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habéis sido ejemplo y gúıa de lo que significa ser fuerte y determinado.
Gracias por vuestro apoyo y cariño, no solo por el que me habéis dado estos
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Bea, de no haber sido por ti esta tesis no la hubiese empezado y tampoco
la hubiese terminado. Gracias por esa confianza que has tenido siempre en
mı́; me he alimentado de ella para hacer posible este trayecto. Y gracias so-
bre todo por ser inflexible, por no permitirme ser mediocre, por tu tremenda
fortaleza y por saber siempre como empujarme hacia adelante. Por ser parte
de mı́.



Contents

1 Introduction 9
1.1 Outline of the problems . . . . . . . . . . . . . . . . . . . . . 9
1.2 Ill-posedness of the problems . . . . . . . . . . . . . . . . . . 11
1.3 History of the problems . . . . . . . . . . . . . . . . . . . . . 11
1.4 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . 14

2 Preliminaries 17
2.1 Inverse scattering and the Gel’fand problem . . . . . . . . . . 17
2.2 Quadratic phase solutions . . . . . . . . . . . . . . . . . . . . 19

3 Piecewise smooth potentials 23
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.1 Piecewise W s,1-potentials . . . . . . . . . . . . . . . . 23
3.2.2 A topological property of graphs of C1 functions . . . 25
3.2.3 One-dimensional oscillatory integrals . . . . . . . . . . 26

3.3 Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Averaging procedures for potential reconstruction 43
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3 Proof of Theorem 4.1.1 . . . . . . . . . . . . . . . . . . . . . . 45
4.4 Polar averaging . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5 Uniqueness for complex conductivities 53
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2 Main steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2.1 Reduction to the Dirac equation . . . . . . . . . . . . 54
5.2.2 Solving the Dirac equation for large |λ| . . . . . . . . 55
5.2.3 Determination of the potential . . . . . . . . . . . . . 56

5.3 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.3.1 Preliminary results . . . . . . . . . . . . . . . . . . . . 57
5.3.2 Proof of Theorem 5.1.1 . . . . . . . . . . . . . . . . . 64



CONTENTS 8

6 Numerical experiments with the Bukhgeim method 67
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.2 A peek into the error . . . . . . . . . . . . . . . . . . . . . . . 68
6.3 Approximate Bukhgeim solutions . . . . . . . . . . . . . . . . 69
6.4 Convergence of the main term . . . . . . . . . . . . . . . . . . 73
6.5 Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.5.1 Mollifier average . . . . . . . . . . . . . . . . . . . . . 75
6.5.2 Polar average . . . . . . . . . . . . . . . . . . . . . . . 77
6.5.3 Examples: Mollifier vs angular . . . . . . . . . . . . . 80

6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Bibliography 87



Chapter 1

Introduction

1.1 Outline of the problems

Consider the time-independent Schrödinger equation with potential q in a
bounded domain Ω in Rn. Given a function f defined on the boundary, the
Dirichlet problem for this equation is to determine u satisfying{

∆u = qu in Ω
u|∂Ω = f.

Under certain conditions, there is a unique solution to this problem and we
can formally define the Dirichlet to Neumann (DtN) map by

Λq[f ] := ∂νu|∂Ω

where ∂ν denotes the outward normal derivative on the boundary. The
Gel’fand inverse problem consists of recovering the potential q from the DtN
map. That is, by applying Dirichlet boundary conditions and measuring the
resulting outward normal derivative, the goal is to estimate the values of q
inside Ω.

This question arises naturally in quantum scattering theory. In this
setting, the problem is to find the potential q from the knowledge of how it
distorts incoming waves. The scattered waves are solutions to

−∆u+ qu = k2u in Rn (1.1)

where k2 is the total energy of the wave. We will see how knowledge of
scattering data at fixed energy yields knowledge of the DtN map, and so
this problem can be reduced to the Gel’fand problem.

In fact this is related to an acoustic scattering problem, where the goal
is to obtain information about an object (position, density, etc.) from the
knowledge of how this object disturbs acoustic waves. In particular, letting
n(x) denote the refraction index of sound inside a medium, and taking

q(x) = k2(1− n(x))
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equation (1.1) holds for acoustic waves. Thus, the acoustic inverse scattering
problem in an inhomogeneous medium can also be reduced to the Gel’fand
problem.

Finally, the Gel’fand problem is also linked with the inverse conductivity
problem, also known as the Calderón inverse problem. Here the goal is to
estimate the electric conductivity in each point in the interior of a domain
from measurements performed on its surface. Let Ω be a bounded domain
and let γ(x) be the conductivity inside the domain. The Dirichlet problem
for the conductivity equation is to determine v satisfying{

∇ · (γ∇v) = 0 in Ω
v|∂Ω = f

given f defined on the boundary. Under certain conditions, there exists a
unique solution to this problem, and so we can formally define the DtN map
for this problem by

Λγ [v|∂Ω] := γ ∂νv|∂Ω.

The inverse conductivity problem is to recover γ from the information con-
tained in Λγ . From the physical point of view, we are measuring the currents
induced by the voltages that we place on the surface.

The inverse conductivity problem can be reduced to Gel’fand problem,
and this reduction has been extensively used for solving the former. The
relation is the following: if v satisfies

∇ · (γ∇v) = 0

then u = γ1/2v solves the Schrödinger equation

∆u = qu

where the potential is given by q = γ−1/2∆γ1/2.
Regarding real-world applications, not touched on in this thesis, differ-

ent inverse scattering models arise throughout physics in order to observe
different phenomena. Quantum scattering appears in particle physics, where
the interactions between subatomic particles are studied. Classical scatter-
ing theory also has broad applications, ranging from sonar and radar, to
medical imaging, geophysical exploration or non-destructive testing.

As for the inverse conductivity problem perhaps the most relevant ap-
plication is electrical impedance tomography (EIT), a non-invasive medical
imaging technique. Electrodes are placed on the skin of a patient with which
electric measurements are made and an image of the interior of the body can
be constructed. This technique has proven to be useful in pulmonary imag-
ing and in the detection of breast cancer, and applications in brain imaging
have also been considered (e.g. for the detection of cerebral ischemia and
haemorrhages).
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1.2 Ill-posedness of the problems

Jacques Hadamard introduced the term of well-posed to refer to a problem
that satisfied the following three conditions:

• There exists a solution to the problem.

• The solution is unique.

• The solution depends continuously on the initial data.

The inverse problems considered here are ill-posed. In particular, the condi-
tions of uniqueness of the solution and continuity with respect to the initial
data are only satisfied conditional to some a priori assumptions on the po-
tential or conductivity.

Uniqueness is one of the most studied questions in the field. That is to
say, proving that there is no more than one potential or conductivity that
give rise to each DtN map or set of scattering data. One can consider for
which class of conductivities and potentials uniqueness is guaranteed, but
the opposite question is also interesting: which potentials or conductivi-
ties cannot be fully recovered from information on the boundary (cloaking
devices).

With respect to the question of continuity, in inverse problems it is
referred to as stability. This question has also been extensively studied in
the literature. Logarithmic stability is often the best that can be hoped for.

Apart from the three conditions of well-posedness, there are a number of
further interesting questions to address. Certainly one of the most relevant
is the one of reconstruction: obtain a procedure for computing the potential
or conductivity from the data at the boundary. This question is twofold,
we can consider the task of creating a theoretical procedure for recovering
the unknown coefficient or we may focus on creating a reconstruction pro-
cedure that works in practice, that is, a numerical procedure adapted to
measurements on finitely many points and with finite precision.

Rather than a single and clear question to answer, the design and im-
plementation of numerical reconstruction schemes is a field of research in its
own right. Some of these numerical schemes are based on a theoretical re-
construction procedure, which frequently involve complex operations, such
as singular integrals or the inversion of operators, whose numerical imple-
mentation is non-trivial and requires careful analysis. Other schemes are
base on optimization techniques combined with regularization strategies.

1.3 History of the problems

The inverse boundary problem for the Schrödinger equation dates back to
1954, when it was proposed by Gel’fand in [33]. The inverse conductiv-
ity problem was considered first by Calderón in the 40’s, even though his
groundbreaking paper [22] was not published until 1980; here Calderón
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proved uniqueness for the linearized problem by determining the Fourier
transform of the conductivity. Both problems have been extensively studied
since then, we address now only a few of the most relevant results.

In [45] Kohn and Vogelius proved uniqueness for analytic conductivities
in dimension two or greater. They were able to recover the conductivity and
its derivatives on the boundary from the DtN map and uniqueness followed
from unique continuation. In [46] the same authors extended the result to
deal with piecewise analytic conductivities.

In 1987 Sylvester and Uhlmann introduced the pionering work [61] where
uniqueness for smooth conductivities and potentials is proved in dimension
three or greater. Inspired by the original work of Calderón, the authors
introduced complex geometric optics (CGO) solutions for the Schrödinger
equation; these solutions have been extensively used since then. CGO solu-
tions are paremeterized by a complex vector ζ ∈ Cn satisfying ζ · ζ = 0 and
are of the form uζ(x) = eζ·x(1 +wζ(x)) where wζ is a remainder term which
tends to zero in some sense as |ζ| grows. The power of these solutions relies
on Alessandrini’s identity; that∫

∂Ω
(Λq − Λ0)[u] v =

∫
Ω
q u v (1.2)

whenever u is a solution to the Schrödinger equation and v is a solution to
Laplace’s equation. Then given any ξ ∈ Rn there exists a sequence of CGO
solutions {ζj} such that |ζj | → ∞ and∫

∂Ω
(Λq − Λ0)[uζj ] e

ηj ·x =

∫
Ω
q eiξ·x(1 + wζj )

where ηj ∈ Cn satisfies ηj · ηj = 0 and ζj + ηj = ξ. As the remainder terms
wζj tend to zero, CGO solutions allow to determine the Fourier transform
of the potential from the DtN map. This uniqueness result was refined later
by Nachman, Sylvester and Uhlmann [52] to bounded potentials and by
Brown [18] to deal with conductivities in C1,1/2+ε. Nachman [50] (paral-
lel to a similar work by Novikov [53]) extended the uniqueness result to a
reconstruction procedure.

Also relying on the scheme introduced in [61] is the remarkable arti-
cle [36], where Haberman and Tataru proved uniqueness for Lipschitz con-
ductivities satisfying ‖∇ log γ‖L∞ < ε and for C1 conductivities in dimen-
sions three or greater. The authors introduce a new space of functions,
inspired in Bourgain spaces, and an estimate of the decay for the remainder
of the CGO solutions on average. This work has later been extended by
Habermann [35] to prove uniqueness for conductivities in W 1,d for d = 3, 4
and by Caro and Rogers [24], where unique determination for general Lips-
chitz conductivities in dimensions three or greater is proved, as conjectured
by Uhlmann [63].
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The two-dimensional case differs significantly to the higher-dimensional
one. For example, even though CGO solutions continue to be used in this
setting, a first difficulty to emulate the strategy of Sylvester and Uhlmann is
that, for an arbitrary frequency ξ, one cannot longer express it as ξ = ζ + η
with ζ · ζ = η · η = 0. The work by Nachman [51] in 1996 supposed a ma-
jor breakthrough in the inverse conductivity in the plane. In this paper, a
non-physical scattering transform is introduced. This transform can be com-
puted from the DtN map, and conductivities can be recovered from it using
the ∂-method (initially introduced in [15] by Beals and Coifman). Using
this procedure a reconstruction scheme for conductivities with two deriva-
tives in Lp with p > 1 is given. It is interesting that this scheme is designed
only for potentials of conductivity type due to the existence of the so-called
exceptional points for general potentials; these are values ζ ∈ C2 satisfying
ζ · ζ = 0 for which the scattering transform cannot be defined due to the
non-uniqueness of the CGO solutions. Brown and Uhlmann [20] extended
this work, but instead of using the standard reduction to the Schrödinger
equation, they reduced the conductivity equation to a first-order system (fol-
lowing Beals and Coifman [16]), which allowed them to prove unique deter-
mination of conductivities with one derivative (this work has been extended
further in [31, 44]). Finally, in 2006 Astala and Päivärinta [11] extended
the use of the scattering transform to solve the question of uniqueness for
bounded conductivities and gave a reconstruction procedure. Their work
rests on a reduction of the conductivity equation to a Beltrami equation
combined with the theory of quasiconformal mappings.

In 2008 Bukhgeim [21] introduced a new method relying on a family
of solutions which resemble CGO solutions but with quadratic phase. This
new method allowed him to consider general potentials (that is, potentials
which are not of conductivity type) in the two-dimensional setting, and
he proved unique determination for complex-valued C1 potentials. Blas-
ten, Imanuvilov and Yamamoto [17] relaxed the smoothness assumption
and proved unique determination for potentials in Lp with p > 2. Astala,
Faraco and Rogers [7] extended the work of Bukhgeim to a reconstruction
procedure for potentials in the plane with half a derivative in L2; they also
provide an example of a potential in H1/2−ε which cannot be recovered on
a set of positive measure using this procedure.

The study of the stability question was pionered by the work of Alessan-
drini [2] in 1988, where logarithmic stability was proved for conductivities
in Hs(Rn) with s > 2 + n/2 and n ≥ 3. More precisely, he proved

‖γ1 − γ2‖L∞(Ω) ≤ C ω
(
‖Λγ1 − Λγ2‖H1/2(∂Ω)→H−1/2(∂Ω)

)
where ω(t) ≤ | log(t)|−δ and δ depends only on n and s. This apparently
weak estimate is in fact optimal, as was proved by Mandache [48]. The paper
by Alessandrini also contains an example which shows that no L∞ stability is
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possible for discontinuous conductivities. Stefanov [59] obtained a stability
estimate for the computation of the DtN map from the scattering amplitude,
which allowed him to extend Alessandrini’s work [2] to the inverse scattering
problem with fixed energy data. In the recent paper [23] Caro, Garćıa and
Reyes lowered the smoothness requirements and obtained a stability bound
for conductivities in C1,ε building on the work [36].

In two dimensions one of the first papers considering stability is [12],
where Barceló, Barceló and Ruiz obtained a stability estimate for conduc-
tivities in C1+ε relying on the reduction to the first order system introduced
in [20]. The regularity assumption was later relaxed by Barceló, Faraco and
Ruiz [14] and by Clop, Faraco and Ruiz [25] following the scheme intro-
duced in [11]. Alessandrini and Cabib [5] provided counterexamples to L2

stabilty for the conductivity equation based on G-Convergence which were
systematically analyzed in [28] by Faraco, Kurylev and Ruiz; in [28] stabil-
ity with respect to G-convergence it is also discussed. For general potentials
in the plane, Novikov and Santacesaria [54] and Blasten, Imanuvilov and
Yamamoto [17] obtained stability estimates using the quadratic phase ap-
proach introduced in [21]. Finally, in 2018 Faraco and Prats [29], extending
the approach in [25], obtained a characterization of the sets of conductivities
in the plane, in terms of the integral moduli of continuity, for which there
exists stability in the L2 norm, as conjectured by Alessandrini in [4].

In broad terms we could say that research focused on the development
of numerical reconstruction schemes has taken two directions. On the one
hand several authors have adapted theoretical reconstruction schemes to
practice; here we can name the relevant works in two dimensions of [58]
where Siltanen, Mueller and Isaacson gave a numerical implementation of
the scheme in [51], [42, 43] where Knudsen implemented numerically the
procedure in [20], or the work by Astala, Mueller, Päivärinta, Perämäki
and Siltanen [9] where the procedure [11] is implemented numerically. The
other direction of research is the adaptation of more general numerical tech-
niques to this problem; see for example the books [26] and [40] for a general
exposition of regularization and optimization strategies in inverse problems.

For the sake of brevity we have omitted other relevant questions, such as
the study of inverse problems with partial data or more general settings, such
as anisotropic conductivities or the Schrödinger equation with a magnetic
term.

1.4 Outline of the thesis

The present thesis extends the quadratic phase approach introduced by
Bukhgeim in [21] to address the inverse problem for the Schrödinger equa-
tion in the plane. Building on this procedure we are able to consider re-
construction and stability for discontinuous complex-valued potentials, we
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prove unique determination of complex-valued Lipschitz conductivities and
we develop some new reconstruction formulas which allow to recover Hs

complex-valued potentials for any s > 0; these new formulas have also
proven to be useful from a numerical point of view. We also present nu-
merical experiments performed and discuss some conclusions derived from
them.

Chapter 2 contains some previous work on which we rely on. We de-
scribe how the Gel’fand problem and inverse scattering at fixed energy are
connected and we also describe the method of Bukhgeim to address the
former. We will also introduce some of the results of Astala, Faraco and
Rogers [7] which will be used in the following chapters.

In Chapter 3 we consider complex-valued potentials in the plane with
discontinuities along curves. We show that a variant of Bukhgeim’s recon-
struction formula, introduced by Astala, Faraco and Rogers in [7], can be
used to recover the values of the potential at almost every point inside the
domain from the DtN map. Building on this reconstruction result, we are
able to provide a logarithmic stability estimate in the L∞ norm given an
approximate knowledge of the location of the discontinuities. We also give
similar results for inverse scattering with fixed energy, where real-valued po-
tentials are reconstructed from the scattering amplitude. The results of this
chapter were published in [62].

In Chapter 4 we provide two new reconstruction formulas for the Gel’fand
problem in the plane based on the Bukhgeim approach. These new formu-
las rely on averaging procedures and are useful in two directions. On the
one hand, we are able to recover complex-valued potentials in Hs for any
s > 0; it is worth remarking that the standard approach is known to fail for
potentials in Hs with s < 1/2. On the other hand, these formulas improve
the rate of convergence over Bukhgeim’s original formula.

In Chapter 5 we prove that complex-valued Lipschitz conductivities in
the plane are uniquely determined by the DtN map. The proof relies on
the reduction of the conductivity equation to the Dirac equation introduced
by Brown and Uhlmann in [20] combined with the method of Bukhgeim.
The results of this chapter were published in a joint work with Evgeny
Lakshtanov and Boris Vainberg [47], and are presented here in more detail.

Chapter 6 contains some numerical experiments performed with the
Bukhgeim method. We study empirically the convergence of the stationary
phase approximation and relate its convergence with the propagation of
measurement error to the reconstruction. We also show how the averaging
formulas introduced in Section 5 significantly improve the convergence of
the main term to the potential in a number of different examples.





Chapter 2

Preliminaries

2.1 Inverse scattering and the Gel’fand problem

Following [6], we reduce the fixed energy inverse scattering problem with
compactly supported, real-valued potentials in Hs(R2), with s > 0, to the
Gel’fand problem.

First we introduce the inverse scattering problem at fixed energy. From
the physical point of view, we are recovering a potential from the measure-
ment of waves disturbed by the potential, where the incoming waves come
from all directions, and the disturbed waves are measured is all directions.
Let k > 0 and consider the Schrödinger equation

(∆ + k2)u = qu, in R2, (2.1)

where k2 is not a Dirichlet eigenvalue for the Hamiltonian −∆ + q. Let also

G0(x, y) := − i
4
H

(1)
0 (k |x− y|)

where H
(1)
n are the Hankel functions of the first kind. Then G0 satisfies

(∆ + k2)G0(x, y) = −δ(x− y), ∀x, y ∈ R2

as well as the outgoing Sommerfeld radiation condition

lim
|x|→∞

|x|1/2
(

∂

∂|x|
− ik

)
G0(x, y) = 0; (2.2)

see [57, Proposition 2.1]. For θ ∈ S1 we can define the outgoing scattering
solutions to (2.1) as the solutions to the Lippmann-Schwinger equation

u(x, θ) := eikx·θ −
∫
R2

G0(x, y) q(y)u(y, θ) dy.
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Then, the scattering amplitude Aq : S1 × S1 → C at energy k2 satisfies

Aq(η, θ) =

∫
R2

e−ikη·y q(y)u(y, θ) dy.

Given an incident plane wave in direction θ, the scattering amplitude mea-
sures the probability of scattering in the direction η. The inverse scattering
problem we consider is to compute q from Aq.

Now we introduce the Gel’fand problem in more detail. Let Ω ∈ R2 be a
bounded domain with Lipschitz boundary. Consider the following Dirichlet
problem for the time-independent Schrödinger equation{

∆u = qu in Ω
u|∂Ω = f.

(2.3)

Suppose that 0 is not a Dirichlet eigenvalue for the Hamiltonian −∆ + q.
Then for each f ∈ H1/2(∂Ω) there exists a unique solution u ∈ H1(Ω) to
(2.3) and the DtN map

Λq : H1/2(∂Ω)→ H−1/2(∂Ω) :=
(
H1/2(∂Ω)

)∗
can be defined via duality by

〈Λq[f ], v|∂Ω〉 =

∫
Ω
q u v +∇u · ∇v (2.4)

for any v ∈ H1(Ω). Gel’fand’s problem is to compute q from the knowledge
of Λq. With sufficient regularity, the right-hand side of (2.4) equals∫

∂Ω
v (∇u · n),

by Green’s identity, and so we see that this definition coincides with the one
given in the introduction.

In order to relate the problems previously described, let Gq be the
Green’s function that satisfies

(−∆ + q − k2)Gq(x, y) = δ(x− y), ∀x, y ∈ R2,

and the outgoing Sommerfeld radiation condition given in (2.2). Using [6,
Theorem 2.2] we can write Gq in terms of the scattering amplitude as

Gq(x, y)−G0(x, y) =
∑
n,m∈Z

(−1)n

16
in+ma(n,m)

q

× H(1)
n (k |x|)H(1)

m (k |y|) einαxeimαy
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where a
(n,m)
q are the Fourier coefficients of Aq

Aq(η, θ) =
∑
n,m∈Z

a(n,m)
q einηeimθ

and αx is the angular coordinate of x. We can now define the single layer
operator Sq : H−1/2(∂Ω)→ H1/2(∂Ω) by

Sq[f ](x) :=

∫
∂Ω
Gq(x, y)f(y) dy

which is invertible, see [39, Proposition A.1]. Then the problem of recon-
struction from the scattering amplitude can be reduced to Gel’fand’s prob-
lem using Nachman’s formula

Λq1−k2 − Λq2−k2 = S−1
q1 − S

−1
q2 ,

taking q2 = 0, see [50, Theorem 1.6].

2.2 Quadratic phase solutions

In this section we describe the fundamental aspects of Bukhgeim’s method
to attack Gel’fand’s inverse problem. We also describe the variant of the
reconstruction procedure due to Astala, Faraco and Rogers [7]; a number of
their results will be useful in Chapter 3 and Chapter 4.

In [21] Bukhgeim considered solutions to the time-independent Schrödinger
equation of the form

uλ,x := eiλψx(1 + wλ,x), ψx(z) := 1
2

(
z1 − x1 + i(z2 − x2)

)2
, (2.5)

where wλ,x tends to zero in some norm as λ tends to infinity. Given the
value of these solutions at the boundary, the following recovery formula for
smooth enough potentials holds:

lim
λ→∞

λ

π

〈
(Λq − Λ0)[uλ,x], eiλψx

〉
= q(x). (2.6)

To construct the quadratic phase solutions, we use Wirtinger derivatives

∂ = 1
2(∂1 − i∂2), ∂ = 1

2(∂1 + i∂2), where ∂j =
∂

∂xj
,

to rewrite the Schrödinger equation as

4∂∂u = qu.

Plugging-in Bukhgeim’s solutions and multiplying both sides by eiλψ, this
becomes

4eiλψ∂∂eiλψ(1 + w) = eiλφq (1 + w)
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where φ = φx is given by

φx(z) := ψx(z) + ψx(z) = (z1 − x1)2 − (z2 − x2)2.

Taking into account that ∂eiλψ = ∂eiλψ = 0, we find that

4∂eiλφ∂w = eiλφq (1 + w).

As the derivatives are local operators and we only need to satisfy the equa-
tion inside Ω, we look for solutions that satisfy

w = 1
4∂
−1
[
e−iλφ χQ ∂

−1
[
eiλφ χQ q (1 + w)

]]
where ∂

−1
and ∂−1 denote the Cauchy transforms and Q is an auxiliary

axis-parallel square containing Ω. In order to simplify notation we define
the multiplication operators

M±λ [f ] = e±iλφχQ f,

and write

Sλ1 = 1
4∂
−1 ◦M−λ ◦ ∂−1 ◦Mλ, Sλq [f ] = Sλ1 [q f ] .

For sufficiently smooth q, the operator norm of Sλq is small for large enough λ

so we can invert (I − Sλq ) using Neumann series, yielding

w = (I− Sλq )−1Sλ1 [q] . (2.7)

In order to study the behaviour of these operators we will use the homo-
geneous L2 Sobolev space, denoted by Ḣs, with norm ‖f‖Ḣs = ‖| · |sf̂‖L2 ,
where the Fourier transform of f is defined by

f̂(ξ) :=

∫
R2

f(x) e−2πix·ξ dx.

The contraction required to compute w through Neumann series in
(2.7) is obtained in three steps: first a contraction for M±λ is obtained in
Lemma 2.2.1, this leads to the contraction for Sλ1 in Lemma 2.2.2, yielding
the desired contraction for Sλq in Lemma 2.2.3.

The following lemma is a consequence of van der Corput’s lemma.

Lemma 2.2.1. [7, Lemma 2.1] Let 0 ≤ s1, s2 < 1. Then∥∥∥M±λ[f ]
∥∥∥
Ḣ−s2

≤ C λ−min{s1,s2} ‖f‖Ḣs1 , λ ≥ 1.

The following lemma was essentially proved in [7]; we present minor
modifications, suitable for the stability analysis in Section 3.4.
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Lemma 2.2.2. Let 0 < s1, s2 < 1. Then there exists a constant C such that∥∥∥Sλ1 [f ]
∥∥∥
Ḣs2
≤ C λ−τ ‖f‖Ḣs1 , λ ≥ 1,

where τ = 1− s2 + min{s1, s2}.

Proof. Using Lemma 2.2.1 twice we get∥∥∥Sλ1 ∥∥∥
Ḣs1→Ḣs2

≤
∥∥∥M−λ ◦ ∂−1 ◦Mλ

∥∥∥
Ḣs1→Ḣs2−1

≤ C λ−1+s2
∥∥∥∂−1 ◦Mλ

∥∥∥
Ḣs1→Ḣ1−s2

≤ C λ−1+s2
∥∥∥Mλ

∥∥∥
Ḣs1→Ḣ−s2

≤ C λ−τ

and the proof is concluded.

A consequence of Lemma 2.2.1 is the following decay estimate.

Lemma 2.2.3. [7, Lemma 2.3] Let 0 < s < 1. Then∥∥∥Sλq [f ]
∥∥∥
Ḣs
≤ C λ−min{2s,1−s} ‖q‖Ḣs ‖f‖Ḣs , λ ≥ 1.

We now introduce the oscillatory integral operator T λg defined by

T λg [f ](x) :=
λ

π

∫
R2

eiλφx(z)f(z) gλ,x(z) dz (2.8)

and write T λ[f ] := T λ1 [f ]. The key of the reconstruction formula (2.6) is to
use Alessandrini’s identity

λ

π

〈
(Λq − Λ0)[uλ,x], eiλψ

〉
=

∫
Ω
eiλφxq (1 + wλ,x)

= T λ[q](x) + T λw[q](x).

Then, on the one hand, the first term converges to reasonably smooth po-
tentials by the following lemma.

Lemma 2.2.4. [7, Lemma 4.2] Let q ∈ Ḣs(R2) with 1 < s < 3. Then∣∣∣T λ[q]− q
∣∣∣ ≤ Cλ 1−s

2 ‖q‖Ḣs .

On the other hand the second term tends to zero by the following lemma,
the proof of which is essentially taken from [7] with minor modifications
suitable for the stability analysis in Section 3.4.
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Lemma 2.2.5. Let F, q ∈ Ḣs(R2) where 0 < s < 1. Then there exists a
constant C such that ∣∣∣T λw[f ]

∣∣∣ ≤ Cλ−s ‖f‖Ḣs ‖q‖Ḣs

when λ is sufficiently large.

Proof. Using Lemma 2.2.1 we obtain∣∣∣T λw[F ](x)
∣∣∣ ≤ C λ ∥∥∥Mλ[F ]

∥∥∥
Ḣ−s
‖w‖Ḣs

≤ C λ1−s ‖F‖Ḣs

∥∥∥(I − Sλq )−1Sλ1 [q]
∥∥∥
Ḣs
.

As (I − Sλq )−1 is bounded for λ sufficiently large by Lemma 2.2.3,∣∣∣T λw[F ](x)
∣∣∣ ≤ Cλ1−s ‖F‖Ḣs

∥∥∥Sλ1 [q]
∥∥∥
Ḣs

≤ Cλ−s ‖F‖Ḣs ‖q‖Ḣs ,

where the last inequality comes from applying Lemma 2.2.2.

The reconstruction formula (2.6) requires the values of the Bukhgeim
solutions at the boundary. The following theorem allows to compute them
from the DtN map.

Theorem 2.2.6. [7, Theorem 1.1] Let q ∈ Hs(R2) with s > 0 and suppose
that Ω is Lipschitz. Then, for sufficiently large λ, we can identify compact
operators Γλ,x : H1/2(∂Ω)→ H1/2(∂Ω), depending only on λ, x and Λq−Λ0,
such that

uλ,x|∂Ω = (I− Γλ,x)−1
[
eiλψx |∂Ω

]
.

The operator Γλ,x is defined by

Γλ,x[f ] = TΩ

[〈
(Λq − Λ0)[f ], Gλ,x

〉]
where the Green’s function Gλ,x is given by

Gλ,x(z, η) = χQ(η)
eiλ(ψx(z)+ψx(η))

4π2

∫
Q

e−iλφx(y)

(y − η)(z − y)
dy

and where TΩ is the trace operator on ∂Ω acting on the z variable.
This procedure for the construction of the solutions at the boundary is

inspired by the one introduced by Nachman [50, 51] for linear phase solu-
tions, however, there are significant differences between the two procedures.
First of all, although uλ,x is defined for all x ∈ R2, it is not clear that they
solve the Schrödinger equation globally. On the other hand, invertibility of
the operator Γλ,x stems from the contraction for Sλq , which ultimately comes
from van der Corput’s lemma for oscillatory integrals.



Chapter 3

Piecewise smooth potentials

3.1 Introduction

In this chapter we consider the two-dimensional inverse problem for the
Schrödinger equation where the potentials are complex-valued and discon-
tinuous on curves. This work was published in [62].

In Section 3.3 we obtain a reconstruction procedure from the DtN map.
The precise statement is given in Theorem 3.3.3, where a decay rate for the
error is also given. As a corollary we obtain recovery of real-valued poten-
tials with discontinuities from the scattering amplitude. We also present
a potential for which the recovery formula fails at points away from the
discontinuities.

In Section 3.4 we give stability estimates from the DtN map and from
the scattering amplitude. Notice that in [17] or in [25] there are stability
estimates for discontinuous potentials but only in the L2 sense. A careful
analysis of the dependence of the constants in the reconstruction theorem
yields an L∞ stability estimate for discontinuous coefficients given a priori
knowledge of the discontinuities of the potential. In particular, our The-
orem 3.4.3 provides an estimate which offers better stability as the local
regularity of the potentials increases.

3.2 Preliminaries

3.2.1 Piecewise W s,1-potentials

We say that a curve C in the plane is contained in Cm,α, with m ≥ 0 and
0 ≤ α ≤ 1, if there exists a finite collection of bounded open sets {Uj}Nj=1

such that C ⊂ ∪Nj=1Uj , and functions fj ∈ Cm,α(R) such that

C ∩ Uj ⊂ {(x, fj(x)) : x ∈ R} or C ∩ Uj ⊂ {(fj(y), y) : y ∈ R}.
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When f and its derivatives up to order m are continuous and bounded,
occasionally we will describe the curve as being simply Cm.

Consider two curves C1 and C2 for which there is a finite cover by open
sets {Uj}Nj=1 such that for each j either we have

C1 ∩ Uj ⊂ {(x, f1,j(x)) : x ∈ R} and C2 ∩ Uj ⊂ {(x, f2,j(x)) : x ∈ R}

or we have

C1 ∩ Uj ⊂ {(f1,j(y), y) : y ∈ R} and C2 ∩ Uj ⊂ {(f2,j(y), y) : y ∈ R}.

Then we define the distance between the two curves in Cm,α norm as

d(C1, C2) = inf

{
sup
j

{
‖f1,j − f2,j‖Cm,α

}}
where the infimum is taken over all possible common covers. If a common
cover does not exists for the curves, we write d(C1, C2) =∞.

Definition 3.2.1. We say that q is a piecewise W s,1-potential whenever it
can be expressed as

q(x) =
N∑
j=1

qj(x)χΩj (x),

where qj ∈ W s,1(R2) and Ωj are bounded Lipschitz domains whose bound-
aries are finite unions of C2,α curves with 1/2 < α ≤ 1.

The potentials that we consider are piecewise-W s,1 with 2 ≤ s < 3, and
therefore are potentials that exhibit line discontinuities. We will use the
following norm for these potentials:

‖q‖Ds,r = inf

{
N∑
j=1

‖qj‖W s,1

(
1 +

∥∥χΩj

∥∥
Hr

)
: q(x) =

N∑
j=1

qj(x)χΩj (x)

}

where 2 ≤ s < 3, 0 < r < 1/2 and qj and Ωj are as previously described.
The following lemma provides a bound for the L2 Sobolev norm for the

potentials of our interest.

Lemma 3.2.2. Let q : R2 → C and let Ω be a bounded Lipschitz domain in
the plane. Then there exists a constant C independent of q and Ω such that

i) For 0 < r we have

‖q‖Hr ≤ C ‖q‖W r+1,1 .

ii) For 0 < r < 1/2 we have

‖q χΩ‖Hr ≤ C ‖q χΩ‖D2,r .
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Proof. Let m be the largest integer less than r, let t = r − m and let
Dt = (−∆)t/2. For the first case we can use Sobolev embedding (see for
example [1, Theorem 4.12, Part 1, Case C]) and the fact that W r+1,1 ↪→
Wm+1,1 to obtain

‖q‖Hr ≤
(
‖q‖2Hm +

∥∥Dtq
∥∥2

Hm

)1/2
≤ C

(
‖q‖2Hm +

∥∥Dtq
∥∥2

Wm+1,1

)1/2

≤ C
(
‖q‖2Hm + ‖q‖2W r+1,1

)1/2
≤ C ‖q‖W r+1,1 .

For the second case we can use the generalized Leibniz rule [41, Theorem
A.12], which states that

‖Dr(q χΩ)− q Dr(χΩ)− χΩD
r(q)‖L2 ≤ C ‖q‖L∞ ‖D

r(χΩ)‖L2 ,

and so by triangle inequality we obtain

‖q χΩ‖Hr ≤ C (‖q‖L∞ ‖χΩ‖Hr + ‖q‖Hr ‖χΩ‖L∞) . (3.1)

For the first term in the right-hand side, we can use Sobolev embedding (see
for example [1, Theorem 4.12, Part 1, Case A]) to obtain

‖q‖L∞ ≤ C ‖q‖W 2,1 .

On the other hand, we have χΩ ∈ Hr for r < 1/2; see for example [30]. For
the second term in the right-hand side of (3.1) we can use case i, combined
with the embedding W 2,1 ↪→W 1+r,1, concluding the proof.

3.2.2 A topological property of graphs of C1 functions

Now we provide a simple continuity result that will be useful for character-
izing the topological properties of the set of points where the reconstruction
is not guaranteed as well as the continuity properties of the error bound of
the reconstruction.

Lemma 3.2.3. Let f, g ∈ C1[a, b] and {xj}Nj=1 ∈ (a, b) be such that f(xj) =

0, f ′(xj) 6= 0 and f(x) 6= 0 for all x ∈ [a, b] \ {xj}Nj=1. Then, for any ε > 0,

there exists δ such that if ‖f − g‖C1 < δ then there exists {x∗j}Nj=1 ∈ (a, b)
such that

|xj − x∗j | < ε,

with g(x∗j ) = 0, g′(x∗j ) 6= 0 and g(x) 6= 0 for all x ∈ [a, b] \ {x∗j}Nj=1.

Proof. Let η = minj{|f ′(xj)|} and let r be such that |f ′(x)| > η/2 for all
x ∈ ∪Br(xj). Let

τ = inf
x∈[a,b]\∪Br(xj)

{|f(x)|}.
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Then, for all g such that

‖f − g‖C1 < 1
2 min{τ, η/2},

we have

|g(x)| > τ/2, ∀ x ∈ [a, b] \ ∪jBr(xj)

and we also have
|g′(x)| > η/4, ∀ x ∈ ∪jBr(xj).

Now, as ‖f − g‖C0 < τ/2, we know that for all x ∈ [a, b] \ ∪Br(xj) we
have f(x) g(x) > 0 (f and g have the same sign outside the balls Br(xj)),
and so, by the intermediate value theorem, g must vanish in each of the
balls Br(xj). The fact that g only vanishes at a single point x∗j in each of
the balls is a consequence of the fact that g is monotonous inside them. As
|g′(x)| > η/4 inside the balls, then, whenever

‖f − g‖C0 < ε η/4,

we have that
|xj − x∗j | < ε.

Taking δ = min{τ/2, η/4, ε η/4} concludes the proof.

3.2.3 One-dimensional oscillatory integrals

Let g : R → R ∈ Cn. We say that xs is a stationary point of g of order
m < n if g(k)(xs) = 0 for 1 ≤ k ≤ m and g(m+1)(xs) 6= 0. We say that g
has stationary points if such points exist. The following lemma describes
the behavior of a one-dimensional oscillatory integral with a C2 phase when
there are only a finite number of stationary points of order one.

Lemma 3.2.4. Let h ∈ W 1,1([a, b]) and g ∈ C2([a, b]) be such that g has
only a finite number of stationary points of order at most one. Then there
exists a constant C, independent of h and depending continuously on the C2

norm of g, such that∣∣∣∣∫ b

a
eiλg(x)h(x) dx

∣∣∣∣ ≤ C λ−1/2 ‖h‖W 1,1([a,b])

for λ > 1.

Proof. Let {sj}Nj=1 denote the stationary points and δ = minj(|g′′(sj)|).
Let ε be such that |g′′(x)| > δ/2 for all x ∈ ∪jUj , where Uj = (udj , u

u
j ) =

Bε(sj)∩ [a, b]. Then we can make use of a version of van der Corput’s lemma
(see [34, Corollary 2.6.8]), to obtain∣∣∣∣∣

∫
Uj

eiλg(x)h(x) dx

∣∣∣∣∣ ≤ 24

(
δ

2

)−1/2

λ−1/2

(∣∣h(uuj )
∣∣+

∫
Uj

∣∣h′(x)
∣∣ dx) .
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Now let Vj = (vdj , v
u
j ) denote each of the remaining segments of [a, b],

such that ∪jVj = [a, b] \ ∪jUj . Integrating by parts in each Vj we obtain

∫
Vj

eiλg(x)h(x) dx =
1

iλ

[
eiλg(x)h(x)

g′(x)

]vuj
vdj

− 1

iλ

∫
Vj

eiλg(x) d

dx

(
h(x)

g′(x)

)
dx.

By Sobolev embedding [1, Theorem 4.12, Part 1, Case A] we have that
‖h‖L∞[a,b] ≤ C ‖h‖W 1,1[a,b]. Making use of this and Hölder’s inequality,
altogether we obtain∣∣∣∣∫ b

a
eiλg(x)h(x) dx

∣∣∣∣ ≤ 48N

(
δ

2

)−1/2

λ−1/2 ‖h‖W 1,1([a,b])

+ (N + 1)κλ−1 ‖h‖W 1,1([a,b]) ,

where

κ = max
j

{
2
∥∥(g′)−1

∥∥
L∞(Vj)

+

∥∥∥∥g′ − g′′(g′)2

∥∥∥∥
L∞(Vj)

}
,

which is finite, as there are no stationary points in ∪jVj . Taking

C = 100N δ−1/2 + (N + 1)κ

the proof is done, as δ and κ depend continuously on the C2 norm of g.

3.3 Recovery

Later we will see that recovery is not guaranteed even at points that lie far
from the discontinuities of the potential. In order to bound the measure of
these points we will require the following key lemmas.

Lemma 3.3.1. Let C be a C1 curve contained in a bounded planar do-
main Ω. Then, the union of tangent lines to C with a fixed slope s has zero
Lebesgue measure in Ω.

Proof. Let C = {(x,Γ(x))}, ε > 0 and

Iε = {x : Γ(x) ∈ Ω, |Γ′(x)− s| < ε}.

As Γ ∈ C1, Iε is open, and as the real line satisfies the countable chain
condition, Iε must consist of a countable union of disjoint intervals {Uj}.
For x0, x1 ∈ Uj , x0 < x1, by the Fundamental Theorem of Calculus, we have

Γ(x1) = Γ(x0) +

∫ x1

x0

Γ′(x) dx.
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As |Γ′(x)− s| < ε in the domain of integration, then

(x1 − x0)(s− ε) < Γ(x1)− Γ(x0) < (x1 − x0)(s+ ε),

and

|Γ(x1)− Γ(x0)− s(x1 − x0)| < ε (x1 − x0). (3.2)

Now let lx0,s denote the line-segment with slope s that contains the
point (x0,Γ(x0));

lx0,s = {(x, y) ∈ Ω : y = Γ(x0) + s(x− x0))}.

We write p0 = (x0,Γ(x0)) ∈ lx0,s and p1 = (x1,Γ(x1)) ∈ lx1,s. As p0 ∈ lx0,s,
then so is p∗0 = (x1,Γ(x0) + s(x1 − x0)). By (3.2) we know that d(p∗0, p1) <
ε(x1 − x0) and so it follows that Lj =

⋃
x∈Uj lx,s is contained in a rectangle

of width bounded by ε |Uj | and length bounded by diam(Ω). Thus,∣∣∣⋃
j

Lj

∣∣∣ ≤∑
j

|Lj | <
∑
j

ε |Uj |diam(Ω) ≤ εdiam(Ω)2.

Letting ε tend to zero, the proof is complete.

Recall that φx(z) = (z1 − x1)2 − (z2 − x2)2.

Lemma 3.3.2. Let Ω be a bounded domain in the plane and let C be a curve
contained in Ω which is the graph of a C2,α function with 1/2 < α ≤ 1. Then
the set of points x ∈ Ω such that either

i) φx|C has an infinite number of stationary points,
ii) φx|C has at least one stationary point of order greater than one,

has zero Lebesgue measure and is closed.

Proof. First we see that if φx|C has an infinite number of stationary points,
it has at least one stationary point of order greater than one, and so the
first case is contained in the second. Let x be such that φx|C has an infinite
number of stationary points. Then, by the compactness of C, there exists a
sequence of stationary points {z1,i}∞i=1 and a point z1,∞ such that

lim
i→∞

z1,i = z1,∞

with
∂φx|C
∂z1

(z1,∞) = 0.

As φx|C is a C2 function and ∂φx|C
∂z1

vanishes at all the stationary points then

∂2φx|C
∂z2

1

(z1,∞) = lim
i→∞

∂φx|C
∂z1

(z1,i+1)− ∂φx|C
∂z1

(z1,i)

z1,i+1 − z1,i
= 0,
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and therefore z1,∞ is a stationary point of order greater than one.
Now we see that the set of x such that φx|C has a stationary point of

order greater than one is null. That is, the set of x such that

∂φx|C
∂z1

=
∂2φx|C
∂z2

1

= 0

has zero measure. Letting Γ ∈ C2,α be such that C = {(z1,Γ(z1))}, the
previous condition can be written as

z1 − x1 − Γ′(z1)(Γ(z1)− x2) = 1− Γ′′(z1)(Γ(z1)− x2)− Γ′(z1)2 = 0

leading to

x1 = z1 + Γ′(z1)(x2 − Γ(z1)), (3.3)

Γ′′(z1) (x2 − Γ(z1)) = Γ′(z1)2 − 1. (3.4)

First we consider the case where |Γ′′(z1)| > δ > 0. As Γ′′ is continuous
and the real line satisfies the countable chain condition, for this to be sat-
isfied z1 must lie in one of at most countably many intervals. Taking one
such interval U and rearranging (3.3) and (3.4), the set of x such that φx|C
has a stationary point of order greater than one at z1 ∈ U is given by

x = (x1, x2) = G(z1) =

(
z1 +

Γ′(z1)3 − Γ′(z1)

Γ′′(z1)
,Γ(z1) +

Γ′(z1)2 − 1

Γ′′(z1)

)
.

We see that the set of x is the image of a C0,α function. To see that such a set
has zero measure, take {Uj}2Nj=1 a covering of U such that |Uj | = |U |/N. Now
as G(Uj) is contained in a ball of radius . (|U |/N)α, we obtain |G(U)| .
|U |2αN1−2α. As α > 1/2, we can let N tend to infinity to conclude that
|G(U)| = 0. This is the only place where we require the Hölder regularity.
Now as the countable union of null sets is null, we have concluded the proof
in this case.

On the other hand, if |Γ′′(z1)| ≤ δ and x ∈ Ω, then by (3.4) it follows that
Γ′(z1)2 must be contained in the interval [1−δ∗, 1+δ∗] with δ∗ = δ diam(Ω).
Let lz1,s be the line that passes through (z1,Γ(z1)) with slope s, and let

T (δ∗) =
⋃
lz1,1/Γ′(z1), ∀ z1 : Γ′(z1)2 ∈ [1− δ∗, 1 + δ∗].

From equation (3.3) we see that the remaining set of x such that φx|C has
a stationary point of order greater than one at (z1,Γ(z1)) is contained in
T (δ∗). Using Lemma 3.3.1, we have

lim
n→∞

|T (1/n) ∩ Ω| =

∣∣∣∣∣
∞⋂
n=1

(T (1/n) ∩ Ω)

∣∣∣∣∣ = |T (0) ∩ Ω|

=

∣∣∣∣∣ ⋃
z1:Γ′(z1)=1

lz1,1 ∩ Ω

∣∣∣∣∣+

∣∣∣∣∣ ⋃
z1:Γ′(z1)=−1

lz1,−1 ∩ Ω

∣∣∣∣∣ = 0.
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Therefore, for any ε > 0 we can take δ small enough so that |T (δ∗) ∩ Ω| < ε,
allowing us to conclude that the set of points x such that φx|C has a sta-
tionary point of order greater than one is null.

To see that the set is closed, first notice that for any δ > 0, there exists
r > 0 such that for any x′ ∈ Br(x) we have

‖φx|C − φx′ |C‖C2 < δ.

Thus, applying Lemma 3.2.3 to ∂φx|C
∂z1

we see that whenever φx|C has a finite
number of stationary points of degree at most one then φx′ |C has the same
number of stationary points and of the same degree for any x′ close enough
to x. This means that the set of points x such that φx|C has a finite number
of stationary points of degree at most one is open, and the complement is
closed, concluding the proof.

Let uλ,x be the Bukhgeim solutions given in (2.5). Our reconstruction
theorem for discontinuous potentials is the following.

Theorem 3.3.3. Let Ω be a bounded Lipschitz domain in R2, let q be a
piecewise W s,1-potential, with 0 < s− 2 < 2r < 1, and let uλ,x be Bukhgeim
solutions to ∆u = q u. Then, for almost every x ∈ Ω, there exists a constant
Cx = C(x,∪∂Ωj) such that∣∣∣∣λπ

∫
∂Ω
eiλψ (Λq − Λ0) [uλ,x]− q(x)

∣∣∣∣ ≤ Cx λ1−s/2
(
‖q‖Ds,r + ‖q‖2Ds,r

)
whenever λ is sufficiently large. Moreover, if s = 2 then we have

lim
λ→∞

λ

π

∫
∂Ω
eiλψ (Λq − Λ0) [uλ,x] = q(x), a.e. x ∈ Ω.

Proof. As the DtN is a self-adjoint operator and eiλψx satisfies the Laplace
equation, then we can use the DtN map definition (2.4) to see that

λ

π

∫
∂Ω
eiλψx (Λq − Λ0) [u] =

λ

π

∫
Ω
eiλφx q (1 + w).

Recalling that 0 ≤ s− 2 < 2r < 1, by Lemma 2.2.5 we have

sup
x∈Ω

∣∣∣∣λπ
∫

Ω
eiλφx q w

∣∣∣∣ ≤ C λ−r ‖q‖2Hr , as λ→∞,

and by part ii of Lemma 3.2.2 this yields

sup
x∈Ω

∣∣∣∣λπ
∫

Ω
eiλφx q w

∣∣∣∣ ≤ C λ1−s/2 ‖q‖2Ds,r , as λ→∞. (3.5)

Now, by Lemma 3.3.2 we know that for almost every x in Ω, φx|∪∂Ωj

has only a finite number of stationary points of order at most one. We
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now prove that the reconstruction formula recovers the potential correctly
at these points for piecewise W s,1-potentials, s > 2 (almost all of them for
W 2,1-potentials). First we split the integral

λ

π

∫
Ω
eiλφx q =

λ

π

N∑
j=1

∫
Ωj

eiλφx qj , (3.6)

where we write φ for φx from now on. We will prove that the value of each of
these integrals tends to zero sufficiently fast whenever the integration domain
does not contain x, the point at which we are reconstructing. Then we show
that the value of the integral that contains x converges to q(x). Without
loss of generality, we can suppose that x belongs to the interior of Ω1. For
j > 1, we use Green’s first identity, with u = eiλφ

iλ and ∇v =
qj ∇φ
||∇φ||2 , to

obtain∫
Ωj

eiλφ qj =
1

iλ

∫
∂Ωj

eiλφ
qj ∇φ
‖∇φ‖2

· n− 1

iλ

∫
Ωj

eiλφ∇ ·
(
qj ∇φ
‖∇φ‖2

)
.

Using Green’s first identity again on the second term with u = eiλφ

iλ and

∇v = ∇ ·
(
qj ∇φ
||∇φ||2

)
∇φ
||∇φ||2 leads to

λ

π

∫
Ωj

eiλφ qj =
1

iπ

∫
∂Ωj

eiλφ
qj ∇φ
‖∇φ‖2

· n

+
1

πλ

∫
∂Ωj

eiλφ∇ ·
(
qj ∇φ
‖∇φ‖2

)
∇φ
‖∇φ‖2

· n (3.7)

− 1

πλ

∫
Ωj

eiλφ∇ ·
(
∇ ·
(
qj ∇φ
‖∇φ‖2

)
∇φ
‖∇φ‖2

)
.

As the number of stationary points on ∂Ωj is finite and are of order at
most one, and by trace theorem we know that qj |∂Ωj ∈ W 1,1(∂Ωj) (see for
example [27, Section 5.5, Theorem 1]), then we can use Lemma 3.2.4 on
each of the C2 components of ∂Ωj , together with Hölder’s inequality, to see
that there exists C ′x = C(x, ∂Ωj) such that∣∣∣∣∣
∫
∂Ωj

eiλφ
qj∇φ
‖∇φ‖2

· n

∣∣∣∣∣ ≤ C ′x λ−1/2

∥∥∥∥∇φ · n‖∇φ‖2

∥∥∥∥
W 1,∞(∂Ωj)

‖qj‖W 1,1(∂Ωj)
, (3.8)

as λ → ∞. As x belongs to the interior of Ω1, we have that ‖∇φ‖−2 is
bounded, and using the trace theorem this yields to∣∣∣ ∫

∂Ωj

eiλφ
qj ∇φ
‖∇φ‖2

· n
∣∣∣ ≤ Cx λ−1/2 ‖q‖Ds,r , as λ→∞. (3.9)
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For the second term on the right-hand side of (3.7) we can use Hölder’s
inequality to obtain∣∣∣∣∣

∫
∂Ωj

eiλφ∇ ·
(
qj ∇φ
‖∇φ‖2

)
∇φ
‖∇φ‖2

· n

∣∣∣∣∣
≤
∥∥∥∥∇ · qj ∇φ‖∇φ‖2

∥∥∥∥
L1(∂Ωj)

∥∥∥∥∇φ · n‖∇φ‖2

∥∥∥∥
L∞(∂Ωj)

≤

(
‖φ‖Ẇ 1,∞(∂Ωj)

∥∥∥‖∇φ‖−2
∥∥∥
L∞(∂Ωj)

+

∥∥∥∥∇ · ∇φ‖∇φ‖2

∥∥∥∥
L∞(∂Ωj)

)

×
∥∥∥∥∇φ · n‖∇φ‖2

∥∥∥∥
L∞(∂Ωj)

‖qj‖W 1,1(∂Ωj)
,

and by the trace theorem we get∣∣∣∣∣
∫
∂Ωj

eiλφ∇ ·
(
qj ∇φ
‖∇φ‖2

)
∇φ
‖∇φ‖2

· n

∣∣∣∣∣ ≤ Cx ‖q‖Ds,r . (3.10)

Similarly, for the last term on the right-hand side of (3.7) we have∣∣∣∣∣
∫

Ωj

eiλφ∇ ·
(
∇ ·
(
qj ∇φ
‖∇φ‖2

)
∇φ
‖∇φ‖2

)∣∣∣∣∣
≤
∥∥∥∥∇ · qj∇φ‖∇φ‖2

∥∥∥∥
Ẇ 1,1(Ωj)

‖φ‖Ẇ 1,∞(Ωj)

∥∥∥‖∇φ‖−2
∥∥∥
L∞(Ωj)

+

∥∥∥∥∇ · qj∇φ‖∇φ‖2

∥∥∥∥
L1(Ωj)

∥∥∥∥∇ · ∇φ‖∇φ‖2

∥∥∥∥
L∞(Ωj)

≤

(
‖φ‖W 2,∞(Ωj)

∥∥∥‖∇φ‖−2
∥∥∥
W 1,∞(Ωj)

+

∥∥∥∥∇ · ∇φ‖∇φ‖2

∥∥∥∥
Ẇ 1,∞(Ωj)

)
× ‖φ‖Ẇ 1,∞(Ωj)

∥∥∥‖∇φ‖−2
∥∥∥
L∞(Ωj)

‖qj‖W 2,1(Ωj)

+

(
‖φ‖Ẇ 1,∞(Ωj)

∥∥∥‖∇φ‖−2
∥∥∥
L∞(Ωj)

+

∥∥∥∥∇ · ∇φ‖∇φ‖2

∥∥∥∥
L∞(Ωj)

)

×
∥∥∥∥∇ · ∇φ‖∇φ‖2

∥∥∥∥
L∞(Ωj)

‖qj‖W 1,1(Ωj)

≤

(
‖φ‖W 2,∞(Ωj)

∥∥∥‖∇φ‖−2
∥∥∥
W 1,∞(Ωj)

+

∥∥∥∥∇ · ∇φ‖∇φ‖2

∥∥∥∥
W 1,∞(Ωj)

)2

× ‖qj‖W 2,1(Ωj)
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yielding ∣∣∣∣∣
∫

Ωj

eiλφ∇ ·
(
∇ ·
(
qj ∇φ
‖∇φ‖2

)
∇φ
‖∇φ‖2

)∣∣∣∣∣ ≤ Cx ‖q‖Ds,r . (3.11)

Plugging (3.9), (3.10) and (3.11) into (3.7) we obtain∣∣∣∣∣λπ
∫

Ωj

eiλφ qj

∣∣∣∣∣ ≤ Cx λ−1/2 ‖q‖Ds,r as λ→∞. (3.12)

We now consider
∫

Ω1
eiλφq1 by decomposing q1 into

qx = q1χ, qrem = q1(1− χ),

where χ(z) is a bump function such that

χ(z) =

{
1 if ‖z − x‖ ≤ r1,
0 if ‖z − x‖ ≥ r2,

with 0 < r1 < r2 < d(x, ∂Ω1). As qrem(y) = 0 for y close enough to x, we
can use the same arguments that lead to (3.12) to obtain∣∣∣∣λπ

∫
Ω1

eiλφ qrem

∣∣∣∣ ≤ Cx λ−1/2 ‖qrem‖W 2,1 , as λ→∞. (3.13)

On the other hand, as q1 ∈ W 2,1(Ω1), we can use Sobolev embedding (see
for example [1, Theorem 4.12, Part 1, Case C]) to see that qx ∈ H1

0 (Ω1).
Now, as was noted in [7], λ

π

∫
Ω1
eiλφ qx can be interpreted as the solution to

a nonelliptic time dependent Schrödinger equation at time 1/λ. Thus, using
the almost everywhere convergence result of [56, Theorem 1] we obtain

lim
λ→∞

λ

π

∫
Ω1

eiλφ qx = qx(x) = q1(x) = q(x) a.e. x ∈ R2. (3.14)

If q1 ∈W s,1 with s > 2, then we can recover at all the remaining points and
we get a decay rate. Indeed, using Lemma 2.2.4 we have∣∣∣∣λπ

∫
Ω1

eiλφ qx − qx(x)

∣∣∣∣ ≤ C λ1−s/2 ‖qx‖Ḣs−1 , as λ→∞

and using part i of Lemma 3.2.2 yields∣∣∣∣λπ
∫

Ω1

eiλφ qx − qx(x)

∣∣∣∣ ≤ C λ1−s/2 ‖qx‖W s,1 , as λ→∞. (3.15)

Plugging (3.12), (3.13), (3.14), and (3.15) into (3.6), together with (3.5)
concludes the proof.
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Remark 3.3.4. As noted in [7], λ
π

∫
Ω e

iλφ q can be interpreted as the so-
lution to a nonelliptic time-dependent Schrödinger equation at time 1/λ.
Therefore equations (3.12), (3.13), (3.14), and (3.15) imply almost every-
where convergence to the initial data q, whenever q is piecewise-W s,1 with
2 ≤ s < 3.

A consequence of Theorem 3.3.3 is that potentials of this type can also
be recovered from the scattering data at a fixed energy when these are real-
valued.

Corollary 3.3.5. Let q be a real-valued piecewise W 2,1-potential. Then q
can be recovered almost everywhere from the scattering amplitude at a fixed
energy k2.

Proof. Let Q be a square such that ∪Nj=1Ωj ⊂ Q. Using the expressions in
Section 2.1 we can compute Λq−k2 defined on ∂Q from the scattering am-
plitude at energy k2. Therefore, the recovery from the scattering amplitude
follows directly from the fact that if q is piecewise W 2,1-potential, then so
is q − k2χQ, which allows us to recover the potential using Theorem 3.3.3
together with Theorem 2.2.6.

For the stability estimates of the sequel we will require some continuity
properties of the constant in Theorem 3.3.3 which we record as a lemma.

Lemma 3.3.6. Let N be the set of x such that φx|∪∂Ωj has a stationary
point of degree greater that one. Then the constant Cx = C(x,∪∂Ωj) in
Theorem 3.3.3 has the following continuity properties in Ω \ N :

i) It is continuous with respect to x.
ii) It is continuous with respect to ∪∂Ωj in the C2 norm.

Proof. Let N, Ωj and r1 be as in the proof of Theorem 3.3.3. Let Ω∗j = Ωj

for j = 2, ..., N and let
Ω∗1 = Ω1 \Br1(x).

The constant Cx is given by

Cx =

N∑
j=1

C ′x

∥∥∥∥∇φ · n‖∇φ‖2

∥∥∥∥
W 1,∞(∂Ω∗j )

+

∥∥∥∥∇φ · n‖∇φ‖2

∥∥∥∥
L∞(∂Ω∗j )

×

(
‖φ‖Ẇ 1,∞(∂Ω∗j )

∥∥∥‖∇φ‖−2
∥∥∥
L∞(∂Ω∗j )

+

∥∥∥∥∇ · ∇φ‖∇φ‖2

∥∥∥∥
L∞(∂Ω∗j )

)

+

(
‖φ‖W 2,∞(Ω∗j )

∥∥∥‖∇φ‖−2
∥∥∥
W 1,∞(Ω∗j )

+

∥∥∥∥∇ · ∇φ‖∇φ‖2

∥∥∥∥
W 1,∞(Ω∗j )

)2

.

The constant C ′x appears in equation (3.8) by the use of Lemma 3.2.4 (taking

g = φ|∂Ωj and h =
qj∇φ·n
‖∇φ‖2

∣∣
∂Ωj

), so it is continuous with respect to x and
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with respect to ∪∂Ωj in the C2 norm, and as ∇φ does not vanish inside any
of the Ω∗j , then so is Cx, concluding the proof.

As is to be expected, the error in the reconstruction increases the closer
we move to the discontinuities of the potential, as the constant Cx blows up,
and we are unable to recover at the discontinuities. It is perhaps more inter-
esting that, for certain potentials, there are points where the reconstruction
fails which are far from the discontinuities of the potential.

Indeed, consider the potential given by q = χΩ1 , where Ω1 is the rhom-
bus with vertices at (0, 0), (1, 1), (2, 0) and (1,−1); see Figure 3.1. Consider
the problem of recovering the potential inside Ω = [−2, 2] × [−2, 2]. We
might expect to be able to recover at the points x = (−t,−t), for t ∈ (0, 2),
far from the potential. However, by Alessandrini’s identity [2, Lemma 1],
we know that the reconstructed potential q̃ at x is the limit as λ tends to
infinity of

λ

π

∫
∂Ω
eiλψx (Λq − Λ0) [uλ,x] =

λ

π

∫
Ω
eiλφx q (1 + wλ,x),

which can be rewritten as

λ

π

(∫
Ω
eiλφx q wλ,x +

∫
Ω\Ω1

eiλφx q +

∫
Ω1

eiλφx q

)
.

For the first term we can use Lemma 2.2.5 and part ii of Lemma 3.2.2 to
obtain ∣∣∣∣λπ

∫
Ω
eiλφx q wλ,x

∣∣∣∣ ≤ C λ−r ‖q‖2D2,r , as λ→∞,

for any 0 < r < 1/2. As the potential is equal to 1 inside Ω1 and zero in the
rest of the domain, this yields

q̃(x) = lim
λ→∞

λ

π

∫
Ω1

eiλφx .

Using Green’s first identity twice we get

λ

π

∫
Ω1

eiλφx =
1

iπ

∫
∂Ω1

eiλφx
∇φx
‖∇φx‖2

· n

+
1

πλ

∫
∂Ω1

eiλφx ∇ ·
(
∇φx
‖∇φx‖2

)
∇φx
‖∇φx‖2

· n

− 1

πλ

∫
Ω1

eiλφx ∇ ·
(
∇ ·
(
∇φx
‖∇φx‖2

)
∇φx
‖∇φx‖2

)
.
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As we have seen in the proof of Theorem 3.3.3, the second and third terms
converge to zero as λ tends to infinity, and for the first term we can write∫

∂Ω1

eiλφx
∇φx
‖∇φx‖2

· n =

∫
l1

eiλφx
∇φx
‖∇φx‖2

· n1 +

∫
l2

eiλφx
∇φx
‖∇φx‖2

· n2

+

∫
l3

eiλφx
∇φx
‖∇φx‖2

· n3 +

∫
l4

eiλφx
∇φx
‖∇φx‖2

· n4

where

l1 = (s, s) for s ∈ (0, 1),

l2 = (1 + s, 1− s) for s ∈ (0, 1),

l3 = (2− s,−s) for s ∈ (0, 1),

l4 = (1− s, s− 1) for s ∈ (0, 1).

As we have φx(z) = (z1 + t)2 − (z2 + t)2, we see that

φx|l1(s) = 0,

φx|l2(s) = 4 s (t+ 1),

φx|l3(s) = 4 (t− s+ 1),

φx|l4(s) = 4 t (1− s).

Therefore, we can apply Lemma 3.2.4 to three of the sides;∫
lj

eiλφx
∇φx
‖∇φx‖2

· nj = O(λ−1/2), for j = 2, 3, 4,

and on the remaining side we have∫
l1

eiλφx
∇φx
‖∇φx‖2

· n1 =

∫ 1

0

−
√

2

4(s+ t)
ds =

√
2

4
(log(t)− log(t+ 1)) .

Putting everything together we obtain

q̃(x) =

√
2i

4π
log(1 + 1/t) 6= 0.

3.4 Stability

We begin with some preliminary results that we will require for the proof of
the stability estimates. The operator T λg is defined in (2.8).

Lemma 3.4.1. Let q1, q2 ∈ Hs(R2), where 0 < 2s ≤ 1 and let F ∈ L2(R2).
Then there exists a constant C such that

sup
x∈Ω

∣∣∣T λw1w2
[F ](x)

∣∣∣ ≤ C λ−2s ‖F‖L2 ‖q1‖Ḣs ‖q2‖Ḣs

when λ is sufficiently large.
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Figure 3.1: Solid lines are the discontinuities of the potential and dashed lines
are points far from the discontinuities where the recovery fails.

Proof. By the Hölder and Hardy–Littlewood–Sobolev inequalities,∣∣∣T λw1w2
[F ](x)

∣∣∣ ≤ λ ‖F w1w2‖L1

≤ λ ‖F‖L2 ‖w1‖L4 ‖w2‖L4

≤ C λ ‖F‖L2 ‖w1‖Ḣ1/2 ‖w2‖Ḣ1/2 .

As (I − Sλq )−1 is bounded for large λ (see Lemma 2.2.3), this yields∣∣∣T λw1w2
[F ](x)

∣∣∣ ≤ C λ ‖F‖L2

∥∥∥Sλ1 [q1]
∥∥∥
Ḣ1/2

∥∥∥Sλ1 [q2]
∥∥∥
Ḣ1/2

.

Applying Lemma 2.2.2 twice concludes the proof.

We will also require the following crude bound for Bukhgeim solutions.

Lemma 3.4.2. Let 0 < r < 1/2, and let q be a piecewise W 2,1-potential
defined on a bounded planar domain Ω with diameter d. Then there exists
a constant C depending on Ω such that the Bukhgeim solutions satisfy

‖uλ,x‖H1(Ω) ≤ C e
λd2
(

1 + ‖q‖2D2,r

)
whenever λ is sufficiently large.

Proof. Writing u = uλ,x,

‖u‖H1(Ω) ≤ C
(
‖u‖L2(Ω) + ‖∂zu‖L2(Ω) + ‖∂zu‖L2(Ω)

)
= C

∥∥∥eiλψ(1 + w)
∥∥∥
L2(Ω)

+ C
∥∥∥∂−1

z q eiλψ(1 + w)
∥∥∥
L2(Ω)

+ C
∥∥∥∂−1

z q eiλψ(1 + w)
∥∥∥
L2(Ω)

.
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Note that ∂−1
z and ∂−1

z are bounded operators, as q has compact support
(see for example [8, Theorem 4.3.12]). As we have ‖·‖L2(Ω) ≤ C ‖·‖L4(Ω),
then using Hölder’s inequality leads to

‖u‖H1(Ω) ≤ C
∥∥∥eiλψ∥∥∥

L∞(Ω)
(1 + ‖q‖L4) ‖1 + w‖L4(Ω)

≤ C eλd2 (1 + ‖q‖L4)
(
1 + ‖w‖L4(Ω)

)
,

and by the Hardy-Littlewood-Sobolev inequality we get

‖u‖H1(Ω) ≤ C e
λd2 (1 + ‖q‖L4)

(
1 + ‖w‖Ḣ1/2

)
.

As (I − Sλq )−1 is bounded for λ sufficiently large (Lemma 2.2.3)

‖u‖H1(Ω) ≤ C e
λd2 (1 + ‖q‖L4)

(
1 +

∥∥∥Sλ1 [q]
∥∥∥
Ḣ1/2

)
.

Now, by Lemma 2.2.2 we get

‖u‖H1(Ω) ≤ C e
λd2 (1 + ‖q‖L4)

(
1 + ‖q‖Ḣr

)
.

Using Sobolev embedding (see for example [1, Theorem 4.12]) we have

‖q‖L4 ≤ C
N∑
j=1

‖qj‖L4 ≤ ‖q‖D2,r .

Using part ii of Lemma 3.2.2 Lemma concludes the proof.

We now prove a conditional stability estimate for reconstruction from
the DtN map in the L∞ norm. Note that the result is interesting when
there is a priori knowledge of where, approximately, the discontinuities lie,
as the constant term depends on the point under consideration with respect
to the discontinuities. The result has been stated in the following form
as in practical situations one could consider where a potential might lie,
given a noisy reconstruction of it. If the assumption that the discontinuities
of the potentials are closed to each other was dropped, the constant Cx
would depend on both {∂Ω1,j} and {∂Ω2,j}, the discontinuities of q1 and q2

respectively.

Theorem 3.4.3. Let 0 < s − 2 < 2r < 1 and let q1, q2 be piecewise W s,1-
potentials supported on a bounded Lipschitz domain Ω in R2 such that their
discontinuities are close enough with respect to the C2 norm. Then, for
almost every x ∈ Ω, there exists a constant Cx = C(x,∪∂Ω1,j) such that

|q1(x)− q2(x)| ≤ Cx
∣∣ ln ‖Λq1 − Λq2‖

∣∣1−s/2(κ+ κ3)

whenever Λq1 and Λq2 are close enough, where κ = max{‖q1‖Ds,r , ‖q2‖Ds,r}.
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Proof. Let d be the diameter of Ω and let

λ = − 1

6d2
ln ‖Λq1 − Λq2‖ . (3.16)

Note that whenever Λq1 and Λq2 are sufficiently close, then λ can be as large
as we need.

By the triangle inequality,

|q1(x)− q2(x)| ≤
∣∣∣q1(x)− T λ1+w1

[q1](x)
∣∣∣+
∣∣∣q2(x)− T λ1+w2

[q2](x)
∣∣∣ (3.17)

+
∣∣∣T λ1+w1

[q1](x)− T λ1+w2
[q2](x)

∣∣∣ .
We can use Theorem 3.3.3 on the first two terms to obtain∣∣∣qj(x)− T λ1+wj [qj ](x)

∣∣∣ ≤ Cx λ1−s/2(κ+ κ2) (3.18)

where Cx = C(x,∪∂Ω1,j). We can take the same constant Cx for both terms
as it is continuous with respect to the discontinuities in the C2 norm (due
to Lemma 3.3.6). For the last term we have∣∣∣T λ1+w1

[q1]− T λ1+w2
[q2]
∣∣∣ ≤ ∣∣∣T λ(1+w1)(1+w2)[q1 − q2]

∣∣∣+
∣∣∣T λw1

[q2]
∣∣∣

+
∣∣∣T λw2

[q1]
∣∣∣+
∣∣∣T λw1w2

[q1 − q2]
∣∣∣ .

By Lemma 2.2.5 and part ii of Lemma 3.2.2 we obtain∥∥∥T λw2
[q1]
∥∥∥
L∞
≤ C λ1−s/2κ2 and

∥∥∥T λw1
[q2]
∥∥∥
L∞
≤ C λ1−s/2 κ2 (3.19)

and by Lemma 3.4.1 and part ii) of Lemma 3.2.2 we obtain∥∥∥T λw1w2
[q1 − q2]

∥∥∥
L∞
≤ C λ1−s/2 κ3. (3.20)

Let uj be Bukhgeim solutions to ∆uj = qj uj . Then we have∥∥∥T λ(1+w1)(1+w2)[q1 − q2]
∥∥∥
L∞

=
λ

π

∥∥∥∥∫
Ω

(q1 − q2)u1 u2

∥∥∥∥
L∞

=
λ

π

∥∥∥∥∫
∂Ω
f1 Λq2 [f2]− f2 Λq1 [f1]

∥∥∥∥
L∞

,

where fj = uj |∂Ω. As the DtN is a self-adjoint operator, we have that

λ

π

∥∥∥∥∫
∂Ω
f1 Λq2 [f2]− f2 Λq1 [f1]

∥∥∥∥
L∞

=
λ

π

∥∥∥∥∫
∂Ω

(Λq1 − Λq2) [f1] f2

∥∥∥∥
L∞

.
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For f ∈ H1/2(∂Ω) the DtN map satisfies Λq[f ] ∈ H−1/2(∂Ω), where the
space H−1/2(∂Ω) is the dual of H1/2(∂Ω). Thus, for any x ∈ Ω, we have

λ

π

∣∣∣∣∫
∂Ω

(Λq1 − Λq2) [f1] f2

∣∣∣∣ ≤ λ ‖Λq1 − Λq2‖ ‖f1‖H1/2(∂Ω) ‖f2‖H1/2(∂Ω)

≤ λ ‖Λq1 − Λq2‖ ‖u1‖H1(Ω) ‖u2‖H1(Ω)

and we can use Lemma 3.4.2 to obtain

λ

π

∣∣∣∣∫
∂Ω

(Λq1 − Λq2) [f1] f2

∣∣∣∣ ≤ C λe2λd2 ‖Λq1 − Λq2‖
(
1 + κ4

)
. (3.21)

Inserting (3.18), (3.19), (3.20) and (3.21) into (3.17), and noting that we
have λ < eλd for large λ, leads to

|q1(x)− q2(x)| ≤ Cx λ1−s/2 (κ+ κ3) + C ‖Λq1 − Λq2‖ e3λd2(1 + κ4).

Taking λ as in (3.16) we obtain

|q1(x)− q2(x)| ≤ Cx
(
−1

6d2
ln ‖Λq1 − Λq2‖

)1−s/2
(1 + κ3)

+ C ‖Λq1 − Λq2‖
1/2 (1 + κ4)

where the second term can be omitted for ‖Λq1 − Λq2‖ small enough, con-
cluding the proof.

To obtain the stability estimate from the scattering amplitude we adapt
the proof of Stefanov (see [59]) to the two-dimensional case. Due to the se-
vere ill-posedness of the problem, a norm for the scattering amplitude which
penalizes the higher components of the frequency spectrum is required. Let q
be a potential supported on the unit disk, then we define the norm for its
scattering amplitude at a fixed energy k2 as

‖Aq‖2k =
∑
n,m∈Z

(
3 + 3 |n|

k

)2|n|(3 + 3 |m|
k

)2|m| ∣∣∣a(n,m)
q

∣∣∣2,
where a

(n,m)
q are the Fourier coefficients of Aq

Aq(η, θ) =
∑
n,m∈Z

a(n,m)
q einη+imθ.

Before passing to the proof, we recall the definition of the single layer po-
tential operator

Sq[f ](x) =

∫
∂Ω
Gq(x, y)f(y)dy,

where Gq is the Green’s function that satisfies

(−∆ + q − k2)Gq(x, y) = δ(x− y), ∀x, y ∈ R2,

and the outgoing Sommerfeld radiation condition given in equation (2.2).
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Lemma 3.4.4. Let q1, q2 ∈ L∞(R2) be two real-valued potentials supported
in the unit disk. Then there exists a constant Ck = C(k) such that

‖Λq1 − Λq2‖H1/2(S1)→H−1/2(S1) ≤ Ck ‖Aq1 −Aq2‖k .

Proof. Using Nachman’s formula [50, Theorem 1.6] we have

Λq1−k2 − Λq2−k2 = S−1
q1 − S

−1
q2

= S−1
q1 (Sq2 − Sq1)S−1

q2 .

As Sq is a bounded and invertible mapping from H−1/2(S1) to H1/2(S1) (see
[39, Proposition A.1]), we have∥∥Λq1−k2 − Λq2−k2

∥∥
H1/2(S1)→H−1/2(S1)

≤ C ‖Sq1 − Sq2‖H−1/2(S1)→H1/2(S1) .

Letting Bx = (1−∆x)1/4 we write

‖Sq1 − Sq2‖H−1/2(S1)→H1/2(S1)

= sup
‖f‖=1

∥∥∥∥∫
S1

(Gq1(x, y)−Gq2(x, y))f(y) dy

∥∥∥∥
H1/2(S1)

= sup
‖f‖=1

(∫
S1

(
Bx

∫
S1

(Gq1(x, y)−Gq2(x, y))f(y) dy

)2

dx

)1/2

= sup
‖f‖=1

(∫
S1

(∫
S1
Bx(Gq1(x, y)−Gq2(x, y))f(y) dy

)2

dx

)1/2

by Pareseval’s identity we have

= sup
‖f‖=1

(∫
S1

(∫
S1

(ByBx(Gq1(x, y)−Gq2(x, y)))B−1
y f(y) dy

)2

dx

)1/2

using Minkowski’s integral inequality we get

≤ sup
‖f‖=1

∫
S1

(∫
S1

(
(ByBx(Gq1(x, y)−Gq2(x, y)))B−1

y f(y)
)2
dx

)1/2

dy

= sup
‖f‖=1

∫
S1

∣∣B−1
y f(y)

∣∣ (∫
S1

(ByBx(Gq1(x, y)−Gq2(x, y)))2 dx

)1/2

dy

and using the Cauchy-Schwarz inequality

≤ sup
‖f‖=1

‖f‖H−1/2(S1) ‖Gq1 −Gq2‖H1/2(S1)⊗H1/2(S1)

= ‖Gq1 −Gq2‖H1/2(S1)⊗H1/2(S1) .
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From [6, Theorem 2.2] we know that

Gq1(x, y)−Gq2(x, y) =
∑
n,m∈Z

(−1)n

16
in+m

(
a(n,m)
q1 − a(n,m)

q2

)
× H(1)

n (k |x|)H(1)
m (k |y|) einφx+imφy

where H(1) denotes the Hankel function of the first kind. Now, using Par-
seval’s identity and the bound for the Hankel function in [6, Lemma 2.3],
there exists C ′k = C(k) such that

‖Gq1 −Gq2‖
2
H1/2(S1)⊗H1/2(S1)

≤
∑
n,m∈Z

(1 + n2)1/2(1 +m2)1/2
∣∣∣a(n,m)
q1 − a(n,m)

2

∣∣∣2 ∣∣∣H(1)
n (k)

∣∣∣2 ∣∣∣H(1)
m (k)

∣∣∣2
≤ C ′k

∑
n,m∈Z

(1 + n2)1/2(1 +m2)1/2
∣∣∣a(n,m)
q1 − a(n,m)

q2

∣∣∣2 |n|!2|m|!2(3

k

)2|n|+2|m|

≤ C ′k
∑
n,m∈Z

(
3 + 3 |n|

k

)2|n|(3 + 3 |m|
k

)2|m| ∣∣∣a(n,m)
q1 − a(n,m)

q2

∣∣∣2
concluding the proof.

Corollary 3.4.5. Let 0 < s−2 < 2r < 1 and let q1, q2 be two piecewise-W s,1

real-valued potentials supported on a bounded domain in R2 such that their
discontinuities are close enough in the C2 norm. Then, for almost every
x ∈ Ω, there exist constants Cx = C(x,∪∂Ωj), Ck = C(k), such that

|q1(x)− q2(x)| ≤ Cx
∣∣ ln (Ck ‖Aq1 −Aq2‖k) ∣∣1−s/2(κ+ κ3)

whenever Aq1 and Aq2 are close enough, where κ = max{‖q1‖Ds,r , ‖q2‖Ds,r}.



Chapter 4

Averaging procedures for
potential reconstruction

4.1 Introduction

In this chapter we will exploit the fact that the reconstruction formula in the
Bukhgeim approach commutes, in some sense, with taking averages. This
allows us to obtain a reconstruction formula for complex-valued potentials
in Hs(R2) for any s > 0, and also to obtain reconstruction formulas with
improved convergence (see Chapter 6) compared to the standard formula.

Let ϕ be a Schwartz function, supported in the unit ball, that satisfies

ϕ(x) ≥ 0 and

∫
R2

ϕ(x) dx = 1,

and we write ϕσ(x) := σ−2 ϕ(σ−1x) for σ > 0. For x ∈ Ω we denote the
boundary information at frequency λ by

BIλ(x) :=
λ

π

〈
(Λq − Λ0)[uλ,x|∂Ω], eiλψx |∂Ω

〉
where uλ,x are Bukhgeim solutions of the form (2.5). The following result
will be proved in Section 4.3.

Theorem 4.1.1. Let s > 0, let q ∈ Hs(R2) be a complex-valued potential
supported in a bounded Lipschitz domain Ω ⊂ R2 and let σ = λ−1/4. Then

lim
λ→∞

ϕσ ∗BIλ(x) = q(x) a.e. x ∈ Ω.

Together with the proof of Theorem 4.1.1, we will also give a bound for
the dimension of the set of points where the recovery fails and provide an
estimate for the decay rate of the error of the reconstruction if the potential
satisfies some stronger hypothesis.
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In Section 4.4 we present a different reconstruction formula which also
relies on an averaging procedure. In this case the averaging is taken over
rotations of the potential, and over a range of the frequencies λ. We are
able to prove a result similar to Theorem 4.1.1 for this formula, but requiring
some additional local regularity. This formula is of interest for the purpose of
the numerical implementation of a reconstruction algorithm (see Chapter 6).

4.2 Preliminaries

We introduce two lemmas for controlling the norm and the rate of conver-
gence of the mollified potential.

Lemma 4.2.1. Let q ∈ Hs(R2) with 0 < s < s′. Then

‖ϕσ ∗ q‖Ḣs′ ≤ C σs−s
′ ‖q‖Ḣs .

Proof. Given that ϕ̂σ(ξ) = ϕ̂(σξ), by Hölder’s inequality we have

‖ϕσ ∗ q‖Ḣs′ ≤ ‖q‖Ḣs sup
ξ

{
|ξ|s′−s ϕ̂(σξ)

}
= σs−s

′ ‖q‖Ḣs sup
ζ

{
|ζ|s′−s ϕ̂(ζ)

}
.

As ϕ belongs to the Schwartz space, the proof is concluded.

Lemma 4.2.2. Let q ∈ C0,α(R2). Then

‖ϕσ ∗ q − q‖L∞ ≤ σ
α |q|C0,α .

Proof. For x ∈ R2 we have

|ϕσ ∗ q(x)− q(x)| =

∣∣∣∣∣q(x)−
∫
B(x,σ)

q(y)ϕσ(x− y) dy

∣∣∣∣∣
≤
∫
B(x,σ)

|q(x)− q(y)|ϕσ(x− y) dy.

Then by Hölder’s inequality,

|ϕσ ∗ q(x)− q(x)| ≤
∫
B(x,σ)

|q(x)− q(y)|
|x− y|α

|x− y|αϕσ(x− y) dy

≤ |q|C0,α

∫
B(x,σ)

|x− y|αϕσ(x− y) dy

≤ σα |q|C0,α ,

which completes the proof.
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4.3 Proof of Theorem 4.1.1

We use dimH{E} to denote the Hausdorff dimension of E. Theorem 4.1.1
is a consequence of the following more precise statement.

Theorem 4.3.1. Let s > 0, let q ∈ Hs(R2) be a complex-valued potential
supported in a bounded Lipschitz domain Ω ⊂ R2 and let σ = λ−1/4. Then

dimH

{
x : lim

λ→∞
ϕσ ∗BIλ(x) 6= q(x)

}
≤ 2− 2s.

Proof. Let T λg as in (2.8). By Alessandrini’s identity (1.2) we have

BIλ(x) =
λ

π

∫
Ω
eiλφx(z) q(z)(1 + wλ,x(z)) dz = T λ[q](x) + T λw[q](x)

leading to

ϕσ ∗BIλ = ϕσ ∗ T λ[q] + ϕσ ∗ T λw[q].

Let qσ := ϕσ ∗ q. Using the triangle inequality we have

|ϕσ ∗BIλ − q| ≤ |ϕσ ∗ T λ[q]− qσ|+ |qσ − q|+ |ϕσ ∗ T λw[q]|. (4.1)

For the first term, we can use Fubini’s theorem to obtain

ϕσ ∗ T λ[q](x) =
λ

π

∫
R2

ϕσ(y)

∫
Ω
eiλφx−y(z) q(z) dz dy

=
λ

π

∫
R2

ϕσ(y)

∫
Ω
eiλφx(z+y) q(z) dz dy

=
λ

π

∫
R2

eiλφx(z)

∫
R2

ϕσ(y)q(z − y) dy dz

leading to

ϕσ ∗ T λ[q] = T λ[qσ].

Using Lemma 2.2.4 and Lemma 4.2.1, for s′ satisfying 1 < s′ < 3, we have∣∣∣T λ[qσ]− qσ
∣∣∣ ≤ C λ 1−s′

2 ‖qσ‖Ḣs′ ≤ C λ
1−s′
2 σs−s

′ ‖q‖Ḣs .

To deal with the third term, we note that by Lemma 2.2.5 we have that

|ϕσ ∗ T λw[q]| ≤
∥∥∥T λw[q]

∥∥∥
L∞
≤ Cλ−s ‖q‖2

Ḣs .

Plugging these estimates into (4.1), we can see that

|ϕσ ∗BIλ − q| ≤ C λ
1−s′
2 σs−s

′ ‖q‖Ḣs + C λ−s ‖q‖2
Ḣs + |qσ − q|. (4.2)
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Thus we have

|ϕσ ∗BIλ(x)− q(x)| ≤ C λ−κ(‖q‖Ḣs + ‖q‖2
Ḣs) + |qσ(x)− q(x)|

for any κ satisfying 0 < κ < min{(1 + s)/4, s}. It only remains to see that

dimH

{
x : lim

σ→0
qσ(x) 6= q(x)

}
≤ 2− 2s

which follows from, for example, [13, Lemma A.1].

Remark 4.3.2. If the potential satisfies the Hölder condition in some neigh-
borhood of the point to reconstruct, we can obtain an estimation for the decay
rate of the error term. More precisely, for x such that |q|C0,α(B(x,r)) < ∞
for some r, α > 0, we have

|ϕσ ∗BIλ(x)− q(x)| ≤ C λ−min{s,α}/4
(
‖q‖Ḣs + ‖q‖2

Ḣs + |q|C0,α(B(x,r))

)
.

This follows from using Lemma 4.2.2 to bound |qσ(x)− q(x)| in (4.2).

Corollary 4.3.3. Let s > 0 and let q ∈ Hs(R2) be a real-valued potential
with compact support. Then the potential can be recovered from the scattering
amplitude almost everywhere.

This follows from the expressions in Section 2.1 to compute Λq−k2 from
the scattering amplitude at energy k2.

4.4 Polar averaging

First we introduce some averaging operators which are used to express our
recovery formula involving polar averaging.

For f : R+ × [0, 2π)→ C we define the angular averaging operator by

Aang[f ](r, θ) :=
1

2π

∫ 2π

0
f(r, α) dα,

and the radial smoothing operator by

Srad[f ](r, θ) :=

∫ 1

0
f
(
r(1 + s)−1/2, θ

)
ds.

For λ ∈ R+ and F ∈ L1
loc(R+) we define the frequency averaging operator

Afreq[F ](λ) :=
1

λ

∫ 2λ

λ
F (t) dt.

In the following lemma, we connect the frequency averaging with the radial
smoothing operator.
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Lemma 4.4.1. Let f ∈ L1(R2). Then

Afreq

[
T (·)[f ](0)

]
(λ) = T λ

[
Srad[f ]

]
(0).

Proof. First we note that by a change of variables

Afreq[F ](λ) =
1

λ

∫ 2λ

λ
F (t) dt =

∫ 1

0
F (λ(1 + s)) ds

so that Afreq

[
T (·)[f ](0)

]
(λ) can be written as∫ 1

0
T λ(1+s)[f ](0) ds =

∫ 1

0

λ(1 + s)

π

∫
R2

eiλ(1+s)(z21−z22)f(z) dz ds.

Now, switching to polar coordinates, changing variables r = (1 + s)1/2 ρ and
applying Fubini’s theorem, we find∫ 1

0

λ(1 + s)

π

∫
R2

eiλ(1+s)(z21−z22)f(z) dz ds

=

∫ 1

0

λ(1 + s)

π

∫ ∞
0

∫ 2π

0
eiλ(1+s)ρ2 cos(2θ) f(ρ, θ) dθ ρdρ ds

=
λ

π

∫ 1

0

∫ ∞
0

∫ 2π

0
f
(
r (1 + s)−1/2, θ

)
eiλr

2 cos(2θ) dθ rdr ds

=
λ

π

∫ ∞
0

∫ 2π

0

∫ 1

0
f
(
r (1 + s)−1/2, θ

)
ds eiλr

2 cos(2θ) dθ rdr

=
λ

π

∫ ∞
0

∫ 2π

0
Srad[f ](r, θ) eiλr

2 cos(2θ) dθ rdr

= T λ
[
Srad[f ]

]
(0)

and the proof is concluded.

We use the notation Ck0 with k ∈ N to refer to the space of continuous
functions with k continuous derivatives and compact support. The follow-
ing lemma is useful to see that the angular averaging operator preserves
regularity.

Lemma 4.4.2. If f ∈ Ck0 (R2), then Aang[f ] ∈ Ck0 (R2).

Proof. For the case k = 0, note that f is uniformly continuous given that
it has compact support. Thus, for any ε > 0 there exists some δ > 0 such
that, for x, y ∈ R2 satisfying |x− y| < δ we have |f(x)− f(y)| < ε, so that

|Aang[f ](x)−Aang[f ](y)| =
∣∣∣∣ 1

2π

∫ 2π

0
f(|x|, θ)− f(|y|, θ) dθ

∣∣∣∣ < ε

whenever |x− y| < δ.
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For k > 0, as Aang[f ] is radial, the angular derivatives are zero. For the
radial derivative, we note that

∂k

∂rk
Aang[f ](r, θ) =

1

2π

∫ 2π

0

∂kf

∂rk
(r, α) dα.

Applying the previous argument to the derivatives of the function concludes
the proof.

The following lemma describes how Srad, considered here as acting on
one-dimensional functions,

Srad[f ](r) :=

∫ 1

0
f
(
r(1 + s)−1/2

)
ds,

regularizes away from the origin while at the same time it preserves regu-
larity in the whole domain.

Lemma 4.4.3. Let f ∈ L1(R+). Then
(i) Srad[f ] ∈ C0(0,∞).
(ii) If f ∈ Ck(0,∞), then Srad[f ] ∈ Ck+1(0,∞).
(iii) If f ∈ Ck[0,∞), then Srad[f ] ∈ Ck[0,∞).
(iv) If supp(f) ⊂ (a, b), then supp(Srad[f ]) ⊂ (a, b

√
2).

Proof. Let ε > 0 and write g = Srad[f ]. Then

g(t+ ε)− g(t) =

∫ 1

0
f
(
(t+ ε)(1 + s)−1/2

)
ds−

∫ 1

0
f
(
t (1 + s)−1/2

)
ds.

Changing variables in the first integral by taking

s′ =
t+ ε

t
(1 + s)−1/2 (4.3)

and in the second integral taking

s′ = (1 + s)−1/2 (4.4)

we have

g(t+ ε)− g(t) = 2

∫ 1+ ε
t

1√
2

+ ε
t
√
2

f(t s)

(
t+ ε

t

)2

s−3 ds− 2

∫ 1

1√
2

f(t s) s−3 ds

= 2

(
t+ ε

t

)2 ∫ 1+ ε
t

1
f(t s) s−3 ds− 2

∫ 1√
2

+ ε
t
√
2

1√
2

f(t s) s−3 ds

+ 2
2 t ε+ ε2

t2

∫ 1

1√
2

+ ε
t
√
2

f(t s) s−3 ds.
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Given some fixed t > 0 we have f(t s) s−3 ∈ L1((1/
√

2,∞)). By absolute
continuity with respect to the Lebesgue measure, the first two integrals are
smaller than δ for any δ > 0 by taking ε small enough. The third term
is smaller than 6 ε t−1‖f(t s) s−3‖L1((1/

√
2,∞)). Therefore we know that g is

right-continuous in (0,∞). Taking ε < t a similar change of variables yields

g(t)− g(t− ε) = 2

∫ 1

1− ε
t

f(t s) s−3 ds− 2

(
t− ε
t

)2 ∫ 1√
2

1√
2
− ε
t
√
2

f(t s) s−3 ds

+ 2

(
2tε− ε2

t2

)∫ 1− ε
t

1√
2

f(t s) s−3 ds

and by the same arguments we see that g is left-continuous in (0,∞), con-
cluding the proof of (i).

Now, differentiating under the sign of the integral we obtain

g(k)(t) =

∫ 1

0
(1 + s)−k/2 f (k)

(
t (1 + s)−1/2

)
ds

and using the same change of variables as in (4.3) and (4.4) we obtain

g(k)(t+ ε)− g(k)(t)

=
2 (t+ ε)2−k

t2−k

∫ 1+ ε
t

1√
2

+ ε
t
√
2

f (k)(t s) sk−3 ds− 2

∫ 1

√
2
f (k)(t s) sk−3 ds

=
2 (t+ ε)2−k

t2−k

∫ 1+ ε
t

1
f (k)(t s) sk−3 ds− 2

∫ 1√
2

+ ε
t
√
2

1√
2

f (k)(t s) sk−3 ds

+ 2
(t+ ε)2−k − t2−k

t2−k

∫ 1

1√
2

+ ε
t
√
2

f (k)(t s) sk−3 ds.

For t > 0 we can divide by ε and take the limit as ε tends to 0 to get

g(k+1)(t) =
2

t
f (k)(t)− 22−k/2

t
f (k)(t/

√
2) +

4− 2k

t

∫ 1

1√
2

f (k)(ts) sk−3 ds.

As the right-hand side is continuous in (0,∞), so is g(k+1), and (ii) is proved.
To prove (iii) just see that for any δ > 0 we can take ε > 0 such that

for t < ε then |f (k)(t)− f (k)(0)| < δ. Thus∣∣∣g(k)(ε)− g(k)(0)
∣∣∣ ≤ ∫ 1

0
(1 + s)−k/2

∣∣∣f (k)
(
ε (1 + s)−1/2

)
− f (k)(0)

∣∣∣ ds
<

∫ 1

0
(1 + s)−k/2 δ ds ≤ δ.

The continuity of g(k) away from zero follows from (ii).
Point (iv) is a straightforward consequence of the definition of Srad.
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Remark 4.4.4. The gain of regularity in point (ii) cannot be extended to
[0,∞). We can see this by taking f(t) = t1/2.

We now consider Bukhgeim solutions for the Schrödinger equation where
the potential has been rotated. Using these solutions, we construct a new
family of solutions uλ,x,θ for the Schrödinger equation with the original po-
tential (before taking the rotation). These new solutions depend on an
additional parameter θ ∈ [0, 2π).

More precisely, let x, z ∈ R2 and let Rx,θ(z) denote the rotation of z
around x by an angle θ, given by

Rx,θ(z) = x+

(
cos θ − sin θ
sin θ cos θ

)
(z − x).

Letting qx,θ(z) := q ◦Rx,θ(z), we consider Bukhgeim solutions

uλ,x = eiλψx(1 + wλ,x)

to the Schrödinger equation with rotated potential ∆u = qx,θ u. We write

uλ,x,θ(z) := uλ,x ◦Rx,−θ(z),

and consider the boundary information at frequency λ defined by

BIx(λ) :=
λ

2π2

∫ 2π

0

〈
(Λq − Λ0)[uλ,x,θ|∂Ω], eiλψx◦Rx,−θ |∂Ω

〉
dθ.

By the conformal invariance of the Laplacian,

∆uλ,x,θ = ∆
(
uλ,x ◦Rx,−θ

)
=
(
∆uλ,x

)
◦Rx,−θ,

we see that the uλ,x,θ solves the original Schrödinger equation ∆u = q u.
By the same rotational invariance, eiλψx◦Rx,−θ is a solution to Laplace’s
equation, and so we can still use Alessandrini’s identity (1.2) to reinterprete
the boundary information. Moreover uλ,x,θ|∂Ω can be recovered from Λq−Λ0

by a suitably rotated version of Theorem 2.2.6.

Theorem 4.4.5. Let s > 0, let q ∈ Hs(R2) be a complex-valued potential
and let Ω be a bounded Lipschitz domain in the plane. Then, for any x such
that q ∈ C2(B(x, r)) for some r > 0, we have

lim
λ→∞

A 3
freq[BIx](λ) = q(x).

Proof. Without loss of generality, we can suppose that we are recovering the
potential at the origin, and so we omit the dependence on x = 0. The first
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step is to split the reconstruction formula into a main term and a remainder
term using Alessandrini’s identity (1.2), to obtain

BIx(λ) =
λ

2π2

∫ 2π

0

〈
(Λq − Λ0)[uλ,x,θ(z)], e

iλψ◦R−θ |∂Ω

〉
dθ

=
λ

2π2

∫ 2π

0

∫
R2

q(z) eiλφ◦R−θ(z)(1 + wλ ◦R−θ(z)) dz dθ

=
λ

2π2

∫ 2π

0

∫
R2

q ◦Rθ(z) eiλφ(z)(1 + wλ(z)) dz dθ

=
1

2π

∫ 2π

0
T λ[q ◦Rθ] + T λw[q ◦Rθ] dθ.

Now, by Fubini’s theorem we see that

1

2π

∫ 2π

0
T λ[q ◦Rθ] dθ =

λ

2π2

∫
R2

eiλφ(z)

∫ 2π

0
q ◦Rθ(z) dθ dz

= T λ[V0]

where V0(z) = Aang[q](|z|). Thus, we find

A 3
freq[BIx](λ) = A 3

freq

[
T (·)[V0]

]
+A 3

freq

[
1

2π

∫ 2π

0
T (·)
w [q ◦Rθ] dθ

]
.

Now by Lemma 4.4.1, we have that

A 3
freq

[
T (·)[V0]

]
(λ) = T λ[V3], where Vj = Srad[Vj−1],

and by Lemma 2.2.5 we know that the remainder satisfies

lim
λ→∞

T λw[q ◦Rθ] = 0.

Thus we find that

lim
λ→∞

A 3
freq[BIx](λ) = lim

λ→∞
T λ[V3].

Noting that V3(0) = q(0), it remains to prove that V3 ∈ H2(R2) so that we
can conclude using Lemma 2.2.4.

To see that V3 ∈ H2(R2), recall that q ∈ Hs(R2) is compactly supported,
so that q ∈ L1(R2), which gives us∫ 1

0
|V0(ρ, θ)| ρ dρ =

∫ 1

0

∣∣∣∣ 1

2π

∫ 2π

0
q(ρ, θ) dθ

∣∣∣∣ ρ dρ
≤
∫ 1

0

∫ 2π

0
|q(ρ, θ)| dθ ρdρ <∞
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for any θ ∈ [0, 2π). By Lemma 4.4.2 we know that V0 ∈ C2(Br) so V0(ρ, α)
is bounded for ρ < r/2; therefore the one variable function V0(ρ) belongs
to L1(R+). Let ϕ ∈ C∞0 (Br) be a radial function such that ϕ(z) = 1 for
|z| < r/2. As V0 ∈ C2(Br) we can use part (iii) of Lemma 4.4.3 to obtain

Srad[ϕV0] ∈ C2
0 (R2),

part (i) of Lemma 4.4.3 to gain regularity away from zero

Srad[(1− ϕ)V0] ∈ C0
0 (R2),

and part (iv) of Lemma 4.4.3 to control the support

Srad[(1− ϕ)V0(·, α)](ρ) = 0, for ρ < r/2,

leading to

V1 ∈ C0
0 (R2) ∩ C2(Br/2)

given that V1 = Srad[ϕV0] + Srad[(1 − ϕ)V0]. Using the same arguments
(but using part (ii) of Lemma 4.4.3 to gain regularity instead of part (i)
of Lemma 4.4.3) we can see that V2 ∈ C1

0 (R2) ∩ C2(Br/4) and finally V3 ∈
C2

0 (R2) ⊂ H2(R2).



Chapter 5

Uniqueness for complex
conductivities

5.1 Introduction

In this chapter we consider the Calderón’s inverse problem in the plane. We
show that complex-valued Lipschitz conductivities are uniquely determined
by the DtN map. This is a joint work with Evgeny Lakshtanov and Boris
Vainberg and was published in [47].

In particular, the conductivities γ that we consider are of the form
γ(z) = σ(z) + i ω ε(z), where σ is the electric conductivity and ε is the
electric permittivity. In much of the literature, the frequency ω is consid-
ered negligibly small, so that γ is a real-valued function, however here we
will avoid this approximation. The Dirichlet problem for the conductivity
equation is to find u satisfying{

∇ · (γ∇u) = 0 in Ω
u|∂Ω = f

(5.1)

where Ω is a bounded Lipschitz domain in the plane and f ∈ H1/2(∂Ω).
Supposing that 0 < c < σ < c−1, there is a unique solution and the DtN
map

Λγ : H1/2(∂Ω)→ H−1/2(∂Ω) :=
(
H1/2(∂Ω)

)∗
can be defined via duality by〈

Λγ [f ], v|∂Ω

〉
:=

∫
Ω
γ∇u · ∇v

for any v ∈ H1(Ω). With sufficient regularity, this definition coincides with
that of the introduction by integration by parts.

The main aim of this chapter will be to prove the following theorem.
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Theorem 5.1.1. Let γ1, γ2 ∈ Lip(Ω) be complex-valued conductivities. Then

Λγ1 = Λγ2 ⇒ γ1 = γ2.

The result is based on a development of the Bukhgeim approach com-
bined with some arguments of Brown and Uhlmann from [20].

Remark 5.1.2. From now on we make the usual assumption that γ takes
the value one near the boundary of the domain Ω. This assumption can be
made because the conductivity can be recovered at the boundary (see [3] or
[19]) and then extended to a larger domain using the method of Whitney
such that the extended conductivity is equal to one close to the boundary of
the larger domain. See [51, Section 6] for more details or [32, Section 2] for
the case of Lipschitz conductivities.

In the following section we give a sketch of the proof, with the details
given in Section 5.3.

5.2 Main steps

5.2.1 Reduction to the Dirac equation

The following observation made in [20] plays an important role. Let u be a
solution of (5.1). Then the vector

% = γ1/2(∂u, ∂u)t

satisfies the Dirac equation (
∂ 0
0 ∂

)
% = q % (5.2)

where

q(z) =

(
0 q12(z)

q21(z) 0

)
, q12 = −1

2∂ log γ, q21 = −1
2∂ log γ. (5.3)

If q is found and the conductivity γ is known at one point z0 ∈ Ω, then γ in
Ω can be immediately found from (5.3).

From now on, we use a different form of equation (5.2); instead of Beals-
Coifmann notation % = (%1, %2)t, we rewrite the equation in Sung’s notation:
υ1 = %1, υ2 = %2. Then the vector υ = (υ1, υ2)t is a solution of the system

∂υ = Qυ (5.4)

where

Q(z) =

(
0 q12(z)

q21(z) 0

)
.
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5.2.2 Solving the Dirac equation for large |λ|

Let υ be a matrix solution of (5.4) that depends on parameter λ ∈ C and
has the following behaviour at infinity

lim
|z|→∞

υλ,x(z) e−λ(z−x)2/2 = I. (5.5)

It is worth noting that, contrary to standard practice, we consider the func-
tion υ (and other functions defined by υ) for all complex values of λ, not
just for iλ with λ > 0. This allows us to generalize the Bukhgeim method
to the case of potentials in L∞(R2). From the technical point of view, this
allows us to use the Hausdorff-Young inequality.

Problem (5.4)-(5.5) can be rewritten using a bounded function

µλ,x(z) := υλ,x(z) e−λ(z−x)2/2; (5.6)

that is to say (5.4)-(5.5) is equivalent to

∂µλ,x(z) = Q(z)µλ,x(z) e(λ(z−x)2−λ(z−x)2)/2 (5.7)

with lim|z|→∞ µ = I. Let ρλ,x be the real-valued function defined by

ρλ,x(z) = −i
(
λ(z − x)2 − λ(z − x)2

)
/2

and let Lλ be the operator defined by

Lλ[f ](z) =
1

π

∫
C

eiρλ,x(z′)

z − z′
f(z′) dz′.

Equation (5.7) can be reduced to the Lippmann-Schwinger equation

µλ,x(z) = I +
1

π

∫
C
Q(z′)

eiρλ,x(z′)

z − z′
µλ,x(z′) dz′, (5.8)

where lim|z|→∞ µ = I. The previous equation can be rewritten using Lλ as

µ = I + Lλ
[
Q+QLλ[Qµ]

]
.

In particular, for each of the components we have

µ11 = 1 + Lλ
[
q12 Lλ[q21 µ11]

]
,

µ12 = Lλ[q12] + Lλ
[
q12 Lλ[q21 µ12]

]
,

µ21 = Lλ[q21] + Lλ
[
q21 Lλ[q12 µ21]

]
,

µ22 = 1 + Lλ
[
q21 Lλ[q12 µ22]

]
.

Let M[f ] = Lλ
[
q12 Lλ[q21 f ]

]
. Then, for the component µ11 we have

(I−M)[µ11 − 1] =M[1] (5.9)



5.2 Main steps 56

and for the component µ12 we have

(I−M)
[
µ12 − Lλ[q12]

]
=M◦Lλ[q12].

Switching the roles of q12 and q21 we can obtain similar expressions for the
other elements of the matrix µ. By inverting I−M, we can obtain each of
the components of µ. We work in the following space

L∞z,x L
p
|λ|>R

consisting of bounded functions of z, x ∈ C with values in the Banach space
Lp|λ|>R, defined by

Lp|λ|>R = Lpλ(λ : |λ| > R).

The following lemmas show that M : L∞z,x L
p
|λ|>R → L∞z,x L

p
|λ|>R is a

contractive operator if R is large enough, and that M[1] and M[Lλ q12]
belong to L∞z,x L

p
|λ|>R. Thus, one can find the solution µ of (5.8) using

Neumann series to invert (I−M).

Lemma 5.2.1. Let p > 2. Then

lim
R→∞

‖M‖L∞z,x Lp|λ|>R→L∞z,x Lp|λ|>R = 0.

Lemma 5.2.2. Let p > 2. Then there exists R > 0 such that

M[1] ∈ L∞z,x L
p
|λ|>R.

Lemma 5.2.3. Let p > 2. Then there exists R > 0 such that

M◦Lλ[q12] ∈ L∞z,x L
p
|λ|>R.

Note that (5.9) together with Lemmas 5.2.1, 5.2.2 and 5.2.3 allows one to
solve the direct but not the inverse problem, since the operatorM depends
on Q. That is, for the purpose of reconstruction a different characterization
of µ, in terms of the DtN map, would be required.

5.2.3 Determination of the potential

For g a 2× 2 matrix-valued function let T λ be the operator defined by

T λ[g] =

∫
Ω
eiρλ,x Qg.

We define the (generalized) scattering data as the matrix h given by

h(λ, x) = T λ[µλ,x]. (5.10)
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By (5.7) we have h =
∫

Ω ∂µλ,x so we can use Green’s formula∫
Ω
∂f =

1

2i

∫
∂Ω
ν f

to rewrite h as

h(λ, x) =
1

2i

∫
∂Ω
ν µλ,x (5.11)

where (ν1, ν2) is the exterior normal vector to ∂Ω and ν = ν1 + iν2. Thus,
one does not need to know the potential Q in order to find h. The function
h can be evaluated if the Dirichlet data υ|∂Ω is known for the equation (5.4),
since µ|∂Ω in (5.11) can be expressed via υ|∂Ω using (5.6).

The spectral parameter iλ with real λ was used in the standard Bukhgeim
approach to recover the potential from scattering data (5.10), and the po-
tential was recovered by the limit of the scattering data as λ→∞. Instead,
in the present chapter, we have λ ∈ C, and the potential is determined by
integrating the scattering data over a large annulus in the complex λ-plane,
which we denote by

AR = {λ ∈ C : R < |λ| < 2R}.

For a matrix M , let Md denote the matrix with the entries in the main
diagonal equal to those of M and with the remaining entries equal to zero,
and let Mo denote the matrix with entries off the main diagonal equal to
those of M and with the entries in the main diagonal equal to zero.

The next lemma is useful in the proof of the theorem below. The theo-
rem indicates how Q is uniquely determined by the scattering data h.

Lemma 5.2.4. Let p > 1. Then there exists R > 0 such that

T λ[µd − I] ∈ L∞x Lp|λ|>R.

Theorem 5.2.5. Let Q be a complex-valued bounded potential. Then for
any g ∈ C∞0 (Ω) we have

1

2π2 ln 2
lim
R→∞

∫
AR

|λ|−1

∫
Ω
g(x)ho(λ, x) dx dλ =

∫
Ω
g(z)Q(z) dz.

5.3 Proofs

5.3.1 Preliminary results

Before stepping into the proofs of the previously stated results, we introduce
some auxiliary results.
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Lemma 5.3.1. Let λ, x ∈ C and let ϕ ∈ L1(C). Then

lim
|λ|→∞

∫
C
ϕ(z) eiρλ,x(z) dz = 0

uniformly in x.

Proof. Let us approximate ϕ by a sequence ϕn ∈ C∞0 in the L1 norm. For
any ε > 0 there exists N = N(ε) such that∣∣∣∣∫

C
ϕ(z) eiρλ,x(z) dz −

∫
C
ϕN (z) eiρλ,x(z) dz

∣∣∣∣ ≤ ∫
C
|ϕ(z)− ϕN (z)| dz ≤ ε.

Now, using the stationary phase method [60, Chapter VIII, Proposition 5]
there exists a constant C, independent of λ, ϕN and x, such that∣∣∣∣∫

C
ϕN (z) eiρλ,x(z) dz

∣∣∣∣ =

∣∣∣∣∫
C
ϕN (z + x) eiρλ,0(z) dz

∣∣∣∣
≤ C λ−1/2 (‖ϕN‖L∞ + ‖∇ϕN‖L1)

and the proof is concluded.

Lemma 5.3.2. Let 1 ≤ p < 2 and let R > 0. Then, for a ∈ C \ {0}, there
exists constants C = C(p,R) and δ = δ(p) > 0 such that∥∥u−1(

√
u− a)−1

∥∥
Lp(BR)

≤ C(1 + |a|−1+δ)

where BR is the ball of radius R.

Proof. The statement is obvious if |a| ≥ 1. If |a| < 1, we make the substi-
tution u = |a|2 v and ȧ = a |a|−1 to obtain∥∥u−1(

√
u− a)−1

∥∥
Lp(BR)

= |a|
4
p
−3 ∥∥v−1(

√
v − ȧ)−1

∥∥
Lp(BR′ )

with R′ = R |a|−2. We now split the domain to see∥∥v−1(
√
v − ȧ)−1

∥∥
Lp(B2)

≤ C

and ∥∥v−1(
√
v − ȧ)−1

∥∥
Lp(BR′\B2)

≤ 4
∥∥∥|v|−3/2

∥∥∥
Lp(BR′\B2)

.

Using polar coordinates we can compute the right-hand side∥∥∥|v|−3/2
∥∥∥
Lp(BR′\B2)

=

(
2π

∫ R′

2
t1−3p/2 dt

)1/p

which is bounded by a constant if p > 4/3, by C(1 + | ln |a||3/4) if p = 4/3,

and by C|a|3−
4
p if p < 4/3.
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Lemma 5.3.3. Let z, x ∈ C, p > 2 and ϕ ∈ L∞0 (C). Then there exists a
constant C, which depends only on the support of ϕ and on δ = δ(p) > 0,
such that ∥∥∥∥∥

∫
C

eiρλ,x(z1)

z − z1
ϕ(z1) dz1

∥∥∥∥∥
Lpλ(C)

≤ C ‖ϕ‖L∞
|z − x|1−δ

.

Proof. Let

f(z, λ, x) =

∫
C

eiρλ,x(z1)

z − z1
ϕ(z1) dz1.

Making a change of variables u = (z1 − x)2 in f and taking into account
that du = 4|z1 − x|2dz1 we have

f =
1

4

∑
±

∫
C

ei(λu−λu)/2

|u| (∓
√
u+ (z − x))

ϕ(x±
√
u) du.

Using the Hausdorff-Young inequality with p′ = p/(p− 1) and Lemma 5.3.2

‖f‖Lpλ ≤
1

2

∑
±

∥∥∥∥ ϕ(x±
√
u)

|u| (∓
√
u+ (z − x))

∥∥∥∥
Lp
′
u

≤ C ‖ϕ‖L∞
|z − x|1−δ

and the proof is concluded.

Proof of Lemma 5.2.1

Let gλ,x(z) ∈ L∞z,x L
p
|λ|>R and let

f(z, z2, λ, x) =

∫
Ω

eiρλ,x(z1)

z − z1
q12(z1)

e−iρλ,x(z2)

z1 − z2
q21(z2) dz1,

so that, using Fubini’s theorem, we have

M[gλ,x](z) =

∫
Ω
f(z, z2, λ, x) gλ,x(z2) dz2.

Then, from Minkowski’s integral inequality and Hölder’s inequality, we have

‖M[gλ,x](z)‖Lp|λ|>R ≤
∫

Ω
‖f(z, z2, λ, x) gλ,x(z2)‖Lp|λ|>R dz2

≤ sup
z2
‖gλ,x(z2)‖Lp|λ|>R

∫
Ω

sup
λ:|λ|>R

|f(z, z2, λ, x)| dz2.

Thus it remains to show that uniformly in z ∈ C and x ∈ Ω we have

lim
|λ|→∞

∫
Ω
|f(z, z2, λ, x)| dz2 = 0.
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Using Fubini’s theorem we can see∫
B1(0)

∫
B1(0)

1

|z1|
1

|z1 − z2|
dz1 dz2 =

∫
B1(0)

1

|z1|

∫
B1(0)

1

|z1 − z2|
dz2 dz1 <∞.

Then for each ε > 0 there exists δ = δ(ε) such that∫
Bδ(z)

|f(z, z2, λ, x)| dz2 ≤ ‖Q‖2L∞
∫
Bδ(z)

∫
Ω

1

|z − z1|
1

|z1 − z2|
dz1 dz2 < ε.

For z2 ∈ Ω \Bδ(z) we can use Lemma 5.3.1 to see that

lim
|λ|→∞

f(z, z2, λ, x) = 0 (5.12)

uniformly in x. Note that f is the Cauchy transform of g on z, given by

g(z, z2, λ, x) = eiρλ,x(z)q12(z)
e−iρλ,x(z2)

z − z2
q21(z2)

and we have g ∈ Lp
′
z with 2 < p′ < ∞ given that z2 ∈ Ω \ Bδ(z). Thus, by

[8, Theorem 4.3.13] we have

‖f‖Cαz ≤
12 p′2

p′ − 2
‖g‖

Lp
′
z
. ‖Q‖2L∞ δ−1

with α = 1−2/p′, and where the implicit constant depends only on Ω and p′.
Therefore f is equicontinuous with respect to z, and convergence in (5.12)
is also uniform with respect to this variable.

Proof of Lemma 5.2.2

Applying successively Minkowski’s integral inequality, Hölder’s inequality
and Lemma 5.3.3, we have

‖M[1]‖Lp|λ|>R ≤
∫

Ω

∥∥∥∥∥eiρλ(z1)

z − z1
q12(z1)

∫
Ω

e−iρλ(z2)

z1 − z2
q21(z2) dz2

∥∥∥∥∥
Lp|λ|>R

dz1

≤
∫

Ω

∣∣∣∣q12(z1)

z − z1

∣∣∣∣
∥∥∥∥∥
∫

Ω

e−iρλ(z2)

z1 − z2
q21(z2) dz2

∥∥∥∥∥
Lp|λ|>R

dz1

≤ C
∫

Ω

1

|z − z1||z1 − x|1−δ
dz1 <∞,

since δ > 0, and where C is a constant depending on ‖Q‖L∞ and Ω.
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Proof of Lemma 5.2.3

Let f be given by

f(z, λ, x) = π−2

∫
Ω

e−iρλ(z1)

z − z1
q21(z1)

∫
Ω

eiρλ(z2)

z1 − z2
q12(z2) dz2 dz1.

Then we have

M◦Lλ[q12](z) = π−1

∫
Ω

eiρλ(z1)

z − z1
q12(z1) f(z1, λ, x) dz1.

By Minkowski’s integral inequality and Hölder’s inequality we have

‖M ◦ Lλ[q12]‖Lp|λ|>R ≤
∫

Ω

∥∥∥∥∥eiρλ(z1)

z − z1
q12(z1) f(z1, λ, x)

∥∥∥∥∥
Lp|λ|>R

dz1

≤ ‖f‖Lp|λ|>R

∫
Ω

∣∣∣∣q12(z1)

z − z1

∣∣∣∣ dz1.

Applying successively Minkowski’s integral inequality, Hölder’s inequality
and Lemma 5.3.3, we have

‖f‖Lp|λ|>R ≤
∫

Ω

∥∥∥∥∥e−iρλ(z1)

z − z1
q21(z1)

∫
Ω

eiρλ(z2)

z1 − z2
q12(z2) dz2

∥∥∥∥∥
Lp|λ|>R

dz1

≤
∫

Ω

∣∣∣∣q21(z1)

z − z1

∣∣∣∣
∥∥∥∥∥
∫

Ω

eiρλ(z2)

z1 − z2
q12(z2) dz2

∥∥∥∥∥
Lp|λ|>R

dz1

≤ C
∫

Ω

1

|z − z1||z1 − x|1−δ
dz1 <∞,

since δ > 0, and where C is a constant depending on ‖Q‖L∞ and Ω.

Proof of Lemma 5.2.4

Note that T λ[µd − I] is a matrix with zeros on the diagonal. The entry(
T λ[µd − I]

)
21

depends only on µ11; we perform the computations for this
entry. The other entry follows from the same arguments. We start with the
relation

µ11 − 1 =M[µ11 − 1] +M[1]

and this leads us to(
T λ[µd − I]

)
21

=

∫
Ω
eiρλ,x q21M[µ11 − 1] +

∫
Ω
eiρλ,x q21M[1].
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Let f = µ11 − 1. Applying successively Fubini’s theorem, Minkowski’s
integral inequality, Holder’s inequality, and Lemma 5.3.3, we see that∥∥∥∥∫

Ω
eiρλ,x(z) q21(z)M[f ](z) dz

∥∥∥∥
Lp|λ|>R

≤ C
∫

Ω

∥∥∥∥∥
∫

Ω

eiρλ,x(z)

z − z1
q21(z) dz

∥∥∥∥∥
L2p
|λ|>R

∥∥∥∥∥
∫

Ω

e−iρλ,x(z2)

z1 − z2
q21(z2)f(z2) dz2

∥∥∥∥∥
L2p
|λ|>R

dz1

≤ C2

∫
Ω

∥∥∥∥∥
∫

Ω

eiρλ,x(z)

z − z1
q21(z) dz

∥∥∥∥∥
L2p
|λ|>R

∫
Ω

∣∣∣∣ q21(z2)

z1 − z2

∣∣∣∣ ‖f(z2)‖
L2p
|λ|>R

dz2 dz1

≤ C3‖f‖
L2p
|λ|>R

∫
Ω

1

|z1 − x|1−δ
dz1 <∞,

since δ > 0 and f ∈ L∞z,x L
2p
|λ|>R (due to (5.9) and lemmas 5.2.1 and 5.2.2),

and where C is a constant depending on ‖Q‖L∞ and Ω.
For the other term we follow similarly. Applying successively Fubini’s

theorem, Minkowski’s integral inequality, Holder’s inequality, and Lemma
5.3.3, we see that∥∥∥∥∫

Ω
eiρλ,x(z) q21(z)M[1](z) dz

∥∥∥∥
Lp|λ|>R

≤
∫

Ω

∥∥∥∥∥
∫

Ω

eiρλ,x(z)

z − z1
q21(z) dz

∫
Ω

e−iρλ,x(z2)

z1 − z2
q21(z2) dz2

∥∥∥∥∥
Lp|λ|>R

|eiρλ,x(z1)q12(z1)| dz1

≤ C
∫

Ω

∥∥∥∥∥
∫

Ω

eiρλ,x(z)

z − z1
q21(z) dz

∥∥∥∥∥
L2p
|λ|>R

∥∥∥∥∥
∫

Ω

e−iρλ,x(z2)

z1 − z2
q21(z2) dz2

∥∥∥∥∥
L2p
|λ|>R

dz1

≤ C2

∫
Ω

1

|z1 − x|1−δ
1

|z1 − x|1−δ
dz1 <∞,

since δ > 0, and where C is a constant depending on ‖Q‖L∞ and Ω.

Proof of Theorem 5.2.5

First note that

ho = T λ
[
µd
]

= T λ[I] + T λ
[
µd − I

]
so we can write∫

AR

|λ|−1

∫
Ω
g(x)ho(λ, x) dx dλ =

∫
AR

|λ|−1

∫
Ω
g(x) T λ[I] dx dλ

+

∫
AR

|λ|−1

∫
Ω
g(x) T λ

[
µd − I

]
dx dλ.
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For the main term, first note that using the stationary phase method
[60, Chapter VIII, Proposition 6] for |λ| large enough we have∫

Ω
g(x) eiρλ,x(z) dx = π |λ|−1 g(z) +O(|λ|−2)

which leads to

lim
R→∞

∫
AR

|λ|−1

∫
Ω
g(x) eiρλ,x(z) dx dλ = lim

R→∞

∫
AR

π |λ|−2 g(z) +O(|λ|−3) dλ

= 2π2 ln 2 g(z).

Then, by Fubini’s theorem and the dominated convergence theorem we have

lim
R→∞

∫
AR

|λ|−1

∫
Ω
g(x) T λ[I] dx dλ (5.13)

= lim
R→∞

∫
Ω

∫
AR

|λ|−1

∫
Ω
g(x) eiρλ,x(z)Q(z) dx dλ dz

= 2π2 ln 2

∫
Ω
g(z)Q(z) dz.

Now, for the remainder term we use Holder’s inequality∫
AR

∣∣∣|λ|−1 T λ[µd − I]
∣∣∣ dλ ≤ (∫

AR

|λ|−q dλ
)1/q

‖T λ[µd − I]‖Lp|λ|>R .

Taking 1 < p < 2 we can use Lemma 5.2.4 to see that

T λ[µd − I] ∈ L∞x Lp|λ|>R

and given that q > 2 we have

lim
R→∞

(∫
AR

|λ|−q dλ
)1/q

= 0.

Then, by Fubini’s theorem and the dominated convergence theorem

lim
R→∞

∫
AR

|λ|−1

∫
C
g(x) T λ

[
µd − I

]
dx dλ (5.14)

= lim
R→∞

∫
C
g(x)

∫
AR

|λ|−1 T λ
[
µd − I

]
dλ dx = 0.

Combining (5.14) and (5.13) completes the proof.
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5.3.2 Proof of Theorem 5.1.1

Let γ1, γ2 be two Lipshitz conductivities in Ω such that Λγ1 = Λγ2 , and let
Q(j), υ(j), µ(j), h(j), j = 1, 2, be the potential and the solution in (5.4), the
function in (5.6) and the scattering data in (5.10) for the conductivity γj .
We follow the strategy used in [20, Theorem 4.1] and [31, Theorem 5.1].
The main idea of the proof is that, given that the two DtN maps coincide,
the solutions υ(1) and υ(2) are equal in C \ Ω, and therefore the scattering
data coincide. Then, using Theorem 5.2.5 we know that the potential Q(j)

is uniquely determined by the scattering data h(j) for |λ| large enough, and
therefore so is γj .

Recall from Remark 5.1.2 that we can assume that the conductivities
are equal to one close to the boundary of the domain. We extend the
conductivities to be equal to one outside the domain.

Due to equation (5.11), we have

h(j)(λ,w) =
1

2i

∫
∂Ω
µ(j)(z, λ, w) dz.

Thus it is enough to prove that µ(1)|∂Ω = µ(2)|∂Ω, or equivalently

υ(1)|∂Ω = υ(2)|∂Ω, (5.15)

for |λ| large enough.
Let ϕ(1) denote the first column of υ(1). Also let

η = γ
−1/2
1 υ

(1)
11 , ω = γ

−1/2
1 υ

(1)
21 .

Since ϕ(1) satisfies

∂ϕ(1) = Q(1)ϕ(1)

then it follows that

∂η = −(η ∂γ1 + ω ∂γ1)(2γ1)−1 = ∂ω

and there exists u1 such that

∂u1 = η, ∂u1 = ω in C,

which is a solution to

∇ · (γ1∇u1) = 0 in C.

Now we define u2 by

u2 =

{
u1 in C \ Ω

ũ in Ω,
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where ũ is the solution to the Dirichlet problem{
∇ · (γ2∇ũ) = 0 in Ω

ũ|∂Ω = u1|∂Ω.

Let g ∈ C∞0 (C). Then∫
C
γ2∇u2 · ∇g dz =

∫
C\Ω

γ1∇u1 · ∇g dz +

∫
Ω
γ2∇ũ · ∇g dz

= −
∫
∂Ω

Λγ1 [u1|∂Ω] g dz +

∫
∂Ω

Λγ2 [ũ|∂Ω] g dz = 0.

Hence

∇ · (γ2∇u2) = 0 in C

and ϕ(2) = (∂u2, ∂u2)t satisfies

∂ϕ(2) = Q(2) ϕ(2).

Lemmas 5.2.1, 5.2.2 and 5.2.3 imply the unique solvability of the Lipp-
mann-Schwinger equation when |λ| > R and R is large enough. Thus, ϕ(2)

is equal to the first column of υ(2) when |λ| > R. On the other hand, ϕ(2)

in C \Ω coincides with ϕ(1), the first column of υ(1). Thus the first columns
of υ(1) and υ(2) are equal on C \Ω when |λ| > R. Repeating the same steps
with the second columns of υ(1), υ(2), we obtain that υ(1)|∂Ω = υ(2)|∂Ω when
|λ| > R, and therefore (5.15) holds.

The uniqueness of h and Theorem 5.2.5 imply that the potential Q in the
Dirac equation (5.4) is defined uniquely. Now the conductivity γ is uniquely
determined by (5.3) up to an additive constant. Finally, this constant is
uniquely determined since γ|∂Ω can be computed from Λγ .





Chapter 6

Numerical experiments with
the Bukhgeim method

6.1 Introduction

In this chapter we perform some numerical experiments on the reconstruc-
tion method based on quadratic phase solutions. Numerical implementation
of Theorem 2.2.6 is beyond the scope of this thesis; we approximate the
Bukhgeim solutions on the boundary, or we start directly with the oscilla-
tory integral inside the domain omitting the remainder term wλ,x. In the
latter case, our experiments consider the standard formula of Bukhgeim and
those involving the averaging procedures introduced in Chapter 4.

In Section 6.2 we give a naive estimation on how measurement errors on
the boundary are amplified and numerical instabilities worsen as λ grows.
In Section 6.3 we reconstruct from the boundary data, using a first order ap-
proximation of the Bukhgeim solutions uλ,x = eiλψx ; rather than proposing
an alternative reconstruction method we want to study possible numerical
instabilities and the tolerance to measurement errors.

Let qλ denote the recovery of q by boundary measurements using the
standard Bukhgeim reconstruction formula at frequency λ

qλ(x) :=
λ

π

∫
∂Ω

(Λq − Λ0)[uλ,x] eiλψx .

By Alessandrini’s identity and splitting into a main term and a remainder
term we have

qλ(x) = T λ[q] + T λw[q]

where

T λ[q] =

∫
eiλφx(z) q(z) dz, with φx(z) := (z1 − x1)2 − (z2 − x2)2,
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and the remainder term is defined similarly as in (2.8). In Section 6.4 we see
how T λ[q] converges to the potential. Finally in Section 6.5 we study how the
averaging strategies introduced in Chapter 4 improve the convergence of the
main term of the approximation. In Section 6.6, we discuss our conclusions.

6.2 A peek into the error

We start by assuming that Ω is the unit ball. The reconstruction at fre-
quency λ satisfies

qλ =
λ

π

∫
∂Ω

(Λq − Λ0)[uλ] eiλψ

=
λ

π

∫
∂Ω

Λq[uλ] eiλψ − Λ0[eiλψ]uλ

=
λ

π

∫
∂Ω

Λq[uλ] eiλψ − uλ ∂νeiλψ

where ∂ν denotes the outward normal derivative on the boundary. In order
to compute the integral in the boundary, we approximate it by a finite sum
of evaluations of the integrand on a regular mesh on the boundary

qλ,N =
2λ

N

N∑
j=1

Λq[uλ](zj) e
iλψ(zj) − uλ(zj) ∂νe

iλψ(zj)

where the points in the regular mesh are given by

zj =
(

cos(2πj/N), sin(2πj/N)
)
.

The DtN map is not measured with arbitrary precision, instead we deal
with Λ∗q , a noisy measurement of Λq. It is interesting to see how this noise
propagates in the computation of qλ. Given that the Bukhgeim solutions
are obtained from the DtN map, there will be an error in their computation.
Let u∗λ denote the noise computation of uλ which we model as

u∗λ = uλ + e1

where e1 is error term, which we model as a Gaussian white noise with
standard deviation ε. We model the error in the outward normal derivative
of uλ in a similar way

Λ∗q [u
∗
λ] = Λq[uλ] + e2

where e2 is a Gaussian white noise, and for simplicity we assume independent
to e1 and with the same standard deviation ε.

Let q∗λ,N denote the approximation obtained by discretizing the integral
and considering the error from the measurement of the DtN map. As the



6.3 Approximate Bukhgeim solutions 69

error in each point is a normal variable independent of the error in the other
points, the variance of the sum is equal to the sum of the variances. Thus,
the standard deviation of the error of the approximation q∗λ,N satisfies

σ(qλ − q∗λ,N ) =
2λ

N

(
N∑
j=1

(
ε
∣∣eiλψ(zj)

∣∣)2
+
(
ε
∣∣∂νeiλψ(zj)

∣∣)2
)1/2

=
2λ

N

(
N∑
j=1

ε2e2λ|Im ψ(zj)| + ε2λ2e2λ|Im ψ(zj)|

)1/2

where Im denotes the imaginary part.
The value of the previous expression could be made arbitrarily small

by taking a thinner mesh to estimate the integral. However in practice this
cannot be achieved, as the number of data source points cannot be increased
arbitrarily. Also, and perhaps more relevant, is the fact that the decrease
in the error as N increases is due to the independence assumption between
the errors at each point, but this hypothesis does not seem to be realistic
as, for example, one would expect that u∗λ is continuous.

We obtain the following straightforward bound for the standard devia-
tion of the error by taking only the largest term in the sum

σ(qλ − q∗λ,N ) ≤ 2

N
ελ2 eλαx

where αx = supz∈∂Ω |Im ψx(z)|.

Remark 6.2.1. Note that αx increases as x approaches the boundary, so we
can expect that the standard deviation of the error also increases as the point
we are reconstructing approaches the boundary. In particular, in the current
setting, we have

∥∥ψ(0,0)

∥∥
L∞(∂Ω)

= 1/2 and ‖ψx‖L∞(∂Ω) = 2 for x ∈ ∂Ω.

6.3 Approximate Bukhgeim solutions

In this chapter we make the first order approximation of the Bukhgeim solu-
tions so that uλ,x = eiλψx on the boundary. This scheme resembles the use
of the Born approximation in the numerical reconstruction scheme given
in [58]. Our goal is not to propose an alternative reconstruction scheme,
but rather to study the possible numerical instabilities that could arise in
Bukhgeim’s reconstruction procedure as λ grows. Also we study how mea-
surement error could propagate.

Approximating the standard Bukhgeim formula, we compute

λ

π

∫
∂Ω

(Λq − Λ0)[eiλψx ] eiλψx
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for different values of λ and potentials of conductivity type.
To compute the DtN map, we follow the strategy in [58] and consider

radially symmetric conductivities. For radially symmetric conductivities
γ(x) = γ(|x|) and Ω the unit circle, the eigenfunctions of the DtN map are

φn(θ) = (2π)−1/2einθ.

For γ = 1 we have

Λ1[φn] = |n|φn

and for other conductivities we have

Λγ [φn] = λn φn

with λn ≈ |n| for n large. From [58] we know that for two conductivities that
satisfy γL(x) ≤ γU (x) the eigenvalues of their DtN maps satisfy λLn ≤ λUn .
Together with Lemma 4.1 in the same article (see below), we can compute
the DtN map of a radial conductivity in the disk by approximating it from
above and below. For conductivities equal to one close to the boundary we
have Λq = Λγ .

Lemma 6.3.1. [58, Lemma 4.1] Let Ω ∈ R2 be the unit disc and 0 = r0 <
r1 < . . . < rN−1 < rN = 1, where N ≥ 2. Let γj , j = 1, . . . , N , be a
collection of positive real numbers satisfying γj 6= γj+1 for j = 1, . . . , N − 1,
and assume γN = 1. Set γ(r) = γj for rj−1 ≤ r < rj , j = 1, . . . , N .
Then, the eigenvalues of Λγ are

λn = |n| − 2|n|(1 + Cn−1)−1

where the values Cj are given recursively by C1 = ρ1r
−2|n|
1 and

Cj = (ρjCj−1 + r
−2|n|
j )/(ρj + Cj−1r

2|n|
j )

for j = 2, . . . , N − 1, where ρj = (γj+1 + γj)/(γj+1 − γj).

In Figure 6.1 and in Figure 6.2 we can see the approximate reconstruc-
tion formula for different frequencies in the case of two low contrast radially
symmetric potentials. The figures show the true potential (blue) and the
approximate formula (red) on the positive x-axis as a function of the radius.
The approximate formula seems to come closer to the potential as the fre-
quency increases but numerical instabilities show up for moderate frequency
values (λ = 25, 30). As expected by Remark 6.2.1, numerical instabilities
appear first close the boundary and then travel to the interior of the domain.

In Figure 6.3 we can see the approximate reconstruction formula for
different frequencies for a potentials with higher contrast. The figures show
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Figure 6.1: Approximation as the frequency increases.

Figure 6.2: Approximation as the frequency increases.
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Figure 6.3: Approximation as the frequency increases.

Figure 6.4: Approximation as the error in the measurements increases.
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the true potential (blue) and the approximate formula (red) on the positive
x-axis as a function of the radius. The approximate formula fails to converge
to the potential in the frequencies considered and numerical instabilities
are more significant. As expected by Remark 6.2.1, numerical instabilities
appear first close the boundary and then travel to the interior of the domain.

Figure 6.4 shows the impact of measurement error in the approximation
of a potential for λ = 20. The figure shows the true potential (blue) and the
approximation (red) on the positive x-axis as a function of the radius. The
noise incorporated in the measurements is a Gaussian white noise. We can
see how small errors affect the approximation in a pronounced way.

6.4 Convergence of the main term

We compute the main term T λ[q] for different values of λ to study its con-
vergence to the potential q. Given that wλ,x is considered a remainder, the
study of the performance of this integral as an approximation to q could
throw some light on the performance of the reconstruction qλ.

The computation of these type of integrals is not trivial for large values
of λ, as standard quadrature schemes are not viable for highly oscillating
integrands. For example, the standard quadrature routine quad2d in the
Matlab software package fails to converge for values of λ larger than 100
when q is taken to be the indicator of a square.

A standard approach to compute these type of integrals is the Filon
method. This method relies on the fact that with P a polynomial and g an
appropriate real-valued function, integrals of the form∫

Ω
eiλgP

can be computed with closed form formulas. Any bounded function f is
then approximated by a polynomial P so that∣∣∣∣∫

Ω
eiλgf −

∫
Ω
eiλgP

∣∣∣∣ ≤ ‖f − P‖L1(Ω) .

See [55] for a detailed description of the method.
However, there a number of parameters involved in the Filon method,

such as the degree of the polynomials or the subdomains used to split the in-
tegration domain. To avoid the possibility of contaminating the results from
a suboptimal choice of parameters, and given that there where no compu-
tational performance requirements, we decided to estimate the integrals by
brute force, evaluating the integrand over a sufficiently dense mesh. We have
used a uniform rectangular mesh, where the number of points varies between
640,000 and 64,000,000 depending on the value of λ. The main term has
been computed on a coarser mesh, also regular, with 40,000 points. That
is, the resolution of the images shown is of 40,000 pixels.
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Figure 6.5: Disk indicator. Standard main term for different frequencies.

Figure 6.6: Shepp-Logan phantom. True potential and
standard main term for λ = 20, 50, 100, 200 and 500.
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Figure 6.5 shows the main term for different values of λ when q is taken
to be the indicator of the disk with radius 1/2. We can see how the main
term converges to the potential.

Figure 6.6 shows the main term for different values of λ when q is the
Shepp-Logan phantom. We can see how the main term converges to the
potential. Clearly the values of λ needed to have the main term close to the
potential are higher than the ones required in Figure 6.5, where a simpler
potential is considered.

6.5 Averaging

We study the effect of the averaging procedures introduced in Chapter 4 on
the convergence of the main term to the potential. To compute the integrals
we use the same approach and parameters as in Section 6.4.

6.5.1 Mollifier average

We consider the reconstruction formula introduced in Section 4.1

lim
λ→∞

ϕσ ∗BIλ(x) = q(x)

where ϕσ(x) := σ−2ϕ(σ−1x) with ϕ a positive mollifier supported in the
unit ball, and

BIλ(x) :=
λ

π

〈
(Λq − Λ0)[uλ,x|∂Ω], eiλψx |∂Ω

〉
. (6.1)

Recall that, using Alessandrini’s identity (1.2), we have

ϕσ ∗BIλ = ϕσ ∗ T λ[q] + ϕσ ∗ T λw[q]

where the first term in the right hand side is the main term which converges
to the potential, and the second term is a remainder term which tends to
zero. We study the convergence of the main term ϕσ ∗ T λ[q], compared to
the convergence of the main term in the standard Bukhgeim reconstruction
formula T λ[q]. We will use the mollifier given by

ϕ(z) =

{
e
−1

1−|z|2 for |z| < 1
0 for |z| ≥ 1

appropriately normalized so that its integral is equal to 1.
In the majority of the experiments considered the mollifier average has

improved significantly the convergence of the main term to the potential for
certain choices of the parameter σ. In Figure 6.16 we see the reduction of
the error in the L1 norm for different potentials and frequencies; the value
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Figure 6.7: Error reduction in the mollifier average as a function of σ.

of σ used is different for each example. The most convenient value of σ in
order to reduce the L1 error depends on the potential and the frequency; we
do not provide a criterion for its selection.

In Figure 6.7 we can see how the mollifier average reduces the error with
respect to that of the main term. The reduction is shown as a function of
the parameter σ. More precisely, in the figure we can see

f(σ) = 1−
∥∥∥q − ϕσ ∗ T λ[q]

∥∥∥
L1
/
∥∥∥q − T λ[q]

∥∥∥
L1

where λ = 50 and σ ∈ [0.01, 0.25]. The domain where the reconstruction
error is measured is the [−1, 1] × [−1, 1] square, where the support of the
potentials is contained. The original potentials can be found in figures 6.13
and 6.15. We can see how the error reduction behaves differently for each
potential; for the Shepp-Logan phantom we see a maximum reduction of
30% at σ = 0.21, while for the circles spirals the maximum reduction is 21%
at σ = 0.14.

To use the mollifier average in practice we also have to take into account
the effect of the boundary on the averaging. In the numerical experiments
performed we have seen that the most convenient value of σ can lead to the
support of the mollifier having diameter comparable to the size of the domain
so that the support does not always fit inside the domain. In particular, for
the example in Figure 6.7 with the Shepp-Logan phantom, 38% of the time.
To overcome this difficulty we have simply computed the main term on the
extended domain [−1.25, 1.25]×[−1.25, 1.25] and afterwards we compute the
mollifier average in [−1, 1]× [−1, 1]; the comparison between the methods is
evaluated considering only the values inside [−1, 1]× [−1, 1].

In Figure 6.8 we can see the effect of the mollifier average on the Shepp-
Logan phantom with λ = 100 for σ = 0.07, 0.14 (optimal) and 0.25; the
error is reduced by 26%, 33% and 29% respectively. The effect of taking a
suboptimal value for σ can be noticed in the images.
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Figure 6.8: Shepp-Logan phantom λ = 100. Top: potential, standard main
term. Bottom: mollifier average for σ = 0.07, 0.14 (optimal) and σ = 0.25.

6.5.2 Polar average

We recall briefly the reconstruction formula using the polar average intro-
duced in Section 4.4. Letting

Afreq[F ](λ) :=
1

λ

∫ 2λ

λ
F (t) dt,

and Rx,θ(z) denote the rotation of z around x by an angle θ, the reconstruc-
tion formula with polar averaging reads

lim
λ→∞

A 3
freq[BIx](λ) = q(x)

where

BIx(λ) :=
λ

2π2

∫ 2π

0

〈
(Λq − Λ0)[uλ,x,θ|∂Ω], eiλψx◦Rx,−θ |∂Ω

〉
dθ (6.2)

and the uλ,x,θ are rotated Bukhgeim solutions for the Schrödinger equation.
Recall that, using Alessandrini’s identity, we can decompose the recon-

struction formula in terms of the angular averaging operator of Section 4.4

A 3
freq[BIx](λ) = A 3

freq ◦ T λ
[
Aang[q]

]
+A 3

freq ◦
1

2π

∫ 2π

0
T λwλ [q ◦Rθ] dθ. (6.3)
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where the first term is the main term which converges to the potential as λ
tends to infinity, and the second term is a remainder which tends to zero
as λ tends to infinity.

We study how the averaging operators Aang and Afreq affect the con-
vergence of the main term to the potential. Instead of studying the main
term in (6.3), which involves the action of four operators, we consider three
simpler cases:

• A frequency average Afreq ◦ T λ[q].

• An angular average T λ
[
Aang[q]

]
.

• Both averages together Afreq ◦ T λ
[
Aang[q]

]
.

Note that the angular average applied to the potential is a consequence
of the average taken over rotated Bukhgeim solutions in the boundary infor-
mation (6.2). Thus, the first of these cases, where only a frequency average is
applied, corresponds to the use of a boundary information with non-rotated
Bukhgeim solutions as in (6.1).

Experiments performed indicate that the angular average greatly im-
proves the convergence of the main term to the potential. In other words,
the angular average applied to the main term gives an approximation to the
potential T λ ◦ Aang[q] which is significantly more accurate than the main
term of the standard formula T λ[q] in all the experiments performed; see
Figure 6.16. The performance of the frequency average is not so good, as
the error reduction is not so significant and is not consistent across all the
experiments performed.

Note that the recovery formulas (the standard formula and the ones
involving averages) are asymptotic as λ tends to infinity. Thus, in practical
terms, for the purpose of reconstruction we would always use the maximum
possible value for λ. In this sense, introducing an average in frequency
implies having to use suboptimal values of λ, as we need to use values smaller
than the maximum possible. Following this reasoning, in the numerical
experiments performed we compare frequency average in a band [λmin, λmax]
against the standard formula (or the angular average) with frequency λmax.

Another drawback in the use of the frequency average is that it is a
parameter dependent method, as it depends on the size of the band for λ
in which we perform the average. As numerical results obtained for this
method have not been so exciting, we have not studied deeply the effects of
taking bands with different sizes, or considered the use of weighted averages.

In Figure 6.9 we can see the effect of the polar average on the ovals for
λ = 20, where the frequency average is performed for λ ∈ [10, 20]. In this
example the frequency average reduces the L1 error by a 1%, the angular
average reduces the error by a 17% and the combination of both methods
provides a reduction of a 11%. Thus, once applied the angular average, the
frequency average increases the L1 error. In the image we can see how the
angular average has a significant positive effect.
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Figure 6.9: Ovals λ = 20. Top: potential, standard main term. Bottom:
frequency average, angular average, angular and frequency average.

Figure 6.10: Shepp-Logan λ = 100. Top: potential, standard main term.
Bottom: frequency average, angular average, angular and frequency average.
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In Figure 6.10 we can see the effect of the polar average on the Shepp-
Logan phantom for λ = 100, where the frequency average is performed for
λ ∈ [50, 100]. In this setting the frequency average reduces the L1 error by
18%, the angular average reduces the error by 20% and the combination of
both methods provides a reduction of 24%. The angular average improves
the image from standard formula significantly, and the image is further
improved when we combine both averaging procedures. The improvement
in the image from the use of the frequency averaging alone is not so evident.

6.5.3 Examples: Mollifier vs angular

We now compare the mollifier average with the angular average. To compute
the mollifier average we use the value of σ which best reduces the L1 norm
error in each example. We see that both averaging procedures improve
the L1 error and the visual image obtained. The effect of both averaging
procedures is significant.

We also consider a combined averaging, where we apply a mollifier av-
erage after having applied an angular average. Our experiments indicate
that, for the best choice of σ, this combined method gives less error than
the other two averaging procedures alone, but the extra improvement is not
so pronounced. Note that for this combined averaging we also need to select
a value for the parameter σ; we follow the same strategy as before and we
use the most convenient value for each example.

In Figures 6.11 to 6.15 we can see how the averaging procedures improve
the convergence of the main term to the true potential. We have considered
different geometries and frequencies.

In Figure 6.12 we see the effect of the mollifier and the angular average
on the rectangles with frequency λ = 10. In the mollifier average we use
σ = 0.02 while the combined method does not improve the error for any
σ (compared to the angular average). The mollifier average reduces error
less than 0.1% and there are no significant changes in the image (the value
σ = 0.02 is small and the average hardly affects). The angular averaging
reduces the error by 17% and the improvement can be noticed in the image.

In Figure 6.12 we see the effect of the mollifier and the angular average
on the ovals with frequency λ = 15. In the mollifier average we use σ = 0.24
and in the combined average we use σ = 0.20. The error reduction is 9% for
the mollifier, 13% for the angular and 15% for the combined.

In Figure 6.13 we see the effect of the mollifier and the angular average
on the circles spiral with frequency λ = 30. In the mollifier average we use
σ = 0.22 and in the combined average we use σ = 0.13. The error reduction
is 20% for the mollifier, 23% for the angular and 24% for the combined.

In Figure 6.14 we see the effect of the mollifier and the angular average
with frequency λ = 50. In the mollifier average we use σ = 0.15 and in
the combined average we use σ = 0.13. The error reduction is 18% for the
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Figure 6.11: Rectangles λ = 10. Top: potential, standard main term.
Bottom: mollifier average, angular average.

Figure 6.12: Ovals λ = 15. Top: potential, standard main term.
Bottom: mollifier average, angular average, angular and mollifier average.
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Figure 6.13: Circles spiral λ = 30. Top: potential, standard main term.
Bottom: mollifier average, angular average, angular and mollifier average.

Figure 6.14: Geometric figures λ = 50. Top: potential, standard main term.
Bottom: mollifier average, angular average, angular and mollifier average.
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Figure 6.15: Shepp-Logan phantom λ = 100. Top: potential, standard main
term. Bottom: mollifier average, angular average, angular and mollifier average.

mollifier and for the angular and 21% for the combined.
In Figure 6.15 we see the effect of the mollifier and the angular average

on the Shepp-Logan phantom with frequency λ = 100. In the mollifier
average and in the combined average we use σ = 0.14. The error reduction
is 33% for the mollifier, 20% for the angular and 34% for the combined.

In Figure 6.16 we can compare the error reductions in the L1 norm
for the mollifier average, the angular average and the combination of the
angular and the mollifier average. The table contains the reduction for the
examples previously described and for the same potentials with other choices
of the frequency parameter λ; we see that results are stable in this sense. It
is interesting that the effect of the averaging procedures seems to be more
pronounced as frequency increases.

6.6 Conclusions

Numerical experiments performed suggest that the convergence rate of the
standard formula for the Bukhgeim method could be too slow for some
practical applications, but the averaging procedures discussed could make
the difference.

In order to obtain reasonably accurate reconstructions, the standard
Bukhgeim method seems to require values λ which could be too large to
avoid numerical instabilities. Note that the parameter λ controls both the



6.6 Conclusions 84

λ Mollifier Angular Combined

Rectangles 10 0% 17% 17%

Rectangles 15 1% 16% 16%

Rectangles 20 12% 22% 24%

Rectangles 30 18% 27% 28%

Ovals 15 9% 13% 15%

Ovals 20 13% 17% 18%

Ovals 30 12% 17% 19%

Circles spiral 20 23% 20% 26%

Circles spiral 30 20% 23% 24%

Circles spiral 50 21% 24% 26%

Geometric figures 20 7% 14% 14%

Geometric figures 30 11% 13% 15%

Geometric figures 50 18% 18% 21%

Shepp-Logan phantom 50 30% 19% 30%

Shepp-Logan phantom 75 31% 18% 32%

Shepp-Logan phantom 100 33% 20% 34%

Figure 6.16: Error reduction in the L1 norm.

amplitude and the frequency of the solutions, and when these are too large,
the error of the numerical integration at the boundary becomes large as well.

Numerical difficulties as the frequency of the solutions increases have
also been observed in other reconstruction procedures. For example in [42],
where Knudsen develops a numerical algorithm for reconstructing a conduc-
tivity in the plane, it is pointed out that the scattering transform becomes
highly inaccurate for |k| > 25. Similar inacuracies are also present in other
numerical methods relying on CGO1 (e.g. [10, 49, 58]), where |k| is never
taken larger than 35. Values for the frequency parameter k used in real-
life measurement studies are considerably lower (e.g. [37, 38]) for similar
reasons.

However, the averaging procedures introduced have proven to be useful
for improving the convergence of the main term in the Bukhgeim approach
and the images of the potentials obtained are clearly enhanced. In our exam-
ples, the angular averages outperformed the mollifier averaging procedure
at lower frequencies. On the other hand, the artefacts introduced by the
standard Bukhgeim formula are removed more effectively by the mollifier
procedure rather than the angular. Both procedures improved the contrast

1Note that within the unit ball, the maximum amplitude of Bukhgeim’s solutions for
λ = 15 is the same as the amplitude of CGO solutions with k = 30.
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of the images and reduced the L1 significantly, and these improvements are
more pronounced when both procedures are combined.
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[14] T. Barceló , D. Faraco and A. Ruiz, Stability of Calderón inverse con-
ductivity problem in the plane. Journal de Mathématiques Pures et Ap-
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