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Introduction

This thesis project lies in the intersection between real harmonic analysis, partial
differential equations and geometric measure theory. The research developed therein
has been inspired by the recent advances in the area due to José Maŕıa Martell, Steve
Hofmann and Tatiana Toro, among others.

During the last years, the interest in analyzing the relation between the behav-
ior of elliptic measure and geometric properties of the domain has increased. It is
being studied how the absolute continuity of elliptic measure with respect to surface
measure, in a quantitative sense, is related with some “regularity” properties of the
boundary of the domain, which might be rough. Most of the new approaches are
based on modern harmonic analysis tools developed in the last decades. Before going
further in that direction, we will first exhibit how some of these ideas evolved along
the last century. The first result appeared in 1916, working on the complex plane.
F. and M. Riesz showed in [RR] that harmonic measure, the elliptic measure for the
Laplace operator, was absolutely continuous with respect to arc-length measure. In
order to prove that property, they assumed that the planar domain was simply con-
nected and its boundary was a rectifiable curve. Later in 1936, Lavrentiev gave in
[Lav] a quantitative version of the F. and M. Riesz’s theorem. The different behavior
of elliptic equations in the plane and in higher dimensions motivated further research
in this topic. In 1977 the study of the Laplace operator in Lipschitz domains by
Dahlberg in [Dah1] showed that in higher dimensions we still have absolute conti-
nuity of harmonic measure with respect to surface measure. Moreover the Poisson
kernel, or equivalently the Radon-Nikodym derivative of harmonic measure, satisfies
a reverse Hölder inequality. This is in fact a stronger version of mutual absolute
continuity between harmonic and surface measures, where we have a quantitative
control of the ratio between both measures in a scale invariant fashion. In the case
of Lipschitz domains it is proved that the Poisson kernel belongs to the class RH2,
what implies that it has local square integrability. After that result, there was an in-
terest in understanding whether there are more general domains for which harmonic
measure satisfies a reverse Hölder inequality with a possibly smaller exponent.

In the decade of 1980s Jerison and Kenig brought up a new class of domains
called “non-tangentially accesible” or NTA domains. These domains are defined in
[JK] and satisfy three main properties. The first is the “Harnack chain condition”
(cf. Definition 1.2), which can be seen as a quantitative version of the fact that the
domain is path connected. Also we ask for quantitative versions of the openness
condition, both for the domain, what is called “interior Corkscrew” (cf. Definition
1.1) and for the exterior domain, what is called “exterior Corkscrew”. In [JK]
it is also developed the so called Jerison-Kenig’s program, that is a collection of
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estimates of harmonic measure, taking into account its behavior near the boundary
and its relation with the Green function. In order to be able to extend the result
of Dahlberg to a larger class of domains, it came up the additional assumption that
the boundary had to be “Ahlfors regular” (cf. Definition 1.3), in which case the
domains are called “chord-arc” domains or CAD (cf. Definition 1.5). In 1990, both
David-Jerison [DJ] and Semmes [Sem], independently proved that harmonic measure
in a chord-arc domain is in some RHp class, for p > 1. In terms of Muckenhoupt
weights, this means that harmonic measure is always an A∞ weight with respect
to surface measure, whenever the above geometric properties are satisfied. Then,
a new question arises: Are the properties defining CAD necessary to ensure that
harmonic measure is in the A∞ class? Several recent studies in this topic have
been devoted to show to what extent one can drop the hypothesis of the exterior
corkscrew. We say that Ω ⊂ Rn+1, n ≥ 2, is a “1-sided chord-arc domain” (or 1-sided
CAD) if it satisfies the interior corkscrew and Harnack chain conditions, and if its
boundary is n-dimensional Ahlfors regular. It was shown in [HM3] that in a 1-sided
chord-arc domain, the uniform rectifiability of ∂Ω (which is a quantitative version of
rectifiability) is a sufficient condition for the harmonic measure to be an A∞ weight
with respect to the surface measure σ = Hn

∂Ω
. Actually, in the setting of 1-sided

CAD both conditions are equivalent, as proven later in [HMUT]. Moreover, under
the same geometric assumptions it was shown in [AHM+2] that ∂Ω is uniformly
rectifiable if and only if Ω satisfies an exterior corkscrew condition. Taking also into
account the work of [DJ, Sem] we obtain a characterization of chord-arc domains in
terms of the membership ωL ∈ A∞(∂Ω), where L is the Laplace operator and ωL
the harmonic measure.

Next, we consider Lu = −div(A∇u) a variable coefficient second order diver-
gence form real elliptic operator (cf. Definition 1.20) in a 1-sided CAD (cf. Definition
1.4). There are different strategies in order to show that ωL, the elliptic measure
associated with L, can be used to characterize the fact that the domain is actually
CAD. One of them is to analyze the “smoothness” of the matrix A, what was done
in [KP] introducing some additional conditions. More precisely, let us define the
class L0 to be the collection of real elliptic operators Lu = −div(A∇u) as above
such that A ∈ Liploc(Ω),

∥∥|∇A| δ∥∥
L∞(Ω)

<∞, and

sup
x∈∂Ω

0<r<diam(∂Ω)

1

σ(B(x, r) ∩ ∂Ω)

∫∫
B(x,r)∩Ω

|∇A(X)| dX <∞. (0.1)

With this notation, it is shown in [KP] that if Ω is CAD, then ωL ∈ A∞(∂Ω) for
any L ∈ L0. Recently, the authors in [HMT1] proved a free boundary result for the
class L0. In particular, this states that for any symmetric L ∈ L0, the membership
ωL ∈ A∞(∂Ω) in a 1-sided CAD implies that Ω is actually CAD. These two re-
sults combine to show a new characterization of CAD using the class of symmetric
operators in L0. Similarly, for a non-symmetric L ∈ L0 it is required both that
ωL ∈ A∞(∂Ω) and ωL> ∈ A∞(∂Ω) in order to show that Ω is CAD, as stated in
[HMT1]. Here L> is the transpose operator of L, that is, L>u = −div(A>∇u) with
A> being the transpose matrix of A. The other different strategy is to compare
Lu = −div(A∇u) with some given well known operator L0u = −div(A0∇u) that
satisfies ωL0 ∈ A∞(∂Ω), or equivalently ωL0 ∈ RHp(∂Ω) for some p > 1. For in-
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stance, here we could think that L0 is the Laplace operator or some L0 ∈ L0. Over
the years there has been a considerable effort to find which are the adequate condi-
tions on the discrepancy between the matrices A and A0 that allow us to conclude
that ωL ∈ A∞(∂Ω), or maybe even ωL ∈ RHp(∂Ω), for the same p > 1. This has
been historically known as the problem of perturbation of elliptic operators, and it is
the main topic of this thesis. Before going further, we will introduce some notation.
Let us define the disagreement between A and A0 in Ω by

%(A,A0)(X) := sup
Y ∈B(X,δ(X)/2)

|A(Y )−A0(Y )|, X ∈ Ω, (0.2)

where δ(X) := dist(X, ∂Ω). This disagreement induces a measure µA,A0 in Ω given
by

µA,A0(U) :=

∫∫
U

%(A,A0)(X)2

δ(X)
dX, U ⊂ Ω. (0.3)

We say that µA,A0 is a Carleson measure with respect to σ if

|||%(A,A0)||| := sup
x∈∂Ω

0<r<diam(∂Ω)

µA,A0(B(x, r) ∩ Ω)

σ(B(x, r) ∩ ∂Ω)
<∞. (0.4)

Here, the regions B(x, r) ∩ Ω where the integration takes place are usually called
Carleson regions. Similarly, we say that µA,A0 is a vanishing trace Carleson measure
with respect to σ if

lim
s→0+

(
sup
x∈∂Ω

0<r≤s<diam(∂Ω)

µA,A0(B(x, r) ∩ Ω)

σ(B(x, r) ∩ ∂Ω)

)
= 0. (0.5)

The first perturbation result in this fashion was due to Dahlberg, who in [Dah2]
showed that in the unit ball, the fact that µA,A0 is a vanishing trace Carleson mea-
sure with respect to σ is sufficient to transfer the condition RHp(∂Ω) from ωL0 to
ωL, without changing the exponent. This result has been extended to more general
contexts in the work of [Esc] or [MPT2], where they treat the case of Lipschitz
domains and chord-arc domains respectively. The problem of the “large constant”
perturbation, that is the case when |||%(A,A0)||| <∞, or equivalently when µA,A0 is
a Carleson measure, was solved in 1991 by Fefferman-Kenig-Pipher [FKP]. In the
setting of Lipschitz domains, they prove that if ωL0 ∈ A∞(∂Ω) and |||%(A,A0)||| <∞,
then necessarily ωL ∈ A∞(∂Ω). From the point of view of reverse Hölder inequal-
ities, it is not possible to keep the same exponent from one operator to the other.
Nevertheless, the A∞(∂Ω) condition, which as we know can be used to characterize
geometric information of the domain, is still preserved by Carleson measure type
perturbations. This theorem requires a very delicate analysis and the details of its
proof have been an inspiration for further results in the area. It is worth mentioning
the work of [MPT1], where they extend the theorem of [FKP] to chord-arc domains,
taking advantage of all the PDE machinery developed in [JK]. We note that in all
of these perturbation theorems, the operators have been assumed to be symmetric.

Our first project consisted in extending the theorems in [Dah2, FKP] to the
setting of 1-sided chord-arc domains. The approach is heavily inspired in the work
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of [HM1, HM2], in which the upper half space is considered as a model to develop a
new scheme to address Carleson perturbations. This scheme relies in the so called
extrapolation of Carleson measures method, which appeared first in [LM] (see also
[HL, AHLT, AHM+1]) and was further developed in [HM1, HM2] (see also [HM3]).
Based on the Corona construction of Carleson [Car] and Carleson-Garnett [CG],
this argument is a bootstrapping that allows us to reduce the analysis to sawtooth
subdomains where the perturbation is sufficiently small. Having in mind that the
domains under consideration are only assumed to be 1-sided CAD, the Jerison-
Kenig’s program for CAD cannot be applied directly. Luckily, this program is being
developed in [HMT2] for 1-sided CAD, and most of the background PDE tools are
at our disposal. It is interesting to note that in the present geometric scenario, the
condition ωL0 ∈ RHp(∂Ω) is equivalent to the fact that the Dirichlet problem for
L0 can be solved (in a non-tangential fashion) for boundary data in Lp

′
(∂Ω). To

be able to use the extrapolation of Carleson measures we first need to understand
the case of small perturbation, that is the situation on which |||%(A,A0)||| < ε1 for a
small ε1 > 0 to be chosen. The study of this case led us to a new dyadic version of
the Coifman-Meyer-Stein’s theorem for duality of tent spaces (see [CMS]). Thanks
to this property we are able to keep the same exponent p > 1 of the reverse Hölder
inequality from one operator to the other, whenever the perturbation is small. For
the “large constant” perturbation, we will follow the scheme of [HM1, HM2] and
one does not expect to preserve the exponent, rather one seeks to prove a general
A∞(∂Ω) condition. The following theorem summarizes both the small and large
constant perturbations for symmetric operators in the setting of 1-sided CAD. This
corresponds to Theorem 2.1 in the text.

Theorem 1. Let Ω ⊂ Rn+1, n ≥ 2, be a 1-sided CAD (cf. Definition 1.4). Let
Lu = −div(A∇u) and L0u = −div(A0∇u) be real elliptic operators (cf. Definition
1.20) such that A and A0 are symmetric. Suppose that there exists p, 1 < p < ∞,
such that the elliptic measure ωL0 ∈ RHp(∂Ω) (cf. Definition 1.34). The following
hold:

(a) If |||%(A,A0)||| < ∞ (cf. (0.4)), then there exists 1 < q < ∞ such that ωL ∈
RHq(∂Ω).

(b) There exists ε1 > 0 such that if |||%(A,A0)||| ≤ ε1, then ωL ∈ RHp(∂Ω).

Additionally, we obtain an extension of the vanishing trace Carleson perturbation
result of [Dah2] to the setting of 1-sided CAD as a corollary of the case |||%(A,A0)||| <
ε1. We state the result as follows, which is written more precisely in Corollary 2.12.

Corollary 2. Suppose that Ω ⊂ Rn+1 is a bounded 1-sided CAD (cf. Definition
1.4). Let L0, L be real symmetric elliptic operators (cf. Definition 1.20) and suppose
that ωL0 ∈ RHp(∂Ω) for some 1 < p < ∞ (cf. Definition 1.34). If the vanishing
trace Carleson condition (0.5) holds, then we have that ωL ∈ RHp(∂Ω).

We also note that a new characterization of CAD may be given with the help of
Theorem 1. Indeed, similarly as considered in [KP], we introduce the class L′0 to be
the collection of real symmetric elliptic operators Lu = −div(A∇u) such that A ∈
Liploc(Ω),

∥∥|∇A| δ∥∥
L∞(Ω)

<∞, and (0.1) holds. We also introduce L′, the collection
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of real symmetric elliptic operators Lu = −div(A∇u) for which there exists L0 =
−div(A0∇u) ∈ L′0 in such a way that |||%(A,A0)||| <∞. It is straightforward to see
that all symmetric constant coefficient operators belong to the class L′0 and also that
L′0 ⊂ L′. It is worth noting that the operators in L′ may not have any regularity,
however they are still appropriate in order to characterize the class CAD. The precise
result will be stated in Corollary 6, where a more general case for non necessarily
symmetric operators is studied. For the symmetric case we take L ∈ L′ and L0 ∈ L′0
such that |||%(A,A0)||| <∞. First, note that if Ω is CAD we have that ωL0 ∈ A∞(∂Ω)
by the main result in [KP] (see also [HMT1, Appendix A]). This combines with the
large perturbation theorem of [MPT1] to show that ωL ∈ A∞(∂Ω). For the converse
implication, namely the fact that ωL ∈ A∞(∂Ω) implies that Ω is actually CAD, we
will use Theorem 1(a). In that way, we first show that ωL0 ∈ A∞(∂Ω), which along
with the fact that L0 ∈ L′0 is sufficient to conclude that Ω is actually CAD, as seen
in [HMT1].

The second project of this thesis deals with “large constant” Carleson perturba-
tions of non-symmetric elliptic operators in the setting of 1-sided chord-arc domains.
This is, we let Lu = −div(A∇u) and L0u = −div(A0∇u) be real elliptic operators,
not necessarily symmetric, and we assume that ωL0 ∈ A∞(∂Ω). Our goal is to show
that under the assumption of |||%(A,A0)||| < ∞ we also have that ωL ∈ A∞(∂Ω).
The approach used to address this problem differs from the one used in Theorem
1 (see also [HM1, HM2]), or even the one in [FKP, MPT1]. We are interested in
analyzing the property that all bounded solutions of a given operator L satisfy “Car-
leson measure estimates” or, equivalently, CME. This means that for every bounded
weak solution of Lu = 0 it holds

sup
x∈∂Ω

0<r<∞

1

rn

∫∫
B(x,r)∩Ω

|∇u(X)|2δ(X) dX ≤ C‖u‖2L∞(Ω). (0.6)

This property can be found in the literature to be related with the fact that ωL ∈
A∞(∂Ω). For instance, in the setting of bounded Lipschitz domains and domains
above the graph of a Lipschitz function, the authors in [KKPT] show that if L sat-
isfies “Carleson measure estimates” then we have ωL ∈ A∞(∂Ω). For the converse
implication we assume that ωL ∈ A∞(∂Ω). The fact that every bounded weak so-
lution of Lu = 0 satisfies (0.6) can be seen, by the work of [DJK], as a consequence
of a more general estimate in the setting of Lipschitz and chord-arc domains (see
also [HMT2] for 1-sided CAD). Indeed, assuming that ωL ∈ A∞(∂Ω), it is shown
that the conical square function is controlled by the non-tangential maximal func-
tion in every Lp(∂Ω) for every 1 < p < ∞, where both are applied to solutions
of L. Applying this with p = 2 and with a bounded solution the desired Carleson
estimate follows at once. We will present a new technique to prove this latter fact
using some of the tools developed in [HMT1]. Our first problem is to show that if
L is a Carleson perturbation of L0 with ωL0 ∈ A∞(∂Ω), then L satisfies “Carleson
measure estimates”. We will call this problem the A∞ − CME perturbation. First,
observe that it can be used to prove that ωL0 ∈ A∞(∂Ω) implies “Carleson measure
estimates” for L0. To see this we just take L = L0, in which case the “zero pertur-
bation” is automatically of Carleson type, hence the A∞−CME perturbation gives
the desired properties for L0. The second problem is to find an analog of the main
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theorem in [KKPT] adapted to 1-sided chord-arc domains, which combined with the
A∞−CME perturbation allows us to extend Theorem 1(a) to non-symmetric elliptic
operators. Here, we observe that since we are using the auxiliar condition CME,
it is not possible to keep the exponent of the RHp(∂Ω) inequality in this setting,
hence we do not obtain an analog of Theorem 1(b)). We collect these results in
two different theorems. The first states the equivalence between ωL ∈ A∞(∂Ω) and
the CME property for L, and this corresponds to Theorem 3.1. The second is the
desired generalization of Theorem 1(a), which will be called Theorem 3.2 in the text.

Theorem 3. Let Ω ⊂ Rn+1, n ≥ 2, be a 1-sided CAD (cf. Definition 1.4) and
let Lu = −div(A∇u) be a real (not necessarily symmetric) elliptic operator (cf.
Definition 1.20). The following statements are equivalent:

(a) Every bounded weak solution of Lu = 0 satisfies the Carleson measure estimate
(0.6).

(b) ωL ∈ A∞(∂Ω) (cf. Definition 1.33).

Theorem 4. Let Ω ⊂ Rn+1, n ≥ 2, be a 1-sided CAD (cf. Definition 1.4). Let
Lu = −div(A∇u) and L0u = −div(A0∇u) be real (not necessarily symmetric)
elliptic operators (cf. Definition 1.20). Assume that the disagreement between A
and A0 satisfies |||%(A,A0)||| < ∞ (cf. (0.4)). Then, ωL0 ∈ A∞(∂Ω) if and only if
ωL1 ∈ A∞(∂Ω) (cf. Definition 1.33).

As noted above, the method introduced to prove Theorems 3 and 4 can be split
in two different parts. For the first part, this is the A∞ − CME perturbation, we
take advantage of the A∞(∂Ω) condition to extract a sawtooth domain with nice
properties. This is done by applying a result in [HMT1], which is a stopping time
argument based on the solution of the Kato square root conjecture in [HM5, HLM,
AHL+], that has been further developed in [HM4, HLMN]. More precisely, this
sawtooth has an ample contact with the original domain, and roughly speaking,
the averages of ωL0 with respect to σ are essentially constant. This allows us to
interchange the distance to the boundary with the Green function GL0 (with a
fixed pole) in (0.6), so we can integrate by parts to obtain the desired estimate in
the sawtooth. Finally, using that the sawtooth has an ample contact with Ω and
following again [HMT1], we can extend the Carleson measure estimate to the entire
domain. The second part of this method, that is, the fact that CME for L implies
ωL ∈ A∞(∂Ω), is based on the ideas developed in [KKPT]. We pick a Borel set
F ⊂ ∂Ω with small ωL measure and try to show that σ(F ) is also small. In that
way we construct a finite collection of nested sets containing F , called an ε0-cover
(cf. Definition 1.7), and a solution u associated to that collection. Once we show
a lower bound for the oscillation of u, we are able to obtain a lower bound for the
conical square function applied to this solution. This, along with the fact that u
satisfies Carleson measure estimates help us to conclude that σ(F ) is also small,
hence ωL ∈ A∞(∂Ω). Note that it is not necessary to assume that every bounded
weak solution satisfies CME, since we only use this property for a particular class of
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solutions. Finally, there is an interesting application of the method discussed above.
In this result we would like to infer nice properties from ωL to ωL> , where L> is the
transpose operator of L. The Carleson condition on the discrepancy between L and
L> turns out to be, after an integration by parts, a Carleson measure condition on
the derivative of the antisymmetric part of A. Assuming the latter we are able to
show that ωL ∈ A∞(∂Ω) is equivalent to ωL> ∈ A∞(∂Ω), as stated precisely in the
theorem below, which stands for Theorem 3.3.

Theorem 5. Let Ω ⊂ Rn+1, n ≥ 2, be a 1-sided CAD (cf. Definition 1.4). Let Lu =
−div(A∇u) be a real (not necessarily symmetric) elliptic operator (cf. Definition
1.20) and let L> = −div(A>∇u) denote the transpose of L. Assume that (A−A>) ∈
Liploc(Ω) and let

divC(A−A>)(X) =

( n+1∑
i=1

∂i(ai,j − aj,i)(X)

)
1≤j≤n+1

, X ∈ Ω. (0.7)

Assume that the following Carleson measure estimate holds

sup
x∈∂Ω

0<r<diam(∂Ω)

1

σ(B(x, r) ∩ ∂Ω)

∫∫
B(x,r)∩Ω

∣∣ divC(A−A>)(X)
∣∣2δ(X) dX <∞. (0.8)

Then ωL ∈ A∞(∂Ω) if and only if ωL> ∈ A∞(∂Ω) (cf. Definition 1.33).

Similarly as noted before, the Carleson perturbation of elliptic operators can be
used to extend free boundary results. We recall that L0 is the collection of non sym-
metric elliptic operators Lu = −div(A∇u) such thatA ∈ Liploc(Ω),

∥∥|∇A| δ∥∥
L∞(Ω)

<

∞, and (0.1) holds. We note that in [HMT1] it is proved that for any non symmetric
L ∈ L0, one has to assume both that ωL ∈ A∞(∂Ω) and ωL> ∈ A∞(∂Ω) in order
to be able to ensure the existence of exterior corkscrews. In this direction we can
use Theorem 5 to remove the hypothesis that ωL> ∈ A∞(∂Ω). We state the new
characterization of chord-arc domains in the following corollary, which corresponds
to Corollary 3.4 in the text.

Corollary 6. Let Ω ⊂ Rn+1, n ≥ 2, be a 1-sided CAD (cf. Definition 1.4). Let
L0u = −div(A0∇u) be a real elliptic operator (cf. Definition 1.20). Assume that
A0 ∈ Liploc(Ω), |∇A0| δ ∈ L∞(Ω) and that (0.1) holds for A0. Then

ωL0 ∈ A∞(∂Ω) ⇐⇒ ωL>0
∈ A∞(∂Ω).

Additionally, if Lu = −div(A∇u) is a real elliptic operator (cf. Definition 1.20)
such that |||%(A,A0)||| <∞ (cf. (0.4)), then we have

ωL ∈ A∞(∂Ω) ⇐⇒ Ω is a CAD (cf. Definition 1.4). (0.9)

On the one hand we first observe that |∇A0| δ ∈ L∞(Ω) and the condition (0.1)
for A0 imply that

sup
x∈∂Ω

0<r<diam(∂Ω)

1

σ(B(x, r) ∩ ∂Ω)

∫∫
B(x,r)∩Ω

∣∣∇A0(X)
∣∣2δ(X) dX <∞, (0.10)
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hence the first part of Corollary 6 is an easy consequence of Theorem 5 with A = A0.
For the second part, we first analyze the backward implication. The fact that ωL0 ∈
A∞(∂Ω) is derived from the work of [KP], and this combines with Theorem 4 to show
that ωL ∈ A∞(∂Ω). For the forward implication we first note that ωL0 ∈ A∞(∂Ω)
by Theorem 4. Also, by the first part of Corollary 6 we have that ωL>0

∈ A∞(∂Ω).
These two conditions are sufficient to conclude that Ω is actually CAD, as stated in
[HMT1].
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Introducción

Este proyecto de tesis se ubica en la intersección entre el análisis armónico real, las
ecuaciones en derivadas parciales y la teoŕıa geométrica de la medida. La inves-
tigación desarrollada se inspira en los recientes avances en el área debidos a José
Maŕıa Martell, Steve Hofmann y Tatiana Toro, entre otros.

Durante los últimos años ha aumentado el interés por analizar la relación entre el
comportamiento de la medida eĺıptica y las propiedades geométricas del dominio. Se
está estudiando cómo la continuidad absoluta de la medida eĺıptica con respecto de la
medida de superficie, en términos cuantitativos, está relacionada con algunas buenas
propiedades de la frontera del dominio, que podŕıa ser irregular. Gran parte de las
nuevas técnicas utilizadas se basan en herramientas de análisis armónico moderno
desarrolladas en las últimas décadas. Antes de seguir en esa dirección, primero
mostraremos cómo algunas de estas ideas evolucionaron a lo largo del siglo pasado.
El primer resultado aparece en 1916, trabajando en el plano complejo. F. y M.
Riesz prueban en [RR] que la medida armónica, la medida eĺıptica del Laplaciano,
es absolutamente continua con respecto de la medida de “longitud de arco”. Para
probar esa propiedad se asumió que el dominio era simplemente conexo y que su
frontera era una curva rectificable. Más tarde en 1936, Lavrentiev probó en [Lav]
una versión cuantitativa del teorema de F. y M. Riesz. El distinto comportamiento
de las ecuaciones eĺıpticas en el plano y en dimensiones superiores motivó nuevas
investigaciones en el tema. En 1977 el estudio del operador de Laplace en dominios
Lipschitz por Dahlberg en [Dah1] mostró que en dimensiones superiores se sigue
teniendo continuidad absoluta de la medida armónica con respecto de la medida
de superficie. Más aún, el núcleo de Poisson, o equivalentemente la derivada de
Radon-Nikodym de la medida armónica, satisface una desigualdad de tipo reverse
Hölder. Esta es de hecho una versión más fuerte de la continuidad absoluta mutua
entre la medida armónica y la de superficie. En el caso de dominios Lipschitz se
prueba que el núcleo de Poisson pertenece a la clase RH2, por lo que su cuadrado
es localmente integrable. Tras este resultado ha habido un gran interés en entender
hasta qué punto existen dominios más generales para los cuales la medida armónica
satisface una desigualdad reverse Hölder, posiblemente con un menor exponente.

En la década de 1980 Jerison y Kenig introdujeron una nueva clase de dominios
llamados “non-tangentially accesible” o NTA. Estos dominios se definen en [JK] y
satisfacen tres propiedades principales. La primera es la “Harnack chain condition”
(cf. Definición 1.2), que puede verse como una versión cuantitativa del hecho de que
el dominio es conexo por caminos. También se piden versiones cuantitativas de la
propiedad de ser abierto, tanto para el dominio interior, lo que se llama “interior
Corkscrew” (cf. Definición 1.1) como para el dominio exterior, lo que se llama
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“exterior Corkscrew”. En [JK] se desarrolla el llamado programa de Jerison-Kenig,
que es una colección de estimaciones de la medida armónica, teniendo en cuenta su
comportamiento cerca de la frontera y su relación con la función de Green. Para
ser capaces de extender el resultado de Dahlberg a una clase mayor de dominios
se añadió la hipótesis de que la frontera fuera “Ahlfors regular” (cf. Definición
1.3), en cuyo caso los dominios se llaman “chord-arc” o CAD (cf. Definición 1.5).
En 1990, David-Jerison [DJ] y Semmes [Sem] prueban independientemente que la
medida armónica en un dominio “chord-arc” pertenece a una clase RHp con p >
1. En términos de pesos de Muckenhoupt, esto significa que la medida armónica
es siempre un peso A∞ con respecto de la medida de superficie, siempre que se
verifiquen las propiedades geométricas anteriores. A continuación surge una nueva
pregunta: ¿Son las propiedades que definen CAD necesarias para asegurar que la
medida armónica está en la clase A∞? Muchos estudios recientes en este tema se
han centrado en mostrar hasta qué punto se puede obviar la hipótesis del “exterior
Corkscrew”. Decimos que Ω ⊂ Rn+1, n ≥ 2, es un dominio “1-sided chord-arc” (o 1-
sided CAD) si satisface las condiciones de “Harnack Chain”, de “interior Corkscrew”,
y si su frontera es “Ahlfors regular” n-dimensional. En [HM3] se probó que en un
dominio “1-sided chord-arc”, la rectificabilidad uniforme de ∂Ω (que es una versión
cuantitativa de la rectificabilidad) es una condición suficiente para que la medida
armónica sea un peso A∞ con respecto de la medida de superficie σ = Hn

∂Ω
. De

hecho, para un dominio “1-sided chord-arc” ambas condiciones son equivalentes,
como se probó posteriormente en [HMUT]. Más aún, bajo las mismas hipótesis
geométricas, en [AHM+2] se demostró que ∂Ω es uniformemente rectificable si y sólo
si Ω satisface la condición de “exterior Corkscrew”. Teniendo en cuenta también el
trabajo de [DJ, Sem], se obtiene una caracterización de los dominios “chord-arc” en
función de la pertenencia ωL ∈ A∞(∂Ω), donde L es el operador de Laplace y ωL es
la medida armónica.

A continuación consideramos Lu = −div(A∇u) un operador eĺıptico de tipo
divergencia con coeficientes variables (cf. Definición 1.20) en un dominio “1-sided
CAD” (cf. Definición 1.4). Existen diferentes estrategias para probar que ωL, la
medida eĺıptica asociada a L, puede usarse para caracterizar el hecho de que el
dominio es realmente CAD. Una de ellas es analizar la “suavidad” de la matriz
A, lo que se hizo en [KP] introduciendo condiciones adicionales. Más precisamente,
definimos la clase L0 como la colección de operadores eĺıpticos Lu = −div(A∇u)
introducidos anteriormente tales que A ∈ Liploc(Ω),

∥∥|∇A| δ∥∥
L∞(Ω)

<∞, y

sup
x∈∂Ω

0<r<diam(∂Ω)

1

σ(B(x, r) ∩ ∂Ω)

∫∫
B(x,r)∩Ω

|∇A(X)| dX <∞. (0.11)

Con esta notación se demuestra en [KP] que si Ω es CAD, entonces ωL ∈ A∞(∂Ω)
para cualquier L ∈ L0. Recientemente, los autores de [HMT1] han probado un
resultado de frontera libre para la clase L0. En particular se demuestra que para
cualquier operador simétrico L ∈ L0, la pertenencia ωL ∈ A∞(∂Ω) en un dominio 1-
sided CAD implica que Ω es de hecho CAD. Estos dos resultados se combinan para
dar una nueva caracterización de la clase CAD usando los operadores simétricos de
L0. De manera similar, para un operador L ∈ L0 no necesariamente simétrico, se
requiere tanto que ωL ∈ A∞(∂Ω) como que ωL> ∈ A∞(∂Ω) para probar que Ω es
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CAD, tal y como se enuncia en [HMT1]. Aqúı L> es el operador traspuesto de L,
esto es, L>u = −div(A>∇u) con A> la matriz traspuesta de A. La otra estrategia
diferente es la de comparar Lu = −div(A∇u) con algún operador conocido L0u =
−div(A0∇u) que satisface ωL0 ∈ A∞(∂Ω), o equivalentemente ωL0 ∈ RHp(∂Ω) para
algún p > 1. Por ejemplo, podŕıamos pensar que L0 es el operador de Laplace o
quizá algún L0 ∈ L0. A lo largo de los años ha habido un esfuerzo considerable
para encontrar las condiciones adecuadas en la discrepancia entre las matrices A y
A0 que nos permiten concluir que ωL ∈ A∞(∂Ω), o quizá incluso ωL ∈ RHp(∂Ω),
para el mismo p > 1. Esto se ha conocido históricamente como el problema de
perturbación de operadores eĺıpticos, y es el tema principal de esta tesis. Antes de
seguir introduciremos algo de notación. Definimos la discrepancia entre A y A0 en
Ω como

%(A,A0)(X) := sup
Y ∈B(X,δ(X)/2)

|A(Y )−A0(Y )|, X ∈ Ω, (0.12)

donde δ(X) := dist(X, ∂Ω). La discrepancia induce una medida µA,A0 en Ω dada
por

µA,A0(U) :=

∫∫
U

%(A,A0)(X)2

δ(X)
dX, U ⊂ Ω. (0.13)

Decimos que µA,A0 es una medida de Carleson con respecto de σ si

|||%(A,A0)||| := sup
x∈∂Ω

0<r<diam(∂Ω)

µA,A0(B(x, r) ∩ Ω)

σ(B(x, r) ∩ ∂Ω)
<∞. (0.14)

Aqúı, las regiones B(x, r) ∩ Ω donde tiene lugar la integración se llaman regiones
de Carleson. De manera similar se dice que µA,A0 es una medida de Carleson con
“vanishing trace” con respecto de σ si

lim
s→0+

(
sup
x∈∂Ω

0<r≤s<diam(∂Ω)

µA,A0(B(x, r) ∩ Ω)

σ(B(x, r) ∩ ∂Ω)

)
= 0. (0.15)

El primer resultado de perturbación en estos términos se debe a Dahlberg, quien
en [Dah2] prueba que en la bola unidad, el hecho de que µA,A0 sea una medida de
Carleson con “vanishing trace” con respecto de σ, es suficiente para transferir la
condición RHp(∂Ω) de ωL0 a ωL, sin cambiar el exponente. Este resultado se ha
extendido a contextos más generales en el trabajo de [Esc] o [MPT2], que tratan el
caso de dominios Lipschitz y CAD respectivamente. El problema de la “constante
grande”, es decir cuando |||%(A,A0)||| <∞, o equivalentemente cuando µA,A0 es una
medida de Carleson, se resolvió en 1991 por Fefferman-Kenig-Pipher [FKP]. En el
contexto de dominios Lipschitz, se prueba que si ωL0 ∈ A∞(∂Ω) y |||%(A,A0)||| <∞,
entonces necesariamente ωL ∈ A∞(∂Ω). Desde el punto de vista de desigualdades
reverse Hölder, no es posible mantener el mismo exponente de un operador al otro.
No obstante la condición A∞(∂Ω), que como ya sabemos puede usarse para carac-
terizar información geométrica del dominio, se sigue preservando por perturbaciones
de tipo medida de Carleson. Este teorema requiere un análisis muy delicado y los
detalles de su prueba han servido como inspiración para más resultados en el área.
Vale la pena mencionar el trabajo de [MPT1], en el que se extiende el teorema de
[FKP] a dominios CAD, sacando partido a toda la maquinaria de EDPs desarrollada
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en [JK]. Nótese que en todos los teoremas de perturbación anteriores, se asume que
los operadores son simétricos.

Nuestro primer proyecto consistió en extender los teoremas de [Dah2, FKP] al
contexto de dominios “1-sided CAD”. El planteamiento considerado está fuerte-
mente inspirado en el trabajo de [HM1, HM2], en el que se utiliza el semiplano
superior como un caso modelo para desarrollar un nuevo esquema de prueba para
teoremas de perturbación de Carleson. Este esquema se basa en el llamado método
de “extrapolación de medidas de Carleson”, que apareció inicialmente en [LM] (ver
también [HL, AHLT, AHM+1]) y fue desarrollado en [HM1, HM2] (ver también
[HM3]). Basado en la construcción de Carleson [Car] y Carleson-Garnett [CG], este
argumento nos permite reducir el análisis a subdominios del tipo “sawtooth” en los
que la perturbación es suficientemente pequeña. Teniendo en cuenta que los domin-
ios considerados son únicamente 1-sided CAD, el programa de Jerison-Kenig para
dominios CAD no puede ser aplicado directamente. Por suerte, este programa está
siendo desarrollado en [HMT2] para 1-sided CAD, y gran parte de las propiedades
de EDP necesarias están a nuestra disposición. Es interesante notar que en este
escenario geométrico la condición ωL0 ∈ RHp(∂Ω) es equivalente al hecho de que
el problema de Dirichlet para L0 se puede resolver (de manera no tangencial) para
datos frontera en Lp

′
(∂Ω). Para ser capaces de usar el método de extrapolación

de medidas de Carleson, primero tenemos que entender el caso de la perturbación
pequeña, esto es el caso en el que |||%(A,A0)||| < ε1 para un ε1 > 0 pequeño a escoger.
El estudio de este caso trajo consigo una versión diádica del teorema de Coifman-
Meyer-Stein para dualidad de “tent spaces” (ver [CMS]). Gracias a esta propiedad
somos capaces de mantener el mismo exponente p > 1 en la desigualdad reverse
Hölder de un operador al otro, siempre que la perturbación sea pequeña. Para el
problema de “constante grande” seguimos el esquema de [HM1, HM2], en el que se
busca probar una condición más general del tipo A∞(∂Ω) en vez de RHp(∂Ω). El
siguiente teorema contiene los casos de constante grande y pequeña para operadores
simétricos en dominios 1-sided CAD. Esto se corresponde con el Teorema 2.1 en el
texto.

Teorema 1. Sea Ω ⊂ Rn+1, n ≥ 2, un dominio 1-sided CAD (cf. Definición 1.4).
Sean Lu = −div(A∇u) y L0u = −div(A0∇u) operadores eĺıpticos (cf. Definición
1.20) tales que A y A0 son simétricas. Supongamos que existe p, 1 < p < ∞, de
manera que la medida eĺıptica ωL0 ∈ RHp(∂Ω) (cf. Definición 1.34). Se verifican
las siguientes propiedades:

(a) Si |||%(A,A0)||| < ∞ (cf. (0.14)), entonces existe 1 < q < ∞ tal que ωL ∈
RHq(∂Ω).

(b) Existe ε1 > 0 tal que si |||%(A,A0)||| ≤ ε1, entonces ωL ∈ RHp(∂Ω).

Adicionalmente obtenemos una extensión del teorema de perturbación “vanish-
ing trace” de [Dah2] al contexto de 1-sided CAD como corolario del caso |||%(A,A0)||| <
ε1. Enunciamos el resultado como sigue, que puede verse de manera más precisa en
el Corolario 2.12.

Corolario 2. Supongamos que Ω ⊂ Rn+1 es un 1-sided CAD (cf. Definición 1.4)
acotado. Sean L0, L operadores eĺıpticos simétricos (cf. Definición 1.20) y supong-
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amos que ωL0 ∈ RHp(∂Ω) para algún 1 < p <∞ (cf. Definición 1.34). Si se verifica
la condición (0.15), entonces se tiene que ωL ∈ RHp(∂Ω).

Gracias al Teorema 1 obtenemos una nueva caracterización de la clase CAD. En
efecto, de manera similar a como se hace en [KP], introducimos la clase L′0 como
la colección de operadores eĺıpticos reales y simétricos Lu = −div(A∇u) tales que
A ∈ Liploc(Ω),

∥∥|∇A| δ∥∥
L∞(Ω)

< ∞, y tales que se cumple (0.11). También defini-

mos la clase L′ como la colección de operadores eĺıpticos reales y simétricos Lu =
−div(A∇u) para los que existe L0 = −div(A0∇u) ∈ L′0 tal que |||%(A,A0)||| <∞. Es
fácil ver que todos los operadores simétricos de coeficientes constantes pertenecen
a L′0, y también que L′0 ⊂ L′. Es interesante observar que los operadores de L′
pueden ser altamente irregulares, pero siguen siendo apropiados para caracterizar la
clase CAD. El resultado preciso se enunciará en el Corolario 6, donde se estudia el
caso de operadores no necesariamente simétricos. Para el caso simétrico tomamos
L ∈ L′ y L0 ∈ L′0 de manera que |||%(A,A0)||| <∞. Primero, nótese que si Ω es CAD
entonces ωL0 ∈ A∞(∂Ω) por el resultado principal de [KP] (ver también [HMT1, Ap-
pendix A]). Esto se combina con el teorema de perturbación de “constante grande”
de [MPT1] para mostrar que ωL ∈ A∞(∂Ω). Para la implicación inversa, es decir el
hecho de que si ωL ∈ A∞(∂Ω) entonces Ω es realmente CAD, usaremos el Teorema
1(a). De ese modo primero se prueba que ωL0 ∈ A∞(∂Ω), que junto con el hecho
de que L0 ∈ L′0 es suficiente para concluir que Ω es realmente CAD, como se ve en
[HMT1].

El segundo proyecto de esta tesis se ocupa de perturbaciones de tipo Carleson
de “constante grande”, para operadores eĺıpticos no simétricos en dominios 1-sided
CAD. Consideremos Lu = −div(A∇u) y L0u = −div(A0∇u) operadores eĺıpticos
reales, no necesariamente simétricos, y supongamos que ωL0 ∈ A∞(∂Ω). Queremos
probar que bajo la hipótesis de que |||%(A,A0)||| <∞, se tiene necesariamente ωL ∈
A∞(∂Ω). La manera de atacar este problema es diferente de la utilizada en el
Teorema 1 (ver también [HM1, HM2]), o incluso de la de [FKP, MPT1]. Estamos
interesados en analizar la propiedad de que todas las soluciones acotadas de un
operador L satisfagan “Carleson measure estimates” o, equivalentemente, CME.
Esto significa que para cada solución débil acotada de Lu = 0 se tiene que

sup
x∈∂Ω

0<r<∞

1

rn

∫∫
B(x,r)∩Ω

|∇u(X)|2δ(X) dX ≤ C‖u‖2L∞(Ω). (0.16)

Esta propiedad puede verse relacionada con el hecho de que ωL ∈ A∞(∂Ω). Por
ejemplo, en el escenario de dominios Lipschitz acotados o dominios bajo la gráfica
de una función Lipschitz, se prueba en [KKPT] que si L satisface “Carleson mea-
sure estimates” entonces ωL ∈ A∞(∂Ω). Para la otra implicación suponemos que
ωL ∈ A∞(∂Ω). El hecho de que toda solución débil acotada de Lu = 0 satisfaga
(0.16) puede verse, por el trabajo de [DJK], como consecuencia de una estimación
más general en dominios Lipschitz o CAD (ver también [HMT2] para 1-sided CAD).
En efecto, asumiendo que ωL ∈ A∞(∂Ω) se demuestra que la función cuadrado
cónica está controlada por la función maximal no tangencial en todo Lp(∂Ω) con
1 < p < ∞, donde ambos operadores se aplican a soluciones de L. Utilizando
esta propiedad con p = 2 y una función acotada, se obtiene la estimación deseada.

15



Presentamos una nueva técnica para probar esta última implicación, utilizando al-
gunas de las herramientas desarrolladas en [HMT1]. El primer problema es el de
mostrar que si L es una perturbación de tipo Carleson de L0 con ωL0 ∈ A∞(∂Ω),
entonces L satisface “Carleson measure estimates”. Llamaremos a este problema
la perturbación A∞ − CME. Primero observemos que puede usarse para probar
que ωL0 ∈ A∞(∂Ω) implica “Carleson measure estimates” para L0. Para ver esto
simplemente tomamos L = L0, en cuyo caso la perturbación es evidentemente de
tipo Carleson, aśı que la perturbación A∞ − CME nos da las propiedades deseadas
para L0. El segundo problema es el de encontrar un análogo del teorema principal
de [KKPT] adaptado a dominios 1-sided CAD, que combinado con la perturbación
A∞ − CME extiende el Teorema 1(a) a operadores no necesariamente simétricos.
Nótese que como estamos usando la condición auxiliar CME, no es posible mantener
el exponente de la desigualdad RHp(∂Ω), por lo que no obtenemos un análogo del
Teorema 1(b). Combinamos estos resultados en dos teoremas diferentes. El primero
da la equivalencia entre ωL ∈ A∞(∂Ω) y la propiedad CME para L, y se corresponde
con el Teorema 3.1. El segundo es la generalización deseada del Teorema 1(a), que
se llamará Teorema 3.2 en el texto.

Teorema 3. Sea Ω ⊂ Rn+1, n ≥ 2, un dominio 1-sided CAD (cf. Definición 1.4)
y sea Lu = −div(A∇u) un operador eĺıptico real, no necesariamente simétrico (cf.
Definición 1.20). Las siguientes propiedades son equivalentes:

(a) Toda solución débil acotada de Lu = 0 satisface (0.16).

(b) ωL ∈ A∞(∂Ω) (cf. Definición 1.33).

Teorema 4. Sea Ω ⊂ Rn+1, n ≥ 2, un dominio 1-sided CAD (cf. Definición
1.4). Sean Lu = −div(A∇u) y L0u = −div(A0∇u) operadores eĺıpticos reales, no
necesariamente simétricos (cf. Definición 1.20). Supongamos que la discrepancia
entre A y A0 satisface |||%(A,A0)||| <∞ (cf. (0.14)). Entonces, ωL0 ∈ A∞(∂Ω) si y
sólo si ωL1 ∈ A∞(∂Ω) (cf. Definición 1.33).

Como hemos observado anteriormente, el método introducido para demostrar
los Teoremas 3 y 4 puede ser dividido en dos partes. Para la primera, esto es
la perturbación A∞ − CME, aprovechamos la condición A∞(∂Ω) para extraer un
dominio “sawtooth” con buenas propiedades. Para ello se aplica un resultado de
[HMT1], que es un argumento “stopping-time” basado en la solución de la conjetura
de Kato en [HM5, HLM, AHL+], y que ha sido desarrollado en [HM4, HLMN]. Más
precisamente, este dominio “sawtooth” guarda un amplio contacto con el dominio
original, y las medias de ωL0 con respecto de σ son esencialmente constantes. Esto
nos permite intercambiar la distancia a la frontera por la función de Green GL0

(con un polo fijado) en (0.16), aśı que podemos integrar por partes para obtener
la estimación deseada en el “sawtooth”. Finalmente, usando que este subdominio
tiene un amplio contacto con Ω y siguiendo de nuevo [HMT1], podemos extender la
estimación de tipo Carleson al dominio original. La segunda parte de este método,
esto es, el hecho de que CME para L implica ωL ∈ A∞(∂Ω), está basado en las
ideas desarrolladas en [KKPT]. Consideramos un conjunto de Borel F ⊂ ∂Ω con
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pequeña medida ωL e intentamos probar que σ(F ) es también pequeña. Para ello
se construye una colección finita de conjuntos anidados que contienen a F , a la que
llamamos un ε0-cubrimiento (cf. Definición 1.7), y una solución u asociada a esa
colección. Primero se da una cota inferior para la oscilación de u, lo que implica una
cota inferior para la función cuadrado cónica aplicada esa solución. Esto, junto con
el hecho de que u satisface “Carleson measure estimates” nos permite concluir que
σ(F ) es también pequeña, luego ωL ∈ A∞(∂Ω). Nótese que no es necesario asumir
que toda solución débil y acotada satisfaga CME, ya que sólo usamos esta propiedad
para una clase particular de soluciones. Finalmente, hay una aplicación interesante
del método discutido anteriormente. En este resultado queremos deducir buenas
propiedades de ωL a ωL> , donde L> es el operador traspuesto de L. La condición
de Carleson en la discrepancia entre L y L> se convierte, tras una integración por
partes, en una condición de tipo Carleson sobre la derivada de la parte antisimétrica
de A. Asumiendo esta condición podemos probar que ωL ∈ A∞(∂Ω) es equivalente
a ωL> ∈ A∞(∂Ω), como se enuncia precisamente en el teorema a continuación, que
se corresponde con el Teorema 3.3 en el texto.

Teorema 5. Sea Ω ⊂ Rn+1, n ≥ 2, un dominio 1-sided CAD (cf. Definición 1.4).
Sea Lu = −div(A∇u) un operador eĺıptico real, no necesariamente simétrico (cf.
Definición 1.20) y sea L> = −div(A>∇u) el operador traspuesto de L. Supongamos
que (A−A>) ∈ Liploc(Ω) y que

divC(A−A>)(X) =

( n+1∑
i=1

∂i(ai,j − aj,i)(X)

)
1≤j≤n+1

, X ∈ Ω. (0.17)

Supongamos que se verifica la siguiente estimación

sup
x∈∂Ω

0<r<diam(∂Ω)

1

σ(B(x, r) ∩ ∂Ω)

∫∫
B(x,r)∩Ω

∣∣ divC(A−A>)(X)
∣∣2δ(X) dX <∞. (0.18)

Entonces ωL ∈ A∞(∂Ω) si y sólo si ωL> ∈ A∞(∂Ω) (cf. Definición 1.33).

De manera similar a como hemos observado antes, la perturbación de Car-
leson de operadores eĺıpticos puede usarse para extender resultados de frontera
libre. Recordemos que L0 es la colección de operadores eĺıpticos no simétricos
Lu = −div(A∇u) tales que A ∈ Liploc(Ω),

∥∥|∇A| δ∥∥
L∞(Ω)

<∞, y tales que se ver-

ifica (0.11). Nótese que en [HMT1] se prueba que para todo operador no simétrico
L ∈ L0, uno tiene que asumir tanto que ωL ∈ A∞(∂Ω) como que ωL> ∈ A∞(∂Ω)
de cara a asegurar que se verifica la propiedad de “exterior Corkscrew”. En esta
dirección podemos usar el Teorema 5 para quitar la hipótesis de que ωL> ∈ A∞(∂Ω).
Enunciamos la nueva caracterización de dominios chord-arc en el siguiente corolario,
que se corresponde con el Corolario 3.4 en el texto.

Corolario 6. Sea Ω ⊂ Rn+1, n ≥ 2, un dominio 1-sided CAD (cf. Definitción1.4).
Sea L0u = −div(A0∇u) un operador eĺıptico real (cf. Definición 1.20). Supongamos
que A0 ∈ Liploc(Ω), |∇A0| δ ∈ L∞(Ω) y que se verifica (0.11) para A0. Entonces

ωL0 ∈ A∞(∂Ω) ⇐⇒ ωL>0
∈ A∞(∂Ω).
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Adicionalmente, si Lu = −div(A∇u) es un operador eĺıptico real (cf. Definición
1.20) tal que |||%(A,A0)||| <∞ (cf. (0.14)), entonces se tiene que

ωL ∈ A∞(∂Ω) ⇐⇒ Ω is a CAD (cf. Definition 1.4). (0.19)

Por una parte observemos que |∇A0| δ ∈ L∞(Ω) junto con (0.11) para A0 implica
que

sup
x∈∂Ω

0<r<diam(∂Ω)

1

σ(B(x, r) ∩ ∂Ω)

∫∫
B(x,r)∩Ω

∣∣∇A0(X)
∣∣2δ(X) dX <∞, (0.20)

luego la primera parte del Corolario 6 es una consecuencia fácil del Teorema 5 con
A = A0. Para la segunda parte, primero analizaremos la implicación a la izquierda.
El hecho de que ωL0 ∈ A∞(∂Ω) se deduce del trabajo de [KP], y esto se combina
con el Teorema 4 para probar que ωL ∈ A∞(∂Ω). Para la implicación a la derecha
primero observamos que ωL0 ∈ A∞(∂Ω) por el Teorema 4. Además, utilizando la
primera parte del Corolario 6 se tiene que ωL>0

∈ A∞(∂Ω). Estas dos condiciones

son suficientes para concluir que Ω es de hecho CAD, como se prueba en [HMT1].
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Notation

• Our ambient space is Rn+1, n ≥ 2.

• We use the letters c, C to denote harmless positive constants, not necessarily
the same at each occurence, which depend only on dimension and the constants
appearing in the hypotheses of the theorems (which we refer to as the “allowable
parameters”). We shall also sometimes write a . b and a ≈ b to mean, respec-
tively, that a ≤ Cb and 0 < c ≤ a/b ≤ C, where the constants c and C are as
above, unless explicitly noted to the contrary. Moreover, if c and C depend on
some given parameter η, which is somehow relevant, we write a .η b and a ≈η b.
At times, we shall designate by M a particular constant whose value will remain
unchanged throughout the proof of a given lemma or proposition, but which may
have a different value during the proof of a different lemma or proposition.

• Given a domain (i.e., open and connected) Ω ⊂ Rn+1, we shall use lower case
letters x, y, z, etc., to denote points on ∂Ω, and capital letters X,Y, Z, etc., to
denote generic points in Rn+1 (especially those in Ω).

• The open (n + 1)-dimensional Euclidean ball of radius r will be denoted B(x, r)
when the center x lies on ∂Ω, or B(X, r) when the center X ∈ Rn+1 \ ∂Ω. A
“surface ball” is denoted ∆(x, r) := B(x, r) ∩ ∂Ω, and unless otherwise specified
it is implicitly assumed that x ∈ ∂Ω. Also if ∂Ω is bounded, we typically assume
that 0 < r . diam(∂Ω), so that ∆ = ∂Ω if diam(∂Ω) < r . diam(∂Ω).

• Given a Euclidean ball B or surface ball ∆, its radius will be denoted r(B) or
r(∆) respectively.

• Given a Euclidean ball B = B(X, r) or surface ball ∆ = ∆(x, r), its concentric
dilate by a factor of κ > 0 will be denoted by κB = B(X,κr) or κ∆ = ∆(x, κr).

• For X ∈ Rn+1, we set δ∂Ω(X) := dist(X, ∂Ω). Sometimes, when clear from the
context we will omit the subscript ∂Ω and simply write δ(X).

• We let Hn denote the n-dimensional Hausdorff measure, and let σ∂Ω := Hn
∂Ω

denote the “surface measure” on ∂Ω. For a closed set E ⊂ Rn+1 we will use the
notation σE := Hn

E
. When clear from the context we will also omit the subscript

and simply write σ.

• For a Borel set A ⊂ Rn+1, we let 1A denote the usual indicator function of A, i.e.,
1A(x) = 1 if x ∈ A, and 1A(x) = 0 if x /∈ A.
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• For a Borel set A ⊂ Rn+1, we let int(A) denote the interior of A, and A denote the
closure of A. If A ⊂ ∂Ω, int(A) will denote the relative interior, i.e., the largest
relatively open set in ∂Ω contained in A. Thus, for A ⊂ ∂Ω, the boundary is then
well defined by ∂A := A \ int(A).

• For a Borel set A ⊂ Rn+1, we denote by C(A) the space of continuous functions
on A and by Cc(A) the subspace of C(A) with compact support in A. Note that
if A is compact then C(A) ≡ Cc(A).

• For an open set Ω ⊂ Rn+1, we denote by C∞(Ω) the space of infinitely differen-
tiable functions on Ω and by C∞c (Ω) the subspace of C∞(Ω) with compact support
in Ω.

• For a Borel set A ⊂ ∂Ω with 0 < σ(A) <∞, we write −
∫
A f dσ := σ(A)−1

∫
A f dσ.

• We shall use the letter I (and sometimes J) to denote a closed (n+1)-dimensional
Euclidean cube with sides parallel to the co-ordinate axes, and we let `(I) denote
the side length of I. We use Q to denote a dyadic “cube” on E ⊂ Rn+1. The
latter exists, given that E is AR (cf. [DS1], [Chr]), and enjoy certain properties
which we enumerate in Lemma 1.6 below.
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Chapter 1

Preliminaries

1.1 Some geometric aspects

In this section we state the precise definitions of the geometric properties that will
be assumed throughout the text. Also, we review the constructions that allow us to
define adapted Whitney and Carleson regions, which serve as basic blocks in most
of the proofs. This section is entirely based in the work of [HM3], although the same
geometric assumptions have been used in [HMUT, HMT1, HMT2]. We present it
for the sake of completeness.

Definition 1.1 (Corkscrew condition). Following [JK], we say that an open
set Ω ⊂ Rn+1 satisfies the “Corkscrew condition” if for some uniform constant
c ∈ (0, 1) and for every surface ball ∆ := ∆(x, r) = B(x, r) ∩ ∂Ω with x ∈ ∂Ω and
0 < r < diam(∂Ω), there is a ball B(X∆, cr) ⊂ B(x, r) ∩ Ω. The point X∆ ∈ Ω is
called a “corkscrew point” relative to ∆. Note that we may allow r < C diam(∂Ω)
for any fixed C, simply by adjusting the constant c.

Definition 1.2 (Harnack Chain condition). Again following [JK], we say that
Ω ⊂ Rn+1 satisfies the Harnack Chain condition if there is a uniform constant C such
that for every ρ > 0, Θ ≥ 1, and every pair of points X,X ′ ∈ Ω with δ(X), δ(X ′) ≥ ρ
and |X −X ′| < Θρ, there is a chain of open balls B1, . . . , BN ⊂ Ω, N ≤ C(Θ), with
X ∈ B1, X ′ ∈ BN , Bk∩Bk+1 6= Ø and C−1 diam(Bk) ≤ dist(Bk, ∂Ω) ≤ C diam(Bk).
The chain of balls is called a “Harnack Chain”.

Definition 1.3 (Ahlfors regular). We say that a closed set E ⊂ Rn+1 is n-
dimensional AR (or simply AR), if there is some uniform constant C = CAR such
that

C−1rn ≤ Hn(E ∩B(x, r)) ≤ Crn, 0 < r < diam(E), x ∈ E.

Definition 1.4 (1-sided chord-arc domain). A connected open set Ω ⊂ Rn+1 is
a “1-sided chord-arc domain” (1-sided CAD for short) if it satisfies the Corkscrew
and Harnack Chain conditions and if ∂Ω is AR.

Definition 1.5 (Chord-arc domain). A connected open set Ω ⊂ Rn+1 is a “chord-
arc domain” (CAD for short) if it is a 1-sided CAD and moreover Ω satisfies the
exterior Corkscrew condition (that is, the domain Ωext := Rn+1 \ Ω satisfies the
Corkscrew condition).
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We give a lemma concerning the existence of a “dyadic grid”:

Lemma 1.6 (Existence and properties of the “dyadic grid”, [DS1, DS2],
[Chr]). Suppose that E ⊂ Rn+1 is n-dimensional AR. Then there exist constants
a0 > 0, η > 0 and C1 <∞ depending only on dimension and the AR constant, such
that for each k ∈ Z there is a collection of Borel sets (“cubes”)

Dk :=
{
Qkj ⊂ ∂Ω : j ∈ Jk

}
,

where Jk denotes some (possibly finite) index set depending on k, satisfying:

(a) E =
⋃
j Q

k
j for each k ∈ Z.

(b) If m ≥ k then either Qmi ⊂ Qkj or Qmi ∩Qkj = Ø.

(c) For each j, k ∈ Z and each m > k, there is a unique i ∈ Z such that Qkj ⊂ Qmi .

(d) diam(Qkj ) ≤ C1 2−k.

(e) Each Qkj contains some “surface ball” ∆(xkj , a02−k) = B(xkj , a02−k) ∩ E.

(f) Hn
({
x ∈ Qkj : dist(x,E \Qkj ) ≤ τ2−k

})
≤ C1τ

ηHn(Qkj ), for all j, k ∈ Z and
for all τ ∈ (0, a0).

A few remarks are in order concerning this lemma.

• In the setting of a general space of homogeneous type, this lemma has been proved
by Christ [Chr], with the dyadic parameter 1/2 replaced by some constant δ ∈
(0, 1). In fact, one may always take δ = 1/2 (cf. [HMMM, Proof of Proposition
2.12]). In the presence of the AR property, the result already appears in [DS1,
DS2].

• We shall denote by D(E) the collection of all relevant Qkj , i.e.,

D(E) :=
⋃
k

Dk,

where, if diam(E) is finite, the union runs over those k ∈ Z such that 2−k .
diam(E).

• For a dyadic cube Q ∈ Dk, we shall set `(Q) = 2−k, and we shall refer to this
quantity as the “length” of Q. It is clear that `(Q) ≈ diam(Q). Also, for Q ∈ D(E)
we will set k(Q) = k if Q ∈ Dk.

• Properties (d) and (e) imply that for each cube Q ∈ D, there is a point xQ ∈ E,
a Euclidean ball B(xQ, rQ) and a surface ball ∆(xQ, rQ) := B(xQ, rQ) ∩ E such
that c`(Q) ≤ rQ ≤ `(Q), for some uniform constant c > 0, and

∆(xQ, 2rQ) ⊂ Q ⊂ ∆(xQ, CrQ) (1.1)

for some uniform constant C > 1. We shall denote these balls and surface balls
by

BQ := B(xQ, rQ), ∆Q := ∆(xQ, rQ), (1.2)

B̃Q := B(xQ, CrQ), ∆̃Q := ∆(xQ, CrQ), (1.3)

and we shall refer to the point xQ as the “center” of Q.
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• Let Ω ⊂ Rn+1 be an open set satisfying the Corkscrew condition and such that
∂Ω is AR. Given Q ∈ D(∂Ω) we define the “corkscrew point relative to Q” as
XQ := X∆Q

. We note that

δ(XQ) ≈ dist(XQ, Q) ≈ diam(Q).

Following [HM3, Section 3] we next introduce the notion of “Carleson region”
and “discretized sawtooth”. Given a cube Q ∈ D(E), the “discretized Carleson
region” DQ relative to Q is defined by

DQ :=
{
Q′ ∈ D(E) : Q′ ⊂ Q

}
.

Let F = {Qi} ⊂ D(E) be a family of disjoint cubes. The “global discretized saw-
tooth” relative to F is the collection of cubes Q ∈ D(E) that are not contained in
any Qi ∈ F , that is,

DF := D(E) \
⋃
Qi∈F

DQi .

For a given Q ∈ D(E), the “local discretized sawtooth” relative to F is the collection
of cubes in DQ that are not contained in any Qi ∈ F or, equivalently,

DF ,Q := DQ \
⋃
Qi∈F

DQi = DF ∩ DQ.

We also introduce the “geometric” Carleson regions and sawtooths. In the sequel,
Ω ⊂ Rn+1 (n ≥ 2) will be a 1-sided CAD. Given Q ∈ D(∂Ω) we want to define some
associated regions which inherit the good properties of Ω. Let W = W(Ω) denote
a collection of (closed) dyadic Whitney cubes of Ω ⊂ Rn+1, so that the cubes in W
form a pairwise non-overlapping covering of Ω, which satisfy

4 diam(I) ≤ dist(4I, ∂Ω) ≤ dist(I, ∂Ω) ≤ 40 diam(I), ∀I ∈ W, (1.4)

and
diam(I1) ≈ diam(I2), whenever I1 and I2 touch.

Let X(I) denote the center of I, let `(I) denote the sidelength of I, and write k = kI
if `(I) = 2−k.

Given 0 < λ < 1 and I ∈ W we write I∗ = (1 + λ)I for the “fattening” of I. By
taking λ small enough, we can arrange matters, so that, first, dist(I∗, J∗) ≈ dist(I, J)
for every I, J ∈ W, and secondly, I∗ meets J∗ if and only if ∂I meets ∂J (the
fattening thus ensures overlap of I∗ and J∗ for any pair I, J ∈ W whose boundaries
touch, so that the Harnack Chain property then holds locally in I∗ ∪ J∗, with
constants depending upon λ). By picking λ sufficiently small, say 0 < λ < λ0, we
may also suppose that there is τ ∈ (1/2, 1) such that for distinct I, J ∈ W, we have
that τJ∩I∗ = Ø. In what follows we will need to work with dilations I∗∗ = (1+2λ)I
or I∗∗∗ = (1 + 4λ)I, and in order to ensure that the same properties hold we further
assume that 0 < λ < λ0/4.

For every Q ∈ D(∂Ω) we can construct a family W∗Q ⊂ W(Ω), and define

UQ :=
⋃

I∈W∗Q

I∗,
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satisfying the following properties: XQ ∈ UQ and there are uniform constants k∗

and K0 such that

k(Q)− k∗ ≤ kI ≤ k(Q) + k∗, ∀I ∈ W∗Q,

X(I)→UQ XQ, ∀I ∈ W∗Q,

dist(I,Q) ≤ K02−k(Q), ∀I ∈ W∗Q.

Here, X(I) →UQ XQ means that the interior of UQ contains all balls in a Harnack
Chain (in Ω) connecting X(I) to XQ, and moreover, for any point Z contained in
any ball in the Harnack Chain, we have dist(Z, ∂Ω) ≈ dist(Z,Ω \ UQ) with uniform
control of the implicit constants. The constants k∗,K0 and the implicit constants
in the condition X(I) →UQ XQ, depend on at most allowable parameters and on
λ. Moreover, given I ∈ W(Ω) we have that I ∈ W∗QI , where QI ∈ D(∂Ω) satisfies
`(QI) = `(I), and contains any fixed ŷ ∈ ∂Ω such that dist(I, ∂Ω) = dist(I, ŷ). The
reader is referred to [HM3, Section 3] for full details.

For a given Q ∈ D(∂Ω), the “Carleson box” relative to Q is defined by

TQ := int

( ⋃
Q′∈DQ

UQ′

)
.

For a given family F = {Qi} of pairwise disjoint cubes and a given Q ∈ D(∂Ω), we
define the “local sawtooth region” relative to F by

ΩF ,Q = int

( ⋃
Q′∈DF,Q

UQ′

)
= int

( ⋃
I∈WF,Q

I∗
)
, (1.5)

where WF ,Q :=
⋃
Q′∈DF,QW

∗
Q. Analogously, we can slightly fatten the Whitney

boxes and use I∗∗ to define new fattened Whitney regions and sawtooth domains.
More precisely, for every Q ∈ D(∂Ω),

T ∗Q := int

( ⋃
Q′∈DQ

U∗Q′

)
, Ω∗F ,Q := int

( ⋃
Q′∈DQ

U∗Q′

)
, U∗Q :=

⋃
I∈W∗Q

I∗∗.

Similarly, we can define T ∗∗Q , Ω∗∗F ,Q and U∗∗Q by using I∗∗∗ in place of I∗∗.

To define the “Carleson box” T∆ associated to a surface ball ∆ = ∆(x, r), let
k(∆) denote the unique k ∈ Z such that 2−k−1 < 200r ≤ 2−k, and set

D∆ :=
{
Q ∈ Dk(∆) : Q ∩ 2∆ 6= Ø

}
.

We then set

T∆ := int

( ⋃
Q∈D∆

TQ

)
.

We can also consider slight dilations of T∆ given by

T ∗∆ := int

( ⋃
Q∈D∆

T ∗Q

)
, T ∗∗∆ := int

( ⋃
Q∈D∆

T ∗∗Q

)
.
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Following [HM3, Section 3], one can easily see that there exist constants 0 <
κ1 < 1 and κ0 ≥ 2C (with C the constant in (1.3)), depending only on the allowable
parameters, so that

κ1BQ ∩ Ω ⊂ TQ ⊂ T ∗Q ⊂ T ∗∗Q ⊂ T ∗∗Q ⊂ κ0BQ ∩ Ω =: 1
2B
∗
Q ∩ Ω, (1.6)

5
4B∆ ∩ Ω ⊂ T∆ ⊂ T ∗∆ ⊂ T ∗∗∆ ⊂ T ∗∗∆ ⊂ κ0B∆ ∩ Ω =: 1

2B
∗
∆ ∩ Ω, (1.7)

and also

Q ⊂ κ0B∆ ∩ ∂Ω = 1
2B
∗
∆ ∩ ∂Ω =: 1

2∆∗, ∀Q ∈ D∆, (1.8)

where BQ is defined as in (1.2), ∆ = ∆(x, r) with x ∈ ∂Ω, 0 < r < diam(∂Ω), and
B∆ = B(x, r) is so that ∆ = B∆ ∩ ∂Ω.

1.2 Borel measures and weights

Throughout this section, E ⊂ Rn+1 will be an n-dimensional AR set. We first
introduce the concept of ε0-cover associated with a given regular Borel measure.
This definition is based on the work of [KKPT], with some slight modifications in
order to adapt it to our geometric setting and dyadic constructions.

Definition 1.7 (A good ε0-cover). Let E ⊂ Rn+1 be an n-dimensional AR set.
Fix Q0 ∈ D(E) and let µ be a regular Borel measure on Q0. Given ε0 ∈ (0, 1) and
a Borel set F ⊂ Q0, a good ε0-cover of F with respect to µ, of length k ∈ N, is a
collection {O`}k`=1 of Borel subsets of Q0, together with pairwise disjoint families
F` = {Q`i} ⊂ DQ0 , such that

(a) F ⊂ Ok ⊂ Ok−1 ⊂ · · · ⊂ O2 ⊂ O1 ⊂ Q0,

(b) O` =
⋃
Q`i∈F`

Q`i , 1 ≤ ` ≤ k,

(c) µ(O` ∩Q`−1
i ) ≤ ε0 µ(Q`−1

i ), ∀Q`−1
i ∈ F`−1, 2 ≤ ` ≤ k.

Note that the third property of the above definition can be iterated to obtain a
more general condition, as stated below.

Lemma 1.8. If {O`}k`=1 is a good ε0-cover of F with respect to µ of length k ∈ N
then

µ(O` ∩Qmi ) ≤ ε`−m0 µ(Qmi ), ∀Qmi ∈ Fm, 1 ≤ m ≤ ` ≤ k. (1.9)

Proof. Fix 1 ≤ ` ≤ k and we proceed by induction in m. If m = ` the estimate is
trivial since µ(O` ∩Q`i) = µ(Q`i). If m = `− 1 (in which case necessarily ` ≥ 2) then
(1.9) follows directly from (c) in Definition 1.7. Assume next that (1.9) holds for
some fixed 2 ≤ m ≤ ` and we prove it for m− 1 in place of m. We first claim that
for every Qm−1

i ∈ Fm−1 there holds

O` ∩Qm−1
i ⊂

⋃
Qmj ∈Fm
Qmj (Qm−1

i

O` ∩Qmj . (1.10)
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To see this, take x ∈ O` ∩Qm−1
i ⊂ Om. Hence, there exists a unique Qmj ∈ Fm such

that x ∈ Qmj and consequently either Qm−1
i ⊂ Qmj or Qmj ( Qm−1

i . If Qm−1
i ⊂ Qmj

then µ(Qm−1
i ) = µ(Om ∩Qm−1

i ) ≤ ε0µ(Qm−1
i ), by (c) in Definition 1.7, and this is

a contradiction since 0 < ε0 < 1. Thus, Qmj ( Qm−1
i and (1.10) holds and

µ(O` ∩Qm−1
i ) ≤

∑
Qmj ∈Fm
Qmj (Qm−1

i

µ(O` ∩Qmj ) ≤ ε`−m0

∑
Qmj ∈Fm
Qmj (Qm−1

i

µ(Qmj )

≤ ε`−m0 µ(Om ∩Qm−1
i ) ≤ ε`−(m−1)

0 µ(Qm−1
i ),

where we have applied the induction hypothesis to the Qmj ’s and the properties of
the good ε0-cover.

Definition 1.9 (Dyadically doubling). We say that a regular Borel measure µ on
Q0 ∈ D(E) is dyadically doubling if there exists Cµ ≥ 1 such that µ(Q∗) ≤ Cµµ(Q)
for every Q ∈ DQ0 \ {Q0}, with Q∗ ⊃ Q and `(Q∗) = 2`(Q) (i.e., Q∗ is the “dyadic
parent” of Q). We call Cµ the dyadically doubling constant of µ.

The next lemma is also found in a different version in [KKPT]. We note that
here, the subsets used to build the ε0-cover are defined as the level sets of a given
fixed function, instead of working iteratively.

Lemma 1.10. Let E ⊂ Rn+1 be an n-dimensional AR set and fix Q0 ∈ D(E). Let
µ be a regular Borel measure on Q0 and assume that it is dyadically doubling on
Q0 with constant Cµ. For every 0 < ε0 ≤ e−1, if F ⊂ Q0 with µ(F ) ≤ αµ(Q0)
and 0 < α ≤ ε2

0/(2C
2
µ) then F has a good ε0-cover with respect to µ of length

k0 = k0(α, ε0) ∈ N, k0 ≥ 2, which satisfies k0 ≈ logα−1

log ε−1
0

. In particular, if µ(F ) = 0,

then F has a good ε0-cover of arbitrary length.

Proof. Fix ε0, F and α as in the statement and write a := Cµ/ε0 > 1. Note that
since 0 < α < ε2

0/(2C
2
µ) = a−2/2 there is a unique k0 = k0(α, ε0) ∈ N, k0 ≥ 2, such

that

a−k0−1 < 2α ≤ a−k0 ,

and our choice of ε0 gives that

1

3(1 + logCµ)

logα−1

log ε−1
0

≤ k0 ≤
logα−1

log ε−1
0

. (1.11)

Since µ(F ) ≤ αµ(Q0), by outer regularity there exists a relatively open set U ⊂ E
such that F ⊂ U and µ(U \ F ) < αµ(Q0). Set F̃ := U ∩ Q0 ⊂ Q0 and define the
level sets

Ωk :=
{
x ∈ Q0 : Md

µ,Q0
(1
F̃

)(x) > a−k
}
, 1 ≤ k ≤ k0,

where Md
µ,Q0

is the local dyadic maximal operator with respect to µ given by

Md
µ,Q0

f(x) := sup
x∈Q∈DQ0

1

µ(Q)

∫
Q
f(y) dµ(y), f ∈ L1

loc(Q0, dµ).
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Clearly, Ω1 ⊂ Ω2 ⊂ · · · ⊂ Ωk0 ⊂ Q0. Moreover, F̃ ⊂ Ω1. To see this fix x ∈ F̃ and
use that U is relatively open to find Bx = B(x, rx) with rx > 0 so that Bx ∩E ⊂ U .
Take next Qx ∈ D with Qx 3 x so that `(Qx) < `(Q0) and diam(Qx) < rx. Since
x ∈ F̃ ∩ Qx ⊂ Qx ∩ Q0 and `(Qx) < `(Q0) it follows that Qx ∈ DQ0 . Also since
diam(Qx) < rx we easily see that Qx ⊂ Bx∩E ⊂ U and eventually we have obtained
that Qx ⊂ F̃ which in turn gives

Md
µ,Q0

(1
F̃

)(x) ≥ µ(F̃ ∩Qx)

µ(Qx)
= 1 > a−1.

Hence, x ∈ Ω1 as desired.
All the previous observations show that F ⊂ F̃ ⊂ Ω1 ⊂ Ω2 ⊂ · · · ⊂ Ωk0 ⊂ Q0

and in particular Ωk 6= Ø for every k ≥ 1. Moreover, by our choice of k0, we have
that for every 1 ≤ k ≤ k0

µ(F̃ ) ≤ µ(U) ≤ µ(U \ F ) + µ(F ) < 2αµ(Q0) ≤ a−k0µ(Q0) ≤ a−kµ(Q0).

Subdividing Q0 dyadically we can then select a pairwise disjoint collection of cubes
Fk = {Qki } ⊂ DQ0 \ {Q0} which are maximal with respect to the property that

µ(F̃ ∩Qki ) > a−kµ(Qki ), (1.12)

and also Ωk =
⋃
Qki ∈Fk

Qki (note that Fk 6= Ø since Ωk 6= Ø). By the maximality of
the selected cubes we obtain that

µ(F̃ ∩Qki )
µ(Qki )

≤ Cµ
µ(F̃ ∩ (Qki )

∗)

µ((Qki )
∗)

≤ Cµ a−k, (1.13)

where (Qki )
∗ is the dyadic parent of Qki .

Next we claim that for each Qk+1
j ∈ Fk+1 we have that µ(Ωk ∩ Qk+1

j ) ≤
ε0µ(Qk+1

j ). To see this we first observe that if Qki ∩ Q
k+1
j 6= Ø, then necessarily

Qki ⊂ Q
k+1
j , for otherwise Qk+1

j ( Qki and by the maximality of the cube Qk+1
j and

(1.12) we would have that a−kµ(Qki ) < µ(F̃ ∩Qki ) ≤ a−k−1µ(Qki ), which leads to a
contradiction since a > 1. Hence, Qki ⊂ Q

k+1
j whenever Qki ∩Q

k+1
j 6= Ø. Using this,

(1.12), and (1.13) (for Qk+1
j and k + 1 replacing Qki and k respectively), we have

that

µ(Ωk ∩Qk+1
j ) =

∑
Qki :Qki⊂Q

k+1
j

µ(Qki ∩Qk+1
j ) =

∑
Qki :Qki⊂Q

k+1
j

µ(Qki )

< ak
∑

Qki :Qki⊂Q
k+1
j

µ(F̃ ∩Qki ) ≤ ak µ(F̃ ∩Qk+1
j ) ≤ a−1Cµ µ(Qk+1

j ) = ε0 µ(Qk+1
j ),

and this proves the claim.
To complete the proof of the lemma we define Ok := Ωk0−k+1 and note that

the sets {Ok}k0
k=1 form a good ε0-cover of F , with respect to µ, of length k0 which

satisfies (1.11). Finally we observe that if µ(F ) = 0, then α can be taken arbitrarily
small, hence k0, the length of the good ε0-cover of F , can be taken as large as desired
by (1.11).
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In what follows, we will write σ = Hn
E

to denote the surface measure. Next,
we will recall some basic facts about Muckenhoupt weights, or more precisely the
A∞ and RHp conditions. These can be seen as quantitative scale invariant versions
of the absolute continuity with respect to σ.

Definition 1.11 (A∞ and Adyadic
∞ ). Given a surface ball ∆0 = B0 ∩E, with B0 =

B(x0, r0), x0 ∈ E, 0 < r < diam(E), a regular Borel measure ω defined on ∆0 is
said to belong to A∞(∆0) if there exist constants 0 < α, β < 1 such that for every
surface ball ∆ = B ∩E centered at E with B ⊂ B0, and for every Borel set F ⊂ ∆,
we have that

ω(F )

ω(∆)
≤ α =⇒ σ(F )

σ(∆)
≤ β.

Given Q0 ∈ D(E), a regular Borel measure ω defined on Q0 is said to belong to

Adyadic
∞ (Q0) if there exist constants 0 < α, β < 1 such that for every Q ∈ DQ0 and

for every Borel set F ⊂ Q, we have that

ω(F )

ω(Q)
≤ α =⇒ σ(F )

σ(Q)
≤ β.

Suppose further that ω is dyadically doubling, it is well known (see [GR], [CF],
[HM3]) that since σ is a doubling measure (recall that E satisfies the AR condition),

ω ∈ Adyadic
∞ (Q0) if and only if ω � σ in Q0 and there exists 1 < p < ∞ such that

ω ∈ RHdyadic
p (Q0), that is, there is a constant C > 1 such that(

−
∫
Q
k(x)p dσ(x)

) 1
p

≤ C−
∫
Q
k(x) dσ(x),

for every Q ∈ DQ0 , where k = dω/dσ is the Radon-Nikodym derivative. In fact,

Adyadic
∞ defines an equivalence relationship between dyadically doubling measures.

Indeed, in particular ω ∈ Adyadic
∞ (Q0) if and only if ω � σ in Q0 and there exist

constants C1 > 1, θ1, θ2 > 0 such that

C−1
1

(
σ(F )

σ(Q)

)θ1
≤ ω(F )

ω(Q)
≤ C1

(
σ(F )

σ(Q)

)θ2
,

for every Q ∈ DQ0 and for every Borel set F ⊂ Q.

Definition 1.12 (The projection operator). Fix Q0 ∈ D(E). For each F =
{Qi} ⊂ DQ0 , a family of pairwise disjoint dyadic cubes, and each f locally integrable,
we define

PFf(x) = f(x)1
E\
(⋃

iQi

)(x) +
∑
Qi∈F

(
−
∫
Qi

f(y) dσ(y)
)
1Qi(x).

If ω is a non-negative regular Borel measure on Q0, we may naturally then define
the measure PFω as PFω(F ) =

∫
E PF1F dω, that is,

PFω(F ) = ω
(
F \

⋃
Qi∈F

Qi

)
+
∑
Qi∈F

σ(F ∩Qi)
σ(Qi)

ω(Qi), (1.14)

for each Borel set F ⊂ Q0.
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The next result follows easily by combining the arguments in [HM3, Lemma B.1]
and [HM1, Lemma 4.1]

Lemma 1.13. Let ω be a non-negative regular Borel measure on Q0 ∈ D(E).

(a) If ω is dyadically doubling on Q0 then PFω is dyadically doubling on Q0.

(b) If ω ∈ Adyadic
∞ (Q0) then PFω ∈ Adyadic

∞ (Q0).

The following result shows that given an absolute continuous measure µ with
respect to σ, under suitable quantitative conditions we can extract a sawtooth that
has an ample contact with the original domain, such that µ and σ are comparable
on the cubes above the sawtooth.

Lemma 1.14 ([HMT1, Lemma 3.5]). Let µ be a non-negative regular Borel measure
on Q0 ∈ D(E). Assume that µ� σ on Q0, and also that there exist K0 ≥ 1, θ > 0
such that

1 ≤ µ(Q0)

σ(Q0)
≤ K0;

µ(F )

σ(Q0)
≤ K0

(
σ(F )

σ(Q0)

)θ
, ∀F ⊆ Q0. (1.15)

Then, there exists a pairwise disjoint family F = {Qj} ⊆ DQ0 \ {Q0} such that

σ
(
Q0 \

⋃
Qj∈F

Qj

)
≥ K−1

1 σ(Q0) (1.16)

and
1

2
≤ µ(Q)

σ(Q)
≤ K0K1, ∀Q ∈ DF ,Q0 , (1.17)

where K1 = (4K0)1/θ.

Note that, under the hypothesis of Lemma 1.14, the second condition in (1.15)

can be seen as a consequence of the fact that µ ∈ Adyadic
∞ (Q0). This, when combined

with Lemma 1.17, will be a useful tool in order to prove that a certain measure
satisfies further properties, as we will discuss in the following section.

1.3 Discrete Carleson measures

Let {γQ}Q∈D(E) be a sequence of non-negative real numbers. We define the “mea-
sure” m (acting on collections of dyadic cubes) by

m(D′) :=
∑
Q∈D′

γQ, D′ ⊂ D(E). (1.18)

Definition 1.15 (Discrete Carleson measure). Let Q0 ∈ D(E), we say that m is
a discrete “Carleson measure” on Q0 (with respect to σ) or, equivalently, m ∈ C(Q0)
if

‖m‖C(Q0) := sup
Q∈DQ0

m(DQ)

σ(Q)
<∞. (1.19)
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In a similar way, we will say that m is a discrete Carleson measure on E or, equiva-
lently, m ∈ C(E) if

‖m‖C(E) := sup
Q∈D(E)

m(DQ)

σ(Q)
<∞. (1.20)

Usually, in order to simplify the notation, we will refer to these measures just as
Carleson measures on Q0 or E, respectively.

Definition 1.16 (Restriction of a measure). Let {γQ}Q∈D(E) be a sequence of
non-negative real numbers and consider the measure m defined in (1.18). Given
F = {Qi} ⊂ DQ0 , a family of pairwise disjoint dyadic cubes, we define mF by

mF (D′) = m(D′ ∩ DF ) =
∑

Q∈D′∩DF

γQ, D′ ⊂ DQ0 .

Equivalently, the measure mF is given by the sequence {γF ,Q}Q∈DQ0
, where

γF ,Q =

{
γQ if Q ∈ DF ,Q0 ,

0 if Q ∈ DQ0 \ DF ,Q0 .
(1.21)

The next result establishes that in order to show that m is a Carleson measure
on E, it suffices to work locally on each Q0 and check that mF is a Carleson measure
on Q0, whenever the sawtooth DF ,Q0 has an ample contact with the domain, in the
sense of (1.16).

Lemma 1.17 ([HMT1, Lemma 3.12]). Let α = {αQ}Q∈D(E) be a sequence of non-
negative numbers and consider m as defined above. Given M1 > 0 and K1 ≥ 1,
we assume that for every Q0 ∈ D(E) there exists a pairwise disjoint family FQ0 =
{Qj} ⊆ DQ0 \ {Q0} such that

σ
(
Q0 \

⋃
Qj∈FQ0

Qj

)
≥ K−1

1 σ(Q0) (1.22)

and
m(DFQ0

,Q0) ≤M1σ(Q0). (1.23)

Then, m is a Carleson measure on E and moreover

‖m‖C(E) = sup
Q∈D

m(DQ)

σ(Q)
≤ K1M1.

Part of the proof of Theorems 3.1, 3.2, or 3.3, will rely heavily on Lemmas 1.14
and 1.17, as we will see in Chapter 3. We have already shown that the use of the
Adyadic
∞ condition may help us to prove that certain measure is indeed a discrete

Carleson measure. Next, we state a powerful result in the opposite direction, that
will be essential in the proof of Theorem 2.1. This is, we use an auxiliar Carleson
measure m to prove that a given weight ω ∈ Adyadic

∞ , reducing the work to show that
for every disjoint family F for which the restriction mF has small Carleson norm,
the projection PFω satisfies an Adyadic

∞ -type condition. The precise statement is as
follows.
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Lemma 1.18 ([HM3, Lemma 8.5]). Suppose that E ⊂ Rn+1 is n-dimensional AR.
Fix Q0 ∈ D(E), let σ, ω be a pair of non-negative dyadically doubling regular Borel
measures on Q0, and let m be a discrete Carleson measure with respect to σ, with

‖m‖C(Q0) ≤M0.

Suppose that there exists γ > 0 such that for every Q ∈ DQ0 and every family of
pairwise disjoint dyadic cubes F = {Qi} ⊂ DQ verifying

‖mF‖C(Q) = sup
Q′∈DQ

m(DF ,Q′)
σ(Q′)

≤ γ,

we have that PFω satisfies the following property:

∀ε ∈ (0, 1) ∃Cε > 1 such that
(
F ⊂ Q, σ(F )

σ(Q)
≥ ε =⇒ PFω(F )

PFω(Q)
≥ 1

Cε

)
.

Then, there exist η0 ∈ (0, 1) and C0 <∞ such that, for every Q ∈ DQ0

F ⊂ Q, σ(F )

σ(Q)
≥ 1− η0 =⇒ ω(F )

ω(Q)
≥ 1

C0
.

In other words, ω ∈ Adyadic
∞ (Q0).

Finally, we will show a discrete localized version of [CMS, Theorem 1] adapted to
our geometric setting. Fix Q0 ∈ D(E) and consider the operators AQ0 , CQ0 defined
by

AQ0α(x) :=

( ∑
x∈Q∈DQ0

1

`(Q)n
α2
Q

)1/2

, CQ0α(x) := sup
x∈Q∈DQ0

(
1

σ(Q)

∑
Q′∈DQ

α2
Q′

)1/2

,

(1.24)
where α = {αQ}Q∈DQ0

is a sequence of real numbers. Note that these operators are
discrete analogues of the area functional and Carleson operator used in [CMS] to
develop the theory of tent spaces. Sometimes, we use a truncated version of AQ0 ,
defined for each k ≥ 0 by

AkQ0
α(x) :=

( ∑
x∈Q∈DkQ0

1

`(Q)n
α2
Q

)1/2

,

where DkQ0
is the collection of Q ∈ DQ0 such that `(Q) ≤ 2−k`(Q0).

Lemma 1.19. Suppose that E ⊂ Rn+1 is n-dimensional AR, fix Q0 ∈ D(E), let AQ0

and CQ0 be the operators defined in (1.24) respectively. There exists C, depending
only on dimension and the AR constant, such that for every α = {αQ}Q∈DQ0

, β =
{βQ}Q∈DQ0

sequences of real numbers, we have that

∑
Q∈DQ0

|αQβQ| ≤ C
∫
Q0

AQ0α(x)CQ0β(x) dσ(x). (1.25)
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Proof. We first claim that it suffices to consider the case on which βQ = 0 when
`(Q) ≤ 2−N`(Q0) for some N ∈ N, and in that scenario, we establish (1.25) with
C independent of N . To obtain the general case, for every N ≥ 1, we let βN =
{βNQ }Q∈DQ0

where βNQ = βQ if 2−N`(Q0) < `(Q) ≤ `(Q0) and βNQ = 0 when `(Q) ≤
2−N`(Q0). Then by our claim, (1.25) holds for βN with C independent of N .
Observing that CQ0β

N ≤ CQ0β we just need to let N →∞ and the desired estimate
follows at once.

Let us then show our claim. Fix β so that βQ = 0 when `(Q) ≤ 2−N`(Q0) for
some N ∈ N. For Q ∈ DQ0 , let kQ ≥ 0 be so that `(Q) = 2−kQ`(Q0). Suppose
that Q′ ∈ DQ0 satisfies `(Q′) ≤ 2−kQ`(Q0) = `(Q) and Q′ ∩Q 6= Ø, then necessarily
Q′ ∈ DQ. Therefore, using the AR property we obtain∫

Q

(
AkQQ0

β(y)
)2
dσ(y) =

∫
Q

∑
Q′∈DQ

1Q′(y)
1

`(Q′)n
β2
Q′ dσ(y) .

∑
Q′∈DQ

β2
Q′ .

Dividing both sides by σ(Q), we have proved that for every Q ∈ DQ0 and every
x ∈ Q we have that

ηQ := −
∫
Q

(
AkQQ0

β(y)
)2
dσ(y) ≤ C0

(
CQ0β(x)

)2
, (1.26)

with C0 depending only on the AR constant. Since βQ = 0 for `(Q) ≤ 2−N`(Q0),
we have that AQ0β(x) ≤ C(N) < ∞ and hence ηQ ≤ C(N)2 < ∞. Now, we set
C1 := 2

√
C0 and define

F0 :=
{
x ∈ Q0 : AkQ0

β(x) > C1CQ0β(x), ∀k ≥ 0
}
.

In particular, using (1.26), we have AkQQ0
β(x) > 2η

1/2
Q for each x ∈ Q∩F0. We claim

that 4σ(Q ∩ F0) ≤ σ(Q). Indeed, if ηQ = 0 then one can see that AkQQ0
β(y) = 0 for

every y ∈ Q and hence Q ∩ F0 = Ø, which trivially gives that 4σ(Q ∩ F0) ≤ σ(Q).
On the other hand, if ηQ > 0, we have

4ηQσ(Q ∩ F0) ≤
∫
Q∩F0

(
AkQQ0

β(y)
)2
dσ(y) ≤ ηQσ(Q),

and the desired estimate follows since 0 < ηQ <∞. Let us now consider

k(x) := min
{
k ≥ 0 : AkQ0

β(x) ≤ C1CQ0β(x)
}
, x ∈ Q0 \ F0. (1.27)

Setting F1,Q := {x ∈ Q \ F0 : k(x) > kQ} and using (1.26) we obtain

F1,Q ⊂ {x ∈ Q \ F0 : AkQQ0
β(x) > 2η

1/2
Q

}
.

Applying Chebychev’s inequality, it follows that

σ(F1,Q) ≤ 1

4ηQ

∫
Q\F0

(
AkQQ0

β(y)
)2
dσ(y) ≤ 1

4
σ(Q).

Setting F2,Q := {x ∈ Q \ F0 : k(x) ≤ kQ}, and gathering the above estimates, we
have

σ(F2,Q) = σ(Q)− σ(Q ∩ F0)− σ(F1,Q) ≥ 1

2
σ(Q).
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Hence, the AR property, Cauchy-Schwarz’s inequality and (1.27) yield∑
Q∈DQ0

|αQβQ| .
∑

Q∈DQ0

σ(F2,Q)
|αQβQ|
`(Q)n

≤
∫
Q0\F0

∑
Q∈DQ0

|αQβQ|
`(Q)n

1F2,Q
(x) dσ(x)

.
∫
Q0\F0

AQ0α(x)

( ∑
Q∈DQ0

1

`(Q)n
β2
Q1F2,Q

(x)

)1/2

dσ(x)

.
∫
Q0\F0

AQ0α(x)Ak(x)
Q0

β(x) dσ(x)

.
∫
Q0

AQ0α(x)CQ0β(x) dσ(x),

where we have used that Q ∈ Dk(x)
Q0

for each x ∈ F2,Q. As the implicit constant does
not depend on N ∈ N, this completes the proof of (1.25).

1.4 PDE estimates

In this section we will begin by summarizing some of the basic facts in the theory
of elliptic partial differential equations. First, we assume that Ω ⊂ Rn+1 is an open
set, we define the elliptic operators that will be considered in the text, as well as
weak solutions and interior estimates. The reader is referred to the book of [Ken]
for further details concerning this topic.

Definition 1.20 (Elliptic operator). Let Ω ⊂ Rn+1 be an open set, we say that
Lu = −div(A∇u) is a variable coefficient second order divergence form elliptic
operator in Ω if A(X) = (ai,j(X))n+1

i,j=1 is a real (not necessarily symmetric) matrix
with ai,j ∈ L∞(Ω) for 1 ≤ i, j ≤ n+ 1, and A uniformly elliptic, that is, there exists
Λ ≥ 1 such that

Λ−1|ξ|2 ≤ A(X)ξ · ξ, |A(X)ξ · ζ| ≤ Λ|ξ||ζ|, (1.28)

for all ξ, ζ ∈ Rn+1 and almost every X ∈ Ω.

In what follows we will only be working with this kind of operators, we will refer
to them as “elliptic operators” for the sake of simplicity. We write L> to denote
the transpose of L, or, in other words, L>u = −div(A>∇u) with A> being the
transpose matrix of A.

Definition 1.21 (The spaces W 1,2, W 1,2
loc and W 1,2

0 ). Let Ω ⊂ Rn+1 be an open
set, we say that u ∈W 1,2(Ω) if u ∈ L2(Ω) is such that the weak gradient ∇u exists,
and

‖u‖W 1,2(Ω) :=

(∫∫
Ω
|u(Y )|2 dY

)1/2

+

(∫∫
Ω
|∇u(Y )|2 dY

)1/2

<∞.

Also, we say that u ∈ W 1,2
loc (Ω) if u ∈ W 1,2(U) for every relatively compact subset

U ⊂ Ω. Finally, we define the space W 1,2
0 (Ω) as the closure of C∞c (Ω) with respect

to W 1,2(Ω).
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Definition 1.22 (Weak solution). Let Ω ⊂ Rn+1 be an open set and Lu =
−div(A∇u) an elliptic operator in Ω. We say that a function u ∈W 1,2

loc (Ω) is a weak
solution of Lu = 0 in Ω, or that Lu = 0 in the weak sense, if∫∫

Ω
A(X)∇u(X) · ∇ϕ(X) dX = 0, ∀ϕ ∈ C∞c (Ω).

Lemma 1.23 (Interior estimates, [Ken]). Given an elliptic operator L, there
exists a constant C > 1 depending only on dimension and ellipticity such that for
every ball B(X, r) ⊂ Rn+1 and every positive weak solution u ∈ W 1,2(B(X, 2r)) of
Lu = 0 in B(X, 2r) we have the following:

(a) (Caccioppoli’s estimate)∫∫
B(X,r)

|∇u(Y )|2 dY ≤ Cr−2

∫∫
B
(
X,

3r
2

) |u(Y )|2 dY. (1.29)

(b) (De Giorgi-Nash-Moser’s estimate)

sup
Y ∈B(X,r)

u(Y ) ≤ C
(
−
∫
−
∫
B
(
X,

3r
2

) |u(Y )|2 dY
)1/2

. (1.30)

(c) (Harnack’s inequality)

sup
Y ∈B(X,r)

u(Y ) ≤ C inf
Y ∈B(X,r)

u(Y ). (1.31)

The use of De Giorgi-Nash-Moser’s estimate allows us to show that weak solu-
tions are actually Hölder continuous, as seen in [Ken]. Associated with L and L>

one can respectively construct the elliptic measures {ωXL }X∈Ω and {ωX
L>
}X∈Ω, and

the Green functions GL and GL> (see [HMT2] for full details). Next we will add
the assumption that the boundary of Ω satisfies the AR property.

Definition 1.24 (The space H1/2). Given E ⊆ Rn+1 and n-dimensional AR set,
let H1/2(E) be the set of functions f ∈ L2(E) such that

‖f‖H1/2(E) := ‖f‖L2(E) +

(∫
E

∫
E

|f(x)− f(y)|2

|x− y|n+1
dσ(x) dσ(y)

)1/2

<∞.

Lemma 1.25 (Existence of elliptic measure, [HMT2]). Let Ω ⊆ Rn+1 be an
open set such that ∂Ω satisfies the AR property, and let L be an elliptic operator.
There exists a family of regular Borel measures ωL = {ωXL }X∈Ω, called the L-elliptic
measure, such that each measure has total mass at most 1 (i.e. ωXL (∂Ω) ≤ 1 for
every X ∈ Ω) and for every f ∈ C(∂Ω) ∩ L∞(∂Ω),

u(X) =

∫
∂Ω
f(y) dωXL (y), X ∈ Ω (1.32)
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is a weak solution in Ω of the Dirichlet problem with datum h in ∂Ω. By the latter
we mean that u ∈ W 1,2

loc (Ω) and Lu = 0 in the weak sense. The weak solution u
satisfies the maximum principle

inf
∂Ω
f ≤ inf

Ω
u ≤ sup

Ω
u ≤ sup

∂Ω
f, sup

Ω
|u| ≤ sup

∂Ω
|f |. (1.33)

Moreover, if f ∈ H1/2(∂Ω) ∩ Cc(∂Ω) then u ∈W 1,2(Ω) verifies

‖u‖W 1,2(Ω) ≤ C‖f‖H1/2(∂Ω), (1.34)

where C > 0 depends only on dimension, on the AR constant and on ellipticity.

Lemma 1.26 (Bourgain’s estimate, [HMT2]). Suppose that Ω ⊂ Rn+1 is an
open set such that ∂Ω satisfies the AR property. Let L be an elliptic operator, there
exist constants c1 < 1 and C1 > 1 (depending only on the AR constant and on the
ellipticity of L) such that for every x ∈ ∂Ω and every 0 < r < diam(∂Ω), we have

ωYL (∆(x, r)) ≥ 1

C1
, ∀Y ∈ B(x, c1r) ∩ Ω.

We refer the reader to [Bou, Lemma 1] for the proof in the harmonic case and
to [HMT2] for general elliptic operators. See also [HKM, Theorem 6.18] and [Zha,
Section 3]. A proof of the following two lemmas may be found in [HMT2]. We note
that, in particular, the AR hypothesis implies that ∂Ω satisfies the Capacity Density
Condition, hence ∂Ω is Wiener regular at every point (see [HLMN, Lemma 3.27]).

Lemma 1.27 (Hölder continuity at the boundary, [HMT2]). Suppose that
Ω ⊂ Rn+1 is an open set such that ∂Ω satisfies the AR property. Let L be an
elliptic operator, there exist C, 0 < γ ≤ 1 (depending only on dimension, the AR
constants and the ellipticity of L), such that for every B0 = B(x0, r0) with x0 ∈ ∂Ω,
0 < r0 < diam(∂Ω), and ∆0 = B0 ∩ ∂Ω, if 0 ≤ u ∈ W 1,2

loc (B0 ∩ Ω) ∩ C(B0 ∩ Ω) is a
weak solution of Lu = 0 in B0 ∩ Ω such that u ≡ 0 in ∆0, then

u(X) ≤ C
(
|X − x0|

r0

)γ
sup

Y ∈B0∩Ω

u(Y ), ∀X ∈ B0 ∩ Ω.

Lemma 1.28 (The Green function, [HMT2]). Suppose that Ω ⊂ Rn+1 is an
open set such that ∂Ω satisfies the AR property. Given an elliptic operator L, there
exist C > 1 (depending only on dimension and on the ellipticity of L) and cθ > 0
(depending on the above parameters and on θ ∈ (0, 1)) such that GL, the Green
function associated with L, satisfies

GL(X,Y ) ≤ C|X − Y |1−n; (1.35)

cθ|X − Y |1−n ≤ GL(X,Y ), if |X − Y | ≤ θδ(X), θ ∈ (0, 1); (1.36)

GL(·, Y ) ∈ C
(
Ω \ {Y }

)
and GL(·, Y )

∂Ω
≡ 0 ∀Y ∈ Ω; (1.37)

GL(X,Y ) ≥ 0, ∀X,Y ∈ Ω, X 6= Y ; (1.38)

GL(X,Y ) = GL>(Y,X), ∀X,Y ∈ Ω, X 6= Y. (1.39)
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Moreover, GL(·, Y ) ∈W 1,2
loc (Ω \ {Y }) for every Y ∈ Ω, and satisfies LGL(·, Y ) = δY

in the weak sense in Ω, that is,∫
Ω
A(X)∇XGL(X,Y ) · ∇ϕ(X) dX = ϕ(Y ), ∀ϕ ∈ C∞c (Ω). (1.40)

Remark 1.29. If we also assume that Ω is bounded, following [HMT2] we know that
the Green function GL coincides with the one constructed in [GW]. Consequently,
for each Y ∈ Ω and 0 < r < δ(Y ), there holds

GL(·, Y ) ∈W 1,2(Ω \B(Y, r)). (1.41)

Moreover, for every ϕ ∈ C∞c (Ω) such that 0 ≤ ϕ ≤ 1 and ϕ ≡ 1 in B(Y, r) with
0 < r < δ(Y ), we have that

(1− ϕ)GL(·, Y ) ∈W 1,2
0 (Ω). (1.42)

The next lemma is a collection of estimates, which together with Proposition
1.35, are part of the Jerison and Kenig’s program developed in [HMT2] for 1-sided
CAD domains. These tools were first introduced in the setting of CAD domains in
[JK] (see also [Ken]).

Lemma 1.30 ([HMT2]). Suppose that Ω ⊂ Rn+1 is a 1-sided CAD. Let L and
L1 be elliptic operators, there exist C1 ≥ 1 (depending only on dimension, the 1-
sided CAD constants and the ellipticity of L) and C2 ≥ 1 (depending on the above
parameters and on the ellipticity of L1), such that for every B0 = B(x0, r0) with
x0 ∈ ∂Ω, 0 < r0 < diam(∂Ω), and ∆0 = B0 ∩ ∂Ω we have the following properties:

(a) (CFMS estimate) If B = B(x, r) with x ∈ ∂Ω and ∆ = B ∩ ∂Ω is such that
2B ⊂ B0, then for all X ∈ Ω \B0 we have that

1

C1
ωXL (∆) ≤ rn−1GL(X,X∆) ≤ C1ω

X
L (∆).

(b) (Doubling) If X ∈ Ω \ 4B0, then

ωXL (2∆0) ≤ C1ω
X
L (∆0).

(c) (Change of pole) If B = B(x, r) with x ∈ ∂Ω and ∆ := B ∩ ∂Ω is such that
B ⊂ B0, then for every X ∈ Ω \ 2κ0B0 with κ0 as in (1.7), we have that

1

C1
ω
X∆0
L (∆) ≤

ωXL (∆)

ωXL (∆0)
≤ C1ω

X∆0
L (∆).

Moreover, if we also suppose that ωL � σ, then

1

C1
k
X∆0
L (y) ≤

kXL (y)

ωXL (∆0)
≤ C1k

X∆0
L (y), for σ-a.e. y ∈ ∆0.
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(d) (Comparison principle 1) If B = B(x, r) with x ∈ ∆0, 0 < r < r0/4 and
∆ = B ∩ ∂Ω, then we have that

1

C1
ωX∆
L,Ω(F ) ≤ ωX∆

L,T∆0
(F ) ≤ C1ω

X∆
L,Ω(F ), for every Borel set F ⊂ ∆.

This implies that ωL,Ω � σ in ∆ if and only if ωL,T∆0
� σ in ∆ and, in such

a case,

1

C1
kX∆
L,Ω(y) ≤ kX∆

L,T∆0
(y) ≤ C1k

X∆
L,Ω(y), for σ-a.e. y ∈ ∆.

(e) (Comparison principle 2)) If L ≡ L1 in B(x0, 2κ0r0) ∩ Ω with κ0 as in
(1.7), then

1

C2
ω
X∆0
L1

(F ) ≤ ωX∆0
L (F ) ≤ C2ω

X∆0
L1

(F ), for every Borel set F ⊂ ∆0.

This implies that ωL � σ in ∆0 if and only if ωL1 � σ in ∆0 and, in such a
case,

1

C2
k
X∆0
L1

(y) ≤ kX∆0
L (y) ≤ C2k

X∆0
L1

(y), for σ-a.e. y ∈ ∆0.

Remark 1.31. As a consequence of Lemma 1.30(c), one can see that if ωL � σ,
there exists C ≥ 1 (depending only on dimension, the 1-sided CAD constants and
the ellipticity of L) such that for every Q0 ∈ D(∂Ω) and every Q ∈ DQ0 we have
that

1

C
k
XQ
L (y) ≤

k
XQ0
L (y)

ω
XQ0
L (Q)

≤ CkXQL (y), for σ-a.e. y ∈ Q.

We also have a dyadic version of the comparison principle stated in Lemma
1.30(e), for large interior regions of Q0 ∈ D(∂Ω).

Lemma 1.32. Suppose that Ω ⊂ Rn+1 is a 1-sided CAD. Fix Q0 ∈ D(∂Ω), let L
and L1 be elliptic operators such that ωL � σ, ωL1 � σ, and L ≡ L1 in TQ0. Given
0 < τ < 1, there exists Cτ > 1 such that

1

Cτ
k
XQ0
L1

(y) ≤ kXQ0
L (y) ≤ Cτk

XQ0
L1

(y), for σ-a.e. y ∈ Q0 \ ΣQ0,τ ,

where ΣQ0,τ is the region defined by ΣQ0,τ =
{
x ∈ Q0 : dist(x, ∂Ω \Q0) < τ`(Q0)

}
.

Proof. Let r = τ`(Q0)/M with M > 1 to be chosen. Using a Vitali type covering
argument, we construct a maximal collection of points {xj}j∈J ⊂ Q0 \ ΣQ0,τ with
respect to the property that |xj−xk| > 2r/3 for every j, k ∈ J , and a disjoint family
{∆′j}j∈J given by ∆′j = ∆(xj , r/3), in such a way that Q0\ΣQ0,τ ⊂

⋃
j∈J 3∆′j . Note

that there exists C, depending only on dimension and on the 1-sided CAD constants,
such that ∆′j ⊂ ∆(xQ0 , C`(Q0)) for every j ∈ J . Hence,

#J
(τ`(Q0)

M

)n
≈
∑
j∈J

σ(∆′j) = σ
( ⋃
j∈J

∆′j

)
≤ σ(∆(xQ0 , C`(Q0))) ≈ `(Q0)n.
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We have then obtained a covering {∆j}Nτj=1 of Q0 \ΣQ0,τ by balls ∆j = ∆(xj , r) with
xj ∈ Q0 \ ΣQ0,τ , r = τ`(Q0)/M and Nτ . (M/τ)n. We claim that for M � 1 we
have B∗j ∩Ω ⊂ TQ0 , with B∗j := B∗∆j

= B(xj , 2κ0r) and κ0 as in (1.7). Let Y ∈ B∗j ∩Ω

and I ∈ W be such that Y ∈ I. Take yj ∈ ∂Ω such that dist(I, ∂Ω) = dist(I, yj) and
pick Qj ∈ D(∂Ω) the unique cube such that yj ∈ Qj and `(Qj) = `(I). As already
observed, I ∈ W∗Qj . We are going to see that Qj ∈ DQ0 . First of all, note that

`(Qj) = `(I) ≈ dist(I, ∂Ω) ≤ |xj − Y | < 2κ0τ`(Q0)/M < 2κ0`(Q0)/M.

Choosing M � 1 sufficiently large (independent of τ) we may obtain `(Qj) <
`(Q0)/4 and dist(I, ∂Ω) ≤ |xj − Y | < τ`(Q0)/4. Also, since xj ∈ Q0 \ΣQ0,τ , we can
write by (1.4)

τ`(Q0) ≤ dist(xj , ∂Ω \Q0) ≤ |xj − Y |+ diam(I) + dist(I, yj) + dist(yj , ∂Ω \Q0)

≤ 1
4τ`(Q0) + 5

4 dist(I, ∂Ω) + dist(yj , ∂Ω \Q0) ≤ 9
16τ`(Q0) + dist(yj , ∂Ω \Q0),

and hence yj ∈ int(Q0). Since yj ∈ Q0 ∩ Qj and `(Qj) < `(Q0)/4 it follows that
Qj ∈ DQ0 . This and the fact that Y ∈ I ∈ W∗Qj allow us to conclude that Y ∈ TQ0 .
Consequently, we have shown that B∗j ∩ Ω ⊂ TQ0 and thus L ≡ L1 in B∗j ∩ Ω for
every j = 1, . . . , Nτ .

Next, we note that δ(XQ0) ≈ `(Q0) ≥ τ`(Q0), δ(X∆j ) ≈ τ`(Q0), and |XQ0 −
X∆j | . `(Q0). Hence, we can use Harnack’s inequality to move from XQ0 to X∆j

with constants depending on τ , and Lemma 1.30(e), we obtain

k
XQ0
L (y) ≈τ k

X∆j

L (y) ≈ k
X∆j

L1
(y) ≈τ k

XQ0
L1

(y)

for σ-almost every y ∈ ∆j = Bj∩∂Ω. Since we know that {∆j}Nτj=1 covers Q0\ΣQ0,τ ,
the desired conclusion follows.

In Section 1.2 we defined the A∞ and RHp conditions for arbitrary Borel mea-
sures. Now, we will introduce some alternative definitions in order to consider the
case that we are treating with an elliptic measure, which is a family of Borel measures
indexed in the points of the domain.

Definition 1.33 (A∞ for elliptic measures). Let Ω ⊂ Rn+1 be a 1-sided CAD
and let L be a real (non-necessarily symmetric) elliptic operator. We say that the
elliptic measure ωL ∈ A∞(∂Ω) if there exist constants 0 < α, β < 1 such that
given an arbitrary surface ball ∆0 = B0 ∩ ∂Ω, with B0 = B(x0, r0), x0 ∈ ∂Ω,
0 < r < diam(∂Ω), and for every surface ball ∆ = B ∩ ∂Ω centered at ∂Ω with
B ⊂ B0, and for every Borel set F ⊂ ∆, we have that

ω
X∆0
L (F )

ω
X∆0
L (∆)

≤ α =⇒ σ(F )

σ(∆)
≤ β. (1.43)

With the notation introduced in Definition 1.11, we say that ωL ∈ A∞(∂Ω) if

ω
X∆0
L ∈ A∞(∆0) with uniformly controlled constants for every ∆0. As already noted

in Section 1.2, since σ and ωL are doubling measures (see Lemma 1.30(b)), we have
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that ωL ∈ A∞(∂Ω) if and only if ωL � σ in ∂Ω and there exists 1 < q < ∞ such
that for every ∆0 and ∆ as above(

−
∫

∆
k
X∆0
L (x)q dσ(x)

) 1
q

≤ C−
∫

∆
k
X∆0
L (x) dσ(x),

where k
X∆0
L = dω

X∆0
L /dσ is the Radon-Nikodym derivative. This motivates the

following definition.

Definition 1.34 (RHp and RHdyadic
p for elliptic measures). Suppose that Ω ⊂

Rn+1 is a 1-sided CAD, let L be an elliptic operator and let 1 < p <∞. We say that

ωL ∈ RHp(∂Ω) if ωL � σ and k
X∆0
L ∈ RHp(∆0) uniformly in ∆0 for every surface

ball ∆0 ⊂ ∂Ω. That is, there exists C ≥ 1 such that for every B0 := B(x0, r0) with
x0 ∈ ∂Ω and 0 < r0 < diam(∂Ω), and for every B = B(x, r) ⊂ B0 with x ∈ ∂Ω, we
have that(

−
∫

∆
k
X∆0
L (y)p dσ(y)

)1/p

≤ C−
∫

∆
k
X∆0
L (y) dσ(y), ∆ = B ∩ ∂Ω.

Analogously, we say that ωL ∈ RHdyadic
p (∂Ω) if ωL � σ and k

XQ0
L ∈ RHdyadic

p (Q0)
uniformly in Q0 for every Q0 ∈ D(∂Ω). That is, there exists C ≥ 1 such that for
every Q0 ∈ D(∂Ω) and every Q ∈ DQ0 , we have that(

−
∫
Q
k
XQ0
L (y)p dσ(y)

)1/p

≤ C−
∫
Q
k
XQ0
L (y) dσ(y).

Before going further, let us introduce the following operators (see [HMUT, Sec-
tion 2.4]):

Su(x) :=

(∫∫
Γ(x)
|∇u(Y )|2δ(Y )1−n dY

)1/2

, Ñ∗u(x) := sup
Y ∈Γ̃(x)

|u(Y )|,

where
Γ(x) :=

⋃
x∈Q∈D(∂Ω)

UQ, Γ̃(x) :=
⋃

x∈Q∈D(∂Ω)

U∗Q.

These operators are known, respectively, as the square function and non-tangential
maximal operators. Also, we say that Γ(x) is a non-tangential cone with vertex on
x ∈ ∂Ω, while Γ̃(x) is a slight fattening of Γ(x), with the same vertex point. Similarly,
we can define localized versions of the above operators. For a fixed Q0 ∈ D(∂Ω), we
define

SQ0u(x) :=

(∫∫
ΓQ0

(x)
|∇u(Y )|2δ(Y )1−n dY

)1/2

, ÑQ0,∗u(x) := sup
Y ∈Γ̃Q0

(x)

|u(Y )|,

for each x ∈ Q0, where

ΓQ0(x) :=
⋃

x∈Q∈DQ0

UQ, Γ̃Q0(x) :=
⋃

x∈Q∈DQ0

U∗Q.

We summarize some of the most important equivalences to the fact that ωL ∈
RHp(∂Ω) in the following proposition.
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Proposition 1.35 (Solvability and RHp, [HMT2]). Suppose that Ω ⊂ Rn+1 is
a 1-sided CAD, let L be an elliptic operator and let 1 < p < ∞, the following
statements are equivalent:

(a) The Dirichlet problem is solvable in Lp
′
(∂Ω): That is, there exists C ≥ 1 such

that

‖Ñ∗u‖Lp′ (∂Ω) ≤ C‖f‖Lp′ (∂Ω),

whenever

u(X) =

∫
∂Ω
f(y) dωXL (y), f ∈ Cc(∂Ω). (1.44)

(b) ωL ∈ RHp(∂Ω) (cf. Definition 1.34).

(c) ωL � σ and there exists C ≥ 1 such that for every B := B(x, r) with x ∈ ∂Ω
and 0 < r < diam(∂Ω), we have that∫

∆
kX∆
L (y)p dσ(y) ≤ Cσ(∆)1−p, ∆ = B ∩ ∂Ω. (1.45)

Moreover, (a), (b) and/or (c) yield that for every 0 < q <∞ there exists C (depend-
ing only on dimension, the 1-sided CAD constants, the ellipticity of L, the constants
in (a), (b) and/or (c), and on q) such that for every Q0 ∈ D(∂Ω)

‖SQ0u‖Lq(Q0) . ‖ÑQ0,∗u‖Lq(Q0) (1.46)

for every u as in (1.44).

Remark 1.36. Note that ωL ∈ RHp(∂Ω), together with Lemma 1.30(b) and Har-

nack’s inequality, imply that ωL ∈ RHdyadic
p (∂Ω). This in turn gives∫

Q
k
XQ
L (y)p dσ(y) ≤ Cσ(Q)1−p, Q ∈ D(∂Ω). (1.47)

Moreover, from (1.47) and Harnack’s inequality, we can see that (1.45) holds, and
hence ωL ∈ RHp(∂Ω). Therefore, the conditions ωL ∈ RHp(∂Ω), (1.45), ωL ∈
RHdyadic

p (∂Ω) and (1.47) are all equivalent.

In the following lemmas we discuss some representation formulas for the differ-
ence between two elliptic measure solutions with the same given boundary value.
We first begin with a result inspired in the work of [HMT2].

Lemma 1.37. Suppose that Ω ⊂ Rn+1 is a bounded open set such that ∂Ω satisfies
the AR property. Let L0, L1 be elliptic operators, and let u0 ∈ W 1,2(Ω) be a weak
solution of L0u0 = 0 in Ω. Then,∫∫

Ω
A0(Y )∇YGL1(Y,X) · ∇u0(Y ) dY = 0, for a.e. X ∈ Ω. (1.48)
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Proof. Let us take a cut-off function ϕ ∈ Cc([−2, 2]) such that 0 ≤ ϕ ≤ 1 and ϕ ≡ 1
in [−1, 1]. Fix X0 ∈ Ω, for each 0 < ε < δ(X0)/16 we set ϕε(X) = ϕ(|X −X0|/ε)
and ψε = 1−ϕε. Using (1.42) we have that GL1(·, X0)ψε ∈W 1,2

0 (Ω), which together
with the fact that u0 ∈W 1,2(Ω) is a weak solution of L0u0 = 0 in Ω, implies∫∫

Ω
A0(Y )∇

(
GL1(·, X0)ψε

)
(Y ) · ∇u0(Y ) dY = 0.

Hence, we can write∫∫
Ω
A0∇GL1(·, X0) · ∇u0 dY =

∫∫
Ω
A0∇

(
GL1(·, X0)ϕε

)
· ∇u0 dY

=

∫∫
Ω
A0∇GL1(·, X0) · ∇u0 ϕε dY +

∫∫
Ω
A0∇ϕε · ∇u0GL1(·, X0) dY =: Iε + IIε.

(1.49)

In order to simplify the notation we set Cj(X0, ε) := {Y ∈ Rn+1 : 2−j+1ε ≤ |Y −
X0| < 2−j+2ε} for j ≥ 1. For the first term, we use Cauchy-Schwarz’s inequality,
Caccioppoli’s inequality and (1.35)

|Iε| .
∫∫
B(X0,2ε)

|∇YGL1(Y,X0)||∇u0(Y )| dY (1.50)

.
∞∑
j=1

(2−jε)n+1

(
−
∫
−
∫
Cj(X0,ε)

|∇GL1(·, X0)|2 dY
)1/2(

−
∫
−
∫
B(X0,2−j+2ε)

|∇u0|2 dY
)1/2

.
∞∑
j=1

2−jεM2(|∇u0|1Ω)(X0) . εM2(|∇u0|1Ω)(X0),

where M2f(X) := M(|f |2)(X)1/2, with M being the Hardy-Littlewood maximal
operator on Rn+1. For the second term, using again (1.35) and Jensen’s inequality,

|IIε| . ε−1

∫∫
C1(X0,ε)

|GL1(Y,X0)||∇u0(Y )| dY

. ε−n
∫∫
B(X0,2ε)

|∇u0(Y )| dY . εM2(|∇u0|1Ω)(X0). (1.51)

Combining (1.50) and (1.51), we have proved that, for every X0 ∈ Ω and for every
0 < ε < δ(X0)/16,∣∣∣∣ ∫∫

Ω
A0(Y )∇YGL1(Y,X0) · ∇u0(Y ) dY

∣∣∣∣ . εM2(|∇u0|1Ω)(X0). (1.52)

Recall that M2(|∇u0|1Ω) ∈ L1,∞(Ω) as |∇u0| ∈ L2(Ω), thus M2(|∇u0|1Ω)(X) < ∞
for almost every X ∈ Ω. Taking limits as ε → 0 in (1.52), we obtain as desired
(1.48).
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Lemma 1.38. Suppose that Ω ⊂ Rn+1 is a bounded open set such that ∂Ω satisfies
the AR property. Let L0 and L1 be elliptic operators, and let g ∈ H1/2(∂Ω)∩Cc(∂Ω).
Consider the solutions u0 and u1 given by

u0(X) =

∫
∂Ω
g(y) dωXL0

(y), u1(X) =

∫
∂Ω
g(y) dωXL1

(y), X ∈ Ω.

Then,

u1(X)− u0(X) =

∫∫
Ω

(A0 −A1)(Y )∇YGL1(Y,X) · ∇u0(Y ) dY, for a.e. X ∈ Ω.

(1.53)

Proof. Following [HMT2] we know that u0 = g̃ − v0 and u1 = g̃ − v1, where g̃ =
E∂Ωg ∈W 1,2(Rn+1) is the Jonsson-Wallin extension (see [JW]), and v0, v1 ∈W 1,2

0 (Ω)
are the Lax-Milgram solutions of L0v0 = L0g̃ and L1v1 = L1g̃ respectively. Hence,
we have that u1 − u0 = v0 − v1 ∈W 1,2

0 (Ω), and following again [HMT2] we obtain

(u1 − u0)(X) =

∫∫
Ω
A1(Y )∇YGL1(Y,X) · ∇(u1 − u0)(Y ) dY, for a.e. X ∈ Ω.

For almost every X ∈ Ω we then have that

(u1 − u0)(X)−
∫∫

Ω
(A0 −A1)(Y )∇YGL1(Y,X) · ∇u0(Y ) dY =

=

∫∫
Ω
A1(Y )∇YGL1(Y,X) · ∇u1(Y ) dY −

∫∫
Ω
A0(Y )∇YGL1(Y,X) · ∇u0(Y ) dY.

Using Lemma 1.37 for both terms, the right side of the above equality vanishes
almost everywhere, and this proves (1.53).

Lemma 1.39. Suppose that Ω ⊂ Rn+1 is an open set such that ∂Ω satisfies the
AR property. Let L0, L1 be elliptic operators such that K := supp(A0 − A1) ∩ Ω is
compact. For every g ∈ H1/2(∂Ω) ∩ Cc(∂Ω), let

u0(X) =

∫
∂Ω
g(y) dωXL0

(y), u1(X) =

∫
∂Ω
g(y) dωXL1

(y), X ∈ Ω.

Then, for almost every X ∈ Ω \K, there holds

u1(X)− u0(X) =

∫∫
Ω

(A0 −A1)(Y )∇YGL1(Y,X) · ∇u0(Y ) dY. (1.54)

Proof. First, fix x0 ∈ ∂Ω, following [HMT2] we consider the family of bounded
increasing open subsets {Tk}k∈Z such that Ω =

⋃
k∈Z Tk, and ∂Tk satisfies the AR

property, with constants possibly depending on k and diam(∂Ω) (see [HMT2]). As
we can see in [JW], there exists an extension operator E∂Ω, which maps H1/2(∂Ω)
continuously into W 1,2(Rn+1), and a restriction operator R∂Ω, which is bounded
from W 1,2(Rn+1) to H1/2(∂Ω), such that R∂Ω ◦ E∂Ω = Id in H1/2(∂Ω). Moreover,
we have that E∂Ωf ∈ Cc(Rn+1) ∩ L∞(Rn+1) for every f ∈ H1/2(∂Ω) ∩ Cc(∂Ω). Let
g ∈ H1/2(∂Ω)∩Cc(∂Ω) and h = E∂Ωg ∈W 1,2(Rn+1)∩Cc(Rn+1)∩L∞(Rn+1). Let η ∈
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C∞c ([−2, 2]) be such that 0 ≤ η ≤ 1, η ≡ 1 in [−1, 1], η monotonously decreasing in
(1, 2) and monotonously increasing in (−2,−1). Let us consider hk(y) = h(y)η(|y−
x0|/2k), as well as the solutions

uk0(X) =

∫
∂Tk

hk(y) dωXL0,Tk(y), uk1(X) =

∫
∂Tk

hk(y) dωXL1,Tk(y), X ∈ Tk.

We take k0 � 1 such that supp(g), supp(h) ⊂ B(x0, 2
k0−1), in such a way that

hk ≡ h for k ≥ k0. Note that by [HMT2], B(x0, 2
k) ∩ Ω ⊂ Tk, hence h = g1∂Ω on

∂Tk, and consequently h ∈ H1/2(∂Tk) ∩ Cc(∂Tk) for k ≥ k0. Using Lemma 1.38, we
have that

(uk1 − uk0)(X) =

∫∫
Tk

(A0−A1)(Y )∇YGL1,Tk(Y,X) · ∇uk0(Y ) dY, k ≥ k0, (1.55)

for almost every X ∈ Tk. Let Gk be the set of points X ∈ Tk for which (1.55)
holds, and let Bk = Tk \ Gk. We fix X0 ∈ (Ω \K) \

⋃
k≥k0

Bk and take k0 (possibly

greater than before) such that X0 ∈ B(x0, 2
k0−1) ∩ Ω ⊂ Tk and K ⊂ B(x0, 2

k0−1) ∩
Ω ⊂ Tk. Let us consider vk = GL1,Tk(·, X0), which converge to v = GL1(·, X0)

uniformly on compacta in Ω \ {X0} (see [HMT2]), and hence on W 1,2
loc (Ω \ {X0})

by Caccioppoli’s inequality. Also, note that for i = 0, 1, we have that uki → ui
uniformly on compacta in Ω (see [HMT2]). In particular, Caccioppoli’s inequality
yields uk0 → u0 in W 1,2

loc (Ω). Thanks to these observations, using (1.55) and Cauchy-
Schwarz’s inequality we obtain∣∣∣∣(uk1 − uk0)(X0)−

∫∫
Ω

(A0 −A1)(Y )∇YGL1(Y,X0) · ∇u0(Y ) dY

∣∣∣∣
≤
∫∫
K

∣∣(A0 −A1)(Y )
∣∣∣∣∇vk(Y ) · ∇uk0(Y )−∇v(Y ) · ∇u0(Y )

∣∣ dY
. ‖∇vk‖L2(K)‖∇uk0 −∇u0‖L2(K) + ‖∇vk −∇v‖L2(K)‖∇u0‖L2(K).

Taking limits as k →∞, (1.54) is then proved.

Remark 1.40. Note that Lemma 1.38 ensures that there exists G ⊂ Ω with |Ω\G| =
0 such that (1.53) holds for all X ∈ G. Let ∆ = ∆(x, r) with x ∈ ∂Ω and 0 < r <
diam(∂Ω) be such that X∆ /∈ G. Take X̃∆ ∈ B(X∆, cr/2) ∩ G where 0 < c < 1
is the corkscrew constant. Taking into account that B(X̃∆, cr/2) ⊂ B(X∆, cr) and
slightly modifying the constants, we can use X̃∆ as a corkscrew point associated
with ∆. Hence, we may assume that for every ∆ as before, there exists a corkscrew
point X∆ ∈ G for which (1.53) holds with X = X∆. Similarly, we may also assume
that (1.54) holds for X∆, as long as X∆ /∈ K. In particular, for every Q ∈ D(∂Ω),
we can choose XQ so that (1.53) and (1.54) hold with X = XQ (the latter provided
XQ /∈ K).

1.5 A density result

In this section we present a density result, which allows us to approximate functions
in Lq(E) by bounded Lipschitz functions, where E ⊆ Rn+1 is an n-dimensional AR
set.
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Lemma 1.41. Suppose that E ⊆ Rn+1 is n-dimensional AR and fix a cut-off func-
tion ϕ ∈ C∞c (R) such that 1(0,1) ≤ ϕ ≤ 1(0,2). For t > 0 we define the operator
g 7−→ Ptg, acting over g ∈ L1

loc(E), by

Ptg(x) :=

∫
E
ϕt(x, y)g(y) dσ(y), x ∈ E, (1.56)

where

ϕt(x, y) :=
ϕ
( |x−y|

t

)∫
E ϕ
( |x−z|

t

)
dσ(z)

, x, y ∈ E. (1.57)

(a) Pt is uniformly bounded on Lq(E) for every 1 < q ≤ ∞.

(b) If g ∈ Lq(E), 1 < q <∞, and t > 0 then Ptg ∈ L∞(E) ∩ Lip(E).

(c) If g ∈ Lq(E), 1 < q <∞, then Ptg −→ g in Lq(E) as t→ 0+.

(d) If g ∈ Cc(E), then Ptg(x) −→ g(x) as t→ 0+ for every x ∈ E.

(e) If g ∈ Lq(E), 1 ≤ q ≤ ∞, with supp g ⊂ ∆(x0, r0) then suppPtg ⊂ ∆(x0, r0 +
2 t).

Proof. We first let x ∈ E, using the AR property we have that

tn ≈ σ(∆(x, t)) ≤
∫
E
ϕ
( |x− z|

t

)
dσ(z) ≤ σ(∆(x, 2t)) ≈ tn,

hence t−n1|x−y|<t . ϕt(x, y) . t−n1|x−y|<2t. Also, since
∫
E ϕt(x, y) dσ(y) = 1, it

holds |Ptg(x)| ≤ ‖g‖L∞(E) for every x ∈ E, thus Pt : L∞(E)→ L∞(E) is bounded.
Note that

|Ptg(x)| . t−n
∫

∆(x,2t)
|g(y)| dσ(y) .Mg(x), x ∈ E,

with M being the Hardy-Littlewood maximal operator, hence Pt : L1(E)→ L1,∞(E)
is also bounded, with constants depending only on the AR constant. Using Marcin-
kiewicz’s interpolation theorem we prove (a).

Suppose now that g ∈ Lq(E), using Hölder’s inequality and the AR property, we
have that

|Ptg(x)| . t−n
∫

∆(x,2t)
|g(y)| dσ(y) . t−nt

n
q′ ‖g‖Lq(E) = t

−n
q ‖g‖Lq(E), (1.58)

for every x ∈ E and every t > 0, hence Ptg ∈ L∞(E). In order to prove that
Ptg ∈ Lip(E) we also take y ∈ E. First, if |x− y| ≥ 2t then

|Ptg(x)− Ptg(y)| ≤ 2‖Ptg‖L∞(E) . t
−n
q ‖g‖Lq(E) . t

−n
q
−1‖g‖Lq(E)|x− y|, (1.59)

where we have used (1.58) in the second inequality. Suppose now that |x− y| < 2t,
since ∆(x, 2t) ∪∆(y, 2t) ⊆ ∆(x, 4t) we have

|Ptg(x)− Ptg(y)| ≤
∫

∆(x,4t)
|ϕt(x, z)− ϕt(y, z)||g(z)| dσ(z). (1.60)
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Given z ∈ E we decompose ϕt(x, z)− ϕt(y, z) = I + II, where

I =
1∫

E ϕ
( |x−w|

t

)
dσ(w)

(
ϕ
( |x− z|

t

)
− ϕ

( |y − z|
t

))
, (1.61)

II = ϕ
( |y − z|

t

)( 1∫
E ϕ
( |x−w|

t

)
dσ(w)

− 1∫
E ϕ
( |y−w|

t

)
dσ(w)

)
. (1.62)

For the first term, using the AR property, we obtain

|I| . t−n‖ϕ′‖L∞(R)

∣∣∣∣ |x− z|t
− |y − z|

t

∣∣∣∣ . t−n−1‖ϕ′‖L∞(R)|x− y|.

For the second term we may write

|II| . t−2n

∫
E

∣∣∣ϕ( |x− w|
t

)
− ϕ

( |y − w|
t

)∣∣∣ dσ(w),

where we have used again the AR property. In fact, the last integral is supported
in ∆(x, 4t), thus

|II| . t−2n‖ϕ′‖L∞(R)

∫
∆(x,4t)

∣∣∣ |x− w|
t

− |y − w|
t

∣∣∣ dσ(w) . t−n−1‖ϕ′‖L∞(R)|x− y|.

Since ϕ is fixed, for every t > 0 we have proved that |ϕt(x, z)−ϕt(y, z)| . t−n−1|x−y|.
Let us recall (1.60), using Hölder’s inequality we have that

|Ptg(x)− Ptg(y)| . t−n−1|x− y|
∫

∆(x,4t)
|g(z)| dσ(z) . t

−n
q
−1‖g‖Lq(E)|x− y|.

This, together with (1.59) shows that Ptg ∈ Lip(E), and (b) is proved.
As before, let g ∈ Lq(E), and observe that |Ptg− g| .Mg+ |g| ∈ Lq(E). Given

x ∈ E, since
∫
E ϕt(x, y) dσ(y) = 1 we have that

|Ptg(x)− g(x)| =
∣∣∣∣ ∫

E
ϕt(x, y)(g(y)− g(x)) dσ(y)

∣∣∣∣ . −∫
∆(x,2t)

|g(y)− g(x)|. (1.63)

As t → 0+, the right hand side of (1.63) tends to zero σ-a.e. x ∈ E by Lebesgue’s
differentiation theorem. The dominated convergence theorem proves (c). We also
note that (d) is an automatic consequence of the fact that for g ∈ Cc(E), the right
hand side of (1.63) tends to zero for every x ∈ E as t→ 0+.

Finally, suppose that supp g ⊆ ∆(x0, r0), and let x ∈ E be such that |x− x0| ≥
r0 + 2t. Note that the integral in (1.56) is supported in the set ∆(x0, r0)∩∆(x, 2t),
which is empty since in other case, given y ∈ ∆(x0, r0) ∩∆(x, 2t) we would have

r0 + 2t ≤ |x− x0| ≤ |x− y|+ |y − x0| < 2t+ r0,

which leads to a contradiction. Therefore Ptg(x) = 0 for |x−x0| ≥ r0 + 2t, and that
proves the last property.



46 Chapter 1. Preliminaries



Chapter 2

Perturbations of symmetric
operators

In this chapter we extend the Carleson perturbation theorem of [FKP] to the setting
of 1-sided chord-arc domains. Implicit in the proof it is also obtained a “small
perturbation” result. The vanishing trace Carleson perturbation of [Dah2] is studied
in the last section. The main theorem of this chapter can be stated as follows.

Theorem 2.1. Let Ω ⊂ Rn+1, n ≥ 2, be a 1-sided CAD (cf. Definition 1.4). Let
Lu = −div(A∇u) and L0u = −div(A0∇u) be real elliptic operators (cf. Definition
1.20) such that A and A0 are symmetric. Define the disagreement between A and
A0 in Ω by

%(A,A0)(X) := sup
Y ∈B(X,δ(X)/2)

|A(Y )−A0(Y )|, X ∈ Ω, (2.1)

where δ(X) := dist(X, ∂Ω), and write

|||%(A,A0)||| := sup
x∈∂Ω

0<r<diam(∂Ω)

1

σ(B(x, r) ∩ ∂Ω)

∫∫
B(x,r)∩Ω

%(A,A0)(X)2

δ(X)
dX. (2.2)

Suppose that there exists p, 1 < p < ∞, such that the elliptic measure ωL0 ∈
RHp(∂Ω) (cf. Definition 1.34). The following hold:

(a) If |||%(A,A0)||| < ∞, then there exists 1 < q < ∞ such that ωL ∈ RHq(∂Ω).
Here, q and the implicit constant depend only on dimension, p, the 1-sided
CAD constants, the ellipticity of L0 and L, |||%(A,A0)|||, and the constant in
ωL0 ∈ RHp(∂Ω).

(b) There exists ε1 > 0 (depending only on dimension, p, the 1-sided CAD con-
stants, the ellipticity of L0 and L, and the constant in ωL0 ∈ RHp(∂Ω)) such
that if one has |||%(A,A0)||| ≤ ε1, then ωL ∈ RHp(∂Ω), with the implicit con-
stant depending only on dimension, p, the 1-sided CAD constants, the ellip-
ticity of L0 and L, and the constant in ωL0 ∈ RHp(∂Ω).

47
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2.1 Proof of Theorem 2.1(a), Carleson perturbation

We will prove Theorem 2.1(a) with the help of Lemma 1.18. In this way we consider
the measure m = {γQ}Q∈D(∂Ω), where

γQ :=
∑
I∈W∗Q

supI∗ |E|2

`(I)
|I|, Q ∈ D(∂Ω), (2.3)

and E(Y ) = A(Y ) − A0(Y ). We are going to show that m is indeed a discrete
Carleson measure with respect to σ, as it is required in the hypotheses of Lemma
1.18.

Lemma 2.2. Suppose that Ω ⊂ Rn+1 is a 1-sided CAD, let L0 and L be elliptic
operators whose disagreement in Ω is given by the function a := %(A,A0) defined in
(2.1), and suppose that |||a||| < ∞, see (3.3). Then, there exists κ > 0 (depending
only on dimension and the 1-sided CAD constants) such that for every Q0 ∈ D(∂Ω)
with `(Q0) < diam(∂Ω)/κ0 (see (1.6)), the collection m = {γQ}Q∈D(∂Ω) given by
(2.3) defines a discrete Carleson measure m ∈ C(Q0) with ‖m‖C(Q0) ≤ κ|||a|||.

Proof. Let Q0 ∈ D(∂Ω) with `(Q0) < diam(∂Ω)/κ0. First, note that for every
I ∈ W and every Y ∈ I we have that supI∗ |E| ≤ a(Y ). Indeed, since 4 diam(I) ≤
dist(I, ∂Ω) (see (1.4)), we know that I∗ ⊂ {X ∈ Ω : |X − Y | < δ(Y )/2}. Given
Q ∈ DQ0 we can write

m(DQ) =
∑

Q′∈DQ

γQ′ =
∑

Q′∈DQ

∑
I∈W∗

Q′

supI∗ |E|2

`(I)
|I|

.
∑

Q′∈DQ

∑
I∈W∗

Q′

∫∫
I

a(Y )2

δ(Y )
dY ≤

∑
Q′∈DQ

∫∫
UQ′

a(Y )2

δ(Y )
dY .

∫∫
TQ

a(Y )2

δ(Y )
dY. (2.4)

where we have used that the family {UQ′}Q′∈DQ has bounded overlap. Indeed, if Y ∈
UQ′ ∩UQ′′ then `(Q′) ≈ δ(Y ) ≈ `(Q′′) and dist(Q′, Q′′) ≤ dist(Y,Q′) + dist(Y,Q′′) .
`(Q′)+`(Q′′) ≈ `(Q′). These readily imply that Y can be only in a bounded number
of UQ′ ’s.

On the other hand, by (1.6) we know that TQ ⊂ B(xQ, κ0rQ)∩Ω. Also, κ0rQ ≤
κ0`(Q) ≤ κ0`(Q0) < diam(∂Ω). Using the AR property, from (2.4) we conclude that

m(DQ) .
∫∫
B(xQ,κ0rQ)∩Ω

a(Y )2

δ(Y )
dY ≤ |||a|||σ(∆(xQ, κ0rQ)) . |||a|||σ(Q),

Taking the supremum over Q ∈ DQ0 , we obtain ‖m‖C(Q0) ≤ κ|||a||| with κ depending
on the allowable parameters. This completes the proof.

Remark 2.3. We choose M0 > 2κ0/c, which will remain fixed during the proof of
Theorem 2.1(a), where c is the corkscrew constant and κ0 as in (1.6). Given an
arbitrary Q0 ∈ D(∂Ω) with `(Q0) < diam(∂Ω)/M0 we let BQ0 = B(xQ0 , rQ0) with
rQ0 ≈ `(Q0) as in (1.1). Let XM0∆Q0

be the corkscrew point relative to M0∆Q0

(note that M0rQ0 ≤ M0`(Q0) < diam(∂Ω)). By our choice of M0, it is clear that
δ(XM0∆Q0

) ≥ cM0rQ0 > 2κ0rQ0 . Hence, by (1.6),

XM0∆Q0
∈ Ω \B∗Q0

⊂ Ω \ T ∗∗Q0
. (2.5)
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As noted before, we will prove Theorem 2.1(a) using Lemma 1.18. To do that
we need to split the proof in several steps.

2.1.1 Step 0

We first make a reduction which will allow us to use some qualitative properties of
the elliptic measure. Fix j ∈ N (large enough, as we eventually let j → ∞) and
L̃ = Lj be the operator defined by L̃u = −div(Ã∇u), with

Ã(Y ) = Aj(Y ) :=

{
A(Y ) if Y ∈ Ω, δ(Y ) ≥ 2−j ,
A0(Y ) if Y ∈ Ω, δ(Y ) < 2−j .

(2.6)

Note that the matrix Aj is uniformly elliptic with constant Λj = max{ΛA,ΛA0},
where ΛA and ΛA0 are the ellipticity constants of A and A0 respectively. Recall that
ωL0 ∈ RHp(∂Ω) and that L̃ ≡ L0 in {Y ∈ Ω : δ(Y ) < 2−j}. Therefore, applying
Lemma 1.30(e) we have that ω

L̃
� σ and there exists kX

L̃
:= dωX

L̃
/dσ. The fact

that L̃ verifies these qualitative hypotheses will be essential in the following steps.
At the end of Step 4 we will have obtained the desired conclusion for the operator
L̃ = Lj , with constants independent of j ∈ N, and in Step 5 we will prove it for L
via a limiting argument. From now on, j ∈ N will be fixed and we will focus on the
operator L̃ = Lj .

2.1.2 Step 1

Let us fix Q0 ∈ D(∂Ω) with `(Q0) < diam(∂Ω)/M0 and M0 as in Remark 2.3,
and set X0 := XM0∆Q0

so that (2.5) holds. Inspired by Lemma 1.18 we also fix
F = {Qi} ⊂ DQ0 a family of disjoint dyadic subcubes such that

‖mF‖C(Q0) = sup
Q∈DQ0

m(DF ,Q)

σ(Q)
≤ ε1, (2.7)

with ε1 > 0 sufficiently small to be chosen and where m = {γQ}Q∈D with γQ defined
in (2.3). We modify the operator L0 inside the region ΩF ,Q0 (see (1.5)), by defining

L1 = LF ,Q0
1 as L1u = −div(A1∇u), where

A1(Y ) :=

{
Ã(Y ) if Y ∈ ΩF ,Q0 ,
A0(Y ) if Y ∈ Ω \ ΩF ,Q0 ,

and Ã = Aj as in (2.6). By construction, it is clear that E1 := A1 − A0 verifies
|E1| ≤ |E|1ΩF,Q0

and also E1(Y ) = 0 if δ(Y ) < 2−j . Hence, the support of A1 − A0

is contained in a compact subset contained in Ω.

Our goal in Step 1 is to prove ‖kXQ0
L1
‖Lp(Q0) . σ(Q0)−1/p′ (uniformly in j), using

that ωL0 ∈ RHp(∂Ω). Note that by Harnack’s inequality and Lemma 1.30(e), we

have that ωL1 � σ and ‖kXQ0
L1
‖Lp(Q0) ≤ Cj < ∞ for kXL1

:= dωXL1
/dσ. We will use

this qualitatively, and the point of this step is to show that we can actually remove
the dependence on j.

Take an arbitrary 0 ≤ g ∈ Lp
′
(Q0) such that ‖g‖Lp′ (Q0) = 1. Without loss

of generality we may assume that g is defined in Ω with g ≡ 0 in Ω \ Q0. Let
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∆̃Q0 := ∆(xQ0 , CrQ0) (see (1.1)) and take 0 < t < CrQ0/2. Set gt = Ptg (cf.
Lemma 1.41) and consider the solutions

ut0(X) =

∫
∂Ω
gt(y) dωXL0

(y), ut1(X) =

∫
∂Ω
gt(y) dωXL1

(y), X ∈ Ω. (2.8)

By Lemma 1.41, gt ∈ Lip(∂Ω) with supp(gt) ⊂ 2∆̃Q0 , hence gt ∈ Lipc(∂Ω) ⊂
H1/2(∂Ω) ∩ Cc(∂Ω). Recall that E1 = A1 − A0 verifies |E1| ≤ |E|1ΩF,Q0

and also

E1(Y ) = 0 if δ(Y ) < 2−j . This, (2.5), and (1.6) allow us to invoke Lemma 1.39 (see
Remark 1.40), which along with Cauchy-Schwarz’s inequality yields

F tQ0
(X0) := |ut1(X0)− ut0(X0)| =

∣∣∣∣ ∫∫
Ω

(A0 −A1)(Y )∇YGL1(Y,X0) · ∇ut0(Y ) dY

∣∣∣∣
(2.9)

≤
∑

Q∈DF,Q0

∑
I∈W∗Q

∫∫
I∗
|E(Y )||∇YGL1(Y,X0)||∇ut0(Y )| dY,

≤
∑

Q∈DF,Q0

∑
I∈W∗Q

sup
I∗
|E|
(∫∫

I∗
|∇YGL1(Y,X0)|2 dY

)1/2(∫∫
I∗
|∇ut0(Y )|2 dY

)1/2

,

Note that by our choice of X0 = XM0∆Q0
, see (2.5), the function v(Y ) = GL1(Y,X0)

is a weak solution of L1v = 0 in I∗∗∗ for every I ∈ W∗Q with Q ∈ DQ0 . Therefore,
by Caccioppoli’s and Harnack’s inequalities, the fact that L1 is symmetric (hence
GL1(XQ, X0) = GL1(X0, XQ)), and Lemma 1.30(a), we obtain

∫∫
I∗
|∇YGL1(Y,X0)|2 dY . `(I)n−1GL1(XQ, X0)2 ≈

(
ωX0
L1

(Q)

σ(Q)

)2

|I|. (2.10)

Also, since δ(Y ) ≈ `(I) ≈ `(Q) for every Y ∈ I∗ such that I ∈ W∗Q,∫∫
I∗
|∇ut0(Y )|2 dY ≈ `(I)−1`(Q)n

∫∫
I∗
|∇ut0(Y )|2δ(Y )1−n dY. (2.11)

Recalling (2.3), (1.21), we define the sequences α = {αQ}Q∈DQ0
, β = {βQ}Q∈DQ0

by

αQ :=
ωX0
L1

(Q)

σ(Q)

(
`(Q)n

∫∫
UQ

|∇ut0(Y )|2δ(Y )1−n dY

)1/2

and βQ := γ
1/2
F ,Q. (2.12)

Using Cauchy-Schwarz’s inequality and the bounded overlap of the cubes I∗, one
can see that (2.9), (2.10), (2.11), and (2.12) yield

F tQ0
(X0) .

∑
Q∈DQ0

ωX0
L1

(Q)

σ(Q)
γ

1/2
F ,Q

(
`(Q)n

∫∫
UQ

|∇ut0(Y )|2δ(Y )1−n dY

)1/2

=
∑

Q∈DQ0

αQ βQ .
∫
Q0

AQ0α(x)CQ0β(x) dσ(x), (2.13)
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where in the last estimate we have used Lemma 1.19, and where we recall that
AQ0 , CQ0 were defined in (1.24). Using the bounded overlap property of UQ with
Q ∈ DQ0 , we have that

AQ0α(x) =

( ∑
x∈Q∈DQ0

(
ωX0
L1

(Q)

σ(Q)

)2 ∫∫
UQ

|∇ut0(Y )|2δ(Y )1−n dY

)1/2

.Md
Q0
kX0
L1

(x)SQ0u
t
0(x), (2.14)

where

Md
Q0
f(x) := sup

x∈Q∈DQ0

−
∫
Q
|f(y)| dσ(y) (2.15)

is the localized dyadic maximal Hardy-Littlewood operator.
On the other hand, (2.7) yields

CQ0β(x) = sup
x∈Q∈DQ0

(
1

σ(Q)

∑
Q′∈DQ

γF ,Q′

)1/2

≤ ‖mF‖1/2C(Q0) ≤ ε
1/2
1 . (2.16)

Plugging (2.14), (2.16) into (2.13), using Hölder’s inequality we conclude that

F tQ0
(X0) . ε

1/2
1 ‖SQ0u

t
0‖Lp′ (Q0) ‖M

d
Q0
kX0
L1
‖Lp(Q0) . ε

1/2
1

∥∥kX0
L1

∥∥
Lp(Q0)

, (2.17)

where we have used that Md
Q0

is bounded in Lp(Q0) and that

‖SQ0u
t
0‖Lp′ (Q0) . ‖ÑQ0,∗u

t
0‖Lp′ (Q0) . ‖gt‖Lp′ (Q0) . ‖g‖Lp′ (Q0) = 1,

which follows from (1.46), Lemma 1.35(a), ωL0 ∈ RHp(∂Ω), (2.8), and Lemma 1.41.
From (2.9), (2.17), and for all 0 < t < CrQ0/2,

0 ≤ ut1(X0) ≤ F tQ0
(X0) + ut0(X0) . ε

1/2
1 ‖k

X0
L1
‖Lp(Q0) + ‖kX0

L0
‖
Lp(2∆̃Q0

)
,

where we have used Hölder’s inequality, that ‖gt‖Lp′ (∂Ω) . 1 and Lemma 1.41, and
the implicit constants do not depend on t. Next, using the previous estimate and
Hölder’s inequality we see that∫

∂Ω
g(y)kX0

L1
(y) dσ(y) = ut1(X0) +

∫
∂Ω

(g(y)− gt(y))kX0
L1

(y) dσ(y)

. ε
1/2
1 ‖k

X0
L1
‖Lp(Q0) + ‖kX0

L0
‖
Lp(2∆̃Q0

)
+ ‖g − gt‖Lp′ (∂Ω)‖k

X0
L1
‖
Lp(2∆̃Q0

)
.

Note that ‖kX0
L1
‖
Lp(2∆̃Q0

)
≤ Cj < ∞ by Lemma 1.30(e) and Harnack’s inequality

(L0 ≡ L1 in {Y ∈ Ω : δ(Y ) < 2−j}). Recall that ‖g − gt‖Lp′ (∂Ω) → 0 as t → 0 (see

Lemma 1.41) and hence∫
∂Ω
g(y)kX0

L1
(y) dσ(y) . ε

1/2
1 ‖k

X0
L1
‖Lp(Q0) + ‖kX0

L0
‖
Lp(2∆̃Q0

)
.

Taking the supremum over 0 ≤ g ∈ Lp′(Q0) with ‖g‖Lp′ (Q0) = 1, the latter implies

‖kX0
L1
‖Lp(Q0) ≤ Cε

1/2
1 ‖k

X0
L1
‖Lp(Q0) + C‖kX0

L0
‖
Lp(2∆̃Q0

)
,
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with C depending only on dimension, p, the 1-sided CAD constants, the ellipticity of
L0 and L, and the constant in ωL0 ∈ RHp(∂Ω). As mentioned above, ‖kX0

L1
‖Lp(Q0) ≤

Cj < ∞, thus taking ε1 < C−2/4 we can hide the first term in the left hand
side, and consequently ‖kX0

L1
‖Lp(Q0) . ‖kX0

L0
‖
Lp(2∆̃Q0

)
. Recalling that X0 = XM0∆Q0

we have that δ(XQ0) ≈ `(Q0), δ(X0) ≈ M0`(Q0) ≥ `(Q0), δ(X
2∆̃Q0

) ≈ `(Q0).

Also, |X0 − XQ0 | + |X0 − X2∆̃Q0
| . M0`(Q0). Hence, using Harnack’s inequality

(with constants depending on M0, which has been already fixed), and the fact that
ωL0 ∈ RHp(∂Ω), we conclude that∫

Q0

k
XQ0
L1

(y)p dσ(y) ≈
∫
Q0

kX0
L1

(y)p dσ(y) .
∫

2∆̃Q0

kX0
L0

(y)p dσ(y)

≈
∫

2∆̃Q0

k
X

2∆̃Q0
L0

(y)p dσ(y) . σ(2∆̃Q0)1−p ≈ σ(Q0)1−p. (2.18)

2.1.3 Self-improvement of Step 1

The goal of this section is to extend (2.18) and show that it holds with the integration
taking place in an arbitrary Q ∈ DQ0 , but with the pole of the elliptic measure being
XQ0 . In doing this, we will lose the exponent p, showing that a RHq inequality holds
for some fixed q.

Fix Q ∈ DQ0 , and let LQ1 be the operator defined by LQ1 u = −div(AQ1 ∇u), where

AQ1 (Y ) :=

{
Ã(Y ) if Y ∈ ΩF ,Q,
A0(Y ) if Y ∈ Ω \ ΩF ,Q,

with Ã = Ãj as in (2.6). Since LQ1 ≡ L0 in {Y ∈ Ω : δ(Y ) < 2−j}, Lemma 1.30(e)
implies that ω

LQ1
� σ, hence there exists kX

LQ1
= dωX

LQ1
/dσ. Our first goal is to obtain

∫
Q
k
XQ

LQ1
(y)p dσ(y) . σ(Q)1−p. (2.19)

We consider two cases. Suppose first that Q ⊂ Qi for some Qi ∈ F , then ΩF ,Q = Ø,

LQ1 ≡ L0 in Ω, and (2.19) is a consequence of the fact that ωL0 ∈ RHp(∂Ω). In other
case, that is, if Q ∈ DF ,Q0 , we define FQ = {Qi ∈ F : Qi ∩ Q 6= Ø} = {Qi ∈ F :

Qi ( Q}. Note that A0 −AQ1 is supported in ΩFQ,Q = ΩF ,Q, and clearly

‖mFQ‖C(Q) = sup
Q′∈DQ

mFQ(DQ′)
σ(Q′)

≤ sup
Q′∈DQ0

mF (DQ′)
σ(Q′)

≤ ε1.

We can then repeat the argument of Step 1 for the operator LQ1 replacing L1, and
with Q and FQ in place of respectively Q0 and F . Hence, the estimate (2.18)
becomes (2.19).

We next notice that using [HM3, Lemma 3.55], there exists 0 < κ̂1 < κ1 (see
(1.6)), depending only on the allowable parameters, such that κ̂1BQ ∩ ΩF ,Q0 =
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κ̂1BQ ∩ ΩF ,Q. This easily gives that L1 ≡ LQ1 in κ̂1BQ ∩ Ω. Using now Lemma
1.30(e) and Harnack’s inequality, we have

k
XQ
L1

(y) ≈ kXQ
LQ1

(y), for σ-a.e. y ∈ η∆Q, (2.20)

where η = κ̂1/(2κ0) and κ0 is as in (1.7), and hence η∆Q ⊂ ∆Q ⊂ Q. Combining
(2.19), (2.20), Lemma 1.26, Lemma 1.30(b) and Harnack’s inequality we obtain(
−
∫
η∆Q

k
XQ
L1

(y)p dσ(y)

)1/p

.

(
−
∫
Q
k
XQ

LQ1
(y)p dσ(y)

)1/p

. σ(Q)−1

. σ(Q)−1ω
XQ
L1

(Q) . −
∫
η∆Q

k
XQ
L1

(y) dσ(y).

Now, using Remark 1.31 we have that(
−
∫
η∆Q

k
XQ0
L1

(y)p dσ(y)

)1/p

≤ C1−
∫
η∆Q

k
XQ0
L1

(y) dσ(y), (2.21)

with C1 > 1 depending only on dimension, p, the 1-sided CAD constants, the
ellipticity of L0 and L, and the constant in ωL0 ∈ RHp(∂Ω). Note that (2.21)
holds then for every Q ∈ DQ0 . Also, by means of Lemma 1.26, Lemma 1.30(b) and

Harnack’s inequality, there exists Cη > 1 such that 0 < ω
XQ0
L1

(Q) ≤ Cηω
XQ0
L1

(η∆Q)
for every Q ∈ DQ0 . The following result is a generalization of [HM2, Lemma B.7]
to our dyadic setting. In what follows, given 0 ≤ v ∈ L1

loc(Ω) and given F ⊂ ∂Ω we
write v(F ) :=

∫
F v(y)dσ(y).

Lemma 2.4. Suppose that Ω ⊂ Rn+1 is an open set such that ∂Ω satisfies the AR
property. Fix 0 < η < 1, Q0 ∈ D(∂Ω) and let v ∈ L1(Q0) be such that 0 < v(Q) ≤
C0v(η∆Q) for every Q ∈ DQ0, for some uniform C0 ≥ 1. Suppose also that there
exist C1 ≥ 1 and 1 < p <∞ such that(

−
∫
η∆Q

v(y)p dσ(y)

)1/p

≤ C1−
∫
η∆Q

v(y) dσ(y), Q ∈ DQ0 , (2.22)

then v ∈ Adyadic
∞ (Q0), with the implicit constants depending on dimension, p, C0,

C1, η and the AR constant.

Proof. We first prove that for every Q ∈ DQ0 and every Borel set F ⊂ η∆Q, there
holds

v(F )

v(η∆Q)
≤ C1

(
σ(F )

σ(η∆Q)

)1/p′

. (2.23)

Indeed, using Hölder’s inequality together with (2.22), we obtain

v(F )

σ(η∆Q)
=

1

σ(η∆Q)

∫
F
v(y) dσ(y) ≤

(
σ(F )

σ(η∆Q)

)1/p′(
−
∫
η∆Q

v(y)p dσ(y)
)1/p

≤ C1

(
σ(F )

σ(η∆Q)

)1/p′

−
∫
η∆Q

v(y) dσ(y),
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which is equivalent to (2.23).

To obtain that v ∈ Adyadic
∞ (Q0), we observe that σ(Q) ≤ Cσ(η∆Q) with C > 1

depending only on AR and n. Fix then 0 < α < (CCp
′

1 )−1 and take E ⊂ Q such
that σ(E) > (1−α)σ(Q). Writing E0 = E ∩η∆Q and F0 = η∆Q \E, it is clear that

(1− α)
σ(Q)

σ(η∆Q)
<

σ(E)

σ(η∆Q)
≤ σ(E0)

σ(η∆Q)
+
σ(Q \ η∆Q)

σ(η∆Q)
=

σ(E0)

σ(η∆Q)
+

σ(Q)

σ(η∆Q)
− 1,

and hence
σ(F0)

σ(η∆Q)
= 1− σ(E0)

σ(η∆Q)
< α

σ(Q)

σ(η∆Q)
≤ C α. (2.24)

Combining (2.23) and (2.24) we obtain v(F0)/v(η∆Q) < C1(Cα)1/p′ . This and the
fact that v(Q) ≤ C0v(η∆Q) yield

v(E)

v(Q)
≥
v(η∆Q)

v(Q)

v(E0)

v(η∆Q)
≥ C−1

0

(
1− v(F0)

v(η∆Q)

)
> C−1

0 (1− C1(Cα)1/p′) =: 1− β,

with 0 < β < 1 by our choice of α. This eventually proves that v ∈ Adyadic
∞ (Q0) and

the proof is complete.

Using Lemma 2.4 we obtain that ω
XQ0
L1
∈ Adyadic

∞ (Q0). This and Lemma 1.13(b)

yield PFω
XQ0
L1
∈ Adyadic

∞ (Q0) and this finishes the first step.

2.1.4 Step 2

We define a new operator L2 by changing L1 below the region ΩF ,Q0 . More precisely,
set L2u = −div(A2∇u) with

A2(Y ) :=

{
Ã(Y ) if Y ∈ TQ0 \ ΩF ,Q0 ,
A1(Y ) if Y ∈ Ω \ (TQ0 \ ΩF ,Q0).

Note that by construction, A2 = Ã in TQ0 and A2 = A0 in Ω \ TQ0 . Our goal is to

prove that PFω
XQ0
L2
∈ Adyadic

∞ (Q0) by using the following lemma.

Lemma 2.5 ([HMT2]). Suppose that Ω ⊂ Rn+1 is a 1-sided CAD. Given Q0 ∈
D(∂Ω) and F = {Qi} ⊂ DQ0, a family of pairwise disjoint dyadic cubes, let PF be
the corresponding projection operator defined in (1.14). Given an elliptic operator L,

we denote by ωL = ω
AQ0
L,Ω and ωL,? = ω

AQ0
L,ΩF,Q0

the elliptic measures of L with respect

to Ω and ΩF ,Q0 with fixed pole at the corkscrew point AQ0 ∈ ΩF ,Q0 (cf. [HM3,

Proposition 6.4]). Let νL = ν
AQ0
L be the measure defined by

νL(F ) = ωL,?

(
F \

⋃
Qi∈F

Qi

)
+
∑
Qi∈F

ωL(F ∩Qi)
ωL(Qi)

ωL,?(Pi), F ⊂ Q0, (2.25)

where Pi is the cube produced by [HM3, Proposition 6.7]. Then PFνL depends only
on ωL,? and not on ωL. More precisely,

PFνL(F ) = ωL,?

(
F \

⋃
Qi∈F

Qi

)
+
∑
Qi∈F

σ(F ∩Qi)
σ(Qi)

ωL,?(Pi), F ⊂ Q0. (2.26)
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Moreover, there exists θ > 0 such that for all Q ∈ DQ0 and all F ⊂ Q, we have(
PFωL(F )

PFωL(Q)

)θ
.
PFνL(F )

PFνL(Q)
.
PFωL(F )

PFωL(Q)
. (2.27)

For k = 1, 2, we write ωLk = ω
AQ0
Lk,Ω

and ωLk,? = ω
AQ0
Lk,ΩF,Q0

for the elliptic measures

of Lk with respect to the domains Ω and ΩF ,Q0 , with fixed pole at AQ0 (see [HM3,
Proposition 6.4]). Note that since A1 = A2 in ΩF ,Q0 then ωL1,? = ωL2,?. Finally let

νLk = ν
AQ0
Lk

be the corresponding measures defined as in (2.25), and observe that
(2.26) implies PFνL1 = PFνL2 .

In Step 1 we have shown that PFω
XQ0
L1
∈ Adyadic

∞ (Q0), thus Harnack’s inequality

and (2.27) give that PFνL2 = PFνL1 ∈ Adyadic
∞ (Q0). Another use of (2.27) and

Harnack’s inequality allows us to obtain that PFω
XQ0
L2

≈ PFωL2 ∈ Adyadic
∞ (Q0).

Note that by Lemma 1.30(b), Harnack’s inequality and Lemma 1.13(a) it follows

that PFω
XQ0
L2

is dyadically doubling in Q0.

Thus, [HM3, Lemma B.7] implies that there exist θ, θ′ > 0 such that

(
σ(E)

σ(Q)

)θ
.
PFω

XQ0
L2

(E)

PFω
XQ0
L2

(Q)
.

(
σ(E)

σ(Q)

)θ′
, Q ∈ DQ0 , E ⊂ Q. (2.28)

2.1.5 Step 3

To complete the proof it remains to change the operator outside TQ0 . Let us intro-
duce L3u = −div(A3∇u), where

A3(Y ) :=

{
A2(Y ) if Y ∈ TQ0 ,

Ã(Y ) if Y ∈ Ω \ TQ0 ,

and note that L3 ≡ L̃ in Ω.

We want to prove that for every 0 < ε < 1, there exists Cε > 1 such that

E ⊂ Q0,
σ(E)

σ(Q0)
≥ ε =⇒

PFω
XQ0
L3

(E)

PFω
XQ0
L3

(Q0)
≥ 1

Cε
. (2.29)

Let 0 < ε < 1 and let E ⊂ Q0 be such that σ(E) ≥ εσ(Q0). First, we can disregard
the trivial case F = {Q0}:

PFω
XQ0
L3

(E)

PFω
XQ0
L3

(Q0)
=

σ(E)
σ(Q0) ω

XQ0
L3

(Q0)

σ(Q0)
σ(Q0) ω

XQ0
L3

(Q0)
=

σ(E)

σ(Q0)
≥ ε.

Suppose then that F ( DQ0 \ {Q0}. For τ � 1 we consider the sets

Στ :=
{
x ∈ Q0 : dist(x, ∂Ω \Q0) < τ`(Q0)

}
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and Q̃0 := Q0 \
⋃
Q′∈Iτ Q

′, where

Iτ =
{
Q′ ∈ DQ0 : τ`(Q0) < `(Q′) ≤ 2τ`(Q0), Q′ ∩ Στ 6= Ø

}
.

By construction, Στ ⊂
⋃
Q′∈Iτ Q

′, and there exists C = C(n,AR) > 0 such that
every Q′ ∈ Iτ satisfies Q′ ⊂ ΣCτ . Using Lemma 1.6(f), for τ = τ(ε) > 0 sufficiently
small we have

σ(Q0 \ Q̃0) ≤ σ(ΣCτ ) ≤ C1(Cτ)ησ(Q0) ≤ ε

2
σ(Q0),

and letting F = E ∩ Q̃0, it follows that

εσ(Q0) ≤ σ(E) ≤ σ(F ) + σ(Q0 \ Q̃0) ≤ σ(F ) +
ε

2
σ(Q0).

Hence σ(F )/σ(Q0) ≥ ε/2 and by (2.28), we conclude that

PFω
XQ0
L2

(F )

PFω
XQ0
L2

(Q0)
&

(
σ(F )

σ(Q0)

)θ
≥
(ε

2

)θ
. (2.30)

We claim that there exists cε > 0 such that PFω
XQ0
L3

(F ) ≥ cεPFω
XQ0
L2

(F ). As-
suming this momentarily, we easily obtain (2.29):

PFω
XQ0
L3

(E)

PFω
XQ0
L3

(Q0)
≥ PFω

XQ0
L3

(F ) ≥ cεPFω
XQ0
L2

(F ) & cε
PFω

XQ0
L2

(F )

PFω
XQ0
L2

(Q0)
≥ cε

(ε
2

)θ
=:

1

Cε
,

where we have used Lemma 1.26, (2.30), and the fact that PFω
XQ0
Lk

(Q0) = ω
XQ0
Lk

(Q0)
for k = 2, 3.

Let us then show our claim. First, since L2 ≡ L3 in TQ0 and Q̃0 ⊂ Q0 \ Στ ,
Lemma 1.32 yields

k
XQ0
L2

(y) ≈τ k
XQ0
L3

(y), for σ-a.e. y ∈ Q̃0. (2.31)

This and the fact that F ⊂ Q̃0 give

ω
XQ0
L2

(
F \

⋃
Qi∈F

Qi

)
≈τ ω

XQ0
L3

(
F \

⋃
Qi∈F

Qi

)
,

which in turn yields

PFω
XQ0
L3

(F ) = ω
XQ0
L3

(
F \

⋃
Qi∈F

Qi

)
+
∑
Qi∈F

σ(F ∩Qi)
σ(Qi)

ω
XQ0
L3

(Qi)

≥ cτω
XQ0
L2

(
F \

⋃
Qi∈F

Qi

)
+
∑
Qi∈F

σ(F ∩Qi)
σ(Qi)

ω
XQ0
L3

(Qi). (2.32)

It remains to estimate the second term. Note that in the sum we can restrict
ourselves to those cubes Qi ∈ F such that F ∩ Qi 6= Ø. We consider two cases. If

Qi ⊂ Q̃0, using (2.31) we have that ω
XQ0
L3

(Qi) ≈τ ω
XQ0
L2

(Qi). Otherwise, if Qi \ Q̃0 6=
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Ø, there exists Q′ ∈ Iτ such that Qi ∩ Q′ 6= Ø. Then Q′ ( Qi (if Qi ⊂ Q′ then

Qi ⊂ Q0 \ Q̃0, contradicting that F ∩ Qi 6= Ø and F ⊂ Q̃0) and, in particular,
`(Qi) > τ`(Q0). Let xQi be the center of Qi, and let ∆Qi = ∆(xQi , rQi) with

rQi ≈ `(Qi) as in (1.2). Take Q̂i ∈ DQi with xQi ∈ Q̂i, `(Q̂i) = 2−M`(Qi) and

M > 1 to be chosen. Notice that diam(Q̂i) ≈ 2−M`(Qi) ≈ 2−MrQi and clearly

rQi ≤ dist(xQi , ∂Ω \∆Qi) ≤ diam(Q̂i) + dist(Q̂i, ∂Ω \∆Qi)

≈ 2−MrQi + dist(Q̂i, ∂Ω \∆Qi).

Taking M � 1 large enough (depending on the AR constant), we conclude that

cτ`(Q0) < dist(Q̂i, ∂Ω \∆Qi) ≤ dist(Q̂i, ∂Ω \Q0) and hence Q̂i ⊂ Q0 \ Σcτ . Again,

using Lemma 1.32 and the fact that ω
XQ0
L2

is doubling in Q0 (which is a consequence
of Lemma 1.30(b) and Harnack’s inequality), we obtain

ω
XQ0
L3

(Qi) ≥ ω
XQ0
L3

(Q̂i) ≈τ ω
XQ0
L2

(Q̂i) & ω
XQ0
L2

(Qi).

In the two cases, since τ = τ(ε), (2.32) turns into

PFω
XQ0
L3

(F ) &ε ω
XQ0
L2

(
F \

⋃
Qi∈F

Qi

)
+
∑
Qi∈F

σ(Qi ∩ F )

σ(Qi)
ω
XQ0
L2

(Qi) = PFω
XQ0
L2

(F ),

completing the proof of our claim.

Recalling that L̃ ≡ L3, the previous argument proves the following proposition:

Proposition 2.6. There exists ε1 > 0 (depending only on dimension, p, the 1-sided
CAD constants, the ellipticity of L0 and L, and the constant in ωL0 ∈ RHp(∂Ω))
such that the following property holds: given ε ∈ (0, 1), there exists Cε > 1 such that
for every Q0 ∈ D(∂Ω) with `(Q0) < diam(∂Ω)/M0 and every F = {Qi} ⊂ DQ0 with
‖mF‖C(Q0) ≤ ε1, there holds

E ⊂ Q0,
σ(E)

σ(Q0)
≥ ε =⇒

PFω
XQ0

L̃
(E)

PFω
XQ0

L̃
(Q0)

≥ 1

Cε
, (2.33)

where L̃ = Lj is the operator defined in (2.6) and j ∈ N is arbitrary.

2.1.6 Step 4

What we have proved so far does not allow us to apply Lemma 1.18. We have to be
able to fix the pole relative to Q0, and show that (2.33) also holds for all Q ∈ DQ0 .

Proposition 2.7. Let ε1 be the parameter obtained in Proposition 2.6. Given
ε ∈ (0, 1), there exists Cε > 1 such that for every Q0 ∈ D(∂Ω) with `(Q0) <
diam(∂Ω)/M0, every Q ∈ DQ0, every F = {Qi} ⊂ DQ with ‖mF‖C(Q) ≤ ε1, there
holds

E ⊂ Q, σ(E)

σ(Q)
≥ ε =⇒

PFω
XQ0

L̃
(E)

PFω
XQ0

L̃
(Q)
≥ 1

Cε
, (2.34)
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where L̃ = Lj is the operator defined in (2.6) and j ∈ N is arbitrary. Consequently,

there exists 1 < q < ∞ such that ω
XQ0

L̃
∈ RHdyadic

q (Q0) uniformly in Q0 ∈ D(∂Ω)

provided `(Q0) < diam(∂Ω)/M0, and moreover ω
L̃
∈ RHq(∂Ω) .

Proof. Fix Q0 ∈ D(∂Ω) with `(Q0) < diam(∂Ω)/M0. Let 0 < ε < 1, Q ∈ DQ0 . Let
F = {Qi} ⊂ DQ be such that ‖mF‖C(Q) ≤ ε1 and let E ⊂ Q satisfy σ(E) ≥ εσ(Q).

By Lemma 1.30(c) (see also Remark 1.31) and the fact that PFω
XQ

L̃
(Q) = ω

XQ

L̃
(Q) ≈

1 by Lemma 1.26, we see that

PFω
XQ0

L̃
(E)

PFω
XQ0

L̃
(Q)

=
PFω

XQ0

L̃
(E)

ω
XQ0

L̃
(Q)

≈ ωXQ
L̃

(
E \

⋃
Qi∈F

Qi

)
+
∑
Qi∈F

σ(E ∩Qi)
σ(Qi)

ω
XQ

L̃
(Qi)

= PFω
XQ

L̃
(E) ≈

PFω
XQ

L̃
(E)

PFω
XQ

L̃
(Q)
≥ 1

Cε
,

where in the last inequality we have applied Proposition 2.6 to Q (replacing Q0)
satisfying `(Q) < diam(∂Ω)/M0. This shows (2.34), which together with Lemma
2.2 and our choice of M0, allows us to invoke Lemma 1.18 and eventually conclude

that ω
XQ0

L̃
∈ Adyadic

∞ (Q0) uniformly in Q0, provided `(Q0) < diam(∂Ω)/M0. Thus,

there exists 1 < q < ∞, such that ω
XQ0

L̃
∈ RHdyadic

q (Q0) uniformly in Q0 for the
same class of cubes and, in particular,∫

Q0

k
XQ0

L̃
(y)q dσ(y) . σ(Q0)1−q, Q0 ∈ D(∂Ω), `(Q0) <

diam(∂Ω)

M0
. (2.35)

When diam(∂Ω) < ∞, we need to extend the previous estimate to all cubes
with sidelength of the order of diam(∂Ω). Let us then take Q0 ∈ D(∂Ω) with
`(Q0) ≥ diam(∂Ω)/M0 and define the collection

IQ0 =
{
Q ∈ DQ0 :

diam(∂Ω)

2M0
≤ `(Q) <

diam(∂Ω)

M0

}
.

Note that Q0 =
⋃
Q∈IQ0

Q is a disjoint union and using the AR property we have

that

#IQ0

(
diam(∂Ω)

2M0

)n
≤

∑
Q∈IQ0

`(Q)n ≈
∑

Q∈IQ0

σ(Q) = σ(Q0) ≈ `(Q0)n . diam(∂Ω)n,

which implies #IQ0 .Mn
0 . We can use Harnack’s inequality to move the pole from

XQ0 to XQ for any Q ∈ IQ0 (with constants depending on M0, which is already
fixed), since δ(XQ0) ≈ `(Q0) > `(Q), δ(XQ) ≈ `(Q) and |XQ0 − XQ| . M0`(Q).
Hence, we obtain∫

Q0

k
XQ0

L̃
(y)q dσ(y) ≈

∑
Q∈IQ0

∫
Q
k
XQ

L̃
(y)q dσ(y) .

∑
Q∈IQ0

σ(Q)1−q

. #IQ0 diam(∂Ω)(1−q)n . σ(Q0)1−q,
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where we have used (2.35) for Q since `(Q) < diam(∂Ω)/M0, and the AR property.
Therefore, we have extended (2.35) to all Q0 ∈ D(∂Ω) and Remark 1.36 yields that
ω
L̃
∈ RHq(∂Ω), where L̃ = Lj and the implicit constants are independent of j ∈ N.

2.1.7 Step 5

In the previous step we have proved that ω
L̃
∈ RHq(∂Ω) where L̃ = Lj and the

implicit constants are all uniform in j. To complete the proof of Theorem 2.1(a) we
show that ωL ∈ RHq(∂Ω) using the following result:

Proposition 2.8. Let Ω ⊂ Rn+1, n ≥ 2, be a 1-sided CAD. Let L and L0 be real
symmetric elliptic operators with matrices A and A0 respectively. For every j ∈ N,
let Lju = −div(Aj∇u), with Aj(Y ) = A(Y ) if δ(Y ) ≥ 2−j and Aj(Y ) = A0(Y ) if
δ(Y ) < 2−j. Assume that there exists 1 < q <∞ such that ωLj = ωLj ,Ω ∈ RHq(∂Ω)
uniformly in j, for every j ≥ j0. That is, ωLj ,Ω � σ and there exists C such that∫

∆
kX∆

Lj ,Ω
(y)q dσ(y) ≤ Cσ(∆)1−q, kX∆

Lj ,Ω
:= dωX∆

Lj ,Ω
/dσ, (2.36)

for every j ≥ j0 and every ∆(x, r) with x ∈ ∂Ω and 0 < r < diam(∂Ω). Then
ωL,Ω ∈ RHq(∂Ω).

Proof. Fix B0 = B(x0, r0) with x0 ∈ ∂Ω and 0 < r0 < diam(∂Ω)/25, set ∆0 =
B0 ∩ ∂Ω, and consider the subdomain Ω? := T20∆0 . Using [HM3, Lemma 3.61] we
know that Ω? is a bounded 1-sided CAD, with constants depending only on those
of Ω. Applying Lemma 1.30(d) it follows that ωLj ,Ω? � σ in 4∆0 and also

k
X4∆0

Lj ,Ω
(y) ≈ kX4∆0

Lj ,Ω?
(y), for σ-a.e. y ∈ 4∆0.

Recalling (1.7) we know that 25B0∩Ω ⊂ Ω?. In particular, 10B0∩∂Ω = 10B0∩∂Ω?

and σ? := Hn
∂Ω?

coincides with σ in 4∆0. Therefore, (2.36) gives∫
4∆0

k
X4∆0

Lj ,Ω?
(y)q dσ?(y) ≈

∫
4∆0

k
X4∆0

Lj ,Ω
(y)q dσ(y) . σ(∆0)1−q (2.37)

uniformly in j ∈ N. Note also that δ?(X4∆0) = δ(X4∆0), where δ?(Y ) = dist(Y, ∂Ω?):

δ?(X4∆0) = dist(X4∆0 , 10B0 ∩ ∂Ω?) = dist(X4∆0 , 10B0 ∩ ∂Ω) = δ(X4∆0).

Define, for every g ∈ Cc(∂Ω?)

Φ(g) :=

∫
∂Ω?

g(y) dω
X4∆0
L,Ω?

(y).

Let g ∈ Lipc(∂Ω) be such that supp(g) ⊂ 4∆0 and extend g by zero to ∂Ω? \ 4∆0

(by a slight abuse of notation we will call the extension g) so that g ∈ Lipc(∂Ω?)
and define

u(X) =

∫
∂Ω?

g(y) dωXL,Ω?(y), uj(X) =

∫
∂Ω?

g(y) dωXLj ,Ω?(y), X ∈ Ω?.
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Since g ∈ Lipc(∂Ω?) ⊂ H1/2(∂Ω?)∩Cc(∂Ω?), using Lemma 1.38 with Ω? and slightly
moving X4∆0 if needed, we can write

u(X4∆0)− uj(X4∆0) =

∫∫
Ω?

(Aj −A)(Y )∇YGL,Ω?(Y,X4∆0) · ∇uj(Y ) dY.

Set Σj := {Y ∈ Ω : δ(Y ) < 2−j}, B̂0 := B(X4∆0 , δ(X4∆0)/2) take j1 ≥ j0 large

enough so that B̂0 ∩Σj1 = Ø. For every j ≥ j1, it is clear that |Aj −A| . 1Σj , with
constants depending only on the ellipticity of L0 and L. Also we have the a priori
estimate ‖∇uj‖L2(Ω?) . ‖g‖H1/2(∂Ω?) (see [HMT2]), where the implicit constant
depends on dimension, the AR constant, the ellipticity of L0 and L, and also of
diam(∂Ω?) ≈ r0). All these and Hölder’s inequality yield

|u(X4∆0)− uj(X4∆0)| .
∫∫

Ω?∩Σj

|∇YGL,Ω?(Y,X4∆0)||∇uj(Y )| dY (2.38)

. ‖∇GL,Ω?(·, X4∆0)1Σj‖L2(Ω?\B̂0)
‖g‖H1/2(∂Ω?).

Since Ω? is bounded, our Green function coincides with the one defined in [GW],
hence ∇GL,Ω?(·, X4∆0) ∈ L2(Ω? \ B̂0) (see (1.41)). Using the dominated conver-
gence theorem, the first factor of the right hand side of (2.38) tends to zero, hence
uj(X4∆0)→ u(X4∆0). Recalling then (2.37) we have that Hölder’s inequality gives

|u(X4∆0)| = lim
j→∞

|uj(X4∆0)| ≤ ‖g‖Lq′ (4∆0) sup
j∈N
‖kX4∆0

Lj ,Ω?
‖Lq(4∆0)

. ‖g‖Lq′ (4∆0)σ(∆0)−1/q′ .

and hence

|Φ(g)| . ‖g‖Lq′ (4∆0)σ(∆0)−1/q′ , g ∈ Lipc(∂Ω), supp(g) ⊂ 4∆0. (2.39)

Suppose now that g ∈ Lq′(2∆0) is such that supp(g) ⊂ 2∆0, and for 0 < t < r0

set gt = Ptg with Pt as in Lemma 1.41. Since gt ∈ Lip(∂Ω) satisfies supp(gt) ⊂ 4∆0,
we have by (2.39)

|Φ(gt)− Φ(gs)| = |Φ(gt − gs)| . ‖gt − gs‖Lq′ (4∆0)σ(∆0)−1/q′

. σ(∆0)−1/q′
(
‖Ptg − g‖Lq′ (∂Ω) + ‖Psg − g‖Lq′ (∂Ω)

)
for 0 < t, s < r0. Hence {Φ(gt)}t>0 is a Cauchy sequence, and we can define
Φ̃(g) := limt→0 Φ(gt). Clearly, Φ̃ is a well-defined linear operator and Φ̃ ∈ Lq′(2∆0)∗:

|Φ̃(g)| ≤ sup
0<t<r0

|Φ(gt)| . σ(∆0)−1/q′ sup
0<t<r0

‖Ptg‖Lq′ (4∆0) . σ(∆0)−1/q′‖g‖Lq′ (2∆0),

(2.40)
where we have used (2.39) and Lemma 1.41. Consequently, there exists h ∈ Lq(2∆0)
with ‖h‖Lq(2∆0) . σ(∆0)−1/q′ in such a way that Φ̃(g) =

∫
2∆0

g(y)h(y) dσ(y) for

every g ∈ Lq′(2∆0) such that supp(g) ⊂ 2∆0.

Let g ∈ Cc(∂Ω) with supp(g) ⊂ 2∆0 and we extend g by zero to ∂Ω? so that
g ∈ Cc(∂Ω?). From Lemma 1.41 applied to Ω?, ‖Ptg‖L∞(∂Ω?) ≤ ‖g‖L∞(2∆0) and
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Ptg(x) → g(x) as t → 0+ for every x ∈ ∂Ω?. These, the definition of Φ̃(g) and the

dominated convergence theorem with respect to ω
X4∆0
L,Ω?

, shows

Φ̃(g) = lim
t→0+

Φ(Ptg) = lim
t→0+

∫
∂Ω?

Ptg(y) dω
X4∆0
L,Ω?

(y) =

∫
∂Ω?

g(y) dω
X4∆0
L,Ω?

(y) = Φ(g),

(2.41)
hence Φ̃(g) = Φ(g) for every g ∈ Cc(∂Ω) with supp(g) ⊂ 2∆0.

Next, we see that ω̂ := ω
X4∆0
L,Ω?

� σ? = σ in 5
4∆0. Let E ⊂ 5

4∆0 and let ε > 0.

Since ω̂ and σ are both regular measures, there exist K ⊂ E ⊂ U ⊂ 3
2∆0 with K

compact and U open such that ω̂(U \K) + σ(U \K) < ε. Using Urysohn’s lemma
we construct g ∈ Cc(∂Ω) such that 1K ≤ g ≤ 1U and supp(g) ⊂ 2∆0. Thus, by
(2.41) and (2.40),

ω̂(E) ≤ ε+ ω̂(K) ≤ ε+

∫
∂Ω?

g(y) dω̂(y) = ε+ Φ(g) = ε+ Φ̃(g)

≤ ε+ ‖g‖Lq′ (2∆0)‖h‖Lq(2∆0) . ε+ (ε+ σ(E))1/q′σ(∆0)−1/q′ .

Letting ε → 0+ we conclude that ω̂(E) . σ(E)1/q′σ(∆0)−1/q′ and in particular
ω̂ � σ in 5

4∆0. Writing then k̂ = dω̂/dσ ∈ L1(5
4∆0) we have that∫

5
4

∆0

g(y)h(y) dσ(y) = Φ̃(g) = Φ(g) =

∫
∂Ω?

g(y) dω̂(y) =

∫
5
4

∆0

g(y) k̂(y) dσ(y),

(2.42)
for every g ∈ Cc(∂Ω) with supp(g) ⊂ 5

4 ∆0. Since (h− k̂)1 5
4

∆0
∈ L1(∂Ω) by Lemma

1.41 it follows that Pt((h− k̂)1 5
4

∆0
) −→ (h− k̂)1 5

4
∆0

in L1(∂Ω) as t→ 0+. Moreover,

for any x ∈ ∆0, if we let 0 < t < r0/8 so that supp(ϕt(x, ·)) ⊂ 5
4 ∆0, then (2.42)

applied to g = ϕt(x, ·) yields that Pt((h − k̂)1 5
4

∆0
)(x) = 0. All these allow to

conclude that k̂ = h σ-a.e. in ∆0, hence ‖k̂‖Lq(∆0) ≤ ‖h‖Lq(2∆0) . σ(∆0)−1/q′ .

Note that we showed before that ω̂ := ω
X4∆0
L,Ω?

� σ in ∆0, Lemma 1.30(d) and

Harnack’s inequality give ω
X∆0
L,Ω � σ in ∆0, and∫

∆0

k
X∆0
L,Ω (y)q dσ(y) ≈

∫
∆0

k
X∆0
L,Ω?

(y)q dσ(y) ≈
∫

∆0

k̂(y)q dσ(y) . σ(∆0)1−q,

Since ∆0 = ∆(x0, r0) with x0 ∈ ∂Ω and 0 < r0 < diam(∂Ω)/25 was arbitrary, we
have proved that ωL � σ and∫

∆
kX∆
L,Ω(y)q dσ(y) ≤ Cσ(∆)1−q, ∆ = ∆(x, r), 0 < r <

diam(∂Ω)

25
, (2.43)

for C > 1 depending only on dimension, p, the 1-sided CAD constants, the ellipticity
of L0 and L, and the constant in ωL0 ∈ RHp(∂Ω). By a standard covering argument
and Harnack’s inequality, (2.43) extends to all 0 < r < diam(∂Ω). Using Lemma
1.35, we have shown that ωL = ωL,Ω ∈ RHq(∂Ω) completing the proof of Proposition
2.8.
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2.2 Proof of Theorem 2.1(b), small perturbation

We first note that by Theorem 2.1(a), the fact that |||%(A,A0)||| ≤ ε1 gives that
ωL ∈ RHq(∂Ω) for some 1 < q < ∞, and in particular ωL � σ. The goal of
Theorem 2.1(b) is to see that if ε1 > 0 is taken sufficiently small, then we indeed
have that ωL ∈ RHp(∂Ω), that is, L0 and L are in the same reverse Hölder class.
To this aim, we split the proof in several steps.

Remark 2.9. We choose M0 > 400κ0/c, which will remain fixed during the proof
of Theorem 2.1(b), where c is the corkscrew constant and κ0 as in (1.6). Given
an arbitrary ball B0 = B(x0, r0) with x0 ∈ ∂Ω and 0 < r0 < diam(∂Ω)/M0, let
∆0 = B0 ∩ ∂Ω and take XM0∆Q0

the corkscrew point relative to M0∆Q0 (note

that M0r0 < diam(∂Ω)). If Q0 ∈ D∆0 then `(Q0) < 400 r0 < diam(∂Ω)/κ0. Also
δ(XM0∆0) ≥ cM0r0 > 2κ0r0, and by (1.6),

XM0∆0 ∈ Ω \ 2κ0B0 ⊂ Ω \ T ∗∗∆0
. (2.44)

2.2.1 Step 0

As done in Step 0 of the proof of Theorem 2.1(a), we let work with L̃ = Lj , associated
with the matrix Ã = Aj defined in (2.6). As there we have that ω

L̃
� σ, hence we

let kX
L̃

:= dωX
L̃
/dσ. This qualitative property will be essential in the first two steps.

At the end of Step 2 we will have obtained the desired conclusion for the operator
L̃ = Lj , with constants independent of j ∈ N, and in Step 3 we will transfer it to L
via a limiting argument. From now on, j ∈ N will be fixed and we will focus on the
operator L̃ = Lj .

2.2.2 Step 1

We start by fixing B0 = B(x0, r0) with x0 ∈ ∂Ω, 0 < r0 < diam(∂Ω)/M0 and M0

as in Remark 2.9. Set ∆0 = B0 ∩ ∂Ω and X0 := XM0∆Q0
so that (2.44) holds. We

define the operator L1u = L∆0
1 u = −div(A1∇u) where

A1(Y ) :=

{
Ã(Y ) if Y ∈ T∆0 ,
A0(Y ) if Y ∈ Ω \ T∆0 ,

and Ã = Aj as in (2.6). By construction, it is clear that E1 := A1 − A0 verifies
|E1| ≤ |E|1T∆0

, and also E1(Y ) = 0 if δ(Y ) < 2−j . Hence, the support of A1 −A0 is
contained in a compact subset of Ω.

In order to simplify the notation, we set ∆̂0 := 1
2∆∗0 = ∆(x0, κ0r0) and let

0 ≤ g ∈ Lp′(∆̂0) be such that ‖g‖
Lp′ (∆̂0)

= 1. Without loss of generality, we may

assume that g is defined in ∂Ω with g ≡ 0 in Ω\∆̂0. For 0 < t < κ0r0/2, we consider
gt = Ptg ≥ 0 with Ptg defined as in (1.56), together with the solutions

ut0(X) =

∫
∂Ω
gt(y) dωXL0

(y), ut1(X) =

∫
∂Ω
gt(y) dωXL1

(y), X ∈ Ω.
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By Lemma 1.41, gt ∈ Lip(∂Ω) verifies supp(gt) ⊂ ∆∗0 and hence gt ∈ Lipc(∂Ω) ⊂
H1/2(∂Ω) ∩ Cc(∂Ω). Since E1 = A1 − A0 verifies |E1| ≤ |E|1T∆0

and also E1(Y ) = 0

if δ(Y ) < 2−j , (2.44) and (1.6) allow us to invoke Lemma 1.39 (see Remark 1.40)
which along with Cauchy-Schwarz’s inequality yields

F t(X0) := |ut1(X0)− ut0(X0)| =
∣∣∣∣ ∫∫

Ω
(A0 −A1)(Y )∇YGL1(Y,X0) · ∇ut0(Y ) dY

∣∣∣∣
≤

∑
Q0∈D∆0

∑
Q∈DQ0

∑
I∈W∗Q

∫∫
I∗
|E(Y )||∇YGL1(Y,X0)||∇ut0(Y )| dY

≤
∑

Q0∈D∆0

∑
Q∈DQ0

∑
I∈W∗Q

sup
I∗
|E|
(∫∫

I∗
|∇YGL1(Y,X0)|2 dY

)1/2

×
(∫∫

I∗
|∇ut0(Y )|2 dY

)1/2

.

Note that for every Q0 ∈ D∆0 and our choice of M0, we have that `(Q0) <
diam(∂Ω)/κ0. Thus by Lemma 2.2 the estimate |||a||| ≤ ε1 implies that m =
{γQ}Q∈D(∂Ω) ∈ C(Q0) (see (2.3)) and ‖m‖C(Q0) ≤ κε1, where κ > 0 depends only on
dimension and on the 1-sided CAD constants. Also, note that L1 is a symmetric
operator. At this point we just need to repeat the arguments in (2.9)–(2.17) in every
Q0 ∈ D∆0 with F = Ø and hence DF ,Q0 = DQ0 . This ultimately gives

F t(X0) . ε
1/2
1

∑
Q0∈D∆0

‖kX0
L1
‖Lp(Q0) . ε

1/2
1 ‖k

X0
L1
‖
Lp(∆̂0)

,

where the last inequality is justified by the bounded cardinality of D∆0 . Therefore,

0 ≤ ut1(X0) ≤ F t(X0) + ut0(X0) . ε
1/2
1 ‖k

X0
L1
‖
Lp(∆̂0)

+ ‖kX0
L0
‖Lp(∆∗0),

where we have used Hölder’s inequality, and the facts that ‖gt‖Lp′ (∂Ω) . 1 and

supp(gt) ⊂ ∆∗0 by Lemma 1.41, and where the implicit constants do not depend on
t. Next, we write∫

∂Ω
g(y)kX0

L1
(y) dσ(y) = ut1(X0) +

∫
∂Ω

(g(y)− gt(y))kX0
L1

(y) dσ(y)

. ε
1/2
1 ‖k

X0
L1
‖
Lp(∆̂0)

+ ‖kX0
L0
‖Lp(∆∗0) + ‖g − gt‖Lp′ (∂Ω)‖k

X0
L1
‖Lp(∆∗0).

Notice that gt → g in Lp
′
(∂Ω) by Lemma 1.41, which along with the fact that

‖kX0
L1
‖Lp(∆∗0) ≤ Cj < +∞, by Lemma 1.30(e) and Harnack’s inequality, implies∫

∂Ω
g(y)kX0

L1
(y) dσ(y) . ε

1/2
1 ‖k

X0
L1
‖
Lp(∆̂0)

+ ‖kX0
L0
‖Lp(∆∗0).

Taking the supremum over all 0 ≤ g ∈ Lp′(∆̂0) with ‖g‖
Lp′ (∆̂0)

= 1 we obtain

‖kX0
L1
‖
Lp(∆̂0)

≤ Cε1/2
1 ‖k

X0
L1
‖
Lp(∆̂0)

+ C‖kX0
L0
‖Lp(∆∗0),
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where C depends on the allowable parameters. Since ‖kX0
L1
‖
Lp(∆̂0)

≤ Cj <∞, taking

ε1 < C−2/4, we can hide the first term in the left hand side to obtain ‖kX0
L1
‖
Lp(∆̂0)

.

‖kX0
L0
‖Lp(∆∗0). Using then that ωL0 ∈ RHp(∂Ω) and Harnack’s inequality to change

the pole from X0 = XM0∆0 to X∆∗0
(with constants depending on M0, which is

already fixed), we conclude that∫
∆0

k
X∆0
L1

(y)p dσ(y) .
∫

∆̂0

kX0
L1

(y)p dσ(y) .
∫

∆∗0

kX0
L0

(y)p dσ(y)

≈
∫

∆∗0

k
X∆∗0
L0

(y)p dσ(y) . σ(∆∗0)1−p ≈ σ(∆0)1−p. (2.45)

2.2.3 Step 2

We introduce the operator L2 := −div(A2∇u), where

A2(Y ) :=

{
A1(Y ) if Y ∈ T∆0 ,

Ã(Y ) if Y ∈ Ω \ T∆0 ,

and hence A2 = Ã in Ω. As seen in Step 0, since L̃ ≡ L0 in {Y ∈ Ω : δ(Y ) < 2−j}, we
have that ωL2 = ω

L̃
� σ, and there exists kL2 = dωL2/dσ. Set B′0 := B(x0, r0/(2κ0))

and ∆′0 = B′0 ∩ ∂Ω. By (1.7), 2κ0B
′
0 ∩ Ω ⊂ 5

4B0 ∩ Ω ⊂ T∆0 and since L2 ≡ L1 in
T∆0 , Lemma 1.30(e) implies

k
X∆′0
L̃

(y) = k
X∆′0
L2

(y) ≈ k
X∆′0
L1

(y), for σ-a.e. y ∈ ∆′0.

Consequently, using (2.45) and Harnack’s inequality (with constants depending on
M0, which is already fixed), we obtain∫

∆′0

k
X∆′0
L̃

(y)p dσ(y) ≈
∫

∆′0

k
X∆′0
L1

(y)p dσ(y)

.
∫

∆0

k
X∆0
L1

(y)p dσ(y) . σ(∆0)1−p ≈ σ(∆′0)1−p.

Since the surface ball ∆0 = ∆(x0, r0) with x0 ∈ ∂Ω and r0 < diam(∂Ω)/M0 was
arbitrary, we have proved that∫

∆
kX∆

L̃
(y)p dσ(y) . σ(∆)1−p, ∆ = ∆(x, r), 0 < r <

diam(∂Ω)

2M0κ0
. (2.46)

By a standard covering argument and Harnack’s inequality, (2.46) extends to all ∆ =
∆(x, r) with 0 < r < diam(∂Ω). This and Lemma 1.35 show that ω

L̃
∈ RHp(∂Ω)

where we recall that L̃ = Lj is the operator defined in (2.6), j ∈ N is arbitrary, and
the implicit constant is independent of j ∈ N.
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2.2.4 Step 3

Using the previous step and Proposition 2.8 with q = p we conclude as desired that
ωL ∈ RHp(∂Ω) and the proof of Theorem 2.1(b) is complete.

Remark 2.10. One can easily see from the previous proof that |||a||| ≤ ε1 could
be slightly weakened by simply assuming that ‖m‖C(Q0) is small enough, with m =
{γQ}Q∈D(∂Ω) and γQ defined in (2.3). Further details are left to the interested reader.

2.3 Vanishing trace perturbation

In this section we will present an extension of the main theorem in [Dah2] to the
setting of 1-sided CAD domains. With the help of Lemma 1.30(e), it will appear as
an easy corollary of Theorem 2.1(b). Given L0, L elliptic operators with matrices A0,
A respectively, we say that their disagreement defined in (2.1) verifies a vanishing
trace Carleson condition if

lim
s→0+

(
sup
x∈∂Ω

0<r≤s<diam(∂Ω)

1

σ(∆(x, r))

∫∫
B(x,r)∩Ω

%(A,A0)(X)2

δ(X)
dX

)
= 0. (2.47)

Note that since this condition is not scale invariant, we do not expect that a vanishing
trace perturbation could transfer a scale invariant condition like RHp(∂Ω) from one
operator to the other. That is only achieved in the case of bounded domains. Next,
we state the precise results.

Corollary 2.11. Suppose that Ω ⊂ Rn+1 is a 1-sided CAD. Let L0, L be real sym-
metric elliptic operators whose disagreement in Ω is given by the function %(A,A0)
defined in (2.1). If ωL0 ∈ RHp(∂Ω) for some 1 < p < ∞ and the vanishing trace
Carleson condition (2.47) holds, then ωL � σ and there exist C0 > 0 (depending
only on dimension, p, the 1-sided CAD constants, the ellipticity of L0 and L, and
the constant in ωL0 ∈ RHp(∂Ω)), and 0 < r0 < diam(∂Ω) (depending on the above
parameters and the condition (2.47)), such that∫

∆
kX∆
L (y)p dσ(y) ≤ C0 σ(∆)1−p, ∆ = ∆(x, r), x ∈ ∂Ω, 0 < r ≤ r0. (2.48)

Proof. Take ε1 > 0 from Theorem 2.1(b) and let M > 1 to be chosen. Thanks to
(2.47), there exists s0 = s0(ε1,M) < diam(∂Ω) such that for every ∆ = ∆(x, r) with
x ∈ ∂Ω and 0 < r ≤ s0, we have that

1

σ(∆(x, r))

∫∫
B(x,r)∩Ω

a(X)2

δ(X)
dX ≤ ε1

M
, (2.49)

where a := %(A,A0). Given s > 0, set Σs := {Y ∈ Ω : δ(Y ) < s} and consider the
operator L̃u = −div(Ã∇u) with

Ã(Y ) :=

{
A0(Y ) if Y ∈ Ω \ Σs0/4,

A(Y ) if Y ∈ Σs0/4.
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Note that Ã is uniformly elliptic with constant Λ̃ = max{ΛA,ΛA0}, where ΛA and
ΛA0 are the ellipticity constants of A and A0 respectively. Setting Ẽ := Ã(Y ) −
A0(Y ) and ã(X) := sup|X−Y |<δ(X)/2 |Ẽ(Y )|, it is clear that Ẽ(Y ) = E(Y )1Σs0/4

(Y ).
Therefore, since B(X, δ(X)/2) ⊂ Ω \ Σs0/4 for each X ∈ Ω \ Σs0/2, we have that

ã(X) ≤ a(X)1Σs0/2
(X), X ∈ Ω. (2.50)

Now, we claim that

|||ã||| = sup
x∈∂Ω

0<r≤s<diam(∂Ω)

1

σ(∆(x, r))

∫∫
B(x,r)∩Ω

ã(X)2

δ(X)
dX ≤ ε1, (2.51)

provided M is chosen large enough depending only on dimension and the AR con-
stant. To prove the claim we take B = B(x, r) with x ∈ ∂Ω and 0 < r < diam(∂Ω).
Suppose first that 0 < r ≤ s0, using (2.49) and (2.50), we obtain

1

σ(∆(x, r))

∫∫
B(x,r)∩Ω

ã(X)2

δ(X)
dX ≤ 1

σ(∆(x, r))

∫∫
B(x,r)∩Ω

a(X)2

δ(X)
dX ≤ ε1

M
≤ ε1.

On the other hand, if r > s0, using (2.50) we have that∫∫
B(x,r)∩Ω

ã(X)2

δ(X)
dX ≤

∫∫
B(x,r)∩Σs0/2

a(X)2

δ(X)
dX.

By a standard Vitali type covering argument, there exists a family {∆j}j of disjoint
surface balls ∆j = ∆(xj , s0/2) with xj ∈ ∆(x, 2r), satisfying ∆(x, 2r) ⊂

⋃
j 3∆j and

∆j ⊂ ∆(x, 3r). Note that by construction, B(x, r) ∩Σs0/2 ⊂
⋃
j B(xj , s0), hence by

(2.49), we have that∫∫
B(x,r)∩Σs0/2

a(X)2

δ(X)
dX ≤

∑
j

∫∫
B(xj ,s0)∩Ω

a(X)2

δ(X)
dX ≤ ε1

M

∑
j

σ(∆(xj , s0))

≈ ε1

M

∑
j

σ(∆j) ≤
ε1

M
σ(∆(x, 3r)) ≈ ε1

M
σ(∆(x, r)) ≤ ε1σ(∆(x, r)),

for M sufficiently large, depending only on dimension and on the AR constant.
Gathering the above estimates, we have proved as desired (2.51).

Next we apply Theorem 2.1(b) to L0 and L̃, to conclude that ω
L̃
∈ RHp(∂Ω)

and, in particular,∫
∆
kX∆

L̃
(y)p dσ(y) . σ(∆)1−p, ∆ = ∆(x, r), x ∈ ∂Ω, 0 < r < diam(∂Ω).

(2.52)
Set r0 := s0/(8κ0) and let ∆ = ∆(x, r) with x ∈ ∂Ω and 0 < r ≤ r0. Note that
B(x, 2κ0r) ∩ Ω ⊂ B(x, s0/4) ∩ Ω ⊂ Σs0/4, hence L̃ ≡ L in B(x, 2κ0r) ∩ Ω. Using
Lemma 1.30(e) we have that ωL � σ in ∆ and

kX∆
L (y) ≈ kX∆

L̃
(y), for σ-a.e. y ∈ ∆.

This and (2.52) proves (2.48) and the proof is complete.
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Corollary 2.12. Suppose that Ω ⊂ Rn+1 is a bounded 1-sided CAD. Let L0,
L be real symmetric elliptic operators whose disagreement in Ω is given by the
function a(X) defined in (2.1), and suppose that ωL0 ∈ RHp(∂Ω) for some 1 <
p < ∞. If the vanishing trace Carleson condition (2.47) holds, then we have that
ωL ∈ RHp(∂Ω), with constants depending on diam(∂Ω), dimension, p, the condition
(2.47), the 1-sided CAD constants, the ellipticity of L0 and L, and the constant in
ωL0 ∈ RHp(∂Ω).
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Chapter 3

Perturbations of non-symmetric
operators

This chapter is devoted to generalize Theorem 2.1(a) in order to allow non symmetric
operators. First of all, we show the equivalence between the A∞ condition for
elliptic measures and the fact that bounded weak solutions satisfy Carleson measure
estimates (see also [KKPT]). Then, we prove a Carleson perturbation result for
non symmetric operators in 1-sided chord-arc domains and a slight analog when the
perturbation is considered between an operator and its transpose. We state below
the precise theorems.

Theorem 3.1. Let Ω ⊂ Rn+1 be a 1-sided CAD and let Lu = −div(A∇u) be a real
(not necessarily symmetric) elliptic operator (cf. Definition 1.20). The following
statements are equivalent:

(a) Every bounded weak solution of Lu = 0 satisfies a Carleson measure estimate,
that is, there exists C such that every u ∈ W 1,2

loc (Ω) ∩ L∞(Ω) with Lu = 0 in
the weak sense in Ω satisfies the Carleson measure condition

sup
x∈∂Ω

0<r<∞

1

rn

∫∫
B(x,r)∩Ω

|∇u(X)|2δ(X) dX ≤ C‖u‖2L∞(Ω). (3.1)

(b) ωL ∈ A∞(∂Ω) (cf. Definition 1.33).

Theorem 3.2. Let Ω ⊂ Rn+1, n ≥ 2, be a 1-sided CAD (cf. Definition 1.4). Let
L1u = −div(A1∇u) and L0u = −div(A0∇u) be real (not necessarily symmetric)
elliptic operators (cf. Definition 1.20). Define the disagreement between A1 and A0

in Ω by

%(A1, A0)(X) := sup
Y ∈B(X,δ(X)/2)

|A1(Y )−A0(Y )|, X ∈ Ω, (3.2)

where δ(X) := dist(X, ∂Ω), and assume that it satisfies the Carleson measure con-
dition

sup
x∈∂Ω

0<r<diam(∂Ω)

1

σ(B(x, r) ∩ ∂Ω)

∫∫
B(x,r)∩Ω

%(A1, A0)(X)2

δ(X)
dX <∞. (3.3)

69
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Then, ωL0 ∈ A∞(∂Ω) if and only if ωL1 ∈ A∞(∂Ω) (cf. Definition 1.33).

Theorem 3.3. Let Ω ⊂ Rn+1, n ≥ 2, be a 1-sided CAD (cf. Definition 1.4).
Let Lu = −div(A∇u) be a real (not necessarily symmetric) elliptic operator (cf.
Definition 1.20) and let L> denote the transpose of L (i.e, L>u = −div(A>∇u)
with A> being the transpose matrix of A). Assume that (A − A>) ∈ Liploc(Ω) and
let

divC(A−A>)(X) =

( n+1∑
i=1

∂i(ai,j − aj,i)(X)

)
1≤j≤n+1

, X ∈ Ω. (3.4)

Assume that the following Carleson measure estimate holds

sup
x∈∂Ω

0<r<diam(∂Ω)

1

σ(B(x, r) ∩ ∂Ω)

∫∫
B(x,r)∩Ω

∣∣divC(A−A>)(X)
∣∣2δ(X) dX <∞. (3.5)

Then ωL ∈ A∞(∂Ω) if and only if ωL> ∈ A∞(∂Ω) (cf. Definition 1.33).

Corollary 3.4. Let Ω ⊂ Rn+1, n ≥ 2, be a 1-sided CAD (cf. Definition 1.4).
Let L0u = −div(A0∇u) be a real (not necessarily symmetric) elliptic operator (cf.
Definition 1.20). Assume that A0 ∈ Liploc(Ω), |∇A0| δ ∈ L∞(Ω) and that (0.1)
holds for A0. Then

ωL0 ∈ A∞(∂Ω) ⇐⇒ ωL>0
∈ A∞(∂Ω).

Additionally, if Lu = −div(A∇u) is a real (not necessarily symmetric) elliptic
operator (cf. Definition 1.20) such that |||%(A,A0)||| <∞, then we have

ωL ∈ A∞(∂Ω) ⇐⇒ Ω is a CAD (cf. Definition 1.4). (3.6)

3.1 Proof of Theorem 3.1

In this section we will prove Theorem 3.1 in two steps. We will assume that Ω ⊂ Rn+1

is a 1-sided CAD and Lu = −div(A∇u) a real (not necessarily simmetric) elliptic
operator (cf. Definition 1.20).

3.1.1 Proof of CME =⇒ A∞

Given Q0 ∈ D(∂Ω) and for every η ∈ (0, 1) we define the modified non-tangential
cone

ΓηQ0
(x) :=

⋃
Q∈DQ0

Q3x

UQ,η3 , UQ,η3 =
⋃

Q′∈DQ
`(Q′)>η3`(Q)

UQ′ . (3.7)

As already noted in Section 2, the sets {UQ,η3}Q∈DQ0
have bounded overlap with

constant depending on η.
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Lemma 3.5. There exist 0 < η � 1, depending only on dimension, the 1-sided
CAD constants and the ellipticity of L, and α0 ∈ (0, 1), Cη ≥ 1 both depending on
the same parameters and additionally on η, such that for every Q0 ∈ D, for every

0 < α < α0, and for every Borel set F ⊂ Q0 satisfying ω
XQ0
L (F ) ≤ αω

XQ0
L (Q0),

there exists a Borel set S ⊂ Q0 such that the bounded weak solution u(X) = ωXL (S)
satisfies

SηQ0
u(x) :=

(∫∫
ΓηQ0

(x)
|∇u(Y )|2δ(Y )1−n dY

)1/2

≥ C−1
η

(
logα−1

) 1
2 , ∀x ∈ F,

(3.8)

Assuming this result momentarily, we can now prove Theorem 3.1.

Proof of Theorem 3.1: (a) =⇒ (b). Our first goal is to see that given β ∈ (0, 1) there
exists α ∈ (0, 1) so that for every Q0 ∈ D and every Borel set F ⊂ Q0, we have that

ω
XQ0
L (F )

ω
XQ0
L (Q0)

≤ α =⇒ σ(F )

σ(Q0)
≤ β. (3.9)

Fix then β ∈ (0, 1) and Q0 ∈ D, and take a Borel set F ⊂ Q0 so that ω
XQ0
L (F ) ≤

αω
XQ0
L (Q0) where α ∈ (0, 1) is to be chosen. Applying Lemma 3.5, if we assume

that 0 < α < α0, then u(X) = ωXL (S) satisfies (3.8) and therefore

C−2
η logα−1σ(F ) ≤

∫
F
SηQ0

u(x)2 dσ(x)

≤
∫
Q0

(∫∫
ΓηQ0

(x)
|∇u(Y )|2δ(Y )1−n dY

)
dσ(x)

=

∫∫
B∗Q0
∩Ω
|∇u(Y )|2δ(Y )1−n

(∫
Q0

1ΓηQ0
(x)(Y ) dσ(x)

)
dY (3.10)

where we have used that ΓηQ0
(x) ⊂ TQ0 ⊂ B∗Q0

∩ Ω (see (1.6)), and we have used
Fubini’s theorem. To estimate the inner integral we fix Y ∈ B∗Q0

∩Ω and ŷ ∈ D(∂Ω)
such that |Y − ŷ| = δ(Y ). We claim that{

x ∈ Q0 : Y ∈ ΓηQ0
(x)
}
⊂ ∆(ŷ, Cη−3δ(Y )). (3.11)

To show this let x ∈ Q0 be such that Y ∈ ΓηQ0
(x). Then there exists Q ∈ DQ0 such

that x ∈ Q and Y ∈ UQ,η3 . Hence, there is Q′ ∈ DQ with `(Q′) > η3`(Q) such that
Y ∈ UQ′ and consequently δ(Y ) ≈ dist(Y,Q′) ≈ `(Q′). Then,

|x− ŷ| ≤ diam(Q) + dist(Y,Q′) + δ(Y ) . `(Q) + δ(Y ) ≤ Cη−3δ(Y ),

thus x ∈ ∆(ŷ, Cη−3δ(Y )) as desired. If we now use (3.11) and the AR property we
conclude that for every Y ∈ B∗Q0

∩ Ω∫
Q0

1ΓηQ0
(x)(Y ) dσ(x) ≤ σ(∆(ŷ, Cη−3δ(Y ))) . η−3nδ(Y )n.
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Plugging this into (3.10) and using (3.1), since u ∈ W 1,2
loc (Ω) ∩ L∞(Ω) with Lu = 0

in the weak sense in Ω, we obtain

C−2
η logα−1σ(F ) . η−3n

∫∫
B∗Q0
∩Ω
|∇u(Y )|2δ(Y ) dY . η−3nσ(∆∗Q0

) ≤ Cη−3nσ(Q0),

where we have used that ∆∗Q0
= B∗Q0

∩ ∂Ω, that 0 ≤ u(X) ≤ ωX(∂Ω) ≤ 1 and that
∂Ω is AR. Rearranging the terms we see that σ(F )/σ(Q0) ≤ β provided 0 < α <

min{α0, e
−CC2

ηη
−3nβ−1} and (3.9) follows.

Next we see that (3.9) implies that ωL ∈ A∞(∂Ω). To see this we first obtain
a dyadic-A∞ condition. Fix Q0, Q0 ∈ D with Q0 ⊂ Q0. Lemma 1.30 parts (b) and
(c), Harnack’s inequality and Lemma 1.26 gives for every F ⊂ Q0

1

C1

ω
XQ0
L (F )

ω
XQ0
L (Q0)

≤
ω
XQ0

L (F )

ω
XQ0

L (Q0)
≤ C1

ω
XQ0
L (F )

ω
XQ0
L (Q0)

. (3.12)

With all these in hand we fix β ∈ (0, 1) and take the corresponding α ∈ (0, 1) so
that (3.9) holds. Let M ≥ 1 be large enough to be chosen and we are going to see
that

ω
XQ0

L (F )

ω
XQ0

L (Q)
≤ α

C1
=⇒ σ(F )

σ(Q0)
≤ β. (3.13)

Assuming that the first estimate holds we see that (3.12) yields
ω
XQ0
L (F )

ω
XQ0
L (Q)

≤ α. Thus

we can apply (3.9) to obtain that σ(F )
σ(Q0) ≤ β as desired. To complete the proof we

need to see that (3.13) gives (1.43). The argument is standard and is left to the
the interested reader. This completes the proof of Theorem 3.1 modulo the proof of
Lemma 3.5.

Before proving Lemma 3.5 we need some notation and some estimates. Let
η = 2−k∗ < 1. Given Q ∈ D(∂Ω) we define Q̃ ∈ DQ to be the unique cube such that

xQ ∈ Q̃, and `(Q̃) = η`(Q). Using this notation we have the following estimates
which will be used later:

ω
X
Q̃

L (∂Ω \Q) = ω
X
Q̃

L (∂Ω)− ω
X
Q̃

L (Q) ≤ 1− ω
X
Q̃

L (Q) ≤ Cηγ (3.14)

where C depends on dimension, the 1-sided CAD constants and the ellipticity of
L and γ is the parameter in Lemma 1.27. To see this, keeping in mind the nota-
tion introduced in (1.1), let ϕ(X) = ϕ0((X − xQ)/rQ) where ϕ0 ∈ Cc(Rn+1) with
1B(0,1) ≤ ϕ0 ≤ 1B(0,2). Note that ϕ ∈ Cc(Rn+1) with 0 ≤ ϕ ≤ 1, supp(ϕ) ⊂ 2BQ,
and ϕ ≡ 1 in BQ. In particular, ϕ

∂Ω
≤ 12∆Q

≤ 1Q and hence

v(X) :=

∫
∂Ω
ϕ(y)dω

X
Q̃

L (y) ≤ ω
X
Q̃

L (Q) (3.15)

Note that v ∈W 1,2
loc (Ω)∩C(Ω) is a weak solution with 0 ≤ v ≤ 1 and v

∂Ω
= ϕ

∂Ω
≡ 1

in BQ. Thus, ṽ = 1 − v ∈ W 1,2
loc (Ω) ∩ C(Ω) is a weak solution with 0 ≤ ṽ ≤ 1 and

ṽ
∂Ω

= 1− ϕ
∂Ω
≡ 0 in BQ. Thus we can use (3.15) and Lemma 1.27 to see that

1− ω
X
Q̃

L (Q) ≤ 1− v(X) = ṽ(X) .

(
|X

Q̃
− xQ|
rQ

)γ
‖ṽ‖L∞(Ω) ≤ Cηγ , (3.16)
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where the last estimate follows from

|X
Q̃
− xQ| ≤ |XQ̃

− x
Q̃
|+ |x

Q̃
− xQ| . `(Q̃) = η`(Q),

since xQ ∈ Q̃ and X
Q̃

is a corkscrew point relative to Q̃.

We also claim that there exists c0 ∈ (0, 1) depending only on the AR constant
and on the ellipticity of L so that if η is small enough (depending only on the AR
constant) then

c0 ≤ ω
X
Q̃

L (Q̃) ≤ 1− c0. (3.17)

The first inequality follows at once from Lemma 1.26 and Harnack’s inequality.
For the second one we claim that if η is small enough we can find Q̃′ ∈ D with
`(Q̃′) = `(Q̃), Q̃′ ∩ Q̃ = Ø and dist(Q̃, Q̃′) . `(Q̃). Indeed, if we write Q̃j for
the j-th ancestor of Q̃ (that is, the unique cube satisfying `(Q̃j) = 2j`(Q̃) and
Q̃ ⊂ Q̃j) then σ(Q̃j) & `(Q̃j)n = 2jn`(Q̃)n > σ(Q̃) for j large enough depending
on the AR constant. Note that in the previous estimates we are implicitly using
that `(Q̃) . diam(∂Ω), fact that follows by choosing η small enough depending
on the AR constant. Once j has been chosen we must have Q̃ ( Q̃j , and we can
easily pick Q̃′ ∈ D

Q̃j
with all the desired properties. In turn by Harnack’s inequality

and Lemma 1.26 one can see that ωXQ̃(Q̃′) & ωXQ̃′ (Q̃′) ≥ C−1 with C > 1 and
consequently

ω
X
Q̃

L (Q̃) = ω
X
Q̃

L (∂Ω)− ω
X
Q̃

L (∂Ω \ Q̃) ≤ 1− ω
X
Q̃

L (Q̃′) ≤ 1− C−1,

which is the desired estimate.

Proof of Lemma 3.5. Let η = 2−k∗ < 1 be a small dyadic number to be chosen (in

particular (3.14) and (3.17) hold). Fix Q0 ∈ D and note that ω := ω
XQ0
L is a regular

Borel measure on ∂Ω which is dyadically doubling with constants C0 (depending only
on dimension, the 1-sided CAD constants and the ellipticity of L) by Lemma 1.30(b)
and Harnack’s inequality. Let 0 < ε0 < e−1 and 0 < α < ε2

0/(2C
2
0 ), sufficiently small

to be chosen later, and let F ⊂ Q0 be a Borel set such that ω(F ) ≤ αω(Q0). By
Lemma 1.10 applied to µ = ω, it follows that F has a good ε0-cover of length

k ≈ logα−1

log ε−1
0

, with k ≥ 2. Let {O`}k`=1 be the corresponding collection of Borel sets

so that F ⊂ Ok ⊂ · · · ⊂ O1 ⊂ Q0 and O` =
⋃
Q`i∈F`

Q`i , with disjoint families

F` = {Q`i} ⊂ DQ0 \{Q0}. Now, using the notation above we define Õ` :=
⋃
Q`i∈F`

Q̃`i

and consider the Borel set S :=
⋃k
j=2

(
Õj−1 \ Oj

)
. Note that the union of sets

comprising S is disjoint, hence

1S(y) =

k∑
j=2

1Õj−1\Oj (y), y ∈ ∂Ω. (3.18)

Now we introduce some notation. For each y ∈ F and 1 ≤ ` ≤ k, there exists a
unique Q`i(y) ∈ F` such that y ∈ Q`i(y). We also let P `i (y) ∈ DQ`i(y) be the unique

cube verifying y ∈ P `i (y) and `(P `i (y)) = η`(Q`i(y)). Associated with P `i (y) we can

construct P̃ `i (y) as above, that is, P̃ `i (y) ∈ DP `i (y) satisfies `(P̃ `i (y)) = η`(P `i (y)) and
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xP `i (y) ∈ P̃ `i (y), where xP `i (y) is the center of P `i (y). As usual we write X
Q̃`i(y)

and

X
P̃ `i (y)

to denote, respectively, the corkscrew points associated to Q̃`i(y) and P̃ `i (y).

Let u(X) := ωXL (S) be so that

u(X) =

∫
∂Ω

1S(y) dωXL (y) =

k∑
j=2

ωXL (Õj−1 \ Oj). (3.19)

In the following lemma we obtain a lower bound for the oscillation of u.

Lemma 3.6. If η and ε0 are taken sufficiently small (depending only on dimension,
the 1-sided CAD constants and the ellipticity of L), then for each y ∈ F , and each
1 ≤ ` ≤ k − 1, we have that∣∣u(X

Q̃`i(y)
)− u(X

P̃ `i (y)
)
∣∣ ≥ c0

2
, (3.20)

where c0 is the constant in (3.17)

Assume this result momentarily and fix the corresponding η and ε0. Fix also
y ∈ F , 1 ≤ ` ≤ k − 1, and write Q`i := Q`i(y) ∈ DQ0 , and P `i := P `i (y) ∈ DQ`i .
By construction X

Q̃`i
∈ U

Q̃`i
and X

P̃ `i
∈ U

P̃ `i
, hence we can find Whitney cubes

I
Q̃`i
∈ W∗

Q̃`i
and I

P̃ `i
∈ W∗

P̃ `i
so that X

Q̃`i
∈ I

Q̃`i
and X

P̃ `i
∈ I

P̃ `i
.

Also, note that `(Q̃`i) = η`(Q`i) and `(P̃ `i ) = η2`(Q`i) which imply `(Q̃`i) >

`(P̃ `i ) > η3`(Q`i) since η < 1. On the other hand, Q̃`i ⊂ Q`i and P̃ `i ⊂ P `i ⊂ Q`i ,
which in turn yield that I∗

Q̃`i
and I∗

P̃ `i
are both contained in UQ`i ,η3 . Using (3.20),

the notation [u]U
Q`
i
,η3

:= −
∫
−
∫
U
Q`
i
,η3
udX, De Giorgi-Nash-Moser’s estimate and the

previous observations we can obtain

c0

2
≤
∣∣u(X

Q̃`i
)− [u]U

Q`
i
,η3

∣∣+
∣∣[u]U

Q`
i
,η3
− u(X

P̃ `i
)
∣∣

.

(
−
∫
−
∫
I∗
Q̃`
i

∣∣u(Y )− [u]U
Q`
i
,η3

∣∣2 dY )1/2

+

(
−
∫
−
∫
I∗
P̃ `
i

∣∣u(Y )− [u]U
Q`
i
,η3

∣∣2 dY )1/2

≤ Cη
(
`(Q`i)

−n−1

∫∫
U
Q`
i
,η3

∣∣u(Y )− [u]U
Q`
i
,η3

∣∣2 dY )1/2

≤ Cη
(∫∫

U
Q`
i
,η3

|∇u(Y )|2δ(Y )1−n dY

)1/2

,

where the last estimate follows from the Poincaré’s inequality in [HMT1, Lemma
3.1]), and the fact that δ(Y ) ≈η `(Q`i) for every Y ∈ UQ`i ,η3 . Summing up the above

estimate, taking into account that the sets {UQ,η3}Q∈DQ0
have bounded overlap with

constant depending on η, and using Lemma 1.10, we obtain if α is small enough

c2
0

4

logα−1

log ε−1
0

≈ c2
0

4
(k − 1) ≤ Cη

k−1∑
`=1

∫∫
U
Q`
i
,η3

|∇u(Y )|2δ(Y )1−n dY ≤ Cη
(
SηQ0

(u)(y)
)2
.

This completes the proof of Lemma 3.5.
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Proof of Lemma 3.6. Fix y ∈ F and write Q`i := Q`i(y), P `i := P `i (y). Our first goal
is to estimate u(X

Q̃`i
). For starters, by (3.14)

u(X
Q̃`i

) = ω
X
Q̃`
i

L (S) ≤ ω
X
Q̃`
i

L (∂Ω \Q`i) + ω
X
Q̃`
i

L (S ∩Q`i)

≤ Cηγ + ω
X
Q̃`
i

L (S ∩Q`i) =: Cηγ + I. (3.21)

For 1 ≤ ` ≤ k − 1 we have that Q`i ⊂ O` ⊂ Oj for each 2 ≤ j ≤ ` and hence

I =
k∑
j=2

ω
X
Q̃`
i

L

(
Q`i ∩ (Õj−1 \ Oj)

)
=

k∑
j=`+1

ω
X
Q̃`
i

L

(
Q`i ∩ (Õj−1 \ Oj)

)
=

k∑
j=`+2

ω
X
Q̃`
i

L

(
Q`i ∩ (Õj−1 \ Oj)

)
+ ω

X
Q̃`
i

L

(
Q`i ∩ (Õ` \ O`+1)

)
=: I1 + I2, (3.22)

with the understanding that if ` = k − 1 then I1 = 0.
Next, we claim that I1 ≤ Cηε0. This is clear if ` = k − 1 and for 1 ≤ ` ≤ k − 2,

using Harnack’s inequality to move from X
Q̃`i

to XQ`i
(with constants depending on

η), Lemma 1.30 parts (b) and (c) (recall that ω = ω
XQ0
L ), we have that

I1 ≤ Cη
k∑

j=`+2

ω
X
Q`
i

L

(
Q`i ∩ (Õj−1 \ Oj)

)
≤ Cη

ω(Q`i)

k∑
j=`+2

ω
(
Q`i ∩ (Õj−1 \ Oj)

)
≤ Cη

ω(Q`i)

k∑
j=`+2

ω(Q`i ∩ Oj−1) ≤ Cη
k∑

j=`+2

εj−1−`
0 ≤ Cηε0, (3.23)

where the next-to-last estimate follows from Lemma 1.8 with µ = ω, and the last
one uses that ε0 < e−1. Let us now focus on I2. Note that Q`i ∩ Õ` = Q̃`i , hence
(3.17) yields

I2 = ω
X
Q̃`
i

L (Q̃`i \ O`+1) ≤ ω
X
Q̃`
i

L (Q̃`i) ≤ 1− c0.

Collecting this with (3.21), (3.22), (3.23), we conclude that

u(X
Q̃`i

) ≤ Cηγ + Cηε0 + 1− c0 ≤ 1− 3

4
c0, (3.24)

by choosing first η small enough so that Cηγ < c0/8 and then ε0 small enough so
that Cηε0 < c0/8.

To get a lower bound for u(X
Q̃`i

) we use that Q`i ∩ Õ` = Q̃`i and (3.17):

u(X
Q̃`i

) = ω
X
Q̃`
i

L (S) ≥ ω
X
Q̃`
i

L

(
Q`i ∩ (Õ` \ O`+1)

)
= ω

X
Q̃`
i

L (Q̃`i \ O`+1) = ω
X
Q̃`
i

L (Q̃`i)− ω
X
Q̃`
i

L (Q̃`i ∩ O`+1) ≥ c0 − ω
X
Q̃`
i

L (Q̃`i ∩ O`+1).

Using Harnack’s inequality to move from X
Q̃`i

to XQ`i
(with constants depending on

η), Lemma 1.30 parts (b) and (c) (recall that ω = ω
XQ0
L ), we have that

ω
X
Q̃`
i

L (Q̃`i ∩ O`+1) ≤ Cηω
X
Q`
i

L (Q`i ∩ O`+1) ≤ Cη
ω(Q`i ∩ O`+1)

ω(Q`i)
≤ Cηε0, (3.25)
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where the last estimate follows from Lemma 1.8 with µ = ω and since 1 ≤ ` ≤ k−1.
Assuming further that Cηε0 < c0/4 we arrive at

u(X
Q̃`i

) ≥ c0 − Cηε0 ≥
3

4
c0. (3.26)

Let us now focus on estimating u(X
P̃ `i

) and we consider two cases:

Case 1: P `i ∩ Q̃`i = Ø. Much as before by (3.14)

u(X
P̃ `i

) = ω
X
P̃ `
i

L (S) ≤ ω
X
P̃ `
i

L (∂Ω \ P `i ) + ω
X
P̃ `
i

L (S ∩ P `i )

≤ Cηγ + ω
X
P̃ `
i

L (S ∩ P `i ) =: Cηγ + Î. (3.27)

For 1 ≤ ` ≤ k − 1 we have that P `i ⊂ Q`i ⊂ O` ⊂ Oj for each 2 ≤ j ≤ ` and hence

Î =

k∑
j=2

ω
X
P̃ `
i

L

(
P `i ∩ (Õj−1 \ Oj)

)
=

k∑
j=`+1

ω
X
P̃ `
i

L

(
P `i ∩ (Õj−1 \ Oj)

)
=

k∑
j=`+2

ω
X
P̃ `
i

L

(
P `i ∩ (Õj−1 \ Oj)

)
+ ω

X
P̃ `
i

L

(
P `i ∩ (Õ` \ O`+1)

)
=: Î1 + Î2, (3.28)

with the understanding that if ` = k − 1 then Î1 = 0. The estimate for Î1 (when
` ≤ k−2) follows from that of I1 since using Harnack’s inequality to move from X

P̃ `i

to X
Q̃`i

and the fact that P `i ⊂ Q`i we easily obtain from (3.23)

Î1 ≤ Cη
k∑

j=`+2

ω
X
Q̃`
i

L

(
Q`i ∩ (Õj−1 \ Oj)

)
= CηI1 ≤ Cηε0. (3.29)

On the other hand, note that P `i ∩ (Õ` \ O`+1) = (P `i ∩ Q̃`i) \ O`+1 = Ø and hence

Î2 = 0. Thus (3.27), (3.28), and (3.29) yield

u(X
P̃ `i

) ≤ Cηγ + Cηε0 ≤
1

4
c0, (3.30)

by choosing first η small enough so that Cηγ < c0/8 and then ε0 small enough so
that Cηε0 < c0/8. This estimate along with (3.26) give at once

|u(X
Q̃`i

)− u(X
P̃ `i

)| = u(X
Q̃`i

)− u(X
P̃ `i

) ≥ 3

4
c0 −

1

4
c0 =

1

2
c0,

which is the desired estimate.

Case 2: P `i ∩ Q̃`i 6= Ø. Notice that since both cubes have the same sidelength it

follows that P `i = Q̃`i . Our goal is to get a lower bound for u(X
P̃ `i

). We use that

P `i ∩ Õ` = Q̃`i ∩ Õ` = Q̃`i = P `i and (3.14):

u(X
P̃ `i

) = ω
X
P̃ `
i

L (S) ≥ ω
X
P̃ `
i

L

(
P `i ∩ (Õ` \ O`+1)

)
= ω

X
P̃ `
i

L (P `i \ O`+1)

= ω
X
P̃ `
i

L (P `i )− ω
X
P̃ `
i

L (P `i ∩ O`+1) ≥ 1− Cηγ − ω
X
P̃ `
i

L (P `i ∩ O`+1).
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Moreover, using Harnack’s inequality to move from X
P̃ `i

to X
Q̃`i

(with constants

depending on η) and (3.25) we observe that

ω
X
P̃ `
i

L (P `i ∩ O`+1) = ω
X
P̃ `
i

L (Q̃`i ∩ O`+1) ≤ Cηω
X
Q̃`
i

L (Q̃`i ∩ O`+1) ≤ Cηε0.

Collecting the obtained estimates we conclude that

u(X
Q̃`i

) ≥ 1− Cηγ − Cηε0 ≥ 1− 1

4
c0, (3.31)

if we choose first η small enough so that Cηγ < c0/8 and then ε0 small enough
so that Cηε0 < c0/8. If we now gather (3.24) and (3.31) we eventually obtain the
desired estimate∣∣u(X

Q̃`i
)− u(X

P̃ `i
)
∣∣ = u(X

P̃ `i
)− u(X

Q̃`i
) ≥

(
1− 1

4
c0

)
−
(

1− 3

4
c0

)
=

1

2
c0.

This completes the proof.

3.1.2 Proof of A∞ =⇒ CME

We begin with a preliminary result showing that the desired Carleson measure esti-
mate (3.1) can be obtained as a consequence of the fact that a certain sequence of
coefficients indexed on Q ∈ D(∂Ω) generates a discrete Carleson measure. This is
inspired in the work of [HMM] and is stated precisely in the lemma below.

Lemma 3.7. Let Ω ⊂ Rn+1 be a 1-sided CAD and let Lu = −div(A∇u) be a
real (not necessarily symmetric) elliptic operator. Let u ∈W 1,2

loc (Ω) ∩ L∞(Ω) satisfy
Lu = 0 in the weak sense in Ω and define

α := {αQ}Q∈D :=
{∫∫

UQ

|∇u(X)|2δ(X) dX
}
Q∈D

. (3.32)

Suppose that there exist C0,M0 ≥ 1 such that ‖mα‖C(Q) ≤ C0‖u‖2L∞(Ω) for every

Q ∈ D(∂Ω) verifying `(Q) < diam(∂Ω)/M0. Then,

sup
x∈∂Ω

0<r<∞

1

rn

∫∫
B(x,r)∩Ω

|∇u(X)|2δ(X) dX ≤ C(1 + C0 +M0)‖u‖2L∞(Ω), (3.33)

where C depends only on dimension, the 1-sided CAD constants, and the ellipticity
of L.

Proof. By homogeneity we may assume that ‖u‖L∞(Ω) = 1. First, we claim that

sup
Q∈D(∂Ω)

1

σ(Q)

∫∫
TQ

|∇u(X)|2δ(X) dX . C0 +M0. (3.34)

Given Q0 ∈ D(∂Ω) such that `(Q0) < diam(∂Ω)/M0, we have that∫∫
TQ0

|∇u(X)|2δ(X) dX ≤
∑

Q∈DQ0

αQ = mα(DQ0) ≤ ‖mα‖C(Q0)σ(Q0) ≤ C0σ(Q0).
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Otherwise, if `(Q0) ≥ diam(∂Ω)/M0 (this happens only if diam(∂Ω) < ∞), there
exists a unique k0 ≥ 1 so that

2k0−1 diam(∂Ω)

M0
≤ `(Q0) < 2k0

diam(∂Ω)

M0
.

As observed before if diam(∂Ω) < ∞ then `(Q0) . diam(∂Ω) hence 2k0 . M0.
Define the disjoint collection D0 :=

{
Q′ ∈ DQ0 : `(Q′) = 2−k0`(Q0)

}
and let

Dsmall
Q0

:=
{
Q ∈ DQ0 : `(Q) < 2−k0`(Q0)

}
, Dbig

Q0
:=
{
Q ∈ DQ0 : `(Q) ≥ 2−k0`(Q0)

}
.

Note that∫∫
TQ0

|∇u(X)|2δ(X) dX ≤
∑

Q∈Dsmall
Q0

αQ +
∑

Q∈Dbig
Q0

αQ =: IQ0 + IIQ0 .

Note that if Q ∈ Dsmall
Q0

, there exists a unique Q′ ∈ D0 such that Q ∈ DQ′ , hence

IQ0 =
∑
Q′∈D0

∑
Q∈DQ′

αQ =
∑
Q′∈D0

mα(DQ′) ≤
∑
Q′∈D0

‖mα‖C(Q′)σ(Q′) ≤ C0σ(Q0).

where we have used our hypothesis since `(Q′) = 2−k0`(Q0) < diam(∂Ω)/M0. For
the second term, since δ(X) ≈ `(Q) for X ∈ UQ, we write

IIQ0 .
∑

Q∈Dbig
Q0

`(Q)

∫∫
UQ

|∇u(X)|2 dX .
∑

Q∈Dbig
Q0

`(Q)−1

∫∫
U∗Q

|u(X)|2 dX

. 2k0`(Q0)−1|T ∗Q0
| .M0σ(Q0),

where we have used Caccioppoli’s inequality, the fact that the family {U∗Q}Q∈D has
bounded overlap, the normalization ‖u‖L∞(Ω) = 1, (1.6), the AR property, and that

2k0 .M0. Gathering the above we have proved that (3.34) holds.
Our next goal is to see that (3.34) yields (3.33). Fix then x ∈ ∂Ω and 0 < r <∞.

Set
I = {I ∈ W : I ∩B(x, r) 6= Ø}.

Given I ∈ I, let ZI ∈ I ∩B(x, r) and note that by (1.4)

diam(I) ≤ dist(I, ∂Ω) ≤ |ZI − x| < r. (3.35)

Set

Ismall = {I ∈ I : `(I) < diam(∂Ω)/4}, Ibig = {I ∈ I : `(I) ≥ diam(∂Ω)/4},

with the understanding that Ibig = Ø if diam(∂Ω) =∞. Then,∫∫
B(x,r)∩Ω

|∇u|2δ dX ≤
∑

I∈Ismall

∫∫
I
|∇u|2δ dX +

∑
I∈Ibig

∫∫
I
|∇u|2δ dX = I + II,

here we understand that II = 0 if Ibig = Ø.
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To estimate I we set r0 = min{r, diam(∂Ω)/4} and pick k2 ∈ Z so that 2k2−1 ≤
r0 < 2k2 . Set

D1 = {Q ∈ D : `(Q) = 2k2 , Q ∩∆(x, 3r) 6= Ø}.

Given I ∈ Ismall we pick y ∈ ∂Ω so that dist(I, ∂Ω) = dist(I, y). Hence there exists
a unique QI ∈ D so that y ∈ QI and `(QI) = `(I) < r0 ≤ diam(∂Ω)/4 by (3.35).
This as mentioned above implies that I ∈ W∗QI . On the other hand by (3.35)

|y − x| ≤ dist(y, I) + diam(I) + |ZI − x| < 3r,

hence there exists a unique Q ∈ D1 so that y ∈ Q. Since `(QI) < r0 < 2k2 = `(Q)
we conclude that QI ⊂ Q and consequently I ⊂ int(UQI ) ⊂ TQ. In short we have
shown that if I ∈ Ismall then there exists Q ∈ D1 so that I ⊂ TQ. Thus,

I ≤
∑
Q∈D1

∫∫
TQ

|∇u|2δ dX . (C0 +M0)
∑
Q∈D1

σ(Q) = (C0 +M0)σ
( ⋃
Q∈D1

Q
)

≤ (C0 +M0)σ(∆(x,Cr)) . (C0 +M0)rn,

where we have used that the Whitney boxes have non-overlapping interiors, (3.34),
the fact that D1 is a pairwise disjoint family, that

⋃
Q∈D1

Q ⊂ ∆(x,Cr) (C depends
on dimension and AR), and that ∂Ω is AR.

We now estimate II using (1.4), Caccioppoli’s inequality and our assumption
‖u‖L∞(Ω) = 1:

II .
∑
I∈Ibig

`(I)

∫∫
I
|∇u|2 dX .

∑
I∈Ibig

`(I)−1

∫∫
I∗
|u|2 dX

.
∑
I∈Ibig

`(I)n ≤
∑

diam(∂Ω)
4

≤2k<r

2kn#{I ∈ Ibig : `(I) = 2k}.

To estimate the last term we observe that if Y ∈ I ∈ Ibig we have by (1.4)

|Y − x| ≤ diam(I) + dist(I, ∂Ω) + diam(∂Ω) . `(I).

This and the fact that Whitney boxes have non-overlapping interiors imply

#{I ∈ Ibig : `(I) = 2k} = 2−k(n+1)
∑

I∈Ibig:`(I)=2k

|I|

= 2−k(n+1)
∣∣∣ ⋃
I∈Ibig:`(I)=2k

I
∣∣∣ ≤ 2−k(n+1)|B(x,C2k)| . 1.

Therefore,

II .
∑

diam(∂Ω)
4

≤2k<r

2kn . rn.

Collecting the estimates for I and II we obtain the desired estimate.
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Proof of Theorem 3.1: (b) =⇒ (a). Let u ∈ W 1,2
loc (Ω) ∩ L∞(Ω) be so that Lu = 0

in the weak sense in Ω and our goal is to prove that (3.1) holds. By homogeneity
we may assume, without loss of generality, that ‖u‖L∞(Ω) = 1. On the other hand,
by Lemma 3.7 we can reduce matters to establish that ‖mα‖C(Q) ≤ C0, for every
Q ∈ D(∂Ω) such that `(Q) < diam(∂Ω)/M0 and where α is given in (3.32). To show
this we fix M0 > 2κ0/c, where c is the corkscrew constant and κ0 as in (1.6). We
also fix a cube Q0 ∈ D(∂Ω) with `(Q0) < diam(∂Ω)/M0. Applying Lemma 1.17 it
suffices to show that for every Q0 ∈ DQ0 we can find some pairwise disjoint family
FQ0 ⊂ DQ0 \ {Q0} satisfying

σ
(
Q0 \

⋃
Qj∈FQ0

Qj

)
≥ K−1

1 σ(Q0), (3.36)

and prove that
mα(DFQ0

,Q0) ≤M1σ(Q0). (3.37)

With all the previous reductions our main goal is to find FQ0 so that (3.36)
holds and establish (3.37). Having these in mind we let BQ0 := B(xQ0 , rQ0) with
rQ0 ≈ `(Q0) as in (1.1). Let X0 := XM0∆Q0

be the corkscrew point relative to
M0∆Q0 (note that M0rQ0 ≤M0`(Q0) < diam(∂Ω)). By our choice of M0, it is clear
that Q0 ⊂M0∆Q0 and also that δ(X0) ≥ cM0rQ0 > 2κ0rQ0 . Hence, by (1.6),

X0 ∈ Ω \B∗Q0
. (3.38)

On the other hand, δ(XQ0) ≈ `(Q0), δ(X0) ≈M0`(Q0) ≥ `(Q0), and |X0 −XQ0 | .
M0`(Q0). Using Lemma 1.26 and Harnack’s inequality, there exists C0 ≥ 1 depend-
ing on the 1-sided CAD constants, the ellipticity of L, and on M0 (which is already
fixed), such that ωX0

L (Q0) ≥ C−1
0 .

Next, we define the normalized elliptic measure and Green function as

ω0 := C0 σ(Q0)ωX0
L , and G0(·) := C0 σ(Q0)GL(X0, ·). (3.39)

Note the fact that ωX0
L (∂Ω) ≤ 1 implies

1 ≤ ω0(Q0)

σ(Q0)
≤ C0.

Recall that we have assumed that ωL ∈ A∞(∂Ω) and, as observed above, this means
after passing to the previous renormalization that ω0 � σ and we write k0 = dω0/dσ
for the Radon-Nikodym derivative. Since Q0 ⊂M0∆Q0 , using (1.45) we have that(

−
∫
Q0

k0(y)q dσ(y)

)1/q

≤ C2.

In particular, for any Borel set F ⊂ Q0, using Hölder’s inequality we obtain

ω0(F )

σ(Q0)
≤
(
−
∫
Q0

1F (y)q
′
dσ(y)

)1/q′(
−
∫
Q0

k0(y)q dσ(y)

)1/q

≤ C2

( σ(F )

σ(Q0)

)1/q′

.

Hence we can apply Lemma 1.14 to µ = ω0, and extract a pairwise disjoint family
FQ0 = {Qj} ⊂ DQ0 \ {Q0} verifying (3.36), as well as

1

2
≤ ω0(Q)

σ(Q)
≤ K0K1, ∀Q ∈ DFQ0

,Q0 , (3.40)
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with K1 = (4K0)1/θ, K0 = max{C0, C2}, and θ = 1/q′.
We next observe that if I ∈ W∗Q with Q ∈ DFQ0

,Q0 then 2BQ ⊂ B∗Q0
(see (1.6)).

Hence, using Harnack’s inequality, parts (a) and (b) of Lemma 1.30, (3.40) and the
AR property we have

G0(XI)

`(I)
≈ G0(XI)

δ(XI)
≈
ω0(∆Q)

σ(Q)
≈ 1, (3.41)

where XI is the center of I.
At this point, we are looking for M1 independent of Q0 and Q0 such that (3.37)

holds. Recalling (3.32) we note that

mα(DFQ0
,Q0) =

∑
Q∈DFQ0

,Q0

∫∫
UQ

|∇u(X)|2δ(X) dX

≈
∑

Q∈DFQ0
,Q0

∫∫
UQ

|∇u(X)|2G0(X) dX .
∫∫

ΩFQ0
,Q0

|∇u(X)|2G0(X) dX, (3.42)

where we have used Harnack’s inequality, (3.41), and the bounded overlap of the
family {UQ}Q∈D.

As in Section 1.1 for every N ≥ 1 we can consider the pairwise disjoint collection
FN := FQ0

(
2−N`(Q0)

)
which is the family of maximal cubes of the collection FQ0

augmented by adding all of the cubes Q ∈ DQ0 such that `(Q) ≤ 2−N`(Q0). In
particular, Q ∈ DFN ,Q0 if and only if Q ∈ DFQ0

,Q0 and `(Q) > 2−N`(Q0). Clearly,
DFN ,Q0 ⊂ DFN′ ,Q0 if N ≤ N ′, and therefore ΩFN ,Q0 ⊂ ΩFN′ ,Q0 ⊂ ΩFQ0

,Q0 . This and
the monotone convergence theorem give that∫∫

ΩFQ0
,Q0

|∇u(X)|2G0(X) dX = lim
N→∞

∫∫
ΩFN,Q0

|∇u(X)|2G0(X) dX. (3.43)

We now formulate an auxiliary result that will lead us to the desired estimate.

Proposition 3.8. Given C1 ≥ 1, one can find C such that if FN ⊂ DQ0, N ∈ N, is
a family of pairwise disjoint dyadic cubes satisfying

C−1
1 ≤ ω0(Q)

σ(Q)
≤ C1 and `(Q) > 2−N`(Q0), ∀Q ∈ DFN ,Q0 , (3.44)

then ∫∫
ΩFN,Q0

|∇u(X)|2G0(X) dX ≤ Cσ(Q0). (3.45)

Here, C depends only on dimension, the 1-sided CAD constants, and the ellipticity
of L.

Assuming this result momentarily, (3.40) and the construction of FN give (3.44).
Next, we combine (3.42), (3.43) and (3.45) to conclude (3.37). This completes the
proof of (b) =⇒ (a) Theorem 3.1, modulo obtaining the just stated proposition.

Proof of Proposition 3.8. We introduce an adapted cut-off function which can be
obtained from a straightforward modification of [HMT1, Lemma 4.44] by simply
replacing λ by 2λ (recall that λ appearing in Section 1.1 can be chosen arbitrarily
small).
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Lemma 3.9. There exists ΨN ∈ C∞c (Rn+1) such that

(a) 1ΩFN,Q0
. ΨN ≤ 1Ω∗FN,Q0

.

(b) supX∈Ω |∇ΨN (X)|δ(X) . 1.

(c) Set

WN :=
⋃

Q∈DFN,Q0

W∗Q, WΣ
N :=

{
I ∈ WN : ∃J ∈ W \WN , ∂I ∩ ∂J 6= Ø

}
.

Then

∇ΨN ≡ 0 in
⋃

I∈WN\WΣ
N

I∗∗ and
∑
I∈WΣ

N

`(I)n . σ(Q0),

with implicit constants depending only on the allowable parameters but uniform
in N .

Taking then ΨN as above, Leibniz’s rule leads us to

A∇u · ∇uG0 Ψ2
N = A∇u · ∇(uG0 Ψ2

N )− 1
2A∇(u2 Ψ2

N ) · ∇G0

+ 1
2A∇(Ψ2

N ) · ∇G0 u
2 − 1

2A∇(u2) · ∇(Ψ2
N )G0. (3.46)

Note that uG0 Ψ2
N ∈W

1,2
0 (Ω∗∗FN ,Q0

) since Ω∗∗FN ,Q0
is a compact subset of Ω (indeed

by construction dist(Ω∗∗FN ,Q0
, ∂Ω) & 2−N`(Q0)), u ∈W 1,2

loc (Ω)∩L∞(Ω), G0 ∈W 1,2
loc (Ω\

{X0}), Ω∗∗FN ,Q0
⊂ T ∗∗Q0

⊂ 1
2B
∗
Q0

(cf. (1.6)), and (3.38). Moreover, since u ∈ W 1,2
loc (Ω)

it follows that u ∈ W 1,2
loc (Ω) ⊂ W 1,2(Ω∗∗FN ,Q0

). All these and the fact that Lu = 0 in
the weak sense in Ω easily give∫∫

Ω
A∇u · ∇(uG0Ψ2

N ) dX =

∫∫
Ω∗∗FN,Q0

A∇u · ∇(uG0Ψ2
N ) dX = 0. (3.47)

On the other hand, much as before u2 Ψ2
N ∈ W

1,2
0 (Ω∗∗FN ,Q0

). Also, Lemma 1.28

(see in particular (1.40)) gives at once that G0 ∈W 1,2(Ω∗∗FN ,Q0
) and L>G0 = 0 in the

weak sense in Ω \ {X0}. Thus, we easily obtain∫∫
Ω
A∇(u2 Ψ2

N ) · ∇G0 dX =

∫∫
Ω∗∗FN,Q0

A>∇G0 · ∇(u2 Ψ2
N ) dX = 0. (3.48)

Using ellipticity, (3.46), (3.47), (3.48), the fact that ‖u‖L∞(Ω) = 1, and Lemma
3.9, we have∫∫

Ω
|∇u|2 G0 Ψ2

N dX .
∫∫

Ω
A∇u · ∇uG0 Ψ2

N dX

.
∫∫

Ω

(
|∇G0|+ |∇u| G0

)
|∇ΨN | dX =: I. (3.49)
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To estimate I we use Lemma 3.9, Caccioppoli’s and Harnack’s inequalities, and the
fact that ‖u‖L∞(Ω) = 1:

I .
∑
I∈WΣ

N

`(I)−1

(∫∫
I∗∗
|∇G0| dX +

∫∫
I∗∗
|∇u| G0 dX

)
.
∑
I∈WΣ

N

`(I)n−1G0(XI),

(3.50)
where XI is the center of I. Note that for every I ∈ WΣ

N there is Q ∈ DFN ,Q0 such
that I ∈ W∗Q. Hence we can use (3.41) to obtain

I .
∑
I∈WΣ

N

`(I)n−1G0(XI) .
∑
I∈WΣ

N

`(I)n . σ(Q0). (3.51)

Plugging this into (3.49) we get the desired estimate and the proof is complete.

3.2 Proof of Theorems 3.2 and 3.3

We will prove Theorems 3.2 and 3.3 by showing that all bounded weak solutions
satisfy the Carleson measure estimate (3.1), in which case Theorem 3.1 will give the
A∞ properties. Before that we need some integration by parts equality.

Lemma 3.10. Let D = (di,j
)n+1

i,j=1
∈ L∞(Ω) ∩ Liploc(Ω) be an antisymmetric real

matrix and set

divC D(X) :=
(

div
(
d·,j(X))

)
1≤j≤n+1

=

( n+1∑
i=1

∂idi,j(X)

)
1≤j≤n+1

, X ∈ Ω,

(3.52)
which is the vector formed by taking the divergence operator acting on the columns
of D. Then,∫∫

Ω
D(X)∇u(X) · ∇v(X) dX = −

∫∫
Ω

divC D(X) · ∇u(X) v(X) dX, (3.53)

for every u ∈ W 1,2
loc (Ω) and every v ∈ W 1,2(Ω) such that K = supp(v) ⊂ Ω is

compact.

Proof. We first consider the case on which u, v ∈ C∞c (Ω). Using Leibniz’s rule and
the fact that D is antisymmetric we have that

div(D∇u) =

n+1∑
i=1

n+1∑
j=1

∂idi,j∂ju+

n+1∑
i=1

n+1∑
j=1

di,j∂i∂ju = divC D · ∇u.

Using this we integrate by parts to obtain∫∫
Ω
D∇u · ∇v dX = −

∫∫
Ω

div(D∇u) v dX = −
∫∫

Ω
divC D · ∇u v dX.

To obtain the general case let u ∈ W 1,2
loc (Ω) and v ∈ W 1,2(Ω) such that K =

supp(v) ⊂ Ω is compact. It is standard to see, using for instance the Whitney
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covering, that we can find ΦK ∈ C∞c (Ω) so that ΦK ≡ 1 in K. Write K∗ = supp(ΦK)
which is a compact subset of Ω and define

U := {X ∈ Ω : dist(X,K∗) < dist(K∗, ∂Ω)/2}

which satisfies dist(U, ∂Ω) ≥ dist(K∗, ∂Ω)/2 > 0, hence U it is also a compact subset
of Ω. Since u ∈ W 1,2

loc (Ω) we clearly have that uΦK ∈ W 1,2
0 (U) and hence we can

find {uj}j ⊂ C∞c (U) so that uj → uΦK in W 1,2(U). Also, since v ∈W 1,2(Ω) verifies

K = supp(v) ⊂ Ω it is also easy to see that v ∈ W 1,2
0 (U) and hence we can find

{vj}j ⊂ C∞c (U) so that vj → v in W 1,2(U). Notice that extending the uj ’s and vj ’s
as 0 outside of U one sees that {uj}j , {vj}j ⊂ C∞c (Ω). Thus, we can use (3.53) and
for every j ∫∫

Ω
D∇uj · ∇vj dX = −

∫∫
Ω

divC D · ∇uj vj dX. (3.54)

Note that using that supp(vj), supp(v) ⊂ U and that ΦK ≡ 1 in K ⊂ U we have∣∣∣ ∫∫
Ω
D∇u · ∇v dX −

∫∫
Ω
D∇uj · ∇vj dX

∣∣∣
=
∣∣∣ ∫∫

Ω
D∇(uΦK) · ∇v dX −

∫∫
Ω
D∇uj · ∇vj dX

∣∣∣
≤ ‖D‖L∞(Ω)

(
‖∇(uΦK)‖L2(U)‖∇v −∇vj‖L2(U)

+ ‖∇(uΦK)−∇uj‖L2(U)‖∇vj‖L2(U)

)
,

and the last term converges to 0 as j →∞ since D ∈ L∞(Ω). Analogously,∣∣∣ ∫∫
Ω

divC D · ∇u v dX −
∫∫

Ω
divC D · ∇uj vj dX

∣∣∣
=
∣∣∣ ∫∫

Ω
divC D · ∇(uΦK)) v dX −

∫∫
Ω

divC D · ∇uj vj dX
∣∣∣

≤ ‖∇D‖L∞(U)

(
‖∇(uΦK)‖L2(U)‖v − vj‖L2(U)

+ ‖∇(uΦK)−∇uj‖L2(U)‖vj‖L2(U)

)
,

which also converges to j → ∞ since D ∈ Liploc(Ω). All these and (3.54) readily
gives (3.53).

We are going to show that Theorems 3.2 and 3.3 follow easily from the following
more general result which is interesting on its own right:

Theorem 3.11. Let Ω ⊂ Rn+1, n ≥ 2, be a 1-sided CAD (cf. Definition 1.4). Let
L1u = −div(A1∇u) and L0u = −div(A0∇u) be real (not necessarily symmetric)
elliptic operators (cf. Definition 1.20). Suppose that A0 − A1 = A + D where
A,D ∈ L∞(Ω) are real matrices satisfying the following conditions:

(i) Define
a(X) := sup

Y ∈B(X,δ(X)/2)
|A(Y )|, X ∈ Ω, (3.55)

where δ(X) := dist(X, ∂Ω), and assume that it satisfies the Carleson measure
condition

sup
x∈∂Ω

0<r<diam(∂Ω)

1

σ(B(x, r) ∩ ∂Ω)

∫∫
B(x,r)∩Ω

a(X)2

δ(X)
dX <∞. (3.56)
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(ii) D ∈ Liploc(Ω) is antisymmetric and suppose that divC D defined in (3.52) sat-
isfies the Carleson measure condition

sup
x∈∂Ω

0<r<diam(∂Ω)

1

σ(B(x, r) ∩ ∂Ω)

∫∫
B(x,r)∩Ω

∣∣ divC D(X)
∣∣2δ(X) dX <∞. (3.57)

Then, ωL0 ∈ A∞(∂Ω) if and only if ωL1 ∈ A∞(∂Ω) (cf. Definition 1.33).

Assuming this result momentarily we can easily prove Theorems 3.2 and 3.3:

Proof of Theorem 3.2. For L0 and L1 as in the statement of Theorem 3.2 we set
A = A0−A1 and D = 0. Thus, it suffices to check that A and D satisfy the required
conditions in Theorem 3.11. For (i) notice that a = %(A1, A0) (cf. (3.55) and (2.1)),
hence (3.3) gives immediately (3.56). On the other hand since D = 0 we clearly
have all the conditions in (ii). With all these in hand, Theorem 3.11 gives at once
the desired conclusion.

Proof of Theorem 3.3. Set A0 = A, A1 = A>, Ã = 0 and D = A−A> so that A0 −
A1 = Ã+D. As before we can easily see that Ã and D satisfy the required conditions
in Theorem 3.11. This time (i) is trivial. For (ii) notice that by assumption D =
A − A> ∈ Liploc(Ω) and also that (3.5) yields (3.57) since (3.4) agrees with (3.52).
As a result, we can invoke Theorem 3.11 obtaining the desired conclusion.

Besides the previous results one can easily get other interesting perturbation
results from Theorem 3.11. For instance suppose that L0u = −div(A0∇u) has an
associated elliptic measure satisfying ωL0 ∈ A∞(∂Ω). Let D be a real antisym-
metric matrix with locally Lipschitz coefficients and assume that ‖D‖L∞(Ω) < λ0

where λ0 > 0 is so that A(X)ξ · ξ ≥ λ0 |ξ|2 for all ξ ∈ Rn+1 and a.e. X ∈ Ω. The
latter ensures that A1 = A0 + D is uniformly elliptic and hence if we assume that
divC D satisfies (3.57) then Theorem 3.11 gives immediately that ωL1 ∈ A∞(∂Ω)
where L1u = −div(A1∇u). In particular, the A∞ property is preserved under per-
turbations by antisymmetric “sufficiently small” matrices D with locally Lipschitz
coefficients so that |∇D|2δ satisfies a Carleson measure condition.

Proof of Theorem 3.11. By symmetry it suffices to assume that ωL0 ∈ A∞(∂Ω) and
our goal is to see that ωL1 ∈ A∞(∂Ω). By Theorem 3.1 we only need to show
that given u ∈ W 1,2

loc (Ω) ∩ L∞(Ω) with L1u = 0 in the weak sense in Ω then (3.1)
holds. As before, by homogeneity we may assume without loss of generality that
‖u‖L∞(Ω) = 1. We can now follow closely the proof of (b) =⇒ (a) in Theorem 3.1
with the following changes. Here we are assuming that ωL0 ∈ A∞(∂Ω) and hence
(3.39) needs to be replaced by

ω0 := C0 σ(Q0)ωX0
L0
, and G0(·) := C0 σ(Q0)GL0(X0, ·), (3.58)

where X0 := XM0∆Q0
is chosen as before so that (3.38) holds.

Notice that in the present situation u satisfies L1u = 0 (as opposed to what
happened above where both u and G0 where associated with the same operator).
Other than that, and keeping in mind (3.58), all estimates (3.40)–(3.43) hold. Thus
it is straightforward to see that everything reduces to obtain the following analog of
Proposition 3.8:
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Proposition 3.12. Given C1 ≥ 1, one can find C such that if FN ⊂ DQ0, N ∈ N,
is a family of pairwise disjoint dyadic cubes satisfying

C−1
1 ≤ ω0(Q)

σ(Q)
≤ C1 and `(Q) > 2−N`(Q0), ∀Q ∈ DFN ,Q0 , (3.59)

then ∫∫
ΩFN,Q0

|∇u(X)|2G0(X) dX ≤ Cσ(Q0). (3.60)

Here, C depends only on dimension, the 1-sided CAD constants, the ellipticity of
L0 and L1, and on the quantity (3.3) in the scenario of Theorem 3.2 or (3.5) in the
scenario of Theorem 3.3.

Much as before, assuming this result momentarily, the proof of Theorem 3.11 is
complete modulo obtaining the just stated proposition.

Proof of Proposition 3.12. Take ΨN from Lemma 3.9 and write E(X) := A1(X) −
A0(X). Then Leibniz’s rule leads us to

A1∇u · ∇uG0 Ψ2
N = A1∇u · ∇(uG0 Ψ2

N )− 1
2A0∇(u2 Ψ2

N ) · ∇G0

+ 1
2A0∇(Ψ2

N ) · ∇G0 u
2 − 1

2A0∇(u2) · ∇(Ψ2
N )G0 − 1

2E ∇(u2) · ∇(G0 Ψ2
N ). (3.61)

Note that uG0 Ψ2
N ∈W

1,2
0 (Ω∗∗FN ,Q0

) since Ω∗∗FN ,Q0
is a compact subset of Ω (indeed

by construction dist(Ω∗∗FN ,Q0
, ∂Ω) & 2−N`(Q0)), u ∈W 1,2

loc (Ω)∩L∞(Ω), G0 ∈W 1,2
loc (Ω\

{X0}), Ω∗∗FN ,Q0
⊂ T ∗∗Q0

⊂ 1
2B
∗
Q0

(cf. (1.6)), and (3.38). Moreover, since u ∈ W 1,2
loc (Ω)

it follows that u ∈ W 1,2
loc (Ω) ⊂ W 1,2(Ω∗∗FN ,Q0

). All these and the fact that L1u = 0
in the weak sense in Ω easily give∫∫

Ω
A1∇u · ∇(uG0Ψ2

N ) dX =

∫∫
Ω∗∗FN,Q0

A1∇u · ∇(uG0Ψ2
N ) dX = 0. (3.62)

On the other hand, much as before u2 Ψ2
N ∈ W

1,2
0 (Ω∗∗FN ,Q0

). Also, Lemma 1.28

(see in particular (1.40)) gives at once that G0 ∈W 1,2(Ω∗∗FN ,Q0
) and L>0 G0 = 0 in the

weak sense in Ω \ {X0}. Thus, we easily obtain∫∫
Ω
A0∇(u2 Ψ2

N ) · ∇G0 dX =

∫∫
Ω∗∗FN,Q0

A>0 ∇G0 · ∇(u2 Ψ2
N ) dX = 0. (3.63)

Using ellipticity, (3.61), (3.62), (3.63), the fact that ‖u‖L∞(Ω) = 1, and Lemma
3.9, we have∫∫

Ω
|∇u|2 G0 Ψ2

N dX .
∫∫

Ω
A1∇u · ∇uG0 Ψ2

N dX

.
∫∫

Ω

(
|∇G0|+ |∇u| G0

)
|∇ΨN | dX +

∣∣∣∣ ∫∫
Ω
E∇(u2) · ∇(G0 Ψ2

N ) dX

∣∣∣∣ =: I + II.

(3.64)
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Much as in (3.50) and (3.51) we can show that I . σ(Q0). To estimate II note
that since E = A1 −A0 = −(A+D) it follows that

II ≤
∣∣∣∣ ∫∫

Ω
A∇(u2) · ∇(G0 Ψ2

N ) dX

∣∣∣∣ +

∣∣∣∣ ∫∫
Ω
D∇(u2) · ∇(G0 Ψ2

N ) dX

∣∣∣∣ = II1 + II2.

(3.65)

For the term II1 we use that A ∈ L∞(Ω) and the fact that ‖u‖L∞(Ω) = 1 to obtain

II1 .
∫∫

Ω
|A| |∇u| |∇G0|Ψ2

N dX +

∫∫
Ω
|∇(u2)| |∇(Ψ2

N )| G0 dX =: III1 + III2. (3.66)

For III1 we note that supI∗∗ |A| ≤ infI∗ a for every I ∈ W, since I∗∗ ⊂ {Y ∈ Ω :
|Y −X| < δ(X)/2} for every X ∈ I∗ (see (1.4)). Hence, Lemma 3.9, Caccioppoli’s
and Harnack’s inequalities, (3.41), the fact that the family {I∗∗}I∈W has bounded
overlap, and (1.6) yield

III1 .
∑
I∈WN

sup
I∗∗
|A|
(∫∫

I∗∗
|∇u|2 Ψ2

N dX

) 1
2
(∫∫

I∗∗
|∇G0|2 dX

) 1
2

(3.67)

.
∑
I∈WN

(∫∫
I∗∗
|∇u|2 Ψ2

N dX

) 1
2(

sup
I∗∗
|A|2 G0(XI)

2 `(I)n−1
) 1

2

.
∑
I∈WN

(∫∫
I∗∗
|∇u|2 G0 Ψ2

N dX

) 1
2
(∫∫

I∗

a2

δ
dX

) 1
2

.

(∫∫
Ω
|∇u|2 G0 Ψ2

N dX

) 1
2
(∫∫

B∗Q0

a2

δ
dX

) 1
2

.

(∫∫
Ω
|∇u|2 G0 Ψ2

N dX

) 1
2

σ(Q0)
1
2 ,

where in the last estimate we have used (3.56) and AR along with the fact that
r(B∗Q0

) = 2κ0rQ0 ≤ 2κ0`(Q0) ≤ 2κ0 diam(∂Ω)/M0 < diam(∂Ω) by our choice of M0.
On the other hand, we observe that

III2 .
∫∫

Ω
|∇u| |∇ΨN | G0 ΨN dX (3.68)

.

(∫∫
Ω
|∇u|2 G0 Ψ2

N dX

) 1
2
(∫∫

Ω
|∇ΨN |2 G0 dX

) 1
2

.

(∫∫
Ω
|∇u|2 G0 Ψ2

N dX

) 1
2
( ∑
I∈WΣ

N

`(I)n−1G0(XI)

) 1
2

.

(∫∫
Ω
|∇u|2 G0 Ψ2

N dX

) 1
2

σ(Q0)
1
2 ,

where we have used Lemma 3.9, the normalization ‖u‖L∞(Ω) = 1, Harnack’s inequal-
ity and the last estimate follows as in (3.51).
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Let us now turn our attention to estimating II2. Note that u2 ∈ W 1,2
loc (Ω) since

u ∈W 1,2
loc (Ω)∩L∞(Ω); supp(G0 Ψ2

N ) ⊂ Ω∗FN ,Q0
which is a compact subset of Ω since

by construction dist(Ω∗FN ,Q0
, ∂Ω) & 2−N`(Q0); and finally G0 Ψ2

N ∈ W 1,2(Ω) since

G0 ∈ W 1,2
loc (Ω \ {X0}), Ω∗FN ,Q0

⊂ T ∗Q0
⊂ 1

2B
∗
Q0

(cf. (1.6)), and (3.38). Thus we can
invoke Lemma 3.10 to see that

II2 =

∣∣∣∣ ∫∫
Ω

divC D · ∇(u2)G0 Ψ2
N dX

∣∣∣∣ (3.69)

.

(∫∫
Ω
|∇u|2 G0 Ψ2

N dX

) 1
2(∫∫

Ω
| divC D|2 G0 Ψ2

N dX

) 1
2

.

.

(∫∫
Ω
|∇u|2 G0 Ψ2

N dX

) 1
2

σ(Q0)
1
2 ,

where we have used ‖u‖L∞(Ω) = 1 and the last estimate is obtained as follows:∫∫
Ω
|divC D|2 G0 Ψ2

N dX .
∑
I∈WN

G0(XI)

∫∫
I∗∗
|divC D|2 dX

.
∑
I∈WN

`(I)

∫∫
I∗∗
| divC D|2 dX .

∫∫
B∗Q0
∩Ω
| divC D(X)|2δ(X) dX ≤ Cσ(Q0),

where we have used Harnack’s inequality, (3.41), the fact that the family {I∗∗}I∈W
has bounded overlap, (1.6), and the last estimate follows from (3.57), the fact that
r(B∗Q0

) = 2κ0rQ0 ≤ 2κ0`(Q0) ≤ 2κ0 diam(∂Ω)/M0 < diam(∂Ω) by our choice of M0,
and AR.

At this point we can collect (3.64)–(3.69) and use Young’s inequality to conclude
that∫∫

Ω
|∇u|2 G0 Ψ2

N dX ≤ Cσ(Q0) + C

(∫∫
Ω
|∇u|2 G0 Ψ2

N dX

) 1
2

σ(Q0)
1
2

≤ C(2 + C)

2
σ(Q0) +

1

2

∫∫
Ω
|∇u|2 G0 Ψ2

N dX.

The last term is finite since supp(ΨN ) ⊂ Ω∗FN ,Q0
which is a compact subset of Ω,

u ∈ W 1,2
loc (Ω), G0 ∈ L∞loc(Ω \ {X0}), (3.38), and (1.6). Hence we can hide it and use

Lemma 3.9 to conclude as desired that∫∫
ΩFN,Q0

|∇u|2 G0 dX .
∫∫

Ω
|∇u|2 G0 Ψ2

N dX . σ(Q0).

This completes the proof.



Bibliography

[AHL+] Pascal Auscher, Steve Hofmann, Michael Lacey, Alan McIntosh, and
Philippe Tchamitchian. The solution of the Kato square root problem for
second order elliptic operators on Rn. Annals of Mathematics, 156:633–
654, 2002. 8, 16

[AHLT] Pascal Auscher, Steve Hofmann, John L. Lewis, and Philippe
Tchamitchian. Extrapolation of Carleson measures and the analyticity of
Kato’s square-root operators. Acta Mathematica, 187:161–190, 09 2001.
6, 14

[AHM+1] Pascal Auscher, Steve Hofmann, Camil Muscalu, Terence Tao, and
Christoph Thiele. Carleson measures, trees, extrapolation, and T (b) the-
orems. Publicacions Matemàtiques, 46, 09 2001. 6, 14
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[GR] José Garćıa-Cuerva and José L. Rubio de Francia. Weighted norm in-
equalities and related topics, volume 116 of North-Holland Mathematics
Studies. North-Holland Publishing Co., Amsterdam, 1985. Mathematical
Notes, 104. 28



Bibliography 91
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4, 6, 7, 10, 12, 15, 18

[Lav] Mikhail A. Lavrentiev. Boundary problems in the theory of univalent
functions (Russian). Matematicheskii Sbornik, 43:815–846, 1936. 3, 11

[LM] John L. Lewis and Margaret A. M. Murray. Regularity properties of
commutators and layer potentials associated to the heat equation. Trans-
actions of the American Mathematical Society, 328(2):815–842, 1991. 6,
14

[MPT1] Emmanouil Milakis, Jill Pipher, and Tatiana Toro. Harmonic analysis
on chord arc domains. Journal of Geometric Analysis, 23(4):2091–2157,
2013. 5, 7, 13, 15

[MPT2] Emmanouil Milakis, Jill Pipher, and Tatiana Toro. Perturbations of ellip-
tic operators in chord arc domains. Contemporary Mathematics, 612:143–
161, 10 2014. 5, 13

[RR] Frigyes Riesz and Marcel Riesz. Uber die randwerte einer analytischen
funktion. Comptes Rendus du Quatrième Congrès des Mathématiciens
Scandinaves, pages 27–44, 1916. 3, 11



Bibliography 93

[Sem] Stephen Semmes. Analysis vs. geometry on a class of rectifiable hypersur-
faces in Rn. Indiana University Mathematics Journal, 39(4):1005–1035,
1990. 4, 12

[Zha] Zihui Zhao. BMO solvability and A∞ condition of the elliptic measures
in uniform domains. Journal of Geometric Analysis, 2017, https://doi.
org/10.1007/s12220-017-9845-9. 35

https://doi.org/10.1007/s12220-017-9845-9
https://doi.org/10.1007/s12220-017-9845-9

	Contents
	Introduction
	Notation
	Preliminaries
	Some geometric aspects
	Borel measures and weights
	Discrete Carleson measures
	PDE estimates
	A density result

	Perturbations of symmetric operators
	Proof of Theorem [perturbationtheo]2.1(a), Carleson perturbation
	Step 0
	Step 1
	Self-improvement of Step 1
	Step 2
	Step 3
	Step 4
	Step 5

	Proof of Theorem [perturbationtheo]2.1(b), small perturbation
	Step 0
	Step 1
	Step 2
	Step 3

	Vanishing trace perturbation

	Perturbations of non-symmetric operators
	Proof of Theorem 3.1
	Proof of CME-3muA
	Proof of A-3muCME

	Proof of Theorems 3.2 and 3.3

	Bibliography

