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Introduction

This thesis project lies in the intersection between real harmonic analysis, partial
differential equations and geometric measure theory. The research developed therein
has been inspired by the recent advances in the area due to José Maria Martell, Steve
Hofmann and Tatiana Toro, among others.

During the last years, the interest in analyzing the relation between the behav-
ior of elliptic measure and geometric properties of the domain has increased. It is
being studied how the absolute continuity of elliptic measure with respect to surface
measure, in a quantitative sense, is related with some “regularity” properties of the
boundary of the domain, which might be rough. Most of the new approaches are
based on modern harmonic analysis tools developed in the last decades. Before going
further in that direction, we will first exhibit how some of these ideas evolved along
the last century. The first result appeared in 1916, working on the complex plane.
F. and M. Riesz showed in [RR] that harmonic measure, the elliptic measure for the
Laplace operator, was absolutely continuous with respect to arc-length measure. In
order to prove that property, they assumed that the planar domain was simply con-
nected and its boundary was a rectifiable curve. Later in 1936, Lavrentiev gave in
[Lav] a quantitative version of the F. and M. Riesz’s theorem. The different behavior
of elliptic equations in the plane and in higher dimensions motivated further research
in this topic. In 1977 the study of the Laplace operator in Lipschitz domains by
Dahlberg in [Dahl] showed that in higher dimensions we still have absolute conti-
nuity of harmonic measure with respect to surface measure. Moreover the Poisson
kernel, or equivalently the Radon-Nikodym derivative of harmonic measure, satisfies
a reverse Holder inequality. This is in fact a stronger version of mutual absolute
continuity between harmonic and surface measures, where we have a quantitative
control of the ratio between both measures in a scale invariant fashion. In the case
of Lipschitz domains it is proved that the Poisson kernel belongs to the class RHo,
what implies that it has local square integrability. After that result, there was an in-
terest in understanding whether there are more general domains for which harmonic
measure satisfies a reverse Holder inequality with a possibly smaller exponent.

In the decade of 1980s Jerison and Kenig brought up a new class of domains
called “non-tangentially accesible” or NTA domains. These domains are defined in
[JK] and satisfy three main properties. The first is the “Harnack chain condition”
(cf. Definition [I.2), which can be seen as a quantitative version of the fact that the
domain is path connected. Also we ask for quantitative versions of the openness
condition, both for the domain, what is called “interior Corkscrew” (cf. Definition
and for the exterior domain, what is called “exterior Corkscrew”. In [JK]
it is also developed the so called Jerison-Kenig’s program, that is a collection of
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estimates of harmonic measure, taking into account its behavior near the boundary
and its relation with the Green function. In order to be able to extend the result
of Dahlberg to a larger class of domains, it came up the additional assumption that
the boundary had to be “Ahlfors regular” (cf. Definition , in which case the
domains are called “chord-arc” domains or CAD (cf. Definition [1.5). In 1990, both
David-Jerison [DJ] and Semmes [Sem], independently proved that harmonic measure
in a chord-arc domain is in some RH), class, for p > 1. In terms of Muckenhoupt
weights, this means that harmonic measure is always an A,, weight with respect
to surface measure, whenever the above geometric properties are satisfied. Then,
a new question arises: Are the properties defining CAD necessary to ensure that
harmonic measure is in the Ay, class? Several recent studies in this topic have
been devoted to show to what extent one can drop the hypothesis of the exterior
corkscrew. We say that Q C R"*! n > 2, is a “l-sided chord-arc domain” (or 1-sided
CAD) if it satisfies the interior corkscrew and Harnack chain conditions, and if its
boundary is n-dimensional Ahlfors regular. It was shown in [HM3] that in a 1-sided
chord-arc domain, the uniform rectifiability of 92 (which is a quantitative version of
rectifiability) is a sufficient condition for the harmonic measure to be an A, weight
with respect to the surface measure o = H"|,,. Actually, in the setting of 1-sided
CAD both conditions are equivalent, as proven later in [HMUT]. Moreover, under
the same geometric assumptions it was shown in [AHM™2| that 9 is uniformly
rectifiable if and only if ) satisfies an exterior corkscrew condition. Taking also into
account the work of [DJ} [Sem] we obtain a characterization of chord-arc domains in
terms of the membership wy € Ay (052), where L is the Laplace operator and wg
the harmonic measure.

Next, we consider Lu = — div(AVu) a variable coefficient second order diver-
gence form real elliptic operator (cf. Deﬁnition in a 1-sided CAD (cf. Definition
1.4)). There are different strategies in order to show that wy, the elliptic measure
associated with L, can be used to characterize the fact that the domain is actually
CAD. One of them is to analyze the “smoothness” of the matrix A, what was done
in [KP| introducing some additional conditions. More precisely, let us define the
class Lo to be the collection of real elliptic operators Lu = —div(AVu) as above
such that A € Lipy,.(Q), ||[VA] 5HLO<>(Q) < 00, and

1

sup VA(X)|dX < 0. 0.1
€00 O‘(B($, T) N 89) //B(z,r)ﬂQ | ( )| ( )
0<r<diam(99)

With this notation, it is shown in [KP] that if Q is CAD, then wy € A (99) for
any L € Ly. Recently, the authors in [HMT1] proved a free boundary result for the
class Lg. In particular, this states that for any symmetric L € Lg, the membership
wr, € Ax(09) in a 1-sided CAD implies that €2 is actually CAD. These two re-
sults combine to show a new characterization of CAD using the class of symmetric
operators in LLg. Similarly, for a non-symmetric L € Lg it is required both that
wr € Axn(09) and wyt € Ax(99) in order to show that Q is CAD, as stated in
[IMTT]. Here L' is the transpose operator of L, that is, L' u = —div(A " Vu) with
AT being the transpose matrix of A. The other different strategy is to compare
Lu = —div(AVu) with some given well known operator Lou = —div(AoVu) that
satisfies wr, € As(09), or equivalently wr, € RH,(0Q2) for some p > 1. For in-

4



stance, here we could think that Lg is the Laplace operator or some Ly € Lg. Over
the years there has been a considerable effort to find which are the adequate condi-
tions on the discrepancy between the matrices A and Ay that allow us to conclude
that wy, € Ax(012), or maybe even wy, € RH,(01?), for the same p > 1. This has
been historically known as the problem of perturbation of elliptic operators, and it is
the main topic of this thesis. Before going further, we will introduce some notation.
Let us define the disagreement between A and Ap in € by

o(A, Ag)(X) = sup [A(Y) = Ao(Y)], X e, (0.2)
YEB(X.6(X)/2)

where §(X) := dist(X,0Q). This disagreement induces a measure f4 4, in §2 given
by

0(4, Ap)(X)?
= 2 dX Q. .
1a,4,(U) //U 5(X) , Uc (0.3)
We say that pa 4, is a Carleson measure with respect to o if

fa,40(B(z,m) N Q)
A, Al = i ) 4
llo(A, Aol sup c B ne < (0.4)
0<r<diam(99)

Here, the regions B(z,r) N ) where the integration takes place are usually called
Carleson regions. Similarly, we say that 4 4, is a vanishing trace Carleson measure
with respect to o if

lim ( sp  PAaB@ ) Q)) =0. (0.5)

s—0t 260 U(B(x, T) N 89)
0<r<s<diam(0f?)

The first perturbation result in this fashion was due to Dahlberg, who in [Dah2]
showed that in the unit ball, the fact that ;14 4, is a vanishing trace Carleson mea-
sure with respect to o is sufficient to transfer the condition RH,(0f?) from wr, to
wr,, without changing the exponent. This result has been extended to more general
contexts in the work of [Esc] or [MPT2], where they treat the case of Lipschitz
domains and chord-arc domains respectively. The problem of the “large constant”
perturbation, that is the case when ||o(A, Ag)||| < oo, or equivalently when pi4 4, is
a Carleson measure, was solved in 1991 by Fefferman-Kenig-Pipher [FKP]. In the
setting of Lipschitz domains, they prove that if wr, € A (092) and [||o(A, Ao)]l| < oo,
then necessarily wy, € As(02). From the point of view of reverse Holder inequal-
ities, it is not possible to keep the same exponent from one operator to the other.
Nevertheless, the A (9€2) condition, which as we know can be used to characterize
geometric information of the domain, is still preserved by Carleson measure type
perturbations. This theorem requires a very delicate analysis and the details of its
proof have been an inspiration for further results in the area. It is worth mentioning
the work of [MPT1], where they extend the theorem of [FKP]| to chord-arc domains,
taking advantage of all the PDE machinery developed in [JK]. We note that in all
of these perturbation theorems, the operators have been assumed to be symmetric.

Our first project consisted in extending the theorems in [Dah2, [FKP| to the
setting of 1-sided chord-arc domains. The approach is heavily inspired in the work



of [HM1l, [HM2], in which the upper half space is considered as a model to develop a
new scheme to address Carleson perturbations. This scheme relies in the so called
extrapolation of Carleson measures method, which appeared first in [LM]| (see also
[HL, [AHLT, IAHM™1]) and was further developed in [HMT], [HM2] (see also [HM3]).
Based on the Corona construction of Carleson [Car|] and Carleson-Garnett [CG],
this argument is a bootstrapping that allows us to reduce the analysis to sawtooth
subdomains where the perturbation is sufficiently small. Having in mind that the
domains under consideration are only assumed to be 1-sided CAD, the Jerison-
Kenig’s program for CAD cannot be applied directly. Luckily, this program is being
developed in [HMT?2] for 1-sided CAD, and most of the background PDE tools are
at our disposal. It is interesting to note that in the present geometric scenario, the
condition wr, € RH,(0?) is equivalent to the fact that the Dirichlet problem for
Lo can be solved (in a non-tangential fashion) for boundary data in L¥ (). To
be able to use the extrapolation of Carleson measures we first need to understand
the case of small perturbation, that is the situation on which |[|o(A, Ag)|| < &1 for a
small £1 > 0 to be chosen. The study of this case led us to a new dyadic version of
the Coifman-Meyer-Stein’s theorem for duality of tent spaces (see [CMS]). Thanks
to this property we are able to keep the same exponent p > 1 of the reverse Holder
inequality from one operator to the other, whenever the perturbation is small. For
the “large constant” perturbation, we will follow the scheme of [HMI), HM2] and
one does not expect to preserve the exponent, rather one seeks to prove a general
Ao (0€2) condition. The following theorem summarizes both the small and large
constant perturbations for symmetric operators in the setting of 1-sided CAD. This
corresponds to Theorem in the text.

Theorem 1. Let Q C R""! n > 2, be a 1-sided CAD (cf. Definition . Let
Lu = —div(AVu) and Lou = — div(AgVu) be real elliptic operators (cf. Definition
such that A and Ay are symmetric. Suppose that there exists p, 1 < p < o0,
such that the elliptic measure wr,, € RH,(0Q) (cf. Definition M) The following
hold:

(a) If ||o(A, Ao)|| < oo (cf. (0.4])), then there exists 1 < q < oo such that wr, €
RH,(9Q).

(b) There exists €1 > 0 such that if ||o(A, Ao)|| < €1, then wy, € RH,(0%).

Additionally, we obtain an extension of the vanishing trace Carleson perturbation
result of [Dah2] to the setting of 1-sided CAD as a corollary of the case ||| o(A4, Ao)|| <
€1. We state the result as follows, which is written more precisely in Corollary

Corollary 2. Suppose that Q C R"*! is a bounded 1-sided CAD (cf. Definition
. Let Ly, L be real symmetric elliptic operators (cf. Deﬁnition and suppose
that wr,, € RH,(0Q) for some 1 < p < oo (cf. Definition . If the vanishing
trace Carleson condition holds, then we have that wy, € RHy(09).

We also note that a new characterization of CAD may be given with the help of
Theorem 1| Indeed, similarly as considered in [KP], we introduce the class L{, to be
the collection of real symmetric elliptic operators Lu = — div(AVu) such that A €
Lipy.(92), |[|[VA| 5HL°<>(Q) < 00, and holds. We also introduce L', the collection
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of real symmetric elliptic operators Lu = — div(AVu) for which there exists Ly =
—div(ApVu) € Lj in such a way that ||o(A, Ao)|| < co. It is straightforward to see
that all symmetric constant coefficient operators belong to the class LLj, and also that
Ly ¢ L'. It is worth noting that the operators in L' may not have any regularity,
however they are still appropriate in order to characterize the class CAD. The precise
result will be stated in Corollary [6 where a more general case for non necessarily
symmetric operators is studied. For the symmetric case we take L € L and Ly € L
such that ||o(A, Ao)|| < co. First, note that if 2 is CAD we have that wr, € Ax(0N2)
by the main result in [KP] (see also [HMT1, Appendix A]). This combines with the
large perturbation theorem of [MPT1] to show that wy, € A (9€). For the converse
implication, namely the fact that wy € A (0€) implies that Q is actually CAD, we
will use Theorem In that way, we first show that wr,, € A (92), which along
with the fact that Ly € Ly is sufficient to conclude that € is actually CAD, as seen
in [HMTT].

The second project of this thesis deals with “large constant” Carleson perturba-
tions of non-symmetric elliptic operators in the setting of 1-sided chord-arc domains.
This is, we let Lu = —div(AVu) and Lou = — div(AoVu) be real elliptic operators,
not necessarily symmetric, and we assume that wr, € A (9€2). Our goal is to show
that under the assumption of [|o(A4, Ap)|| < oo we also have that wy € A (99).
The approach used to address this problem differs from the one used in Theorem
(see also [HMIl, [HM2]), or even the one in [FKP, MPT1]. We are interested in
analyzing the property that all bounded solutions of a given operator L satisfy “Car-
leson measure estimates” or, equivalently, CME. This means that for every bounded
weak solution of Lu = 0 it holds

1
s ] VCORS0 dX < Clulf oy (06)
52,7 Utarro

This property can be found in the literature to be related with the fact that wy €
A (0€2). For instance, in the setting of bounded Lipschitz domains and domains
above the graph of a Lipschitz function, the authors in [KKPT] show that if L sat-
isfies “Carleson measure estimates” then we have wy € A, (09). For the converse
implication we assume that wy, € A (992). The fact that every bounded weak so-
lution of Lu = 0 satisfies can be seen, by the work of [DJK], as a consequence
of a more general estimate in the setting of Lipschitz and chord-arc domains (see
also [HMT2] for 1-sided CAD). Indeed, assuming that wy € A (99), it is shown
that the conical square function is controlled by the non-tangential maximal func-
tion in every LP(0Q) for every 1 < p < oo, where both are applied to solutions
of L. Applying this with p = 2 and with a bounded solution the desired Carleson
estimate follows at once. We will present a new technique to prove this latter fact
using some of the tools developed in [HMTI]. Our first problem is to show that if
L is a Carleson perturbation of Ly with wr, € Ax(0S2), then L satisfies “Carleson
measure estimates”. We will call this problem the Ao, — CME perturbation. First,
observe that it can be used to prove that wr, € Ax(0€2) implies “Carleson measure
estimates” for Lg. To see this we just take L = Lg, in which case the “zero pertur-
bation” is automatically of Carleson type, hence the Ao, — CME perturbation gives
the desired properties for Lg. The second problem is to find an analog of the main

7



theorem in [KKPT] adapted to 1-sided chord-arc domains, which combined with the
Ao — CME perturbation allows us to extend Theorem [1(a)|to non-symmetric elliptic
operators. Here, we observe that since we are using the auxiliar condition CME,
it is not possible to keep the exponent of the RH,(02) inequality in this setting,
hence we do not obtain an analog of Theorem . We collect these results in
two different theorems. The first states the equivalence between wy, € A (0€2) and
the CME property for L, and this corresponds to Theorem The second is the
desired generalization of Theorem which will be called Theorem in the text.

Theorem 3. Let Q C R"!, n > 2, be a 1-sided CAD (cf. Definition and
let Lu = —div(AVu) be a real (not necessarily symmetric) elliptic operator (cf.
Definition . The following statements are equivalent:

(a) Every bounded weak solution of Lu = 0 satisfies the Carleson measure estimate

(0.6).
(b) wr, € A (09) (cf. Definition[1.33).

Theorem 4. Let Q C R" n > 2, be a 1-sided CAD (cf. Definition . Let
Lu = —div(AVu) and Lou = —div(AgVu) be real (not necessarily symmetric)
elliptic operators (cf. Definition . Assume that the disagreement between A
and Ay satisfies || o(A, Ao)|| < oo (cf. (0.4)). Then, wr, € Ax(9) if and only if
wr, € As(0Q) (cf. Definition[1.33).

As noted above, the method introduced to prove Theorems [3| and [4| can be split
in two different parts. For the first part, this is the Ao, — CME perturbation, we
take advantage of the A, (0€) condition to extract a sawtooth domain with nice
properties. This is done by applying a result in [HMT1], which is a stopping time
argument based on the solution of the Kato square root conjecture in [HM5, [HLM|
AHLT], that has been further developed in [HM4, [HLMN]. More precisely, this
sawtooth has an ample contact with the original domain, and roughly speaking,
the averages of wr, with respect to o are essentially constant. This allows us to
interchange the distance to the boundary with the Green function G, (with a
fixed pole) in , so we can integrate by parts to obtain the desired estimate in
the sawtooth. Finally, using that the sawtooth has an ample contact with 2 and
following again [HMTT], we can extend the Carleson measure estimate to the entire
domain. The second part of this method, that is, the fact that CME for L implies
wr, € Ax(09), is based on the ideas developed in [KKPT]. We pick a Borel set
F C 09 with small wy, measure and try to show that o(F') is also small. In that
way we construct a finite collection of nested sets containing F', called an gyp-cover
(cf. Definition , and a solution u associated to that collection. Once we show
a lower bound for the oscillation of u, we are able to obtain a lower bound for the
conical square function applied to this solution. This, along with the fact that u
satisfies Carleson measure estimates help us to conclude that o(F') is also small,
hence wy, € Ax(092). Note that it is not necessary to assume that every bounded
weak solution satisfies CME, since we only use this property for a particular class of
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solutions. Finally, there is an interesting application of the method discussed above.
In this result we would like to infer nice properties from wy, to w;r, where LT is the
transpose operator of L. The Carleson condition on the discrepancy between L and
LT turns out to be, after an integration by parts, a Carleson measure condition on
the derivative of the antisymmetric part of A. Assuming the latter we are able to
show that wr, € Ay (99) is equivalent to w;t € Ay (09), as stated precisely in the
theorem below, which stands for Theorem

Theorem 5. Let Q C R"™! n > 2, be a 1-sided CAD (cf. Deﬁm’tion. Let Lu =
—div(AVu) be a real (not necessarily symmetric) elliptic operator (cf. Definition
and let LT = —div(ATVu) denote the transpose of L. Assume that (A—AT) €
Lip},.(2) and let

n+1

diVC(A — AT)(X) = <Z (%(@i,j — (lj,i)(X) s X e. (07)
=1

) 1<j<n+1

Assume that the following Carleson measure estimate holds

1
e o(B(z,r)noQ)
0<r<diam(99)

Then wy, € Aoo(0) if and only if wyr € Axo(0) (cf. Definition[1.35).

// | divo(A— AT)(X)[*5(X) dX < oo (0.8)
B(z,r)NQ

Similarly as noted before, the Carleson perturbation of elliptic operators can be
used to extend free boundary results. We recall that LLg is the collection of non sym-
metric elliptic operators Lu = — div(AVu) such that A € Lip,,.(€2), [||VA] 5HL°°(Q) <
00, and holds. We note that in [HMTT] it is proved that for any non symmetric
L € Ly, one has to assume both that wy, € A (9€) and wyt € Ax(0N2) in order
to be able to ensure the existence of exterior corkscrews. In this direction we can
use Theorem [5| to remove the hypothesis that w;r € Ax(02). We state the new
characterization of chord-arc domains in the following corollary, which corresponds
to Corollary in the text.

Corollary 6. Let Q C R"™ n > 2, be a 1-sided CAD (cf. Definition . Let
Lou = —div(AoVu) be a real elliptic operator (cf. Definition . Assume that
Ap € Lip}.(Q), [VAo|d € L>(Q) and that (0.1) holds for Ag. Then

WL, € Ao (09) — wrr € Ao (09).

Additionally, if Lu = — div(AVu) is a real elliptic operator (cf. Definition[1.20)
such that ||o(A, Ao)|| < oo (cf. (0.4)), then we have

wr, € Ax(09) = Q is a CAD (cf. Definition[1.4)). (0.9)

On the one hand we first observe that |V Ag|d € L>°(§2) and the condition (0.1))
for Ag imply that

1
reae o(B(z,r) N9

// |V Ao (X)|*8(X) dX < oo, (0.10)
B(z,r)NQ
0<r<diam(99)



hence the first part of Corollary [6]is an easy consequence of Theorem [5|with A = Aj.
For the second part, we first analyze the backward implication. The fact that wr,, €
Ao (09) is derived from the work of [KP], and this combines with Theorem {4 to show
that wy, € Ax(9€2). For the forward implication we first note that wr, € Ax(99)
by Theorem {4l Also, by the first part of Corollary |6l we have that w L7 € Ao (092).
These two conditions are sufficient to conclude that 1 is actually CAD, as stated in
[HMTT].

The research in this thesis has led to the following papers:

e Juan Cavero, Steve Hofmann, and José M. Martell. Perturbations of elliptic
operators in 1-sided chord-arc domains. Part I: Small and large perturbation
for symmetric operators.  Transactions of the Americal Mathematical Society,
371(4):2797-2835, 2019. https://doi.org/10.1090/tran/7536.

e Juan Cavero, Steve Hofmann, José M. Martell, and Tatiana Toro. Perturba-
tions of elliptic operators in 1-sided chord-arc domains. Part II: Non symmetric
operators and Carleson measure estimates. Work in progress, 2019.
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Introduccion

Este proyecto de tesis se ubica en la interseccién entre el andlisis armonico real, las
ecuaciones en derivadas parciales y la teoria geométrica de la medida. La inves-
tigacion desarrollada se inspira en los recientes avances en el area debidos a José
Maria Martell, Steve Hofmann y Tatiana Toro, entre otros.

Durante los tltimos anos ha aumentado el interés por analizar la relacién entre el
comportamiento de la medida eliptica y las propiedades geométricas del dominio. Se
estd estudiando cémo la continuidad absoluta de la medida eliptica con respecto de la
medida de superficie, en términos cuantitativos, esta relacionada con algunas buenas
propiedades de la frontera del dominio, que podria ser irregular. Gran parte de las
nuevas técnicas utilizadas se basan en herramientas de andlisis arménico moderno
desarrolladas en las tdltimas décadas. Antes de seguir en esa direccién, primero
mostraremos cémo algunas de estas ideas evolucionaron a lo largo del siglo pasado.
El primer resultado aparece en 1916, trabajando en el plano complejo. F. y M.
Riesz prueban en [RR] que la medida arménica, la medida eliptica del Laplaciano,
es absolutamente continua con respecto de la medida de “longitud de arco”. Para
probar esa propiedad se asumié que el dominio era simplemente conexo y que su
frontera era una curva rectificable. Méds tarde en 1936, Lavrentiev probé en [Lav]
una version cuantitativa del teorema de F. y M. Riesz. El distinto comportamiento
de las ecuaciones elipticas en el plano y en dimensiones superiores motivé nuevas
investigaciones en el tema. En 1977 el estudio del operador de Laplace en dominios
Lipschitz por Dahlberg en [Dahl] mostr6 que en dimensiones superiores se sigue
teniendo continuidad absoluta de la medida armonica con respecto de la medida
de superficie. M4és atn, el ntcleo de Poisson, o equivalentemente la derivada de
Radon-Nikodym de la medida arménica, satisface una desigualdad de tipo reverse
Holder. Esta es de hecho una versién més fuerte de la continuidad absoluta mutua
entre la medida arménica y la de superficie. En el caso de dominios Lipschitz se
prueba que el nicleo de Poisson pertenece a la clase RHo, por lo que su cuadrado
es localmente integrable. Tras este resultado ha habido un gran interés en entender
hasta qué punto existen dominios més generales para los cuales la medida armoénica
satisface una desigualdad reverse Holder, posiblemente con un menor exponente.

En la década de 1980 Jerison y Kenig introdujeron una nueva clase de dominios
llamados “non-tangentially accesible” o NTA. Estos dominios se definen en [JK] y
satisfacen tres propiedades principales. La primera es la “Harnack chain condition”
(cf. Definicién , que puede verse como una versién cuantitativa del hecho de que
el dominio es conexo por caminos. También se piden versiones cuantitativas de la
propiedad de ser abierto, tanto para el dominio interior, lo que se llama “interior
Corkscrew” (cf. Definicién como para el dominio exterior, lo que se llama
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“exterior Corkscrew”. En [JK]| se desarrolla el llamado programa de Jerison-Kenig,
que es una coleccién de estimaciones de la medida armdnica, teniendo en cuenta su
comportamiento cerca de la frontera y su relacién con la funcién de Green. Para
ser capaces de extender el resultado de Dahlberg a una clase mayor de dominios
se anadi6 la hipétesis de que la frontera fuera “Ahlfors regular” (cf. Definicién
, en cuyo caso los dominios se llaman “chord-arc” o CAD (cf. Definicién .
En 1990, David-Jerison [DJ] y Semmes [Sem| prueban independientemente que la
medida armoénica en un dominio “chord-arc” pertenece a una clase RH, con p >
1. En términos de pesos de Muckenhoupt, esto significa que la medida arménica
es siempre un peso Ao, con respecto de la medida de superficie, siempre que se
verifiquen las propiedades geométricas anteriores. A continuacién surge una nueva
pregunta: ;Son las propiedades que definen CAD necesarias para asegurar que la
medida armoénica esté en la clase A.? Muchos estudios recientes en este tema se
han centrado en mostrar hasta qué punto se puede obviar la hipotesis del “exterior
Corkscrew”. Decimos que Q C R™*!, n > 2, es un dominio “I-sided chord-arc” (o 1-
sided CAD) si satisface las condiciones de “Harnack Chain”, de “interior Corkscrew”,
y si su frontera es “Ahlfors regular” n-dimensional. En [HM3] se probé que en un
dominio “1-sided chord-arc”, la rectificabilidad uniforme de 92 (que es una versién
cuantitativa de la rectificabilidad) es una condicién suficiente para que la medida
armonica sea un peso A con respecto de la medida de superficie o = H"| 80" De
hecho, para un dominio “l-sided chord-arc” ambas condiciones son equivalentes,
como se probé posteriormente en [HMUT]. M4ds ain, bajo las mismas hipétesis
geométricas, en [AHM™2] se demostré que 9 es uniformemente rectificable si y sélo
si ) satisface la condicién de “exterior Corkscrew”. Teniendo en cuenta también el
trabajo de [DJl [Sem)|, se obtiene una caracterizacién de los dominios “chord-arc” en
funcién de la pertenencia wy € Ay (0€2), donde L es el operador de Laplace y w, es
la medida arménica.

A continuacién consideramos Lu = —div(AVw) un operador eliptico de tipo
divergencia con coeficientes variables (cf. Definicién en un dominio “l-sided
CAD” (cf. Definicién . Existen diferentes estrategias para probar que wg, la
medida eliptica asociada a L, puede usarse para caracterizar el hecho de que el
dominio es realmente CAD. Una de ellas es analizar la “suavidad” de la matriz
A, lo que se hizo en [KP| introduciendo condiciones adicionales. M&s precisamente,
definimos la clase Ly como la coleccién de operadores elipticos Lu = — div(AVu)
introducidos anteriormente tales que A € Lipy,.(£2), |||V A] 5HL°°(Q) <00,y

1

sup // VA(X)|dX < . 0.11
ceon  o(B(z,r)N0Q) J)parna VA (0.11)
0<r<diam(99)

Con esta notacién se demuestra en [KP] que si 2 es CAD, entonces wy, € Ax(09)
para cualquier L € L. Recientemente, los autores de [HMTI] han probado un
resultado de frontera libre para la clase Lyg. En particular se demuestra que para
cualquier operador simétrico L € Ly, la pertenencia wy, € Ax(99) en un dominio 1-
sided CAD implica que €2 es de hecho CAD. Estos dos resultados se combinan para
dar una nueva caracterizacién de la clase CAD usando los operadores simétricos de
Ly. De manera similar, para un operador L € Ly no necesariamente simétrico, se
requiere tanto que wy € A (0) como que w;T € Ax(0N)) para probar que € es
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CAD, tal y como se enuncia en [IMTI]. Aqui L' es el operador traspuesto de L,
esto es, LTu = —div(ATVu) con AT la matriz traspuesta de A. La otra estrategia
diferente es la de comparar Lu = — div(AVu) con algin operador conocido Lou =
—div(AoVu) que satisface wr,, € Ax(02), 0 equivalentemente wr,, € RH,(0S2) para
algin p > 1. Por ejemplo, podriamos pensar que Lg es el operador de Laplace o
quizéd algin Ly € Lg. A lo largo de los anos ha habido un esfuerzo considerable
para encontrar las condiciones adecuadas en la discrepancia entre las matrices A y
Ap que nos permiten concluir que wy, € A (092), o quiza incluso wy, € RH,(012),
para el mismo p > 1. Esto se ha conocido histéricamente como el problema de
perturbacién de operadores elipticos, y es el tema principal de esta tesis. Antes de
seguir introduciremos algo de notacién. Definimos la discrepancia entre A y Ag en
Q como

0(A, Ap)(X) := sup JA(Y') — Ap(Y)], X e, (0.12)

YeB(X,6(X)/2)

donde 0(X) := dist(X,0). La discrepancia induce una medida g4 4, en 2 dada
por

o(A, Ao)(X)?
U) .= dX UcQ. 0.13
paanl) = [f ESEGTax. v (013)
Decimos que j14,4, es una medida de Carleson con respecto de o si

a4, (B(z,7) N €Y
A A = : . 0.14
lle(A, Ao)ll sup o Bl no) <% (0.14)
0<r<diam(99Q)

Aqui, las regiones B(z,r) N donde tiene lugar la integracién se llaman regiones
de Carleson. De manera similar se dice que p4 4, es una medida de Carleson con
“vanishing trace” con respecto de o si

. pa,a (B(@,7) N Q)

1 : =0. .1

50+ ( A o(B(z,7) N Q) 0 (0.15)
0<r<s<diam(0f)

El primer resultado de perturbacién en estos términos se debe a Dahlberg, quien
en [Dah2] prueba que en la bola unidad, el hecho de que pa 4, sea una medida de
Carleson con “vanishing trace” con respecto de o, es suficiente para transferir la
condicién RH,(0R) de wr, a wy, sin cambiar el exponente. Este resultado se ha
extendido a contextos mds generales en el trabajo de [Esc| o [MPT2], que tratan el
caso de dominios Lipschitz y CAD respectivamente. El problema de la “constante
grande”, es decir cuando ||o(A, Ag)|| < oo, o equivalentemente cuando p4, 4, €s una
medida de Carleson, se resolvi6 en 1991 por Fefferman-Kenig-Pipher [FKP]. En el
contexto de dominios Lipschitz, se prueba que si wr, € Ax(09Q) y [|o(A, Ao)||| < oo,
entonces necesariamente wy, € Ay (092). Desde el punto de vista de desigualdades
reverse Holder, no es posible mantener el mismo exponente de un operador al otro.
No obstante la condicién A (92), que como ya sabemos puede usarse para carac-
terizar informacién geométrica del dominio, se sigue preservando por perturbaciones
de tipo medida de Carleson. Este teorema requiere un andlisis muy delicado y los
detalles de su prueba han servido como inspiracién para mas resultados en el area.
Vale la pena mencionar el trabajo de [MPT1], en el que se extiende el teorema de
[FKP] a dominios CAD, sacando partido a toda la maquinaria de EDPs desarrollada
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en [JK]. Nétese que en todos los teoremas de perturbacién anteriores, se asume que
los operadores son simétricos.

Nuestro primer proyecto consistié en extender los teoremas de [Dah2l, [FKP] al
contexto de dominios “l-sided CAD”. El planteamiento considerado esté fuerte-
mente inspirado en el trabajo de [HMI, [HM2], en el que se utiliza el semiplano
superior como un caso modelo para desarrollar un nuevo esquema de prueba para
teoremas de perturbacién de Carleson. Este esquema se basa en el llamado método
de “extrapolacién de medidas de Carleson”, que aparecié inicialmente en [LM] (ver
también [HL, [AHLT, IAHM™1]) y fue desarrollado en [HMI, [HM2] (ver también
[HM3]). Basado en la construccién de Carleson [Car] y Carleson-Garnett [CGI, este
argumento nos permite reducir el analisis a subdominios del tipo “sawtooth” en los
que la perturbacion es suficientemente pequena. Teniendo en cuenta que los domin-
ios considerados son tnicamente 1-sided CAD, el programa de Jerison-Kenig para
dominios CAD no puede ser aplicado directamente. Por suerte, este programa estd
siendo desarrollado en [HMT2| para 1-sided CAD, y gran parte de las propiedades
de EDP necesarias estan a nuestra disposicién. Es interesante notar que en este
escenario geométrico la condicién wr, € RH,(0f2) es equivalente al hecho de que
el problema de Dirichlet para Ly se puede resolver (de manera no tangencial) para
datos frontera en LP (9Q). Para ser capaces de usar el método de extrapolacién
de medidas de Carleson, primero tenemos que entender el caso de la perturbacion
pequena, esto es el caso en el que ||o(A4, Ag)|| < €1 paraun £; > 0 pequeno a escoger.
El estudio de este caso trajo consigo una versién diddica del teorema de Coifman-
Meyer-Stein para dualidad de “tent spaces” (ver [CMS]). Gracias a esta propiedad
somos capaces de mantener el mismo exponente p > 1 en la desigualdad reverse
Holder de un operador al otro, siempre que la perturbacién sea pequena. Para el
problema de “constante grande” seguimos el esquema de [HMIL [HM2], en el que se
busca probar una condicién més general del tipo A (092) en vez de RH,(02). El
siguiente teorema contiene los casos de constante grande y pequena para operadores
simétricos en dominios 1-sided CAD. Esto se corresponde con el Teorema [2.1] en el
texto.

Teorema 1. Sea Q C R"*' n > 2 un dominio 1-sided CAD (cf. Definicion .
Sean Lu = —div(AVu) y Lou = —div(AgVu) operadores elipticos (cf. Definicion
tales que A y Ay son simétricas. Supongamos que existe p, 1 < p < 0o, de
manera que la medida eliptica wr,, € RH,(0) (cf. Definicion M) Se verifican
las siguientes propiedades:

(a) Si|lo(A, Aol < oo (cf. (0.14)), entonces existe 1 < q¢ < oo tal que wy, €
RH,(0).

(b) Eziste e1 > 0 tal que si [|o(A, Ao)l| < €1, entonces wy, € RHy(09).

Adicionalmente obtenemos una extension del teorema de perturbaciéon “vanish-
ing trace” de [Dah2| al contexto de 1-sided CAD como corolario del caso || o(A4, Ao)|l| <
€1. Enunciamos el resultado como sigue, que puede verse de manera mas precisa en

el Corolario .12

Corolario 2. Supongamos que Q C R"! es un 1-sided CAD (cf. Deﬁm'cz'én
acotado. Sean Ly, L operadores elipticos simétricos (cf. Definicion|1.20) y supong-
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amos que wr,, € RH,(0Q) para algin 1 < p < oo (cf. Definicion|1.34]). Si se verifica
la condicion (0.15), entonces se tiene que wy, € RHy,(09Q).

Gracias al Teorema [I] obtenemos una nueva caracterizacién de la clase CAD. En
efecto, de manera similar a como se hace en [KP], introducimos la clase L{; como
la coleccién de operadores elipticos reales y simétricos Lu = — div(AVu) tales que
A € Lipy,.(), |HVA| 5”[,00(9) < 00, y tales que se cumple (0.11). También defini-

mos la clase " como la coleccién de operadores elipticos reales y simétricos Lu =
— div(AVu) para los que existe Ly = — div(AoVu) € L tal que [|o(A, Ao)|| < co. Es
facil ver que todos los operadores simétricos de coeficientes constantes pertenecen
a Ly, y también que L{j C L'. Es interesante observar que los operadores de L’
pueden ser altamente irregulares, pero siguen siendo apropiados para caracterizar la
clase CAD. El resultado preciso se enunciard en el Corolario [0 donde se estudia el
caso de operadores no necesariamente simétricos. Para el caso simétrico tomamos
L ely Ly € L{j de manera que ||o(A, Ag)|| < co. Primero, nétese que si 2 es CAD
entonces wr,, € Ax(92) por el resultado principal de [KP] (ver también [HMTT, Ap-
pendix A]). Esto se combina con el teorema de perturbacién de “constante grande”
de [MPTI] para mostrar que wy, € Ax(0S2). Para la implicacién inversa, es decir el
hecho de que si wy, € Ao (092) entonces €2 es realmente CAD, usaremos el Teorema
De ese modo primero se prueba que wr, € Ax(0f2), que junto con el hecho
de que Ly € Lj es suficiente para concluir que € es realmente CAD, como se ve en
[HMTT].

El segundo proyecto de esta tesis se ocupa de perturbaciones de tipo Carleson
de “constante grande”, para operadores elipticos no simétricos en dominios 1-sided
CAD. Consideremos Lu = —div(AVu) y Lou = — div(AoVu) operadores elipticos
reales, no necesariamente simétricos, y supongamos que wr,, € A (9€2). Queremos
probar que bajo la hipédtesis de que [[|o(A, Ag)]|| < oo, se tiene necesariamente wy, €
Ax(0€2). La manera de atacar este problema es diferente de la utilizada en el
Teorema |1| (ver también [HMI] [HM?2]), o incluso de la de [FKPl, [MPT1]. Estamos
interesados en analizar la propiedad de que todas las soluciones acotadas de un
operador L satisfagan “Carleson measure estimates” o, equivalentemente, CME.
Esto significa que para cada solucién débil acotada de Lu = 0 se tiene que

1
s L[ ORI AX < Oy (016)
W52 Mpenna

Esta propiedad puede verse relacionada con el hecho de que wy € Ay (92). Por
ejemplo, en el escenario de dominios Lipschitz acotados o dominios bajo la grafica
de una funcién Lipschitz, se prueba en [KKPT] que si L satisface “Carleson mea-
sure estimates” entonces wy € Ao (0N2). Para la otra implicacién suponemos que
wr, € Ax(092). El hecho de que toda solucién débil acotada de Lu = 0 satisfaga
(0.16)) puede verse, por el trabajo de [DJK], como consecuencia de una estimacién
mds general en dominios Lipschitz o CAD (ver también [HMT2] para 1-sided CAD).
En efecto, asumiendo que wy € A (0f2) se demuestra que la funcién cuadrado
conica esta controlada por la funcién maximal no tangencial en todo LP(0f2) con
1 < p < oo, donde ambos operadores se aplican a soluciones de L. Utilizando
esta propiedad con p = 2 y una funcién acotada, se obtiene la estimacién deseada.

15



Presentamos una nueva técnica para probar esta ultima implicacion, utilizando al-
gunas de las herramientas desarrolladas en [HMT1]. El primer problema es el de
mostrar que si L es una perturbacién de tipo Carleson de Ly con wr, € Ax(09),
entonces L satisface “Carleson measure estimates”. Llamaremos a este problema
la perturbacién A,, — CME. Primero observemos que puede usarse para probar
que wr, € Ax(09) implica “Carleson measure estimates” para L. Para ver esto
simplemente tomamos L = Lg, en cuyo caso la perturbacién es evidentemente de
tipo Carleson, asi que la perturbacién A,, — CME nos da las propiedades deseadas
para Lg. El segundo problema es el de encontrar un andlogo del teorema principal
de [KKPT] adaptado a dominios 1-sided CAD, que combinado con la perturbacién
Ay — CME extiende el Teorema a operadores no necesariamente simétricos.
Notese que como estamos usando la condicién auxiliar CME, no es posible mantener
el exponente de la desigualdad RH,(02), por lo que no obtenemos un analogo del
Teorema Combinamos estos resultados en dos teoremas diferentes. El primero
da la equivalencia entre wy, € A (02) y la propiedad CME para L, y se corresponde
con el Teorema El segundo es la generalizacién deseada del Teorema que
se llamard Teorema [3.2] en el texto.

Teorema 3. Sea 2 C R"™ n > 2, un dominio 1-sided CAD (cf. Deﬁm’cio’n
y sea Lu = — div(AVu) un operador eliptico real, no necesariamente simétrico (cf.
Definicion . Las siguientes propiedades son equivalentes:

(a) Toda solucion débil acotada de Lu = 0 satisface (0.16)).
(b) wr € Axc(0R2) (cf. Definicion .

Teorema 4. Sea Q C R"™!' n > 2, un dominio I1-sided CAD (cf. Definicion
[1.4]). Sean Lu = —div(AVu) y Lou = —div(AgVu) operadores elipticos reales, no
necesariamente simétricos (cf. Definicion . Supongamos que la discrepancia
entre A y Ap satisface [|o(A, Ao)|| < oo (cf. (0.14) ). Entonces, wr, € Ax(99Q) siy
sélo st wy, € A (0Q) (cf. Definicion[1.3).

Como hemos observado anteriormente, el método introducido para demostrar
los Teoremas [3] y [] puede ser dividido en dos partes. Para la primera, esto es
la perturbacién A, — CME, aprovechamos la condicién A, (9€2) para extraer un
dominio “sawtooth” con buenas propiedades. Para ello se aplica un resultado de
[HMT1], que es un argumento “stopping-time” basado en la solucién de la conjetura
de Kato en [HM5, [HLM, IAHL™], y que ha sido desarrollado en [HM4], [HLMN]. M4s
precisamente, este dominio “sawtooth” guarda un amplio contacto con el dominio
original, y las medias de wr,, con respecto de o son esencialmente constantes. Esto
nos permite intercambiar la distancia a la frontera por la funcién de Green G,
(con un polo fijado) en , asi que podemos integrar por partes para obtener
la estimacién deseada en el “sawtooth”. Finalmente, usando que este subdominio
tiene un amplio contacto con 2 y siguiendo de nuevo [HMT1], podemos extender la
estimacién de tipo Carleson al dominio original. La segunda parte de este método,
esto es, el hecho de que CME para L implica wy, € Ay (0€2), estd basado en las
ideas desarrolladas en [KKPT]. Consideramos un conjunto de Borel F' C 9 con
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pequena medida wy, e intentamos probar que o(F) es también pequena. Para ello
se construye una coleccion finita de conjuntos anidados que contienen a F', a la que
llamamos un ep-cubrimiento (cf. Definicién , y una solucién u asociada a esa
coleccién. Primero se da una cota inferior para la oscilacién de u, lo que implica una
cota inferior para la funcién cuadrado cénica aplicada esa solucién. Esto, junto con
el hecho de que w satisface “Carleson measure estimates” nos permite concluir que
o(F) es también pequena, luego wy, € A (9€2). Nétese que no es necesario asumir
que toda solucién débil y acotada satisfaga CME, ya que s6lo usamos esta propiedad
para una clase particular de soluciones. Finalmente, hay una aplicacién interesante
del método discutido anteriormente. En este resultado queremos deducir buenas
propiedades de wy, a w; T, donde LT es el operador traspuesto de L. La condicién
de Carleson en la discrepancia entre L y LT se convierte, tras una integracién por
partes, en una condicién de tipo Carleson sobre la derivada de la parte antisimétrica
de A. Asumiendo esta condicién podemos probar que wy, € A (9€) es equivalente
awpt € As(09), como se enuncia precisamente en el teorema a continuacién, que
se corresponde con el Teorema [3.3|en el texto.

Teorema 5. Sea Q C R"' n > 2 un dominio 1-sided CAD (cf. Definicion .
Sea Lu = —div(AVu) un operador eliptico real, no necesariamente simétrico (cf.
Deﬁm’cio’n ysea LT = —div(ATVu) el operador traspuesto de L. Supongamos
que (A - AT) € Liploc(Q) Yy que

n+1

diVC(A — AT)(X) = <Z@i(ai,j — (LjJ)(X) , X e Q. (0.17)
=1

>1§j3n+1

Supongamos que se verifica la siguiente estimacion

1
reat o(B(w,r)NoQ)

// | dive (A — AT)(X)|?6(X) dX < co. (0.18)
B(z,r)NQ
0<r<diam(99)

Entonces w, € Ax () si y sdlo siwpt € A (9Q) (cf. Definicidn [1.33).

De manera similar a como hemos observado antes, la perturbacién de Car-
leson de operadores elipticos puede usarse para extender resultados de frontera
libre. Recordemos que Ly es la coleccién de operadores elipticos no simétricos
Lu = — div(AVu) tales que A € Lip,.(2), H]VA\ 5HL°°(Q) < 00, y tales que se ver-
ifica (0.11). Nétese que en [HMTI] se prueba que para todo operador no simétrico
L € Ly, uno tiene que asumir tanto que wy, € A (9€2) como que w;t € A (00)
de cara a asegurar que se verifica la propiedad de “exterior Corkscrew”. En esta
direccién podemos usar el Teorema para quitar la hipdtesis de que w;t € Ay (092).
Enunciamos la nueva caracterizaciéon de dominios chord-arc en el siguiente corolario,
que se corresponde con el Corolario [3.4] en el texto.

Corolario 6. Sea QO C R""! n > 2, un dominio 1-sided CAD (cf. Deﬁnitcio’.
Sea Lou = — div(AoVu) un operador eliptico real (cf. Definicion|1.20). Supongamos
que Ag € Lipy,.(92), [VAp| 6 € L>=(2) y que se verifica (0.11) para Ag. Entonces

WL, € Ao (09) = wpT € Ao (09).
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Adicionalmente, si Lu = —div(AVu) es un operador eliptico real (cf. Definicion

tal que ||o(A, Ao)|| < oo (cf. (0.14) ), entonces se tiene que
wr € Axo(09) — Q is a CAD (cf. Definition[1.]). (0.19)

Por una parte observemos que |V Ag|d € L*°(2) junto con (0.11]) para Ay implica
que

1
oo o(B(w,r)NoQ)

// |V Ao (X)|*8(X) dX < oo, (0.20)
B(z,r)NQ
0<r<diam(9)

luego la primera parte del Corolario [6] es una consecuencia facil del Teorema [5| con
A = Ag. Para la segunda parte, primero analizaremos la implicacién a la izquierda.
El hecho de que wr, € Ax(99) se deduce del trabajo de [KP], y esto se combina
con el Teorema 4| para probar que wy, € Ax(0N2). Para la implicacién a la derecha
primero observamos que wr, € Aoo(02) por el Teorema 4} Ademas, utilizando la
primera parte del Corolario |6 se tiene que wrT € A (092). Estas dos condiciones
son suficientes para concluir que © es de hecho CAD, como se prueba en [HMTI].
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Notation

e Our ambient space is R, n > 2.

e We use the letters ¢, C to denote harmless positive constants, not necessarily
the same at each occurence, which depend only on dimension and the constants
appearing in the hypotheses of the theorems (which we refer to as the “allowable
parameters”). We shall also sometimes write a < b and a = b to mean, respec-
tively, that a < Cb and 0 < ¢ < a/b < C, where the constants ¢ and C are as
above, unless explicitly noted to the contrary. Moreover, if ¢ and C' depend on
some given parameter 7, which is somehow relevant, we write a <, b and a ~,, b.
At times, we shall designate by M a particular constant whose value will remain
unchanged throughout the proof of a given lemma or proposition, but which may
have a different value during the proof of a different lemma or proposition.

e Given a domain (i.e., open and connected) 2 C R"*! we shall use lower case
letters x,v, z, etc., to denote points on 02, and capital letters X,Y, Z, etc., to
denote generic points in R"*! (especially those in €2).

e The open (n + 1)-dimensional Euclidean ball of radius r will be denoted B(z, )
when the center = lies on 92, or B(X,r) when the center X € R"™1\ 9Q. A
“surface ball” is denoted A(z,r) := B(z,r) N 02, and unless otherwise specified
it is implicitly assumed that z € 9. Also if 9 is bounded, we typically assume
that 0 < r < diam(09), so that A = 99 if diam(9) < r < diam(91).

e Given a Euclidean ball B or surface ball A, its radius will be denoted r(B) or
r(A) respectively.

e Given a Euclidean ball B = B(X,r) or surface ball A = A(z,r), its concentric
dilate by a factor of k > 0 will be denoted by kB = B(X, kr) or kA = A(z, kr).

e For X € R"™ we set dgq(X) := dist(X,9Q). Sometimes, when clear from the
context we will omit the subscript 992 and simply write §(X).

e We let H" denote the n-dimensional Hausdorff measure, and let 0yq = H"| 59
denote the “surface measure” on 9. For a closed set E C R"*! we will use the
notation o := H"| . When clear from the context we will also omit the subscript
and simply write o.

e For a Borel set A C R™"!, we let 14 denote the usual indicator function of A4, i.e.,
la(z)=1ifz € A and 14(x) =0if z ¢ A.
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For a Borel set A C R™™!, we let int(A) denote the interior of A, and A denote the
closure of A. If A C 09, int(A) will denote the relative interior, i.e., the largest

relatively open set in 02 contained in A. Thus, for A C 052, the boundary is then
well defined by 9A := A\ int(A).

For a Borel set A C R"*! we denote by C(A) the space of continuous functions
on A and by C.(A) the subspace of C'(A) with compact support in A. Note that
if A is compact then C(A4) = C.(A).

For an open set Q C R"1 we denote by C°°(2) the space of infinitely differen-
tiable functions on Q and by C2°(£2) the subspace of C*°(€2) with compact support
in Q.

For a Borel set A C 9Q with 0 < 0(A) < oo, we write f, fdo :=o(A)~* [, fdo.

We shall use the letter I (and sometimes J) to denote a closed (n+ 1)-dimensional
Euclidean cube with sides parallel to the co-ordinate axes, and we let £(I) denote
the side length of I. We use Q to denote a dyadic “cube” on E C R"*!. The
latter exists, given that F is AR (cf. [DSI], [Chi]), and enjoy certain properties
which we enumerate in Lemma [L.6] below.
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Chapter 1

Preliminaries

1.1 Some geometric aspects

In this section we state the precise definitions of the geometric properties that will
be assumed throughout the text. Also, we review the constructions that allow us to
define adapted Whitney and Carleson regions, which serve as basic blocks in most
of the proofs. This section is entirely based in the work of [HM3], although the same
geometric assumptions have been used in [HMUT, HMTI, [HMT2]. We present it
for the sake of completeness.

Definition 1.1 (Corkscrew condition). Following [JK]|, we say that an open
set  C R"! satisfies the “Corkscrew condition” if for some uniform constant
¢ € (0,1) and for every surface ball A := A(z,r) = B(x,r) N 0N with x € 9Q and
0 < r < diam(092), there is a ball B(Xa,cr) C B(x,r) N Q. The point XA € Q is
called a “corkscrew point” relative to A. Note that we may allow r < C diam(02)
for any fixed C, simply by adjusting the constant c.

Definition 1.2 (Harnack Chain condition). Again following [JK]|, we say that
Q c R"*! satisfies the Harnack Chain condition if there is a uniform constant C such
that for every p > 0, © > 1, and every pair of points X, X’ € Q with §(X),d(X’) > p
and | X — X'| < ©p, there is a chain of open balls By,..., By C Q, N < C(0), with
X € By, X' € By, BrNByy1 # @ and C~!diam(By) < dist(By, Q) < C diam(By,).
The chain of balls is called a “Harnack Chain”.

Definition 1.3 (Ahlfors regular). We say that a closed set E C R"*! is n-
dimensional AR (or simply AR), if there is some uniform constant C' = Car such
that

Cl" < H(ENB(z,7)) <Cr", 0<r<diam(E), z¢€ E.

Definition 1.4 (1-sided chord-arc domain). A connected open set Q C R"*1 is
a “l-sided chord-arc domain” (1-sided CAD for short) if it satisfies the Corkscrew
and Harnack Chain conditions and if 0€2 is AR.

Definition 1.5 (Chord-arc domain). A connected open set 2 C R"*! is a “chord-
arc domain” (CAD for short) if it is a 1-sided CAD and moreover 2 satisfies the
exterior Corkscrew condition (that is, the domain Qey := R"*1\ Q satisfies the
Corkscrew condition).
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We give a lemma concerning the existence of a “dyadic grid”:

Lemma 1.6 (Existence and properties of the “dyadic grid”, [DSI1, [DS2],
[Chr]). Suppose that E C R™"! is n-dimensional AR. Then there exist constants
ag >0, n >0 and C; < oo depending only on dimension and the AR constant, such
that for each k € Z there is a collection of Borel sets (*“cubes”)

Dy = {Q;C CcCoN: je jk},
where Jy, denotes some (possibly finite) index set depending on k, satisfying:
(a) E=U; Qé“ for each k € Z.
(b) If m > k then either Q" C Q? or QN Q? = 0.
(¢) For each j,k € Z and each m > k, there is a unique i € Z such that Q? c Q.

)
)

(d) diam(Q?) <Cp 27k,

(e) Each Q;“ contains some “surface ball” A(x;?, ap27%) = B(x;?,aoQ_k) NnE.
)

(f) H({z € Q? » dist(z, B\ Qf) <727F}) < C1T’7H"(Q?), for all j,k € Z and
for all T € (0, ap).

A few remarks are in order concerning this lemma.

e In the setting of a general space of homogeneous type, this lemma has been proved
by Christ [Chr]|, with the dyadic parameter 1/2 replaced by some constant § €
(0,1). In fact, one may always take 6 = 1/2 (cf. [HMMM], Proof of Proposition
2.12]). In the presence of the AR property, the result already appears in [DS1]
DS2].

e We shall denote by D(E) the collection of all relevant Q;‘:, ie.,

D(E) := | JDx,
k

where, if diam(F) is finite, the union runs over those k¥ € Z such that 27% <
diam(FE).

e For a dyadic cube Q € Dy, we shall set £(Q) = 27%, and we shall refer to this
quantity as the “length” of Q. It is clear that /(Q) ~ diam(Q). Also, for Q € D(F)
we will set k(Q) =k if Q € Dy.

e Properties (d) and (e) imply that for each cube @ € D, there is a point zg € E,
a BEuclidean ball B(zg,rg) and a surface ball A(zg,rq) := B(zg,rg) N E such
that ¢f(Q) < rg < £(Q), for some uniform constant ¢ > 0, and

A(xQ,27’Q) C Q C A(JIQ, CT’Q) (1.1)

for some uniform constant C > 1. We shall denote these balls and surface balls
by
Bg := B(zq,rq), Ag = Azg,rg), (1.2)

EQ = B(zq,Crq), AQ = A(zg,Crg), (1.3)

and we shall refer to the point zg as the “center” of Q).
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o Let Q C R™! be an open set satisfying the Corkscrew condition and such that
002 is AR. Given @ € D(992) we define the “corkscrew point relative to Q” as
Xg = XAQ. We note that

d(Xg) = dist(Xg, Q) =~ diam(Q).

Following [HM3, Section 3| we next introduce the notion of “Carleson region”
and “discretized sawtooth”. Given a cube @ € D(F), the “discretized Carleson
region” D¢ relative to @ is defined by

Dg:={Q € D(E): Q' C Q}.

Let F = {Q;} C D(E) be a family of disjoint cubes. The “global discretized saw-
tooth” relative to F is the collection of cubes Q € D(E) that are not contained in
any @; € F, that is,
Dz :=D(E) \ U Dg; .
QiEF
For a given ) € D(F), the “local discretized sawtooth” relative to F is the collection
of cubes in D¢ that are not contained in any @); € F or, equivalently,

Drq:=Dg\ (J Do, =DrNDg.
QiEF

We also introduce the “geometric” Carleson regions and sawtooths. In the sequel,
Q c R"! (n > 2) will be a 1-sided CAD. Given Q € D(092) we want to define some
associated regions which inherit the good properties of Q. Let W = W(Q) denote
a collection of (closed) dyadic Whitney cubes of Q C R™*!, so that the cubes in W
form a pairwise non-overlapping covering of €2, which satisfy

Adiam(]) < dist(41,09) < dist(I,09) < 40diam(I), VI € W, (1.4)

and
diam(/;) ~ diam(/2), whenever I; and I touch.

Let X (I) denote the center of I, let £(I) denote the sidelength of I, and write k = kj
if £(I) =27%.

Given 0 < A <1 and I € W we write I* = (1 + \)I for the “fattening” of I. By
taking A small enough, we can arrange matters, so that, first, dist(I*, J*) = dist(/, J)
for every I,J € W, and secondly, I* meets J* if and only if OI meets 0J (the
fattening thus ensures overlap of I* and J* for any pair I, J € W whose boundaries
touch, so that the Harnack Chain property then holds locally in I* U J*, with
constants depending upon ). By picking A sufficiently small, say 0 < A < Ao, we
may also suppose that there is 7 € (1/2, 1) such that for distinct I, J € W, we have
that 7JNI* = (. In what follows we will need to work with dilations I** = (1+2X)[
or I = (144M)I, and in order to ensure that the same properties hold we further
assume that 0 < A < A\o/4.

For every @ € D(9€) we can construct a family W¢, C W((2), and define

Ug = U I,

ITewy,
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satisfying the following properties: Xg € Ug and there are uniform constants k*
and K such that

k(Q) — k" < kr <k(Q)+k*, VIeWp,
X(I) —u, X, VIeWp,
dist(1, Q) < Ko27M@), vIeWwp,.

Here, X (I) =y, Xq means that the interior of Ug contains all balls in a Harnack
Chain (in Q) connecting X (/) to X¢, and moreover, for any point Z contained in
any ball in the Harnack Chain, we have dist(Z, 0Q2) ~ dist(Z,Q \ Ug) with uniform
control of the implicit constants. The constants k£*, Ky and the implicit constants
in the condition X (I) —U, X@, depend on at most allowable parameters and on
A. Moreover, given I € W(Q2) we have that I € W), where Q; € D(99) satisfies
0(Qr) = £(I), and contains any fixed y € 92 such that dist(/,09Q) = dist(I,y). The
reader is referred to [HM3| Section 3] for full details.
For a given Q € D(0NQ), the “Carleson box” relative to @ is defined by

mt( U UQ>

Q’GDQ

For a given family F = {Q;} of pairwise disjoint cubes and a given @ € D(9Q2), we
define the “local sawtooth region” relative to F by

Q;Q—int( U UQ/)—int< U I*), (1.5)

Q'eDr g I1eWr g

where Wr g = UQ,E]DJTQ W¢. Analogously, we can slightly fatten the Whitney
boxes and use I** to define new fattened Whitney regions and sawtooth domains.
More precisely, for every @ € D(99),

1nt< U UQ> Q%o :zint( U U(g,), Up=|J I

Q'eDg Tewg

Similarly, we can define T}, Q}*}Q and Ué* by using I*** in place of I**.
To define the “Carleson box” Ta associated to a surface ball A = A(x,r), let
k(A) denote the unique k € Z such that 27%=! < 200r < 27% and set

2= {Q €Dy : QN2A# 0O},

We then set

TA::int< U TQ>.

QehbA

We can also consider slight dilations of Ta given by

1nt< U T*) X ::int< U TQ)

QehA QebA
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Following [HM3|, Section 3], one can easily see that there exist constants 0 <
k1 < 1 and kg > 2C (with C the constant in (1.3))), depending only on the allowable
parameters, so that

k1BQNQ C Ty CTH CTH CTy CroBeNQ=:3B5NQ, (1.6)
BBANQCTACTACTA CTXF CroBAaNQ=:1BANQ, (1.7)

and also
QChoBANON=1BANON=1A"  vQeD?, (1.8)

where Bg is defined as in (1.2)), A = A(z,r) with € 09, 0 < r < diam(d52), and
Ba = B(z,r) is so that A = Ba N 0N.

1.2 Borel measures and weights

Throughout this section, £ C R"*! will be an n-dimensional AR set. We first
introduce the concept of eg-cover associated with a given regular Borel measure.
This definition is based on the work of [KKPT], with some slight modifications in
order to adapt it to our geometric setting and dyadic constructions.

Definition 1.7 (A good ep-cover). Let E C R"*! be an n-dimensional AR set.
Fix Qo € D(E) and let  be a regular Borel measure on Qy. Given g9 € (0,1) and
a Borel set F' C Qq, a good gg-cover of F' with respect to u, of length k € N, is a
collection {(’)g}le of Borel subsets of @, together with pairwise disjoint families
Fr = {Q%} € Dg,, such that

(a) FCOkCOkflC'“COQCOlCQo,
() Or=Ugrer, @ 12L<Hk,

(€) p(ONQTY) <eou(QY),  VQI'eF Ly, 2<t<k

Note that the third property of the above definition can be iterated to obtain a
more general condition, as stated below.

Lemma 1.8. If {(9@}];:1 18 a good gg-cover of F' with respect to u of length k € N
then
O Q) < e (@),  VQPEFm,  1<m<L<k  (19)

Proof. Fix 1 < £ < k and we proceed by induction in m. If m = ¢ the estimate is
trivial since p(OpNQY) = p(QY). If m = £ —1 (in which case necessarily £ > 2) then
follows directly from (c) in Definition Assume next that holds for
some fixed 2 < m < £ and we prove it for m — 1 in place of m. We first claim that
for every le_l € Fn_1 there holds

onetc | onQr (1.10)
QreFm
Qrey!
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To see this, take z € Oy N Q;”_l C O,,. Hence, there exists a unique Q}“ € Fp, such
that € Q7' and consequently either Q’i"_l CQpor Q"< Q;”_l. If Q;"_l C Q7
then p(Q7 1) = (0, N QT < aou(Qm_l) y ( ) in Definition and this is
a contradiction since 0 < g9 < 1. Thus, Q7" 1 and - holds and

pOMQP < Y womQP) <™ > ul@Qp)
QT EFm QmeFm
QreQt QreQt

< " uOm N QI < ey " u(@ ),

where we have applied the induction hypothesis to the Q7*’s and the properties of
the good eg-cover. [

Definition 1.9 (Dyadically doubling). We say that a regular Borel measure y on
Qo € D(F) is dyadically doubling if there exists C, > 1 such that u(Q*) < C,u(Q)

for every @ € Dg, \ {Qo}, with Q* D Q and £(Q*) = 2((Q) (i.e., Q" is the “dyadic
parent” of Q). We call C,, the dyadically doubling constant of s.

The next lemma is also found in a different version in [KKPT]. We note that
here, the subsets used to build the gg-cover are defined as the level sets of a given
fixed function, instead of working iteratively.

Lemma 1.10. Let E C R"! be an n-dimensional AR set and fixr Qo € D(E). Let
u be a regular Borel measure on Qo and assume that it is dyadically doubling on
Qo with constant C,,. For every 0 < g9 < e !, if F C Qo with u(F) < au(Qo)
and 0 < a < 53/(202) then F has a good eg-cover with respect to 1 of length

ko = ko(a,e0) € N, ko > 2, which satisfies kg =~ 112% In particular, if p(F) =0,

then F' has a good eg-cover of arbitrary length.

Proof. Fix g, F and « as in the statement and write a := C,,/eg > 1. Note that
since 0 < a < 6%/(205) = a~2/2 there is a unique ko = ko(a, 0) € N, kg > 2, such

that

afkofl —ko

< 2a < a0
and our choice of ¢ gives that

-1 1

1 log loga™
3(1+1logCy) logey ' — 0= logey!

AN

(1.11)

Since pu(F') < ap(Qo), by outer regularity there exists a relatively open set U C F
such that F¥ C U and p(U \ F) < au(Qo). Set F':= U N Qo C Qo and define the
level sets

Oy —{l‘EQO qu(l )( )>a_k}, 1<k <k,

where Mﬁ 0, 18 the local dyadic maximal operator with respect to p given by

Mo f(z) = sup 1) /Q F@)duly),  f € Lby(Qo.dp).

zeQebq, M
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Clearly, 1 C Q9 C -+ C Qi, C Q. Moreover, F C Q. To see this fix z € F and
use that U is relatively open to find B, = B(x,r,) with r, > 0 so that B,NFE C U.
Take next Q, € D with Q, 3 z so that £(Qz) < ¢(Qo) and diam(Q,) < ry. Since
z € FNQ: C QrNQoand £(Q,) < £(Qo) it follows that Q, € Dg,. Also since
diam(Q,) < r; we easily see that Q. C B,NE C U and eventually we have obtained
that @, C F' which in turn gives

My o, (15) (@) =

Hence, z € ) as desired. _

All the previous observations show that F' C FF C Q3 C {2y C -+ C Q, C Qo
and in particular ; # @ for every k > 1. Moreover, by our choice of kg, we have
that for every 1 < k < kg

p(F) < u(U) < U\ F) + p(F) < 20(Qo) < a™*p(Qo) < a™*u(Qo).

Subdividing Qg dyadically we can then select a pairwise disjoint collection of cubes
Fr. = {QF} c Dg, \ {Qo} which are maximal with respect to the property that

WFNQE) > a ™ u(Qh), (1.12)

and also O = Ugrer, Q¥ (note that F, # O since O # @). By the maximality of
the selected cubes we obtain that

W(FNQY
1(QF)

where (Qf)* is the dyadic parent of Qf )

Next we claim that for each Q?H € Fry1 we have that p(Qg N Qfﬂ) <
sou(Qg?H). To see this we first observe that if Qf‘ N Q?'H # @, then necessarily
Qf C Qf“, for otherwise Q;?H - Qf and by the maximality of the cube Q?H and
(T:12) we would have that a *u(QF) < w(F N QF) < a *1p(QF), which leads to a
contradiction since a > 1. Hence, Qf C Qf“ whenever Qf N Q;‘?H # (). Using this,

(1.12), and (1.13) (for Q?H and k + 1 replacing QF and k respectively), we have
that

(F N (QF))

<c, b <Ca*, (1.13)

pQn@ = Y w(@n@th = > u(@h
QF:QkcQk ! QF:QkcQk !
[3 k3 J 7 g J

<d 3 wFNQY < pFNQIT) <o Cup(Q) = 2o m(QFH),
QF: Qkcr !
7 k3 J

and this proves the claim.

To complete the proof of the lemma we define O := Qp,_x4+1 and note that
the sets {Ok}],zozl form a good eg-cover of F', with respect to u, of length kg which
satisfies ((1.11)). Finally we observe that if u(F) = 0, then « can be taken arbitrarily
small, hence kg, the length of the good ep-cover of F', can be taken as large as desired

by (L.11). u
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In what follows, we will write o = H"|  to denote the surface measure. Next,
we will recall some basic facts about Muckenhoupt weights, or more precisely the
A and RH), conditions. These can be seen as quantitative scale invariant versions
of the absolute continuity with respect to o.

Definition 1.11 (A, and Aﬁlgadic). Given a surface ball Ag = By N E, with By =
B(xo,7m0), v0 € E, 0 < r < diam(F), a regular Borel measure w defined on Ag is
said to belong to Ax(Ag) if there exist constants 0 < «, f < 1 such that for every
surface ball A = BN E centered at F with B C By, and for every Borel set F' C A,

we have that (F) (F)
w o
— = < > < .
od) =" o =7
Given Qo € D(E), a regular Borel measure w defined on @ is said to belong to

A0 if there exist constants 0 < o, 8 < 1 such that for every Q € Dg, and
for every Borel set F' C (), we have that

w(F) _ o(F)

2@ =" T 5@

Suppose further that w is dyadically doubling, it is well known (see [GR], [CE],
[HM3]) that since o is a doubling measure (recall that E satisfies the AR condition),
w € AZ(Qy) if and only if w < o in Qy and there exists 1 < p < oo such that
w e RHgyadiC(Qo), that is, there is a constant C' > 1 such that

<  hioy da(m)>’1’ < 0]{2 k() do ()

for every @ € Dg,, where k = dw/do is the Radon-Nikodym derivative. In fact,

<B.

Agé’adic defines an equivalence relationship between dyadically doubling measures.
Indeed, in particular w € A‘ioyad‘C(Qo) if and only if w < ¢ in Qg and there exist
constants C7 > 1, 61,65 > 0 such that

' (%g) <4a <o (%g)

for every @ € Dg, and for every Borel set ' C Q.

Definition 1.12 (The projection operator). Fix Qy € D(FE). For each F =
{Qi} € Dg,, a family of pairwise disjoint dyadic cubes, and each f locally integrable,
we define

Pef() = F@)Ly () )@+ 3 (f F0)dow))10.(2)

QieF Qi
If w is a non-negative regular Borel measure on @y, we may naturally then define
the measure Prw as Prw(F fE Prlpdw, that is,
F ﬂ
Prw(F) (F\ U Qz) + Z Qz w(Qi), (1.14)
QieF QiceF

for each Borel set F' C Q.
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The next result follows easily by combining the arguments in [HM3], Lemma B.1]
and [HM1 Lemma 4.1]

Lemma 1.13. Let w be a non-negative regular Borel measure on Qp € D(E).
(a) If w is dyadically doubling on Qo then Prw is dyadically doubling on Q.
(b) Ifw e ASS*(Qo) then Prw € ASS(Qy).

The following result shows that given an absolute continuous measure p with
respect to o, under suitable quantitative conditions we can extract a sawtooth that
has an ample contact with the original domain, such that x4 and ¢ are comparable
on the cubes above the sawtooth.

Lemma 1.14 ([HMTI, Lemma 3.5]). Let u be a non-negative reqular Borel measure
on Qo € D(E). Assume that u < o on Qo, and also that there exist Ko > 1, 0 >0
such that

6
LM g MO (O o

Then, there ezists a pairwise disjoint family F = {Q;} C Dg, \ {Qo} such that

O'(QO\ U Qj) > K 'o(Qo) (1.16)
Q,;eF
and 1 Q)
5 < Z(Q) < Kokj, VQ € Dr g, (1.17)

where K, = (4K)'/?.
Note that, under the hypothesis of Lemma the second condition in (1.15)

can be seen as a consequence of the fact that u € AadiC(Qo). This, when combined
with Lemma [1.17] will be a useful tool in order to prove that a certain measure
satisfies further properties, as we will discuss in the following section.

1.3 Discrete Carleson measures

Let {’YQ}QED( g) be a sequence of non-negative real numbers. We define the “mea-
sure” m (acting on collections of dyadic cubes) by

m) =Y e, D CD(E). (1.18)
QeD’

Definition 1.15 (Discrete Carleson measure). Let Qo € D(E), we say that m is
a discrete “Carleson measure” on Qo (with respect to o) or, equivalently, m € C(Qq)
if

m(D
Imlecan) = st @a) _, (1.19)

€Dg, o(Q)
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In a similar way, we will say that m is a discrete Carleson measure on F or, equiva-
lently, m € C(E) if

lmllcm) = sup ——% < oc. (1.20)
B oenm) o(Q)
Usually, in order to simplify the notation, we will refer to these measures just as
Carleson measures on )y or F, respectively.

Definition 1.16 (Restriction of a measure). Let {7g}gen(m) be a sequence of
non-negative real numbers and consider the measure m defined in (1.18). Given
F ={Qi} C Dg,, a family of pairwise disjoint dyadic cubes, we define mz by

mrD) =m@NDr)= > 7o, D CDg,
QeD'ND £

Equivalently, the measure mx is given by the sequence {’yf,Q}QEDQO7 where

YQ if Q c ]D].:Q ,
VFQ = { ’ (1.21)

0 ifQEDQO\D}-QO.

The next result establishes that in order to show that m is a Carleson measure
on F, it suffices to work locally on each Qg and check that mr is a Carleson measure
on (o, whenever the sawtooth Dr g, has an ample contact with the domain, in the

sense of (|1.16)).

Lemma 1.17 ([HMTI, Lemma 3.12]). Let a = {aq}gen(r) be a sequence of non-
negative numbers and consider m as defined above. Given M; > 0 and K1 > 1,
we assume that for every Qo € D(E) there exists a pairwise disjoint family Fg, =

{Q;} € Dg, \ {Qo} such that

U(Qo\ U Qj) > K; 'o(Qo) (1.22)
Q]E]:Qo
and
m(D}—QO,Qo) < Mio(Qo)- (1.23)

Then, m is a Carleson measure on E and moreover

m(Dg)
m = sup < K1 M.
Imllqey = sup 8 < Ky

Part of the proof of Theorems or will rely heavily on Lemmas [1.14]
and as we will see in Chapter 3] We have already shown that the use of the
ALTE condition may help us to prove that certain measure is indeed a discrete
Carleson measure. Next, we state a powerful result in the opposite direction, that
will be essential in the proof of Theorem This is, we use an auxiliar Carleson
measure m to prove that a given weight w € Ag%'adic, reducing the work to show that
for every disjoint family F for which the restriction mz has small Carleson norm,
the projection Prw satisfies an Agoyadic—type condition. The precise statement is as
follows.
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Lemma 1.18 ([HM3], Lemma 8.5)). Suppose that E C R"! is n-dimensional AR.
Fiz Qo € D(E), let o, w be a pair of non-negative dyadically doubling reqular Borel
measures on Qu, and let m be a discrete Carleson measure with respect to o, with

Imle(qy) < Mo.

Suppose that there ewists v > 0 such that for every @ € Dg, and every family of
pairwise disjoint dyadic cubes F = {Q;} C Dg verifying

m(Dr,q)
mrie@) = sup ——== <7,
mrleca Qeng o(Q)

we have that Prw satisfies the following property:

o(F) Prw(F) 1
Vee (0,1) dC.>1suchthat (FCQ, —=F>c —= — —=2>—].
0 3¢ (Fee To Pra(@ 2 C2)
Then, there ezist ng € (0,1) and Cy < oo such that, for every Q € Dg,
o(F) w(F) 1
FcCaQ, >1l—n = ——= > —.
@ @ T T LG

In other words, w € AY*(Qy).

Finally, we will show a discrete localized version of [CMS| Theorem 1] adapted to
our geometric setting. Fix Qo € D(F) and consider the operators Ag,, €, defined
by

Agyala) ;:< 3 e(é)na@lﬂ, Cosal) =  sup ((7(1@ 3 agg,>1/2,

IGQEDQO erEDQO Q/EDQ

(1.24)
where o = {ag}qgeng, is a sequence of real numbers. Note that these operators are
discrete analogues of the area functional and Carleson operator used in [CMS| to

develop the theory of tent spaces. Sometimes, we use a truncated version of Ag,,
defined for each k > 0 by

1/2
Ag a(z) == Z L ol
0 o(Q)" Q ’

k
:rGQG]D)QO

where Dé)o is the collection of @ € D¢, such that £(Q) < 27%/(Qo).

Lemma 1.19. Suppose that E C R"*1 is n-dimensional AR, fix Qo € D(E), let Ag,
and €q, be the operators defined in respectively. There exists C, depending
only on dimension and the AR constant, such that for every o = {aQ}QGDQO7 8=
{BQ}QGDQO sequences of real numbers, we have that

> |aQ5Q|gc/Q Agya(z)€q, B(x) do(x). (1.25)

QeDg,
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Proof. We first claim that it suffices to consider the case on which g = 0 when
Q) < 27N0(Qq) for some N € N, and in that scenario, we establish with
C independent of N. To obtain the general case, for every N > 1, we let gV =
{ﬁg}QGDQO where ﬂg = Bg if 27VU(Qo) < 4(Q) < £(Qo) and Bg = 0 when £(Q) <
27N0(Qp). Then by our claim, holds for N with C independent of N.
Observing that €, BN < €, B we just need to let N — oo and the desired estimate
follows at once.

Let us then show our claim. Fix 3 so that 8g = 0 when £(Q) < 27V¢(Qy) for
some N € N. For Q € Dg,, let kg > 0 be so that £(Q) = 27%2¢(Q,). Suppose
that Q' € Dg, satisfies £(Q") < 27%e¢(Qp) = £(Q) and Q' N Q # O, then necessarily
Q' € Dq. Therefore, using the AR property we obtain

| ) dot = |30 10w a5 S e
Q/e]D) Q’e]D)

Dividing both sides by ¢(Q), we have proved that for every @) € Dg, and every
x € @ we have that

nQ ‘:]é (Ag2B(y))” do(y) < Co (€uB(x)), (1.26)

with Cy depending only on the AR constant. Since 8g = 0 for £(Q) < 27N(Qy),
we have that Ag,B(z) < C(N) < oo and hence g < C(N)? < co. Now, we set
C4 := 24/Cj and define

Fy:={z€Qo: Ap,B(z) > C1€q,B(x), Vk > 0}.

In particular, using (1.26)), we have Alzﬁ B(x) > 2173 % for each = € QN Fy. We claim

that 40(Q N Fy) < 0(Q). Indeed, if ng = 0 then one can see that .AZQOB(y) = 0 for
every y € @ and hence Q N Fy = ), which trivially gives that 40(Q N Fy) < o(Q).
On the other hand, if ng > 0, we have

tor(QNF) < [ (A5w)" doly) < nao(@).
QNFo
and the desired estimate follows since 0 < ng < 0o. Let us now consider
k(z) :=min{k>0: Al(fgoﬁ(l‘) < C1€q,B(x)}, z € Qo \ Fo. (1.27)
Setting F1 g :={x € Q\ Fy : k(z) > kg} and using we obtain

FigC{zeQ\F: ALB) > 205"},

Applying Chebychev’s inequality, it follows that

(Q)-

o(Fo) < (A26())’ doty) < o

=g Jom

Setting Fh g = {x € Q\ Fo : k(z) < kg}, and gathering the above estimates, we
have

o(F0) = 0(Q) ~ o(QN Fy) ~ o(Fiq) > 30(Q).
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Hence, the AR property, Cauchy-Schwarz’s inequality and (1.27) yield

lagBq| |l B
lagBal S o(Faq) < ~1p, ,(z)do(x)
QEED:QO QEE]D;QO /Qo\Fo QEED:Q K(Q) @

< Awo( ¥ g TATE >)1/2da<x>

QeDq,

< /Q Ao A 3(e) dotz)

< Agya(x)€q,B(x) do(x),
Qo

where we have used that @) € DQ( %) for each z € F5 . As the implicit constant does
not depend on N € N; this completes the proof of | - [

1.4 PDE estimates

In this section we will begin by summarizing some of the basic facts in the theory
of elliptic partial differential equations. First, we assume that  C R"*! is an open
set, we define the elliptic operators that will be considered in the text, as well as
weak solutions and interior estimates. The reader is referred to the book of [Ken]
for further details concerning this topic.

Definition 1.20 (Elliptic operator). Let 2 C R"*! be an open set, we say that

Lu = —div(AVu) is a variable coefficient second order divergence form elliptic
operator in €2 if A(X) = (a;; (X))?jzll is a real (not necessarily symmetric) matrix

with a; ; € L>®(Q) for 1 <4,j <n+1, and A uniformly elliptic, that is, there exists
A > 1 such that

ATHEP < AXE-€ JAXDE - ¢) < All¢l (1.28)
for all £,¢ € R™! and almost every X € €.

In what follows we will only be working with this kind of operators, we will refer
to them as “elliptic operators” for the sake of simplicity. We write LT to denote
the transpose of L, or, in other words, L'u = —div(A"Vu) with AT being the
transpose matrix of A.

Definition 1.21 (The spaces W2, W-? and Wol’z). Let Q € R™! be an open

loc

set, we say that u € W12(Q) if u € L?*(Q) is such that the weak gradient Vu exists,

and
1/2 1/2
lullwray = ( // (Y de) ( // Ty yzdy) < .

Also, we say that u € W22(Q) if u € WH2(U) for every relatively compact subset

loc

U C Q. Finally, we define the space I/VO1 2(€2) as the closure of C°(Q) with respect
to W12(Q).
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Definition 1.22 (Weak solution). Let 2 C R""! be an open set and Lu =
—div(AVu) an elliptic operator in Q2. We say that a function u € VV&E(Q) is a weak
solution of Lu = 0 in €2, or that Lu = 0 in the weak sense, if

// AX)Vu(X) Vop(X)dX =0, Ve e C(Q).
Q

Lemma 1.23 (Interior estimates, [Ken|). Given an elliptic operator L, there
exists a constant C > 1 depending only on dimension and ellipticity such that for
every ball B(X,r) C R" and every positive weak solution u € W2(B(X,2r)) of
Lu =0 in B(X,2r) we have the following:

(a) (Caccioppoli’s estimate)

//B(X )\VU(Y)Ide < CT—Z//B(X ) (V)2 dY. (1.29)
0 g

(b) (De Giorgi-Nash-Moser’s estimate)

sup u(Y)SC'(]%? i) |u(Y)\2dY)1/2. (1.30)

YEB(X,r)

(¢) (Harnack’s inequality)

sup u(Y)<C inf u(Y). 1.31
YEB(X,r) ®) YeB(X,r) ®) ( )

The use of De Giorgi-Nash-Moser’s estimate allows us to show that weak solu-
tions are actually Holder continuous, as seen in [Ken]. Associated with L and LT
one can respectively construct the elliptic measures {w }xcq and {wa txeq, and
the Green functions Gy, and G;r (see [HMT2] for full details). Next we will add
the assumption that the boundary of ) satisfies the AR property.

Definition 1.24 (The space H'/?). Given E C R™"! and n-dimensional AR set,
let H'/2(E) be the set of functions f € L?(E) such that

z) — 2 1/2
1Al = rf\L2<E>+( L wczamda(y)) < ool

Lemma 1.25 (Existence of elliptic measure, [HMT?2]). Let Q C R"*! be an
open set such that 052 satisfies the AR property, and let L be an elliptic operator.
There exists a family of regular Borel measures wy, = {wf}XEQ, called the L-elliptic
measure, such that each measure has total mass at most 1 (i.e. wi(9Q) < 1 for
every X € Q) and for every f € C(0Q) N L™ (0N),

uX)= | flydui(y), XeQ (1.32)
o0
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is a weak solution in Q) of the Dirichlet problem with datum h in 0. By the latter
we mean that u € I/VI})E(Q) and Lu = 0 in the weak sense. The weak solution u

satisfies the maximum principle

inf f <infu <supu < sup f, sup |u| < sup|f|. (1.33)
o9 Q Q o0 Q a0

Moreover, if f € HY/2(0Q) N C.(9Q) then u € W2(Q) verifies

[ullwr2i@) < Clfllg2a0): (1.34)

where C' > 0 depends only on dimension, on the AR constant and on ellipticity.

Lemma 1.26 (Bourgain’s estimate, [HMT2]). Suppose that Q C R"*! is an
open set such that 0S) satisfies the AR property. Let L be an elliptic operator, there
exist constants ¢; < 1 and Cy > 1 (depending only on the AR constant and on the
ellipticity of L) such that for every x € 0Q and every 0 < r < diam(90S2), we have

wy (A(z, 7)) > VY € B(x,cir) N Q.

1
Cy’
We refer the reader to [Bou, Lemma 1] for the proof in the harmonic case and
to [HMT?2] for general elliptic operators. See also [HKM, Theorem 6.18] and [Zha,
Section 3]. A proof of the following two lemmas may be found in [HMT2]. We note
that, in particular, the AR hypothesis implies that 0€) satisfies the Capacity Density
Condition, hence 052 is Wiener regular at every point (see [HLMN| Lemma 3.27)).

Lemma 1.27 (Holder continuity at the boundary, [HMT2]). Suppose that
Q C R™7 is an open set such that OS) satisfies the AR property. Let L be an
elliptic operator, there exist C', 0 < v < 1 (depending only on dimension, the AR
constants and the ellipticity of L), such that for every By = B(xg, 1) with xo € 0L2,
0 < 7o < diam(99Q), and Ag = By NdQ, if 0 <u € W2 (BonQ)NC(ByNQ) is a
weak solution of Lu =0 in By NQ such that u =0 in Ay, then

X — vy
u(X) < C’(|$0|> sup  u(Y), VX e BynQ.
"o Y €BoNQ

Lemma 1.28 (The Green function, [HMT2]). Suppose that Q@ C R"™! is an
open set such that ) satisfies the AR property. Given an elliptic operator L, there
exist C > 1 (depending only on dimension and on the ellipticity of L) and cg > 0
(depending on the above parameters and on 6 € (0,1)) such that G, the Green
function associated with L, satisfies

GrL(X,Y)<C|X —Y|'™, (1.35)

ol X —Y|'" < GL(X,Y), if | X -Y|<605X), 6€(0,1); (1.36)
GL(»Y)e C(Q\{Y}) and GL(Y),,=0 VY € (1.37)
GrL(X,Y)>0, VX,YeQ, X#Y; (1.38)
GL(X,Y)=G(V,X), VX, YeQ, X#Y. (1.39)
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Moreover, Gr(-,Y) € WEAQ\ {Y}) for every Y € Q, and satisfies LGL(-,Y) = 0y

loc
i the weak sense in §, that is,

/ AX)VxGL(X,Y) - Vp(X) dX = oY), Vo € C2(Q). (1.40)
Q

Remark 1.29. If we also assume that € is bounded, following [HMT2] we know that
the Green function G, coincides with the one constructed in [GW]. Consequently,
for each Y € Q and 0 < r < §(Y'), there holds

Gr(-,Y) e Wh3(Q\ B(Y,7)). (1.41)

Moreover, for every ¢ € C°(€2) such that 0 < ¢ <1 and ¢ =1 in B(Y,r) with
0 <r <d(Y), we have that

(1—-9)Gr(-Y) € W (Q). (1.42)

The next lemma is a collection of estimates, which together with Proposition
are part of the Jerison and Kenig’s program developed in [HMT?2] for 1-sided
CAD domains. These tools were first introduced in the setting of CAD domains in
[JK] (see also [Ken]).

Lemma 1.30 ([HMT2]). Suppose that Q C R™™! is a 1-sided CAD. Let L and
Ly be elliptic operators, there exist C1 > 1 (depending only on dimension, the 1-
sided CAD constants and the ellipticity of L) and Co > 1 (depending on the above
parameters and on the ellipticity of Ly), such that for every By = B(xo,ro) with
xo € 09, 0 < ro < diam(0R), and Ag = By NI we have the following properties:

(a) (CFMS estimate) If B = B(z,r) with x € 022 and A = BN O is such that
2B C By, then for all X € Q\ By we have that

1
awf(A) <r"IGL(X, Xa) < Crwi (A).

(b) (Doubling) If X € Q\ 4By, then

w,%( (2A0) S Clwi( (Ao)

(¢) (Change of pole) If B = B(z,r) with x € 02 and A := BN OQ is such that
B C By, then for every X € Q\ 2k0By with ko as in (1.7)), we have that

< Clwy 2 (A).

Moreover, if we also suppose that wy, < o, then

X
1 XAO (y) < kL (y) S ClkXAO

— , -a.e. Yy € Ag.
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(d) (Comparison principle 1) If B = B(x,r) with x € Ay, 0 < r < r9/4 and
A = BN oK, then we have that

1
awfﬁ(F) < wi(A (F) < Clwﬁg(ﬁ’), for every Borel set F' C A.

This implies that wr, o < o in A if and only if WL, Tn, K O in A and, in such
a case,

1
—kpay) < k’fﬁho (y) < Cﬂ{?f’ﬁ(y), for o-a.e. y € A.

(e) (Comparison principle 2)) If L = Ly in B(xg,2koro) N Q with ko as in

(L), then

1 Xag

XA XA
7("'}[/ 0 0
Cy =t

(F) Swp °(F) < Cawp °(F),  for every Borel set F' C Ag.

This implies that wy, < o in Ag if and only if wr, < o in Ay and, in such a

case,

— (y) <k 7%y < Cgkffo (y), foro-a.e. ye Ay

Remark 1.31. As a consequence of Lemma [1.30(c), one can see that if w;, < o,
there exists C' > 1 (depending only on dimension, the 1-sided CAD constants and
the ellipticity of L) such that for every Qo € D(02) and every @ € Dg, we have
that

k%0 (y)
Wy %(Q)

1 X

X
CL(y)S @

< Ck;“(y), foro-ae ye@.

We also have a dyadic version of the comparison principle stated in Lemma

1.30(e)}, for large interior regions of @y € D(9N).

Lemma 1.32. Suppose that Q C R*"! is a 1-sided CAD. Fiz Qo € D(0R), let L
and Ly be elliptic operators such that wy, < 0, wr, < o, and L = Ly inTg,. Given
0 <7 <1, there exists C; > 1 such that

X X
— k. (y) <k Qo (y) < C’TkLlQO (y), foro-a.e. y€ Qo\XQyr

where X¢, r is the region defined by X, r = {x € Qo : dist(x,002\ Qo) < TZ(QQ)}.

Proof. Let r = 14(Qo)/M with M > 1 to be chosen. Using a Vitali type covering
argument, we construct a maximal collection of points {z;};c7 C Qo \ Xq,,r With
respect to the property that |z; — x| > 2r/3 for every j, k € J, and a disjoint family
{A%}jeg given by Al = A(z;,7/3), in such a way that Qo\Xq,,r C U;c s 3Aj. Note
that there exists C', depending only on dimension and on the 1-sided CAD constants,
such that Al C A(zq,, C¢(Qo)) for every j € J. Hence,

TN S o(ah) = (| &) < o(Blrau, CUQ0) ~ HQ0)"

JjeJ VNS

#7(
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We have then obtained a covering {A; }N_1 of Qo \Xq, -~ by balls A; = A(z;,r) with
zj € Qo \ XQy,r = T4(Qo)/M and NT S (M/7T)". We claim that for M > 1 we
have Bi N C Tg,, with B} := B*Aj = B(xj,2kor) and ko as in (1.7)). Let Y € BN
and I € W be such that Y € I. Take y; € 09 such that dist(/, 0$2) = dist(/, y;) and
pick Q; € D(09) the unique cube such that y; € Q; and £(Q;) = £(I). As already

observed, I € Wéj We are going to see that Q); € Dg,. First of all, note that
K(QJ) = K(I) ~ diSt(I,BQ) < ]acj — Y’ < 2&07’6(@0)/]\4 < Qﬁog(Qo)/M

Choosing M >> 1 sufficiently large (independent of 7) we may obtain £(Q;) <
£(Qo)/4 and dist(I,00) < |z; — Y| < 7(Qo)/4. Also, since z; € Qo \ X¢,,r, We can

write by (1.4))

T(Qo) < di St(.’L'], 00\ Qo) < |zj — Y|+ diam(I) + dist(Z, y;) + dist(y;, 92 \ Qo)
< 370(Qo) + 3 dist(1,09) + dist(y;, 02 \ Qo) < {57¢(Qo) + dist(y;, 02\ Qo),

and hence y; € int(Qp). Since y; € Qo N Q; and £(Q;) < €(Qo)/4 it follows that
Qj € Dg,. This and the fact that Y € I € W, allow us to conclude that Y € Tg,.
Consequently, we have shown that BF N Q C T Qo and thus L = Ly in Bj N Q for
every j =1,..., N,.

Next, we note that 6(Xq,) ~ £(Qo) > T¢(Qo), 6(Xa;) = T€(Qo), and |Xq, —
Xa;| S 4(Qo). Hence, we can use Harnack’s inequality to move from Xg, to Xa,
with constants depending on 7, and Lemma we obtain

X XA XA X

k0 (y) ~r k7 (y) R kg (y) ~r k20 (y)

for o-almost every y € A; = B;NON. Since we know that {A; };V:H covers Qo \ X9,
the desired conclusion follows. [

In Section we defined the Ay, and RH,, conditions for arbitrary Borel mea-
sures. Now, we will introduce some alternative definitions in order to consider the
case that we are treating with an elliptic measure, which is a family of Borel measures
indexed in the points of the domain.

Definition 1.33 (A, for elliptic measures). Let  C R*""! be a 1-sided CAD
and let L be a real (non-necessarily symmetric) elliptic operator. We say that the
elliptic measure wy, € Ay (09) if there exist constants 0 < «,f < 1 such that
given an arbitrary surface ball Ay = By N 9N, with By = B(xg,70), 9 € 01,
0 < r < diam(09), and for every surface ball A = B N 9Q centered at 02 with
B C By, and for every Borel set F' C A, we have that

Xa, ”
:j%AO Eg <a = UEB < B. (1.43)

With the notation introduced in Definition we say that wy, € Ay (09) if
waO € Axo(Ap) with uniformly controlled constants for every Ag. As already noted

in Section [1.2] since o and wy, are doubling measures (see Lemma [1.30(b)]), we have
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that wr € Ao (09) if and only if wy, < ¢ in 9§ and there exists 1 < ¢ < oo such
that for every Ag and A as above

(f. <x>qda<x>)‘l’ < of 1™ @) doa),

where kf% = dwaO /do is the Radon-Nikodym derivative. This motivates the
following definition.

Definition 1.34 (RH, and RHgyadiC for elliptic measures). Suppose that  C
R+ is a 1-sided CAD, let L be an elliptic operator and let 1 < p < co. We say that
wr, € RH,(01) if wy, < o and kaO € RHp,(Ap) uniformly in Aq for every surface
ball Ay C 092. That is, there exists C' > 1 such that for every By := B(xg, 1) with
xo € 00 and 0 < rp < diam(0f2), and for every B = B(x,r) C By with x € 99, we
have that

<][A k() dff(y)) " =< C][A k(W) do(y),  A=Bnow.

Analogously, we say that w;, € RHSY*(0Q) if wy < o and k:fQo € RHP*H¢(Qq)
uniformly in Qg for every Qo € D(99). That is, there exists C' > 1 such that for
every Qo € D(0Q) and every Q € Dg,, we have that

(]{? kX (g da<y>> g c]é EX (y) do(y).

Before going further, let us introduce the following operators (see [HMUT), Sec-
tion 2.4]):

Su(z) := ( //F . |Vu(Y)|25(Y)1"dY)1/2, Nou(z) = sup [u(Y)],

yel(x)

where
Tz)= |J Uy T@:= J U
z€QED(0N) zEQED(0N)

These operators are known, respectively, as the square function and non-tangential
maximal operators. Also, we say that I'(z) is a non-tangential cone with vertex on
x € 0F), while f(:ﬂ) is a slight fattening of I'(x), with the same vertex point. Similarly,
we can define localized versions of the above operators. For a fixed Qo € D(992), we
define

1/2 B
Sou) = ([ [mumpsmimar) T Nopeuto)i= s ()]
Lqq (@) Vel (x)
for each € Qq, where
Lo, (z) = U Ug, fQo(aj) = U Ué'
zEQREDg, zEQREDg,,

We summarize some of the most important equivalences to the fact that wy €
RH,(0R) in the following proposition.



40 Chapter 1. Preliminaries

Proposition 1.35 (Solvability and RH,, [HMT2]). Suppose that Q@ C R"*1 is
a 1-sided CAD, let L be an elliptic operator and let 1 < p < oo, the following
statements are equivalent:

(a) The Dirichlet problem is solvable in LP (9Q): That is, there exists C > 1 such
that

INcull o oy < CIE Nl Lo 90y
whenever

u(X) = ” fy)dwi (y), [ € C(09). (1.44)

(b) wr € RH,(09) (cf. Definition[1.3]).

(¢) wr < o and there exists C > 1 such that for every B := B(z,r) with x € 92
and 0 < r < diam(99), we have that

/ kXS ()P do(y) < Co(A)™P, A= Brox. (1.45)
A

Moreover, (a), (b) and/or (c) yield that for every 0 < q < oo there exists C (depend-

ing only on dimension, the 1-sided CAD constants, the ellipticity of L, the constants
in (a), (b) and/or (c), and on q) such that for every Qo € D(0N)

15Q0ull oo S INQo el La(n) (1.46)

for every u as in (1.44]).

Remark 1.36. Note that w;, € RH,(012), together with Lemma [1.30(b)| and Har-
nack’s inequality, imply that wy, € RH3*"¢(9Q). This in turn gives

[ iewriny <co@' 7, Qenn). (1.47)
Q

Moreover, from ([1.47) and Harnack’s inequality, we can see that ({1.45]) holds, and
hence wr € RHp,(09). Therefore, the conditions w;, € RH,(0), (1.45), wr €
RHP(90) and (L.47) are all equivalent.

In the following lemmas we discuss some representation formulas for the differ-
ence between two elliptic measure solutions with the same given boundary value.
We first begin with a result inspired in the work of [HMT2].

Lemma 1.37. Suppose that Q C R™*! is a bounded open set such that OS) satisfies
the AR property. Let Lo, Ly be elliptic operators, and let ug € W12(Q) be a weak
solution of Loug = 0 in 2. Then,

// Aoy G, (Y, X) - Vup(Y)dY =0, for a.e. X € Q. (1.48)
Q
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Proof. Let us take a cut-off function ¢ € C.([—2,2]) such that 0 < p < land p =1
n [—1,1]. Fix Xy € Q, for each 0 < ¢ < §(Xp)/16 we set p-(X) = p(|X — Xo|/¢)
and ¢, = 1 —¢.. Using we have that Gr, (-, Xo). € Wol’z(Q), which together
with the fact that ug € WH2(Q) is a weak solution of Loug = 0 in €2, implies

//Q Ao(Y)V(Gry (- Xo)ibe) (Y) - Vg (Y) dY = 0.

Hence, we can write

//AOVGLl(-,XO)-VuodY://AOV(GLl(-,XO)gos) -VugdY
Q Q

= // AoVGLl(-,Xo) -Vug pe dY + // AgVe - Vug GLI(-,X()) dY =:1. +11I..
Q Q
(1.49)
In order to simplify the notation we set Cj(Xo,¢) := {Y € R*F!: 277tle < |y —

Xo| < 27972¢} for j > 1. For the first term, we use Cauchy-Schwarz’s inequality,
Caccioppoli’s inequality and (|1.35])

S [ 9 Gy X Vo) |y (1.50)
0,4€
>0 , 1/2 1/2
S 2_‘75 n+1 VGL '7X0 2 ClY V’U,O 2 dY
1
j=1 Cj(Xo.e) B(X0,277+2¢)

S 277 eMy(|Vuol|1o) (Xo) S eMa(|Vuo|10)(Xo),

where Myf(X) := M(|f]*)(X)Y?, with M being the Hardy-Littlewood maximal
operator on R"*!. For the second term, using again (1.35)) and Jensen’s inequality,

| S 5—1// G, (Y, X0)|[Vuo(Y)| dY
C1(Xo,¢)
<en // Vuo(Y)|dY < eMa(|Vuo|1a)(Xo). (1.51)
B(Xo,2¢)

Combining (1.50) and (1.51)), we have proved that, for every Xy € Q and for every
0 <e<d(Xp)/16,

‘ /Q Ao(Y)Vy Gy, (Y, Xo) - Vaug(Y) dY' < eMy(|Vuo|1a)(Xo). (1.52)

Recall that My (|Vug|lg) € LY®(Q) as |Vug| € L3(), thus Ma(|Vug|1lg)(X) < oo
for almost every X € Q. Taking limits as ¢ — 0 in (1.52)), we obtain as desired
(1.48)). [
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Lemma 1.38. Suppose that Q C R"*! is a bounded open set such that 0S) satisfies
the AR property. Let Lo and Ly be elliptic operators, and let g € HY/?(9Q)NC.(09).
Consider the solutions ug and uy given by

uo(X) = /8 ). () - /8 o), Xeo,
Then,

u(X) —up(X) = // (Ao — A1)(Y)VyGr, (Y, X) - Vup(Y)dY, forae X €.
Q
(1.53)
Proof. Following [HMT2| we know that ug = g — vp and u; = g — vy, where g =
Esng € WH2(R™1) is the Jonsson-Wallin extension (see [JW]), and vg, v1 € Wol’z(Q)

are the Lax-Milgram solutions of Lovg = Lgg and Liv; = L1g respectively. Hence,
we have that u; — ug = vg — v1 € Wol’Q(Q), and following again [HMT2] we obtain

(u1 —up)(X) = //Q Ai(Y)VyGr, (Y, X) - V(u; —up)(Y)dY, forae X €.

For almost every X € (2 we then have that

(u1 - Uo)(X) - //Q(AO - Al)(Y)VyGLl (Y,X) . VUO(Y) dY =
= // AL(Y)VyGr, (Y, X) - Vuy (Y)dY — // Ag(Y)Vy Gy, (Y, X) - Vuo(Y) dY.
Q Q

Using Lemma for both terms, the right side of the above equality vanishes
almost everywhere, and this proves ([1.53]). [ |

Lemma 1.39. Suppose that Q C R" is an open set such that OQ satisfies the
AR property. Let Ly, Ly be elliptic operators such that K := supp(Ag — A1) N Q is
compact. For every g € HY2(0) N C.(99Q), let

uo(X) = /8 o). (X = /8 e, Xen

Then, for almost every X € Q\ K, there holds
ul(X) — UO(X) = // (A() - Al)(Y)VyGLl (K X) . VU,O(Y) dY. (1.54)
Q

Proof. First, fix zy € 09, following [HMT2] we consider the family of bounded
increasing open subsets {7;}xrez such that Q = (J, oz Tk, and 97T, satisfies the AR
property, with constants possibly depending on k£ and diam(92) (see [HMT2]). As
we can see in [JW], there exists an extension operator £y, which maps H/2(99)
continuously into W12(R"*1), and a restriction operator fRggq, which is bounded
from WhH2(R"H1) to HY2(9Q), such that Rag o Egq = Id in H'/2(9Q). Moreover,
we have that Egqf € C.(R™1) N L= (R™1) for every f € H'/2(9Q) N Ce(99). Let
g € HY2(00)NC.(09Q) and h = Eyqg € WE2(R*)NCL(R*)NL>®(R™1). Let n €
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C(]-2,2]) be such that 0 <7 <1,n =1 in [-1,1], » monotonously decreasing in
(1,2) and monotonously increasing in (—2, —1). Let us consider hi(y) = h(y)n(ly —
xo|/2%), as well as the solutions

uli(X) = / hi(y) dw, 7 (9),  uf(X) = / () dof (), X T
T OTh

We take kg > 1 such that supp(g),supp(h) C B(zo,2"~1), in such a way that
hiy = h for k > kg. Note that by [AMT?2], B(xo,2*) N Q C Tg, hence h = glgg on
OTy, and consequently h € HY/2(97;,) N C.(0Ty) for k > kg. Using Lemma we
have that

(u’f—u’g)(X)—// (Ag— A1) (Y)VyGr, 7,(Y, X) - Vul(Y)dY, k> ko, (1.55)
i

for almost every X € Tir. Let Gr be the set of points X € 7, for which
holds, and let By, = Ty \ Gx. We fix Xo € (2\ K) \ Uy, Br and take ko (possibly
greater than before) such that Xy € B(zg,2 1) NQ C Tx and K C B(zg,2"~ 1) N
Q C T Let us consider vy, = Gy, 7,.(-, Xo), which converge to v = Gr, (-, Xo)
uniformly on compacta in 2\ {Xo} (see [HMT2]), and hence on VV&)’E(Q \ {Xo})
by Caccioppoli’s inequality. Also, note that for ¢ = 0,1, we have that uf — u;
uniformly on compacta in  (see [HMT2]). In particular, Caccioppoli’s inequality
yields ulg — ug in VVli)f(Q) Thanks to these observations, using (|1.55)) and Cauchy-
Schwarz’s inequality we obtain

(uk — uk)(Xo) — // (Ag — A)(Y)VyGr, (Y Xo) - Vuo(Y) dY
Q

<[] 10 = A [V (v) - () = Vo) - Tuo(v)| ay
K
S IVl 20 IVu§ — Vol 2y + [Vor — Vol 2 | Vol 2 ) -
Taking limits as k — oo, ((1.54)) is then proved. [ ]

Remark 1.40. Note that Lemma [1.38|ensures that there exists G C Q with [Q\G| =
0 such that holds for all X € G. Let A = A(z,r) with z € 9Q and 0 < r <
diam(0Q2) be such that Xa ¢ G. Take Xp € B(Xa,cr/2) NG where 0 < ¢ < 1
is the corkscrew constant. Taking into account that B(Xa,cr/2) C B(Xa,cr) and
slightly modifying the constants, we can use Xa as a corkscrew point associated
with A. Hence, we may assume that for every A as before, there exists a corkscrew
point XA € G for which holds with X = Xa. Similarly, we may also assume
that holds for X, as long as Xa ¢ K. In particular, for every @ € D(952),
we can choose Xg so that and hold with X = X (the latter provided
Xg ¢ K).

1.5 A density result

In this section we present a density result, which allows us to approximate functions
in LY(E) by bounded Lipschitz functions, where E C R™™! is an n-dimensional AR
set.
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Lemma 1.41. Suppose that E C R™"" is n-dimensional AR and fiz a cut-off func-
tion ¢ € C(R) such that 1oy < ¢ < 1(gg). Fort > 0 we define the operator
g — Pig, acting over g € L. (E), by

Pg(x) = : et(z,y)g(y) do(y), T € FE, (1.56)

where

SD(W;Z/\)
S (555 do(z)

or(z,y) == , x,y € E. (1.57)

(a
b

P, is uniformly bounded on LY(E) for every 1 < q < oo.

)

(b) Ifge LY(F), 1 < g < o0, and t > 0 then P,g € L (F)NLip(E).

(¢) If g€ LY(FE), 1 < q < oo, then P,g — g in LY(FE) ast — 07.

(d) If g € C.(E), then Pg(x) — g(x) ast — 01 for every x € E.

(e) If g€ LY(E), 1 < q < oo, with supp g C A(zg,ro) then supp P.g C A(zo,r0 +
2t).

Proof. We first let x € E, using the AR property we have that

t" ~ o(A(z,t)) < / cp(‘x ; Z’) do(z) < o(A(z,2t)) =~ t",

E

hence £ "1,_yor S @1(5,9) S £ _yicar Also, since [y () do(y) = 1, it
holds [Pig(7)| < |9z () for every x € E, thus P, : L*°(E) — L*(FE) is bounded.
Note that

Pg(a)| St / )| do(y) S Mg(z),  x € F,
A(z,2t)

with M being the Hardy-Littlewood maximal operator, hence P; : L'(E) — L“*(E)
is also bounded, with constants depending only on the AR constant. Using Marcin-
kiewicz’s interpolation theorem we prove (a).

Suppose now that g € LY(FE), using Holder’s inequality and the AR property, we
have that

|Prg(z)| St /A( 2)Ig(y)\dff(y) St gl L) =t_%||9||Lq(E), (1.58)
x,2t

for every z € E and every t > 0, hence P,g € L*(E). In order to prove that
P,g € Lip(E) we also take y € E. First, if |z — y| > 2t then

n
q

|Pg(@) = Pog(y)] < 2| Peglloeqmy St 2 I9llpacmy St 0 gllpaqmle =yl (1.59)

where we have used ([1.58)) in the second inequality. Suppose now that |z — y| < 2t,
since A(x,2t) U A(y, 2t) C A(z,4t) we have

Pg(z) — Pug(y)]| < /A )~ NG (60
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Given z € E we decompose ¢y(x, 2) — ¢t(y, z) = I + 11, where

e D ) e

(1.62)

B ly — z| 1 B 1
n=e (" ><wa<'$ DY dow) [y o () dow )

For the first term, using the AR property, we obtain

[z =2 ly—~]
t t

1 <t oo wy

= t_n_IHSD/HLoo(R)W -yl
For the second term we may write

e 05 o oo

where we have used again the AR property. In fact, the last integral is supported
in A(x,4t), thus

- T —w y—w o
L N e LU L [ PYSIE
(z,4t)

Since ¢ is fixed, for every t > 0 we have proved that |¢¢(z, 2)—pi(y, 2)| St Haz—y|.
Let us recall ([1.60)), using Holder’s inequality we have that

|Pig(x) — Pg(y)| S 7" Ha —y Aot 9(2)do(2) St gl Lagm e — yl-
x,4t

This, together with (1.59)) shows that P,g € Lip(F), and (b) is proved.
As before, let g € LY(E), and observe that |P.g — g| < Mg+ |g|] € LY(E). Given
x € E, since [, ¢i(z,y)do(y) =1 we have that

Pg(z) — g(a)| = \ [ e g(a:))da(y)' <f s =gl (6

As t — 07, the right hand side of tends to zero g-a.e. x € E by Lebesgue’s
differentiation theorem. The dominated convergence theorem proves (c¢). We also
note that (d) is an automatic consequence of the fact that for g € C.(F), the right
hand side of tends to zero for every x € E ast — 0.

Finally, suppose that suppg C A(xg,70), and let = € E be such that |z — x| >
ro + 2t. Note that the integral in is supported in the set A(xg,ro) N A(z, 2t),
which is empty since in other case, given y € A(zg,r0) N A(z,2t) we would have

ro+ 2t < |x — x| < |z —y|+ |y — zo| < 2t + 70,

which leads to a contradiction. Therefore P,g(x) = 0 for |x —x¢| > ro+ 2¢, and that
proves the last property. [
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Chapter 2

Perturbations of symmetric
operators

In this chapter we extend the Carleson perturbation theorem of [FKP] to the setting
of 1-sided chord-arc domains. Implicit in the proof it is also obtained a “small
perturbation” result. The vanishing trace Carleson perturbation of [Dah2] is studied
in the last section. The main theorem of this chapter can be stated as follows.

Theorem 2.1. Let Q C R"™ n > 2, be a 1-sided CAD (cf. Definition . Let
Lu = —div(AVu) and Lou = — div(AogVu) be real elliptic operators (cf. Definition
such that A and Ay are symmetric. Define the disagreement between A and
Ap in Q by

oA, A)(X) =  sup  [A(Y)-A(Y), Xeq (2.1)
YeB(X,6(X)/2)

where 0(X) := dist(X, 0Q), and write

1
0 A’A = su /]
llo(A, Ao)ll zea% o(B(z,7) N 0Q) J)B@rna

0<r<diam(9Q)

(A, Ag)(X)?
X @)

Suppose that there exists p, 1 < p < oo, such that the elliptic measure wr, €
RH,(09) (cf. Definition . The following hold:

(a) If |lo(A, Ao)|| < oo, then there exists 1 < q¢ < oo such that wy, € RH,(09).
Here, q and the implicit constant depend only on dimension, p, the 1-sided
CAD constants, the ellipticity of Lo and L, ||o(A, Ao)||, and the constant in
wr, € RH,(09).

(b) There exists €1 > 0 (depending only on dimension, p, the 1-sided CAD con-
stants, the ellipticity of Lo and L, and the constant in wr, € RH,(0S)) such
that if one has [|o(A, Ao)|| < €1, then wy, € RH,(0NY), with the implicit con-
stant depending only on dimension, p, the 1-sided CAD constants, the ellip-
ticity of Lo and L, and the constant in wr,, € RH,(09).

47
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2.1 Proof of Theorem [2.1(a), Carleson perturbation

We will prove Theorem [2.1(a)| with the help of Lemma In this way we consider
the measure m = {7q}ep(aq), Where

o supy- €
Tew;

and £(Y) = A(Y) — Ap(Y). We are going to show that m is indeed a discrete
Carleson measure with respect to o, as it is required in the hypotheses of Lemma

LIS

Lemma 2.2. Suppose that Q C R is a 1-sided CAD, let Ly and L be elliptic
operators whose disagreement in S is given by the function a := (A, Ag) defined in
(2-1), and suppose that [|a]| < oo, see (3.3). Then, there exists k > 0 (depending
only on dimension and the 1-sided CAD constants) such that for every Qo € D(0)
with £(Qo) < diam(8Q)/ko (see (L.6)), the collection m = {yg}gep(an) given by
defines a discrete Carleson measure m € C(Qo) with ||m|lc(qy) < #llall-

Proof. Let Qo € D(9N) with £(Qo) < diam(9Q)/kg. First, note that for every
I € W and every Y € I we have that sup;. |€] < a(Y). Indeed, since 4 diam(I) <
dist(Z,09) (see (L.4)), we know that I* C {X € Q: |X — Y| < §(Y)/2}. Given
Q € Dg, we can write

Z Vo = Z Z supl* |5|

Q'eDg Q'€Dq TEW,
a(Y)2 a(Y)2
E RNz L, a%”? o5 e

where we have used that the family {Ug }qrep,, has bounded overlap. Indeed, if Y €
Ug NUgr then £(Q') = §(Y) = £(Q") and dist(Q’, Q") < dist(Y, Q') +dist(Y, Q") <
Q) +4(Q") ~ £(Q"). These readily imply that Y can be only in a bounded number
of Ug:’s.

On the other hand, by we know that Ty C B(zq, korg) N 2. Also, korg <
kol(Q) < Kol(Qo) < diam(01?). Using the AR property, from we conclude that

a 2
g s ff SRy < lall o8 o)) £ llello (@)
IBQ Fi()’r’Q

na 0(Y)
Taking the supremum over @ € Dg,, we obtain |[m|l¢g,) < #||al| with x depending
on the allowable parameters. This completes the proof. [

Remark 2.3. We choose My > 2kg/c, which will remain fixed during the proof of
Theorem where c is the corkscrew constant and kg as in . Given an
arbitrary Qo € D(09Q) with £(Qo) < diam(0)/My we let Bg, = B(zq,,rq,) With
rQ, ~ £(Qo) as in (L.I). Let XMyag, be the corkscrew point relative to MoAg,
(note that Morg, < Mol(Qo) < diam(02)). By our choice of My, it is clear that
6(XMOAQO) > cMorg, > 2korqg,. Hence, by ,

Xanag, € 2\ BY, C Q\T5. (2.5)
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As noted before, we will prove Theorem [2.1(a)| using Lemma To do that
we need to split the proof in several steps.

2.1.1 Step 0

We first make a reduction which will allow us to use some qualitative properties of
the elliptic measure. Fix j € N (large enough, as we eventually let j — oo) and
L = L7 be the operator defined by Lu = — div(AVu), with

AY) if YeQ,5(Y)

AY) = H(Y) = {AO(Y) it Y e oY) (2:6)

277,
277,
Note that the matrix A’ is uniformly elliptic with constant Aj = max{Aa, A4, },
where A4 and A 4, are the ellipticity constants of A and Ag respectively. Recall that
wr, € RH,(09) and that L = Lo in {Y € Q: §(Y) < 277}. Therefore, applying
Lemma we have that w; < o and there exists k%{ = dw%( /do. The fact

that L verifies these qualitative hypotheses will be essential in the following steps.
At the end of Step 4 we will have obtained the desired conclusion for the operator
L= L7, with constants independent of j € N, and in Step 5 we will prove it for L
via a limiting argument. From now on, j € N will be fixed and we will focus on the
operator L=1L7

2.1.2 Step 1

Let us fix Qo € D(99) with £(Qp) < diam(9Q)/My and My as in Remark
and set Xo := Xaap, so that (2.5) holds. Inspired by Lemma we also fix
F ={Qi} C Dg, a family of disjoint dyadic subcubes such that
m(Dr)

mr|c = sup ———2% <g¢gq, (2.7

H H (Qo) QeDo, O'(Q) )
with €1 > 0 sufficiently small to be chosen and where m = {yg }gep with 7 defined
in . We modify the operator L inside the region Qr g, (see (L.5))), by defining
L, =13 FiQo a9 Liu = —div(A;Vu), where

[ AY) WY €Qrg,,
Al¥) = { Ap(Y) i Y € Q\ Qr q,,

and A = A7 as in (2.6). By construction, it is clear that & := A; — Ag verifies
1&1] < |g‘1Q~FQO and also & (Y) = 0 if §(Y) < 277. Hence, the support of A; — Ay
is contained in a compact subset contamed in Q.

Our goal in Step 1 is to prove ||l<: |lzr(Qo) S 0(Qo)~ /7" (uniformly in j), using
that wr, € RH,(09). Note that by 'Harnack’s mequahty and Lemma we
have that wy, < o and Hk oy < Cj < oo for k| := dwf /do. We will use
this qualitatively, and the pomt of this step is to show that we can actually remove
the dependence on j.

Take an arbitrary 0 < g € L (Qp) such that 91l Lo @y = 1. Without loss
of generality we may assume that g is defined in  with ¢ = 0 in Q \ Qp. Let
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AQO = Azg,,Crg,) (see (1.1)) and take 0 < t < Crg,/2. Set g = Pig (cf.
Lemma [1.41)) and consider the solutions

ub(X) = / ) dof (y),  wl(X) = / aW)dol(y), Xeq o (28)
o0 o0

By Lemma m, g+ € Lip(99Q) with supp(g:) C 2£Q0, hence ¢g; € Lip.(09) C
HY2(09) N C.(09). Recall that & = A; — Ag verifies |£;| < €]1a, o, and also
E(Y)=0if 6(Y) <279, This, (2.5), and allow us to invoke Lemma (see
Remark , which along with Cauchy-Schwarz’s inequality yields

Fb, (Xo) = [u (Xo) — ub(Xo)] = \ [0 = 4009y G, (v, X0 - V() dY'

(2.9)

< ¥ X ] ey m xvamdy.

QGD]: Qo IEW*

< ¥ > swiel( . |VYGL1YX0>|2dY)1/2( /I*Wus(Y)FdY)m,

QE]D)]: Qo IEW*

Note that by our choice of Xo = Xaa,, , see ([2.5), the function v(Y) = Gy, (Y, Xo)
is a weak solution of Liv = 0 in I*™** for every I € W, with Q € Dg,. Therefore,
by Caccioppoli’s and Harnack’s inequalities, the fact that L; is symmetric (hence
Gr,(Xq, Xo) = G, (X0, X)), and Lemma [1.30(a)] we obtain

X
/[* ’vYGLl (Y7 )(())‘2 dy 5 K(I)n 1GL1 (XQ7 X0)2 ~ <w§1(é) )

Also, since 6(Y) ~ £(I) ~ £(Q) for every Y € I* such that I € W,

//|Vu0 W aY ~ ¢(I)~H(Q // IVl (Y))?6(Y) " dY. (2.11)

Recalling ([2.3)), (1.21)), we define the sequences o = {aQ}QE]D)QO, B = {BQ}QEm}QO by

Xo Q . - 1/2
)<E(Q)" //U Q|VuO(Y)|25(Y)1 "dY) and  fig =Yg (2.12)

Using Cauchy-Schwarz’s inequality and the bounded overlap of the cubes I*, one

can see that (2.9), (2.10), (2.11)), and (2.12)) yield
Xo 1/2
wr, (Q 1 2 n
Fh,(Xo0) S E al(Q) / // |Vub (Y)[26(Y) " dY

QG]D)QO

2
> . (2.10)

aQ =

= 3 cafes [ Aqe@)aiw)dots), (213

QEDQ
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where in the last estimate we have used Lemma [1.19] and where we recall that
Ao, €q, were defined in (|1.24). Using the bounded overlap property of Ug with
Q € Dg,, we have that

AQOa(x)=< 3 (le )// IVu, (V)26 )1"dY>1/2

:ZTEQEDQO

< MG kY0 (z) Squub(z), (2.14)

where

Méof( = sup ]l\f )| do(y) (2.15)

xGQEDQO

is the localized dyadic maximal Hardy-Littlewood operator.
On the other hand, (2.7) yields

1 1/2
Co,B(x) = sup (@ Z yny,> < Hm;”é{é < 51/2. (2.16)
IEQEDQO o Q'EDQ
Plugging (2.14] into ( , using Hélder’s inequality we conclude that
Xo 2
Fhy(X0) < et/ ISauubll 1 g0y 1Mok im0y S 2K ooy (217)

where we have used that Mgo is bounded in LP(Qq) and that

HSQOUBHLp’(QO) S ||NQ0,*U6HL1>’(QO) S ”gtHLp’(QO) S ||g||Lp/(Q0) =1,

which follows from ([1.46)), Lemma wr, € RH,(89), (2.8), and Lemma [1.41]
From ({2.9), (2.17)), and for all 0 < ¢t < Crq,/2,

1/2)7.X,
0 < uf (Xo) < Fb, (Xo) + ub(X0) S &1 *Ik52 en@o) + %20 | ooy
where we have used Holder’s inequality, that ||g:||,, (02) S 1 and Lemma and

the implicit constants do not depend on ¢. Next, using the previous estimate and
Holder’s inequality we see that

/ Gk (y) do(y) = ut (Xo) + / (9(v) — 9 (w))kX° () do(y)
o0 o0

1/2
S eIk Nen@o) + %20 oo, ) + 119 = 9tll o ey IR0 o o5 g, -

Note that Hk: ||LP(2A
(Lo=Liin{Y € Q: 5( ) < 277}). Recall that |g — 9tll 1o (o) — 0 as t — 0 (see
Lemma [1.41)) and hence

1/2
/Bﬂg@)kfﬂy)da() V1 o0y + 1B ooy,

) < Cj < oo by Lemma |1.30(e)[ and Harnack’s inequality

Taking the supremum over 0 < g € L¥ (Qo) with 191l L7 (@y) = 1, the latter implies

150 2oy < Cet/* IR0 lLzoi@o) + 1K ooy



52 Chapter 2. Perturbations of symmetric operators

with C' depending only on dimension, p, the 1-sided CAD constants, the ellipticity of
Ly and L, and the constant in wy,, € RHy(0€2). As mentioned above, ||k‘£(l0 llzr(Qo) <
C; < oo, thus taking &1 < C~2/4 we can hide the first term in the left hand

side, and consequently HkﬁOHLp(QD) < Hkﬁ)o”m@z%). Recalling that Xo = Xaaq,

we have that 6(Xq,) =~ £(Qo), §(Xo) = Mol(Qo) > ¢(Qo), (5(X23Q0) ~ £(Qo)-
Also, | Xo — Xq,| + | Xo — X2£Q0| < Mpl(Qo). Hence, using Harnack’s inequality
(with constants depending on My, which has been already fixed), and the fact that
wr, € RH,(0R), we conclude that

/ K, () do(y) ~ / k()P do(y) < / k)P do(y)

0 ZAQO

X2B ~ _ _
%/25 kp, D (yPdo(y) S o(28g,) P~ a(Qo) P, (2.18)
Qo

2.1.3 Self-improvement of Step 1

The goal of this section is to extend and show that it holds with the integration
taking place in an arbitrary @ € Dg,, but with the pole of the elliptic measure being
X@,- In doing this, we will lose the exponent p, showing that a RH, inequality holds
for some fixed gq.

Fix @ € Dg,, and let L(f? be the operator defined by L?u =— diV(Aleu), where

Qnn . [ AY) ifYeQrg,
w20 ={ 450 HY e

with A = A7 as in (2.0). Since LY = Ly in {Y € Q: §(Y) < 277}, Lemma [1.30(e)
implies that w, o < o, hence there exists k:fQ = dwa /do. Our first goal is to obtain
1 1 1

| B wraot) < 0@ (2.19)

1

We consider two cases. Suppose first that @ C @Q; for some Q; € F, then Qr g = O,
L? = Lo in Q, and (2.19) is a consequence of the fact that wr, € RH,(012). In other
case, that is, if Q@ € Dr g,, we define Fo ={Q; € F: Q;NQ # O} ={Q; € F:
Q; € Q}. Note that Ay — A? is supported in Qr, g = Q7 g, and clearly

lmzr,lle) = sup —2—- < sup —— <> <ey.
elic@) @ed, 0(Q) Qeng, (@)

We can then repeat the argument of Step 1 for the operator L? replacing L, and
with @ and Fg in place of respectively (o and F. Hence, the estimate
becomes .

We next notice that using [HM3, Lemma 3.55], there exists 0 < k1 < k1 (see
), depending only on the allowable parameters, such that K1Bg N Qr g, =
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k1Bg N Qr . This easily gives that Ly = LlQ in K1Bg N . Using now Lemma
1.30(e)| and Harnack’s inequality, we have

X, X

kLo (y) ~ kLg (y), for o-a.e. y € nAg, (2.20)
1

where 1 = K1/(2k0) and kg is as in ((1.7]), and hence nAg C Ag C Q. Combining

(2.19)), (2.20]), Lemma Lemma [1.30(b)[ and Harnack’s inequality we obtain

(f, wewraw) e (f gigwraw) " <o

nAg 1

< 0@ W@ < ]1 KX2(y) do(y).
nAq

Now, using Remark we have that

1/
(f, sowraw) " saf o), 221
nAQ 'r]AQ

with C; > 1 depending only on dimension, p, the 1-sided CAD constants, the
ellipticity of Ly and L, and the constant in wr, € RH,(0?). Note that (2.21)

holds then for every @) € Dg,. Also, by means of Lemma Lemma [1.30(b)| and
Harnack’s inequality, there exists C; > 1 such that 0 < leQO(Q) < anLIQO (nAg)
for every @ € Dg,. The following result is a generalization of [HM2, Lemma B.7]
to our dyadic setting. In what follows, given 0 < v € L%OC(Q) and given F' C 0 we
write v(F) := [ v(y)do(y).

Lemma 2.4. Suppose that Q C R™ is an open set such that O satisfies the AR
property. Fiz 0 <n <1, Qo € D(OQ) and let v € LY(Qo) be such that 0 < v(Q) <
Cov(nAgq) for every Q € Dq,, for some uniform Cy > 1. Suppose also that there
erist C1 > 1 and 1 < p < oo such that

<]£AQ v(y)P dg(y)>1/p < Cl]{7AQ v(y) do(y), Q € Dg,, (2.22)

then v € Agg'adiC(Qo), with the implicit constants depending on dimension, p, Cy,
C1, n and the AR constant.

Proof. We first prove that for every @ € Dg, and every Borel set F' C nAg, there

holds ) ) Ly
v(nAg) : Cl(d(%@)) ' (2.23)

Indeed, using Holder’s inequality together with (2.22)), we obtain

v o /v /p
Stvsey = tusg) . w0 = (Gxs) <],[7AQ () doy)

<o) ", o
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which is equivalent to (2.23)).
To obtain that v € ASY*¥(Qy), we observe that o(Q) < Co(nAg) with C > 1

depending only on AR and n. Fix then 0 < o < (C’C’fl)_1 and take E C @ such
that o(F) > (1—a)o(Q). Writing Ey = ENnAg and Fy = nAg \ E, it is clear that

o(Q _ o(B) _ olFy) , 0(Q\ndg) _ alFn) , o(Q)

L= tag) “ombo) = olihg) | olhg)  olndg) | olndg) -
and hence (F ) (E ) (Q)
a 0 = — a 0 8] g . .
c(nAq) ! a(nAg) < a(nAg) =¢ (2.24)

Combining (2.23]) and we obtain v(Fp)/v(nAg) < C1(Ca)'/?". This and the
fact that v(Q) < Cov(nAg) yield

o(E) J v(lg) U(Eo)) o <1 __v(F) ) S O (1= Oy (Ca)' Py = 1 8,

v(@) T v(Q) v(nAg v(nAq)
with 0 < 8 < 1 by our choice of a. This eventually proves that v € A‘ézadiC(Qo) and
the proof is complete. [

Using Lemma [2.4{ we obtain that wﬁQO € AZ°((Qg). This and Lemma [1.13(b)
yield Prwy *Qo ¢ Adyad1C (Qo) and this finishes the first step.

2.1.4 Step 2

We define a new operator Lo by changing L1 below the region Qr g,. More precisely,
set Lou = — div(A2Vu) with

A(Y) if Y € Tg, \ Qr.qo

A (Y) = { A(Y) if Y e Q\ (Tg, \ Qr.qo)-

Note that by construction, Ay = Ain Tg, and Ay = Ap in Q\ Tp,. Our goal is to
prove that waffo € A‘igadiC(Qo) by using the following lemma.

Lemma 2.5 ([HMT2]). Suppose that Q C R"™! is a 1-sided CAD. Given Qg €
DY) and F = {Q;} C Dg,, a family of pairwise disjoint dyadic cubes, let Pr be
the corresponding projection operator defined in (1.14]). Given an elliptic operator L,

A A
we denote by wy, = wL%O and wr, « wL%‘J o0 the elliptic measures of L with respect

to Q and QF g, with fized pole at the corkscrew point Ag, € Qr.q, (c¢f [HMS3,
Proposition 6.4]). Let vy, = Z/LqQO be the measure defined by

VL(F) —wL*(F\ U Qz) + Z had? Fgc)gz)wL7*(Pi), F C Qo, (2.25)
QiEF

where P; is the cube produced by [HM3, Proposition 6.7]. Then Prvy, depends only
on wr,  and not on wr,. More precisely,

FmQ

Pro(F) =wrs(F\ |J @)+ Y B 220u(R),  FC Qo (226)

QieF QieF
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Moreover, there exists @ > 0 such that for all Q € Dg, and all F C Q, we have

(2.27)

<73wa(F)>9 < PIVL(F) < waL(F)
Pror(@Q)) ~ Prn(Q) ~ Pror(Q)

A A

Fork = 1,2, we write wy, = wL}S?Z and wy, » = wa’%F’QO for the elliptic measures
of Lj, with respect to the domains Q and Qr q,, with fixed pole at Ag, (see [HM3,
Proposition 6.4]). Note that since A; = Ay in Qr g, then wy, « = wr, .. Finally let

A
VL, = VLon be the corresponding measures defined as in (2.25)), and observe that
(2.26) implies Prvy, = Prvi,.

In Step 1 we have shown that P;wﬁ% € Ag%’adlC(Qo), thus Harnack’s inequality
and ([2.27) give that Prvy, = Prrr, € AR*(Qy). Another use of ([2.27) and
Harnack’s inequality allows us to obtain that waf% Prwr, € Ag%'adlC(Qo).
Note that by Lemma [1.30(b)|, Harnack’s inequality and Lemma [1.13(a)| it follows

Xqq - . . .
that Prw; ™ is dyadlcally doubling in Q.
Thus, [HM3, Lemma B.7] implies that there exist 6,60’ > 0 such that

o o p wXQO E o o'
(UESD : 7: ?QOEQi s (aggi) ,  @€Dg, ECQ (2.28)
FWr,
2.1.5 Step 3

To complete the proof it remains to change the operator outside Tg,. Let us intro-
duce Lzu = — div(A3Vu), where

- (Y) if Y € Ty,
A3(Y)-—{ ?Y) if Y eQ\Tg,,

and note that L3 = Lin Q.
We want to prove that for every 0 < € < 1, there exists C. > 1 such that

LO(E) 1

a.

o(E) S Prw;
a(Qo) ~ c waXQO (Qo)

E C Qo,

Vv

(2.29)

Let 0 < e <1 and let E C (QQy be such that o(E) > co(Qo). First, we can disregard
the trivial case F = {Qo}:

Pron®(B) gy (Q) _ o(B)
Prup2(Qo) 29 70 (Qp)  o(Qo)

> €

Suppose then that F C Dg, \ {Qo}. For 7 < 1 we consider the sets

S, = {z € Qo: dist(z, 00\ Qo) < 7€(Qo)}
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and @vo = Qo \ UQ’GL— Q', where
I, = {Q" €D, : 74(Qo) < UQ) < 27¢(Qo), Q"N %, # O}

By construction, ¥r C Uger, @', and there exists C = C(n, AR) > 0 such that
every Q' € I, satisfies ' C X¢. Using Lemma[L.6(f)] for 7 = 7(¢) > 0 sufficiently
small we have

7(Qu\ Qo) < o(Ser) < C1(C7)"0(Qo) < 5 o(Qu).
and letting F' = EN @vo, it follows that
£0(Qu) < 0(B) < o(F) +0(Qo\ Qo) < o(F) + 50(Qu).

Hence o(F)/o(Qo) > €/2 and by (2.28]), we conclude that

Prop®(F) _ [ o(F)\
o () =) (230)

. . X X
We claim that there exists ¢, > 0 such that Prw LSQO(F ) > CEP]:wao(F ). As-
suming this momentarily, we easily obtain ([2.29)):

y X

5 2 o . ) Wy, Qo F (% 1
fXQ() > Pruy 2 (F) > c.Pruw;y 2 (F) 2 c. ]:XQ() = cg(é)

Prw;. " (Qo) Pret, (o)

where we have used Lemma |1.26] (2.30), and the fact that 73]:wL °(Qo) = wf}fo (Qo)
for k =2, 3. -

Let us then show our claim. First, since Ly = L3 in T, and Qo C Qo \ X,
Lemma yields

X X ~
kL2Q0 (y) ~r kL3Q° (y), for o-a.e. y € Qo. (2.31)

This and the fact that F' C (,70 give

wi@o (F\ U Qi) Ny wffo (F\ U Qz‘),

QiEF QiEeF

which in turn yields

Prop () = (F\ U @) + 30 T 0@ L

QieF QieF
> cTWLQO (F\ U Qz) T Z FﬂQl) XQO(Q%) (2.32)
QiEF QiEF

It remains to estimate the second term. Note that in the sum we can restrict
ourselves to those cubes @); € F such that FF N Q; # . We consider two cases. If

Q; C Qo, using (2.31)) we have that wffo (Qi) ~- wffo (Q;). Otherwise, if Qi\@vo +
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@, there exists Q" € Z, such that Q; N Q" # @. Then Q' C Q; (if Q; C Q' then
Qi C Qo \ Qo, contradicting that FF N Q; # O and F C Qo) and, in particular,
Qi) > T4(Qo). Let xQ be the center of @Q;, and let AQ = A(zq,,rqg,) with

rg, ~ {(Q;) as in . Take QZ € ID)Q with zg, € QZ, (QZ) = 27My(Q;) and
M > 1 to be chosen Notlce that dlam(Ql) ~ 27 MU(Q;) ~ 27 Mrg, and clearly

ro, < dist(zg,, 02\ Ag,) < diam(Q;) + dist(Q;, 02 \ Ag,)
~ 2 Mg, + dist(Q;, 02\ Ag,).
Taking M > 1 large enough (depending on the AR constant), we conclude that
cl(Qo) < dist(Qi, 00\ Ag,) < dist(Q;, 002\ Qo) and hence Q; C Qo \ Xer. Again,

using Lemma [1.32{and the fact that wffo is doubling in Q¢ (which is a consequence
of Lemma [1.30(b)] and Harnack’s inequality), we obtain

Wh Q) > wp (@)~ wp (@) 2 w2 (Qa):

In the two cases, since 7 = 7(¢), (2.32)) turns into

waff (F) Ze wXQO (F\ U Ql) + Z QmF ffO(Q) waff (F),
QeF Q.EF

completing the proof of our claim.

Recalling that L= Ls, the previous argument proves the following proposition:

Proposition 2.6. There exists €1 > 0 (depending only on dimension, p, the 1-sided
CAD constants, the ellipticity of Ly and L, and the constant in wr, € RH,(0Q2))
such that the following property holds: given e € (0,1), there exists Cc > 1 such that
for every Qo € D(ON) with £(Qo) < diam(0Q) /My and every F = {Q;} C Dg, with
ImzllcQy) < €1, there holds

X
Prw-*(E
o(E) > = ]:L—() > i’ (2.33)

EC QOa O_(QO) ’P]:(,UXQO (QO) - CE

where L = L7 is the operator defined in (2.6) and j € N is arbitrary.

2.1.6 Step 4

What we have proved so far does not allow us to apply Lemma We have to be
able to fix the pole relative to Qy, and show that (2.33)) also holds for all @ € Dg,.

Proposition 2.7. Let £1 be the parameter obtained in Proposition [2.6.  Given
e € (0,1), there exists C. > 1 such that for every Qo € D(9Q) with £(Qy) <
diam(9€2) /My, every Q € Dg,, every F = {Q;} C Dq with [[mz|lcq) < €1, there
holds X
Qo
E Pro; 7 (E) 1
ol )Z€:> — L > (2.34)

E )
) Prolenq) - C-

Q
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where L = L7 is the operator defined in (2.6) and j € N is arbitrary. Consequently,
there exists 1 < q < oo such that w?QO € RHP™ Qo) uniformly in Qo € D(N)
provided £(Qo) < diam(9S2)/My, and moreover wy € RH,(95) .

Proof. Fix Qo € D(09Q) with £(Qo) < diam(0€)/Mp. Let 0 < e <1, Q € Dg,. Let
F ={Qi} C Dq be such that ||mz|cg) < e1 and let E C Q satisfy o(E) > e0(Q).
By Lemma (1.30(c)| (see also Remark|1.31)) and the fact that wagQ (Q) = w%(Q Q) ~
1 by Lemma [1.20] we see that

Prws @ (E) Pruws (5) _

L _ (BN | @)+ EHQZ w> Qi)
wag% (@) W%(QO(Q) ( ng QZE}'
Prw>°(E
= Prw:“(E) = ey | )>i7

where in the last inequality we have applied Proposition to @ (replacing Qo)
satisfying ¢(Q) < diam(0€2)/My. This shows (2.34), which together with Lemma
and our choice of My, allows us to invoke Lemma and eventually conclude

that wg% € AZ™(Qy) uniformly in Qo, provided £(Qp) < diam(d9)/My. Thus,

X .
there exists 1 < g < oo, such that w @ ¢ RH&i vadic () uniformly in Qo for the
same class of cubes and, in particular,

diam(99)

o, (2.35)

/ X (y)tdo(y) So(Qo)' ™% QueD@9), Q) <

0

When diam(09) < oo, we need to extend the previous estimate to all cubes
with sidelength of the order of diam(0f2). Let us then take Qo € D(9f) with
0(Qo) > diam(052) /My and define the collection

diam(052)

2My

< 0Q) < diam(092) }

IQO = {Q € DQO : MD

Note that Qg = UQ€IQ0 Q is a disjoint union and using the AR property we have
that

170, (TP ) < Y M@ = Y 0(Q) = o(Qo) ~ Q)" S diam(@9)"

QEIQ QEIQO

which implies #Z¢g, S M. We can use Harnack’s inequality to move the pole from
Xg, to Xg for any Q € Zg, (with constants depending on My, which is already
fixed), since 6(Xq,) =~ £(Qo) > £(Q), §(Xq) ~ ¢(Q) and |Xg, — Xg| < Mol(Q).
Hence, we obtain

/Ok%(% ) do(y Z/ FOyido(y) S Y o(@)°

QEIQ QGIQO
< #7Ig, diam(99Q)1 " < 0(Qo)' 7,
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where we have used ([2.35)) for @ since ¢(Q) < diam(9€2)/My, and the AR property.
Therefore, we have extended ({2.35)) to all Qo € D(992) and Remark yields that
wy € RHy(0N2), where L = L7 and the implicit constants are independent of j € N.
[ |

2.1.7 Step 5

In the previous step we have proved that w; € RH,(0€) where L = [’ and the
implicit constants are all uniform in j. To complete the proof of Theorem [2.1(a)| we
show that wy, € RH,(09) using the following result:

Proposition 2.8. Let Q C R"t!, n > 2, be a 1-sided CAD. Let L and Lg be real
symmetric elliptic operators with matrices A and Ag respectively. For every j € N,
let L'u = —div(A7Vu), with A7(Y) = A(Y) if 6(Y) > 277 and AV(Y) = Ap(Y) if
§(Y) < 277. Assume that there exists 1 < q < oo such that wy; = wrj g € RHy(0N)
uniformly in j, for every j > jo. That is, wr; o < o and there exists C' such that

[ R dot) < Coa) 0, i = dui e, (236)

for every j > jo and every A(x,r) with x € 0Q and 0 < r < diam(92). Then
w0 € RH,(99).

Proof. Fix By = B(xg,rg) with g € 92 and 0 < rg < diam(9Q)/25, set Ay =
By N 09, and consider the subdomain €2, := Tya,. Using [HM3, Lemma 3.61] we
know that €, is a bounded 1-sided CAD, with constants depending only on those
of Q. Applying Lemma it follows that wy; o, < o in 4A¢ and also

X X
kL;l,?zO (y) ~ ka’?f* (y), for o-a.e. y € 4.

Recalling ([1.7]) we know that 25ByNQ C Q. In particular, 10By NI = 10By NI,
and o, := H"|,, coincides with o in 4A,. Therefore, (2.36)) gives

X X _
[ s wrdnw~ [ ERerdw sea) e
4 4A¢
uniformly in j € N. Note also that 0,(X4a,) = 6(X4a,), where 6,(Y) = dist(Y, 9€%):
5*(X4A0) = diSt(X4AO, 10By N 89*) = diSt(X4AO, 10By N 89) = (5(X4A0).
Define, for every g € C.(02,)
X
®(g) := / 9(y) dwp 60 (y).
00
Let g € Lip,.(092) be such that supp(g) C 44 and extend g by zero to 9 \ 47

(by a slight abuse of notation we will call the extension g) so that g € Lip,(9)
and define

u(X) = / o) dwfo (v),  ui(X) = / o) ol o (), X e,
0 Oy
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Since g € Lip.(09%) € HY?(9Q,)NC.(99,), using Lemma with Q, and slightly
moving Xya, if needed, we can write

Set ¥ ={Y € Q: () < 2773, §0 = B(Xun,,0(Xun,)/2) take j1 > jo large
enough so that Bo NY;, = . For every j > ji, it is clear that |47 — A| < 1y,, with
constants depending only on the ellipticity of Ly and L. Also we have the a priori
estimate [|[Vujllr2,) S ll9llg2(aq,) (see [HMT2]), where the implicit constant
depends on dimension, the AR constant, the ellipticity of Ly and L, and also of
diam(0€)) ~ 19). All these and Holder’s inequality yield

[u(Xang) — uj(Xang)| S IVyGra, (Y, Xan,)||Vu; (V)] dY (2.38)
ny
«NZ;
S IVGLa (5 Xaa) sl 2,0 5oy 191 H1200.) -

Since €, is bounded, our Green function coincides with the one defined in [GW],

hence VG, (-, Xaa,) € L?(4 \ By) (see (T.41)). Using the dominated conver-
gence theorem, the first factor of the right hand side of (2.38) tends to zero, hence
u;j(Xaa,) = u(X4n,). Recalling then (2.37) we have that Holder’s inequality gives

— 1; ) Xang
(X = Jm s (X80)] < gl 02 1258 natany

< 9l o a9 (Do) M

and hence
12(9)] S 1190l Lo (angy o (Do) 7, g €Lip.(09), supp(g) C 4Ag.  (2.39)

Suppose now that g € L7 (2A) is such that supp(g) C 2A¢, and for 0 < t < rg
set g¢ = P;g with P; as in Lemma Since g; € Lip(0f?) satisfies supp(g;) C 44,

we have by (2.39)

[@(g1) = (95)] = 19(90 = 95)| S 191 = 95| o (4n) 7 (D0) T
S o (20) Y (I1Pg = gll o 90y + P59 = 91l Lt 0y

for 0 < t,s < ro. Hence {®(g:)}:>0 is a Cauchy sequence, and we can define
®(g) := limy_,0 ®(g;). Clearly, ® is a well-defined linear operator and ® € L7 (2A,)*:

B(9)l < sup 12(g)| S o(A0) 7 sup [Pigllpwang) S o(20) 7 gl iz

0<t<rg 0<t<rg
(2.40)
where we have used (2.39) and Lemmau Consequently, there ex1sts h € L9(2A)
with [|2]|La2ag) S U(AO) /4" in such a way that ®(g = fon, 9W)0(y) do(y) for

every g € LY (2A) such that supp(g) C 2A.
Let g € C.(09) with supp(g) C 2A¢ and we extend g by zero to d€). so that

g € C.(09,). From Lemma applied to Q., [|Pigllr=@00,) < 9ll=@2a,) and
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Pg(z) = g(z) as t — 0T for every z € 99,. These, the definition of ®(g) and the

. . Xan
dominated convergence theorem with respect to w; ‘;2*0, shows

P~ . . X X
O(g) = lim ®(Pyg) = lim [ Pygly)dwy 5°(y) = / 9(y) dwp, ° (y) = D(g),
t—0t t—=0" Joq, ’ A0, ’
hence 5(9) = ®(g) for every g € C.(092) with supp(g) C 24.
Next, we see that & := wf?io L 0o, =01n %AO. Let £ C %Ao and let ¢ > 0.
Since W and o are both regular measures, there exist K ¢ E C U C %AO with K

compact and U open such that &(U \ K) + o(U \ K) < . Using Urysohn’s lemma
we construct g € C.(992) such that 1x < g < 1y and supp(g) C 2Ag. Thus, by

and (Z10).

W(E) <&+ w(K) §6+/89 9(y) dd(y) = e+ @(g) = = + (g)

< e+ 19l g IhllLeag) S € + (& + o (BN o(20) 7

Letting ¢ — 07 we conclude that G(E) < o(E)Y9o(Ag)~"/7 and in particular
@ < o in 2Ag. Writing then k = d&/do € L'(2Ag) we have that

[ 9(W)h(y) do(y) = B(g) = B(g) = / 9(y) do(y) = / 9(y) k(y) do(y),
3 A0 0, 7480

R (2.42)
for every g € C.(99) with supp(g) C 2 Ag. Since (h — k)lng € LY(09) by Lemma
1.41{it follows that Pt((h—/k\)lng) — (h—E)lgAO in L1(082) as t — 0. Moreover,
for any x € Ao, if we let 0 < t < r9/8 so that supp(¢(z,-)) C 2 Ag, then (2.42)
applied to g = ¢(x,-) yields that P,((h — E)lng)(x) = 0. All these allow to
conclude that k = h o-a.e. in Ag, hence H/lf\HLq(Ao) < |hllzaag) S o(Ag)~ V7,

Note that we showed before that & := wf?io < 0 in Ay, Lemma [1.30(d)| and

. . . X .
Harnack’s inequality give w;, SA)O < o in Ay, and

X b's ~ _

| ma@rdnw ~ [ 6wt ~ [ ket S atde)
Ao Ag Ap

Since Ay = A(xg,rg) with g € 9Q and 0 < rp < diam(92)/25 was arbitrary, we

have proved that wy < ¢ and

o Bam(O) = 45

/ ko) do(y) < Co(A)' ™, A=A(z,r), 0<r
A b

for C' > 1 depending only on dimension, p, the 1-sided CAD constants, the ellipticity
of Lo and L, and the constant in wr, € RH,(0N2). By a standard covering argument
and Harnack’s inequality, (2.43)) extends to all 0 < r < diam(9€?). Using Lemma
we have shown that wy, = wr o € RH,(0€2) completing the proof of Proposition
28 [
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2.2  Proof of Theorem [2.1(b)|, small perturbation

We first note that by Theorem the fact that [|o(A, Ao)|| < 1 gives that
wr, € RH, (0Q) for some 1 < ¢ < oo, and in particular w;, < o. The goal of
Theorem is to see that if e; > 0 is taken sufficiently small, then we indeed
have that w;, € RH,(0N2), that is, Ly and L are in the same reverse Hélder class.
To this aim, we split the proof in several steps.

Remark 2.9. We choose My > 400 ko /c, which will remain fixed during the proof
of Theorem [2.1(b)l where ¢ is the corkscrew constant and kg as in . Given
an arbitrary ball By = B(xg,r9) with g € 92 and 0 < 9y < diam(9Q)/My, let
Ay = By N o2 and take XMOAQ0 the corkscrew point relative to MyAg, (note
that Moro < diam(09)). If Qo € D?° then £(Qo) < 40079 < diam(9N)/kg. Also
(X npny) = cMorg > 2kor9, and by ,

XMUAO e \ 2roBy C Q \ TX‘;. (2.44)

2.2.1 Step 0

As done in Step 0 of the proof of Theorem we let work with L = L7 , associated
with the matrix A = A7 defined in . As there we have that w; < o, hence we
let k:% = dw%{ /do. This qualitative property will be essential in the first two steps.
At the end of Step 2 we will have obtained the desired conclusion for the operator
L= L7, with constants independent of j € N, and in Step 3 we will transfer it to L
via a limiting argument. From now on, j € N will be fixed and we will focus on the
operator L=1J.

2.2.2 Step 1

We start by fixing By = B(zg,ro) with 29 € 9, 0 < 19 < diam(9€)/Mp and M,
as in Remark Set Ay = Bp N o and X := XMong, SO that (2.44) holds. We
define the operator Liu = Lleu = —div(A4;Vu) where

[ AWY) Y €Ta,,
)= 40 e,

and A = A7 as in (2.6). By construction, it is clear that & := A; — Ag verifies
&1] < [E]17,,, and also E1(Y) =0 if §(Y) < 277, Hence, the support of A; — Ag is
contained in a compact subset of 2.

In order to simplify the notation, we set 30 = %AS = A(zo, koro) and let
0 < g € L” (Ag) be such that HQHLP’(KO) = 1. Without loss of generality, we may
assume that ¢ is defined in 92 with ¢ = 0 in Q\ﬁo. For 0 < t < Koro/2, we consider
gt = Pig > 0 with P;g defined as in , together with the solutions

uh(X) = /8 ) del ). wh(X) = /8 el Xen
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By Lemma [1.41] g; € Lip(09) verifies supp(g¢) C Aj and hence g; € Lip.(0Q) C
H'Y2(00) N C. (8Q) Since & = Ay — Ay verifies |£;] < |€|17, and also £(Y) =0

if 5(Y) < 279, and (1.6) allow us to invoke Lemma (see Remark [1.40))

which along with Cauchy-Schwarz’s inequality yields

F'(Xo) = |} (Xo) — up(Xo)| = ‘// (Ao — A1) (Y)Vy G, (Y, Xo) - Vug(Y) dY’

<X Y X [ emnesenxavamay

QOeDAo QeDq, IeW;,

<> > Zsupw( / |vyGL1YXo>|2dY>1/2

QoeDAo QEeDq, IeW*
1/2
y (/ |Vu6(Y)\2dY> .
I*

Note that for every Qo € D?° and our choice of My, we have that £(Qg) <
diam(99Q)/ko. Thus by Lemma the estimate [|a|| < &1 implies that m =
{7Q}oenan) € C(Qo) (see (2.3) and [|m||¢(q,) < ke1, where & > 0 depends only on
dimension and on the 1-sided CAD constants. Also, note that Lq is a symmetric
operator. At this point we just need to repeat the arguments in f in every
Qo € DA with F = @ and hence Dz g, = Dg,. This ultimately gives

1/2 X 1/2 X
Fi(X0) S > 16 lmo@n S &2 1650 oga,
Qo€D?0

where the last inequality is justified by the bounded cardinality of D?°. Therefore,
1/2
0 < uf(Xo) < F'(Xo) +ub(Xo) S &1kl o ay) + k22 lloag),

where we have used Holder’s inequality, and the facts that | g|| o) < 1 and

~

supp(g¢) C A§ by Lemma and where the implicit constants do not depend on
t. Next, we write

| ok ) dot) = (o) + [ (o) = )i ) dor ()
S e 210N iy + 122 o (ag) + 19— 9tll o ooy 1520 I oag)-

Notice that g, — ¢ in L (99) by Lemma which along with the fact that
Hkﬁo ILr(az) < Cj < 400, by Lemma [1.30(e)| and Harnack’s inequality, implies

1/2
/8 IR W) doty) S <P sy + 1052 oy
Taking the supremum over all 0 < g € Lp,(ﬁo) with HgHLp/(EO) = 1 we obtain

1/2
15221 Lo,y < Cen / IKZ0 Lo (ag) + ClIkES llr(ag)s
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where C depends on the allowable parameters. Since Hkﬁo < Cj < o0, taking

HLP(KO)
g1 < C~2/4, we can hide the first term in the left hand side to obtain szﬁo HLP(&)) <
||l<:i(0°\| rr(ay)- Using then that wy, € RH,(9€) and Harnack’s inequality to change
the pole from Xo = Xpgn, to Xag (with constants depending on My, which is

already fixed), we conclude that

k20 (y)P do(y) < /A W dot) S [ 1) doty)

Ao Af

X s
~ / kLOAO (y)P do(y) S o(A5 P = o(Ag) P, (2.45)

0

2.2.3 Step 2

We introduce the operator Lo := — div(A3Vu), where

o Al(Y) ifY € TAO,
A2(Y) = { AY) Y €Q\Ta,,

and hence Ay = A in Q. Asseen in Step 0, since L = Loin {Y € Q: §(Y) < 277}, we
have that wy, = wy < o, and there exists kz, = dwr,/do. Set By := B(xo,70/(2k0))
and Aj = B) N Q. By (L.7), 2k0B) N C 2By NQ C Ta, and since Ly = Ly in
Ta,, Lemma [1.30(e)| implies

X A1 X A1
A0 A0

k
L

Xar

(y) =k, °(y) =k °(y), for o-ae. yc Aj.

Consequently, using ([2.45)) and Harnack’s inequality (with constants depending on
My, which is already fixed), we obtain

/ kS0 ()P do(y) ~ / k0 ()P do(y)
N I

/ ’
0 0

< /A KX ()P do(y) < 0(80) P ~ o(A) 7.
0

Since the surface ball Ag = A(zg,rg) with xg € 9Q and rg < diam(99Q2)/My was
arbitrary, we have proved that

diam(092)

24
2M0/€0 ( 6)

[ B @Pdo) 0@ A=Awr), 0<r<
A

By a standard covering argument and Harnack’s inequality, (2.46)) extends to all A =
A(z,r) with 0 < r < diam(992). This and Lemma show that w; € RH,(0Q)

where we recall that L = LJ is the operator defined in (2.6)), j € N is arbitrary, and
the implicit constant is independent of j € N.



2.8. Vanishing trace perturbation 65

2.2.4 Step 3

Using the previous step and Proposition [2.8| with ¢ = p we conclude as desired that
wr, € RH,(012) and the proof of Theorem is complete.

Remark 2.10. One can easily see from the previous proof that |[al| < €1 could
be slightly weakened by simply assuming that [[m|¢(q,) is small enough, with m =
{79} gen(an) and 7q defined in (2.3). Further details are left to the interested reader.

2.3 Vanishing trace perturbation

In this section we will present an extension of the main theorem in [Dah2| to the
setting of 1-sided CAD domains. With the help of Lemma it will appear as
an easy corollary of Theorem Given Ly, L elliptic operators with matrices Ay,
A respectively, we say that their disagreement defined in verifies a vanishing
trace Carleson condition if

| i oA A2\
sli%“+< ) ™50 dX)‘O' (247

0<r<s<diam(0$2

Note that since this condition is not scale invariant, we do not expect that a vanishing
trace perturbation could transfer a scale invariant condition like RHp,(9€2) from one
operator to the other. That is only achieved in the case of bounded domains. Next,
we state the precise results.

Corollary 2.11. Suppose that Q C R*"*! is a 1-sided CAD. Let Lo, L be real sym-
metric elliptic operators whose disagreement in € is given by the function o(A, Agp)
defined in . If wr, € RH,(0R) for some 1 < p < oo and the vanishing trace
Carleson condition holds, then wy, < o and there exist Cy > 0 (depending
only on dimension, p, the 1-sided CAD constants, the ellipticity of Lo and L, and
the constant in wr, € RHp(0)), and 0 < 19 < diam(0?) (depending on the above
parameters and the condition ), such that

/ﬁfﬁwmw@hg%dAyW,zA:way r€d 0<r<ry (248
A
Proof. Take €1 > 0 from Theorem [2.1(b) and let M > 1 to be chosen. Thanks to

(2.47)), there exists so = so(e1, M) < diam(92) such that for every A = A(z,r) with
x € 00 and 0 < r < sg, we have that

1 a(X)? £1
o(A@r) //B@,rm ) = ar (2.49)

where a := o(4, Ag). Given s > 0, set X :={Y € Q: §(Y) < s} and consider the
operator Lu = —div(AVu) with

~ o Ao(Y) ifY e 9\250/47
MY*‘{AQU ifY €%,



66 Chapter 2. Perturbations of symmetric operators

Note that A is uniformly elliptic with constant A= max{A, Aay}, where Aq and
A4, are the ellipticity constants of A and Ag respectively. Setting £ := A(Y) —
Ao(Y) and a(X) := sup|x_y|<s(x)2 [€(Y)], it is clear that £(Y) = E(Y)1y, (V).
Therefore, since B(X,d(X)/2) C Q\ ¥, /4 for each X € Q\ ¥, /5, we have that

aX) <a(X)ls ,(X), XeQ (2.50)

30/2(

Now, we claim that

- 1 a(X)?

al| = su . dX <ey, 2.51

lall =" s> &) //B(m,rm sy = @
0<r<s<diam(95)

provided M is chosen large enough depending only on dimension and the AR con-
stant. To prove the claim we take B = B(z,r) with z € 902 and 0 < r < diam(99).

Suppose first that 0 < r < sg, using (2.49)) and ([2.50)), we obtain

1 a(X)? 1 a(X)? e,
(A1) //B@,rm 5 = @) //Bw)m sox) s

On the other hand, if r > sg, using (2.50) we have that

//B(oc,r)ﬁQ &;S(())(())Q aX < //B . %(())(())2 dx.

s0/2

By a standard Vitali type covering argument, there exists a family {A;}; of disjoint
surface balls A; = A(z;, s0/2) with z; € A(z, 2r), satisfying A(z,2r) C |J; 3A; and
Aj C A(z,3r). Note that by construction, B(z,r) N X, /2 C ; B(xj, s0), hence by

(2.49), we have that

a(X)? a(X)? e y
//B(JJ,T)QESO/Q 5(X) X = zj:/];(xj,s())mﬂ 5(X) aX < M ZJ(A(:EJ’ 0))
€1

J
1 €1
~ 7 j o(Aj) < MU(A($,3T’)) R~ MJ(A(LE’,T‘)) <ejo(A(z, 1)),
for M sufficiently large, depending only on dimension and on the AR constant.
Gathering the above estimates, we have proved as desired (2.51]).
Next we apply Theorem [2.1(b)| to Lo and L, to conclude that wy € RH,(0%)

and, in particular,

/ k%(A (y)P do(y) < o(A)P, A=A(z,r), €0, 0<r<dam(oN).
A

(2.52)
Set 1o := s0/(8ko) and let A = A(x,r) with € Q2 and 0 < r < rg. Note that
B(x,2kor) N Q C B(x,50/4) N Q C X /4, hence L = L in B(z,2ko7) N 2. Using
Lemma [1.30(e)| we have that wy, < ¢ in A and

ka (y) ~ k%(A (y), for o-a.e. y € A.

This and (2.52)) proves (2.48)) and the proof is complete. [ ]
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Corollary 2.12. Suppose that Q C R™! is o bounded I-sided CAD. Let Ly,
L be real symmetric elliptic operators whose disagreement in § is given by the
function a(X) defined in (2.1)), and suppose that wr, € RH,(9Q) for some 1 <
p < oo. If the vanishing trace Carleson condition holds, then we have that
wr, € RH,(0NY), with constants depending on diam(0S?), dimension, p, the condition
, the 1-sided CAD constants, the ellipticity of Lo and L, and the constant in
wr, € RH,(09).
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Chapter 3

Perturbations of non-symmetric
operators

This chapter is devoted to generalize Theorem in order to allow non symmetric
operators. First of all, we show the equivalence between the A, condition for
elliptic measures and the fact that bounded weak solutions satisfy Carleson measure
estimates (see also [KKPT]). Then, we prove a Carleson perturbation result for
non symmetric operators in 1-sided chord-arc domains and a slight analog when the
perturbation is considered between an operator and its transpose. We state below
the precise theorems.

Theorem 3.1. Let Q C R"! be a 1-sided CAD and let Lu = — div(AVu) be a real
(not necessarily symmetric) elliptic operator (cf. Definition . The following
statements are equivalent:

(a) Every bounded weak solution of Lu = 0 satisfies a Carleson measure estimate,
that is, there exists C such that every u € W,22(2) N L>®(Q) with Lu = 0 in

loc
the weak sense in ) satisfies the Carleson measure condition

1
sup n// \VU(X)\Q(S(X) dX < C’HuH%w(Q), (3.1)
s G

(b) wr, € A (09) (cf. Definition[1.33).

Theorem 3.2. Let Q C R"™ n > 2, be a 1-sided CAD (cf. Definition . Let
Liu = —div(A1Vu) and Lou = —div(AoVu) be real (not necessarily symmetric)
elliptic operators (cf. Definition . Define the disagreement between Ay and Ag
n Q by

0(A1,Ag)(X) := sup |A1(Y) — Ao(Y)], X e, (3.2)
YEB(X,5(X)/2)

where 6(X) := dist(X,09Q), and assume that it satisfies the Carleson measure con-
dition
1 A1, Ap)(X)?
sup // o(Ar, Ao)(X)” dX < oo. (3.3)
B(z,r)NQ

zeo0  o(B(x,r) N Q) 6(X)
0<r<diam(99)

69
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Then, wr, € Aoo(0) if and only if wr, € Ax(9Q) (cf. Definition [1.53).

Theorem 3.3. Let Q@ C R™, n > 2, be a 1-sided CAD (cf. Definition .
Let Lu = —div(AVu) be a real (not necessarily symmetric) elliptic operator (cf.
Definition and let LT denote the transpose of L (i.e, LTu = —div(ATVu)
with AT being the transpose matriz of A). Assume that (A — A") € Lip,,.(Q) and
let

n+1

dive(A— AT)(X) = <Z di(aij — a;:)(X) ., Xeq. (3.4)
=1

> 1<j<n+1
Assume that the following Carleson measure estimate holds

1

sup diva(A — AT)(X)|?6(X) dX < co. (3.5
zcon  o(B(x,r)NoQ) //B(m)m’ et )(X)]"6(X) (3.5)
0<r<diam(99)

Then wy, € Aoo(0) if and only if wyT € Axo(0) (cf. Definition[1.35).

Corollary 3.4. Let Q C R"™' n > 2, be a I1-sided CAD (cf. Definition .
Let Lou = — div(AoVu) be a real (not necessarily symmetric) elliptic operator (cf.
Definition [1.20). Assume that Ay € Lipy,.(Q), [VAo|d € L®(Q) and that
holds for Ag. Then

Wi, € Ase(09) = wpT € Ao (092).

Additionally, if Lu = —div(AVu) is a real (not necessarily symmetric) elliptic
operator (cf. Definition[1.20) such that ||o(A, Ao)|| < oo, then we have

wr, € Axe(09) = Q is a CAD (cf. Definition[1.4)). (3.6)

3.1 Proof of Theorem [3.1]

In this section we will prove Theorem [3.1]in two steps. We will assume that Q ¢ R+
is a 1-sided CAD and Lu = —div(AVu) a real (not necessarily simmetric) elliptic
operator (cf. Definition |1.20)).

3.1.1 Proof of CME — A
Given Qo € D(992) and for every n € (0,1) we define the modified non-tangential

cone
Ty, (z) = U Ug s Ugaps = U Uy (3.7)
QeDg, Q'eDq
Q>x 20QN>n%(Q)

As already noted in Section 2, the sets {UQ,U3}Q€DQO have bounded overlap with
constant depending on 7.
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Lemma 3.5. There exist 0 < n < 1, depending only on dimension, the 1-sided
CAD constants and the ellipticity of L, and o € (0,1), Cy) > 1 both depending on
the same parameters and additionally on n, such that for every Qo € D, for every

0 < a < ag, and for every Borel set F C Qg satisfying waO(F) < awaO (Qo),
there exists a Borel set S C Qq such that the bounded weak solution u(X) = wy (S)
satisfies

1/2
Sgou(az) = <// IVu(Y)?6(Y) dY) > C’n_l(log oz_l)%, Ve F,
rg, @)
Q
' (3.8)

Assuming this result momentarily, we can now prove Theorem

Proof of Theorem[3.1}: (a) = (b). Our first goal is to see that given 8 € (0,1) there
exists o € (0,1) so that for every Qo € D and every Borel set F' C (g, we have that

W) o olF)

W (Qo) 7(Qo)

< 8. (3.9)

Fix then § € (0,1) and Qo € D, and take a Borel set F' C Qg so that waO (F) <

awaO (Qo) where a € (0,1) is to be chosen. Applying Lemma if we assume
that 0 < o < ayp, then u(X) = wy (S) satisfies (3.8) and therefore

Cn_Qlogoz_la(F)S/FSggou(a:)QdU(m)

< |Vu(Y)|?6(Y)"dY | do(z)
Qo \ T}, (x)

_ // * m|vU(Y)|25(Y)1—”< /Q 1y ((Y) da(:c)) 4y (3.10)
o !

where we have used that F??o (z) C T, C B, N (see (L.6)), and we ilave used
Fubini’s theorem. To estimate the inner integral we fix Y € B, NQ and y € D(0N)
such that |Y —y| = d6(Y). We claim that

{reQo: Y el ()} CA®[GCn2s(Y)). (3.11)

To show this let x € @y be such that Y € F"QO (x). Then there exists Q € Dg, such
that 2 € Q and Y € Ug 5. Hence, there is Q' € Dg with £(Q") > 1*¢(Q) such that
Y € Uy and consequently §(Y") ~ dist(Y, Q") = £(Q’). Then,

| = 7] < diam(Q) + dist(Y, Q') + 8(Y) £ €(Q) +8(Y) < Cy~?5(Y),

thus = € A(y,Cn=38(Y)) as desired. If we now use (3.11)) and the AR property we
conclude that for every ¥ € By, N}

/Q Iy (@) (Y) do(z) < o (A Cn~?6(Y))) S 0~ *"o(Y)"
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Plugging this into (3.10) and using (3.1)), since u € VVIOC (Q) N L>®(Q) with Lu =0
in the weak sense in 2, we obtain

¢, loga o (F //*mm 3(r)aY S w5 (ag,) < O o(Qo)

where we have used that A = Bg N0, that 0 < u(X) <w X(09) <1 and that
00 is AR. Rearranging the terms we see that o(F)/o(Qp) < f provided 0 < o <
min{ag, e~ CCnn "8 } and (3-9) follows.

Next we see that (3.9) implies that wy, € A (092). To see this we first obtain

a dyadic- A condition. Fix Q°, Qo € D with Qy C Q". Lemma m parts (b) and
(c), Harnack’s inequality and Lemma [1.26] gives for every F' C Qg

X

L, () _ w, ) _ e (F)

——L Bt R Sl

Cru;®(Qo) ~ w2 (Qo) QO(QO)

With all these in hand we fix § € (0,1) and take the corresponding o € (0, 1) so
that (3.9) holds. Let M > 1 be large enough to be chosen and we are going to see
that

(3.12)

wg(Q (F)S o N o(F)

Wy, Q) Cy o(Qo)

< 8. (3.13)

*Qo
Assuming that the first estimate holds we see that | - yields A < «. Thus
w, Q)

we can apply . ) to obtaln that ((Q ) < B as desired. To complete the proof we
need to see that | gives . The argument is standard and is left to the

the interested reader. This completes the proof of Theorem modulo the proof of
Lemma 3.5 [

Before proving Lemma [3.5 we need some notation and some estimates. Let
n =27k < 1. Given Q € D(9Q) we define Q € Dg to be the unique cube such that
xQ € Q, and E(Q) = n¢(Q). Using this notation we have the following estimates
which will be used later:

2200\ Q) =w, 2(09) ~w, Y@ <1, 2Q) < Cy (3.14)
where C depends on dimension, the 1-sided CAD constants and the ellipticity of
L and 7 is the parameter in Lemma To see this, keeping in mind the nota-
tion introduced in (L.1)), let ¢(X) = @o((X — zq)/rq) where ¢y € Co(R"™!) with
1p0,1) < wo < 1p(2)- Note that ¢ € C.(R™1) with 0 < ¢ < 1, supp(p) C 2Bg,
and ¢ =1 in Bg. In particular, Yo <lon, <1g and hence

o(X) = /a )2 ) < %(Q) (3.15)
Note that v € W

e 2(Q)NC(Q) is a weak solution with 0 < v < 1 and Upn = Aoq = 1
in Bg. Thus,v =1-v € VV&)S(Q) N C(Q) is a weak solution with 0 < ¥ < 1 and

Uy =1 —¥yq =0in Bg. Thus we can use (3.15) and Lemma m to see that

X X5 —zql\”
1-w ?(Q) < 1-v(X)=0(X) < B [0l ooy < C7, (3:16)
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where the last estimate follows from
X — 20| < [Xg — ]+ lvg — 2ol S Q) =nl(Q),

since xg € @ and X o is a corkscrew point relative to QV

We also claim that there exists ¢g € (0,1) depending only on the AR constant
and on the ellipticity of L so that if n is small enough (depending only on the AR
constant) then

0 <w Q)< 1 e (3.17)

The first inequality follows at once from Lemma and Harnack’s inequality.
For the second one we claim that if n is small enough we can find @’ € D with
0Q) = (Q) QN Q = O and dlst(Q Q) 0(Q). Indeed, if we write Q7 for
the j-th ancestor of Q (that is, the umque cube_satisfying E(QJ ) = 2%(62) and
Q C @Q7) then o(Q7) = £(Q7)* = 2¢(Q)" > o(Q) for j large enough depending
on the AR constant. Note that in the previous estimates we are implicitly using
that £(Q) < diam(8Q), fact that follows by choosing 7 small enough depending
on the AR constant. Once j has been chosen we must have @ - @j, and we can
easily pick @’ € ]D)@]- with all the desired properties. In turn by Harnack’s inequality

and Lemma one can see that w™@(Q') > w*@(Q/) > C~! with C > 1 and
consequently

W1 2(Q) = w2(00) —w, 2O\ Q) < 1—w, (@) <1-CY,

which is the desired estimate.

Proof of Lemmal[3.5 Let n = 27k < 1 be a small dyadic number to be chosen (in
particular and hold). Fix Qo € D and note that w := waO is a regular
Borel measure on 02 which is dyadically doubling with constants Cp (depending only
on dimension, the 1-sided CAD constants and the ellipticity of L) by Lemma
and Harnack’s inequality. Let 0 < g9 < e~ ! and 0 < a < £3/(2C3), sufficiently small
to be chosen later, and let F' C Qo be a Borel set such that w(F) < aw(Qo). By
Lemma applied to p = w, it follows that F' has a good eg-cover of length

k ~ 1102 a,l , with k& > 2. Let {O;}5_, be the corresponding collection of Borel sets
€o

so that ' C Op C --- C O1 C Qo and O, = UQfeH Qf, with ihspmt famlhfs
={Q!} C Dg, \ {Qo}. Now, using the notation above we define Oy := Uoter, Q!

and consider the Borel set S := U?:z ((5j,1 \ Oj). Note that the union of sets
comprising S is disjoint, hence

-

W= 15 10,1, yeo (3.18)
j=2

Now we introduce some notation. For each y € F' and 1 < £ < k, there exists a
unique Q%(y) € F; such that y € Qf(y). We also let P{(y) € DQf(y) be the unique
cube verifying y € Pf(y) and E(PZ( )) = nl(Q%(y)). Associated with Pf(y) we can
construct ]Bf( ) as above, that is, P (y) € Dpe, satisfies f(ﬁf(y)) = nl(P!(y)) and
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Tpegy) € ]Bf(y), where 2 pe, is the center of Pf(y). As usual we write X@f(y) and

Let u(X) := w(S) be so that

() O denote, respectively, the corkscrew points associated to @f (y) and ]Sf (y).

k
u(X) = /a 15l do () = gwf 351\ 0;). (3.19)

In the following lemma we obtain a lower bound for the oscillation of u.

Lemma 3.6. Ifn and g are taken sufficiently small (depending only on dimension,
the 1-sided CAD constants and the ellipticity of L), then for each y € F, and each
1 <?¢<k-—1, we have that

’u(X~f(y)) B

where ¢y is the constant in (3.17))

Assume this result momentarily and fix the corresponding n and ¢¢. Fix also
y € F,1</(<k-1,and write Q¢ := Q¥(y) € Dg,, and P := Pi(y) € Dge.
By construction XQF € Ux o7 and X3 P € Ulg_g, hence we can find Whitney cubes

QzEW~ and I3 46W~ sothat XQZG /andXﬁzEI];_z.

Also, note that €(Qf) = 0(QY) and L(P!) = n20(Q%) which imply Z(@f) >
E(PZ) > 7]36((02@) since 7 < 1. On the other hand, Qe C Qe and PZ C Pf C Qf7
which in turn yield that I'% 5t and [ *,Z are both contained in Ugye ,s. Using (3 (3-20),
the notation [u ]U rs = ]SEU , ud,X De Giorgi-Nash-Moser’s estimate and the

Q%3

> — (3.20)

previous observatlons we can obtain

< u(Xge) = lulug | + [lulug, . — u(Xp)

QZC’)

< (ﬂ u(Y) — [u] Ut | dY>1/2+ <]§[ |u(Y)—[u]UQfm3‘2dY>1/2
Ql Pf

<a (e | =ty fav) v

<C (// |Vu(Y 5(Y)1"dY) 1/2,

where the last estimate follows from the Poincaré’s inequality in [HMTI, Lemma
3.1]), and the fact that §(Y) =2, £(Qf) for every Y € Ugt y3- Summing up the above
estimate, taking into account that the sets {UQ,HB}QEDQO have bounded overlap with
constant depending on 7, and using Lemma [I.10, we obtain if « is small enough

dlosa”t _1<cz// B0y < 0,87 )

4 loge,

This completes the proof of Lemma [
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Proof of Lemmal[3.6. Fix y € F and write Q¢ := Q%(y), P/ := P{(y). Our first goal
is to estimate u(X@;). For starters, by (3.14])

~ X~ X~
u(Xg) = w0, 7 (8) < w, (09 Q1) +w, % (SN Q‘f)
<y +w “SNQY =+ L (3.21)

Forlgﬁgk—lwehavethatQfCOgCOj for each 2 < j < ¢ and hence

k k
1= 6, % (@ N 0,0 00) = Y w,% (@ (0,110)
J=2 Jj=0+1
= Z ] 1\(9 )) —f—wféf (Qfﬂ (6@\034_1)) =:1; + I, (3.22)

J=0+2

with the understanding that if £ = k& — 1 then I; = 0.
Next, we claim that Iy < Cjeg. This is clear if / = k —1 and for 1 </ < k — 2,
using Harnack’s inequality to move from X o7 to XQe (with constants depending on

n), Lemma parts (b) and (c) (recall that w = w; QO) we have that

C k
b6 Y w0 @100 S 50 3 LN ©110)
=042 v j=0+2
k k
< S QN0 ) <0y Y T <O, (329
w(Q;) =042 j=0+2

where the next-to-last estimate follows from Lemma [I.8] with y = w, and the last

one uses that g < e~ !. Let us now focus on Is. Note that QZ NO, = Q hence

(3-17) yields
L=w, " (Q;i \ Op1) Swp 7 (Q;) <1 —co.
Collecting this with (3.21)), (3.22)), (3.23)), we conclude that

u(X5

3
Qe) < C?fy + 07780 +1—cp<1- 160, (3.24)

by choosing first 7 small enough so that Cn”? < ¢y/8 and then £y small enough so
that Cpeg < co/8.
To get a lower bound for u(X@g) we use that Q¢ N Oy = Q¢ and (3.17):

_ e XLt~
u(Xge) =wp, " (8) Z w7 (Q; N (Or\ Orpr))

Xat ~, Xgt ~, Xat =,
=w; Qi \ Opy1) =wp 7 (Q7) — WL (Q NOpy1) > co — WL (Q NOpt1).
Using Harnack’s inequality to move from X gt to XQe (with constants depending on

n), Lemma parts (b) and (c) (recall that w = wj QO) we have that

Qi N O€+1)

X 50
QN0 < C wL QYN On) < O, w( o <Cpeo, (325
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where the last estimate follows from Lemma [I.8 with 4 = w and since 1 < ¢ < k—1.
Assuming further that Cypeg < cg/4 we arrive at

3
U(X > co — Cn50 > ZCO. (3.26)

a)
Let us now focus on estimating u(X 5,
Case 1: PN @f = (). Much as before by (3.14)

) and we consider two cases:

Xpe

Xpe ’ Xpe ‘
w(Xpe) =wp " (S) Swp (O F) +wp T(SNF)

X ~
<On +w, (SN P = Oy +1. (3.27)

For1gﬁgk—lwehavethatPfCQfCOgCOjforeach2§j§€andhence

k kX,
=30, Y (PN (000 0)) = 3w (P01, 0))
j=2 j=0+1
b Xpe ~ Xpe ~ ~
= > w, (PIN(0;20\0) +w, " (PIN(Op\ Opp1)) =11 + 1o, (3.28)
j=0+2

with the understanding that if £ = k — 1 then Tl = 0. The estimate for Tl (when
¢ < k—2) follows from that of Iy since using Harnack’s inequality to move from X3,

to X gt and the fact that Pf C Qf we easily obtain from ((3.23)

~ k Xae
L<C Y w P (QIN(0;1\0)) = Cly < Ceo. (3.29)
j=t+2

On the other hand note that Pé (6g \ Op11) = (PN @f) \ Op+1 = O and hence

Ig = 0. Thus -, and (3.29) yield
1
U(Xﬁlz) <Cn" + Chep < 100; (3.30)

by choosing first 1 small enough so that Cn? < ¢p/8 and then ey small enough so
that Cpeg < ¢o/8. This estimate along with (3.26) give at once

1 1

—Co = 5Co
4 Y

3
|“(Xc§f)_u(Xﬁf)| :u(Xéf)—u(Xﬁg) > —cp— 5

i 4
which is the desired estimate.

Case 2: Pe N Qvg # (). Notice that since both cubes have the same sidelength it
follows that P = QZ Our goal is to get a lower bound for u(Xgz,). We use that

Pfﬂ@g:QfﬁOZZ i:Pfand -

w(Xpe) =wp "(S) > w, " (PN (Or\ Opp1)) =wp " (P Oppr)

¢ Xpt Xpe
=wp "(B) —wp (PN O0p1) 21— Cn? —wp * (PN Opya).
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Moreover, using Harnack’s inequality to move from Xz, to X, o (with constants
depending on 7) and (3.25)) we observe that

X0 ¢~ XQ( ~
w, T (PYNOpy) =w, " (QEN Opy) < Cowy “H(QF N Opyy) < Creo.

Collecting the obtained estimates we conclude that

1
w(Xpe) >1—-Cn’ —Cpeg > 1 — 150 (3.31)

Q¢

if we choose first n small enough so that Cn? < ¢y/8 and then gy small enough
so that Cpeg < cp/8. If we now gather (3.24) and (3.31) we eventually obtain the
desired estimate

(3

(X g0) —u(Xp)| = u(Xpy) — u(Xgy) > (1 - ico) - (1 - ico> . éco.

This completes the proof. [

3.1.2 Proof of A,, — CME

We begin with a preliminary result showing that the desired Carleson measure esti-
mate can be obtained as a consequence of the fact that a certain sequence of
coefficients indexed on @ € D(0) generates a discrete Carleson measure. This is
inspired in the work of [HMM] and is stated precisely in the lemma below.

Lemma 3.7. Let Q C R" be a I-sided CAD and let Lu = —div(AVu) be a
real (not necessarily symmetric) elliptic operator. Let u € T/Vli)’f(Q) N L>(Q) satisfy
Lu = 0 in the weak sense in 2 and define

o = {ag}gen = //U Vu(X)?5(X) dX | (3.32)

QeD’

Suppose that there exist Co, My > 1 such that [[malleq) < Co||u|]2oo(m for every
Q € D(0Q) verifying £(Q) < diam(9Q)/My. Then,

1
sup n// [Vu(X)|?6(X) dX < C(1+ Co+ Mo)[[ulfe(q),  (3-33)
055 %% T Banng

where C depends only on dimension, the 1-sided CAD constants, and the ellipticity
of L.

Proof. By homogeneity we may assume that [|ul|pe(q) = 1. First, we claim that
1
sup // |Vu(X)|?6(X) dX < Co+ Mo. (3.34)
Qen(on) o(Q) /1,
Given Qo € D(012) such that £(Qp) < diam(92)/My, we have that

// TuX)PIX)dX < Y ag = ma(Day) < [Imallein (@) < Cor(Qo)-
Qo QeDg,
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Otherwise, if £(Qo) > diam(09€2)/My (this happens only if diam(9Q) < oo), there
exists a unique kg > 1 so that
2k071diam(8(2)
My

diam(092)

</ ko
<U(Qo) < My

As observed before if diam(9Q) < oo then £(Qg) < diam(9Q) hence 2F0 < My,
Define the disjoint collection Dy := {Q" € Dg, : Q') = 27¢(Qo)} and let

DEE = {Q € Dg, : £(Q) <277(Qo)}, Dg§ ={Q € Dg, : £(Q) >2%¢(Qy)}.
Note that

// IVu(X)[?5(X)dX < Z ag + Z ag =:1g, +1g,.
T,

QGDsmall QeDblg
Qo

Note that if Q € ]DDSQHSZ‘H, there exists a unique @’ € Dy such that @ € D¢y, hence

=2, Y. ag= Y maDg)< > [malleno(@Q) < Coo(Qo).

Q'€Dy QEDQ/ Q'€Dy Q'€Dy

where we have used our hypothesis since £(Q) = 27%4(Qy) < diam(09)/My. For
the second term, since 6(X) ~ £(Q) for X € Ug, we write

o, < Y. 4@ // IVu(X)]?dX < Z 0Q //U X))?dx

QeDblg blg

< 2M0(Qo) M TH, | £ Moo (Qo),

where we have used Caccioppoli’s inequality, the fact that the family {UQ}QGD has
bounded overlap, the normalization ||ul| ) = 1, (1.6), the AR property, and that
2k0 < My. Gathering the above we have proved that ( - ) holds.
Our next goal is to see that (3.34) yields (3.33). Fix then z € 9Q and 0 < r < co.
Set
I={IeW:InB(z,r)# D}.

Given I € Z, let Zr € I N B(z,r) and note that by
diam(I) < dist(1,09) < |Z; — x| < - (3.35)
Set
7omall — (7 e 7:4(I) < diam(9Q)/4},  I® ={I € T:¢(I) > diam(9Q)/4},

with the understanding that ZP® = @ if diam(99) = co. Then,

// \vu| fdX < Y //yvu| §dX + ) //|Vu!25dX_I+II

Iez'small Ierlg

here we understand that IT = 0 if ZPi8 = @.
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To estimate I we set rg = min{r, diam(9€)/4} and pick ks € Z so that 2¥2~1 <
ro < 2k2. Set
D1 ={QeD:{Q)=2" QnA(z,3r) # 0}
Given I € 75" we pick y € 99 so that dist(1,9) = dist(,y). Hence there exists

a unique Q7 € D so that y € Qr and £(Q) = ¢(I) < 1o < diam(02)/4 by (3.35]).
This as mentioned above implies that I € W) . On the other hand by (3.35)

ly — | < dist(y, I) + diam(I) + |Z; — z| < 3r,

hence there exists a unique Q € D; so that y € Q. Since £(Qr) < 19 < 2¥2 = £(Q)
we conclude that Q7 C @ and consequently I C int(Ug,) C Tg. In short we have
shown that if I € 752! then there exists Q € D; so that I C Tg. Thus,

1< Z //TQ|VU|25dX§(CO+M0) Z U(Q):(CO+M0)U< U Q>

QED1 QGDl
< (Co + Mo)o(A(z,Cr)) < (Co + Mo)r™,

where we have used that the Whitney boxes have non-overlapping interiors, ,
the fact that Dy is a pairwise disjoint family, that Uerl Q C A(xz,Cr) (C depends
on dimension and AR), and that 02 is AR.

We now estimate II using , Caccioppoli’s inequality and our assumption

lull oo (@) = 1

ns Y E(I)//|Vu|2dX,§ 3 e(z)—l/ luf2 dX
I I*

Ierig IEIbig

<SS unrs Y 2T e o) = 2F).

TcIbig dian:l(ﬂﬂ) §2k<7‘

To estimate the last term we observe that if Y € I € ZP® we have by (1.4)
Y — 2| < diam([) + dist(I, 02) + diam(092) < £(I).

This and the fact that Whitney boxes have non-overlapping interiors imply

#{I c Ibig . K(I) _ 2k} _ 2*k(n+1) Z |I‘
[eTbig:f(1)=2k
=27k 1 <27 M B 02 S 1.

TeTbig.f(I)=2k

Therefore,
ns Yy 2

diam (99Q2) k
— - S2F<r

Collecting the estimates for I and II we obtain the desired estimate. [
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Proof of Theorem[3.1} (b) => (a). Let u € Wéf(Q) N L*>®(€2) be so that Lu = 0
in the weak sense in €2 and our goal is to prove that holds. By homogeneity
we may assume, without loss of generality, that ||u[|zq) = 1. On the other hand,
by Lemma we can reduce matters to establish that ||mq|lcg) < Co, for every
Q € D(0R) such that £(Q) < diam(99)/M, and where « is given in (3.32)). To show
this we fix My > 2kg/c, where ¢ is the corkscrew constant and kg as in (1.6). We
also fix a cube Q¥ € D(9N) with £(Q") < diam(92)/My. Applying Lem it
suffices to show that for every Qo € Dgo we can find some pairwise disjoint family

Fqo CDg, \ {Qo} satisfying

o(@\ U @)= K@), (3.36)
QJE]:QO
and prove that
ma(D]‘—QO,QO) < Myo(Qo)- (3.37)

With all the previous reductions our main goal is to find Fg, so that
holds and establish (3.37)). Having these in mind we let By, := B(zq,,rqg,) with
rQ, ~ £(Qo) as in . Let Xo := Xwmpag, be the corkscrew point relative to
MyAg, (note that Morg, < Mol(Qo) < diam(0f2)). By our choice of My, it is clear
that Qo C MyAg, and also that 6(Xo) > cMorg, > 2korg,. Hence, by ,

Xo € Q\ BY,. (3.38)

On the other hand, §(Xg,) = £(Qo), §(Xo) = Mol(Qo) > ¢(Qo), and | X¢ — Xg,| S
Myl(Qp). Using Lemma and Harnack’s inequality, there exists Cy > 1 depend-
ing on the 1-sided CAD constants, the ellipticity of L, and on My (which is already
fixed), such that w;°(Qo) > C; .

Next, we define the normalized elliptic measure and Green function as

wo = CO O'(Qo)wi(o, and go() = C() O'(Qo)GL(Xo, ) (339)
Note the fact that wfo (092) <1 implies
wo(Qo)
1< < ().
= 0(Q) ~

Recall that we have assumed that wy, € Ax(0€2) and, as observed above, this means
after passing to the previous renormalization that wy < o and we write kg = dwy/do
for the Radon-Nikodym derivative. Since Q9 C MyAg,, using (1.45) we have that

(]é o)’ 20 e,

In particular, for any Borel set F' C (Jg, using Holder’s inequality we obtain

< (f 1rt o) " (£, rotwasts) R o 2B

Hence we can apply Lemma to i = wg, and extract a pairwise disjoint family
Foo = {Qj} C Do, \ {Qo} verifying (3:36), as well as

1 _wo(Q)
2= 5(Q)

< KogKj, VQ e ID)J:QQ?QO’ (3.40)
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with Ky = (4K0)1/9 Ky = maX{C(), CQ} and 6 = 1/q’

We next observe that if I € W, with Q € Dx, ¢, then 2Bg C By, (see (L.6)
Hence, using Harnack’s mequahty7 parts (a) and (b) of Lemma_, 3.40) and the
AR property we have

Go(X1) _ Go(X1) _ wo(Ag)
aey 6(Xr) o(Q)
where X7 is the center of I.

At this point, we are looking for M; independent of @y and Q° such that ([3.37)
holds. Recalling (3.32)) we note that

~ 1, (3.41)

ma(DfQO,QO):QEDFQ . //UQIVU )26(X) dX
%QGDZQ I rvneorae dX<//fQ VPG X, (42)

where we have used Harnack’s inequality, , and the bounded overlap of the
family {Ug}qep.

As in Section [I.I] for every N > 1 we can consider the pairwise disjoint collection
Fn = Fg,(27V€(Qo)) which is the family of maximal cubes of the collection Fo,
augmented by adding all of the cubes Q € Dg, such that ¢(Q) < 27V¢(Qp). In
particular, @ € Dy g, if and only if @ € Dx, ¢, and {(Q) > 27N0(Qo). Clearly,
Dry.qo C Dr,,.q, if N < N, and therefore Qr, g, C QF,,.Q, C Qr,,.Qo- This and
the monotone convergence theorem give that

? = lim u 2 . .
//w%,@o [Vl X)Go(X)dX = Jim, //QFN’QO Vu(X)]*Go(X)dX.  (3.43)

We now formulate an auxiliary result that will lead us to the desired estimate.

Proposition 3.8. Given C1 > 1, one can find C such that if Fy C Dg,, N € N, is
a family of pairwise disjoint dyadic cubes satisfying

ot < ?(g) <C and Q) > 27N(Qy), VQ €Dry g,  (3.44)

then
// |Vu(X)|?Go(X) dX < Co(Qo). (3.45)
27n.Qo
Here, C' depends only on dimension, the 1-sided CAD constants, and the ellipticity
of L.
Assuming this result momentarily, (3.40)) and the construction of Fy give (3.44]).

Next, we combine (3.42)), (3.43]) and (3-45) to conclude (3.37)). This completes the

proof of (b)) = (a) Theorem modulo obtaining the just stated proposition. m

Proof of Proposition[3.8 We introduce an adapted cut-off function which can be
obtained from a straightforward modification of [HMTI, Lemma 4.44] by simply
replacing A by 2\ (recall that A appearing in Section can be chosen arbitrarily
small).
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Lemma 3.9. There exists ¥ € C°(R"™Y) such that
(a) ]_Q}-N’QO S \IJN < 1Q}N7QO'

(b) supxeq [VUN(X)|0(X) S 1.

(c) Set
Wh:=|J W5  Wy={IeWy:ITeW\ Wy, 0INdJ+0}.
QeD]:NvQO
Then

VN =0 in U A and Z (D" < o(Qo),
IEWN\WE 1ews

with implicit constants depending only on the allowable parameters but uniform
m N.

Taking then ¥y as above, Leibniz’s rule leads us to

AVu - VuGo U% = AVu - V(uGo %) — 3AV(u® T%) - V Go
+ 2AV(TR) - VGou? — $AV(u?) - V(TR) Go.  (3.46)

Note that u Gy U3, € W01’2(Q§_i"N7QO) since (V% is a compact subset of (2 (indeed
by construction disti)?N’QD, 09) 2 27N0(Qo)), u € W'l(l)’f(Q)ﬂLOO(Q), Go € I/VéCQ(Q\
{Xo}), OF , C Tk C 3By, (cf. (1.6)), and (3:38). Moreover, since u € W;;2(Q)
it follows that u € Wllof(ﬂ) C WLQ(Q?NQO). All these and the fact that Lu = 0 in
the weak sense in () easily give

// AVu - V(uGoP%)dX = // AVu - V(uGoP%)dX = 0. (3.47)
@ ;"*Non

On the other hand, much as before u? ¥%; € WOlQ(Q?N,QO)' Also, Lemma

(see in particular ([1.40])) gives at once that Gy € WLQ(Q?N 0,) and LGy =0 in the
weak sense in Q\ {Xp}. Thus, we easily obtain

// AV(202) - VGo dX — // ATVG - V2 U%)dX = 0. (3.48)
Q * %

FnN-Qo

Using ellipticity, (3.46)), (3.47), (3.48)), the fact that ||u[[z~(q) = 1, and Lemma
3.9, we have

// |vu12g0xp?vdxg//Avu-vugoxp?vdx
Q Q

S// (|V90|+\vu|go) IVOUN[dX = 1. (3.49)
Q
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To estimate I we use Lemma [3.9, Caccioppoli’s and Harnack’s inequalities, and the
fact that [[u||fe(q) = 1:

IS <//M\V§o!dx+// |Vl QodX) > U Go(Xy),

IeWZ Iewy
(3.50)

where X7 is the center of I. Note that for every I € Wx there is Q € Dz, ¢, such
that I € Wp). Hence we can use (3.41)) to obtain

IS Y D™ 'G(X) S Y. )" S a(Qo) (3.51)

Iewy Tews

Plugging this into (3.49) we get the desired estimate and the proof is complete. =

3.2 Proof of Theorems 3.2 and [3.3

We will prove Theorems [3.2] and [3.3] by showmg that all bounded weak solutions
satisfy the Carleson measure estimate , in which case Theorem 3.1 - will give the
A properties. Before that we need some integration by parts equality.

n+1

Lemma 3.10. Let D = (d; 7.7)2] 1

matriz and set

€ L™(Q) N Lip;y.(Q) be an antisymmetric real

n+1

dive D(X) = (div (d.j(X)) < jcpsy = <Zadd . Xeq,

>1§j§n+1

(3.52)
which is the vector formed by taking the divergence operator acting on the columns
of D. Then,

/QD(X)Vu( V(X //dch Vu(X)v(X)dX,  (3.53)

for every u € Wﬁ)cz(Q) and every v € WL2(Q) such that K = supp(v) C Q is
compact.

Proof. We first consider the case on which u,v € C2°(€Q2). Using Leibniz’s rule and
the fact that D is antisymmetric we have that

n+1ln+1 n+1n+1
div(DVu) = Zzadmﬁu—{—ZZdl]@@u—dlch V.
i=1 j=1 i=1 j=1

Using this we integrate by parts to obtain

//DVU‘VvdX:—// div(DVu)vdX:—// dive D - VuvdX.
Q Q Q

To obtain the general case let u € I/VI})CQ(Q) and v € WH2(Q) such that K =
supp(v) C £ is compact. It is standard to see, using for instance the Whitney
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covering, that we can find @i € C2°(Q2) so that = 1in K. Write K* = supp(Px)
which is a compact subset of {2 and define

U:={X € Q:dist(X, K*) < dist(K*, 0Q)/2}

which satisfies dist(U, Q) > dist(K*,9)/2 > 0, hence U it is also a compact subset
of Q. Since u € WI})CQ(Q) we clearly have that u®x € W01’2(U) and hence we can
find {u;}; C C=°(U) so that u; — u®g in WH2(U). Also, since v € WH2(Q) verifies
K = supp(v) C Q it is also easy to see that v € Wol’2(U) and hence we can find
{v;}; € C°(U) so that v; — v in WH2(U). Notice that extending the u;’s and v;’s
as 0 outside of U one sees that {u;};,{v;}; C C°(Q). Thus, we can use and
for every j

// DVUj . ij dX = — // diVC D- Vuj vy dX. (3.54)

Note that using that supp(v;),supp(v) C U and that ®x =1 in K C U we have

| // DVu - VvdX — // DVu; - Vo; dX |

- ‘/ DV (udk) - VodX — // DVu; - Vo, dX‘
Q Q
<Dl o) IV (@) | L2y VY = Vil 20
+ IV (u®r) — Vgl 20y V5 L21r))

and the last term converges to 0 as j — oo since D € L*°(Q)). Analogously,

‘//dich-VuvdX—//dich-VujvjdX’
Q Q
:)//dich-V(uCIDK))vdX—//dich-VujvjdX‘
Q Q

<N VD|| oo 0y (IV (@@ )| 2000y 1o = 05l 12 (0)
+[[V(®k) — Vil 20 [vill 2 (0))

which also converges to j — oo since D € Lip;,.(€2). All these and (3.54) readily
gives ((3.53]). n

We are going to show that Theorems [3.2] and [3.3] follow easily from the following
more general result which is interesting on its own right:

Theorem 3.11. Let Q C R"™! n > 2, be a 1-sided CAD (cf. Definition . Let
Liu = —div(A1Vu) and Lou = —div(AoVu) be real (not necessarily symmetric)
elliptic operators (cf. Definition . Suppose that Ay — Ay = A+ D where
A, D € L*(Q) are real matrices satisfying the following conditions:
(1) Define
a(X) = sup |A(Y)], X e, (3.55)
YeB(X,0(X)/2)
where §(X) := dist(X,09), and assume that it satisfies the Carleson measure
condition

1 // a(X)?
sup dX < oo. 3.56
€002 J(B(:U> 7") N 89) B(z,r)NQ2 5(X) ( )
0<r<diam(99)
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(79) D € Lipy,.(Q2) is antisymmetric and suppose that dive D defined in (3.52) sat-
isfies the Carleson measure condition

1 // . 2
sup dive (X)dX < oco. (3.57
€90 o(B(z,7)N0Q) J/pmne ’ ( )’ (X) (3.57)
0<r<diam(92)

Then, wr, € Aso(09) if and only if wr, € Axc(0) (cf. Definition .
Assuming this result momentarily we can easily prove Theorems [3.2] and [3.3}

Proof of Theorem[3.2 For Ly and L; as in the statement of Theorem we set
A=Ay—A;and D =0. Thus it suffices to check that A and D satisfy the required
conditions in Theorem [3.11] For (i) notice that a = g(A1, Ag) (cf. (3.55) and (2.1))),
hence gives immediately - On the other hand since D = 0 we clearly
have all the conditions in (i7). With all these in hand, Theorem gives at once
the desired conclusion. ]

Proof of Theorem[3.3. Set Ag = A, Ay = AT, A=0and D=A— AT so that 4 —
Ay = A+D. As before we can easily see that A and D satisfy the required conditions
in Theorem This time (4) is tr1v1al. For (u) notice that by assumption D =
A—AT ¢ LiplOC(Q) and also that yields since agrees with -

As a result, we can invoke Theorem obtalnlng the des1red conclusion.

Besides the previous results one can easily get other interesting perturbation
results from Theorem For instance suppose that Lou = —div(4ApVu) has an
associated elliptic measure satisfying wr, € Ax(0€2). Let D be a real antisym-
metric matrix with locally Lipschitz coefficients and assume that ||Dl[ze@q) < Ao
where \g > 0 is so that A(X)&- &€ > A |€[? for all € € R*™! and a.e. X € Q. The
latter ensures that Ay = Ag + D is uniformly elliptic and hence if we assume that
dive D satisfies then Theorem gives immediately that wy, € Ax(9Q)
where Liju = —div(A;Vu). In particular, the A, property is preserved under per-
turbations by antisymmetric “sufficiently small” matrices D with locally Lipschitz
coefficients so that |V D|?§ satisfies a Carleson measure condition.

Proof of Theorem[3.11] By symmetry it suffices to assume that wr, € A (9) and
our goal is to see that wr, € Ax(02). By Theorem we only need to show
that given u € VVIIOS(Q) N L>*(Q2) with Lyuw = 0 in the weak sense in € then
holds. As before, by homogeneity we may assume without loss of generality that
lul| () = 1. We can now follow closely the proof of (b)) = (a) in Theorem

with the following changes. Here we are assuming that wr, € A (9€2) and hence

(3.39) needs to be replaced by
wo = Coo(Qo)wr’,  and  Go(-) := Coo(Qo)Gr,(Xo, "), (3.58)

where Xy := Xy, Ag, is chosen as before so that holds.

Notice that in the present situation w satisfies Lyu = 0 (as opposed to what
happened above where both u and Gy where associated with the same operator).
Other than that, and keeping in mind , all estimates — hold. Thus
it is straightforward to see that everything reduces to obtain the following analog of
Proposition
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Proposition 3.12. Given C1 > 1, one can find C such that if Fn C Dg,, N € N,
1 a family of pairwise disjoint dyadic cubes satisfying

ot < <0 and Q) >2"M(Qu), YQEDr, 0, (3.59)

then
//Q Vu(X)2Go(X) dX < Co(Qo). (3.60)
FN-Qo

Here, C depends only on dimension, the 1-sided CAD constants, the ellipticity of
Lo and Ly, and on the quantity (3.3|) in the scenario of Theorem or (3.5)) in the
scenario of Theorem [3.3,

Much as before, assuming this result momentarily, the proof of Theorem [3.11] is
complete modulo obtaining the just stated proposition. [

Proof of Proposition[3.13. Take Wy from Lemma [3.9] and write £(X) := A1(X) —
Ap(X). Then Leibniz’s rule leads us to

A1V - VuGy U3 = A1Vu - V(uGy ¥y) — 2 AoV (u? T%) - V Gy
+ 340V (W) - Vo u® — 540V (u?) - V(UR) Go — 3€ V(u?) - V(Go UR,).  (3.61)

Note that u Gy U3, € I/VO1 ’2(9}*N7Q0) since (V% is a compact subset of (2 (indeed
by construction dist(Q%, o ,0) 2 27N0(Qo)), u € VVli’CQ(Q)ﬂLOO(Q), Go € I/VI(IDCQ(Q\

{Xo}), OF ,, C T C 3By, (cf. (1.6)), and (3:38). Moreover, since u € W;;2(Q)
it follows that u € W,"2(Q) C Wl’Q(Qﬁ"MQO). All these and the fact that Liu = 0

loc
in the weak sense in (2 easily give

// AV - V(uGoW%)dX = // AV - V(uGoW%)dX = 0. (3.62)
Q = o

On the other hand, much as before u? ¥%; € W01’2(Q§"N7Q0). Also, Lemma m

(see in particular ([1.40])) gives at once that Gy € Wl’Q(Q*f*N’QO) and Lj Go = 0 in the
weak sense in Q\ {Xp}. Thus, we easily obtain

// AV (u? U%)) - VGydX = // AJVGy - V(u?¥%)dX =0. (3.63)
0 s

FN:Qo

Using ellipticity, (3.61)), (3.62), (3.63)), the fact that ||u[[z~(q) = 1, and Lemma
-9, we have

//Q|Vu]290\II?VdX§//K)A1Vu-VuQO\I/%VdX

5// (|vgo\+\vu|go) ]V\I/N|dX+’/ EV(u2) - V(G U%)dX| = 1 + 1L
Q Q
(3.64)
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Much as in (3.50) and (3.51) we can show that I < o(Qp). To estimate II note
that since £ = A} — Ag = —(A + D) it follows that

II < ’//AV go\IfN dX’ ‘/ DV (u ) V(goq/?v)dX ~ 0+ 1L,
(3.65)

For the term II; we use that A € L°°(€2) and the fact that ||u| =) =1 to obtain

11, 5// |A||Vu| |[VGo| T3 dX+/ IV (u?)] |V(P3)| Go dX =: TIT; + I1I,. (3.66)
Q Q

For III; we note that supj.. |A| < inf;«a for every I € W, since I C {Y € Q :

Y — X| < §(X)/2} for every X € I* (see (1.4)). Hence, Lemma Caccioppoli’s
and Harnack’s inequalities, (3.41]), the fact that the family {I**};ecyy has bounded

overlap, and (|1.6]) yield

Y sup|A\<// Vu|? 0% dX>;<//** |vgo|2dX)é (3.67)

I1eWn
1

(//**\Vulzqﬂ dX>;<Sup!A\ Go(X1)? (Dn_l)g
5 (oo (] 500
</Q|Vu|2go\p§vdX> (// dX>

S (/ [Vul? Go ¥y dX) 7(Qo)2,

where in the last estimate we have used (3.56) and AR along with the fact that
r(Bg,) = 2korQ, < 2k0l(Qo) < 2k diam(0€2) /Mo < diam(92) by our choice of M.

N

1eWn

N

A

l\’)\»—t

On the other hand, we observe that

1T, < / V| [V | Go Uy dX (3.68)
Q

< Vul* Go U3, dX \WNPgodX
I [/
< (/Qwu\?go \If%VdX) < > unm 190(XI)>

where we have used Lemma , the normalization ||ul| (o) = 1, Harnack’s inequal-
ity and the last estimate follows as in (3.51]).
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Let us now turn our attention to estimating IIo. Note that u? € Wlicz(ﬂ) since
u € VV;?(Q) N L>(Q); supp(Go V%) C Q% .0, Which is a compact subset of €2 since
by construction dist(Q} Qo ,0Q) 2 27 NE(QO)' and finally Gy U3 € WhH2(Q) since
1,2 e «
Go € Wioe @\ {Xo}), Q% o, C T, C %BQO (cf. (1.6)), and (3.38]). Thus we can
invoke Lemma [3.10] to see that

I, ‘ // dive D - V(u?) Go 0% dX‘ (3.69)
Q

5(/ |Vur2gow%vdX> (/ rdichr2go\P?vdX)2
Q
( / IVl Go U3 dX) o(Qo)?,

where we have used ||u| () = 1 and the last estimate is obtained as follows:

//|d1ch| GoUNdX S > Go(Xr) // |dive D|?dX

IeWn

<) // |d1ch|2dX<//* mQ|dch X)P6(X)dX < Co(Qo),

IeWn

where we have used Harnack’s inequality, , the fact that the family {I**}rcyy
has bounded overlap, , and the last estimate follows from , the fact that
r(Bg,) = 2k0rq, < 2k0l(Qo) < 2k diam(082) /Mo < diam(9S2) by our choice of Mo,
and AR.

At this point we can collect f and use Young’s inequality to conclude
that

/ |VU| 90\112 dX < Co(Qo) —|—C</ |Vu| Go \112 dX) (QO)%

_C(2+0)

< U(Q0)+/ |Vul? Gy U3 dX.
2 2 /]

The last term is finite since supp(¥ N) C Q% o, which is a compact subset of (1,

u € Wlf)’ (Q), Go € L2 (2 \ {X0}), (3-38), and (1.6). Hence we can hide it and use
Lemma [3.9 to conclude as desired that

I wuPaax < [ 1valGaviix < o).
Q_—;:N Qo Q

This completes the proof. [
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