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Resumen y conclusiones

Un reto fundamental de la fisica-matematica es entender la dinimica de los sistemas fisicos a medida que
evolucionan para tiempos suficientemente largos. Este problema es particularmente interesante cuando
abordamos el estudio de sistemas sin disipacién ni fuerzas externas. En concreto, en esta memoria nos
centraremos en la estabilidad del equilibrio hidrostatico, en dos problemas dentro del campo de la mecanica
de los fluidos.

En mecanica de fluidos, se dice que un fluido esta en equilibrio hidrostatico cuando este estd en reposo.
Si el fluido estd en reposo, entonces las fuerzas que actian sobre él deben compensarse. Por lo tanto, surge
de manera natural la siguiente pregunta:

sQué sucede si partimos de un estado proximo a la solucion de equilibrio hidrostatico?

El campo de la estabilidad hidrodinamica tiene una larga historia que comienza en el siglo XIX. Uno de los
problemas mas antiguos tratados es el de la estabilidad e inestabilidad de los flujos cortantes, que se re-
monta a la época de Lord Rayleigh y Lord Kelvin.

Para nosotros, el problema a tratar es considerar una pequefia perturbacion del equilibrio hidrostatico,
en cuyo caso el fluido debe comenzar a moverse, y estudiar el comportamiento a largo plazo de la solucién.
En particular, nos centraremos en equilibrios laminares, en los cuales el fluido se mueve en capas bien orde-
nadas. Sin embargo, incluso para estas configuraciones tan simples, poco se sabe acerca de la dindmica de
la solucién.

En esta memoria consideramos dos problemas diferentes dentro del campo de la mecénica de fluidos.
En el segundo capitulo estudiaremos las ecuaciones que rigen la dindmica de un fluido incompresible en
un medio poroso. Y en el tercer capitulo presentamos la dindmica de un fluido bajo la aproximacién de
Boussinesq, que consiste en eliminar la dependencia de la densidad en todos los términos, excepto el que
involucra a la fuerza de la gravedad.

La ecuacion (IPM) incompresible de los medios porosos: El movimiento de los fluidos a través de un
medio poroso es de gran intereses, ya que aparece en una amplia gama de problemas reales que vienen
de muchas areas de las ciencias aplicadas y de la ingenieria. El efecto del medio tiene importantes conse-
cuencias y las ecuaciones habituales para la conservacién del momento, es decir, las ecuaciones de Euler o
Navier-Stokes, deben ser reemplazadas por la experimental Ley de Darcy.

Este principio fisico, observado por primera vez por Henry Darcy en 1856, proporciona una descrip-
cién macroscopica de un flujo donde la velocidad del fluido es proporcional al gradiente de la presién y
a las fuerzas externas. Desde un punto de vista matematico, la ecuacién IPM pertenece a una clase mds
general de ecuaciones a las que a menudo se denomina como escalares activos, que consisten en resolver el
problema de Cauchy para una ecuacion de transporte donde el campo de velocidades esta relacionado con
el escalar que es transportado por el flujo mediante un operador. Quizis el mejor ejemplo de uno de estos
escalares activos es la ecuacion quasi-geostréfica superficial (SQG). En geofisica, la evoluciéon de fluidos
atmosféricos y ocednicos se modelan considerando la importancia de la fuerza de Coriolis en la dindmica.
Concretamente, SQG proporciona soluciones particulares de la evolucion de la temperatura de un sistema
quasi-geostréfico general para niimeros pequefios de Rossby y Ekman.

Un aspecto de gran importancia de la ecuacién SQG, desde el punto de vista matematico, fue senalado
por Constantin, Majda y Tabak en un trabajo en la que la propusieron como un modelo escalar y dosdi-
mensional de la ecuacién de Euler tridimensional. Desde entonces, esta ecuacién ha sido una fuente de
inspiracién parala ecuacién de Euler, de tal manera que los resultados principales para SQG pueden exten-
derse ala ecuacién de Euler.



A pesar del hecho de que existen grandes similitudes entre las ecuaciénes de IPM y SQG, también hay
importantes diferencias. Cabe destacar que tanto para IPM como para SQG, el operador que relaciona el
campo de velocidades con el escalar activo, es un operador integral singular (SI0) de orden cero. Para datos
iniciales regulares, se han probado resultados similares tanto para IPM como SQG, mientras que para solu-
ciones débiles se pueden encontrar resultados diferentes debido a la paridad/imparidad del operador. Para
soluciones débiles de tipo patch, los dos sistemas presentan comportamientos completamente diferentes.
Elproblema de existencia global para el problema de Cauchy con datos iniciales regulares cualesquiera sigue
siendo un problema abierto particularmente desafiante tanto para la ecuacién de IPM como paralade SQG.

Laidea de considerar una ecuacién no-lineal donde la existencia global no se conoce y probarla para una
perturbacidn cercana a una solucién estacionaria de la ecuacién es natural.

Es bien sabido que las funciones con simetria radial son soluciones estacionarias de SQG debido a la
estructura del término no-lineal. Los primeros ejemplos de soluciones globales suaves no-triviales que
conocemos fueron obtenidas recientemente por Castro, Cérdoba y Gémez-Serrano. Sus soluciones son
una perturbacion suave en una adecuada direccién de una determinada funcién radial. La prueba se basa
enla desingularizaciény la bifurcacién desde el problema del vortex-patch. Sefialamos que el perfil de la vor-
ticidad es constante fuera de una regién muy fina donde ocurre la transicion, y que el grosor de esta regién
sirve como parametro de bifurcacién.

Parala ecuacién de IPM, el primer resultado de una solucion global no-trivial se debe a Elgindi. Laidea
principal que esta detras de este resultado es que la estratificacién puede ser una fuerza estabilizadora. Uno
puede imaginar que un fluido cuya densidad es proporcional a la profundidad es, en cierto modo estable. El
mecanismo detras de la estabilidad es que la ecuacion de IPM linealizada alrededor del estado estratificado
exhibe ciertas propiedades de amortiguamiento. Esta convergencia de regreso al equilibrio, a pesar de la
falta de mecanismos disipativos, se conoce como amortiguamiento no viscoso y es un pariente cercano de la
amortiguacién de Landau en la fisica de plasmas. En un gran avance, Mouhot y Villani demostraron que la
amortiguacién de Landau proporciona una estabilidad similar para las ecuaciones de Vlasov—Poisson.

Como Elgindi trabaja en todo el plano, sus soluciones tienen energia finita pero densidad no acotada.
Nosotros podemos evitar este inconveniente trabajando en un escenario fisico confinado con condiciones
de frontera antideslizantes. El trabajo del capitulo 2 parece ser el primero en encontrar un escenario para
probar la existencia global de soluciones suaves con densidad acotada y energia finita para la ecuacién de
IPM inviscida. Este resultado ha sido publicado en [10].

Las ecuaciones de Boussinesq: En los fenémenos de conveccion natural, en qué el movimiento del fluido
no es generado por ninguna fuente externa sino por gradientes de temperatura, las variaciones de densi-
dad son insignificantes en términos de inercia. Esto da lugar a la llamada aproximacién de Boussinesq, que
consiste en eliminar la dependencia de la densidad en todos los términos, salvo el que involucra la gravedad.
El sistema Boussinesq se usa extensamente como una aproximacion precisa de las ecuaciones de flu-
idos dependientes de la densidad para modelar fenémenos dominados por la conveccién natural. Desde
un punto de vista fisico, el sistema de Boussinesq se utiliza para modelar la dinimica del océano o la at-
mosfera. Desde el punto de vista matematico, el principal interés radica en la conexién entre el sistema
dosdimensional de Boussinesq y las ecuaciones tridimensionales de Navier—Stokes y Euler. Al contrario
que sucede para la ecuacién dosdimensional de Navier—Stokes, donde la ecuacion de la vorticidad no tiene
término cuadratico, la ecuacion dosdimensional de Boussinesq atin captura el fendmeno de vortex stretching.
Al igual que sucede para las ecuacion tridimensional de Euler y Navier—Stokes, el problema de existencia
global para el sistema dosdimensional de Boussinesq inviscido y no difusivo sigue siendo un destacado
problema abierto. De hecho, las ecuaciones de Boussinesq dosdimensional pueden identificarse formal-
mente con las ecuaciones de Euler tresdimensional en el caso axisimétrico con rotacién, lejos del eje.
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La existencia global de las soluciones se conoce cuando la disipacién estd presente en al menos una de las
ecuaciones, o bajo una variedad més general de condiciones sobre la disipacién. En contraste, el problema
de regularidad global para las ecuaciones de Boussinesq dosdimensionales inviscidas y no difusivas parece
estar fuera de alcance a pesar del progreso en los resultado de existencia local y los criterios de regularidad.

El capitulo 3 se centra en comprender el problema de la existencia global mediante el estudio de comola
amortiguacién afecta a la regularidad de las soluciones en las ecuaciones de Boussinesq dosdimensionales
inviscidasy no difusivas. Enuna frase, vamos a estudiar el caso opuesto de la inestabilidad de Rayleigh-Bénard.

El fenémeno conocido como conveccién de Rayleigh-Bénard es un tipo de conveccién natural, que ha
sido estudiado por numerosos autores durante muchos anos. La idea es simple: tomar un recipiente lleno
de agua que estd en reposo y comenzar a calentar la parte inferior y enfriar la parte superior del recipiente.
Se ha observado experimentalmente y matemdticamente que si la diferencia de temperatura entre la parte
superior y la inferior va mis alld de cierto valor critico, el agua comenzara a moverse y los rollos convectivos
comenzaran a formarse. Este efecto se llama inestabilidad de Rayleigh-Bénard.

Ahora, en el caso opuesto, cuando uno enfria la parte inferior y calienta la parte superior, se espera que
el sistema permanezca estable. Para ello supondremos que la temperatura y la densidad estan relacionadas
proporcionalmente, de modo que el fluido mds frio es mas denso. Por lo tanto, en este caso se espera que
la fuerza gravitacional estabilice dicha distribucién de densidad. En presencia de viscosidad no es dificil
probar este hecho. Sin embargo, sinlos efectos delaviscosidad (o la difusion dela temperatura), es plausible
que tal configuracion sea inestable.

Resumiendo, en el capitulo 3 vamos a estudiar el caso opuesto a la inestabilidad de Rayleigh-Bénard.
Mas concretamente, tratamos de entender el problema de la existencia global al examinar cémo un término
de amortiguacion de la velocidad afecta a la regularidad de las soluciones de las ecuaciones de Boussinesq
dosdimensionales inviscidas y no difusivas. Este resultado se puede encontrar en [9].
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Abstract and conclusions

Afundamental challenge in mathematical physics is to understand the dynamics of physical systems as they
evolve over long-times. This is particularly interesting when it comes to the study of the long-time behavior
of such systems without dissipation and external forces. In particular, my thesis research has been centered
on the stability near hydrostatic equilibriumn in two problems inside the field of fuid mechanics.

In fluid mechanics, a fluid is said to be in hydrostatic equilibrium when it is at rest. If the fluid is at rest,
then the forces acting on it must balance it. A natural question therefore arises:

What happens if our initial data is close to an hydrostatic equilibrium solution?

The field of hydrodinamic stability has a long history starting in the 19th century. One of the oldest problems
considered is the stability and instability of shear flows, dating back to Lord Rayleigh and Lord Kelvin.

For us, the basic problem is to consider a perturbation of the hydrostatic equilibrium, in which case the
fluid must start to move, and to study the long-time behavior of the solution. In particular, we focus on
laminar equilibria, simple equilibria in which the fluid is moving in well ordered layers. However, even for
these simple configurations, surprisingly little is understood about the near equilibrium dynamics.

In this dissertation we consider two different problems inside the field of fluid mechanics. In the first
chapter we treat the inviscid incompressible porous media (IPM) equation, which describes the dynamic of an
incompressible fluid, flowing through a porous medium. In the second chapter we present the dynamics
of a fluid under the Boussinesq approximation, which consists in neglecting the density dependence in all the
terms but the one involving the gravity.

The Incompressible Porous Media (IPM) equation: Fluids in porous media are of particular interest as
they arise in a wide array of real problems coming from many areas of applied science and engineering.
The effect of the medium has important consequences and the usual equations for the conservation of mo-
mentum, i.e. the Euler or Navier-Stokes equations, must be replaced with the empirical Darcy’s Law.

This physical principle, first noted by Henry Darcy in 1856, provides a macroscopic description of a flow
where the velocity of the fluid is proportional to the pressure gradient and the external forces. From a math-
ematical point of view, the IPM belongs to a general class of equations is often referred to as active scalars.
It consists of solving Cauchy’s problem for a transport equation where the velocity field is related to the
scalar that is transported by the flow through some operator. Maybe the best example of one of this active
scalar is the Surface Quasi-Geostrophic (SQG) equation. This equation is a model of geophysical origin and
is obtained as an aproximation of the general Quasi-Geostrophic system which considers the dynamics of
atmospheric fluids taking into account the Coriolis force. Specifically, SQG measures the evolution of the
temperature of the fluid when both the Rossby and Ekman numbers are small.

An important aspect of the SQG equation, from a mathematical point of view, was pointed out by Con-
tantin, Majda and Tabak, in a paper where they proposed it as 2D scalar model of the 3D Euler equation. We
can understand the relation between both equations by observing that the equation for the perpendicular
gradient of the temperature in the SQG equation has the same structure that the equation for the vorticity
in the 3D Euler equation. Since then, this equation has been a source of inspiration for the Euler equation,
in such a way that the main results for SQG can be extended to the Euler equation.

Despite the fact that there are great similarities between the IPM and SQG equation, there are also
important differences. It is important to note that, both IPM and SQG, the operator relating the velocity
and the active scalar is a singular integral operator (SIO) of zero order. For regular initial data, similar re-
sults have been proved for IPM and SQG, while for weak solutions one can find different outcomes due to
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evenness/oddness of the operator, and for patch-type weak solutions the two systems present completely
different behaviors. The global existence problem for the Cauchy problem with a general smooth initial data
remains as a particularly challenging open problem for both the IPM and SQG equation.

The idea of taking a non-linear equation where global well-posedness is unknown and to prove it for a
perturbation close to a stationary solution of the equation is natural.

Itis well known that radially symmetric functions are stationary solutions of SQG due to the structure of
the nonlinear term. The first examples of non-trivial global smooth solutions we are aware of were recently
provided by Castro, Cérdoba and Gémez-Serrano. Their solutions are a smooth perturbation in a suitable
direction of a specific radial function. The proof relies on the desingularization and bifurcation from the
vortex patch problem. We point out that the profile of the vorticity is constant outside a very thin region
where the transition occurs, and the thickness of this region serves as a bifurcation parameter.

For the IPM equation, the first construction of a non-trivial global smooth solution is due Elgindi, where
the main idea is that stratification can be a stabilizing force. One can imagine that a fluid with density that
is proportional to depth is in some sense stable. The mechanism behind the stability is that the linearized
IPM equation around the stratified state exhibit certain damping properties. This convergence back to equi-
librium, despite the lack of dissipative mechanisms, is known as inviscid damping and is a close relative of
Landau damping in plasma physics. It was proved that Landau damping provides a similar stability for
Vlasov-Poisson in Mouhot and Villani’s breakthrough work.

As Elgindi works in the whole space, their solutions have finite energy but unbounded density. We can
bypass this disadvantage considering a confined physical scenario with non-slip boundary conditions. The
work of chapter 2 appears to be the first to find an scenario to prove global existence of smooth solutions
with bounded density and finite energy for the inviscid IPM equation. This result has been published in
[10].

The Boussinesq system: In natural convection phenomena, this is when the fluid motion is induced by
temperature gradients without external sources, density variations are usually negligible in inertia terms.
This leads to the so-called Boussinesq approximation, which consists in neglecting the density dependence in
all the terms but the one involving the gravity.

The Boussinesq system are widely used as an accurate approximation of the full density dependent fluid
equations to model phenomena dominated by natural convection. From a physical point of view, Boussi-
nesq systems are widely used to model the dynamics of the ocean or the atmosphere. From the mathe-
matical point of view, the main interest lies on the connection between the 2D Boussinesq system and the
3D Navier-Stokes and Euler equations. In contrast with Navier-Stokes on the plane, where the vorticity
equation does not have a quadratic term, 2D Boussinesq still captures the phenomenon of vortex stretching.
As in 3D Euler and Navier-Stokes equations, global well-posedness of the 2D inviscid and non-diftusive
Boussinesq system remains an outstanding open problem.

Indeed, in this setting, the 2D Boussinesq equations are identical to the 3D Euler equations under the
hypothesis of axial symmetry with swirl. The behavior of solutions to the 2D Boussinesq system and the
axi-symmetric 3D Euler equations away from the symmetry axis should be “identical”.

Global regularity of solutions is known when classical dissipation is present in at least one of the equa-
tions, or under a variety of more general conditions on dissipation. In contrast, the global regularity pro-
blem on the inviscid and non-diffusive 2D Boussinesq equations appears to be out of reach in spite of the
progress on the local well-posedness and regularity criteria.

The work of chapter 3 is partially aimed to understand the global existence problem by examining how
damping affects the regularity of the solutions to the 2D inviscid and non-diffusive Boussinesq equations.
In one sentence, we are going to study the opposite of the Rayleigh-Bénard instability.



The phenomenon known as Rayleigh-Bénard convection is a type of natural convection, which has been
studied by a number of authors for many years. The idea is simple: take a container filled with water which
is at rest. Now heat the bottom of the container and cool the top of the container. It has been observed
experimentally and mathematcally that if the temperature difference between the top and the bottom goes
beyond a certain critical value, the water will begin to move and convective rolls will begin to form. This
effect is called Rayleigh-Bénard instability.

Now, in the inverse case, when one cools the bottom and heats the top, it is expected that the system re-
mains stable. Here the temperature and density are assumed to be proportionally related, so that the cooler
fluid is more dense. The gravitational force is thus expected to stabilize such a density (or temperature) dis-
tribution. In the presence of viscosity it is not difficult to prove this fact. However, without the effects of
viscosity (or temperature dissipation), it is conceivable for such a configuration to be unstable.

In one sentence, in chapter 3 we are going to study the opposite of the Rayleigh-Bénard instability. More
specifically, we try to understand the global existence problem by examining how a velocity damping term
affects the regularity of the solutions to the inviscid and non-diffusive 2D Boussinesq equations. This result
can be found in [9]
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CHAPTER1
PRELIMINARIES

In this chapter we present a brief introduction of the equations which give rise to the problems studied in
this dissertation. All of them came from the field of fluid mechanics. The general characteristics and some
known results are presented.

1.1 Dynamics of fluids in porous media

The process of flow through porous media is of interest to a wide range of engineers, scientists, and mathe-
maticians (see for instance [1], [48] and [59]). The effect of the porous medium has important consequences
and the usual equations for the conservation of momentum, i.e. the Euler or Navier—Stokes equations do
not provide a satisfactory model. The work of Henry Darcy (1803-1858), a french engineer who studied this
phenomenon while studying the fountains of the city of Dijon [20], provides a satisfactory answer to our
needs.

Darcy’s Experiments: In 1855, Henry Darcy, oversaw a series of experiments aimed to understand the
rates of water flow through sand layers, and their relationship to pressure loss along the flow paths. Darcy’s
experiments consisted of a vertical steel column of section A and length L filled with a porous medium
(sand) through which water is passed. The water pressure was controlled at the inlet and outlet ends of the
column using reservoirs with constant water levels (denoted h; and h;)

q%:@
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Specifically, Darcy’s experiments revealed proportionalities between the flux of water Q (volume per
time) and different characteristics of the experimental system.

1. Q was directly proportional to the difference in water levels from inlet to outlet: Q o h; — h,.
2. Q was directly proportional to the cross sectional area of the tube: Q o A.

3. Q was inversely proportional to the length of the column: Q oc L™,



Combining these proportionalities leads to Darcy’s Law, the empirical law that describes groundwater flow:

i = Al

where 1 is the dynamic viscosity of the fluid,  is the permeability of the porous medium, which measures
the ability of the medium to transmit a fluid (see [1] Table 1.1 to find permeabilities of several isotropic
porous media).

Darcy’s Law: In modern notation, Darcy’s law is given by the momentum equation

%u =—Vp —g(0,p),

where p is the density of the fluid, u is the velocity and p is the pressure. The symbols p is the dynamic
viscosity of the fluid, k is the permeability of the porous medium and g is the acceleration due to gravity.

In the momentum equation, the velocity, instead of the acceleration, is proportional to the gradient of
the pressure and external forces. This law, first determined by Darcy based on physical experiments, can
also be deduced from Stokes equations using homogenization [35], [57]. The basic idea is that the porosity
of the medium restrains the fluid motion, so that the inertia terms become negligible and the viscosity force
acts as a restoring force linearly with the velocity, the permeability being the proportionality constant.

With this new law our model for the dynamics of incompressible flows through a porous medium are
governed by the following equations

0tpt+u-Vp =0,

Bu = —Vp —¢(0,p),

K
V-u =0.

1.2 Dynamics under the Boussinesq approximation

In natural convection phenomena fluid flow generates due to the effect of buoyancy forces. Temperature
gradients induce density variations from an equilibrium state, which gravity tends to restore. These flows
are usually characterized by small deviations of the density with respect to a stratified reference state in
hydrostatic balance. Potential energy is thus the main agent of movement, compared to inertia. Oberbeck
was the first to notice by linearization that the buoyancy effect was proportional to temperature deviations
[49], and later Boussinesq [4] completed the model based on physical assumptions. It has been since then
one of the main ingredients in geophysical models, from ocean and atmosphere dynamics to mantle and
solar inner convection, as well as a basic tool in building environmental engineering.

In dimensionless variables, the Boussinesq equations in the plane are given by the following expression

V-u =0,
diu+ (u-Vju =g Au—Vp+g(0,6), 1.1)
d0+u-Ve =LAo0,

where u denotes the velocity, p represents the pressure deviation from the hydrostatic one and 6 symbolizes
the temperature variations. The Reynolds number Re, indicates the ratio of fluid inertial and viscous forces
while the Péclet number Pe, compares the rates of advective and diffusive heat transport. They are thus in-
versely proportional to the viscosity and thermal diffusivity constants, respectively.



Roughly speaking (see [56] for a rigorous justification), to obtain the system (1.1) from the equations for
density-dependent fluids

V-u =0,
p(du+ (u-Viu) =gAu—Vp—g(0,p), 1.2)
dip+u-Vp =xAp,

one first replaces the exact density by a constant representative value in many terms of the equations of
motion. We may divide the exact density into a constant part po, and a residual one p’(x, y, t):

p(x,y,t) =po+p'(x,y,t).

In the Boussinesq approximation, we assume that the density variations p’(x, y, t) are small compared to the
background state po. This is, we assume that |p’| < po. The residual part p’ represents density variations
primarily caused by temperature variation inside the fluid. Since the two have comparable importance, he
density is assumed to be linear with respect to the temperature

P/ = —Bpo(© — Bp)

where 3 is the thermal expansion coefficien and the real temperature O is related to 0 by the Richardson
number Ri, as follows /
0 = —Ri% — Rip(© — O,).
Po
The Richardson number, which coincides with the inverse of the Froude number squared and measures the
ratio of potential over kinetic energy, is assumed to be large enough so that density variations are not ne-

gligible in the gravity term.

With these assumptions, we can write the density-dependent fluid equations (1.2) as the Boussinesq
system (1.1). For inviscid and non diffusive fluids, i.e., - = 7 = O, the equations can be formally identified
with the 3D Euler equations in vorticity form for axisymmetric swirling flows away from the axis [4¢]. It is
well-known that the global regularity of these equations is still an outstanding open problem.

In this dissertation, we will consider the two-dimensional inviscid and non-diffusive Boussinesq sys-

tem with a damping velocity term, so our equations will read as follows
V-u =0,
0t06+u-V0 =0, DAMPING TERM
diu+ (u-Vju =-Vp+g(0,0) —[ul

Our work is partially aimed to understand the global existence problem by examining how damping affects
the regularity of the solutions to the inviscid and non-diffusive 2D Boussinesq equations.






CHAPTER 2
THE CONFINED IPM EQUATION

ABSTRACT: We consider a confined physical scenario to prove global existence of smooth solutions with
bounded density and finite energy for the inviscid incompressible porous media (IPM) equation. The result
is proved using the stability of stratified solutions, combined with an additional structure of our initial
perturbation, which allows us to get rid of the boundary terms in the energy estimates.

2.1 Introduction

In this chapter we study the global in time existence of smooth solutions with bounded density and finite
energy of the (2D) Incompressible Porous Media equation in a strip domain Q. That is, we consider the
following active scalar equation:

at o+u- \% 0=0,

with a velocity field u satisfying the momentum equation given by Darcy’s law:

%u =-Vp—g(0,0), 2.1)

where (x,t) € Q x R", u = (uy,u,) is the incompressible velocity (that is, V - u = 0), p is the pressure, 1
is the dynamic viscosity, k is the permeability of the isotropic medium, g is the acceleration due to gravity
and p corresponds to the density transported without diffusion by the fluid.

Due to the direction of gravity, the horizontal and the vertical coordinates play different roles. Here we
assume spatial periodicity in the horizontal space variable, says o (x + 27k, y, t) =0 (x, y, t) and similarly
p(x+27mk,y,t) = p(x,y, t). Finally, as these equations are studied on a bounded domain, we assume that
our physical domain is impermeable, which is exactly satisfied if u satisfies the no-slip boundary condition

u-n=0 onoQ, 2.2)

where n denotes the exterior normal vector.

In this work we will focus on the case in which the evolution problem is posed on a porous strip with
width 21. That is, the domain is the two-dimensional flat strip Q := T x [, with0 < 1 < co.

This problem is known as the confined IPM equation. Without loss of generality we will assume from
now on that © = k = g = | = 1. To summarize, we have the following system of equations in Q:

dro+u-Vo =0,
u =-Vp—(0,0), 2.3)
V-u =0,

with the boundary conditionu - n = 0on 9Q = {y = +1}. In our case, this implies that u;|30 = 0. In
our physical system where there is gravity and stratification (u = 0 and p=p (y) is a stationary solution),
vertical movement may be penalized while horizontal movement is not. This opens up the possibility of
treating the corresponding initial value problem from a perturbative point of view. As in [27], this chapter
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studies the solutions of (2.3) in the perturbative regime near the stratified state O(y) := —y for a specific
type of perturbations:

0o(xyt)=0(y)+pxyt) (xt)eQxR". (2.4)

The main result of the chapter is that small perturbations p in a suitable Sobolev space X*(Q), which we
define below in (2.5), converge to a shear and nearby stationary flow in the sense that ¢ (x,y,t) = O(y) +
p(x,y,t) = Oy) + poo(y) andu(x, y, t) — 0Oast — co. The main mechanism of decay can be seen from
the linearized equation

atp(X)y;t) = _GI(UJ UZ(X,U,J[)

which, after solving the velocity u = (u;, u,) in terms of p yields

dep(x,y,t) =0'(y) (p(x,y, 1) + (—Aa) 7105 p(x,y, 1)) .

Setting O(y) := —y, the previous equation clearly shows the frequency dependent exponential decay over
time of p, except the zero mode in x. The goal of the chapter is to show how to control the nonlinearity, so
that it does not destroy the decay provided by the linearized equation.

To do this, controlling the boundary terms is the new additional difficulty. This can be done by work-
ing with perturbations in the appropriate Sobolev space X*(Q). Using standard techniques, we will prove
the local in time existence of solutions for the perturbated problem in the space X*(Q). For the sake of
completeness we include the proof, where the cornerstone will be the properties of an orthonormal basis
adapted to X*(Q). The reason for working with initial perturbations with that additional structure will be
seen in the apriori energy estimates. There, all the boundary terms that appear in the computations vanish
thanks to periodicity in the horizontal variable and by the additional structure of our initial perturbations,
which is preserved in time by the local existence result, as long as the solution exists.

Namely, we will prove the following result:
Theorem The stratified state © of the confined IPM equation is asymptotically stable in X*(Q) for k > 10. In other
words, there exists eo > O such that if we solve (2.3) with initial data o (0) = © + p(0) and p(0) € X*(Q) with
llpllx () (0) < € then, the solution exists globally in time and satisfies:

NI

) ullzo)(t) Seo(1+1)74,

_5
4
)’

i) [lolle o) (t) S e (1+1)
i) |0 — Ollx()(t) < 2¢o,

where o (x,y,1) = 0(x,y,t) + 0(y, t) such that o L pand pis given by the projection operator onto the subspace
of functions with zero average in the horizontal variable.

Remark: If we perturb the stratified state by a function of y only then there should be no decay. For this
reason, the orthogonal decomposition o= p + p will be considered.

Remark: The strategy used can be applied to a more general class of monotone shear flows. The proof works
for small perturbations in some sense of our steady state with ©'(y) < 0. However, a highly non-trivial
problem is to extend this to the case of possibly degenerate shear flows where @’ (y) = 0 at some value.

A more precise statement of our result is presented as Theorem 2.5.1, where we also illustrate its proof
through a bootstrap argument. Despite the apparent simplicity, understanding the stability of this flow is
far from being trivial.



2.1.1 Motivation

The study of partial differential equations arising in fluid mechanics has been an active field in the past
century, but many important and physically relevant questions remain wide open from the point of view of
mathematical analysis. Among the problems that attracted recently renewed interest, active scalar equations
that arise in fluid dynamics present a challenging set of problems in PDE. Maybe the best example is the
Surface Quasi-Geostrophic equation (SQG), introduced in the mathematical literature in [13]. The inviscid
SQG equation in R? takes the form

00 +u-VO =0,
u:RLG,

where R = (Ry, R,) denote the 2D Riesz transforms. This problem has been widely investigated due to its
mathematical analogies with the 3D Euler equation, butlittle is known. Local well-posedness and regularity
criteria in various functional settings have been established, see [2] as a survey. The global regularity pro-
blem for the Cauchy problem with a general smooth initial data remains open. Besides radially symmetric
solutions, which are all stationary, the first examples of non-trivial global smooth solutions we are aware
of were recently provided in [8]. An alternative construction of smooth families of global special solutions
can be found in [33], where the authors focus on travelling-wave solutions to the inviscid SQG. On the other
hand, whether finite time blow up can happen for smooth initial data remains completely open.

Itisimportant to note that, for both IPM and SQG, the operator relating the velocity and the active scalar
is a singular integral operator of zero order. Even more, in the whole space, the velocity (2.1) can be rewritten
in a more convenient way as u = R1R; p. Despite the fact that there are great similarities between the
inviscid versions of SQG and IPM equations, there are also important differences. This work appears to be
the first to find a scenario to prove the global existence of smooth solutions with bounded density and finite
energy for the inviscid IPM equation.

2.1.1.1 The question of long-time behavior

A fundamental challenge in mathematical physics is to understand the dynamics of physical systems as
they evolve over long times. This is particularly true when it comes to the study of the long-time behav-
ior of such systems without dissipation. Depending upon the specific physical situation that a given fluid
equation models, we find vastly different mathematical objects arising. In recent years, researchers have
discovered numerous interesting phenomena such as the existence of solutions whose long-time behavior
is determined entirely by

e some linear or dispersive effect, for example in water waves [31], [37] and [62];
e some linear mixing effect, for the Couette flow in Navier—Stokes and Euler equations [2], [3];
e some hypocoercive dissipative mechanisms, for kinetic theory [21] and [22].

The idea of taking a non-linear equation where global well-posedness is unknown and to prove it for
a perturbation “close” to a stationary solution of the equation is natural. For small enough initial data,
one might conjecture that solutions to the nonlinear problem behave asymptotically like solutions of the
corresponding linear problem.

Asin [27], where the author gives in R? the first construction of a non-trivial global smooth solution for
the inviscid IPM equation, the main idea is that stratification can be a stabilizing force. One can imagine
that a fluid with density that is proportional to depth is in some sense “stable”. The mechanism behind the
stability is that the linearized IPM equation around the stratified state exhibits certain damping proper-
ties. This convergence back to equilibrium, despite the lack of dissipative mechanisms, is known as inviscid



damping and is a close relative of Landau damping in plasma physics. It was proved that Landau damping
provides a similar stability for Vlasov—Poisson in Mouhot and Villani’s breakthrough work [47].

2.1.1.2 Previous results for IPM with smooth initial data

In [18], the local existence and uniqueness in Holder space C° with & € (0, 1) was shown by the particle-
trajectory method for the whole space case. By a similar approach, the local well-posedness in Besov and
Triebel-Lizorkin spaces was proved in [64] and [65].

For the Lagrangian formulation, in [16], the authors show that as long as the solution of this equation
is in a class of regularity that assures Holder continuous gradients of the velocity, the corresponding La-
grangian paths are real analytic functions of time.

In the class of weaker solutions, the results of [17] and [58] establish the non-uniqueness of L°, weak so-
lutions to the inviscid IPM equation starting from the zero solution. Recently, in [38] the authors were able
to construct global weak solutions to the inviscid IPM equation which are of class ng with § < 1/9 starting
from a smooth initial data. All these works are based on a variant of the method of convex integration.

In the direction of classical solutions, the only result known, due to Elgindi [27], shows that solutions
which are “close” to certain stable stratified solutions exist globally in time, but since he works in the whole
space, such solutions have unbounded density. He considers perturbations in two settings which are fun-
damentally different:

e On the whole space R?: In this case the stationary solution does not belong to L*(R*). However, the
author can perturb the stationary solution by a sufficiently small H® function, and to prove that the
perturbation decays to equilibrium as t — +o0.

e Onthe two dimensional torus T?: Similarly, the stationary solution is not periodic but the author may
perturb it by a periodic function and once more the perturbation will remain periodic. The result here
is quite different for the main reason that g itself does not decay. Even so, smooth perturbations of
the stationary solution are stable for all time in Sobolev spaces.

We now motivate our attack setting. We start with the observation that the gravity term in Darcy’s law
(2.1) converts IPM in an anisotropic problem, which implies different properties in different directions. In
our case, the vertical direction pointing in the direction of gravity will play a key role. By this anisotropic
property, it seems natural that T x [—1, 1] might be an adequate scenario to set our equations.

In order to solve our problem in the bounded domain Q, in certain Sobolev spaces, we have to overcome
the following new difficulties:

i) To be able to handle the boundary terms that appear in the computations;

ii) The lack of higher order boundary conditions at the boundaries, due to the fact that we work in
Sobolev spaces.

Indeed, both difficulties i) and ii) can be bypassed if our initial perturbation has a special structure. We
introduce the following spaces to characterize our initial data:

X*(Q) == {f e H*(Q) : 0y floq =0 forn=0,2,4,...,k*}, 2.5)
Y*Q) ={f e H*(Q): 3}}floo =0 forn=1,3,5...,kJ, (2.6)

where we defined the auxiliary values of k* and k, as follows:

. k—2 k even, nd L k—1 k even,
" lk—1 k odd, T lk—2  k odd.
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Lastly, we remember that the Trace operator T : H'(Q) — [*(0Q) defined by T[f] := f|yq is bounded for
all f € H'(Q). Consequently, both spaces are well defined.

2.1.2 Theequations

In this section, we describe the equation that a perturbation (2.4) of the stratified solution must satisfy. In
order to prove our goal, we plug into the system (2.3) the following ansatz:

Y (X)y)t) =y + p(X,U,t),

Yy
(%, 1) =ﬂ(x,y,t)—;92+/ 5y’ 1)y,
0

where for a general function f : Q x Rt — R, we define

s

~ 1 - ~
f(y)t) = 27_(/ f(X/;y; t)dX/ and f(X, Y, t) = f(X,U, t) - f(U, t)
—7t

Then, for the perturbation p, we obtain the system

otpt+u-Vp =uy,
V-u =0,

besides the boundary condition u - n = 0 on 0Q. Note that in Q, our perturbation p does not have to
decay in time. Indeed, if we perturb the stationary solution by a function of y only there is no decay. More
specifically, p = p(y) and u = Oisa stationary solution of (2.7). To overcome this difficulty, the orthogonal
decomposition p = p + p will be considered.

The system (2.7) can be rewritten in terms of p and p as follows:

atﬁ‘i‘U'VF_)‘i‘ayéuZ = Uy,

6t6+uV() =0, (28)

Notice that p is always a function of y only and p has zero average in the horizontal variable. It is expected
that p will decay on time and p will just remain bounded. The systems (2.7) and (2.8) are the same, but
depending on what we need, we will work with one or the other.

2.1.3 Notation & Organization

We shall denote by (f, g) the L*(Q) inner product of f and g. As usual, we use bold for vector valued func-
tions. Letu = (uy, u;) and v = (vy,v,), we define (u, v) = (uy, v;) + (uz, v2). Also, we remember that the
natural norm in Sobolev spaces is defined by

||f||%_[k(_o_] = HfHZLZ(Q) + HfH%’{k(Q): HfHﬁk(Q) = ||akf||%_2(Q)-

For convenience, in some place in this chapter, we may use L, H¥ and H to stand for L2(Q), Hk(Q) and
H*(Q), respectively. Moreover, to avoid clutter in computations, function arguments (time and space) will
be omitted whenever they are obvious from context. Finally, we use the notation f < g when there exists a
constant C > 0 independent of the parameters of interest such that f < Cg.
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Organization of the chapter: In Section 2.2, we introduce the functional spaces X*(Q) and Y*(Q) where
we will work. The key point of working with initial perturbations with the structure given by these spaces
is showed in Section 2.3. Section 2.4 contains the proof of the local existence in time for initial data in
X*(Q) for the confined problem, together with a blow-up criterion. The core of the article is the proof of the
main theorem in Section 2.5. We commence by the a priori energy estimates given in Section 2.5.1. This is
followed by an explanation of the decay given by the linear semigroup of our system in Section 2.5.2. Finally,
in Section 2.5.3 we exploit a bootstrapping argument to prove our theorem.

2.2 Mathematical setting and preliminares

In this section, we will see the importance of working with initial perturbations belonging to X*(Q). We
also consider an adapted orthonormal basis for working with these perturbations, together with their eigen-
function expansion.

2.2.1 Motivation of the spaces X*(Q) and Y*(Q).

By the no-slip condition u,(t)[a = 0, the solution p(t) of (2.7) satisfies the following transport equation
on the boundary:

0¢p(t)lon +w(t)oxp(t)loa = 0. (2.9)

As our objective is to obtain global stability and decay to equilibrium of sufficiently small perturbations, it
seems natural to consider p(0)|p = 0. Then, by the transport character of (2.9) the initial condition is
preserved in time p(t)|po = O aslong as the solution exists. In addition, taking derivatives in Darcy’s law,
using the incompressibility condition, and restricting to the boundary we have

dywi(t)loo =0 and dwy(t)on =0, (2.10)

given that p(t)|ao = wy(t)]aq = O. Relations (2.10) give rise to the following equation for the derivative
in time of 33, p(t) at the boundary:

3:0%p(Vloa = —w(£)2x(3%0) (Dloa — dyua(t)3p(t)o0.

Thus, we find that a% p(0)la = Oimplies that 0¢ aﬁ p(t)lao = 0, and consequently the condition on the
boundary is preserved in time.
Iterating this procedure we can check that the conditions ag p(0)laq =0, forn = 2,4, ... are preserved

in time. This is the reason why we can look for solutions p(t) in the space X¥(Q), if the initial data belongs
to it. Moreover u; (t) will belong to Y*(Q) and u, (t) will belong to X*(Q).

2.2.2 Biot-Savart law and stream formulation
In the whole space R? we have a simple expression for V1T in terms of p:
VIT = V(—A) 19y,
so we can write the velocity in terms of p as
u=—VIT—(0,p) =R'Rip
where Rt = (—R,, R;), being R; the Riesz’s transform.
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In our setting Q = T x [—1,1], to obtain an analogous expression we proceed as follow: due to the
incompressibility of the flow, by taking the divergence of Darcy’s law we find that

ATT = 9. (2.11)
Moreover, the no-slip conditon (2.2) give us the boundary condition
0yMlaa = —ploa =0, 2.12)

which vanishes as p € X*(Q). Then, putting together (2.11) and (2.12) (notice that we look for a periodic in
the x-variable TT), we recover the velocity field, in terms of p, by the expressionu = —VIT — (0, p).

Another way to reach this expression it by following these steps: as V - u = 0, we can write the velocity
as the gradient perpendicular of a stream function 1, that is

u=Vshy, (2.13)
with V+ = (—0y, 0x). Then, applying the curl operator on (2.1), we get the Poisson equation for :
Ap = —0p.
Taking into account (2.13) and the no-slip condition (2.2) we obtain the boundary condition

0xPloo =0.

Thus, we need to impose V|, —4;} = c+ where ¢ could be, in principle, different from c_. However, the
eriodicity in the x-variable of TT forces to take c,. = c_, and since we are only interested in the derivatives

p + y

of \{ we will take c4- = 0.

To sum up, in order to close the system of equations, we first solve either

ATl = —0yp in Q,
oylT =0 on 0Q),
or
AP = —04p in Q,
{ N on 90, 2.14)
and after that write

u=-—VIT—(0,p) or u=Vty.
In the rest of the chapter we will use the stream formulation to recover the velocity field. In the next
section, we present an orthonormal basis of X¥(Q) in order to solve (2.14), which allows to write the velocity
in terms of the “Fourier coefficients" of p.

2.2.3 Anorthonormal basis for X<(Q)

Our goal is to solve (2.14). In order to do this, we define

1
ap(x) = Nx exp (ipx) withx e T forp € Z

and

bgly) = cos (qy3) g odd withy € [-1,1] forq e N,
=) q even
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where {ap }pez and {bq}qen are orthonormal basis for L*(T) and L*([—1, 1]) respectively. Indeed, {b qlqen
consists of eigenfunctions of the operator S = (1— a; ) with domain 2(S) = {f € H*[-1,1] : f(£1) = 0}.
Consequently, the product of them wp, ¢(x,y) = ap(x) bq(y) with (p,q) € Z x Nis an orthonormal
basis for the product space L*(T x [-1,1]) = [*(Q).

Now, we define an auxiliary orthonormal basis for L*([—1, 1]) given by

cqly) = Sm(qyg) q odd  ithye Ll forqeNUO),
cos (qyi) q even

consisting of eigenfunctions of the operator S with domain 2(S) = {f € H*[-1,1] : (0yf)(£1) = 0}. In
the same way as before, the product @, 4(x,y) = ap(x) cq(y) with (p, q) € Z x (NU{0}) is again an
orthonormal basis for L2(Q).

Remark: Let us describe the analogue of the Fourier expansion in terms of our eigenfunctions expansion.
This is, for f € L*(Q), we have the L*(Q)-convergence given by

f(x,y) = ) Folfl(p,q) wp,q(x,y) where ?w[ﬂ(p,q):=/Qf(X’,y’)wp,q(X’,y’)dX’dy’

PEL
qeN
(2.15)
or
f(x,y) = Z Folfl(p, q) @p,q(x,y) where Fxlfl(p,q) ::/ f(x",y)@p,q(x/,y’) dx’'dy’".
> Q
qepNeu{o}
(2.16)

The main result of this part is to see that {wy q}(p,q)ezx is an orthonormal basis not only for [*(Q)
but for X*(Q), and that {®@p,q(p,q)ezx (NUfo)) 1s basis of Y¥(Q). The sequence {ap}pez is the standard
Fourier basis in H*(T). Then, we will focus only on the convergence properties of span{b;, b,, bs, ...} and
span{co, C1,Cz, . . .}.

As we will see below, the relation between derivatives of {bq }qen and{cq}qenu(o) Plays a key role in the
convergence properties. An easy computation gives us

(0ybg)(y) = (-1)9qFcq(y) for qgeN (2.17)
and

(0ycq)y) = { (2.18)

Then, as a consequence of (2.17) and (2.18), for q € N we have

(04bg)(y) =—(q4%)"bg(y)  and  (3%cq)y) =—(aF) cq(v). (2.19)
Hence, for each f € L*([—1,1]), as {bq}qen and {cq}qenuio) are orthonormal bases for L%([—1,1]) we have

M—o0
e

Pmf f and  QmfX2%f  in [2([-1,1)) (2.20)

where the partial sums are given by

M M
Pmfly) =) (f,bm) bm(y) and  Qmfly)= Y (f,cm) cml(y). (2.21)
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Remark: Here, the notation (-, -) refers to the inner product in L*([—1,1]).

We are now ready to present the main lemmas of this section. Let us recall first definitions (2.5) and
(2.6), which give us

X*([=1,1)) ={f € H*([-1,1]) : (f)(+1) =0 forn =0,2,4,...,k*}

and
YL 1) ={f e H*([-L 1) : (03 f)(£1) =0 forn=1,3,4,...,k.}.

Lemma 2.2.1. {bg}qen is an orthonormal basis oka ([—1,1]).

Proof. Since the orthogonality is trivial, we will give the details of the completeness of the basis. For a func-
tion f € X*([—1,1]) we know that f € H*([—1,1]). Then, by (2.20) we have that

Pmagf Moo, a{;f in L*([-1,1) for n=0,2,4,...,eitherkork —1.

By (2.21) we get:
M

PMOTF =) (30f,bm) bm(y) (2.22)

m=lI

where, by integration by parts and (2.19), we have

@310m) = [

—1

+1 +1

O3y bm(y") dy’ = [ 1y )03 bg(y') dy’
- n +1
— (0" (@) [ty by dy’
—1
= (=)™ (qZ)" (f, bm). (2.23)

We must note that, thanks to by (1) = 0and the boundary conditions, the boundary terms in the integra-
tion by parts vanish. Therefore, putting (2.23) in (2.22) and applying (2.19) we arrive at Py agf = OSPMf
and we obtain

Oy Pmf Moo, oy f in L*([-1,1]) for n=0,2,4,...,eitherkork —1.

Moreover, by (2.20) we have:

Qumal e MIX il in [X([L1))  for n=0,2,4,...,K,
where by (2.21), we get
M
QMg =) (35, cm) emly). (2.24)
m=0

We notice that <63+1f, co) = 0 due to the fact that (0 f)(+£1) = 0 by hypothesis. In addition, by integra-
tion by parts and (2.18) for m > 1 we obtain

+1 +1
<33“f,cm>=/ aSHf(y’)Cq(y’)dy’z—/ 0y f(y")(dyeq)(y") dy’

- - +1
(19 (q) /_ Oy gy dy’

= (19 (q%) 9y f, bm). (2.25)
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Here, the boundary term vanishes because by hypothesis we have that (9 f)(+1) = 0. Hence, putting
(2.25) in (2.24) and applaying again (2.17) we arrive to Qmdy, "'f = 9y Pm a“f = 0y "'Pmf. Therefore,

O IPM MTX oy in 12([-L1)  for n=0,2,4,...,K".

Lemma 2.2.2. {Cq}qenujo) is an orthonormal basis onk ([—1,1]).

Proof. This results follows from the same ideas than the proof of the above Lemma 2.2.1. O

Because of Lemmas 2.2.1 and 2.2.2 one has the following expressions for both the X*(Q) and Y*(Q)
norms.

Corollary 2.2.3. Letf € X*(Q)and g € Y®(Q). Forsy, s, € N U {0} such that s; + s, < k, we have:
S0 fIE, 0y = 3 Y PP Ig TP T fl(p, 9,

PEZ qeN

3 gllE 0y =D D PPHaFP T f(p, @),

pEZ qeNU{o}

where F , [f]1(p, q) and Fo [f]1(p, q) are given by (2.15) and (2.16) respectively.

Introducing a threshold number m € N, we define the projections Py, and Q,,, of [*(Q) onto the
linear span of eigenfunctions generated by {wp q}(p,q)ezxn and {@p,q}(p,q)ezxnUfo) respectively, such
that {|p|, q} < m. Thatis, we have that

P = D D TFulfllp,dwpqxy),

[pl<m gsm
peZ geN

Qm = > ) Folfllp.g)@pqlxy) (2.26)

[pl<m gq<sm
peZ qeNU{o}

These projections have the following properties:
Lemma 2.2.4. Forf € L*(Q), we have that P, [f] and Q. [f] are C*°(Q) functions such that:
e Forf € H(Q) we have that:
Ox P [f] = P [0x 1], 0xQm[fl = Qm[0xf],
0y P [f] = Qm[0yf], 0y Qum[f] = P[0y f].
As a consequence, for f € H*(Q), we have:
0y Pnlfl =Pn[05fl  and O} Qumlfl = Qm [0} f].
e The projectors are self-adjoint in L*(Q):
(Pwmlfl, g) = (f,Pmlgl) and (Qmlf], g) = (f, Qmlg)) vf, g € L*(Q).
e Forf e X*(Q) and g € Y&(Q):
P [l
1QmlglllHx (o

Proof. The proofis based in the arguments of the proof of Lemma 2.2.1. O

Il ), Pmlfl —f inX*(Q)

) S
) <y, Qmlfl = f nY*(Q).
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2.3 Poisson’s problem in a bounded strip
With all this in mind, it is time to solve Poisson’s system with homogeneous Dirichlet condition (2.14).

Lemma2.3.1. Letp € X¥(Q). The solution of Poisson’s problem

AP = —04p in Q,
v =0 on 0Q),

satisfies that P € X1 Q) with |||k (@) S 1Pl () and its Fourier expansion is given by

=> ) ( ) Folpl(p, q) Wp,q(x,y). 2.27)
PEZ qeN 2 )
Proof. We consider the sequence of problems
M™M= —Ppcpl  in Q
vymo=0 on Q.
Taking n-derivativeswithn =0, . . ., k, testing against 0™ '™ | integrating by parts and applying Young’s

inequality yields [ \p™ |11 ) < ClIPm Bk () < 1Bllx (), since p € X*(Q) (the constant C does
not depend on m). In addition, it is easy to check that agw mljya = o, for any even number n (this is

because of the definition of P, and the boundary condition { (ml|5 o = 0). These two facts allow us to pass
to the limit in m to find { € X*™(Q) solving (2.14).

Asp € X*(Q) and P € X*"(Q) we can expand

ZZF 1(p, q) wp,q(x,y) and ZZ? 1(p, q) wp,q(x,Y),

PEZ qeN pPEZ qeN

then

0P y)=—) > (ip) Fuldl(p, q) wp,q(x,y),

pPEZ qeN

==Y Y (P +(a%)") Tulblp, @) wpqgly).

PEZ qeN

Consequently, the following relation between the coefficients must be verified:

FWlp, ) = — T 3l(p, ). 2.28)
p2+ (q%)

Corollary 2.3.2. Thevelocityu = (u;, w,) = v from (2.14) satisfies:
u € Y*Q),u, € XX(Q) and  lullyea) S 1Pk (o
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2.4 Local solvability of solutions in X*(Q)

To obtain a local existence result for a general smooth initial data in a general bounded domain for an active
scalar is far from being trivial. The presence of boundaries makes the well-posedness issues become more
delicate (see for example [51] and [14], in the case of SQG).

Here, we only focus on our setting Q). Apart from working with the spaces X*(Q) and as a consequence,
being careful with the special boundary conditions they impose, the proof in this section is a standard ap-
plication of Galerkin approximations. For the sake of completeness we write the details below.

We return to the equations for the perturbation of the confined IPM in Q:

otpt+u-Vp =1u,,
u =Vhy, (2.29)
V-u =0,

where 1 solves (2.14) together with the no-slip condition u - n = 0 on dQ and initial data p(0) € X*(Q).
Hence, we will prove the following result:

Theorem 2.4.1. Letk € Nwithk > 3 and an initial data p(0) € X*(Q). Then, there exists atime T > 0 and a
constant C, both depending only on ||p||y3 () (0) and a unique solution p € C (O, T, X* (Q)) of the equations (2.29)
such that

sup [lpllix(q)(t) < Cllpllyxq)(0).
o<t<T

Moreover, forall t € [0, T) the following estimate holds:

- t
ol (o) (1) < llpllx(q)(0) exp [C/O (Wl 0y (s) + IVullie(q)(s)) ds| . (2.30)

The general method of the proof is similar to that for proving the existence of solutions to the Navier-
Stokes and Euler equations which can be found in [46].

The strategy of this section has two parts. First we find an approximate equation and approximate so-
lutions that have two properties: (1) the approximate solutions exist for all time, (2) the solutions satisfy an
analogous energy estimate. The second part is the passage to alimit in the approximation scheme to obtain
a solution to the original equations.

Before embarking on the proof, we will need some basic properties of the Sobolev spaces in bounded
domains. In the next lemma, D C R% is a bounded domain with smooth boundary dD.

Lemma 2.4.2. Fors € N, the following estimates hold:

e Iff,g € H*(D) N (D), then
I gllrs (o) S (Ifllis (o) gl (o) + Il (o) lglhas () 5 (2.31)
o Iff c HS(D)N CYD)and g € H* }(D) N C(D), then for|«| < s we have that
10%(fg) — fo%glliz(p) S lIfllwre (o) lglls—1(p) + [IfllHs (D) [19llLe (D) - (2.32)
Moreover, the following Sobolev embeddings hold:
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e WP (D) C LY(D) continuously ifs < n/pandp < q < np/(n—sp);
e WSP(D) C CX(D) continuouslyiss > k +n/p.
Proof. See [29, p. 280] and references therein. O

Proof of Theorem 2.4.1. We firstly construct approximate equations by using a smoothing procedure called
Galerkin method. The m™-Galerkin approximation of (2.29) is the following system:

dp™ + P, [u[m] .vp[m]l L
— ylytm (2.33)

[m

p™i—o =Pnlpl(0),
where
ApM =3 pMm i Q
2.34
{ P =0 on 0Q), 234

and with p(0) € X*(Q). Since the initial data in (2.33) belongs to P, L(Q) and because of the structure
of the equations, we look for solutions of the form

P = ) Z‘Pq Jwp,q(x,y).
[pl<ma<m
peZ qeEN
Then, by Lemma 2.3.1 we get:

-y 5 ( - )cmmwp,q(x,m.
2

lpl<mgsm
peZ qeN

Thereby, (2.33)is reduced to a finite dimensional ODE system for the coefficients cp q ( )for{lpl, q} <m,
and we can apply Picard’s theorem to find a solution on a time of existence depending on m. Next, we will
use energy estimates to prove that there is a time of existence T, uniform in m, for every solution p'™ (t)
of (2.33) and a limit p(t) which will solve (2.29). To do this, we recall that

o™ B[] and = (™) = (@[] B ]

Taking derlvatlves 0%, with |s| < k on the first equation of (2.33) and then taking the L*(Q) inner product
with 0°p'™, we obtain

(atasp["ﬂ asp["ﬂ) - (asug“” asp[m]) _ (aSPm [u“‘ﬂ -Vp“‘”} asp[m]) 1L
For the first term, since '™ solves Poisson's problem (2.34), integrations by parts give us
I= (9% (m] oS (ml]) _ Js (m] OSA (ml) _— _ oS (ml]2 5
xb T, 0%p LUNS P l0°u ||LZ(Q) (2.35)
thanks to the fact that 6311) (mlo =0, for any even number n. For the second one, we need to distinguish

between an even or odd number of y-derivatives. In any case, the properties of P, Qun given by Lemma
2.2.4 and the commutator estimate (2.32) with f = u™ and g = Vp!™ give us the inequality

115 0% ™ gy (I78™ s o) 0™l () + 8™ (o) [IVe ™l a) ) - 2.36)
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Summing over |s| < k and putting together (2.35) and (2.36) we obtain
Loyt S ™l [Vul™]| [pm]] + [u™| o™
20t Hk(Q) ~ H*(Q) Loo(Q) P Hk(Q) Hx()IIVP L (Q)

and as ul™ = V™ where ™ solves (2.34) by Lemma 2.3.1 we get ||u[m]||Hk(Q) N ||p[m]||Hk(Q).
Therefore, we finally obtain that

10ulp™ 1B ) S HP™ i) (V8™ gy + IV ™ o) ) S 0™ IRy o 0™ 0y
(2.37)
where the last inequality is true provided that k > 3 due to the Sobolev embedding L*°(Q) «— H*(Q).

Hence, forallmando <t < T < (c ||p||H3(Q)(O))7IWe have that

IPm [p]ll+3 () (0) < llpllz () (0)
1—ct|Pmlpllhiz0)(0) ~ 1—ctllplhio)(0)

™ [s(0) (1) < (2.38)

and, in particular, that

[m] HpHH3(Q)(o)
sup lp™ k) (t) < :
o<t<T ) I—cTllpll30)(0)

Applying (2.38) in the last term of (2.37), we obtain for all m and 0 < t < T by Gronwall’s lemma that

v lpllz(a)(0)
167 ) (8) < IPomlo™ s ) ©) exp e [ o
H(Q) m H(Q) P o I—csllpllzn)(0)

t o lpllrs () (0)
< 0 ‘
1Pl () (0) exp [C/o 1—csllplln(a)(0) S]

and, in particular, that

sup ||p[m}||Hk(Q)(t) < Cllpllx () (0) (2.39)
ost<T

where C is a constant depending only on ||pl[}3 () (0).
Therefore, the family p[m] is uniformly bounded, with respect to m, in L™ (O, T; Hk(Q)). One con-
sequence of the Banach-Alaoglu theorem (see [55]) is that a bounded sequence IIp[m]IIHk( o) <K has a

subsequence that converges weakly to some limit in H*(Q), which is the dual of a separable Banach space.
Thisis p™ (t) — p(t) in H*(Q) foro < t < T.
Moreover, the family 8, p™ is uniformly bounded in L*° (o,T; Hk_Z(Q)) . By (2.33) we have that

sup ||6tp[m]||kaz(Q)(t) = sup ||u£m] — P [u[m] -Vp[m]] lHx—2(q)(t)
ot<T ot<T

< sup W™l (t) + sup [P [uhﬂ.vp[m]} k20 (1)
ot<T ost<T

We need to show that ul™ . Vpl™ € X*¥~1(Q) in order to apply Lemma 2.2.4, for k > 3, and to get

P [u™ - Vo™ o) (1) < ™ - Vo™l g
S ™20y V™ i (o) + 0™ [ () IV ™ k2 (0

S ™ o) (O 1™l ) (1)
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where in the last inequalities we used (2.31) and the Sobolev embedding L (Q) «— H*(Q).
Checking that u™ . vpl™ e X*1(Q) reduces to see that a{; <u[m] . Vp[m]) lac = O for any even
natural number n. We start with the observation

al™ - Vo™ = @ [w™ | P [0:0™™] + P [u™] @ [3y0™]
and the fact that, due to (2.17) and (2.18),

ai(bq Cq)(y) = (aibq)(y) Cq(U) + Z(aybq)(y) (aqu)(y) —+ bq(U) (aicq)(y)
= (—1)(qm)*bq(y) cq(y).

Iterating this procedure and using that b (£1) = 0 we prove the boundary conditions for the derivatives
of even order of the non-linear term.

As before, by Lemma 2.3.1 we obtain the bound lal™] ko) (t) S o™ Ik () (t) and putting all
together we obtain

sup_[910™ () () S sup_ 0™l (8) [14 0™ gy (1)
ost<T ost<T

< Cllelee()(©) [1+ Clollia)(0)]

thanks to (2.39). So, the family of time derivatives d,p'™ (t) is uniformly bounded in L* (o, T; H*2(Q)).

Therefore, as we have seen above, the family of time derivatives dep ™ (1) is uniformly bounded in
L> (0, T; H<2 (Q)). Then, by Banach-Alaoglu theorem, 3+ p (mJ(t) has a subsequence that converges weakly
to some limit in H* 2(Q) foro < t < T.

Moreover, by virtue of Aubin-Lions’s compactness lemma (see for instance [43]) applied with the triple
H*(Q) cc H*}(Q) c H*2(Q) we obtain that the convergence ™M = pis strongin C(0, T; H*1(Q)).
Asul™ = V™ where ™ solves (2.34) and the convergence o™ s pis strongin C(0, T; H*1(Q)),
we obtain the strong convergence u™ = win C(o, T; Y 1(Q) x X*(Q)). Using these facts, we may
pass to the limit in the non-linear part of (2.33) to see that P, [wml. Vp[m]] —u-VpinC(0, T; H*2(Q))
as follows:

||]P)n1[urhﬂJ : Vp[m]] —u- VpHHk—Z(Q)
= [P ™ - VoM £ ul™. vplm £ ul™ . vp —u- Vol q)
< H(]P)m _H)[u[mJ : Vp[m]]Hkaz(Q) + Hu[m] ! V(P[m] - p)HHk—Z(Q)

—i—H(u[m]—uprHHk,z(Q)—>O as m — oo.

In the limit, we use the fact that lim [Py, [f] — fll}s(q) = Ofor f € X*(Q), together with the conver-
m—00

gences ofu™ — wand p[m] — pand (2.31), fork > 3.

Now, from (2.33), we have that atp[m] = wgm]—IP’m [u[m] . Vp[m]] — w,—u-VpinC(0, T; H*2(Q)).

Since p'™ — pin C(0, T; H* (Q)), the distribution limit of 3;p™ must be dp for the Closed Graph
theorem [5]. Thusit follows that p(t) is the unique classical solution of (2.29) which lies in C(0, T; H*1(Q)).
Then, to show that p € C(0, T; H*(Q)) we follow [46, p. 110].

Firstly, we recall that p € L*°(0, T; H*(Q)) c L%(0, T;H*(Q)) and we start proving that p(t) is con-
tinuous on [0, T) in the weak topology of H*(Q). To prove that p € Cy (0, T; H*(Q)), we define the dual
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pairing of (H®*)*(Q) and H*(Q) as [, -] : (H®(Q))* x H*(Q) — R given by [¢, f] := @I[f]. Hence, be-
cause p!™ — pin C(0, T;H*1(Q)), it follows that [, p™ (t)] — [@, p(t)] uniformly on [0, T) for any
@ € (H(Q))*.
Using that (H*"1(Q))* is dense in (H*(Q))* by means of an e-argument together with (2.39), we have
[, p™] = [0, p] uniformlyon [0, T) forany ¢ € (H*(Q))*. This factimpliesthat p € Cy/(0, T; H*(Q)).
By virtue of the fact that p € Cw/(0,T; H*(Q)), it suffices to show that the norm Pl ) (t) is a
continuous function of time to get that p € C(0, T; H*(Q)).

Recall the relation for the uniform H"(Q) norm for the approximations

o™ (t) < Pl () (0) LTI
k X
H*(Q) 1— Ctllpllx(0) (0) 1—Ctllplhx(a)(0)

For fixed time t € [0, T) we have ||pll}yx(q)(t) < liminf o™ Ik () (). Using this in the above expres-
m—o00

= llpllix (o) (0) + forall o<t<T.

sion, we obtain
2
CtlplBye ) (0)

1—Ctllplhyr(q)(0)
On one hand, by the fact that p € Cy/(0, T; H*(Q)), we get that llpllx (@) (0) < liminf [|pllyyx (o) (t). On
t—ot

ol o) (t) < llplhyxq)(0) +

the other hand, the above expression gives us that lim sup [|p[lyx () (t) < [lpllyx(q)(0). Then, in particu-
t—o*
lar, tl_i)rgl+ lIpllx () (t) = llpllx ) (0). This gives us strong right continuity at t = 0.

It remains to prove continuity of the || - [|x(q)(t) norm of the solution at times other than the ini-
tial time. Consider a time t* € (0, T) and the solution p(t*) € H¥(Q). At this fixed time, we define
p*(0) := p(t*), so we can take p*(0) as initial data and construct a solution as above by solving the re-
gularized equation (2.33). Following the argument we used above to show that ||p||;;x () (t) is continuous
att = 0, we also conclude that it is continuous as t = t*. Because t* € (0, T) is arbitrary, we have
just showed that [|p[ljyx () (t) is a continuous function on [0, T). As a consequence, we have proved that
p € C(0, T;H*(Q)).

Since for every m € N we have pm =P [p™] € X*(Q), that s a{;p[m] lac = O for any even num-
ber n and this property is closed, we obtain that the limiting function also has the desired property, which
concludes that the solution p lies in C (O, T, Xk(O_)) .

Finally, applying Gronwall’s lemma on the above estimate (2.37) and the previous convergence results,
forallt € [0, T) we deduce that

_ t
0™ e 00y (1) < o™l e (0 (0) exp [C | (190 e 0y (5) + 196 9)) ds}
0

. t
< lpllix () (0) exp [C/ (IVpllLe () () + IVullLw(a) (s)) dS]
0

and by lower semicontinuity we obtain (2.30).
O

Theorem 2.4.3. Ifp(t) is a solution of (2.29) in the class C (O, T, Xk(Q.)) with p(0) € X*(Q), and IfT=T"is
the first time such that p(t) is not contained in this class, then

T*
/ (IVullio (0 (5) + [V pllie(ca) (s)) ds = oo.
0

Proof. This result follows from estimate (2.30). O
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2.5 Global regularity for small initial data

This section is devoted to prove the main result of this chapter:

Theorem 2.5.1. LetO(y) := —y. Thereexists ¢ > O and a parametery € Nwithy > 4 such that ifwe solve (2.3)
with initial data o (0) = © + p(0) and p(0) € X*(Q) with||plly«x(q)(0) < & < eowherek > 5 + vy then, the
solution exists globally in time and satisfies the following:

AR

) ol o)) =1l o)) Sel+t)
i) 12— Ollix(0)(t) = IpllHx(a)(t) <2¢

where 0:= p + psuch that o L 0 and p is given by the projection operator onto the subspace of functions with zero
average in the horizontal variable.

In the next three sections we give the proof of this result.

2.5.1 Energy methods for the confined IPM equation

From what we have seen, we know that for p(0) € X*(Q) there exists T > 0 such that p(t) € X*(Q) is
a solution of (2.7) for all t € [0, T). Moreover, if T* is the first time such that p(t) is not contained in this
class, then

T*
/ (IVullio(cn (5) + [Vplliee(ca) (s)) ds = oo.
0

2.5.1.1 A priori energy estimate

In what follows, we assume that p(t) € X*(Q) is a solution of (2.7) for any t > 0. Then, the following
estimate holds for k > 6:

L0ulpl e ) (8) S 19allioe () () 101y ) (8) = (1= ol (8)) Il o (1)
In this section we will perform the basic energy estimate for
0tp+u-Vp=mu,. (2.40)
L*(Q)-estimate: We begin with the [*(Q) bound. We multiply (2.40) by p and integrate over Q. Then,

;atnpuim)=/Qpatpdxdy=/quzdxdy—/Qp(u-V)pdxdy.

By the incompressibility of the velocity and the boundary conditions, we have that the second term vanishes,
so by (2.13) we get:

il = [ prdxdy = [ oo axdy.
Q Q
Finally, applying integration by parts and using that 1 solves (2.14) we achieve:
Sulolt o) = [ A axdy = [ (V0 axdy + [ 30,0l dxay.
Q Q Q
AsPlpn = 0, itis clear that the boundary term vanishes, and consequently we have that
30tllollEz o) = = IVl o) (2.41)
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H¥*(Q)-estimate: We next take 9 to (2.40), we multiply it by 9%p and integrate over Q. Then,

%at||p||2Hk(Q) / 0%p 0,0%p dxdy / 0%p 0k u,dxdy —/ %p 0% (u- V)p dxdy
Q Q Q
= 11 + Iz.
First of all, we study I;. By (2.13), (2.14) and integration by parts, we get:
L = / %p 0%d, Ppdxdy = — / %0 p 0% Pdxdy = / Ad*p 9% dxdy
Q Q Q
— / (Vo p)* dxdy + / dy [9,0%W 2] dxdy.
Q Q
Asp € X**1(Q) due to Lemma 2.3.1, the boundary term vanishes and we have proved that
_ 2
L= — IVl o 2.42)

Secondly, we study I,. The singular term vanishes by the incompressibility and the boundary conditions,

I, = / %p ok (u- V)pdxdy
Q

k—1
= —/ o%p (du- Va*'p) dxdy— )
Q

i=1

k . .
<1>/ 3%p (01w VR p) dxdy.
Q

Now, we want to distinguish between two kinds of terms, first for the case where i = 0 and then the case
where1 < i < k — 1. The term for i = 0 is bounded directly as

~ [ %0 (ou- va*~10) dxdy < ouli~(r) ol o
but working a little bit harder, we achieve
—/Q 3%p (du-VorTp) dxdy = —/Q O%p (B 950" 1p + du, 0405 'p) dxdy
< [ 9% (2w10.010) dxdy + [Rvwlle (o Il
where, for the first integral, we consider two cases:

0u; = 0y | By the incompressibility of the flow it is clear that

/Q 0%p (35w 0x0%'p) dxdy = — /Q 0%p (0yuz 050" ) dxdy < Pusllie () ol -

In this case, by (2.13) we have that

o%p (3yw 3x0* 1p) dxdy :/Qakp (dxuz 3x0% 1p) dxdy —|—/Qakp (3xp dxd*'p) dxdy

< 0uallis(on 0Py o) + ol o) VIR

S
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To sum up, we have proved that

- /Q 2k (du- VO p) dxdy < [0uslli= () 0l o) + olx (o VO,  (2.43)

Indeed, this is the only term that cannot be absorbed by the linear part. This term is the reason why we need
to have a integrable time decay of ||, (). Precisely, the main goal of the next Section 2.5.2is to obtain
a time decay rate for it.

On the other hand, fori =1, ..., k — 1 we separate the other term as follows:

/ dkp (3" M- Vak"1p) dxdy :/
Q Q

=J:(1) + J2(1) i=1,...,k—1.

%0t ;0,08 pdxdy + / 3%pdtu,0,0% T pdxdy
Q

In view of (2.13) and (2.14), we have that J;(1) can be rewritten as
1) = / dkpattlay P ok A dxdy
Q

and we clearly have

k—1 k—3 k—1
> (i) < l10%pllr [Z||ai+lay¢||m||a’<—i—1Aw||Lz 3 10yl 10K A |
<lpllxa) IVl o) for k>4 (2.44)

For J,(i), by (2.13) we obtain that
J.(1) = / %P 0 1A 9, 0% T Tp dxdy
Q

andfori=1,...,k — 1we need to distinguish two situations:
e We have at least one derivative in x. This is 0% = 0% 19. Then, by (2.14) we can write J,(1) as follows:

(1) = — / AP 913 9,05 dxdy
Q

and as before, we clearly have

k-1 k—3 k—1
D (i) < %AV [Z||ai+1axx|)||uo||ayak—i—lpnu + ) 19Vl l19, 0% ol
<ol o) IVl gy, for k>4 (2.45)

o All derivatives are in y. This is 0% = a‘g. In this case, we have that
J.(1) = /Q 0y p 950 9y o dxdy
and by integration by parts we achieve
J.(1) = /Q Oy MNP of 0y dxdy + /Q Oy TMOxp Oy tp 0y TP dxdy — /Q 0y p Ay 0y p 5 dxdy
— /Q Ay [0y M0k 0 tp oy ] dxdy + /Q x [05p 0y 25 ] dxdy.
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By the periodicity in the horizontal variable, it is clear that the only boundary term that needs to be study
carefully is the first one, which vanishes because p € X*(Q) and 1 € X**1(Q). Therefore, we get

J.(1) = /Q Oy M0xp Ay p oy dxdy + /Q O Moxp Oy P 0y P dxdy — /Q 0 p Ay "Oxp Oy dxdy
_ k—1 k—i+1 i+1 k—1 k—1i i+2 k k—1 i+1
_—/Qay AP OFpdy lpdxdy—/gay ApdEtpdl ll)dxdy—i-/ﬂaypay A 2T dxdy

where in the last equality we have used (2.14). Repeatedly applying Holder’s inequality we obtain that

k—1 k—2
Y 1) <IRX AWl [Z 10X~ pll2 [ I + 1103 ol ||a1;¢|u]
i=1

i=1

k—3 k—1
+ 1105 Al [Z|a‘;ip|u|a;“w||m+ > ||a];ip||w||a;”w||u]

i=1 i=k—2

k—2
+11o5 0l [Z 105 AWl 10y Wl + 110y A= |alj¢||u] :

i=1

Then, by the Sobolev embedding, we clearly have

k—1
> 1) <llolhixo) IVl o) for k> (2.46)
i=1

Putting together (2.43), (2.44), (2.45) and (2.46) we have proved that
L S 0wl ol ) + lolhx () VIR o) for Kk >6. 2.47)
To sum up, we have obtained the next energy estimate.

Theorem 2.5.2. Let p(t) € X*(Q) be asolution of (2.7) forany t > 0. Then, the following estimate holds fork > é:
33ulIpIR ) (1) < ClRMlL () (1) 1ol ) (8) = (1= Clllyge 0y (1)) Tl (1), 249

Proof. First of all, we remember thatu = V1 and

%at||p||2i2(ﬂ) :_HVII)H%_Z(Q);
so summing and applying (2.47), we have achieved our target. O

As we want to prove a global existence in time result for small data, this is [|pllyx (o) (t) < 1. Then, the
second term in the energy estimate (2.48) is a “good” one, because it has the right sign. In consequence, we
fix our attention in the first term. If we have a “good” time decay of the L*°(Q))-norm of du,, then we will
be able to prove that ||p||;1x () (t) remains small for all time by a boostraping argument.
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2.5.2 Linear & Non-Linear estimates

Our goal for the rest of the chapter is to obtain time decay estimates for [[0u;[|{ = () (t). As we will see in
the next Section 2.5.3, to close the energy estimate and finish the proof is enough to get an integrable rate.

We approach the question of global well-posedness for small initial data from a perturbative point of
view, that is, we see (2.8) as a non-linear perturbation of the linear problem. The linearized system of (2.8)
around the trivial solution (p,u) = (0, O) reads

0tp =1y,

0tp =0,
u =-—VIT—(0,p),

V:u =0,

together with the no-slip condition on dQ and initial data p(0) € X*(Q) such that p(0) = p(0) + $(0).
It is not difficult to prove that p will decay in time and p will just remain bounded at linear order. Con-
sequently, the linearized problem has a very large set of stationary (undamped) modes.
Now, we return to our non-linear problem:

0tp+u-Vp+0ypuy =1y,

dp+u-Vp —o,
u =-—VIT—(0,p),

V-u =0,

together with the no-slip condition u - n = 0 on 0Q). Since p is decaying, the term u - V{ should be small
and controllable. The term 9, u,, however, acts like a second linear operator since p is not decaying. It is
conceivable that this extra quasi-linear operator could compete with the damping coming from the linear
term. This makes the problem of long-time behavior more difficult.

As in [27] we solve this by, more or less, doing a second linearization around the undamped modes and
showing that the stationary modes can be controlled. Then we wish to prove decay estimates for p in the
following system:

0tp = (1—0ypluy,

atf) _O)
u :_vn_(o; ());
V-u =0,

assuming that the initial data p(0) = p(0) + p(0) is sufficiently small. By showing this, we find the decay
mechanism is “stable” with respect to the sort of perturbations which this second linear operator introduces,
and we are able to keep the decay mechanism and close a decay estimate for p and show that p, while not
decaying, converges as t — oo.

Note that the second equation 0¢p(t) = Oreducestoaconditionattimet = 0, thatisp(y, t) = p(y, 0).
As consequence p will just remain bounded and our goal is to solve the following system in Q:

0tp = (1—0yp)uy,
u =-VIT—(0,p), (2.49)
V-u =0,

besides the no-slip condition u - n = 0 on 0Q). Using the stream formulation (2.13), we can rewrite (2.49) in a
more adequate way as

{ at§ = (1 - ayﬁ) axlp: (2.50)

F_)|t:O = F_) (O) »
where 1) is the solution of Poisson's problem (2.14) and p(0) € X*(Q).
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2.5.2.1 Quasi-Linear Decay

In this subsection we prove L*(Q) decay estimates for the quasi-linear equation

where 1 is the solution of (2.14) given by (2.27) and G(y, t) plays the role of 9y (y, t), is sufficiently small.
Remark: We cannot extract a formula for the solution by taking the analog of the Fourier transform given
by the eigenfunction expansion, because the G(y, t) term mixes the effects of all the Fourier coefficients.

Lemma 2.5.3. There exists ¢ > O small enough such that if ||G||y2([_1 1)) (t) < € for all time, then the solution of
equation (2.51) satisfies that

BulIBI ) (1) S — VIR ) (1),
where D is the solution of (2.14).

Proof. Upon multiplying (2.51) by p and integrating we see that

B0 = [ (1= 6(y) 2 dxdy.
After integrating by parts and using the stream function 1\, we arrive at
20ellplitz o) = /Q (1— G(y)) YAY dxdy
= —/Q (1—G(y)) IVU|* dxdy + /Q G'(y) Y oy dxdy.

Now, applying the Sobolev embedding L°°([—1,1]) < H'([—1, 1]) and the Poincaré inequality, we get

%atHF_)”%_Z(Q)(t) < — [1 —-C ||G||H2([—1,1])(t)] HVII)H%_Z(Q)(JC)-
As ||Gl[z([—1,17) (t) is small enough for all time, we get that ||p||;2( ) (t) is bounded by its initial data. [

As in [27], due to the fact that the Laplacian has discrete spectrum on Q we can actually deduce that p
decays in L*(Q) so long as its higher derivatives are controlled.

Lemma2.5.4. Letoe € Nand N : Rt — R™. The solution of (2.14) satisfies the following lower bound:

1

ﬁ”ﬁ”z cx(Q)(t) (2.52)

2 1 =112
||V1M|LZ(Q)(t) > 7“9”@(5})“) - N(t)

N(t)

Proof. The solution of (2.14) is given by

Z Z ( ) ) Fwlpllp, q) wp,q(x,y).

pPEZ qEN

Moreover, as ||V1|)||2L2(Q) = —(, AP) = (1, 0xp), it is clear that

||VIJ)||%_2( Z Z ﬂ |3rw pl(p, q)‘

pEquNp f
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Now, on one hand, we introduce the auxiliary function N : R* — R™ to obtain that

1 . 1 1 _ 2
IVl o) (8) > I8l oy (D + ) — Fwlpllp,

1

=112 _ 2
Z Ny | Pl = > Folpllp, )" | . 2.53)
p2+q?(7t/2)2 2N (t)

On the other hand, by Corollary 2.2.3 we have that

_ 2 1 2 2\ & _ 2
S bl g X (P (eE)) elea)
Pr+q?(7/2)22N(t) Pr+q?(7/2)2 >N (t)
L e
< ool o 1) (2.54
Combining the estimates (2.53) and (2.54) we arrive at (2.52). O

This gives that

1

~112 =112 =112
Il ) (8) £ g P12 (0 + v s o) (8

and assuming that N : Rt — R satisfies that N/(t)N(t) > 1 we obtain

(N(t)—=N(s)

) _ _ ) e~ )
Il 0(8) S € MO NOpIR g, 0) + [ S o) ds. @59

For simplicity, we take N(t) := 2v/1 + tin (2.55), which give us

_112 —2/TF || 5|2 t e 2WIHt—Vits) ~112
1Bl (8) S €2l )00+ | [ SRR N T
0 (1+s) 2

Now, we use the following calculus lemma:

Lemma 2.5.5. Let o« € N, we have that

t o—2(VI+t—V1+s) 1
< -

/ I+« ds ~ «©
°  (1+4s) 2 (1+1t)2

Proof. The proof of this lemma is simple and basically follows after we split the integral into two pieces:
one from O to t/2 and the other from t/2 to t. The integral from 0 to t/2 decays exponentially. The second
integral decays like (1 + )" multiplied by the following factor:

t 2(VIFt—y/14+t/2
[ a2 [T (T e i
t/2 0

This completes the proof. 0
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Then, if ||Gl[jz([—1,17) (t) is small enough for all time, applying the previous lemma we see that

_2 Hé”zoo([o t] o«
HPHLZ(Q)(t) S : ,g
(1+1t)2

(Q)) (2.56)

Now, we prove a similar decay for higher derivatives. The idea is then to show that ||p||* x(Q) (t) is bounded
byits initial data; this would then give (2.56) with L2(Q) replaced by H*(Q) and H*(Q) replaced by H* " *( Q).

Lemma 2.5.6. Letk € N U {0}and fix an auxiliary parameter x € N. There exists ¢ > O small enough such that if
Gl acrz (117 (t) < €foralltimeand p(0) € H*+*(Q), then the solution of equation (2.51) satisfies:

5112
191 v ) (O)

N

1B ) (1)

[0,

(1+1t)2

Proof. Fixn € N U {0} such thatn < k + «. First, we will prove that |||} n)t) < llplI* n(a)(0).
Proceeding as before, after integrating by parts and using the stream function 1\, we arrive at

20ullollin Z/Qa“ [(1— G(y))Wp] ™AV dxdy.

By Leibniz’s rule we have that
n
BBl = [ (1—Gly)ampamahdxdy+ Y () [ 31— G(y)o™ hamAp dxdy.
Q i\t Ja

As before, applying the Sobolev embedding L*([—1,1]) < H'([—1,1]) and Poincaré’s inequality, we get
L0ulIplln () (1) < = [1= ClIGlmen(ypy (O] IVIEn 0 (8.

Then, as [|G|lyn+2((—1,1)(t) is small enough for all time, we get that [|p|l}n (o) (t) is bounded by its ini-
tial data. Applying this in (2.56), we have proved our goal for the case k = 0. Arguing as we did above when
we proved the L*(Q) = H°(Q) decay, we can extend the result for general k € N. O

2.5.2.2 Non-Linear Decay

Next, we will show how this decay of the quasi-linear solutions can be used to establish the stability of the
stationary solution (p,u) = (0, 0) for the general problem (2.8). When perturbing around the stationary
solution, we get the following system:

(2.57)

0tp— (1—0yplu, = —u-Vp,
atﬁ = —u- V§,
where u = V11 and  is the solution of (2.14).

Using Duhamel’s formula, with G(y, t) = 9y p(y, t) small enough in the adequate norm, we write the
solution of (2.57) as

p(t) _eﬂt%(o)—/t e?(ts) [WUp] (s)ds  and  p(t) _ﬁ(o)—/tm(s)ds

where e (V%) denotes the solution operator of the associated quasi-linear problem (2.50) from s to t. There-
fore, we have

1PllHn+e () (0) ¢ 1 _
1ol (8) < > +/ 8 VBllnra(a) (s) ds.
o) 1+1)7% o (1+(t—s)* )
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2.5.3 The Bootstraping

We now demonstrate the bootstrap argument used to prove our goal. The general approach here is a typical
continuity argument that has been used successfully in a plethora of other cases. Theorem 2.5.2 tells us that
the following estimate holds for k > 6:

L0UIpl ) (1) < C IO (1) PRy ) (8 = (1= Clollrga) (©) o) (). @59
We need to prove:

Lemma 2.5.7. If{[pll}i<(0)(0) < eand|lplliix(q)(t) < 4eontheinterval [0, TIwith0 < € < &g small enough.
Then||pllvix () (t) remains uniformly bounded by 2 € on the same interval [0, T].

We will prove Lemma 2.5.7 through a bootstrap argument, where the main ingredient is the estimate
(2.58). We will work with a bootstrap hypothesis to assume that [|p||}4«(q)(t) < 4¢ on the interval [0, T],
where k is big enough and 0 < ¢ << 1such that

(1—Cllpllx(a)(t)) =0 on [0, TI.

Then, by Gronwall’s inequality we have

t
Ipllrx (o) (1) < llpllix(a)(0) exp (C/ 10uzllLe () (s) dS) telo, T
0

Our goal is to prove that [[0u,|| () (t) decays on time at an integrable rate. As L*°(Q) — H*(Q) by
the Sobolev embedding, it is enough to prove this for |[u, |3 () (t). This will allow us to close the energy
estimate and finish the proof.

2.5.3.1 Integral decay of |[u||}3 (o)
In order to control |[u,}3 () in time it is enough to control [|p||}3 (). We have the following result:

Lemma 2.5.8. Assume that||p|l1i<(0)(t) < 4¢eforallt € [0, T] wherex > 5 + 2y withy > 4. Then

£

Pl 0 (1) < 7 forall te[o,Tl.

(1+1)

Proof. Byassumption, dyp(t)issmallin H*'(Q) forallt € [0, T]. This implies that e (t%) hasnice decay
properties fors < tandt € [0, T] in H3(Q) if k > 6 +v. Hence, Duhamel’s formula gives us

1PlH3+v () (0) ¢ 1 -
1Bl (@) (8) < +/ & V3l 5)ds
Y H3(Q)( ) (l—l—t)% o (1+ (t—s))% Y H3+Y(Q)( )

and we have that
[w- Volliser <llw- Vol S lullisey @) 18l @) S 1BIR (o)
Hence,
lIpll++v () (0) t 1
Bl () (1) < Q)0 / bR (s) ds
e 1+ )7 o (1+(t—s)¥ = )

and, in conclusion, we need a control in time of ||p||++v () -
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However, due to the well-known Gagliardo—Nirenberg interpolation inequalities

ID¥flliz (o) < CIDPHIRG o) I3 ) + Clifllz(a
we get
||F_)HH4+Y(Q) § HF_)HIF/liz(”W(Q) ||F_)||1]$2(Q) (2.59)

Therefore, if we apply (2.59) in the previous inequalities, we get

- lIpll3+v () (0) EIplls o) (s)
||p||H3(Q)(t) N (1~|—‘(t)£ /O (1—1—(t(—)s)ﬂ ||p||H3(Q)(S) ds

where we have defined k € N so that k > max{5 + 2y, 6 + v}.
By hypothesis, we have that [|p||}y« () (t) < 4¢ on the interval [0, T]. Then, we obtain that

t
wamﬂﬂéui;X+A(Lui;mzmmmnwd&
In particular, there exists 0 < T*(C) < T such that for t € [0, T*(C)] we have

Ce
1+t)7

The following basic lemma is stated without proof (for a proof see [27, p. 584]):

1pllrs () < 4

Lemma2.5.9. Letd, T > O, then

/t ds o Cs.t
o (14 (t—s5))® (1+8)HT = (14 t)min{d1+7}
If we restrict to 0 < t < T*(C) and we apply the previous Lemma 2.5.9, we have

_ Ce t Ce 4Ce

Iolkoien® € o [ oy s

Ce 4Ce?
Sator ator
The last term in the expression above is quadratic in ¢, it is enough to find 0 < e <« 1 small enough so that
Ce

(1+1)%
forallt € [0, T*(C)] and, by continuity, forall t € [0, T]. O

1Pl () (t) <2

Thus, withy > 4 we have proved the integrable decay of u,, and we are able to close our energy estimate.
We are now in the position to show how the bootstrap can be closed. This is merely a matter of collecting
the conditions established above and showing that they can indeed be satisfied.

In conclusion, if ||p[[x () (t) < 4eforallt € [0, T] we have that

t
llpllHx ) (t) < llpllx(q)(0) exp <C/ lousllreo () (s) dS)
0]

t o Ce .
< € exp C/ ————ds | <eexp(Ce)
o (I1+s)«

and [|pllyx () (t) < 2¢eforallt € [0, T] if we consider ¢ small enough, which allows us to prolong the
solution and then repeat the argument for all time.
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CHAPTERS33
THE DAMPING BOUSSINESQ SYSTEM

ABSTRACT: In this chapter, we consider the 2D inviscid Boussinesq equations with a velocity damping term
inastrip T x [—1, 1], with impermeable walls. In this physical scenario, where the Boussinesq approximation
is accurate when density/temperature variations are small, our main result is the asymptotic stability for a
specific type of perturbations of a stratified solution. To prove this result, we use a suitably weighted energy
space combined with linear decay, Duhamel’s formula and “bootstrap” arguments.

3.1 Introduction

The fundamental issue of regularity vs finite time blow up question for the 3D Euler equation remains out-
standingly open and the study of the 2D Boussinesq equations may shed light on this extremely challenging
problem. As pointed out in [46], the 2D Boussinesq equations are identical to the 3D Euler equations under
the hypothesis of axial symmetry with swirl. The behavior of solutions to the 2D Boussinesq system and the
axi-symmetric 3D Euler equations away from the symmetry axis v = 0 should be “identical”.

The Boussinesq equations for inviscid, incompressible 2D fluid flow are given by

dto+u-Vo =0, (x,t) e R”* x R
otu+ (u-V)u+Vp =g(0,0),
[2D Boussinesq] V-u =0, (3.1
ui—o =u(0),
0li—o =0 (0),

where u = (uy, u,) is the incompressible velocity field, p is the pressure, g is the acceleration due to gravity
and p corresponds to the temperature transported without diffusion by the fluid.

3.1.1 Motivation and state-of-the-art

Boussinesq systems are widely used to model the dynamics of the ocean or the atmosphere, see e.g. [45] or
[50]. They arise from the density dependent fluid equations by using the so-called Boussinesq approximation
which consists in neglecting the density dependence in all the terms but the one involving the gravity. We
refer to [56] for a rigorous justification.

Global regularity of solutions is known when classical dissipation is present in at least one of the equa-
tions (see [11], [36]), or under a variety of more general conditions on dissipation (see e.g. [7] for more
information).

In contrast, the global regularity problem on the inviscid 2D Boussinesq equations appears to be out
of reach in spite of the progress on the local well-posedness and regularity criteria. Several analytic and
numerical results on the inviscid 2D Boussinesq equations are available in [12], [26], [61], [28] [34].

In the class of temperature-patch type solutions with no diffusion and viscosity in the whole space, there
is a vast literature, see for example [19], [30] and references therein.
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This work is partially aimed to understand the global existence problem by examining how damping
affects the regularity of the solutions to the inviscid 2D Boussinesq equations. In the present chapter we
investigate the following system:

dro+u-Vo =0, (x,t) € Q x R
dtutu+ (u-V)u+Vp =g(0,0),

[2D damping Boussinesq] V-u =0, (3.2)
uli—o =u(0),
0lt=o =0 (0).

Since these equations are studied on a bounded domain, we take u to satisfy the no-penetration condition
u - n = O on the boundary of the domain 0Q) where n denotes the normal exterior vector.

From the mathematical point of view, the interest to study the 2D Boussinesq system with a velocity
damping term follows from the fact that (3.2) can be seen as the limiting case of fractional dissipation on
the velocity equation without buoyancy diffusion.

From a physical point of view, the previous system appears in the field of electrowetting (EW), which
is the modification of the wetting properties of a surface (which is typically hydrophobic) with an applied
electric field. It was developed from electrocapillarity by Lippmann in 1875 [44] in his PhD thesis, but did
not attract much attention until the 1990’s, when the applications increased.

Through rigorous theory and experiments, Lippmann proves a relationship between electrical and sur-
face tension phenomena. This relationship allows for controlling the shape and motion of a liquid meniscus
through the use of an applied voltage. The liquid surface changes shape when a voltage is applied in order
to minimize the total energy of the system.

More specifically, the system (3.2) (without nonlinear term) models droplet motion in a device driven by
Electrowetting-On-Dielectric (EWOD), which consists of two closely spaced parallel plates with a droplet
bridging the plates and a grid of square electrodes embedded in the bottom plate [60]. Applying voltages
to the grid allows the droplet to move, split, and rejoin within the narrow space of the plates. They model
the fluid dynamics by using Hele-Shaw type equations, but an extra term beyond the usual Hele-Shaw flow
appears: a time derivative term is included because it may have a large magnitude due to rapidly varying
pressure boundary conditions if high-frequency voltage is used to modulate the droplet’s contact angles.

3.1.2 Hydrodynamic stability

In our physical system, where there is gravity and stratification (u = 0 and p=p (y) is an stationary solu-
tion), vertical movement may be penalized while horizontal movement is not. This opens up the perspective
of treating the corresponding initial value problems from a perturbative point of view. The basic problem
is to consider ©(y) a given equilibrium for (3.2), and to study the dynamics of solutions which are close to
itin a suitable sense. Hence, if we write the solution as

o (x,y,t) =0(y) +p(x,y,t) (3.3)

and the pressure term is written as

Yy
plo Y0 = Plxy, g [ Ols)ds.
0
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Then, the exact evolution equations for the perturbation become

otp+u-Vp =-0y0u,, (x,t) € Q x R"
otut+u+ (u-V)u+ VP =g(0,p),
V-u =0, (3.4)
ut—o =u(0),
pli—o = p(0),

besides the no-slip condition on Q). For hydrodynamic stability questions, p(0) is assumed initially small
in certain norm. This work is focused on laminar equilibria, simple equilibria in which the fluid is moving in
well-ordered layers. However, even for these simple configurations, surprisingly little is understood about
the near-equilibrium dynamics.

The field of hydrodynamic stability has a long history starting in the 19th century. One of the oldest
problems considered is the stability and instability of shear flows, dating back to, for example, Rayleigh [53]
and Kelvin [39], as well as by many modern authors with new perspectives (see [25] and references therein).
In recent years, this type of problems has attracted renewed interest. For example, the stability of the planar
Couette flow in 2D Euler [3] or in the 2D and 3D Navier-Stokes equations at high Reynolds number [2]. Very
recently, this was done for the ideal MHD system (where there is viscosity in the momentum equation but
there is no resistivity in the magnetic equation), for the two-dimensional case in [41] (see also some further
results in [6], [54]). The three-dimensional case was then solved in [63], see also [42]. In the context of the
2D Boussinesq system when dissipation is present in at least one of the equations see [24] and [40], where
the authors study the global well-posedness and stability/instability of perturbations near a special type of
hydrostatic equilibrium. Finally, for other type of problems as the (3-plane equation or the IPM equation
see [28], [52] and [27], [10] respectively.

3.1.3 The Rayleigh-Bénard Stability

The phenomenon known as Rayleigh—Bénard convection has been studied by a number of authors for many
years. The idea is simple: take a container filled with water which is at rest.

Now heat the bottom of the container and cool the top of
the container. It has been observed experimentally in [32] and
mathematically in [26] that if the temperature difference be-
tween the top and the bottom goes beyond a certain critical
value, the water will begin to move and convective rolls will be-
gin to form. This effect is called Rayleigh-Bénard instability.

In one sentence, we are going to study the opposite of the
Rayleigh-Bénard instability. Now, in the inverse case, when
one cools the bottom and heats the top, it is expected that the
system remains stable. Here the temperature and density are
assumed to be proportionally related, so that the cooler fluid
is more dense. The gravitational force is thus expected to sta-
bilize such a density (or temperature) distribution. In the presence of viscosity it is not difficult to prove
this fact, see [23]. However, without the effects of viscosity (or temperature dissipation), it is conceivable
for such a configuration to be unstable.

Under the Boussinesq approximation, a physical relevant scenario to study (3.2) is where the fluid is con-
fined between infinite planar walls and density/temperature variations are smalls. For this reason, in the
present article, we focus on the stability in Sobolev spaces of the steady state ©(y) := y for the 2D damping
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Boussinesq system setting on the two-dimensional flat strip QO = T x [—1,1] with no-slip condition on
0Q). In our scenario, this only means that u,|yn = 0. It is equivalent to assume impermeable boundary
conditions for the velocity in top and bottom, together with periodicity conditions in left and right sides.

The main result of the chapter is the asymptotic stability of this particular stratified state ©(y) for a
specific type of perturbations. A more precise statement of our result is presented as Theorem 3.7.1, where
we also illustrate its proof through a bootstrap argument. Despite the apparent simplicity, understanding
the stability of this flow is far from being trivial. Asin [27] and in [61], in this chapter a key idea is that strat-
ification can be a stabilizing force. It is clear that a fluid with temperature that is inversely proportional
to depth is, in some sense, stable. In fact, we will be able to prove that smooth perturbations of stratified
stable solutions are stable for all time in Sobolev spaces.

In order to solve our problem in the bounded domain Q, in certain Sobolev space, we have to overcome
the following new difficulties:

i) To be able to handle the boundary terms that appear in the computations.

ii) The lack of higher order boundary conditions at the boundaries, due to the fact that we work in
Sobolev spaces.

Indeed, both difficulties i) and ii) can be bypassed if our initial perturbation and velocity have a special
structure. We introduce the following spaces, which we used in chapter 2 to characterize our initial data:

X*(Q) = {f e H*(Q) : 9y floo =0 forn=0,2,4,...,k*}, (3.5)
Y*(Q) ={f e H*(Q): 0]} floo =0 forn=1,3,5...,k.} (3.6)

where we define the auxiliary values of k* and k, as follows:

e k—2 k even, and K. k—1 k even,
k—1 k odd, k—2 k odd.

Moreover, for our initial velocity field, we will use the notation H¥*(Q) for H*(Q; Q) and we also define the
following functional space:

XM(Q) = {ve HXQ) 1 v = (v, v2) € YHQ) x X*(Q)} (.7)

Lastly, we remember that the Trace operator T : H'(Q) — [*(0Q) defined by T[f] := f|yq is bounded for
all f € H'(Q). Consequently, all these spaces are well defined.

3.1.4 Notation & Organization

We shall denote by (f, g) the L inner product of f and g. As usual, we use bold for vectors valued functions.
Letu = (uj, u;) and v = (v1, v,), we define (u,v) = (ug, vi) + (up, vz).
Also, we remember that the natural norm in Sobolev spaces is defined by:

il = 12 ) + 1% sy [l 1= 1% ).
For convenience, in some places of this chapter, we may use L2, H and H* to stand for L2(Q), H*(Q) and
H*(Q), respectively. Moreover, to avoid clutter in computations, function arguments (time and space) will

be omitted whenever they are obvious from context. Whenever a parameter is carried through inequalities
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explicitly, we assume that constants in the corresponding < are independent of it. Finally, for a general
function f : Q — R, we define:

fly) = 217[/ f(x/,y) dx’ and f(x,y) = f(x,y) — f(y). 3.8)
Organization of the chapter: In Section 3.2 we begin by setting up the perturbated problem. We go on to
motivate the functional spaces X*(Q) and Y*(Q) where we will work. The key point of working with initial
perturbations with the structure given by these spaces is showed in Section 3.3. Section 3.4 contains the
proof of the local existence in time for initial data in these spaces, together with a blow-up criterion. The
core of the chapter is the proof of the energy estimates in Section 3.5. In Section 3.6 we embark on the proof
of a Duhamel’s type formula for our system together with the study of the decay given by the linearized
problem. Finally, in Section 3.7 we exploit a bootstrapping argument to prove our theorem.

3.2 The Equations

For our particular choice of ©(y) = y and g = 1, the system (3.4) reduces to

oip+u-Vp =—u,, (x,t) € Q xR"
orut+u+ (u-V)u+ VP = (0, p),
V-u =0,
ui—o =u(0),
pli=o = p(0),

besides the no-slip conditionu - n = 0 on 0Q). Note that our perturbation p does not have to decay in time.
Indeed, if we perturb the stationary solution by a function of y only there is no decay. More specifically,
p = p(y) and u = O are stationary solutions of this system.

As our goal is the asymptotic stability and decay to equilibrium of sufficiently small perturbations, this
could be a problem. To overcome this difficulty, the orthogonal decomposition of p = p + p given by (3.8)
will be considered.

In order to prove our goal, we plug into the system (3.2) the following ansatz:
o (xy,t) =y+plxy,t),

1 Y .
p(x,y,1) zﬂ(x,y,t)+2y2+/ ply’,t)dy’.
0

Then, for the perturbation p, we obtain the system

dip+u-Vp —u,, (x,t) € Q x R
orut+u+ (u-V)u+ VII (o,p)
V-u =0, 3.9
ui—o =u(0),
plt=o = p(0),

besides the boundary condition u - n = 0 on 0Q). The evolution equation for the perturbation p of the
previous system (3.9) can be rewritten in terms of p and p as follows:

(3.10)




Notice that p is always a function of y only and p has zero average in the horizontal variable. It is expected
that p will decay in time and p will just remain bounded. The systems (3.9) and (3.10) are the same, but
depending on what we need, we will work with one or the other.

3.3 Mathematical setting and preliminares

In this section, we will see the importance of selecting carefully our initial perturbation p(0) € Xk(Q)
and our initial velocity u(0) € X*(Q). Moreover, two adapted orthonormal basis for them are considered,
together with their eigenfunction expansion.

3.3.1 Motivation of the spaces X*(Q), Y*(Q) and X*(Q)

By the no-slip condition u,(t)[a = O, the solution p(t) of (3.9) satisfies on the boundary of our domain
the following transport equation

0¢p(t)lon +w(t)oxp(t)lon =0 (3.11)

As our objective is the global stability and decay to equilibrium of sufficiently small perturbations, it seems
natural to consider p(0)|so = O. Then, by the transport character of (3.11) the initial condition is preserved
intime p(t)[po = 0 aslong as the solution exists. In addition, applying the curl on the evolution equation
of the velocity field, using the incompressibility condition, and restricting to the boundary, we have that

at(ayul)(t”aﬂ = _(ayul)(t”aﬁ - ul(t)ax(ayul)(t)bﬂ

because p(t)laa = u,(t)[oo = 0. Hence, we find that d,1;(0)[5o = Oimplies that 9 (dyw;)(t)[oq =0,
and consequently the condition on the boundary is preserved in time. Hence, by the incompressibility of
the velocity, we get

dyw(t)oo =0 and Au,(t)on =0. 3.12)

Previous relations (3.12) give the following equation for the restriction to the boundary of the derivative in

time ofaiJ p(t):

0:0%p(t)o = —w(1)3x(340) (Do — dyua (V% p(t)loo.

Therefore we find that ag p(0)la = Oimplies that 0¢ ai p(t)loo = O, and consequently the condition on
the boundary is preserved in time.

Iterating this procedure we check that the conditions a;‘p(onm = a;‘uz(o)bg =0forn =2,4,...
and a;‘ul (0)Jaq forn =1,3,...are preserved in time. This is the reason why we can look for perturbations

p(t) in the space X*(Q) and velocity fields u(t) in X*(Q), if the initial data belongs to them.

3.3.2 Anorthonormal basis for X*(Q) and Y*(Q)

Let us start by defining the following:

ap(x) == \/;771 exp (ipx) withx € T forp € Z
e cos (qyg> q odd
bgly) = A withy € [-1,1] forq € N,
sin (qy E> q even
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where {ap }pez and {bq}qen are orthonormal basis for L*(T) and L*([—1, 1]) respectively. Indeed, {b qlqen

consists of eigenfunctions of the operator S = (1— 612J ) with domain 2(S) = {f € H*[—1,1] : f(£l) =0}

Consequently, the product of them wy, 4(x,y) := ap(x) bq(y) is an orthonormal basis for L2(Q).
Moreover, we define an auxiliary orthonormal basis for L*([—1, 1]) given by

sin (qyz) q odd
cqly) == % withy € [-1,1] forq € NU{0},
cos (qy ) q even

cosisting of eigenfunctions of the operator S with domain 2(S) = {f € H*[-1,1] : (0yf)(£l) = 0}. In
the same way as before, the product @, 4(x,y) := ap(x) cq(y) is again an orthonormal basis for L2(Q).

Remark: Let us describe the analogue of Fourier expansion with our eigenfunctions expansion. This is, for
f € [*(Q), we have the [*(Q)-conergence given by:

=Y Fulfllp,q) wpq(x,y)  whit F[fl(p,q) :=/ f(x',y") wp,q(x’,y’) dx'dy’
(pq JEZXN =
(3.13)

or

Z Falfllp,q) @p,q(x,y)  whit Folfl(p,q) ::/ f(x,y’) @p,q(x/,y’") dx’'dy’".
(p q)EZXNU{0} 0
(3.14)

In the next lemma, we collect the main properties of our basis.
Lemma3.3.1. The following holds:

o {Wp,qt(p,q)ezxN is an orthonormal basis oka(Q).
o {®@p,q}(p,q)ezxNUo} IS an orthonormal basis of Y(Q

Moreover, let f € X*(Q)and g € Y*(Q). Forsy, s, € NU{0}such that s; + s, < k, we have that:

10510521 o) = D Y IpPUqZP (T [fl(p, q)P,

PEZ qeN

Lo alt 0, =D D IpMaZP 1F P, q)F,

PEZ qeNU{0}
where F, [f](p, q) and F5 [f1(p, q) are given by (3.13) and (3.14) respectively.

Introducing a threshold number m € N, we define the projections P, and Q,,, of [*(Q) onto the
linear span of eigenfunctions generated by {wyp, q}(p,q)ezxn and {@p q}(p,q)ezxnuio) respectively, such
that {|p|, q} < m. This is, we have that:

P [fl(x,y) Z Z Folflp, q) wp,q(x,Y), (3.15)
[pl<m gsm
peZ gqeN

Qm Z Z Folflp, q) @p,q(x,Y)-

[pl<m gqsm
peZ qeNu{o}

These projectors have the following properties:
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Lemma 3.3.2. Let Py, Qu, be the projectors defined in (3.15). For f € L*(Q), we have that Py, [f] and Q. [f] are
C*®(Q) functions such that:

e Forf € H(Q)we have that:
OxPinlf] = Prnloxfl, 0xQmlf]l = Qmloxfl, aypm[ﬂ = Qm[ayﬂ and ay@m[ﬂ = Pm[ayﬂ-
In consequence, for f € H*(Q) we have that:

R Pnlfl =Pm[03f]  and  3LQumlf]l = Qum[d%1].

e The projectors are self-adjoint in L*(Q):
(Pmlf], g) = (f,Pmlgl) and (Qmlf], g) = (f, Qmlg]) vf, g € L*(Q).
e Forf e X*(Q) and g € Y& (Q):
Pl (o) < flhiea),  Pmlfl = f inX*(Q),
<

1Qmlgllic(a) < llglhica), Qmlfl = f inY*(Q).

e Leray projector L := I + V(—A) " div commutes with the pair (Qm,, P, ) and with derivatives.

Proof of Lemmas 3.3.1and 3.3.2. See Section 2 of previous chapter. O

3.4 Local solvability of solutions

To obtain a local existence result for a general smooth initial data in a general bounded domain for an active
scalar is far from being trivial. The presence of boundaries makes the well-posedness issues become more
delicate. (See for example [15] and [51], in the case of SQG). As in the previous chapter, we focus only on our
setting and in our specific class of initial data.

Then, we prove local existence and uniqueness of solutions using the Galerkin approximations. We
return to the equations for the perturbation of the damping Boussinesq in Q:

0tpt+u-Vp =—u,,
dtutu+(u-V)u =—-VP—(0,p),
V-u =0, (3.16)

uli—o =u(0) € X¥Q),
plico = p(0) € X*(Q),

besides the no-slip conditions u - n = 0 on Q). Hence, we will prove the following result:

Theorem 3.4.1. Letk € N and an initial data (p(0),u(0)) € X* x X¥. Then, there exists a time T > O and a
constant C, both depending only on e3(0) and a unique solution (p,u) € C (O, T;:X*(Q) x Xk(Q)) of the system
(3.16) such that:

sup e (t) < Cex(0)
o<t<T

where
ex(t) :== ||u||%1k(Q)(t) + ||p||%4k(Q)(t)-

Moreover, forall t € [0, T) the following estimate holds:
- t
ex(t) < ex(0) exp [C/ (IVpllLe () (s) + IVullw(q)(s)) ds| . (3.17)
0
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The general method of the proof is similar to that for proving existence of solutions to the Navier—Stokes
and Euler equations which can be found in [46]. The strategy of this section has two parts. First we find
an approximate equation and approximate solutions that have two properties: (1) the existence theory for
all time for the approximating solutions is easy, (2) the solutions satisfy an analogous energy estimate. The
second part is the passage to a limit in the approximation scheme to obtain a solution to the original equa-
tions.

We begin with some basic properties of the Sobolev spaces in bounded domains. In the rest, D ¢ R%isa
bounded domain with smooth boundary 0D.
Lemma3.4.2. Fors € N, the following estimates holds:
e Iff,g € H*(D)NC(D), then
1 gllis (o) S (fllvs (0 gl (o) + 1l (p) l19lls (D)) - (3.18)
o Iff c H3(D)N CYD)and g € H*1(D) N C(D), then for|«| < s we have that:
0% (fg) — fo%glli2(py S Ifllwree (D) lIgllHs—1 (D) + Iflls (D) 19l (D) (3.19)

Moreover, the following Sobolev embedding holds:
e W*P (D) C LY(D) continuouslyifs < n/pandp < q < np/(n — sp).
e WSP(D) C C¥(D) consinuouslyiss > k +n/p.
Proof. See [29, p. 280] and references therein. O

Proof of Theorem 3.4.1. We firstly construct approximate equations by using a smoothing procedure called
Galerkin method. The m™-Galerkin approximation of (3.16) is the following system:

dep™ 4 Py [ (™. v pm| = ™
0™ +ul™ 4 (Qu, Pry) | (u™ - V) ul™ | = —wPIM 4 (0, plm)),
V.u™ —o,

ul™_, = (Qmwl, Pmuy]) (0),
™o =Pnlpl(0),

(3.20)

with p(0) € X*and u(0) e X*.
Equations (3.20) explicitly contain the pressure term P'™ . We eliminate P'™ and the incompressibility
condition V - ul™ = 0 by projecting these equations onto the space of divergence-free functions:

Vk(Q):={veX*Q):V-v=0}.

Because the Leray operator . commutes with the pair (Qy,, Py, ) and L {u[mq = ul™ we have
0™+ ul™ 4 L(Qu, Pr) [ (™ ¥) ul™ | =1 [(0,p0™)] (.21
or equivalently
™ + ™ 4 QulLy [ (8™ V) W™ =@ |(—a) 00,0 ]
deuy™ ™ 4 Pk, | (w™ - V) W™ =P [(—8) 0™ o]
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Since p™|i—o = P.[p](0) belongs to P, [(Q), the initial velocity ™ |,—y = (Qum ], Pm[i1]) (0)
belongs to Q [*(Q) x P [*(Q), and because of the structure of the equations, we look for solutions of

the form o
pmI(t) = Z Z ap.q () wp q(x,Y)
[pl<m gsm
peZ qeN
and

d™Me = Y Y elaW@pgy) Y Y plawpa(xy)

[pl<m qsm [pl<m gq<m
peZ qeNU{o} peZ qeN

In thlS way, (3.20) is reduced to a finite dimensional ODE system for the coefficients aL q(t), bp q ( ) and

cp q ( ) for{|p|, q} < m, and we can apply Picard’s theorem to find a solution with a time of existence de-
pending on m. Next, we will use energy estimates to show a time of existence T, uniform in m, for every

solution (p[m] (t),ul™ (t)) of (3.20) and a limit (p(t), u(t)) which will solve (3.16).

Taking derivatives 9%, with |s| < k on (3.21) and then taking the L*(Q) inner product with 9%ul™, we

obtain using the properties of the Leray projector that:

L0 u™ IR ) = (0%0I™, 05ul™ ) —0su™ s ) — (3% (@, Pr) [ (™ - 7 ) w™] ,2oul
(3.22)
Moreover, as 6tp[m] +Pm [(u[m] . V) p[m]} = —ugm] , we obtain that:

<6Sp[m}, asugm]) = —%atnasp[mlniz(ﬂ) — (asp[m}, 5P [(u[m] . V) p[m}D ) (3.23)
By putting together (3.22) and (3.23), we achieve that:
Lo, (05w ™R ) + 1050 s ) ) == I0°u™ s )
_ (asp[m1,asp Ku[mJ -V) p[m1D
~ (0™, 20 (w9 ) ™)
- (07", B (- 7) ™))

= —[losu ™|} o) + T+ I+ IIL

Now, we need to distinguish between an even or odd number of y-derivatives. In any case, the properties
of P1yy, Q. given by Lemma 3.3.2 and the commutator estimate (3.19) with f = u™ and g = Vp!™ give
us the first inequality:

1S 10%0 ™Iz (198 ™ iy I0™ i) + ||u[m]||Hk(Q)||Vp[m}Hmm) . (3.24)

For the rest, we proceed as before with f = ul™ and g = Vul Vor g= Vugm] respectively to obtain the
inequalities:

IS 0% ™ lhz(o) (V6™ e () ™ gy + 8™ oy IV6 ™l (o))

1 S 105 ™) (V8™ oyl ™ e o) + ™ e o) IV ™l @) )
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and in consequence:
I+ 111 S [0%u™ 1}, o) IVe ™[ x(q). (3.25)

Remark: In the previous computations, we have used that ul™ is divergence-free and vanishes at the bo-
undary 0Q). Then, integration by parts gives that the singular terms disappear.

Summing over |s| < k and putting together (3.24) and (3.25) we obtain:
e (®) 5 e™ (1) (IVe ™l (o) (1) + 178 ™ () (1)
S el ) (1™ o) (©) + ™o (o) (1)) (.26
thanks to the Sobolev embedding, where

e™ (1) = ™| o) (0 + 0™ By o) (1),

-1
Hence, assuming thatk > 3in (3.26), forallmand 0 <t < T < (% [egm] (O)]1/2> we have that:

[ei™ (0)]1/2 [e5(0)]1/2

< 3.27
1-tle™ o)z 13 [es(0)2 >

and, in particular
e (0)]1/2
sup egm](t) < [TB(—)]
o<t<T 1— 5 [es(0))1/2

Applying (3.27) in the last term of (3.26), we obtain for all m and 0 < t < T by Gronwall’s lemma that:

t 1/2
[m] [m] [63(0)] /
e () <ep(0)exp [ /o 1_;[63(0)]1/2‘13]

t 1/2
[es(0)]"/
< _ .
s oo [/o = zle©7 ©|" 529
and, in particular
sup e][:n](t) < Cex(0), (3.29)

ost<T

where C is a constant depending only on e;(0).

Remark: In the last inequality of (3.27) and (3.28), we have used in a crucial way the bound e][(m] (0) < ex(0)
which, is a consequence of the fact that p(0) € X¥(Q)andu(0) € X*(Q) together with the Lemma 3.3.2.

Inview of (3.29), we have that the sequences p I and ul™ are uniformly bounded in L (O, T;H* (Q))
and L*° (O, T;H*(Q) x Hk(Q)) respectively. As a consequence of the Banach-Alaoglu theorem (see [55]),

each of these sequences has a subsequence that converges weakly to some limit. This is p™ (1) — p(t)in
H*(Q) and ul™ (1) — u(t) in H*(Q) x H*(Q) foro < t < T.

Furthermore, something similar can be obtained for the sequences of time derivatives. On one hand,
the family dp'™ is uniformly bounded in L* (0, T; Hk*Z(Q)). On the other hand, the family d,ul™ is
uniformly bounded in L*° (O, T;H*2(Q) x Hk*Z(Q)).
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By (3.20) and the properties of Leray projector, we have that:

° ||6tp[m]||Loo(O,T;kaz(Q)) = ||U£m} +]P)m |:(u[m] : v) p[m}i| ||L°°(O,T;Hk*2(_()))

< sup_ {IE ™l gqy + IPm [ (8™ 7) 00 flps o } (1)
ost<T

o 1R ™ o 120y = ILIO, ™ = L(Qun, Pr) [ (™ W) 0™ | —w™ g ppia )

< sup {0l oy + Il ™ s | (1
ost<T

+ sup {IPm | (u™ V) ul™ | s ) +1@m | (8™ V) 0™ | s (0.

ogt<T

Now, we need to show that (u[m] : V) pM e X*1(Q) and (u[m] . V) u™ e YET(Q) x X*1(Q) to
apply Lemma 3.3.2 for k > 3, and to get:

o 1B [ (™ 9) o™ ]l < Il (™ V) 0™k
S ™20y IV ™ e () + 0™ i e () IV ™ k20

S ™ o) 1™ hax s
o 11Qm [(5™ ) u™ ] e 20y < I (8™ 9) W™ lhs ) S IR
o P [ (8™ 7)™ Iy < I (8™ V) ™oy S ™R g
where we have used (3.18) and the Sobolev embedding L®(Q) < H(Q).
Check that (u™ - V) '™ € X7 (@) and (u™ - V) ul™ € Y¥7(Q) x X*7(Q) is to see that:
B(579)o 8 (7 5) ] <5 (67

for any even natural number n. We start, with the following observations:

o (W9 o = Qe [l B [0 4 B[] G [0

o (47— 4 o] 1] 7 o

S A B PR P
and the facts that

0y (bp,bp, ) (y) = (=1)P'p15cp, (y) by, (Y) + (=1)P*p25bp, (Y) cp, (y);
ay (qucqz)(y) = (_I)qIJrlql%bm(y) qu(U) + ( 1)q2+1q2 chl(y) qu(y):

and

03 (bp, cq,)(y) = (33 bp,)(Y) cq, (y) +2(dybp,) () (3ycq,) (Y) + by, (y) (3cq,) (y)
= (1) |(m3)" + (423)"] bp () e (Y) + (D)7 P21 (£)” ey (y) b, (v):

Iterating this procedure and using that by, (1) = 0 we prove the boundary conditions for the derivatives
of even and odd order of the non-linear terms.
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Therefore, putting all together and using (3.29) we obtain:

o 100 ™o risaa £ sup 0™ iy () (14 0™ () (8)) S 1+ Cew(0);
o<t<

o o™iy S s 1P ™ lhixoy () + ™ o) (8) (14 ™l o) ()
ot<T

<1+ Cex(0).

Hence, the family of time derivatives 9 p/™ (t) is uniformly bounded in L*° (0, T; H*2(Q)) and the same
for the famility d¢ul™ in L (O, T;H*2(Q) x Hk*Z(Q)). Then, by Banach-Alaoglu theorem, dep™ (1)
has a subsequence that converges weakly to some limit in H*"2(Q) for 0 < t < T and analogously
ou™(t) hasa subsequence that converges weakly to some limit in H*2(Q) x H* 2(Q) foro < t < T.

Moreover, by virtue of Aubin-Lions’s compactness lemma (see for instance [43]) applied with the triples

H*(Q) € H*1(Q) ¢ H* 2(Q)and H*(Q) x H*(Q) € H* Q) x H*1(Q) ¢ H*2(Q) x H*?(Q)
we obtain that the convergences of p'™ — pandu™ — warein fact strong in C(0, T;H*71(Q)) and in
C(0, T; H* 1(Q) x H*1(Q)) respectively.

Using these facts, we may pass to the limit in the non-linear part of (3.20) to see the convergences of
Prl(™ . V)p™] = (u- V) pand (Qm, Pr) (@™ - V)ul™] = (u- V)uin C(0, T;H*2(Q)) and in
C(o, T; H*2(Q) x H*2(Q)) respectively, as follows:

P (™ - W)™ — (u- V) pllye 20
= [Pml(@™ - v)p™] + @™ v)pi™ + @™ v)p — (w- Vpllyerq)
<[P = D™ - V)™ o) + |[@™ - V) (™ = 0)[[ 20

+H([u[m}—u]-V)pHHk,Z(Q) —~0 as m— oo.

Inthelimit, we use the factthat lim [Py, [f]—fll}ys () = Ofor f € X*(Q), together with the convergences
m—00

ofu™ — wand p[m] — pand (3.18), for k > 3. For the other, we repeat the same procedure using that
n{igqoo IQmlg] — gllys (o) = Ofor g € Y*(Q) and the fact that:

H(Qm; Pm)[(u[m] : v)u[m}] - (u . V) ullkaz(Q)Xkaz(Q) = IIQm[(u[m] . V)ul[m]] — (u . V) uIHHK*Z(Q)
+ P (a™ - ™) = (- V) ol )

We have that 3, p™ — —cu,—u-Vpand d¢u™ — L[(0, p)l—u—L[(u- V)ulin C(0, T; H* 2(Q)) and

indww™ S L0, p)]—u—L[(u-V)ul respectively. Since o™ — pandu™ — winC(o, T;H*1(Q))

and in C(0, T;H*2(Q) x H*"2(Q)) respectively, the limit distributions of d¢p™ and 9¢u™ must be
0¢p and 0u by the Closed Graph theorem [5].

So, in particular, it follows that the pair (p(t), u(t)) is the unique classical solution of (3.16) which lies in
C(o, T; H*1(Q)) x C(0, T; H* Q) x H*}(Q)). Moreover, we can follow the same ideas of [46, p. 110]
to prove, as we did in [10], that (p(t),u(t)) € C(0, T; H*(Q)) x C(0, T;H*(Q) x H*(Q)). Note that
Lotu+u+ (u-V)u— (0, p)] = O0implies

orut+u+ (u-Vju=-—-VP+ (0,p)

for some scalar function P(x, t).

45



Since forall m € Nwe have that p[™ = P, [p[™] € X*(Q)andu!™ = (Qm[ul[m]], Pm[ugm]]) e X*(Q)
and this property is closed, we obtain that the limiting function also has the desired property. In conse-
quence, the solution (p, u) liesin C (O, T;Xk(Q)) x C (O, T;Xk(Q)) .

Finally, applying the Gronwall’'s lemma on the above estimate (3.26) and the previous convergence re-
sults, forall t € [0, T) we deduce:

_rt
ey (1) < e, (0) exp [c / (190 ™ Il () (5) + V8™ ) (5) ) ds]
0

~ t
< ex(0) exp [C/o (IVpllLs () () + IVull e () (s)) ds}

and by lower semicontinuity we obtain (3.17). O

Theorem3.4.3. Let (p(t), u(t)) beasolution of 3.16) intheclass C (0, T, X*(Q)) x C (0, T, X*(Q)) with initial
data p(0) € X* andu(0) € X¥. IfT = T* is the first time such that (p(t), u(t)) is not contained in this class, then

T*
/ (IVullio(c2) (8) + Vol (s)) ds = oo.
0

Proof. 'This result follows from estimate (3.17). O

3.5 Energy methods for the damping Boussineq equations
From what we have seen, we know that for (p(0), u(0)) € X* x X* there exists T > 0 such that (p(t), u(t))

isasolution of (3.16) forall t € [0, T). Moreover, if T* is the first time such that (p(t), u(t)) is not contained
in this class X* x X¥, then

T*
| (9ulleia(s) + 1plea 5)) ds = oo.
0
Therefore, to control e;(T) allows us to extend the solution smoothly past time T, where we remember that
ex(t) == ||u||%—[k(_(1)(t) + ||p||%—[k(Q)(t)'

Finally, note that p(t) € X* implies that p(t) € H*(Q), so the term “0%p restricted to 0Q” has perfect
sense, as long as the solution exists. Analogously, asu(t) € X*, can we talk about “0% 'u restricted to 0Q”.

3.5.1 Energy Space

To motivate the energy space in which we will work, we present the linearized problem of (3.9). This is:

0tp = —y
du+u=—VIT-+ (0,p)
V-u=0

besides the boundary conditionu - n = 0 on 0Q). Itis easy to check that:
30¢ {llullf () + llplf2 (1) } = —llulf2(t) and 3¢ {Reullf2(t) +Iluallf2(t)} = —I@cullf2(t).
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By attending to this, for k € N we define the energy

E(®) = 3 { Il ) (0 + 1ol ) (1) + 100l e ) (8) + gl e (8)}

and the auxiliar weighted energy
Erlt) =1 {npnak(m(t) + [ utny, OF (14 3450y, 1) dxdy} :
Q

The introduction of the weight 1+ 0y p(y, t) in the last term of & (t) is not obvious and plays a crucial
role. We are forced to do it in order to control all the terms. Finally, our energy space will be

Crpa(t) = Ex(t) + Exa(t). (3.30)

Note that if our weight 1 4 0yp(y, t) is non-negative then our energy is positive definite. So, our energy
space is perfectly well defined if p is small enough. Moreover, it is clear that ey (t) < €y 4(t).

3.5.2 APriori Energy Estimates

In what follows, we assume that (p(t), u(t)) € X*"(Q) x X*"1(Q) is a solution of (3.9) for any t > 0.
Then, this section is devoted to prove the following result.

Theorem 3.5.1. There existO < C < 1and C > 0 large enough such that fork > 6 the following estimate holds:
A€ y1(t) < —(C— CW (1) [IIVIT— (0, P}y (1) + [I (w- V) wlffyic (1) + Iy (1) + D ulf i (1)]
~(1-Cw) (/ 05 u(x,y, 1)1 (l—i—ayf)(y,t))dxdy)
+ [[ullps Exepa(t) (3.31)

with

14+ (19 Bl \ V2 ) 1/2
Wi (t) :=||p||Hk+1+||ullHk+(‘J’E’L /Qlak“ulz(wayp)dxdy )

1—[[0ypllee
W, (1) = ol + lallge + [0l l[ully
2\t) 1= e
1— [0y pllee

As we want to prove a global existence result for small data, this is €, 1(t) < 1, the first two terms
in the energy estimate (3.31) are “good” ones, because they have the right sign. In consequence, we fix our
attention in the last term. If we have a “good” time decay of ||ul|4+(t), we will be able to prove that & ()
remains small for all time by a boostraping argument.

Then, we are now in a position to obtain the previous energy estimate. To do this, we study the time
evolution of Ey (t) and €y 1(t) independently.

3.5.2.1 Ey(t) Energy Estimate

To do this we use the system (3.9). We start proving the following statement.
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Lemma 3.5.2. The next equality holds

O¢Ex(t) = — [[ullf i — [0 eulffx (3.32)
—(u- Vp p) (0%(u- Vp),0%p)
— (u, Ju) — (0%u, 0¥ [(u- V) ul)
(atuz,u Vp) — (akatuz,ak(u-Vp))

— (0w, 0¢[(u- V) ul) — (akatu, %0 [(u- V) ul).

Proof. First of all, we remember the definition of Ey (t). Then, we split the proof'in two parts. On one hand,
we are able to prove that

20¢ {Ilullfye + llollfpe b = — Il (3.33)
— (u-Vp,p) — (d%(u- Vp),3%p)
—(u, (u-V)u) — <aku, % [(u-V) ul).

On the other hand, we will prove that

To{lloeullx + lhuallfd = —10eullf (3.34)
— (0tuy,u-Vp) — (akatuz, ak(u -Vp))
— (0¢u, 0¢[(u- V) u]) — <ak8tu, 0%0[(u-V) ul).

By putting together (3.33) and (3.34), we achieve our goal. To prove (3.33), we start with the L* norm. One
can check that

0¢lullf. = (u,0¢u) = (u,—VP + (0,p) —u— (u-V)u)
= (u,—VP +(0,p)) — [ulff: — (u, (u- V) u).

Then, by the incompressibility we get
ellullf. = (uz, p) — llullf2 — (u, (u- V) u).

As0¢p + u- Vp = —u,, we obtain that

Lellullf. = —10¢llpllf. — (- Vp, p) — l[ull}. — (u, (u- V) u)
and consequently, we have proved that

30t {llullfz +llplf2} = —lullfs — (w- Vp,p) — (u, (w- V) u). (3.35)
Doing the same computation in H* we get

Lo {ll + el b =— Il (3.36)
— (3%(u- Vp),8%p) — (3%u, 0" [(u- V)ul).

By putting together (3.35) and (3.36), we obtain (3.33). To prove (3.34), we start again with the L* norm. One
can check that

%atHatuH%_z = <atU, a%u> = <atu; 0¢[—VP + (0, p)] —0tu—0¢ (u-V) u>
= (04w, 0¢[=VP + (0, p)]) — [0 ¢ull}, — (3w, 0¢ (w- V) u).
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As before, by the incompressibility we get
;atnatuniz = (0¢uy, 0¢p) — \|atu||2L2 — <atu, O¢l(u-V) u]>.
As0¢p = —u, —u - Vp, we obtain that
10¢ {IReullf, + lluallf} = —l0cullf. — (B¢us, u- Vp) — (3w, 3¢(u- V) ul). 3.37)

We can proceed similarly in H* and get

13, {I10eulR + sl == IReul, (338
— (0%0¢uy, 3% (u- Vp)) — (3%0u, 3%0([(u- V) ul).
By putting together (3.38) and (3.37), we obtain (3.34). In consequence, we have proved our estimation. [J

Next, we manipulate the quadratic terms of (3.32) to be able to control the cubic ones. Our goal here
is to use our velocity evolution equation to control the signed term — [IIuIIZHk + ||atquHk] by the following
one, —C [[[ull}x + [ — VIT+ (0, p)I[Fx + Il (w- V) ulltx + [10¢ull}, ] witho < C < 1. To do this, we have
to pay with a remainder, which we will be able to control for small data.

More specifically, we can prove the following lemma, which is a key step in our proof.
Lemma 3.5.3. Thereexists 0 < C < 1such that:
— [l + Reulfy] < = C [l + 1= VIT+ (0, p)llf i + [l (w- V) ulffy + 19 cullyi]
+ ([(w-V)u], =VIT+(0,p)) — (u, (u-V)u)
+ (3%[(w- V) u], 3%[=VIT+ (0,p)]) — (3w, 3%[(u- V) u]).

Proof. First of all, we use 0tu = —VIT+ (0, p) —u— (u- V) u, so we can rewrite:

—lReulfy =— Il = VIT+ (0, B — [l — [ (- V) ull} (3.39)
+2(u, —VIT+(0,p)) +2((u-V)u,—VIT+ (0,p)) —2(u, (u- V) u)
+2(0%u, 9%[=VIT+ (0,p)]) + 2 (3%[(u- V) ul, dX[~VTIT + (0, p)]) — 2 (0%u, 0" (u- V) u).

Then, we split the linear part as follows
— [l + l0eul} ] = — [l + 5 110wl + 5 0eull} ] (3.40)
and combining equation (3.39) with (3.40) in an adequate way, we get:

— [l + Rvullf] == 2l — 21— VIT+ (0, 0)IF — 21l (w- V)l — 2 0rullfe (3.4D)
+ (u,—VIT+(0,p)) + ((u- V)u,—VIT+(0,p)) — (u, (u-V)u)
+ (%, %[—VIT+ (0, p)]) + (%[(u- V) ul,d*[—VIT+ (0, p)])
— (3%, 0% (u- V) u).

By Young's inequality it is clear that there exists 0 < € < 1such that:

2
(0, —VTT + (0, p)) + (d*u, 3*[~VTT+ (0, p)]) < % (”u[Hk +ell—VIT+ (o, ())llﬁk> .

Combining this with the above estimate when 1/3 < e < 1yields our lemma. O
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Now, we combine (3.32) and Lemma 3.5.3 to get:

O¢Ex(t) < — C [l + Il = VIT+ (0, p)IIF i + I (w - V) ulfy e + [10¢ul[F i ]
+ 4+ P4+ 4D

with

[ = —(d¢us, u- Vp) — (3%0¢u,, 3% (u - Vp)),
2:=—(0u,d(u- V) ul) — (350w, %0 [(u- V) ul),
P:=—2(u(u-V)u)—2 (0", 3" [(u-V)ul),

“i=—((u-V)u, VIT—(0,p)) — (d%[(u- V) u], d¥[VIT— (0, p)]),
*i=—(u-Vp,p)— (3%(u- Vp),9%p).

P—

3.5.2.2 €k+1(t) Energy Estimate

To do this we use the system (3.10). We start proving the following statement.

Lemma 3.5.4. The next equality holds:

deéria(t) :—/Q|a‘<+1u|2 (1+9yp) dxdy
— /Q *Mu- 3% [(u- V) u] (1+9yp) dxdy
+ /Q 0" 1, 0% ITT 02 p dxdy
—/Qak+1 (u-Vp) 3% p dxdy
+ /Q (14 9yp) 3w, — %M ((1+ 9yp)uz)) 3%Hp dxdy
+1 /Q 0% 1ul* 949y p dxdy

+ / K25 0%+ (u, p) dxdy.
Q

(3.42)

Proof. Firstof all, we start with the weighted term of &, (t). The estimation of such a term requires a long

splitting into several controlled terms.

;at/ 0% uf? (14 9y p) dxdy :/
Q Q
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Asdiu+u-+ (u-V)u=—VII+ (0, p) we obtain that:
10¢ /Q 0% uf? (14 9yp) dxdy = — /Q 0% uf? (14 9y p) dxdy
— / ¥ Mu- 3% [(w- V) u] (1+9yp) dxdy
Q
— / % Mu - X HIVIT (1 + 9y p) dxdy
Q
+/ %, %115 (1+ 9y p) dxdy
Q
+1 / 0% a2 3,9y p dxdy.
Q
Since V-u=0inQandu-n = 0o0n dQ, using integration by parts in the third term gives:
— / X u - QFTIVIT (1+ 3y p) dxdy = / 0K, %I 02 p dxdy. (3.43)
Q Q

By the periodicity in the x—variable, it is clear that the only boundary term that needs to be studied carefully
is the one associated with the y—variable, which vanishes because u, € X**(Q) and IT € Y*™(Q). Now,
we focus in the fourth term, which can be written as:

/Q 0%, 9% 15 (1+ 8y p) dxdy = /Q 0¥ (14 0yp) uz) 3" p dxdy

+ /Q ((1+0yp) d*Hu, — 3% (14 9yp) u,)) 9815 dxdy
and,as 0¢p +u- Vp = —(1+ 0y p) u, we get:
/ %M, 3515 (1+ 9y p) dxdy = —;at/ [0 5 dxdy / 0 (u-Vp) 0%Mpdxdy (3.44)
Q Q Q

4 [ (0404) 05y — 011 ((140y5)w) 0% dxdy
Q

where in the second integral, we have used u/\V/ﬁ L p. Therefore, putting (3.43) and (3.44) together, we
obtain:

{IlpllHkﬂ / 0% u? (14 9yp) dxdy ¢ = / 0% uf? (14 9y p) dxdy

/ 3 Mu - 3% [(u- V) u] (1+ 9yp) dxdy

o)

_|_

/ 0", %I 02 p dxdy

o)

/ % (w- Vp) 9%1p dxdy

©)

+ [ ((1+3yp) d% M, — 0% (14 9yp)uy)) 3% dxdy

D\

+ 1 / 0% a2 9,9y p dxdy. (3.45)
Q
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To prove the desired inequality we need to study the evolution in time of p. Note that p(y, t) doesn’t depend
on the horizontal variable. And by the orthogonality, as p L p it is clear that:

1012 s g3y = 11 s ) + 27018 s -

e

AsV -u =0, itis simple to see thatu - Vp = 9y (u, p), and by integration by parts we get:

1 1 o
o [ soray = [ a5tpolaay = [ ol ook e Vo) ay
—1

1 _ /\__/ /\__/ y:l
:/ a];+2pallj+1(u2 p) dy ak+1 akJrI(uZ p) .
71 e
1 —_—
— [ atpol usp) dy
—1
where, in the last step, we have used that p € X*([—1,1]) and wp € Yo(=1,1]). As (w p) L p we have
proved that:
1
2B o) = L0t /T 0o axay = /Q X5 K T (1, p) dxdy. (.40
If we put (3.46) in (3.45) we obtain the claimed equality. O

Combining the estimates for Ey (t) and €1 (t) given by (3.42) and Lemma 3.5.4, we have proved that
there exists 0 < C < 1such that:

0t Crp1(t) < — C [[ulffy +1IVIT— (0, o)l + Il (w- V) ulffyuc + [[0vull} ] — /Q 0% uf? (14 0yp) dxdy
+ T+ P+ PP+ T+ 184+ 1P

with
—(dtuz, u- Vp) — (3%0¢1,, 3%(u - Vp)),
I2:=—(0d¢u, 0¢[(u- V)u]) — (0%0¢u, 0%0¢[(u- V) ul),

= —2(u,(u-V)u) —2(0%u, 8" [(u- V)ul),
I*: = —((w-V)u, VIT—(0,p)) — (0%[(u- V) ul,d*[VIT— (0,p)]),

= —(u-Vp,p)— (3(u- Vp),0%p),

1 / (1+3yp) 0%y — 3T ((1+3yp) us)) 0%p dxdyJr/ﬂ’c)k”ﬁak+1 (u, p) dxdy,
I / 0+, 94T 07 f dxdy + /Q 0% a2 3,9y p dxdy,

IF:=— /Qak+1 M [(w- V) ul (1+9yp) dxdy,

= —/Q % (u- Vp) 98%Mp dxdy.

Before moving on to study each term {I™}), _, separately, we make the following simple observations:

1. Let f € L*(T) with zero average. Then, we have that:

Ifllcz(my < 10xflli2(m- (3.47)
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2.

Proof. The proof is an immediate consequence of Plancherel’s theorem. As f has zero average, in the
Fourier side, this means that f(0) = 0. Then

gy = > P < > GO = 105 fla ) -

KEZA0 kEZA£0
O
As p := p — p has zero average in the horizontal variable, for n € N U {0} we get:
IpllHn () < IIVIT— (0, P)llHn+1(q)- (3.48)
Proof. For simplicity, we do the computation in [*(Q) = H°(Q), but the same argument can be

repeated in H™ (Q) with n € N. By (3.47) we obtain that ||p|[;2(q) < [[0xpll 2(q) and consequently
we get:

10xPllt2() = [[0x (P £ 0yTD) [l12(0) < 0x(p — OyTDllr2(q) + 10y 0xTTllr2(0)

Ipll2(0) <
<P = 0yMlyr () +10xMlla) = IVTT— (0, Pl (q)-

. The second component of the velocity u,(t) has zero average in the horizontal variable. This is:

u(t) =u,(t) or 1y(t)=o0. (3.49)
Proof. By the periodicity in the horizontal variable and the incompressibility of the velocity, we get:
o= [V W,y 0 =aymaly, ) — daly, ) = B
T

Moreover, by the no-slip condition, we have {1,(t)|3 = 0 and in consequence 3(t) = 0. O

With all these tools in mind, it is time to prove:

Lemma 3.5.5. The following estimates hold fork > 5:

I
2.
3.
4.
5.

Proof.

IS (llocul e + lullfy) llpllygper

I S l1oculfyellullypen

P < [lullfy

I < (IVTT— (0, By + ulfy) el

F S el (it + 1911 = (0, )l ) + IVIT = (0, )yl il gallpll

(1) Ifwe add and subtractu - V0¥ p in the second term, we obtain that:

' = —(dtuy,u- Vp) — (3%0¢uy, 0% (u- Vp) —u- VO¥p) — (0%0¢uy, u- VOXp).
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(2)

®)

)

®)

Using (3.19) with f = u, g = Vp and the Sobolev embedding L>°(Q) < H*(Q) it is easy to see for k > 3
that:

' < 0eusllpa el Vpllee + 1040wl 210" (w - Vo) —u- VO pliz + 1040wl llull= VO pll 2

S Reullyllallygrllpllpen < (10eullf e + llallf) ol
It is clear that we can rewrite 1% as follows:

I* = —(0tu, (Qtu- V)u) — (d¢u, (u- V) du)
— (0%0¢u, 0%[(0¢u- V) ul — (3gu - V) 0%u) — (3%0.u, (d¢u - V) 3 u)
— (0%0¢u, 0% [(u - V) 0¢ul — (u- V) 0%d¢u) — (30w, (u- V) 3%0u)

andsinceV-u=0inQ andu-n = 0on 9Q, the last term vanishes. Then, we have:

I, S1Reullfa IVl + [[Deull 2l VO ulli | ullce + (1040 cull2][d¢ullL<] [V ull;2
+110%0¢ullz (JR*[(d¢u- V) ul — (3w - V) 3%ull iz + [0 [(u- V) deu] — (u- V) 3*0ullr2) .

As before, by 3.19) with f = du, g = Vuorf = u, g = V9iu and the Sobolev embedding for k > 3 we
get:
IZ ,S Hatu||%1k||u||]-[k+1.

By definition, we have that P = —2 (u, (u- V) u)—2 (3%u, 0" [(u- V) u]). If we add and subtractu- Vo u
in the second term we obtain that:

P=—2(u(u-V)u) —2(0"u, (u- V)3 u) —2(0*u, 8" [(u- V) u] — (u- V) o*u)

and since V-u = 0inQandu-n = 0on 0Q), the first two terms vanish. Again by 3.19) withf =u, g = Vu
and the Sobolev embedding we get for k > 3 that:

3 3
I < llalf.
We rewrite I* in a more adequate way:

I'=—((u-V)u, VIT—(0,p)) — ((u- V) 3*u, d[VIT— (0, p)])
— (@*[(u- V) u] — (w- V) 3"u, 3 [VIT— (0, p))).

Then, we have:

I <ullees (IVullelIVTT = (0, p)lle + V¥ ull2[[0* [VTT — (0, )] llc2)
+ 05w V) u] — (u- V) 3*ul|2[l0*[VTT — (0, p)]llL2.

As before, by (3.19) with f = u, g = Vu and the Sobolev embedding we get for k > 3:
* < IV — (0, )llelfullyge s < (1977 = (0, )IEye + Il s
Again, since V-u=0inQ and u - n = 0 on 0Q we obtain that
P =—(0%u-Vp)—u-Vdkp,dkp)
and by (3.19) with f = u, g = Vp and the Sobolev embedding we get for k > 3:
P < lullygllpll -
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The above estimate is too crude, we will need to carry out the energy estimates carefully to ensure that we
get the desired estimate. We shall see below that the property (3.48) is the key to close the right estimates.

The usual method of using the Leibniz’s rule gives us:

k—1

k—1
PF=— Z (?) (65+1u1 ok Ox P, akp) - Z <];> (aj+luz akilijay P, akp)
j=o0 J=0
=A;1+ A,

For the first one, as 0xp = 0« p, Holder’s inequality for k > 4 gives us:

k—1
A1 S el D 1109wy 95770, pll 2
j=0
1 k—1
= Il | D10l Tl + D 1107 wll2l10% T 0y plle
j=0 j=2

< llpllpelhuallyelOx Pl < el (lallf e 4+ 11VTT = (0, §) k) -
(3.50)
For the other one, as u, = 1, by (3.49), we have that u, 1 p and consequently:
k—1
Ap=—) ()) {(@+, 05770, p,05p) + (0w 05 p, 05 0T p) )
j=0

=A}+A]

where

k—1
K\ . .
Abi=— Y (;) (71, 9% 170, 5, 0%p),
j=1

k—1
B B k . i e
AZ:=—(0u, 0%'9yp,%p) — § (j)(alﬂu2 oy Ip, 05 ).

‘—o

—

Now, for A} repeatedly applying Holder’s inequality, we get:

2 k—1
Ay Sl | D 17 ugllee 1% 90y plie + Y 1107 uall2 1950y pll e
j=1 j=3
So, for k > 5 by the Sobolev embedding it is clear that:

A3 < llplhye lheallype l1Blhper < ol (el + V1T = (0, B)II}x) (3.51)
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where we have used (3.48) in a crucial way. For AZ, after integration by parts, we get:

A2 =1(dy [0uy d3%p], 0% 'p) — /Q 3y [du, 3% 'pa%p] dxdy

k—1 k—1
k . i s k . i e
3 ($)o0 oy ie] ok oei— X (*) [0 ool Tpay 0] anay
j=o j=o

k—1
L k . o T
=1(3y [0u, 0%p] , 3% 1p) + § (j>(a [, 05 7p] 08 0p),
j=0

because the boundary terms are equal to zero since at least one of the terms that they contains vanishes
thanks to the fact p € X*(Q) and in consequence p € X*(Q)and p € X*([—1,1]).

After this, for A3 repeatedly applying Holder’s inequality, we get:

A3 S 1Bl (10y duallL 9% pllz + louslie[10y 0% pllr2)

k—3 k—1

Il [ D1 Pualliel @ Tplle + ) 1107 Pl ][0 T pllre
j=0 j=k—2
k—3 k—1

ol | Y I il T Bl + Y 107 gl ll0f Bl
j=0 j=k—2

and by (3.48) and the Sobolev embedding L*°(Q) < H?*(Q) for k > 4 we achieve:

A% S Il (allpperllpllype + Tullellpllpesn)
S ol (Il + IVTT = (0, By ) + 1IVTT — (0, )l [wlly il ol (3.52)

Collecting everything, this is (3.50), (3.51) and (3.52) we have obtained that:
P <l (lallfpe + 1V = (0, )1 i) + IVTT = (0, p) Il llullyyeallp k-
O]

Up to here, we have not used our weighted energy at all. Note that Ey (t) give us control of ||pl|x (t)
and [[ul|4x, so it is natural to define

() =1 {npn@kﬂ(t) + [ 0 tulx,y, 0P dxdy} ,

butitis not difficult to see that it is impossible to close the energy estimates with it. For this reason, to work
with the weighted energy space £y 1(t) is decisive to close the energy estimates. Before that, let’s see what

we have up to now. As |[ul[x1 = |[ulljx + 0% ul| ;2 we get:
[l < [l + ! 0% u? (1+ 9,,p) dxd v (3.53)
e S T 0y 6l ) 2 o upr ey '

and we have that:

Pt 4T S (IVIT— (0, p)IF i + [l + R cullfy) ©1(t) + </ % uf? (14 0y p) dxdy> O, (t)
Q
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where

1/2
~ 1 5
©(t) :zllpllHkH+|IuIIHk+(1_||ayﬁ||w)1/2 (/Q|ak+1u|2 (1+0yp) dxdy) ,
= [Pl
@ t) = P EETO T TE——
S

In consequence, we have proved that for k > 5 there exists 0 < C < 1and C > 0large enough such that:
011 (t) <— (C— COM) [l +IVTT— (0, )[Ry + 1l (w- V) wlyy +[1deuRy]

~ (1-Cé) / 8% uf? (1+ 9,,p) dxdy
Q
+ 4+ T+ + 1. (3.54)
The aim of the next part is to make appear nice controlled terms via the use of a useful decomposition of
each term {I™}}, _,. Thanks to the weight 1 + 0yp(y,t) in the definition of €y (t) we are able to control

each term in our estimations. This is the goal of the next lemma, which is crucial to prove the main theorem
of this section.

Lemma 3.5.6. The following estimates hold fork > 6:
(1) 18 < lllpsl 1Bl e + 1Bl (i} + VT — (0, p)IR)

Pl </ P% a2 (14 0y ) dxdy> ;
I—10ypllLe \Ja
(2) T S Bl (IIVTT = (0, PR + [l )

1 1
N (1+ ||11||Hk)~||p||Hk+ </ |ak+1u|2 (14 09yp) dXdy) ;
1— ||ayp||l_°° Q

1/2
(3) B (1+110ypllie)? (/Q 0% a2 (1+ 3y p) dXdU) llalf?
[l (14 lpllre .
+ I;k—(||a ;lLHH) /Qak+1u|2(l+ayp) dxdy ) ;
y o0
4) T < [l 161 s + 18l pes (IVTT— (0, §) I + [ullfy)

+ HFJH# (/ 08 uf? (14 9yp) dxdy) )
1—[0ypllie \Ja

Proof.
Obviously, the more singular term is I°. The estimation of such a term requires a long splitting into several
controlled terms. By definition we have that:

¢ = / (14 9yp) 31w, — %M ((1+9yp)uz)) 3%Hp dxdy +/ 25 0%+ (u, p) dxdy
= 15Q+ IS. :
Applying the chain rule, the terms becomes:
© ok
P =— /Q 05?6 wp 0k pdxdy — ) ( N > /Q 071 p ok I, 98 I9) p dxdy

=1~
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and
k+1

k+1 . Ad -
1§ = / ak“puz 6k+1p dxdy + Z ( j ) /Q 65+2p GURTP) 65“ )5 dxdy,
j=1
where we show that the first terms cancel each other out. This cancellation is the key step, that is the crucial
point for which we need to work with the weighted energy space €y1(t). Now, if we work a little more
carefully with IS, after integration by parts in the summation we get:

k+1 k—i— )
Ig:/gak+2 U, 351 dxdy — Z( , >/ 05 p 0y [0 u, 05T p] dxdy
1=1

i k’ +1 k+1 k+1—
+> (. dy [0KF1p ) u, 05T Tp] dxdy.
Q

Again, the boundary terms vanish because p € X*(Q) andin consequence p € X*(Q)and p € X*([—1,1]).
From this, I° is simply:

k
f=-3 KD [ g artioiu, 04 -i) 5 dxdy
: j o Y Y
j=1
k41 k+1

K ) ) k j
B Z < + 1> / akﬂﬁ %ﬂuz al;ﬂ—]ﬁ dxdy — Z ( )+1> / ak+1pal a‘;+24()dxdy
Q

j=1
:Bl +Bz + Bg.

We analyze separately the terms in the previous expression. First of all, we split the term B as follows:

K2 e
Blz—Z< j )/ g okt I, 081 I9) b dxdy
N O
j=1

k

_ Z (k+1>/ a]+1~ak+1 ]_LL ak-l—l )a)pdxdy

j=k—1
=B; +B}.

Indeed, B? are the only terms in B; that cannot be absorbed by the linear part. These type of terms are the
reason why we need to have an integrable time decay of the velocity. Precisely, the main goal of the next
section 3.6 is to obtain a time decay rate for it. Then, for BZ we have that:

B} < (110%pll 0% uallre + 110 pll2 [19uallLe ) 1Bl < luallys [0l (3.55)

where we have used the Sobolev embedding L*°([—1,1]) <+ H!([—1,1]). In particular, as { only depend on
the vertical variable, we have the bound [|0% ||| (—11) < Bl <ok a)-

To study the term Bi, we distinguish two cases:
i) All derivatives areiny, i.e. 9% = OL‘H*) and in consequence we get:

k—2
k+1 ~
Bi:_z< ] >/Qa{4+1 ak+1 ]u akﬂpdxdy
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By integration by parts and the fact that 9yu, = —0xu; we get:
kiz . . . .
Bl=) /Q o (3,79 0y Twy) 9510k p dxdy + /Q oy [0LH'p oy T u, 0y5p) dxdy

j=1

— /Q Ay [0y [0 POy uy ] 05 ] dxdy — /Q dx [03 (9" oy Tw) oF 'p] dxdy
k—2

=> /Q [0),72p 08 Tw 4+ 0} 9 0y P Tw +20) 25 05 T | 010 p dxdy

j=1

=B+ By? + By .

Once again, the boundary terms vanish because the structure of our initial data is preserved in time. For
the rest, repeatedly applying Holder’s inequality we arrive to our goal.
For the first one, with k > 4 and the Sobolev embedding L*°([—1,1]) < H!([—1, 1]), we have the bound:

k—3

L1 — j ~ —] ~

By < 110xpllipes | D 1042Bllce 1105 Twllz + 1105l 2 1103wl
j=1

j
SAIVIT—= (0, Bl 1Bl Tl < Bl (V7T = (0, B e + llullf ) -
For the second one with k > 4, we have:

k—2

1,2 - ~ 1. »

B2 < [[0xpllper (1102605 willia + 3 110} Bl 105+ T2
j=2

SV — (0, )l (1056 08 uwallie + 1Bl lluwtllygr]

where

) 15l ) 1/2
||6§p allj+1u1||l_z < TSy ;HLOO)I/Z /Q Ia‘§+1u1|2 (14 0yp) dxdy .

Therefore, for k > 4 we have that:
. _ llpll .
BY2 < 1Bllyge (V1T = (0, B) I + llwllZps ) + —— i / 0% u? (1+ 0y p) dxdy | .
(I—110yplle) \Ja
The last one is the simplest, if k > 4 we have:

k—2
By < 110xpllt Y 11826l 105 Twllrz < 1Bl (IVTT = (0, )y + utl2yi) -
j=1

And finally, for k > 4 we have proved that:
3 ~
- _ 16l -
2B Sl (V11— (0, P + ) + (= ||%yHak||Loo) /Q [0l (14 3y B) dxdy | .

n=I1

i)  We have at least one derivative in x, i.e. 0717 = 9%¥79, and in consequence we get:

Bl——ki k+1 159579, 1w, 050, p dxd
1= ). L p XUz 005 p dxdy.

j=1
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By integration by parts and the fact that 9yu, = —0xu; we get:
k_z . . . . . . . .
Bl = Z /Q 3 (3)p 0% Taxy) 9477710),05p dxdy + /Q 9[99 0" 7051, 0% 710),04p) dxdy
j=1

k—2

=y / [9),72p 0% T d5u, + 01,75 08 I d,] 98T710) 05 dxdy
; Q
)=1

=By + By
In this case, the first one is the simplest. For k > 4 we have:

k—2

By S 110kl D 110]2Bllee 195 T scuallie S l1pllrgs (IVTT— (0, P2y + llullf )
j=1

by the Sobolev embedding L*°([—1,1]) < H!([—1,1]) in dimension one. For the next, also if k > 4 we have:

k—2
By? S 110%7710)0xplle [110360%dxualls + > 113) 7 Blle 0% 70wl 2
j=2

SIVIT— (0, )l [110% 6 9%0xwalliz + 1Bl Ilwallyex]

where

~ /2
2 Ak 1181l K 2 . '
1559 0xualhe < [ i ( /Q 0%y (1 + 0y p) dxdy) :

Therefore, for k > 4, we have that:
. _ lIpl| .
B < 1ol (IIVTT = (0, p)I i + llulZ ) + NPTk / 0% uf? (14 9yp) dxdy | .
(I—110ypllL~) \Ja
And finally, for k > 4 we have proved that:

, 3
3 _ Ipl -
> B S llpllgees (IVTT— (0, PRy + Il ) + — o /'ak““|2(1+ayp)dxdy :
- (I—10ypll=) \Ja

n=

In either case, for both i) and ii) together with (3.55), if k > 4 we have proved
Br < Izl ol s + 118llgesr (IVTT = (0, §)IF i + llallF i)

116l (/ L2 . >
4R O tul* (1+ 9,p) dxdy ) . (3.56)
= [0yplm) g O o (1 +0yp) dxdy

On the other hand, by the incompressibility of the velocity and the periodicity, for B, + B; we get that:
LRy W . . . .
B,+B; =— Z < , ) [/Q 05 p 0L (dyus) 05 TP dxdy + /Q Oy P 0L uy 35T (0 p) dxdy

j=1
k+1

K41 s et
:—Z< j )/Qayﬂp [0 u- Vo™ p] dxdy
j=1
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(2)

i)  We have at least one derivative in x, i.e.

and Holder’s inequality gives us

k+1
B, + B3 S 1056l Y [19)u- VO™ gl
j=1

(3.57)

4 k
<Nl | S 10wl =V gl + 3 (9] ullx 190K gl + 05+ - V-

j=1 j=5
where

_ 1/2
K+l o= IVl K+1,12 ~
10y u- Vo2 < (1= [0y 5l )12 Qlay u[* (1+0yp)dxdy ) .

Moreover, for k > 6 we have that:
4
S 103 ull <1V T plliz S llallellplys + (el + 1977 = (0, )I2)
j=1

and

k
D IR}l IV Tl < llullfye + IVTT = (0, Bl
j=s

In conclusion, putting all this in (3.57), for k > 6 we have proved that:
B + B3 < llallelIply e + 11l ppes (Il +1IVTT— (0, §)Ifx)

+ HpHHljrI (/ |ak+lu|2 (I+ ayé) dXdy) )
I—[[0ypllLe \Ja

We finally arrive at the claimed bound putting together (3.56) and (3.58).
To work with I7, first of all we must remember that 9¢p = —0y (112/()) , then:

Gl @B)

17:/ &, I 92 6 dxd —1/ *uf (14 9,p) ——2~
o U, yP dxdy ZQ| = ( yp)1+ayp

=0U+1

dxdy

SO .
102 (w2p) Il
7< Y N </ |ak+1u|2 (1+ ayﬁ) dXdy)
1— ||aypHL°° TxR

2~
and in particular 9% (162 6) Il S s llre 1

As before, for the I7-term, we also distinguish between two cases:
9K = 9%0, and in consequence, for k > 2 we get:

I = /Q 05051, 0%, 1107 p dxdy < 1103 pllre 11005 TTlIL2 190zl 2

< pllealVIT— (0, ())||Hk|\ak+1u||]_z.
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Together with (3.53), we finally get:

. i 1Pl 3
I < 1pllpenl IVTT— (0, Pk + L / 0% 1u” (1+9yp) dxdy | .
1—[0ypllre \Ja

ii) All derivatives areiny, i.e. 9**' = 9\*". By integration by parts and the fact that 9, u, = —3,u; we get:
I = /Q Oy, 05T pdxdy = — /Q dy [0§wd7f] 9550, TTdxdy
+ /Q Oy [0y11 95051107 6] dxdy — /Q dx [0y 95T 02 ] dxdy
=5 /Q 9y 1y 05051103 p dxdy — /Q U1 080,103 p dxdy

where the boundary terms vanish by the periodicity in the horizontal variable and the fact that p € X*(Q).
Then, for k > 3 we have:

I < 110505z (108wl (103 Bllee + 1195wl 1133, pllLe)
< Bl IVTT = (0, Bl (1105 ullz + flullyyi)

and as before, by (3.53) we get:

< Mlhen ( / a2 (14 0, p) dxdy) Bl gess (1971 = (0, )IEye + [l ) -
1— 10yl \Ja

In any case, for k > 4 we have that:

7 < At lhdllelhien
~ o 1 dyplle

</Q 0% uf? (14 0y p) dXdy) 1Bl (IVTT = (0, p)IF4c + [ullfye) -
(3) Applying the chain rule, I® becomes:

I = —/ 3*Mu- (u- V)3 " u (14 9yp) dxdy
o
SR : .

- Z ( ) > / 3 Mu - (du- V) M u (1+9yp) dxdy

j—2 ) Q

— <k _IF 1> / 3 Mu - (du- V) u (1+ dyp) dxdy — / o u- (3w V) u (1+ 9y p) dxdy

Q e}

=Fh+F +F.

In the first term, since V-u=0in Q andu-n = 00on 0Q), we get:

1 uw ) az Oll1 oo
Fl _- / |ak+1u|2 U, a%f) dXdy 5 || ZHL || }JPHL </ |ak+1u|2 (1 + ayﬁ) dXdy) )
2 /o 1—|0ypllLe Q

For the second one, we need to work a bit harder:
k . .
Fa < (14 118y pllie) 2105 Mw (14 3y ) * [tz Yl (dTu - V) 3 Tu|p.
j=2
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)

where, for k > 5 we have that:

k k
S 1(@u- V) 05 Tufle < 3 [Dullie VO Tull + 3 07wl [V Tullie S Il
j=2

j=2 j=4

Therefore, for k > 5 we have proved that:

1/2
F2 < (14 10y Blle) 2 ( [ ok 05) dxdy> |
Q
In the last one, we have that:
Fs S IVl ( / 91 (14 9, p) dxdy) .
Q
Therefore, putting together the estimates, for k > 5 we have proved that:
1/2
S (1+10ypll=)"? (/ 0% ul’(1+ 9yp) dXle) [lullfy
Q

1 1
o Ml (34 lolles) </ 0% (1 4 9, p) dxdy> -
1 — |0y pllLe Q

We note that V- u = 0in Q andu - n = 0 0n dQ, so that in estimating (0% (u - Vp), 0% "1p) we only
have to bound terms of the form ||’ *'u - VO* || 2, wherej = 0,1, ..., k. We use Holder inequality to
conclude then, for k > 5 that:

k k—3 k—1
D 19 e VR Tplle < ) 1R ullis IV Bl + Y 10 izl VO bl + 105 - VL
j=0 j=0 j=k—2

< Nl 1l e =+ ullyge VT = (0, §) Il + 1% u - VplIpe.
Here, in the last term, to close the estimate we need to proceed as follows:

1% - VI < 1% a2 VPl

[ e ) V2
S 0 loypllie) 2 /Qa ul*(1+0yp) dxdy

and finally, we obtain that:

~ - 1 ~
1% - Vpls <9I = (0,8t + 15 =1 — (/Qla““ulz(1+ayo)dxdy>-
y o0

Therefore, for k > 5 we have proved that:
P S llallys 1917 s + Nplhpess (V17— (0, P + lhulfyx)

+ ||p||HliJrI (/ |ak+1u|2 (1+ ayﬁ) dXdy) )
1—[|0ypllLe \Ja

Putting it all together, by Lemma 3.5.6 and (3.54), we have proved Theorem 3.5.1.

63



3.6 Linear & non-linear estimates

Our goal for this and the following section is to obtain a time decay estimate for [[ul}+()(t). As we will
see in Section 3.7, to close the energy estimate and finish the proof it is enough to get an integrable rate.

We approach the question of global well-posedness for a small initial data from a perturbative point of
view, i.e., we see (3.9) as a non-linear perturbation of the linear problem. Therefore, a finer understanding
of the linearized system allows us to improve their time span.

3.6.1 The Quasi-Linearized Problem
In view of a descomposition of this system into linear and nonlinear part, we split the pressure as
=1t + 1Nt
where
Mt = —(~A)0yp,
MNE .= (—A) Mdiv[(u- V)u]. (3.59)

The linearized equation of (3.9) around the trivial solution (p, u) = (0, O) reads

0tp = —Uy,
atf) - O;
dqut+u =—VIT-+(0,p), (3.60)
V-u =0,

together with the no-slip condition u - n = 0 on dQ and initial data (p(0),u(0)) € X*(Q) x X*(Q)
such that p(0) = p(0) + p(0). Itis not difficult to prove that p(t) will decay in the time and p(t) will just
remain bounded at linear order. In consequence, the linearized problem has a very large set of stationary
(undamped) modes. Now, we return to our non-linear problem:

até—l—u/\V/é+ ayf)uz =W,
dp+u-Vp =0,

duutu+ (u-Viu+ Vit =—vnt + (o, p),
V-u =0,

together with the no-slip condition u - n = 0 on 9Q). Since p is decaying, the term u - Vp should be very
small and should be controllable. The term 9§ u,, however, acts like a second linear operator since f is not
decaying. Itis conceivable that this extra linear operator could compete with the damping coming from the
linear term. This makes the problem of long-time behavior more difficult.

We solve this by, more or less, doing a second linearization around the undamped modes and showing
that the stationary modes can be controlled. Then, we wish to prove decay estimates for p in the following
system:

atF-) :7(14»696) uZ}
atf) - O;
dutu —=—VITt+(0,p), (.61
V-u =0,

assuming that the initial data is sufficiently small. By showing that, the decay mechanism is “stable” with
respect to the sort of perturbations which this second linear operator introduces, we are able to keep the de-
cay mechanism and close a decay estimate for p and show that p, while not decaying, converges as t — oco.

64



3.6.2 The Quasi-Linear Decay

We prove L*(Q) decay estimates for the quasi-lineared system (3.61). To do it, letw : [-1,1] x RT — R*
be a measurable function. We consider the w-weighted L*(Q) space defined as

1
2

Iflliz, () (t) = (/Q [f(x, y)Pw(y, t) dXdU)
and their analogous Sobolev space

Ifllre (o) (1) = Ifllz, (o) (1) + [10%Fll2, (o) (1)

After recalling this definition, we notice that the second equation 9¢+p(t) = 0 of (3.61) reduces to a
condition at time t = 0, i.e. p(y,t) = p(y, 0). However, for the non-linear problem it is expected that p
will just remain bounded and in consequence, our goal is to solve the following system in Q:

0tp =—(1+G(y,t))u,
dqu+u =—VIT-+ (0, p),
V-u =0, (3.62)
pli—o = p(0),
ui—o =u(0),

where p(0) € X*(Q) and u(0) € X*(Q). Note that the auxiliary function G(y, t), which plays the role of
0y p(y, t), will be sufficiently small in the appropriate space.

Remark: By taking the analog of Fourier transform given by the eigenfunction expansion, we cannot obtain
an exact formula for the solution because the G(y, t) term mixes the effect of all the Fourier coefficients.

In the following, we fix our attention in the quasi-linear problem (3.62). By the previous comment we
can not extract an exact formula for the solution. For this reason we need to work a little harder to obtain
the decay for the quasi-linear problem.

Lemma3.6.1. Letk > 2.and (p(0),u(0)) € X*(Q) x X*(Q). Then, forw := 1+ G(y, t) andw* = w—20w
the solution of equation (3.62) satisfies that:

10 {0y (8) + 11k 0y (0 ] < Il () (0 5.63
+ ClIG e (—pm (O 1olh1 ) (1) [zl o) (1)

and
10 {110 eulie o (1) + el () (8] < —NBewRpe ) (8 + izl (o) () (.64
+ CIG gy (8) Izl ) (8) (Bl ) (1)
for some positive constant C.
Proof. We start with (3.63). Using the incompressibility and the boundary conditions it is clear that:

%at\luﬂilkw(m _—|u||2H1V<V*(Q)—i—/ﬂﬁuzwdxdy—|—/Qak()aku2wdxdy.
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Now, as 0+p = —(1 + G(y, t)) u,, we have that:

6k@ak(at()w_1)wdxdyi/ 0%p 0k p dxdy

1 2 2 _ —
19 ul = ju —/ 50.p dxdy _/
2 H (Q) HE () [ o

(0]

and we arrive to:
30 Iy () + PR oy } = Il () /Q 0p [0F (wa w) — w d¥u] dxdy.

Applying integration by parts in the last term, we obtain that:

/ 0%p [ak(uzw)—wakuz] dxdy :/
Q

ok 15 [, wiu, dxdy — / %15 dw oMy, dxdy
Q

Q

and using the commutator estimate (3.19) we have the bound:

/ 0%p [0} (ua w) — wdkwy] dxdy < 0% "plle2 (10, wiuallee + oWl 0% uall 2)
Q

S plle (owlleel 0¥ uallcz + 0% ' wll2 [zl -
Applying the Sobolev embedding in the previous inequality, we have for k > 2 that:
—/ akﬁ [8k(u2 W) —wakuz] dXdy 5 ||aW||Hk([71,1])||UZHHk(Q)||§HHk—1(Q)
Q

and, in consequence, we have proved the first inequality.
To prove (3.64) we proceed as before, using the incompressibility and the boundary conditions to get:

%at||atu\|%4k(g) = _HatuH%_[k(Q) + /Q 0P 0tuy dxdy + /Q %91 03 ¢u, dxdy.
Again, as 0+p = —(1+ G(y, t)) u,, we have that:
Locl0eully o) = —IRewly o) — /Qwuz deu, dxdy — /Q oM (wu,) 9%9¢u, dxdy
and finally we arrive to:

10 {IIReule o) + Nl ()} == 0eul o) + el (o)

— / 005w, [ak(uz w) —w akuz] dxdy.
Q
Using the commutator estimate (3.19) and the Sobolev embedding in the last term, for k > 2 we have that:

- / 000w, [0%(u w) — w0k, ] dxdy < 1100 wsllrz (JlOWIl=[10* Muallrz + ¥ Wizl uallie)
Q
S ||aw||Hk*1([—1,1})HuZHHk(Q_)HatuZHHk(Q)
and, in consequence, we have proved the second inequality. O
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Plugging together (3.63) with (3.64) and using ||/ jx-1( ) (t) < VTt — (o, Pk (q)(t) we get:

13, {I1ulByy (0) (8 + 19IR 1w 0) (8) + 1R ) (8) + 02 By ) (0]

<= (IR o) ® + el ) () + el () (8
C _
- 10wl 1y (8) (19T = (0, )R (8) + 2l ) () + 0l ) (1)

Therefore, we are in position to prove the main result of this section. To do it, we consider some smallness
assumptions over the auxiliary function G.

Lemma3.6.2. Letk > 2and (p(0),u(0)) € X*(Q) x X*(Q). Assume that G : [-1,1] x Rt — R satisfies
that G € L>(0, oo; H* ™ ([—1,1])) and 9. G € L*®(0, 0o; L®([—1, 1])) with:

maX{HGHHkH([_LH)(t), ||atG||Loo([_1,1])(t)} <€ ﬁ)mll t>0.
Then, forw =1+ G(y, t) and w* :=w — %atw the solution of equation (3.62) satisfies that:
30 Il ) (0) 1914 3y (1) + 100l ) () + el ) (8} £ —J00u + e ) (1). G.69)
Proof. First of all, due to the smallness conditions over G, forall (y, t) € [-1,1] x R" we have that:

1-2e<wi(y,t)[<1+32e and  |w(y,t) —w(y,t)| < fe.

In consequence, we get:
— (e ) (0 + 1Re ) (8)) a6 (1) S = (0B ) (8 + R eulEge (1)) -
Now, considering the linear version of the Lemma 3.5.3 we have that there exists 0 < C < 1such that:
Il ey (8 10l ) (1) = € (e g3y () + 1= VT (0, Bl ) (1) + IReute (1))

Hence, thanks to the fact that [|Gl|}jx+1([_; 17 (t) is small enough for all time, we arrive to:

20 {0 (8) + 1R ) (8) + 1R ey ) (8) + Iy (1)}
<=C" (Il o) (©) + [0eulR i ) (1))

for some 0 < C* < C < 1. Hence, by Young's inequality it is clear that there exists 0 < y < 1 such that:

30 {0 (8) + 1R ) (8) + 1R e ) (8) + Il (1)}

< —C* (Il e ) (1) + 9By ) (1)

2 2y

Vit 2l o) (0 10l ) (1)
<—c*(||u+atu||ak(0)(t)+z||atu||ak(m(t))+zC*( e e )

Considering for simplicity y = 1/2, we have proved our goal. O
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3.6.2.1 The Stream Formulation

Because of the incompressibility of the flow V - u = 0, we write the velocity as the gradient perpendicular
of a stream function P*, i.e
u= Vit (3.66)

with V+ = ( —0y, 0x). Then, computing the curl of the evolution equation of the velocity, we get the follo-
wing Poisson equation:
A (et +Ph) = dxp. (3.67)

Taking in account (3.66) and the no-slip condition we obtain the boundary condition:

dxboa =o.

Thus, we need to impose - {y==+1} = b+ where b could be, in principle, different from b_ . However the
periodicity in the x-variable of TT force to take b = b_, and since we are only interested in the derivatives
of Y- we will take by = 0.

To sum up, in order to close the system of equations, we first solve

{A(atwLwL) =0xp in  Q

2
db+v- =0  on 20, G.68)

and then, we will use the stream formulation to recover the velocity field u = VLII)L. To solve (3.68) with
p € X*(Q) and u € X*(Q) we use the orthonormal basis introduced in section 3.3.2, which allows us to
write the velocity in terms of the “Fourier coefficients” of p.

Lemma3.6.3. Letp(t) € X*(Q). The solution of Poissow’s problem
Oxp n Q,
et +pt =o om  0Q,

satisfies that (3™ + ) (1) € X(Q) with 9¢d" + W0y (1) S 1plhx(q)(t) and its Fourier
expansion is given by

(aﬂpL —i—lb (x,y,1) Z Z ( ) FwlpW](p, q) wp,q(x,Y). (3.69)
PEZ qeN )
Proof. See section 2.3 of previous chapter. O

In particular, using the stream formulation we can rewrite du+u = V- (3t +pL) where d -+t
is the solution of (3.68) given by (3.69). Then, we have that:

||atu+u||2Lz( = (A" +1I)L),at1|)L +h) = (3P, 0ep" +9h)
=) > ( — ) |Fo[p()](p, )" (3.70)
pPEZ qeN qj)

Lemma3.6.4. Letox € Nand N : RT — R Then, the following lower bound holds:

1 _
— ol 1Pe ) (1) 3.71)

1 _
||atu+u||%_2(Q)(t) P 7”9”%_2(1))(1;) N(t)

N(t)
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Proof. First of all, we introduce the auxiliary function N : Rt — R™ into (3.70) to obtain that:

1 _ 1 1 _ 2
P+ ul (V) > ——lpl o+ Y < - > TP, q)]
N(t) (p,q)€Z4oxN P2+ (qf) N(t)

1

ol LG > Folpl(p, q)|" ] - (3.72)
p2Ha2(m/2)2 2N (1)
On the other hand, by Lemma (3.3.1) we have that:
_ 1 _
> Pebmal<gyge X GPH@m2)T |Tebleaf
P*4+q?(m/2)>2N(t) p2+(q§)z>N(t)
L ae

< NgalPlie o (0. .73
Combining the preceding estimates (3.72) and (3.73) we arrive to (3.71). O

This gives for some 0 < C < 1that:

O {1y (0) (8) + 81 ) (1) + 1908 ) (8) + gl ) (8) b < —ClIRew+ wlR e (1)
C C

=112 =12
< N(t)HpHHk(Q)(t)+W|‘p||Hk+a(Q)(t)

It is enough to assume that N : R — R™ satisfies that N’(t) N(t) > 1 to obtain:

< o~ (N(t)=N(0)) te=(N()-N(s)
Ek(t) ~ € Ek(O) +/O WHQHHHQ(Q)(S) ds (374)

where
Ere(t) =l 0, (8) + 1810 ) (8) + 19eul ) (8) + szl o (1):

For simplicity, we take N(t) := 2v/1 4+ t in (3.74), which gives us:

e t o—2(VIFt—VIFs) X
Ek(t) 5 e + Ek(o) + / Tfo ds Hf_)H % ([o,t],Hk+(Q))"
0 (1+5s) 2

Now, we use the following calculus lemma, whose proof can be found in Lemma 2.5.5.

Lemma 3.6.5. Let ov € N, we have that:

/t o2 (VITT—/IFs) 1
(o}

It ds L=
(1+5s) 2 (1+1)

AN

Then, applying the previous inequality we see that:

[Fp—
Ex(t) S e 2/ E(0) + —— 22,
(1+1t)2
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Using that [[ul|yn () (t) = [[ullyn(q)(t) are equivalent norms together with the fact that E,, (t) decays in

time by (3.65), we have proved that:
Ek+oc(o)

o .

<
BB 3 (1+1)5

In particular, we have that:

610 (0) + 1P ) ©)

Ik o) (8) + IBIE e ) (8) S
2 oy (0 1B oy (0 S Tt

3.6.3 Non-Linear Decay

Next, we will show how this decay of the quasi-linear solutions can be used to establish the stability of the
stationary solution (p,u) = (0, 0) for the general problem (3.9). When perturbing around it, as we have
seen in Section 3.6.1, we get the following system:

atﬁ+(1+ay§)uz =—u-Vp
0tp =-—u-Vp (3.75)
otu+u— (—VHL + (0, ())) =—(u-V)u— VNt
V-u =0

with (u- V)u+ VITVE = L{(u - V)u], where L is the Leray’s proyector.

Using Duhamel’s formula, with G(y, t) = 9y p(y, t) small enough in the adequate space, we can write
the solution of (3.75) as:

p(o) (t,s) u-Vp(s) Lo t -
<0> / ! < [(w-V)ul(s )> ds  and P(t)—p(O)—/o u-Vp(s)ds

denotes the solution operator of the associated quasi-linear problem (3.62) from s to t. Hence,

where eZ (t3)
we have:
1Pl Hn+e () (0) + llullfn+eaq)(0)
(141t)%
+/t lu- Vpllpn+a(q)(s) + IL[(w- V)ulllyn+a(q)(s) ds
0 (14 (t—s))%

(3.76)

10ln (@) (1) + llullin () (1) S

and

t —_
1Bl () (1) < NBllHn () (0) +/ lu- Vpllhn(a)(s) ds
0]

3.7 Theboostraping

We now demonstrate the bootstrap argument used to prove our goal. Theorem 3.5.1 tell us that the following
estimate holds for k > 6:

3e€iest(t) < —(C— CYL (1) [IIVTT — (0, )l (0) + I (w- W) w2 (0) + 2 (6) + 19wl ()]
— (1-Cw) < / 9 ux, y, I (14 9y By, t))dxdy)

+ lulls Epr(t).

The last section is devoted to prove the main result of this chapter:
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Theorem 3.7.1. There exists € > O and parametersy,k € Nwithy > 4and k > 6 + 2y so that if we solve
(3.2) with initial data o (0) = © + p(0) and velocity u(0) such that (p(0),u(0)) € X*T(Q) x X**(Q) and
€11(0) < €* < €. Then, the solution exists globally in time and satisfies the following:

- o e
D) [[olls (t) = [1plls () S o
.. 19

i) [Jullps(t) S RN

i) |2 — ©llpe () = [1Bllresi () < 6€”.
We need to prove:

Lemma3.7.2. If¢, 1(0) < e®and &, 1(t) < 6e* ontheinterval [0, TIwithO < & < &0 small enough. Then
€ +1(t) remains uniformly bounded by 3¢* on the interval [0, T].

We will prove Lemma 3.7.2 through a bootstrap argument, where the main ingredient is the estimate
(3.31). We will work with the following bootstrap hypothesis, to assume that &, ,;(t) < 6¢* on the interval
[0, T] where k is big enough and 0 < ¢ < 1such that:

(C—C‘Pl(t))>o and (1—C\y2(t))>o on [0,Tl.

Then, by Gronwall’s inequality we have:

t
Eri1(t) < Eiq(0) exp (/ [[ull144 (s) d5> telo, Tl
0

Our aim here is to show that the interval on which the a priori estimates hold can be extended to infinity.
Using a continuity argument it will suffice to prove that ||u||}4+ (t) decays at an integrable rate. Animmediate
consequence of this and the previous inequality is that there exists T* > T such that &, ;(t) < 6¢*oniit.
Therefore, we can repeat iteratively this process, in order to extend our result for all time.

3.7.1 Integral Decay of |[ul|;+(0)

In order to control ||}« () in time we have the following result.

Lemma 3.7.3. Assume that €, ,1(t) < 6e* forallt € [0, Tl wherek > 5+ 2y withy € N. Then, the solution
satisfies that:

(ol + ) (1) NIy EIELenn (O 2R LT TS g, s e (5) s
(1+1t)3 0 1+ (t—s))%

Proof. By assumption 9y p(t) is small in H*(Q) and 949y (t) is smallin H*'(Q) forall t € [0, T]. This
implies that .#(t, s) has nice decay properties from s to t with t € [0, T] in H*(Q) if k > 5 + y. Hence,
Duhamel’s formula (3.76) gives us:

H()HH“(t) + ||u||]—[4(t) ,S ||F—)HH4+7(O) + ||5'HH4+V(O)
(14+1t)%

t 1 —
+/o Tz UVl () + Il V) ullhen (5]} ds
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and we have that:
lw- Vpllsty + [Ll(w- V) ulllery < [[allpsey (10lhsey + lallgsey)

To sum up, we obtain that:

(1ll s+ + llallygs+v) (0) +/t llallygs+v (s)
o (

(Iplhas + llulls)) (1) S TR (s} (Ipllys+y + [fullys+) (s) ds.

However, due to the well-known Gagliardo-Nirenberg interpolation inequalities:
1Dtz < CIDHHILE o) I o) + Cliflliz (o

we obtain

1/2

1/2 2
/ and  flullpser < e, il (3.77)

1/2
1Bl v S 1BIN 2y lIBIN:

Therefore, if we apply (3.77) in the previous inequality, we get:

[18ll1+++ (0) + llul[y4+v (0)
(141t)*

ol ) + lalhas(s) o 172 o
g Tl ) (IR () + Il (5)) ds.

[1Plls (1) + llulls (1) S

In particular, for k € N such that k > 5 + 2y we have proved our goal. O
The following basic lemma is stated without proof (for a proof see [27], Lemma 2.4).

Lemma3.7.4. Letd, T > O, then:

/t dS < eé’ff
o (1 + (t _ S))é (1 + S)1+~c ~ (1 4 t)min{é,H—’t}'

Lemma 3.7.5. Assume that €, (t) < 6e*forallt € [0, T] wherek > 5 + 2y withy € N. Then, we have:

€
(1+1)

1pllrs (1) + [[ullis (0 (1) S v forall telo,Tl.

Proof. By hypothesis, &, ;(t) < 6¢* on the interval [0, T]. Then, we obtain that:

} Ce t Ce _
1]l (1) + [lul[ps (1) < m +/O m (Il (s) + [lulle(s)) ds

and in particular, there exist 0 < T*(C) < T such that for t € [0, T*(C)] we have:

_ Ce
1Pl () + [Julle (1) < 6 ———.
(I+1t)«

If we restrict to 0 < t < T*(C) and we apply the previous Lemma 3.7.4, we have:

_ Ce t Ce 6Ce
1Bllyas (6) + llullys (6) < +/“ § _ds
o (I+( 3

(14+1t)* t—s))¥ (1+s)¥
Ce Ce2
< y T Y
1+t)s (1+t)+
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The last term in the expression above is quadratic in ¢, it is enough to find 0 < e < 1 small enough so that

Ce
(14+1t)*

1Pl (1) + [fullpgs (1) < 3

forallt € [0, T*(C)] and, by continuity, forall t € [0, T].
O

So, with y > 4 we have proved the integrable decay of [[u||1;+()(t). Then we are able to close our energy
estimate. We are now in the position to show how the bootstrap can be closed. This is merely a matter of
collecting the conditions established above and showing that they can indeed be satisfied.

In conclusion, if &1(t) < 6 % forallt € [0, T] we have that
t
Eri1(t) < Exyq(0) exp (/ Ilul[ 4 (s) d5>
0

2 ‘ Ce 2 A
<e€ exp 5 st <e eXp(CE)

and &, ;(t) < 3¢e*forallt € [0, T] if we consider e small enough, which allows us to prolong the solution
and then repeat the argument for all time.
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