω is unbounded.
(5.4.17)

At this point, we have enough foundation material to conclude the following result.

Proposition 5.4.5. Let Ω ⊆ Rn be an Ahlfors regular domain whose boundary is
compact. Suppose ω is a growth function on (0,diam(∂Ω)) satisfying (1.3.6), and for
each x ∈ Ω set ρ(x) := dist(x, ∂Ω). Then there exists some finite constant CΩ,n,ω > 0
with the property that

sup
x∈Ω
|(Cf)(x)|+ sup

x∈Ω

|∇(Cf)(x)|
V (ρ(x)) ≤ CΩ,n,ω ‖f‖Cω(∂Ω) (5.4.18)

for each function f ∈ C ω(∂Ω).

Proof. It is a consequence of Lemma 5.3.4, whose applicability is ensured by (5.4.17) and
(1.3.6).

Proposition 5.4.6. Suppose Ω ⊆ Rn is simultaneously a uniform domain and an Ahlfors
regular domain with compact boundary. Let ω be a growth function on (0,diam(∂Ω))
satisfying (1.3.6). Then the boundary-to-domain Cauchy-Clifford operator defined in
(5.4.10) is well-defined, and bounded in the context

C : C ω(∂Ω)⊗ C̀ n −→ C ω(Ω)⊗ C̀ n, (5.4.19)

with operator norm controlled in terms of n, ω, and Ω.
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Proof. For each x ∈ Ω set ρ(x) := dist(x, ∂Ω). Also, recall the constant κ ∈ [1,∞) asso-
ciated with the uniform domain Ω as in (1.1.25). Then from (5.4.18) and Lemma 5.3.5,
whose applicability is ensured by (1.3.6), we obtain

‖Cf‖Cω(Ω)⊗C̀ n ≤ C
(

sup
x∈Ω
|Cf(x)|+ κ sup

x∈Ω

|∇(Cf)(x)|
V (ρ(x))

)
≤ CΩ,n,ω ‖f‖Cω(∂Ω)⊗C̀ n , (5.4.20)

and the desired result follows on account of Lemma 1.3.6.

The following result can be found in [96, Proposition 5.1]

Proposition 5.4.7. Let Ω ⊆ Rn be a UR domain. Abbreviate σ := Hn−1b∂Ω and denote
by ν the geometric measure theoretic outward unit normal to Ω. Also, fix an aperture
parameter κ > 0. Then for each function f ∈ L1(∂Ω, σ(x)

1+|x|n−1
)
⊗ C̀ n the limit

Cf(x) := lim
ε→0+

1
$n−1

ˆ

y∈∂Ω
|x−y|>ε

x− y
|x− y|n

� ν(y)� f(y) dσ(y) (5.4.21)

exists exists at σ-a.e. point x ∈ ∂Ω and, with I denoting the identity operator, the
following jump-formula holds(

Cf
∣∣κ−n.t.

∂Ω

)
(x) =

(
1
2I + C

)
f(x) for σ-a.e. x ∈ ∂Ω. (5.4.22)

Moreover, for each p ∈ (1,∞) there exists a finite constant C > 0 such that

‖Nκ(Cf)‖Lp(∂Ω,σ) ≤ C ‖f‖Lp(∂Ω,σ)⊗C̀ n

for each f ∈ Lp(∂Ω, σ)⊗ C̀ n,
(5.4.23)

the operator C is well-defined and bounded on Lp(∂Ω, σ)⊗ C̀ n, and

C2 = 1
4 I on Lp(∂Ω, σ)⊗ C̀ n. (5.4.24)

We next arrive at a central result in this section, regarding the action of the Cauchy-
Clifford operator on generalized Hölder spaces in Ahlfors regular domains with compact
boundaries.

Theorem 5.4.8. Let Ω ⊆ Rn be an Ahlfors regular domain whose boundary is compact.
Set σ := Hn−1b∂Ω and fix an aperture parameter κ > 0. Also, suppose ω is a growth
function on (0,diam(∂Ω)) satisfying (1.3.6).

Then for every function f ∈ C ω(∂Ω) ⊗ C̀ n the limit in (5.4.21) exists for σ-a.e.
x ∈ ∂Ω, and the operator C thus defined induces a well-defined, linear, and bounded
mapping

C : C ω(∂Ω)⊗ C̀ n −→ C ω(∂Ω)⊗ C̀ n, (5.4.25)

with operator norm controlled in terms of n, ω, diam(∂Ω), and the upper Ahlfors regu-
larity constant of ∂Ω.
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Furthermore, for each f ∈ C ω(∂Ω)⊗ C̀ n the following jump-formula holds(
Cf
∣∣κ−n.t.

∂Ω

)
(x) =

(
1
2I + C

)
f(x) for σ-a.e. x ∈ ∂Ω, (5.4.26)

where I denotes the identity operator. Finally, one has

C2 = 1
4 I on C ω(∂Ω)⊗ C̀ n. (5.4.27)

Proof. Denote by ν the geometric measure theoretic outward unit normal to Ω. From
[96, Lemma 5.5] we know that, at σ-a.e. x ∈ ∂Ω,

lim
ε→0+

1
$n−1

ˆ

y∈∂Ω
|x−y|>ε

x− y
|x− y|n

� ν(y) dσ(y) =

 +1
2 if Ω is bounded,

−1
2 if Ω is unbounded.

(5.4.28)

Set D := diam(∂Ω) ∈ (0,∞) and let ω̃ be associated with ω as in Remark 1.3.2. Also,
fix some f ∈ C ω(∂Ω)⊗C̀ n. Then from (1.4.9), (5.2.17), (1.3.7), and Lemma 5.2.1 we see
that there exists some C ∈ (0,∞), which depends only on the upper Ahlfors regularity
constant of ∂Ω and ω, such that for every x ∈ ∂Ω we have

ˆ
∂Ω

∣∣∣∣ x− y|x− y|n
� ν(y)� (f(y)− f(x))

∣∣∣∣ dσ(y)

≤ 2n/2 [f ]
Ċ ω̃(∂Ω)⊗C̀ n

ˆ
∂Ω

ω̃(|x− y|)
|x− y|n−1 dσ(y)

≤ 2
3n
2 −1

ln 2 C [f ]
Ċ ω̃(∂Ω)⊗C̀ n

ˆ 4D

0
ω̃(s) ds

s

≤ 2
3n
2 −1

ln 2 C ω̃(4D) [f ]
Ċ ω̃(∂Ω)⊗C̀ n

< +∞. (5.4.29)

Granted this, for every x ∈ ∂Ω we may write (based on (5.4.28) and Lebesgue’s Domi-
nated Convergence Theorem)

lim
ε→0+

1
$n−1

ˆ

y∈∂Ω
|x−y|>ε

x− y
|x− y|n

� ν(y)� f(y) dσ(y),

= lim
ε→0+

1
$n−1

ˆ

y∈∂Ω
|x−y|>ε

x− y
|x− y|n

� ν(y)� (f(y)− f(x)) dσ(y)± 1
2 f(x)

= 1
$n−1

ˆ

∂Ω

x− y
|x− y|n

� ν(y)� (f(y)− f(x)) dσ(y)± 1
2 f(x), (5.4.30)

where the sign of 1
2 f(x) is plus if Ω is bounded and minus if Ω is unbounded. This

implies that the limit in the second line of (5.4.30) exists and thus for every x ∈ ∂Ω,

Cf(x) = ±1
2 f(x) + 1

$n−1

ˆ
∂Ω

x− y
|x− y|n

� ν(y)� (f(y)− f(x)) dσ(y), (5.4.31)
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where ± depends on Ω being bounded or unbounded, as explained above.
Our next goal is to show that the operator (5.4.31) is well-defined and bounded on

C ω(∂Ω) ⊗ C̀ n. To this end, fix two distinct points x1, x2 ∈ ∂Ω and use (5.4.31) to
decompose

Cf(x1)−Cf(x2) = I + II, (5.4.32)

where
I := ±1

2 (f(x1)− f(x2)), (5.4.33)

and

II := 1
$n−1

ˆ
∂Ω

( x1 − y
|x1 − y|n

� ν(y)� (f(y)− f(x1))

− x2 − y
|x2 − y|n

� ν(y)� (f(y)− f(x2))
)
dσ(y). (5.4.34)

Set r := |x1 − x2| ∈ (0, D) and note that this entails

|I| ≤ 1
2 [f ]

Ċ ω̃(∂Ω)⊗C̀ n
ω̃(r). (5.4.35)

Also, we may bound
|II| ≤ II1 + II2 + III3, (5.4.36)

where

II1 := 1
$n−1

∣∣∣∣ ˆ

y∈∂Ω
|x1−y|≥2r

( x1 − y
|x1 − y|n

� ν(y)� (f(y)− f(x1))

− x2 − y
|x2 − y|n

� ν(y)� (f(y)− f(x2))
)
dσ(y)

∣∣∣∣, (5.4.37)

II2 := 1
$n−1

[f ]
Ċ ω̃(∂Ω)⊗C̀ n

ˆ

y∈∂Ω
|x1−y|<2r

ω̃(|x1 − y|)
|x1 − y|n−1 dσ(y), (5.4.38)

and

II3 := 1
$n−1

[f ]
Ċ ω̃(∂Ω)⊗C̀ n

ˆ

y∈∂Ω
|x1−y|<2r

ω̃(|x2 − y|)
|x2 − y|n−1 dσ(y)

≤ 1
$n−1

[f ]
Ċ ω̃(∂Ω)⊗C̀ n

ˆ

y∈∂Ω
|x2−y|<3r

ω̃(|x2 − y|)
|x2 − y|n−1 dσ(y), (5.4.39)

with the last inequality a consequence of the fact that |x2−y| ≤ |x2−x1|+ |x1−y| < 3 r
whenever |x1 − y| < 2r. We may then use (5.2.16), (5.2.1), and (5.2.4) to conclude that

II2 + II3 ≤ C
2n

$n−1 ln 2[f ]
Ċ ω̃(∂Ω)⊗C̀ n

ˆ 6r

0
ω̃(s)ds

s

≤ C 6 · 2n

$n−1 ln 2[f ]
Ċ ω̃(∂Ω)⊗C̀ n

ω̃(r). (5.4.40)
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for C ∈ (0,∞) which depends only on Cω, D, and the upper Ahlfors regularity constant
of ∂Ω. Let us turn our attention to II1 which we further decompose as

II1 ≤ II11 + II12, (5.4.41)

with

II11 := 1
$n−1

∣∣∣∣ ˆ
∂Ω\B(x1,2r)

x1 − y
|x1 − y|n

� ν(y)�
(
f(x2)− f(x1)

)
dσ(y)

∣∣∣∣
≤ 2n/2

$n−1
[f ]

Ċ ω̃(∂Ω)⊗C̀ n
ω̃(r)

∣∣∣∣ ˆ
∂Ω\B(x1,2r)

x1 − y
|x1 − y|n

� ν(y) dσ(y)
∣∣∣∣

≤ C 2n/2

$n−1
[f ]

Ċ ω̃(∂Ω)⊗C̀ n
ω̃(r), (5.4.42)

for some C ∈ (0,∞) which depends only on n and the upper Ahlfors regularity constant
of ∂Ω (here we have used (1.4.9) and (5.4.15)), and

II12 := 1
$n−1

∣∣∣∣ ˆ
∂Ω\B(x1,2r)

( x1 − y
|x1 − y|n

− x2 − y
|x2 − y|n

)
� ν(y)�

(
f(y)− f(x2)

)
dσ(y)

∣∣∣∣
≤ 2n/2

$n−1

ˆ
∂Ω\B(x1,2r)

∣∣∣ x1 − y
|x1 − y|n

− x2 − y
|x2 − y|n

∣∣∣ ∣∣f(y)− f(x2)
∣∣ dσ(y)

≤ C [f ]
Ċ ω̃(∂Ω)⊗C̀ n

r

ˆ
∂Ω\B(x2,r)

ω̃(|x2 − y|)
|x2 − y|n

dσ(y)

≤ C [f ]
Ċ ω̃(∂Ω)⊗C̀ n

r

ˆ ∞
2r

ω̃(s)
s

ds

s

≤ C [f ]
Ċ ω̃(∂Ω)⊗C̀ n

ω̃(r), (5.4.43)

for some C ∈ (0,∞), which depends only on n, the upper Ahlfors regularity constant
of ∂Ω, ω, and D (here we have used (1.4.9), the Mean Value Theorem, the fact that
r ≤ |y−x1|/2 ≤ |y−x2| ≤ 3 |y−x1|/2 for every y ∈ ∂Ω \B(x1, 2r), (5.2.17), (1.3.7), and
Lemma 5.2.1).

After gathering (5.4.32), (5.4.35), (5.4.36), (5.4.40), (5.4.41), (5.4.42), and (5.4.43),
and recalling that r = |x1−x2|, we may now conclude that there exists some C ∈ (0,∞),
depending only on n, ω, D, and the upper regularity constant of ∂Ω with the property
that ∣∣Cf(x1)−Cf(x2)

∣∣ ≤ C [f ]
Ċ ω̃(∂Ω)⊗C̀ n

ω̃(|x1 − x2|)

for all distinct points x1, x2 ∈ ∂Ω.
(5.4.44)

Since (5.4.31) and (5.4.29) also imply

sup
∂Ω
|Cf | ≤ 2

3n
2 −1

ln 2 C ω̃(4D) [f ]
Ċ ω̃(∂Ω)⊗C̀ n

+ 1
2 sup

∂Ω
|f |, (5.4.45)

we ultimately obtain

‖Cf‖Cω(∂Ω)⊗C̀ n ≤ C
(

sup
∂Ω
|f |+ [f ]

Ċ ω̃(∂Ω)⊗C̀ n

)
= C‖f‖Cω(∂Ω)⊗C̀ n , (5.4.46)
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where C ∈ (0,∞) depends on n, ω, D, and the upper regularity constant of ∂Ω. This
finishes the proof of (5.4.25).

We continue by observing that our current assumptions guarantee that (5.4.18) holds
and therefore Cf is a well-defined function for each f ∈ C ω(∂Ω) ⊗ C̀ n. Also (1.1.17)
ensures that it is meaningful to consider the limit in (5.4.26) given that Ω is an Ahlfors
regular domain. Assume now that f ∈ C ω(∂Ω) ⊗ C̀ n is given and fix x ∈ ∂∗Ω. Let Ox
be the associated with the point x as in Lemma 5.4.3. In particular, (5.4.14) holds. For
every ε > 0 we may then write(

Cf
∣∣κ−n.t.

∂Ω

)
(x) = lim

Γκ(x)3z→x
Cf(z)

= lim
Γκ(x)3z→x

1
$n−1

ˆ
∂Ω\B(x,ε)

z − y
|z − y|n

� ν(y)� f(y) dσ(y)

+ lim
Γκ(x)3z→x

1
$n−1

ˆ
∂Ω∩B(x,ε)

z − y
|z − y|n

� ν(y)� (f(y)− f(x)) dσ(y)

+
(

lim
Γκ(x)3z→x

1
$n−1

ˆ
∂Ω∩B(x,ε)

z − y
|z − y|n

� ν(y) dσ(y)
)
� f(x)

=: I1 + I2 + I3. (5.4.47)

For each fixed ε > 0, Lebesgue’s Dominated Convergence Theorem applies to the
limit Γκ(x) 3 z → x in I1. This allows us to compute

lim
Ox3ε→0+

I1 = lim
Ox3ε→0+

1
$n−1

ˆ
∂Ω\B(x,ε)

x− y
|x− y|n

� ν(y)� f(y) dσ(y) = Cf(x), (5.4.48)

given that that the latter limit exists in view of (5.4.30). To handle I2, first notice that
for every x, y ∈ ∂Ω and z ∈ Γκ(x)

|x− y| ≤ |z − y|+ |z − x| ≤ |z − y|+ (1 + κ) ρ(z) ≤ (2 + κ) |z − y|, (5.4.49)

therefore∣∣∣ z − y|z − y|n
� ν(y)

∣∣∣ |f(y)− f(x)| ≤ (2 + κ)n−1 [f ]
Ċ ω̃(∂Ω)⊗C̀ n

ω̃(|x− y|)
|x− y|n−1 . (5.4.50)

This, (5.2.16), (5.2.17), (1.3.7) and Lemma 5.2.1 then permit us to employ Lebesgue’s
Dominated Convergence Theorem to conclude that

lim
Ox3ε→0+

I2 = 0. (5.4.51)

Finally, from (5.4.14),

lim
Ox3ε→0+

I3 = 1
2 f(x). (5.4.52)

All together, the above argument implies that (5.4.26) holds for every x ∈ ∂∗Ω, hence
also for σ-a.e. point x ∈ ∂Ω, by (1.1.14) and the fact that Ω is an Ahlfors regular domain.
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To complete the proof of the theorem there remains to justify (5.4.27). Given any
f ∈ C ω(∂Ω)⊗C̀ n, define u := Cf . By design, u ∈ C∞(Ω)⊗C̀ n and DLu = 0 in Ω. Also,
(5.4.18) yields

sup
x∈Ω
|u(x)| ≤ CΩ,n,ω‖f‖Cω(∂Ω)⊗C̀ n < +∞. (5.4.53)

Keeping in mind that Nκu is a lower-semicontinuous function, from (5.4.53) we conclude
that Nκu ∈ L∞(∂Ω, σ) ⊆ L1(∂Ω, σ) since ∂Ω is compact and therefore has finite measure.
Also, the jump-formula (5.4.26) gives

u
∣∣κ−n.t.

∂Ω =
(
Cf
∣∣κ−n.t.

∂Ω
)

=
(1

2 I + C
)
f at σ-a.e. point in ∂Ω. (5.4.54)

From this and (5.4.11)-(5.4.12) we then obtain

u = C
(
u
∣∣κ−n.t.

∂Ω
)

= C
((1

2 I + C
)
f
)

in Ω. (5.4.55)

Notice that
(1

2 I + C
)
f ∈ C ω(∂Ω)⊗ C̀ n by (5.4.25). As such, we may once again employ

the jump-formula (5.4.26) for this function. Together with (5.4.54) and (5.4.55) this
yields

(1
2 I + C

)
f = u

∣∣κ−n.t.

∂Ω = C
((1

2 I + C
)
f
)∣∣∣κ−n.t.

∂Ω
=
(1

2 I + C
)(1

2 I + C
)
f, (5.4.56)

at σ-a.e. point on ∂Ω. Now (5.4.27) follows from this and simple algebra, completing
the proof of Theorem 5.4.8.

In the last portion of this section we briefly review the harmonic single potential
operator and highlight its relationship to the Cauchy-Clifford integral operator. To set
the stage, assume Ω ⊆ Rn is an Ahlfors regular domain whose boundary is compact.
Abbreviate σ := Hn−1b∂Ω and denote by ν the geometric measure theoretic outward
unit normal to Ω. In this setting, define action of the harmonic single layer operator
on each f ∈ L1(∂Ω, σ) ⊗ C̀ n as

Sf(x) :=
ˆ
∂Ω
E(x− y)f(y) dσ(y) for each x ∈ Ω, (5.4.57)

where E denotes the standard fundamental solution for the Laplacian (cf. (2.3.6)). From
definitions and the fact that ν � ν = −1 at σ-a.e. point on ∂Ω, it follows that for
each f ∈ L1(∂Ω, σ) ⊗ C̀ n we have

DLSf = −C(ν � f) in Ω. (5.4.58)

In particular, in light of the identification in (1.4.3),

∇(S1) ≡ DLS1 = −Cν in Ω. (5.4.59)
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5.5 Proof of Theorem 5.1.4

In broad outline, the proof proceeds along the original approach in [96], where the authors
have dealt with the classical growth function ω(t) := tα for each t ∈ (0,∞).

Proof of Theorem 5.1.4. Throughout, we set D := diam(∂Ω) and extend ω to ω̃, defined
as in Remark 1.3.2, i.e., ω̃(t) := ω(min{t,D}) for each t ∈ (0,∞). Also, abbreviate
ρ(x) := dist(x, ∂Ω) for each x ∈ Ω.

Proof of (a)⇒ (e), and of estimate (5.1.11). Work under the assumption that Ω ⊆ Rn is
a C 1,ω-domain with compact boundary (hence also a UR domain and a uniform domain,
as observed in Remark 5.1.2). Let P be an odd homogeneous polynomial of degree ` ≥ 1
and suppose T := T+ is associated with P as in (5.1.10). For now, make the additional
assumption that P is harmonic. The goal is to prove that for every function f ∈ C ω(∂Ω)
we have

sup
x∈Ω
|Tf(x)|+ sup

x∈Ω

|∇(Tf)(x)|
V (ρ(x)) ≤ C`2`2 ‖P‖L1(Sn−1,Hn−1) ‖f‖Cω(∂Ω) , (5.5.1)

where C ∈ (0,∞) depends only on the dimension n, ω, D, ‖ν‖Cω(∂Ω), and the upper
Ahlfors regularity constant of ∂Ω.

The strategy is to prove (5.5.1) by induction on the degree ` ∈ 2N− 1. If ` = 1 then
P (x) =

∑n
j=1 ajxj for every x = (x1, . . . , xn) ∈ Rn. Hence, from (5.4.9),

max
1≤j≤n

|aj | ≤ ‖P‖L∞(Sn−1,Hn−1) ≤ cn ‖P‖L1(Sn−1,Hn−1) . (5.5.2)

The idea is to use Lemma 5.3.4 to deal with the case ` = 1 of (5.5.1). To check that
Lemma 5.3.4 is indeed applicable, note that ν is currently known to belong to C ω(∂Ω)⊗
C̀ n hence, from (5.4.18),

sup
x∈Ω
|(Cν)(x)|+ sup

x∈Ω

|∇(Cν)(x)|
V (ρ(x)) < +∞. (5.5.3)

Upon observing from (5.4.57) that in the present case T may be expressed as

T = $n−1

n∑
j=1

aj∂jS, (5.5.4)

and using (5.4.59) together with (5.5.3), we conclude that (5.3.33) holds for T (and the
constant A2 in (5.3.33) depends linearly on ‖P‖L1(Sn−1,Hn−1) by (5.5.2)). The other
hypotheses in Lemma 5.3.4 are guaranteed by the structure of T and (1.3.6). Hence,
(5.5.1) holds for ` = 1 by Lemma 5.3.4.

Next, fix ` ≥ 3 and assume (5.5.1) is satisfied when the polynomial entering the
definition of T has degree ≤ ` − 2. Pick an arbitrary odd harmonic homogeneous
polynomial P of degree ` and associate with it the operator T as in (5.1.10). Also,
for r, s ∈ {1, ..., n}, let Prs(x) and krs be as in Lemma 5.4.1 for this choice of P . For each
r, s ∈ {1, . . . , n} set

krs(x) := Prs(x)
|x|n+`−3 , x ∈ Rn \ {0}, (5.5.5)
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then use this as a kernel to define an integral operator acting on every g ∈ C ω(∂Ω)⊗C̀ n,
say g =

∑n
`=0

∑′
|I|=` gIeI with each gI in C ω(∂Ω), according to

T rsg(x) :=
ˆ
∂Ω
krs(x− y)g(y) dσ(y)

=
n∑
`=0

∑′

|I|=`

(ˆ
∂Ω
krs(x− y)gI(y) dσ(y)

)
eI , x ∈ Ω. (5.5.6)

Based on the induction hypothesis (used component-wise), (1.4.9), (5.4.4), and (5.4.9)
we may estimate

sup
x∈Ω
|(T rsg)(x)|+ sup

x∈Ω

|∇(T rsg)(x)|
V (ρ(x))

≤ 2n/2C`−22(`−2)2 ‖Prs‖L1(Sn−1,Hn−1) ‖g‖Cω(∂Ω)⊗C̀ n

≤ cnC`−22(`−2)22` ‖P‖L1(Sn−1,Hn−1) ‖g‖Cω(∂Ω)⊗C̀ n . (5.5.7)

For each r, s ∈ {1, . . . , n} and g ∈ C ω(∂Ω)⊗ C̀ n let us also define

(Trsg)(x) :=
ˆ
∂Ω
krs(x− y)� g(y) dσ(y), ∀x ∈ Ω. (5.5.8)

By (5.4.6), for any real-valued function f ∈ C ω(∂Ω) ↪→ C ω(∂Ω)⊗ C̀ n we then have

(Tf)(x) =
n∑

r,s=1
[Trsf(x)]s for each x ∈ Ω, (5.5.9)

where, as usual, [·]s singles out the s-th component of a vector in Rn. If the set Ω is
unbounded, fix x ∈ Ω along with R1 ∈ (0, dist(x, ∂Ω)) and R2 > dist(x, ∂Ω) + D, then
define ΩR1,R2 :=

(
B(x,R2) \ B(x,R1)

)
∩ Ω, which is a bounded C 1,ω-domain such that

∂ΩR1,R2 = ∂B(x,R2) ∪ ∂B(x,R1) ∪ ∂Ω. Then for each r, s ∈ {1, . . . , n} we have

ˆ
∂ΩR1,R2

krs(x− y)� ν(y) dσ(y) = −
ˆ

ΩR1,R2

(DRkrs)(x− y) dy

= `− 1
n+ `− 3

ˆ
ΩR1,R2

∂

∂yr

(
Prs(x− y)
|x− y|n+`−3

)
dy

= `− 1
n+ `− 3

ˆ
∂ΩR1,R2

krs(x− y)νr(y) dσ(y), (5.5.10)

where the first equality follows from (5.4.2), the second from (5.4.7), and the third from
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(5.5.5) and the Divergence Theorem. Therefore, for each r, s ∈ {1, . . . , n} we may write

(Trsν)(x) =
ˆ
∂Ω
krs(x− y)� ν(y) dσ(y)

=
ˆ
∂ΩR1,R2

krs(x− y)� ν(y) dHn−1(y)−
ˆ
∂B(x,R1)

krs(x− y)� x− y
|x− y|

dHn−1(y)

+
ˆ
∂B(x,R2)

krs(x− y)� x− y
|x− y|

dHn−1(y)

= `− 1
n+ `− 3

ˆ
∂ΩR1,R2

krs(x− y)νr(y) dHn−1(y)−
ˆ
Sn−1

krs(υ)� υ dHn−1(υ)

+
ˆ
Sn−1

krs(υ)� υ dHn−1(υ)

= `− 1
n+ `− 3

(ˆ
∂Ω
krs(x− y)νr(y) dσ(y) −

ˆ
∂B(x,R1)

krs(x− y)xr − yr
|x− y|

dHn−1(y)

+
ˆ
∂B(x,R2)

krs(x− y)xr − yr
|x− y|

dHn−1(y)
)

= `− 1
n+ `− 3

(
(T rsνr)(x)−

ˆ
Sn−1

krs(υ)υr dHn−1(υ) +
ˆ
Sn−1

krs(υ)υr dHn−1(υ)
)

= `− 1
n+ `− 3(T rsνr)(x). (5.5.11)

From (5.5.11) and (5.5.7) used with f := νr ∈ C ω(∂Ω), we obtain, for r, s ∈ {1, ..., n},

sup
x∈Ω
|(Trsν)(x)|+ sup

x∈Ω

|∇(Trsν)(x)|
V (ρ(x))

≤ sup
x∈Ω
|(T rsνr)(x)|+ sup

x∈Ω

|∇(T rsνr)(x)|
V (ρ(x))

≤ cnC`−22(`−2)22` ‖P‖L1(Sn−1,Hn−1) ‖ν‖Cω(∂Ω) . (5.5.12)

Assume now that Ω is bounded. Fix a point x ∈ Ω and define ΩR1 := Ω \ B(x,R1)
with R1 as before, so that ∂ΩR1 = ∂B(x,R1) ∪ ∂Ω. Proceeding as in the past, in place
of (5.5.11) we now obtain

(Trsν)(x) = `− 1
n+ `− 3(T rsνr)(x)− `− 1

n+ `− 3

ˆ
Sn−1

krs(υ)υr dHn−1(υ)

−
ˆ
Sn−1

krs(υ)� υ dHn−1(υ), (5.5.13)

for each r, s ∈ {1, . . . , n}. From (5.4.8), (5.4.9), (5.4.4), and (5.5.5) we see that

‖krs‖L∞(Sn−1,Hn−1) + ‖krs‖L∞(Sn−1,Hn−1) ≤ cn2` ‖P‖L1(Sn−1,Hn−1) . (5.5.14)

In turn, from (5.5.13), (5.5.14), and the fact that ‖ν‖Cω(∂Ω) ≥ sup∂Ω |ν| = 1 , we conclude
that (5.5.12) also holds (with a possibly different dimensional constant cn ∈ (0,∞)) in
the case when Ω is bounded.
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Pressing on, fix r, s ∈ {1, . . . , n} arbitrary and, for each g ∈ C ω(∂Ω)⊗ C̀ n, set

T̃rsg(x) :=
ˆ
∂Ω
krs(x− y)� ν(y)� g(y) dσ(y), ∀x ∈ Ω. (5.5.15)

Note that T̃rs1 = Trsν, hence (5.5.12) yields

sup
x∈Ω
|(T̃rs1)(x)|+ sup

x∈Ω

|∇(T̃rs1)(x)|
V (ρ(x))

≤ cnC`−22(`−2)22` ‖P‖L1(Sn−1,Hn−1) ‖ν‖Cω(∂Ω) . (5.5.16)

Thanks to the homogeneity properties of krs and (5.4.8) we have

|krs(x− y)� ν(y)| ≤ cn
‖krs‖L∞(Sn−1,Hn−1)
|x− y|n−1 ≤

cn2` ‖P‖L1(Sn−1,Hn−1)
|x− y|n−1 , (5.5.17)

|∇x(krs(x− y)� ν(y))| ≤ cn
‖∇krs‖L∞(Sn−1,Hn−1)

|x− y|n
≤
cn2` ‖P‖L1(Sn−1,Hn−1)

|x− y|n
, (5.5.18)

so that we may invoke Lemma 5.3.4 to obtain that, for each g ∈ C ω(∂Ω)⊗ C̀ n,

sup
x∈Ω
|(T̃rsg)(x)|+ sup

x∈Ω

|∇(T̃rsg)(x)|
V (ρ(x))

≤ CΩ,n,ω2`
(
1 + Cω ω(D) + C`−22(`−2)2 ‖ν‖Cω(∂Ω)

)
‖P‖L1(Sn−1,Hn−1) ‖g‖Cω(∂Ω)⊗C̀ n

≤ CΩ,n,ω2`
(
C`−22(`−2)2 ‖ν‖Cω(∂Ω) + 1

)
‖P‖L1(Sn−1,Hn−1) ‖g‖Cω(∂Ω)⊗C̀ n . (5.5.19)

By specializing this to the case when g := ν� f with f ∈ C ω(∂Ω) arbitrary, and keeping
in mind that ν � ν = −1, we arrive at the conclusion that

sup
x∈Ω
|(Trsf)(x)|+ sup

x∈Ω

|∇(Trsf)(x)|
V (ρ(x)) (5.5.20)

≤ CΩ,n,ω2`
(
C`−22(`−2)2 ‖ν‖Cω(∂Ω) + 1

)
‖P‖L1(Sn−1,Hn−1) ‖ν‖Cω(∂Ω) ‖f‖Cω(∂Ω)

for every f ∈ C ω(∂Ω). In turn, from (5.5.20) and (5.5.9) we obtain

sup
x∈Ω
|(Tf)(x)|+ sup

x∈Ω

|∇(Tf)(x)|
V (ρ(x)) (5.5.21)

≤ CΩ,n,ω2`
(
C`−22(`−2)2 ‖ν‖Cω(∂Ω) + 1

)
‖P‖L1(Sn−1,Hn−1) ‖ν‖Cω(∂Ω) ‖f‖Cω(∂Ω) ,

for every f ∈ C ω(∂Ω). The current working hypothesis is that ` ∈ N is odd and ` ≥ 3,
hence 2(`−2)22` ≤ 2`2 and 2` ≤ C`−22`2 if C ≥ 1. Therefore, in such a scenario, there
exists some C(n, ω,Ω) ∈ (0,∞) such that

CΩ,n,ω2`
(
C`−22(`−2)2 ‖ν‖Cω(∂Ω) + 1

)
‖ν‖Cω(∂Ω) ≤ C(n, ω,Ω)C`−22`2 , (5.5.22)
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where Cn,ω,Ω is the constant appearing in (5.5.21). This suggests that, to begin with,
we take C ≥ max

{
1 ,
√
C(n, ω,Ω)

}
which then ensures both that C ≥ 1 and that

C(n, ω,Ω)C`−22`2 ≤ C`2`2 . Ultimately, this choice, together with (5.5.21) and (5.5.22),
proves (5.5.1) and therefore the induction is complete.

Moving on, we claim that the additional assumption that P is harmonic may be
eliminated. The starting point in the justification of this claim is the observation that
any homogeneous polynomial P in Rn may be written as P (x) = P0(x) + |x|2Q0(x) for
every x ∈ Rn, where P0 and Q0 are homogeneous polynomials in Rn, and P0 is harmonic
(cf. [115, p. 69]). If P has degree ` = 2N + 1 for some N ∈ N0, by iterating this process
finitely many steps we conclude that for each j ∈ {0, 1, . . . , N} there exists a harmonic
homogeneous polynomial Pj of degree `− 2j such that

P (x) =
N∑
j=0
|x|2jPj(x), ∀x ∈ Rn. (5.5.23)

Since the restrictions to the unit sphere of any two homogeneous harmonic polynomials
of different degrees are orthogonal in L2(Sn−1,Hn−1) (cf. [115, p. 69]), we have

‖P‖2L2(Sn−1,Hn−1) =
N∑
j=0
‖Pj‖2L2(Sn−1,Hn−1) . (5.5.24)

Thus, for every j ∈ {0, 1, . . . , N},

‖Pj‖L1(Sn−1,Hn−1) ≤ cn ‖Pj‖L2(Sn−1,Hn−1) ≤ cn ‖P‖L2(Sn−1,Hn−1) . (5.5.25)

The upshot of (5.5.23) is that we may now express the action of the operator T on any
function f ∈ C ω(∂Ω) as

Tf(x) =
N∑
j=0

ˆ
∂Ω

Pj(x− y)
|x− y|n−1+(`−2j) f(y) dσ(y), ∀x ∈ Ω. (5.5.26)

and an estimate like (5.5.1) is valid for each integral operator in the above sum since
each polynomial Pj is odd, homogeneous, and harmonic. From this and (5.5.25) we then
conclude that, in the current general case, for each function f ∈ C ω(∂Ω) we have

sup
x∈Ω
|Tf(x)|+ sup

x∈Ω

|∇(Tf)(x)|
V (ρ(x)) ≤ cn`C`2`

2 ‖P‖L2(Sn−1,Hn−1) ‖f‖Cω(∂Ω) . (5.5.27)

By choosing again C big enough to begin with, matters may be arranged so that cn` ≤ C`

for ` ≥ 1. Assume this is the case and rename C2 as C. From (5.5.27) and Lemma 5.3.5
we then conclude that the operator T+ from (5.1.10) maps C ω(∂Ω) continuously into
C ω(Ω+), and that the corresponding estimate claimed in (5.1.11) holds. Finally, Ω−
is also a C 1,ω-domain with compact boundary, so the same argument applies for the
operator T−.

Proof of (e)⇒ (d). This is a direct consequence of the observation that the operators
R±j considered in item (d) are particular cases of those considered in item (e).
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Proof of (d)⇒ (a). Since Ω is a UR domain, the jump-formulas from Theorem 5.3.1
hold. In view of (1.1.18) this implies that for each f ∈ L1(∂Ω, σ), each j ∈ {1, . . . , n},
and σ-a.e. x ∈ ∂Ω, we have(

R±j f
∣∣κ−n.t.

∂Ω±

)
(x) = ∓1

2νj(x)f(x) + lim
ε→0+

ˆ
∂Ω\B(x,ε)

(∂jE)(x− y)f(y) dσ(y), (5.5.28)

where E is the fundamental solution for the Laplacian defined in (2.3.6). From this,
(5.1.9), Lemma 1.3.6, and (1.3.22) we then see that for j ∈ {1, . . . , n} we have

νj = R−j 1
∣∣
∂Ω− −R+

j 1
∣∣
∂Ω+
∈ C ω(∂Ω), (5.5.29)

where the first equality holds σ-a.e. on ∂Ω. Thus, ν ∈ C ω(∂Ω) which ultimately goes to
show that Ω is a C 1,ω-domain.

Proof of (a)⇒ (c), and of estimate (5.1.12). Suppose Ω ⊆ Rn is a C 1,ω-domain with
compact boundary and fix an odd homogenous polynomial P of degree ` ≥ 1 in Rn.
Under these hypotheses, we have already proved (in the implication (a) ⇒ (e)) that
the integral operators associated with P as in (5.1.10) map C ω(∂Ω) continuously into
C ω(Ω±) and that the estimates in (5.1.11) hold. Assume first that P is harmonic and
define

k(x) := P (x)
|x|n−1+` , ∀x ∈ Rn \ {0}. (5.5.30)

From [115, p. 73] we know that its Fourier transform is given by

k̂(ξ) = γn,`
P (ξ)
|ξ|`+1 , ∀ ξ ∈ Rn \ {0}, (5.5.31)

where γn,` = O(`−(n−2)/2) if n is even, and γn,` = O(`−(n−4)/2) if n is odd as `→∞.
Fix two arbitrary distinct points x, y ∈ ∂Ω. In the case when |ν(x)− ν(y)| ≥ 1/2 we

have ω(|x− y|) ≥ (2 ‖ν‖Cω(∂Ω))−1, hence

|P (ν(x))− P (ν(y))|
ω(|x− y|) ≤ 4 ‖ν‖Cω(∂Ω) ‖P‖L∞(Sn−1,Hn−1)

≤ cn2` ‖ν‖Cω(∂Ω) ‖P‖L1(Sn−1,Hn−1) , (5.5.32)

where the last inequality above is a consequence of (5.4.9). Consider next the case when
|ν(x)− ν(y)| ≤ 1/2. In such a scenario, the line segment [ν(x), ν(y)] is contained in the
annulus B(0, 1) \ B(0, 1/2). Based on this, the Mean Value Theorem, the homogeneity
of P , and (5.4.9), we obtain

|P (ν(x))− P (ν(y))|
ω(|x− y|) ≤

(
sup

z∈[ν(x),ν(y)]
|(∇P )(z)|

)
‖ν‖Cω(∂Ω)

≤ ‖∇P‖L∞(Sn−1,Hn−1) ‖ν‖Cω(∂Ω)

≤ cn2` ‖P‖L1(Sn−1,Hn−1) ‖ν‖Cω(∂Ω) . (5.5.33)
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Moreover, using (5.4.9) and the fact that ‖ν‖Cω(∂Ω) ≥ sup∂Ω |ν| = 1,

sup
x∈∂Ω

|P (ν(x))| ≤ ‖P‖L∞(Sn−1,Hn−1) ≤ cn2` ‖P‖L1(Sn−1,Hn−1)

≤ cn2` ‖P‖L1(Sn−1,Hn−1) ‖ν‖Cω(∂Ω) . (5.5.34)

From (5.5.32), (5.5.33), (5.5.34), and the fact that k̂(ν(x)) = γn,`P (ν(x)) for each x ∈ ∂Ω
(as seen from (5.5.31)), we can conclude that the mapping ∂Ω 3 x 7→ k̂(ν(x)) ∈ C belongs
to C ω(∂Ω) and

‖k̂(ν(·))‖Cω(∂Ω) = γn,` ‖P (ν(·))‖Cω(∂Ω) ≤ cn2` ‖ν‖Cω(∂Ω) ‖P‖L1(Sn−1,Hn−1) , (5.5.35)

where the last inequality is based on the decay properties of γn,` in the parameter `.
Given that Ω is a UR domain (cf. Remark 5.1.2), Theorem 5.3.1 is applicable. Fix
an aperture parameter κ > 0. Based the jump-formula (5.3.3), (5.1.11), Lemma 1.3.6,
(1.3.22), (5.5.35), and (1.3.21) we may then estimate

‖Tf‖Cω(∂Ω) ≤
∥∥∥ 1

2i k̂(ν(·))f + Tf
∥∥∥

Cω(∂Ω)
+
∥∥∥ 1

2i k̂(ν(·))f
∥∥∥

Cω(∂Ω)

≤
∥∥∥Tf ∣∣κ−n.t.

∂Ω

∥∥∥
Cω(∂Ω)

+ 1
2‖k̂(ν(·))‖Cω(∂Ω) ‖f‖Cω(∂Ω)

≤ ‖Tf‖Cω(Ω) + cn2` ‖ν‖Cω(∂Ω) ‖P‖L1(Sn−1,Hn−1) ‖f‖Cω(∂Ω)

≤ ‖Tf‖Cω(Ω) + cn2` ‖ν‖Cω(∂Ω) ‖P‖L2(Sn−1,Hn−1) ‖f‖Cω(∂Ω)

≤
(
C`2`2 + cn2` ‖ν‖Cω(∂Ω)

)
‖P‖L2(Sn−1,Hn−1) ‖f‖Cω(∂Ω)

≤ (2C)`2`2 ‖P‖L2(Sn−1,Hn−1) ‖f‖Cω(∂Ω) , (5.5.36)

assuming, without loss of generality, that C ≥ max
{
1 , cn ‖ν‖Cω(∂Ω)

}
. This ultimately

proves that the singular integral operator T associated with the polynomial P as in (5.1.7)
maps C ω(∂Ω) boundedly into itself in the case when P is harmonic.

In the case when the polynomial P is not necessarily harmonic, we decompose P as
in (5.5.23) and for each f ∈ C ω(∂Ω) write

Tf(x) =
N∑
j=0

lim
ε→0+

ˆ

y∈∂Ω
|x−y|>ε

Pj(x− y)
|x− y|n−1+(`−2j) f(y) dσ(y) for σ-a.e. x ∈ ∂Ω. (5.5.37)

Each term in the above sum may be regarded as the action of an integral operator on
the function f , of the sort described in (5.1.7), though now associated with a harmonic
homogeneous odd polynomial. As such, what we have proved up to this point applies
and, on account of (5.5.25), gives that

‖Tf‖Cω(∂Ω) ≤ `(2C)`2`2 ‖P‖L2(Sn−1,Hn−1) ‖f‖Cω(∂Ω) . (5.5.38)

By choosing again C big enough so that `(2C)` ≤ C`(2C)` for ` ≥ 1 and renaming 2C2

as C, the claim in item (c) and the estimate in (5.1.12) follow.
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Proof of (c)⇒ (b). Since Ω is a UR domain and 1 ∈ L2(∂Ω, σ) since ∂Ω is bounded, the
functional Rj1 ∈

(
C ω(∂Ω)

)∗, originally defined as in (5.1.3), is given by the principal-
value integral (5.1.4) with f = 1, for each j ∈ {1, . . . , n}. Indeed, for each g ∈ C ω(∂Ω)
we may write

〈Rj1, g〉 = 1
2$n−1

ˆ
∂Ω

ˆ
∂Ω

xj − yj
|x− y|n

(
g(x)− g(y)

)
dσ(y) dσ(x)

= lim
ε→0+

1
2$n−1

ˆ ˆ

(x,y)∈∂Ω×∂Ω
|x−y|>ε

xj − yj
|x− y|n

(
g(x)− g(y)

)
dσ(y) dσ(x)

=
〈

lim
ε→0+

1
$n−1

ˆ

y∈∂Ω
|·−y|>ε

(· − y)j
| · −y|n

dσ(y) , g
〉
, (5.5.39)

as wanted. As such, (5.1.6) is a direct consequence of item (c).

Proof of (b)⇒ (a). Assume Rj1 ∈ C ω(∂Ω) for every j ∈ {1, . . . , n}. Since we trivially
have C ω(∂Ω) ⊆ L∞(∂Ω, σ) ⊆ BMO(∂Ω, σ), from the discussion in Section 5.1 it follows
that each distributional Riesz transform Rj extends to a bounded linear operator on
L2(∂Ω, σ), given by (5.1.4). Then at σ-a.e. point on ∂Ω we may write

1
4ν = C(Cν) = −C

( n∑
j=1

(Rj1)ej
)
. (5.5.40)

The first equality above uses (5.4.24). The second equality in (5.5.40) uses the fact that
at σ-a.e. point on ∂Ω we have Cν = −

∑n
j=1(Rj1)ej , itself a consequence of the definition

of C plus the fact that ν�ν = −1 and x−y =
∑n
j=1(xj−yj)ej for each x, y ∈ Rn. Thanks

to (5.1.6) and Theorem 5.4.8, the function in the right hand-side of (5.5.40) belongs to
C ω(∂Ω)⊗ C̀ n, so ultimately ν ∈ C ω(∂Ω) (hence Ω is a C 1,ω-domain, by Remark 5.1.3).

This concludes the proof of Theorem 5.1.4.
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