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I met Javi in the third year of PhD and since then he has been
fundamental in my growth as a mathematician. I have been very
lucky to work with someone like him.

There are so many people I should thank and yet here I prefer to be
brief and just name a few: my mathematical siblings, Paco Torres
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Abstract

The results in this thesis can be divided into two blocks, respectively devoted to
the study of certain aspects of geometric evolution partial differential equations
(PDEs) and traveling waves with singularities. While the problems in the first
block appear naturally in the context of General Relativity, in the second part
we will deal with singular solutions to a model of shallow water waves and prove
a recent conjecture in Fluid Mechanics. The underlying main topic is then the
study of evolution PDEs with singular behavior, understood in a broad sense. In
this fashion, the questions studied here can be related through some analytical
techniques: the study of nonlocal operators, the use of weighted inequalities and
the treatment of singularities of very different nature.

The first block revolves around geometric PDEs linked to General Relativity.
First, we shall see how to employ Carleman estimates techniques to show some
boundary observability properties for wave equations with strong geometric mo-
tivation. Roughly speaking, observability is tantamount to quantitative unique-
ness; it defines a stronger notion of unique continuation in which the prescribed
Cauchy data controls a meaningful energy norm of the solution of the equation,
often an energy for which the PDE is well-posed. The key feature of the equations
studied in the first part of the thesis is that they become very singular at the
boundary of a set. Typically, they can be written as a regular part plus a strongly
singular potential depending on the distance to the boundary. The most interest-
ing case occurs when the potential scales exactly as it does the Laplace–Beltrami
operator (in which case it is called critically singular) and when it blows up in a
manifold of codimension one. The main objective in this part is the development
of new Carleman-type inequalities adapted to the geometry of the singularity.
These estimates thus provide a better understanding of the observability and
uniqueness properties of evolution PDEs with critically singular potentials.

Somewhat related to the above, an interesting problem in conformal geometry
is to show a Lorentzian analog of the relationship between fractional Laplacians
and conformally covariant operators defined on the boundary of a Riemannian
conformally compact Einstein manifold. Here we will see that the fractional
powers of the wave operator (in the flat space) can be constructed as Dirichlet-
to-Neumann maps associated with certain wave equations in anti-de Sitter back-
grounds. This construction is then not only interesting from a pure mathematical
point of view, but also because the deep connection with some questions in theo-
retical physics. In fact, as recalled later on, anti-de Sitter spaces play a major role
in cosmology due to their connection with the celebrated AdS/CFT conjecture in
string theory. On the other hand, the relationship with the above evolution PDEs
is clear as the very construction of these operators boils down to the study of a
boundary value problem consisting in a massive wave equation with a critically
singular potential and some boundary data at (conformal) infinity.
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Introduction

The other central part of the thesis is devoted to the study of fluid mechanics
problems and, more specifically, the analysis of a nonlocal dispersive equation
known as Whitham equation. This is a model of surface water waves in one
dimension with rich mathematical properties, including the existence of traveling
and solitary waves as well as wave breaking and singularities. In relation to
the latter, our interest in Whitham’s equation comes from a conjecture on the
highest cusped traveling wave solution. Similarly to the famous statement for
Stokes water waves, it was conjectured that Whitham waves of extreme form,
namely the ones of greatest height, have a convex profile between consecutive
stagnation points.

In the final part of the thesis we prove this conjecture by exploiting some
unexplored structural properties of the equation and a very careful asymptotic
analysis close to the singularity. In addition, the conjecture also suggested that
near the crests the highest cusped waves satisfied a certain asymptotic expan-
sion, which is showed by constructing a rather complicated approximate solution
with the desired properties. Besides the singular behavior, the key feature of
the Whitham equation is precisely the linear term that is governed by a smooth-
ing, nonlocal, nonhomogeneous operator that makes the equation to be weakly
dispersive.
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Resumen y Conclusiones

Los resultados de esta tesis están divididos en dos bloques dedicados, respec-
tivamente, al estudio de ciertos aspectos relativos a ecuaciones de evolución
geométricas en derivadas parciales y de ondas viajeras con singularidades. Mien-
tras que los problemas del primer bloque aparecen naturalmente en el contexto de
la Relatividad General, en la segunda parte vamos a tratar con soluciones singu-
lares a un modelo de ondas de agua superficiales y probaremos una conjetura re-
ciente en Mecánica de Fluidos. Los dos bloques están entonces conectados a través
de un tema central que se puede describir como ecuaciones de evolución con com-
portamiento singular, entendido de manera amplia. De este modo, las cuestiones
estudiadas aqúı se pueden relacionar mediante algunas técnicas anaĺıticas: el es-
tudio de operadores no locales, el uso de desigualdades con pesos y el tratamiento
de singularidades de naturaleza muy diferente.

El primer bloque trata ecuaciones en derivadas parciales que están relacionadas
con la Relatividad General. En primer lugar veremos como emplear técnicas de
estimaciones de Carleman para demostrar propiedades de observabilidad de fron-
tera para ecuaciones de onda con una fuerte motivación geométrica. En términos
generales, observabilidad es sinónimo de unicidad cuantitativa; define una noción
de continuación única en la que los datos de Cauchy prescritos controlan una
enerǵıa significativa de la solución, a menudo una para la cual la ecuación define
un problema bien planteado. La principal caracteŕıstica de las ecuaciones estu-
diadas en la primera parte de la tesis es que son muy singulares en el borde de
un conjunto. T́ıpicamente, estas se pueden escribir como una parte regular más
un potencial fuertemente singular que depende de la distancia a la frontera. El
caso más interesante ocurre cuando el potencial escala exactamente igual que el
operador de Laplace–Beltrami y cuando diverge en una variedad de codimensión
uno, en cuyo caso se denomina cŕıticamente singular. El principal objetivo en
esta parte es desarrollar nuevas estimaciones de tipo Carleman adaptadas a la
geometŕıa de la singularidad. Estas estimaciones nos proveen aśı de un mejor
entendimiento de las propiedades de observabilidad de frontera de ecuaciones de
evolución con potenciales cŕıticamente singulares.

Relacionado con lo anterior, un problema interesante en geometŕıa conforme
es probar un análogo Lorentziano de la relación entre Laplacianos fraccionarios
y operadores covariantes conformes definidos en el borde de una variedad Rie-
manniana conforme compacta de tipo Einstein. Aqúı veremos que las potencias
fraccionarias del operador de ondas estándar (en el espacio plano) se pueden cons-
truir como operadores de Dirichlet-Neumann asociados con ciertas ecuaciones de
onda en geometŕıas de tipo anti-de Sitter. Esta construcción es interesante no solo
desde un punto de vista puramente matemático, sino que también por la profunda
conexión con algunas preguntas de f́ısica teórica. De hecho, como recordaremos
mas tarde, los espacios de tipo anti-de Sitter juegan un papel fundamental en
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Introduction

cosmoloǵıa debido a su conexión con la celebrada conjetura AdS/CFT de teoŕıa
de cuerdas. Por otra parte, la conexión con las ecuaciones de antes es clara viendo
que la construcción de estos operadores se reduce a manejar un problema de fron-
tera que consiste en una ecuación de ondas con masa en el que hay un potencial
con una singularidad cŕıtica y datos de borde en el infinito (conforme).

La otra parte central de la tesis está dedicada al estudio de Mecánica de
Fluidos y, más espećıficamente, al análisis de un modelo de ecuación dispersiva
no local conocida como ecuación de Whitham. Este es un modelo de ondas su-
perficiales en una dimensión con propiedades matemáticas ricas, incluyendo la
existencia de ondas viajeras y solitarias, aśı como ruptura de ondas y singulari-
dades. En relación con esto último, nuestro interés en la ecuación de Whitham
proviene de una conjetura sobra la onda de altura máxima con cúspide. De man-
era similar al famoso caso de las ondas de agua de Stokes, se conjeturó que las
ondas de Whitham de forma extrema, esto es la que alcanzan máxima altura,
tienen un perfil convexo entre picos consecutivos.

En la parte final de la tesis probaremos que esta conjetura es cierta utilizando
algunas propiedades estructurales de la ecuación y un análisis asintótico cerca de
la singularidad muy cuidadoso. Por otra parte, la conjetura sugeŕıa que cerca
de las crestas de las ondas de altura máxima se satisfaćıa una cierta expansión
asintótica, la cual probamos construyendo una solución aproximada bastante com-
plicada con las propiedades deseadas. Además del comportamiento singular, una
caracteŕıstica fundamental de la ecuación de Whitham es precisamente el término
lineal que viene dado por un operador que suaviza, es no local y además inho-
mogéneo, que hace que la ecuacón sea débilmente dispersiva.
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Introduction

Here we give a brief summary of the results contained in this thesis and how they
are structured in the three following chapters.

In the first block of results we have two chapters that treat different aspects of
wave equations with coefficients that are singular at the boundary of a manifold.
Carleman estimates and Boundary Observability, on the one hand, and Dirichlet–
to–Neumann maps and fractional wave operators, on the other, are the central
objects of study in this part of the thesis strongly motivated by the study of
geometric wave equations in General Relativity.

The third chapter corresponds to the block devoted to Fluid Mechanics. In
this part we will be focused on Whitham’s model of shallow water waves and
a recent conjecture on waves of greatest height. Here we will develop a new
strategy to construct singular solutions to equations with very low regularity
that, in particular, shows the existence of a highest, cusped, periodic traveling
wave solution to the Whitham equation that is convex between consecutive crests.

Carleman estimates and Boundary Observability

for waves with critically singular potentials

The breadth of applications of Carleman estimates to a wide range of PDEs
[27, 69] is remarkable. Examples include unique continuation, control theory,
inverse problems, as well as showing the absence of embedded eigenvalues in
the continuous spectrum of Schrödinger operators. In Chapter 1 we derive a
novel family of Carleman-type estimates for the wave operator associated to the
following initial boundary value problem in a cylindrical spacetime domain:

�κu := �u+
κ(1− κ)

(1− |x|)2
u = 0 in (−T, T )×B1 ,

u(0, x) = u0(x), ∂tu(0, x) = u1(x) .

where � := −∂tt + ∆ denotes the flat wave operator, the spatial domain is the
unit ball B1 of Rn, and the constant parameter κ ∈ R measures the strength of
the potential. In spherical coordinates, the equation simply reads as

−∂ttu+ ∂rru+
n− 1

r
∂ru+

κ(1− κ)

(1− r)2
u+

1

r2
∆Sn−1u = 0 ,

where ∆Sn−1 is the Laplacian on the unit sphere. The potential is then critically
singular at the boundary of the ball ∂B1 := {r = 1}, where, according to the
classical theory of Frobenius for ODEs, the characteristic exponents of this equa-
tion are κ and 1 − κ. Therefore, if κ is not a half-integer (which ensures that
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Introduction

logarithmic branches will not appear), solutions to the equation are expected to
behave either like (1− r)κ or (1− r)1−κ as r ↗ 1.

As one can easily infer by plugging these powers in the energy associated with
this equation, ∫

B1

[
(∂tu)2 + (1− r)2κ

∣∣∇x[(1− r)−κu]
∣∣2]

the equation admits exactly one finite-energy solution when κ 6 −1
2
, no finite-

energy solutions when κ > 1
2
, and infinitely many finite-energy solutions when

−1
2
< κ < 1

2
(see [77] for the details on the well-posedness theory). In this range

one must impose a (Dirichlet, Neumann or Robin) boundary condition on ∂B1.
This is constructed in terms of the natural Dirichlet and Neumann traces, which
now include weights and are defined as the limits

Dκu := (1− r)−κu|r=1 , Nκu := (1− r)2κ∂r
[
(1− r)−κu

]
|r=1 .

Notice that singular weights depending on κ appear everywhere in this problem,
and that all the associated quantities reduce to the standard ones in the absence
of the singular potential, i.e., when κ = 0.

The dispersive properties of wave equations with potentials that diverge as
an inverse square at one point [7, 15] or an a (timelike) hypersurface [4] have
been thoroughly studied, as critically singular potentials are notoriously difficult
to analyze. In general, one would not expect Carleman estimates to behave well
with singular potentials such as κ(1 − κ)(1 − r)−2. Since the singularity in the
potential scales just as �, there is no hope in absorbing it into the estimates
by means of a perturbative argument. Indeed, Carleman estimates generally
assume [70, 26] that the potential is at least in L(n+1)/2

loc
, but this condition is not

satisfied here.

A setting which is closely related to the one described above is that of linear
wave equations on asymptotically anti-de Sitter spacetimes (AdS). These equa-
tions are conformally equivalent to analogues of our model Cauchy problem on
curved backgrounds. In the next section we will elaborate on linear waves on
AdS backgrounds from a more geometric perspective. Here it is worth mention-
ing that they have attracted considerable attention in the recent years due to their
connection to cosmology, see e.g. [4, 33, 34, 41, 77] and the references therein.

Carleman estimates for linear waves were established in this asymptotically
AdS setting in [41, 42], for the purposes of studying their unique continuation
properties from the conformal boundary. In particular, these estimates capture
the natural Dirichlet and Neumann data (i.e., the analogues of the Dκ and Nκ
defined before). On the other hand, the Carleman estimates in [41, 42] are local
in nature and apply only to a neighborhood of the conformal boundary, and they
do not capture the naturally associated H1-energy. As a result, these estimates
would not translate into corresponding observability results.

2



The main result of Chapter 1 is a novel family of Carleman inequalities for
the wave operator �κ with our critically singular potential that capture both the
natural boundary weights and the natural H1-energy described above. To the
best of our knowledge, these are the first available Carleman estimates for an
operator with such a strongly singular potential that also captures the natural
boundary data and energy. Moreover, our estimates hold in all spatial dimensions,
except for n = 2. An informal statement of the theorem is the following:

Theorem 1. Let B1 denote the unit ball in Rn, with n 6= 2, and fix −1
2
< κ < 0.

Moreover, let u : (−T, T ) × B1 → R be a smooth function, and assume that u
“has the boundary asymptotics of a sufficiently regular, finite energy solution to
�κu = 0”. In particular, u has zero Dirichlet data, Dκu = 0, and the Neumann
trace Nκu of u exists and is finite. Moreover, suppose there exists δ > 0 such that
u(t) = 0 for all T − δ 6 |t| < T . Then, for λ� 1 large enough, independently of
u, the following inequality holds:

λ

∫
(−T,T )×∂B1

e2λf (Nκu)2 +

∫
(−T,T )×B1

e2λf (�κu)2

& λ

∫
(−T,T )×B1

e2λf
[
(∂tu)2 + y2κ

∣∣∇x(y
−κu)

∣∣2 + |κ|λ2y6κ−1u2
]
,

where y(r) := 1− r denotes the distance to ∂B1 and f is the weight

f(t, r) := − 1

1 + 2κ
y(r)1+2κ − ct2 ,

with a suitably chosen positive constant c.

The main ingredients of the proof of Theorem 1 are presented at the beginning
of Chapter 1. Here we would like to point out that one of these ideas is a
generalization of the classical Morawetz multiplier estimate for the standard wave
equation. This estimate was originally developed in [59] in order to establish
integral decay properties for waves in 3 spatial dimensions. Analogous estimates
hold in higher dimensions as well; see [68], as well as [61] and references therein
for more recent extensions of Morawetz estimates. In fact, at the heart of the
proof of Theorem 1 lies a generalization of the classical Morawetz estimate from
� to �κ that builds upon the use of “twisted” derivatives (a particular form
of weighted derivative), in the place of the usual derivatives. This produces a
number of additional singular terms, which we must arrange so that they have
the required positivity. Finally, our generalized Morawetz bound is encapsulated
within a larger Carleman estimate, which is proved using geometric multiplier
arguments (see, e.g., [2, 41, 42, 46, 53]).

One particular consequence of Theorem 1 is the boundary observability of lin-
ear waves involving a critically singular potential. Roughly speaking, a boundary
observability estimate shows that the energy of a wave confined in a bounded re-
gion can be estimated quantitatively only by measuring its boundary data over a
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Introduction

large enough time interval. In the following theorem we show that to control the
natural H1-energy associated to our Cauchy problem in a cylindrical spacetime
domain, it is enough to “observe” the Neumann data Nκu during a sufficiently
large time:

Theorem 2. Let y(r), B1, n, and κ be as in the previous theorem. Moreover, let
u be a smooth and real-valued solution of the wave equation

�κu = X · ∇u+ V u

on the cylinder (−T, T )×B1, where X is a bounded (spacetime) vector field, and
where V is a bounded scalar potential. Furthermore, suppose u has zero Dirichlet
data, Dκu = 0, and that it “has the boundary asymptotics of a sufficiently regular,
finite energy solution of the above equation”, so that Nκu exists and is finite.
Then, for sufficiently large T , the following observability estimate holds for u:∫

(−T,T )×∂B1

(Nκu)2 &
∫
{0}×B1

[
(∂tu)2 + |yκ∇x(y

−κu)|2 + u2
]
.

Let us conclude this introduction to the first chapter by mentioning that anal-
ogous results can be proved for parabolic equations featuring our inverse square
potential κ(1 − κ)y−2. For the corresponding evolution operators one can prove
similar Carleman-type inequalities with sharp weights that capture the natural
boundary conditions and the natural L2-energy. As in the case of waves, these
estimates also translate into boundary observability results, but here the geome-
tric motivation stems from the study of heat-like equations in asymptotically
hyperbolic spaces. The latter are Riemannian analogues of the aforementioned
asymptotically AdS backgrounds, that is compact manifolds solutions to the Ein-
stein equations with negative sectional curvature.

In the above context, the interest in evolution equations with critically sin-
gular potentials has increased over the last decades due to their connection with
a wide range of phenomena including combustion theory [10] and quantum cos-
mology [11] In the mathematical side, they have also been widely studied in the
context of PDE [14], specially in control theory, where one can highlight among
other results the proof of new sharp Hardy-type inequalities that are central in
the well-posedness theory for these equations [75].

Fractional wave operators

It is a classical result in potential theory that the Dirichlet-to-Neumann map of
the harmonic extension problem in the upper half-space is given by the square
root of the Laplacian. This relation can be generalized to encompass all fractional
powers of the Laplacian, and has recently made a major impact in the theory of
nonlocal elliptic equations [16].
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Indeed, this relation connects the multiplier ̂(−∆)1/2−κf(ξ) := |ξ|1−2κf̂(ξ) on
Rn, which is a nonlocal operator of the form

(−∆)1/2−κf(x) = cn,κ

∫
Rn

f(x)− f(x′)

|x− x′|n+1−2κ
dx′ , κ ∈ (−1

2
, 1

2
) , cn,κ ∈ R ,

with a local elliptic equation in n + 1 variables. Specifically, given a function f
on Rn, let us consider the function u on Rn×R+ that solves the boundary value
problem

∆xu+ ∂yyu+
κ(1− κ)

y2
u = 0 in Rn × R+ ,

lim
y↘0

y−κu(x, 0) = f(x) , lim
y→∞

u(x, y) = 0 ;

it was shown in [16] that

(−∆)1/2−κf(x) = cκ lim
y↘0

yκ∂y(y
−κu(x, y)) .

This reduces to the ordinary derivative ∂yu(x, 0) in the case of the square root
of the Laplacian (κ = 1

2
), and in fact for all values of α it provides the natural

Neumann datum associated with the above elliptic operator y−κ∇(y2κ∇(y−κ·)).
Note that a generalized formula for higher powers α ∈ (0, n

2
) has been established

in [19, 20].

In Chapter 2 we show an analogous relationship for the fractional powers
of the wave operator, by which we will always mean a fractional power of the
usual wave operator −� := ∂tt − ∆ and not an evolution equation driven by a
fractional power of the Laplacian or, more generally, a generator of a suitable
semigroup (for fine information on the latter in various contexts, cf. [48, 66, 67]).
Note that this cannot be seen as an analytic continuation of the elliptic case and
that in fact several nontrivial choices need to be made, starting with the very
definition of the fractional wave operator. This is due to the fact that the symbol
of the wave operator, |ξ|2−τ 2, is not positive definite, so one cannot immediately
define (−�)α through this quantity to the power of α, and can also be seen in the
integral formula of the fractional Laplacian, since formally replacing the squared
Euclidean distance |x− x′|2 by its Minkowskian counterpart, |x− x′|2− (t− t′)2,
in the denominator leads to an integral that is too singular to be well defined.

In particular, the fractional wave operator (−�)α is defined for all noninte-

ger α as the multiplier ̂(−�)αf(τ, ξ) := σα(τ, ξ) f̂(τ, ξ), where the symbol σα is
defined as,

σα(τ, ξ) := lim
ε↘0

(
|ξ|2 − (τ − iε)2

)α
,

and where we have chosen the principal branch of the complex logarithm. It
should be noted that this is in fact a natural definition of (−�)α in the sense that
σα(τ, ξ) raised to the power of 1/α gives |ξ|2 − τ 2, i.e., the symbol of −�.
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A simplified version of the main result of Chapter 2 is presented below. As
suggested by its elliptic analog, one can show that the fractional wave operator is
given by the Dirichlet-to-Neumann map operator associated to a wave equation
with an inverse square potential that blows up on all the boundary of the half-
space:

Theorem 3. Let u(t, x, y) be the solution of the wave equation

−∂ttu+ ∆xu+ ∂yyu+
κ(1− κ)

y2
u = 0

in R × Rn × R+ with Dirichlet boundary condition limy↘0 y
−κu = f ∈ C∞0 and

trivial initial data at −∞: u(−∞, x, y) = ut(−∞, x, y) = 0. Assume moreover
that the parameter κ ∈ (−1

2
, 1

2
). Then, up to some numerical constant,

(−�)1/2−κf(t, x) = lim
y↘0

y2κ ∂y
(
y−κu(t, x, y)

)
.

Notice that the above extension problem on the half-space can be seen as a
wave equation localized near the conformal boundary of an asymptotically AdS
manifold. The latter, in turn, is a curved analog of our model problem on the
cylinder as described in Chapter 1.

In this way, a second motivation in this part of the thesis is of a more geome-
tric and physical nature. Specifically, in Chapter 2 we show that the fractional
wave operator, as considered in the theory of hypersingular integrals, does arise
in gravitational physics as the Dirichlet-to-Neumann map of a certain Klein–
Gordon equation in AdS spacetimes. As earlier mentioned, hyperbolic equations
for fields in AdS backgrounds with nontrivial data on their conformal boundaries
have attracted much attention over the last two decades, especially in connection
with the celebrated AdS/CFT correspondence in string theory [57, 81]. Indeed,
this conjectural relation establishes a connection between conformal field theories
in n dimensions and gravity fields on an (n + 1)-dimensional spacetime of AdS
type, to the effect that correlation functions in conformal field theory are given
by the asymptotic behavior at infinity of the supergravity action. Mathemati-
cally, this involves describing the solution to the gravitational field equations in
(n + 1) dimensions (which, in the simplest case of a scalar field reduces to the
Klein–Gordon equation) in terms of a conformal field, which plays the role of the
boundary data imposed on the (timelike) conformal “infinity”.

Nonlocal dispersive equations: Whitham’s model

Chapter 3 is devoted to the study of a model of water waves which features both
dispersive and nonlinear effects, the so called Whitham equation [79]. This is

6



a nonlocal shallow water wave model in one space dimension with a quadratic
nonlinearity that reads as

∂tv + ∂x(Lv + v2) = 0 ,

where L is the Fourier multiplier defined in terms of the full dispersion relation
for gravity water waves m(ξ) := (tanh ξ/ξ)1/2,

L̂f(ξ) := m(ξ) f̂(ξ) .

Whitham proposed this equation in 1967 as an alternative to the well-known KdV
equation, as the latter does not accurately describe the dynamics of short waves.

The key feature of Whitham’s equation is its very weak dispersion, which is
due to the fact that the symbol m(ξ) has a completely different behavior for large
frequencies than equations such as KdV, whose corresponding Fourier multiplier
is precisely defined by the second-order Taylor series of m(ξ). This very weak dis-
persion allows Whitham’s equation to exhibit both smooth periodic and solitary
solutions on the one hand [28, 30, 31], and singular solutions on the other.

For large frequencies the Whitham equation can be seen as a weakly disper-
sive perturbation of the Burgers equation in which the dispersive term acts like
a smoothing fractional operator. In that regime the multiplier becomes homoge-
neous and essentially behaves as |ξ|−1/2, so it is roughly like the inverse of the
fractional Laplacian operator (−∆)1/4 that we presented in connection to the
results of Chapter 2.

Singular solutions for the Whitham equation appear as wave breaking [22,
44] (i.e., as bounded solutions whose derivative blows up in finite time) and as
traveling waves with sharp crests, which are only of C1/2 regularity. Here we
will be concerned with the latter, whose existence was conjectured some forty
years ago by Whitham [79] and established by Ehrnström and Wahlén [32] just
recently. Interestingly, if one replaces the Whitham equation by a related fully
dispersive model that contains both branches of the full Euler dispersion relation
instead of just one, non-smooth traveling waves have been found too [29], but the
solutions are in Cα for all α < 1 (and not in C1).

Let us elaborate on the existence of sharp crests. With the ansatz v(x, t) :=
ϕ(x− µt), the study of traveling waves for the Whitham equation reduces to the
analysis of the equation

Lϕ− µϕ+ ϕ2 = 0 ,

where the positive constant µ represents the speed of the traveling wave. Whitham
himself conjectured [80, p. 479] that the equation should admit traveling waves
with a sharp crest, and provided a heuristic argument suggesting that the crest
should be cusped with ϕ(x) ∼ µ

2
− c|x|1/2.

Ehrnström and Wahlén’s proof of this conjecture [32] is based on a remarkable
global bifurcation argument, where cusped solutions of any period were shown to
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Introduction

Figure 1: A representation of a traveling wave of greatest height
solution to the Whitham equation. It corresponds to a 2π-periodic
solution with speed µ ≈ 0.77, crested at points xn = 2πn, n ∈ Z,
where ϕ(xn) = µ/2. Away from these singularities the solution
has been shown to be smooth. In Chapter 3 we prove both the
conjectured asymptotic behavior near the cusps as well as the
convexity of the profile.

exist by continuing off a local branch of small amplitude periodic traveling waves
bifurcating from the zero state. These solutions were shown to be smooth away
from their highest point (the crest) and behave like |x|1/2 near the crest, so their
sharp Hölder regularity is C1/2. These authors also conjectured that, just as in
the celebrated case of the highest traveling water waves (which present a corner
of 120 degrees) [3, 62], Whitham’s highest cusped waves must be convex between
consecutive crests, where they have a very specific asymptotic behavior.

Our objective in Chapter 3 is to prove the following theorem which shows the
previous conjecture to be true (see Figure 1 below):

Theorem 4. The 2π-periodic highest cusped traveling wave ϕ ∈ C1/2(T) of the
Whitham equation is a convex function and behaves asymptotically as

ϕ(x) =
µ

2
−
√
π

8
|x|1/2 +O(|x|1+η)

for some η > 0. Furthermore, ϕ is even and strictly decreasing on [0, π].

At this stage it is worth discussing why the strategy of the proof of Theorem 4
is so different from the celebrated proof of the convexity of the highest Stokes
waves. In short, the reason is that, although Nekrasov’s equation for the interface
reduces the problem to the analysis of a nonlinear, nonlocal equation similar to
Whitham’s, the actual proof of the conjecture due to Plotnikov and Toland [62]
hinges on the equivalent formulation of the problem in terms of a harmonic func-
tion on the half-strip (−∞, 0)×(−π, π) satisfying certain Dirichlet and Neumann
boundary conditions. In a tour de force of complex analysis, this overdetermined
boundary condition is shown to imply that the boundary conditions of the above
harmonic function can be written in terms of a holomorphic function satisfying a
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certain ODE in the complex plane. Via the Poisson kernel, this leads to writing
the derivative of the function θ(x) that describes the water interface as

θ′(x) =

∫ ∞
0

Φ′(y) sinh y

cosh y − cosx
dy ,

with Φ′(y) > 0. Hence θ′(x) > 0, and this automatically implies that the interface
is convex. In our case, the problem does not admit a local description and is not
amenable to the use of complex-analytic methods, so one needs to work directly
with the Whitham equation using real-variable techniques.

Let us emphasize the significant difference between showing the existence of
these waves of extreme form and proving the convexity of the profiles, as the
latter problem should not seen as a mere technical gap that one can easily close.
In fact, while the existence result due to Amick, Fraenkel, Plotnikov and Toland
was proved in the mid 80’s, the conjectured convexity avoid a proof for almost
20 years and remained open until the last two authors combined several ideas
coming from the analytic bifurcation theory and complex analysis.

The proof of Theorem 4 is the result of a concoction of a very careful asymp-
totic analysis near the singularities together with some computer assisted es-
timates. In Chapter 3 we detail the strategy to tackle down the problem. Un-
doubtedly, one crucial piece is the use of some special functions known as Clausen
functions,

Cz(x) =
∞∑
n=1

cos(nx)

nz
, Sz(x) =

∞∑
n=1

sin(nx)

nz
,

in terms of which we construct a rather complicated approximate solution to
the equation. Moreover, it will be clear from the proof that these functions are
well adapted to construct approximate solutions to PDEs in Cα-regularity for
0 < α < 1.

Hence our approach is expected to be useful in the construction of singular
solutions in other low-regularity situations. To offer some perspective as to why
the proof is so demanding without getting bogged down in technicalities, suffice
it to say that this is the first computer-assisted proof of the existence of truly low-
regularity (e.g., continuous but not C1) solutions of any (ordinary or partial, even
local) differential equation. See [17, 24] for computer-assisted proofs of periodic
solutions or KAM tori of ill-posed PDE.

Final remarks and organization of the thesis

In this introduction we have presented the state of the art of the problems con-
sidered in the two central blocks of the thesis. We have focused mainly on some
of the difficulties in the proofs of our results and discussed the interest, from
both the mathematical and physical point of view, in these PDE problems which

9
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are motivated by the study of singular waves in General Relativity and Fluid
Mechanics. Also, we have discussed the novelties in our work, and why the avail-
able results and the standard PDE methods do not provide with answers to the
questions here considered.

For the sake of clarity, we will start each chapter with a brief presentation
of the key ideas behind the proofs of the theorems that conform the central
results of this thesis. As for the organization of the thesis, the three following
chapters appear in the same order as presented in this introduction: in Chapter 1
we introduce the model wave equations with singular coefficients that blow up
critically in all the boundary of a cylindrical spacetime domain and then derive
Carleman inequalities for the associated wave operators. Using some standard
arguments, boundary observability properties are showed as a consequence of the
previous estimates. More geometrically, in Chapter 2 we work on closely related
equations with the same kind of singularities. Introducing the notion of fractional
wave operator, here we prove a Lorentzian analog of the relationship between
conformally covariant operators and Dirichlet-to-Neumman maps that holds for
conformally compact manifold. Finally, Chapter 3 settles on the question of
whether periodic traveling waves of greatest height solutions to the Whitham
equation are, as in the celebrated case of the Stokes water waves, convex between
consecutive peaks of C1/2-Hölder regularity. We will see that the method of the
proof constitutes a new strategy to construct possibly singular solutions to other
low-regularity PDE problems.

Each result contained in this thesis corresponds to a paper communicated in
a scientific journals or to a preprint, as follows:

Chapter 1:

1. A. Enciso, A. Shao and B. Vergara, Carleman estimates with sharp weights
and boundary observability for wave equations with critically singular po-
tentials, arXiv preprint : https://arxiv.org/abs/1902.00068.

2. A. Enciso, A. Shao and B. Vergara, Carleman inequalities for parabolic
equations with inverse square potentials and boundary observability, In
preparation.

Chapter 2:

1. A. Enciso, M.d.M González and B. Vergara, Fractional powers of the wave
operator via Dirichlet-to-Neumann maps in anti-de Sitter spaces, Journal
of Functional Analysis, 273, no. 6, 2144–2166.

Chapter 3:

1. A. Enciso, J. Gómez-Serrano and B. Vergara, Convexity of Whithams high-
est cusped wave, arXiv preprint : https://arxiv.org/abs/1810.10935.
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Chapter 1

Carleman estimates for waves with
critically singular potentials and
boundary observability

Preliminaries

Our objective in this chapter is to derive Carleman estimates for wave operators
with critically singular potentials, that is, with potentials that scale like the
principal part of the operator. More specifically, we are interested in the case
of potentials that diverge as an inverse square on a convex hypersurface (see
e.g. [1, 63] for elliptic and parabolic uniqueness problems in convex domains).
For this purpose, here we consider the model operator

�κ := �+
κ(1− κ)

(1− |x|)2
, (1.0.1)

where � := −∂tt + ∆ denotes the standard wave operator on R × B1, with B1

the unit ball of Rn, and κ ∈ R is the strength parameter henceforth assumed to
be in the range

− 1

2
< κ <

1

2
. (1.0.2)

As emphasized in the introduction, the Carleman estimates that we will derive
next are sharp, in that the weights that appear capture both the optimal decay
rate of the solutions near the boundary, as well as the natural energy that appears
in the well-posedness theory for the equation

�κu = 0 (1.0.3)

on the cylinder (−T, T )×B1 (or the equation (1.4.1), more generally). As we will
see, this property is not only desirable but also essential for applications such as
boundary observability.

In the case of one spatial dimension, the observability and controllability of
wave equations with critically singular potentials has also received considerable
attention in the guise of the degenerate wave equation

∂ttv − ∂z(zα∂zv) = 0 ,

where the variable z takes values in the positive half-line and the parameter α
ranges over the interval (0, 1) (see [40] and the references therein). Indeed, it is

11



1. CARLEMAN ESTIMATES AND OBSERVABILITY

not difficult to show that one can relate equations in this form with the operator
�κ in one dimension through a suitable change of variables, with the parameter
κ being now some function of the power α. The methods employed in those
references, which rely on the spectral analysis of a one-dimensional Bessel-type
operator, provide a very precise controllability result.

On the other hand, no related Carleman estimates that are applicable to
observability results have been found. This manifests itself in two important
limitations: firstly, the available inequalities are not robust under perturbations
on the coefficients of the equation, and secondly, the method of proof cannot be
extended to higher-dimensional situations. Recent results for different notions
of observability for parabolic equations with inverse square potentials, which are
based on Carleman and multiplier methods, can be found, e.g., in [13, 73]. Related
questions for wave equations with singularities all over the boundary have been
presented as very challenging in the open problems section of [13]. As stressed
there, the boundary singularity makes the multiplier approach extremely tricky.

A few remarks about the informal Theorem 1, which are also applicable to
the main Theorem 1.3.1, are given now in order:

Remark 1.0.1.

i) To begin with, notice that our results hold in the range −1
2
< κ < 0 of the

strength parameter. This is imposed for several reasons: first, a restriction
to the values (1.0.2) is needed, as this is the range for which a robust well-
posedness theory exists [77] for the equation (1.0.3). Moreover, the case
κ = 0 is simply the standard free wave equation, for which the existence of
Carleman and observability estimates is well-known. On the other hand, the
aforementioned spectral results [40] in the (1+1)-dimensional setting suggest
that the analogue of the estimate in Theorem 1 is false when κ > 0. See also
the Appendix 1.A for more details on one-dimensional spectral results.

ii) About assuming the“expected boundary asymptotics” for solutions to (1.0.3)
in the statement of Theorem 1, the precise formulation for u is given in
Section 1.1 and is briefly justified in the discussion following Definition 1.1.2
on boundary admissible solutions.

iii) A final remark is that one can further strengthen the estimates in the informal
theorem to include additional positive terms on the right-hand side that
depend on n; see Theorem 1.3.1. It should be also observed that the constant
c in the weight function is closely connected to the total timespan needed for
an observability estimate to hold; in Theorem 1, this c depends on n, as well
as on κ when n = 3.

We can now discuss the main ideas behind the proof of Theorem 1 (as well
as the more precise Theorem 1.3.1). In particular, the proof is primarily based
around three ingredients.

12



The first ingredient is to adopt derivative operations that are well-adapted to
our operator �κ. In particular, we make use of the “twisted” derivatives that
were pioneered in [77]. The main observation here is that �κ can be written as

�κ = −DD + l.o.t. ,

where D is the conjugated (spacetime) derivative operator,

D = Dt,x = (1− |x|)κ∇t,x(1− |x|)−κ ,

where −D is the (L2-)adjoint of D, and where “l.o.t.” represents lower-order
terms that can be controlled by more standard means.

As a result, we can view D as the natural derivative operation for �κ. For
instance, the twisted H1-energy associated with the Cauchy problem (1.0.3) is
best expressed purely in terms of D (in fact, this energy is conserved for the
equation DDu = 0). Similarly, in our Carleman estimates of Theorem 1 and their
proofs, we will always work with D-derivatives, rather than the usual derivatives,
of u. This helps us to better exploit the structure of �κ.

The second main ingredient in the proof of Theorem 1 is the classical Morawetz
multiplier estimate for the wave equation discussed in the introduction. In this
derivation we adopt the above twisted operators, so that an essential part of our
work in the Section 1.3 is to obtain positivity for many additional singular terms
that now appear.

Recall that in the standard Carleman-based proofs of observability for wave
equations, one employs Carleman weights of the form

f∗(t, x) = |x|2 − ct2 , 0 < c < 1 .

For our present estimates, we make use of a novel Carleman weight

f(t, x) := − 1

1 + 2κ
(1− |x|)1+2κ − ct2 , (1.0.4)

that is especially adapted to the operator �κ. In particular, the (1−|x|)1+2κ-term
in (1.0.4), which has rather singular derivatives at r = 1, is needed precisely in
order to capture the Neumann data in the boundary data of Theorem 1.

Both the Carleman estimates in Theorem 1 and the underlying Morawetz esti-
mates can be viewed as “centered about the origin”, and both estimates crucially
depend on the domain being spherically symmetric. As a result, Theorem 1 only
holds when the spatial domain is an open ball. We defer questions of whether
Theorem 1 is extendible to more general spatial domains to future works. More-
over, that Theorem 1 fails to hold for n = 2 can be traced to the fact that the
classical Morawetz breaks down for n = 2. In this case, the usual multiplier
computations yield a boundary term at r = 0 that is divergent.

To conclude this preliminaries section, let us give a few remarks about the
boundary observability Theorem 2:

13



1. CARLEMAN ESTIMATES AND OBSERVABILITY

Remark 1.0.2.

i) First of all, the required timespan 2T in the statment of the theorem can be
shown to depend on n, as well as on κ when n = 3. This is in direct parallel
to the dependence of c in Theorem 1. See Theorem 1.4.1 for more pre-
cise statements. Once again, a precise statement of the expected boundary
asymptotics for u in Theorem 2 is given in Definition 1.1.2.

ii) If �κ in Theorem 2 is replaced by � (that is, we consider non-singular wave
equations), then observability holds for any T > 1. This can be deduced
from either the geometric control condition of [8] (see also [14, 56]) or from
standard Carleman estimates [9, 53, 82]. To our knowledge, the optimal
timespan for the observability result in Theorem 2 is not known.

iii) For non-singular wave equations, standard observability results also involve
observation regions that contain only part of the boundary [8, 14, 53, 55]. On
the other hand, as our Carleman estimates are centered about the origin, they
only yield observability results from the entire boundary. Whether partial
boundary observability results also hold for the singular wave equation in
Theorem 2 is a topic of further investigation.

The chapter is organized as follows. In Section 1.1, we list some definitions
that will be pertinent to our setting, and we establish some general properties
that will be useful later on. Section 1.2 is devoted to the multiplier inequalities
that are fundamental to our main theorems. In particular, these generalize the
classical Morawetz estimates to wave equations with critically singular potentials.
In Section 1.3, we give a precise statement and a proof of our main Carleman
estimates (see Theorem 1.3.1), while our main boundary observability result (see
Theorem 1.4.1) is stated and proved in Section 1.4. At the end of the chapter in
Appendix 1.A, we provide an overview of some well-known results for waves in
(1 + 1) dimensions.

1.1 Geometric background and asymptotics

In this section, we record some basic definitions, and we establish the notations
that we will use in the rest of the chapter. In particular, we define weights that
capture the boundary behavior of solutions to wave equations rendered by�κ. We
also define twisted derivatives constructed using the above weights, and we recall
their basic properties. Furthermore, we prove pointwise inequalities in terms of
these twisted derivatives that will later lead to Hardy-type estimates.

Our background setting is the spacetime R1+n. As usual, we let t and x denote
the projections to the first and the last n components of R1+n, respectively, and
we let r := |x| denote the radial coordinate.
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1.1 Geometric background and asymptotics

In addition, we let g denote the Minkowski metric on R1+n. Recall that with
respect to polar coordinates, we have that

g = −dt2 + dr2 + r2gSn−1 ,

where gSn−1 denotes the metric of the (n−1)-dimensional unit sphere. Henceforth,
we use the symbol ∇ to denote the g-covariant derivative, while we use /∇ to
represent the induced angular covariant derivative on level spheres of (t, r). As
before, the wave operator (with respect to g) is defined as

� = gαβ∇αβ .

As it is customary, we use lowercase Greek letters for spacetime indices over
Rn+1 (ranging from 0 to n), lowercase Latin letters for spatial indices over Rn

(ranging from 1 to n), and uppercase Latin letters for angular indices over Sn−1

(ranging from 1 to n− 1). We always raise and lower indices using g, and we use
the Einstein summation convention for repeated indices.

As in the previous section, we use B1 to denote the open unit ball in Rn,
representing the spatial domain for our wave equations. We also set

C := (−T, T )×B1 , T > 0 , (1.1.1)

corresponding to the cylindrical spacetime domain. In addition, we let

Γ := (−T, T )× ∂B1 (1.1.2)

denote the timelike boundary of C.
To capture singular boundary behavior, we will make use of weights depending

on the radial distance from ∂B1. Toward this end, we define the function

y : R1+n → R , y := 1− r . (1.1.3)

From direct computations, we obtain the following identities for y:

∇αy∇αy = 1 , ∇αβy∇αy∇βy = 0 , (1.1.4)

�y = −(n− 1)r−1 , ∇αy∇α(�y) = −(n− 1)r−2 ,

�2y = (n− 1)(n− 3)r−3 , ∇αβy∇αβy = (n− 1)r−2 .

From here on, let us fix a constant

− 1

2
< κ < 0 , (1.1.5)

and let us define the twisted derivative operators

DΦ := yκ∇(y−κΦ) = ∇Φ− κ

y
∇y · Φ , (1.1.6)

DΦ := y−κ∇(yκΦ) = ∇Φ +
κ

y
∇y · Φ ,
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1. CARLEMAN ESTIMATES AND OBSERVABILITY

where Φ is any spacetime tensor field. Observe that −D is the formal (L2-)adjoint
of D. Moreover, the following (tensorial) product rules hold for D and D:

D(Φ⊗Ψ) = ∇Φ⊗Ψ + Φ⊗DΨ , D(Φ⊗Ψ) = ∇Φ⊗Ψ + Φ⊗DΨ . (1.1.7)

In addition, let �y denote the y-twisted wave operator:

�y := gαβDαDβ . (1.1.8)

A direct computation shows that �y differs from the singular wave operator �κ
from (1.0.1) by only a lower-order term. More specifically, by (1.1.4) and (1.1.6),

�y = �+
κ(1− κ) · ∇αy∇αy

y2
− κ ·�y

y
(1.1.9)

= �κ +
(n− 1)κ

ry
.

In particular, (1.1.9) shows that, up to a lower-order correction term, �y and
�κ can be used interchangeably. In practice, the derivation of our estimates will
be carried out in terms of �y, as it is better adapted to the twisted operators.

Finally, we remark that since y is purely radial,

Dtφ = ∇tφ = ∂tφ , DAφ = /∇Aφ = ∂Aφ

for scalar functions φ. Thus, we will use the above notations interchangeably
whenever convenient and whenever there is no risk of confusion. Moreover, we
will write

DXφ = XαDαφ

to denote derivatives along a vector field X.

Next, we establish a family of pointwise Hardy-type inequalities in terms of
the twisted derivative operator D:

Proposition 1.1.1. For any q ∈ R and any u ∈ C1(C), the following holds:

yq−1(Dru)2 >
1

4
(2κ+ q − 2)2yq−3 · u2 − (n− 1)

(
κ+

q − 2

2

)
yq−2r−1 · u2

(1.1.10)

−∇β

[(
κ+

q − 2

2

)
yq−2∇βy · u2

]
.

Proof. First, for any p, b ∈ R, we have the inequality

0 6 (yp · ∇αyDαu+ byp−1 · u)2

= y2p · (∇αyDαu)2 + b2y2p−2 · u2 + 2by2p−1 · u∇αyDαu

= y2p · (Dru)2 + b(b− 2κ− 2p+ 1)y2p−2 · u2

− by2p−1�y · u2 +∇β(by2p−1∇βy · u2) ,
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1.1 Geometric background and asymptotics

where we used (1.1.6) in the last step. Setting 2p = q − 1, the above becomes

yq−1(Dru)2 > −b(b− 2κ− q + 2)yq−3 · u2 + byq−2�y · u2

−∇β(byq−2∇βy · u2) .

Taking b = κ+ q−2
2

(which extremizes the above) yields (1.1.10).

We conclude this section by discussing the precise boundary limits for our
main results. First, given u ∈ C1(C), we define its Dirichlet and Neumann traces
on Γ with respect to �y (or equivalently, �κ) by

Dκu : Γ→ R , Dκu := lim
r↗1

(y−κu) , (1.1.11)

Nκu : Γ→ R , Nκu := lim
r↗1

y2κ∂r(y
−κu) .

Note in particular that the formulas (1.1.11) are directly inspired from the bound-
ary traces of the introduction.

Now, the subsequent definition lists the main assumptions we will impose on
boundary limits in our Carleman estimates and observability results:

Definition 1.1.2. A function u ∈ C1(C) is called boundary admissible with
respect to �y (or �κ) when the following conditions hold:

i) Nκu exists and is finite.

ii) The following Dirichlet limits hold for u:

(1− 2κ)Dκ(y−1+2κu) = −Nκu , Dκ(y2κ∂tu) = 0 . (1.1.12)

Here, the Dirichlet and Neumann limits are in an L2-sense on (−T, T )× Sn−1.

The main motivation for Definition 1.1.2 is that it captures the expected bound-
ary asymptotics for solutions of the equation �yu = 0 that have vanishing Dirich-
let data. (In particular, note that u being boundary admissible implies Dκu = 0.)
To justify this statement, we must first recall some results from [77].

For u ∈ C1(C) and τ ∈ (−T, T ), we define the following twisted H1-norms:

E1[u](τ) :=

∫
C∩{t=τ}

(|∂tu|2 + |Dru|2 + | /∇u|2 + u2) , (1.1.13)

E1[u](τ) :=

∫
C∩{t=τ}

(|∂tu|2 + |Dru|2 + | /∇u|2 + u2) . (1.1.14)

Moreover, if u ∈ C2(C) as well, then we define the twisted H2-norm,

E2[u](τ) := E1[Dru](τ) + E1[∂tu](τ) + E1[ /∇tu](τ) + E1[u](τ) . (1.1.15)

17



1. CARLEMAN ESTIMATES AND OBSERVABILITY

The results of [77] show that both E1[u] and E2[u] are natural energies associated
with the operator�y, in that their boundedness is propagated in time for solutions
of �yu = 0 with Dirichlet boundary conditions.

The following proposition shows that functions with uniformly bounded E2-
energy are boundary admissible, in the sense of Definition 1.1.2. In particular,
the preceding discussion then implies that boundary admissibility is achieved by
sufficiently regular (in a twisted H2-sense) solutions of the singular wave equation
�yu = 0, with Dirichlet boundary conditions.

Proposition 1.1.3. Let u ∈ C2(C), and assume that:

i) Dκu = 0.

ii) E2[u](τ) is uniformly bounded for all τ ∈ (−T, T ).

Then, u is boundary admissible with respect to �y, in the sense of Definition
1.1.2.

Proof. Fix τ ∈ (−T, T ) and ω ∈ Sn−1, and let 0 < y1 < y0 � 1. Applying the
fundamental theorem of calculus and integrating in y yields

y2κ∂r(y
−κu)|(τ,1−y1,ω) − y2κ∂r(y

−κu)|(τ,1−y0,ω) =

∫ y0

y1

yκDr(Dru)|(τ,1−y,ω)dy ,

where we have described points in C using polar (t, r, ω)-coordinates.

We now integrate the above over Γ = (−T, T )× Sn−1, and we let y1 ↘ 0. In
particular, observe that for Nκu to be finite, it suffices to show that

I :=

∫
Γ

[∫ y0

0

yκDr(Dru)|(τ,1−y,ω)dy

]2

dτdω <∞ .

However, by Hölder’s inequality and (1.1.5), we have

I 6
∫

Γ

[∫ y0

0

y2κdy

∫ y0

0

|Dr(Dru)|2|(τ,1−y,ω)dy

]
dτdω .

∫ T

−T
E2[u](τ) dτ .

Thus, the assumptions of the proposition imply that I, and hence Nκu, is finite.

Next, to prove the first limit in (1.1.12), it suffices to show that

Jy0 :=

∫
Γ

(
y−1+κu|(τ,1−y0,ω) +

1

1 + 2κ
Nκu|(τ,ω)

)2

dτdω → 0 , (1.1.16)

as y0 ↘ 0. Since Dku = 0, then fundamental theorem of calculus implies

Jy0 =

∫
Γ

[
−y−1+2κ

0

∫ y0

0

y−2κy2κ∂r(y
−κu)|(τ,1−y,ω)dy +

1

1 + 2κ
Nκu|(τ,ω)

]2

dτdω

=

∫
Γ

{
y−1+2κ

0

∫ y0

0

y−2κ[y2κ∂r(y
−κu)|(τ,1−y,ω) −Nκu|(τ,ω)]dy

}2

dτdω .
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Moreover, the Minkowski integral inequality yields

√
Jy0 6 y−1+2κ

0

∫ y0

0

y−2κ

{∫
Γ

[y2κ∂r(y
−κu)|(τ,1−y,ω) −Nκu|(τ,ω)]

2dτdω

} 1
2

dy

. sup
0<y<y0

{∫
Γ

[y2κ∂r(y
−κu)|(τ,1−y,ω) −Nκu|(τ,ω)]

2dτdω

} 1
2

.

By the definition of Nκu, the right-hand side of the above converges to 0 when
y0 ↘ 0. This implies (1.1.16), and hence the first part of (1.1.12).

For the remaining limit in (1.1.12), we first claim that Dκ(∂tu) exists and is
finite. This argument is analogous to the first part of the proof. Note that since

y−κ∂tu|(τ,1−y1,ω) − y−κ∂tu|(τ,1−y0,ω) =

∫ y0

y1

y−κDr∂tu|(τ,1−y,ω)dy ,

then the claim immediately follows from the fact that∫
Γ

[∫ y0

0

y−κDr∂tu|(τ,1−y,ω)dy

]2

dτdω .
∫ T

−T
E2[u](τ) dτ <∞ .

Moreover, to determine Dκ(∂tu), we see that for any test function ϕ ∈ C∞0 (Γ),∫
Γ

Dκ(∂tu) · ϕ = − lim
y↘0

∫
Γ

y−κu|r=1−y · ∂tϕ = −
∫

Γ

Dκu · ∂tϕ = 0 .

It then follows that Dκ(∂tu) = 0.

Finally, to prove the second limit of (1.1.12), it suffices to show

Ky0 :=

∫
Γ

(y−
1
2∂tu)2|(τ,1−y0,ω)dτdω → 0 , y0 ↘ 0 . (1.1.17)

Using that Dκ(∂tu) = 0 along with the fundamental theorem of calculus yields

Ky0 =

∫
Γ

[
y
− 1

2
+κ

0

∫ y0

0

y−κDr∂tu|(τ,1−y,ω)dy

]2

dτdω

6 y−1+2κ
0

∫
Γ

[∫ y0

0

y−2κdy

∫ y0

0

(Dr∂tu)2|(τ,1−y,ω)dy

]
dτdω

.
∫ y0

0

∫
Γ

(Dr∂tu)2|(τ,1−y,ω)dτdωdy .

The integral on the right-hand side is (the time integral of) E2[u](τ), restricted
to the region 1− y0 < r < 1. Since E2[u](τ) is uniformly bounded, it follows that
Ky0 indeed converges to zero as y0 ↘ 0, completing the proof.

Remark 1.1.4. From the intuitions of [40], one may conjecture that Proposition
1.1.3 could be further strengthened, with the boundedness assumption on E2[u]
replaced by a sharp boundedness condition on an appropriate fractional H1−κ-
norm. However, we will not pursue this question here.
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1. CARLEMAN ESTIMATES AND OBSERVABILITY

1.2 Multiplier inequalities

In this section, we derive some multiplier identities and inequalities, which form
the foundations of the proof of the main Carleman estimates, Theorem 1.3.1. As
mentioned before, these can be viewed as extensions to singular wave operators
of the classical Morawetz inequality for wave equations.

In what follows, we fix 0 < ε� 1, and we define the cylindrical region

Cε := (−T, T )× {ε < r < 1− ε} . (1.2.1)

Moreover, let Γε denote the timelike boundary of Cε:

Γε := Γ−ε ∪ Γ+
ε := [(−T, T )× {r = ε}] ∪ [(−T, T )× {r = 1− ε}] . (1.2.2)

We also let ν denote the unit outward-pointing (g-)normal vector field on Γε.
Finally, we fix a constant c > 0, and we define the functions

f := − 1

1 + 2κ
· y1+2κ − ct2 , z := −4c , (1.2.3)

which will be used to construct the multiplier for our upcoming inequalities.

We begin by deriving a preliminary form of our multiplier identity, for which
the multiplier is defined using f and z:

Proposition 1.2.1. Let u ∈ C∞(C), and assume u is supported on C ∩ {|t| <
T − δ} for some 0 < δ � 1. Then, we have the identity,

−
∫
Cε
�yu · Sf,zu =

∫
Cε

(∇αβf + z · gαβ)DαuDβu+

∫
Cε
Af,z · u2 (1.2.4)

−
∫

Γε

Sf,zu ·Dνu+
1

2

∫
Γε

∇νf ·DβuD
βu

+
1

2

∫
Γε

∇νwf,z · u2 ,

for any 0 < ε� 1, where

wf,z :=
1

2

(
�f +

2κ

y
∇αy∇αf

)
+ z , (1.2.5)

Af,z := −1

2

(
�wf,z +

2κ

y
∇αy∇αwf,z

)
,

Sf,z := ∇αf ·Dα + wf,z .
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1.2 Multiplier inequalities

Proof. Integrating the left-hand side of (1.2.4) by parts twice reveals that

−
∫
Cε
�yu · ∇αfDαu =

∫
Cε
Dβu ·Dβ(∇αfDαu)−

∫
Γε

∇αfDαu ·Dνu

=

∫
Cε
∇αβf ·DαuDβu+

∫
Cε
∇αf ·DβuDα

βu

−
∫

Γε

∇αfDαu ·Dνu

=

∫
Cε
∇αβf ·DαuDβu+

1

2

∫
Cε
∇αf · ∇α(DβuD

βu)

−
∫
Cε

κ

y
∇αy∇αf ·DβuD

βu−
∫

Γε

∇αfDαu ·Dνu

=

∫
Cε

[
∇αβf − 1

2

(
�f +

2κ

y
∇αy∇αf

)
gαβ
]
·DαuDβu

−
∫

Γε

∇αfDαu ·Dνu+
1

2

∫
Γε

∇νf ·DβuD
βu ,

where in the above steps, we also applied the identities (1.1.6), (1.1.7), (1.1.8),
as well as the observation that D is the adjoint of D.

A similar set of computations also yields

−
∫
Cε
�yu · wf,zu =

∫
Cε
DαuDα(wf,zu)−

∫
Γε

wf,z · uDνu

=

∫
Cε
∇αwf,z · uDαu+

∫
Cε
wf,z ·DαuDαu−

∫
Γε

wf,z · uDνu

=

∫
Cε
wf,z ·DαuDαu+

1

2

∫
Cε
∇αwf,z · ∇α(u2)

−
∫
Cε

κ

y
∇αy∇αwf,z · u2 −

∫
Γε

wf,z · uDνu

=

∫
Cε
wf,z ·DαuDαu−

1

2

∫
Cε

(
�wf,z +

2κ

y
∇αy∇αwf,z

)
· u2

−
∫

Γε

wf,z · uDνu+
1

2

∫
Γε

∇νwf,z · u2 .

Adding the above two identities results in (1.2.4).

In the following proposition, we collect some computations involving the func-
tions f and z that will be useful later on.
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1. CARLEMAN ESTIMATES AND OBSERVABILITY

Proposition 1.2.2. f , wf,z, and Af,z (defined as in (1.2.3) and (1.2.5)) satisfy

∇αβf = y2κ · ∇αβr − 2κy2κ−1 · ∇αr∇βr − 2c · ∇αt∇βt , (1.2.6)

wf,z = −2κ · y2κ−1 +
1

2
(n− 1) · y2κr−1 − 3c ,

Af,z = 2κ(2κ− 1)2 · y2κ−3 − 1

2
(n− 1)κ(8κ− 3) · y2κ−2r−1

+
1

2
(n− 1)(n− 4)κ · y2κ−1r−2 +

1

4
(n− 1)(n− 3) · y2κr−3 .

Proof. First, we fix q ∈ R \ {−1}, and we let

fq := − y1+q

1 + q
. (1.2.7)

Note that fq satisfies

∇αfq = −yq · ∇αy , (1.2.8)

∇αβfq = −yq · ∇αβy − qyq−1 · ∇αy∇βy ,

�fq = −yq ·�y − qyq−1 · ∇αy∇αy ,

2κ

y
· ∇αy∇αfq = −2κyq−1 · ∇αy∇αy .

Next, using the notations from (1.2.5), along with (1.1.4) and (1.2.8), we have

wfq ,0 = −1

2
yq ·�y −

(
κ+

q

2

)
yq−1 · ∇αy∇αy (1.2.9)

= −
(
κ+

q

2

)
· yq−1 +

n− 1

2
· yqr−1 .

Moreover, further differentiating (1.2.9) and again using (1.1.4), we see that

�wfq ,0 = −1

2
(q + 2κ)(q − 1)(q − 2)yq−3 · (∇αy∇αy)2

− (q − 1)[(q + κ)�y∇αy∇αy + 2(q + 2κ)∇αβy∇αy∇βy] · yq−2

− 2(q + κ)yq−1 · ∇αy∇α(�y)− (q + 2κ)yq−1 · ∇αβy∇αβy

− 1

2
qyq−1 · (�y)2 − 1

2
yq ·�2y ,

2κ

y
∇αy∇αwfq ,0 = −κ(q + 2κ)(q − 1)yq−3 · (∇αy∇αy)2 − κqyq−2 ·�y∇αy∇αy

− 2κ(q + 2κ)yq−2 · ∇αβy∇αy∇βy − κyq−1 · ∇αy∇α(�y) .
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1.2 Multiplier inequalities

We can then use the above to compute the coefficient Afq ,0:

Afq ,0 =
1

4
(q + 2κ)(q + 2κ− 2)(q − 1)yq−3 · (∇αy∇αy)2 (1.2.10)

+
1

2
(q2 − q + 2κq − κ)yq−2 ·�y∇αy∇αy

+ (q + 2κ)(q + κ− 1)yq−2 · ∇αβy∇αy∇βy

+
1

2
(2q + 3κ)yq−1 · ∇αy∇α(�y) +

1

2
(q + 2κ)yq−1 · ∇αβy∇αβy

+
1

4
qyq−1 · (�y)2 +

1

4
yq ·�2y

=
1

4
(q + 2κ)(q + 2κ− 2)(q − 1) · yq−3

− 1

2
(n− 1)(q2 − q + 2κq − κ) · yq−2r−1

+
1

4
(n− 1)[q(n− 3)− 2κ] · yq−1r−2 +

1

4
(n− 1)(n− 3) · yqr−3 .

Notice from (1.2.3) and (1.2.7) that we can write

f = f2κ − ct2 ,

Thus, substituting q = 2κ in (1.2.7), we see that the Hessian of f satisfies

∇αβf = ∇αβf2κ − c∇αβt
2

= y2κ · ∇αβr − 2κy2κ−1 · ∇αr∇βr − 2c∇αt∇βt ,

which is precisely the first part of (1.2.6).

Moreover, noting that

w−ct2,0 = c ,

then we also have

wf,z = wf2κ,0 + w−ct2,0 + z

= −2κ · y2κ−1 +
1

2
(n− 1) · y2κr−1 − 3c ,

which gives the second equation in (1.2.6). Finally, noting that

A−ct2,0 = 0 , −1

2

(
�z +

2κ

y
· ∇αy∇αz

)
= 0 ,
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1. CARLEMAN ESTIMATES AND OBSERVABILITY

we obtain, with the help of (1.1.4), the last equation of (1.2.6):

Af,z = Af2κ,0 +A−ct2,0 −
1

2

(
�z +

2κ

y
· ∇αy∇αz

)
= 2κ(2κ− 1)2y2κ−3 · (∇αy∇αy)2 +

1

2
κ(8κ− 3)y2κ−2 ·�y∇αy∇αy

+ 4κ(3κ− 1)y2κ−2 · ∇αβy∇αy∇βy +
7

2
κy2κ−1 · ∇αy∇α(�y)

+ 2κy2κ−1 · ∇αβy∇αβy +
1

2
κy2κ−1 · (�y)2 +

1

4
y2κ ·�2y

= 2κ(2κ− 1)2 · y2κ−3 − 1

2
(n− 1)κ(8κ− 3) · y2κ−2r−1

+
1

2
(n− 1)(n− 4)κ · y2κ−1r−2 +

1

4
(n− 1)(n− 3) · y2κr−3 .

We conclude this section with the multiplier inequality that will be used to
prove our main Carleman estimate:

Proposition 1.2.3. Let f and z be as in (1.2.3), and let u ∈ C∞(C) be supported
on C ∩ {|t| < T − δ} for some 0 < δ � 1. Then, we have the inequality

−
∫
Cε
�yu · Sf,zu >

∫
Cε

[(1− 4c) · | /∇u|2 + 2c · (∂tu)2 − 4c · (Dru)2] (1.2.11)

− 1

2
(n− 1)κ

∫
Cε
y2κ−2r−2[r − (n− 4)y] · u2

+
1

4
(n− 1)(n− 3)

∫
Cε
y2κr−3 · u2 −

∫
Γε

Sf,zu ·Dνu

+
1

2

∫
Γε

∇νf ·DβuD
βu+

1

2

∫
Γε

∇νwf,z · u2

+ 2κ(2κ− 1)

∫
Γε

y2κ−2∇νy · u2 ,

for any 0 < ε� 1, where wf,z and Sf,z are defined as in (1.2.5).

Proof. Applying the multiplier identity (1.2.4), with f and z from (1.2.3), and
recalling the formulas (1.2.6) for ∇2f , wf,z, and Af,z, we obtain that

I := −
∫
Cε
�yu · Sf,zu
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1.3 The Carleman estimates

satisfies the identity

I =

∫
Cε

(y2κ∇αβr − 2κy−1+2κ∇αr∇βr − 2c∇αt∇βt− 4cgαβ)DαuDβu (1.2.12)

+ 2κ(2κ− 1)2

∫
Cε
y2κ−3u2 − 1

2
(n− 1)κ(8κ− 3)

∫
Cε
y2κ−2r−1u2

+
1

2
(n− 1)(n− 4)κ

∫
Cε
y2κ−1r−2u2 +

1

4
(n− 1)(n− 3)

∫
Cε
y2κr−3u2

−
∫

Γε

Sf,zu ·Dνu+
1

2

∫
Γε

∇νf ·DβuD
βu+

1

2

∫
Γε

∇νwf,z · u2 .

For the first-order terms in the multiplier identity, we notice that

∇αβr ·DαuDβu = r−1| /∇u|2 , | /∇u|2 = gAB /∇Au /∇Bu ,

and we hence expand

(y2κ · ∇αβr − 2κy−1+2κ∇αr∇βr − 2c · ∇αt∇βt− 4c · gαβ)DαuDβu (1.2.13)

> −2κy−1+2κ(Dru)2 + (y2κr−1 − 4c)| /∇u|2 + 2c(∂tu)2 − 4c(Dru)2

> −2κy−1+2κ(Dru)2 + (1− 4c)| /∇u|2 + 2c(∂tu)2 − 4c(Dru)2 .

Moreover, applying the Hardy inequality (1.1.10), with q = 2κ, yields

−2κy2κ−1(Dru)2 > −2κ(2κ− 1)2y2κ−3u2 + (n− 1)2κ(2κ− 1)y2κ−2r−1u2

(1.2.14)

+ 2κ(2κ− 1)∇β(y2κ−2∇βy · u2) .

The desired inequality (1.2.11) now follows by combining (1.2.12)–(1.2.14)
and applying the divergence theorem to the last term in (1.2.14).

1.3 The Carleman estimates

In this section, we apply the preceding multiplier inequality to obtain our main
Carleman estimates. The precise statement of our estimates is the following:

Theorem 1.3.1. Assume n 6= 2, and fix −1
2
< κ < 0. Also, let u ∈ C∞(C)

satisfy:

i) u is boundary admissible (see Definition 1.1.2).

ii) u is supported on C ∩ {|t| < T − δ} for some δ > 0.
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1. CARLEMAN ESTIMATES AND OBSERVABILITY

Then, there exists some sufficiently large λ0 > 0, depending only on n and κ,
such that the following Carleman inequality holds for all λ > λ0:

λ

∫
Γ

e2λf (Nκu)2 +

∫
C
e2λf (�κu)2 (1.3.1)

> C0λ

∫
C
e2λf [(∂tu)2 + | /∇u|2 + (Dru)2] + C0λ

3

∫
C
e2λfy6κ−1u2

+ C0λ ·


∫
C e

2λfy2κ−2r−3 n > 4∫
C e

2λfy2κ−2r−2 n = 3

0 n = 1

.

where the constant C0 > 0 depends on n and κ, where

f = − 1

1 + 2κ
· y1+2κ − ct2 ,

as in (1.2.3), and where the constant c satisfies

0 < c <
1

5
,


c 6 1

4
√

3·T n > 4

c 6 min
{

1
4
√

15·T ,
|κ|
120

}
n = 3

c 6 1
4
√

15·T n = 1

. (1.3.2)

The proof of Theorem 1.3.1 is carried out in remainder of this section.

Remark 1.3.2. We note that parts of this proof will treat the cases n = 1, n = 3,
and n > 4 separately. This accounts for the difference in the assumptions for c
in (1.3.2), which will affect the required timespan in our upcoming observability
inequalities.

From here on, let us assume the hypotheses of Theorem 1.3.1. Let us also
suppose that λ0 is sufficiently large, with its precise value depending only on n
and κ. In addition, we define the following:

v := eλfu , Lv := eλf�y(e
−λfv) . (1.3.3)

Our objective now is to establish the following inequality for v:
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1.3 The Carleman estimates

Lemma 1.3.3. For any λ > λ0, we have the inequality

1

4λ

∫
Cε

(Lv)2 >
c

2

∫
Cε

[
(∂tv)2 + | /∇v|2 + (Drv)2

]
− 1

2
κλ2

∫
Cε
y6κ−1v2 (1.3.4)

+
1

2

∫
Γε

∇νf ·DβvD
βv −

∫
Γε

Sf,zv ·Dνv

− 1

2

∫
Γε

[λ2(y4κ − 4c2t2)− 8cλ]∇νf · v2

+
1

2

∫
Γε

∇νwf,z · v2 + 2κ(2κ− 1)

∫
Γε

y2κ−2∇νy · v2

+


c1

∫
Cε y

2κ−2r−3 · v2 n > 4

c1

∫
Cε y

2κ−2r−2 · v2 + c2

∫
Γε
y4κ−1∇νy · v2 n = 3

c2

∫
Γε
y4κ−1∇νy · v2 n = 1

,

where Sf,z and wf,z are defined as in (1.2.5) and (1.2.6), where the constant c1 > 0
depends on n and κ, and where the constant c2 > 0 depends on n.

Proof. First, observe that by (1.1.6)–(1.1.8), we can expand Lv as follows:

Lv = eλfD
α
Dα(e−λfv) (1.3.5)

= eλfD
α
(e−λfDαv)− λeλfDα

(e−λf∇αf · v)

= �yv − λ∇αf(Dαψ +Dαv)− λ�f · v + λ2∇αf∇αf · v
= �yv − 2λSf,zv +A0v ,

where A0 is given by

A0 := λ2∇αf∇αf + 2λz = λ2(y4κ − 4c2t2)− 8cλ . (1.3.6)

Multiplying (1.3.5) by Sf,zv yields

− LvSf,zv = −�yvSf,zv + 2λ(Sf,zv)2 −A0 · vSf,zv . (1.3.7)

For the last term, we apply (1.1.6) and the product rule:

−A0 · vSf,zv = −A0 · v(∇αfDαv + wf,zv) (1.3.8)

= −A0 ·
[

1

2
∇αf∇α(v2)− κ

y
∇αf∇αy · v2 + wf,zv

2

]
= −∇α

(
1

2
A0∇αf · v2

)
+

1

2
∇αf∇αA0 · v2 − zA0 · v2 .

Moreover, recalling (1.2.3) and (1.3.6) yields

−zA0 = 4cλ2(y4κ − 4c2t2)− 32λc2 , (1.3.9)

1

2
∇αf∇αA0 = λ2(−2κy6κ−1 − 8c3t2) .
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1. CARLEMAN ESTIMATES AND OBSERVABILITY

Combining (1.3.7)–(1.3.9) results in the identity

−LvSf,zv = −�yvSf,zv+ 2λ(Sf,zv)2 + Âf,z · v2−∇α

(
1

2
A0∇αf · v2

)
, (1.3.10)

where the coefficient Âf,z is given by

Âf,z :=
1

2
∇αf∇αA0 − zA0 (1.3.11)

= λ2(−2κy6κ−1 + 4cy4κ − 24c3t2)− 32λc2 .

Integrating (1.3.10) over Cε and recalling (1.3.11) then yields

−
∫
Cε
LvSf,zv = −

∫
Cε
�yvSf,zv + 2λ

∫
Cε

(Sf,zv)2 (1.3.12)

+

∫
Cε

[λ2(−2κy6κ−1 + 4cy4κ − 24c3t2)− 32λc2] · v2

− 1

2

∫
Γε

[λ2(y4κ − 4c2t2)− 8cλ]∇νf · v2 .

Notice that the bound (1.3.2) for c implies (for all values of n)

48c2t2 6 48c2T 2 6 1 6 y4κ . (1.3.13)

Then, with large enough λ0 (depending on n and κ), we obtain

λ2(−2κy6κ−1 + 4cy4κ − 24c3t2)− 32λc2 > −2κλ2 · y6κ−1 − 32λc2 (1.3.14)

> −κλ2 · y6κ−1 .

Noting in addition that

|LvSf,zv| 6
1

4λ
(Lv)2 + λ(Sf,zv)2 ,

then (1.3.12) and (1.3.14) together imply

1

4λ

∫
Cε

(Lv)2 > −
∫
Cε
�yvSf,zv + λ

∫
Cε

(Sf,zv)2 − κλ2

∫
Cε
y6κ−1 · v2 (1.3.15)

− 1

2

∫
Γε

[λ2(y4κ − 4c2t2)− 8cλ]∇νf · v2 .

At this point, the proof splits into different cases, depending on n.

28



1.3 The Carleman estimates

Case 1: n > 4. First, note that for large λ0, we have

1

9
λ(Sf,zv)2 > cy−4κ(Sf,zv)2 (1.3.16)

> c(Drv)2 + c(2cty−2κ · ∂tv + y−2κwf,z · v)2

+ 2c(Drv)(2cty−2κ · ∂tv + y−2κwf,z · v)

>
1

2
c(Drv)2 − c(2cty−2κ · ∂tv + y−2κwf,z · v)2

>
1

2
c(Drv)2 − 8c3t2y−4κ · (∂tv)2 − 2cy−4κw2

f,z · v2

>
1

2
c(Drv)2 − 1

6
c · (∂tv)2 − 2cy−4κw2

f,z · v2 ,

where we also recalled (1.3.13) and the definitions (1.2.3) and (1.2.5) of f , z, and
Sf,z. Moreover, recalling the formula (1.2.6) for wf,z, we obtain that

− 18cy−4κw2
f,z · v2 > −C(y−2 + r−2) · v2 , (1.3.17)

for some constant C > 0, depending on n and κ. Thus, for sufficiently large λ0,
it follows from (1.3.16) and (1.3.17) that

λ(Sf,zv)2 >
9

2
c(Drv)2 − 3

2
c · (∂tv)2 − C(y−2 + r−2) · v2 . (1.3.18)

Combining (1.3.15) with (1.3.18), we obtain

1

4λ

∫
Cε

(Lv)2 > −
∫
Cε
�yvSf,zv +

9

2
c

∫
Cε

(Drv)2 − 3

2
c

∫
Cε

(∂tv)2 (1.3.19)

− κλ2

∫
Cε
y6κ−1 · v2 − C

∫
Cε

(y−2 + r−2) · v2

− 1

2

∫
Γε

[λ2(y4κ − 4c2t2)− 8cλ]∇νf · v2 .
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Applying the multiplier inequality (1.2.11) to (1.3.19) then results in the bound

1

4λ

∫
Cε

(Lv)2 >
∫
Cε

[
(1− 4c) · | /∇v|2 +

1

2
c · (∂tv)2 +

1

2
c · (Drv)2

]
(1.3.20)

− κλ2

∫
Cε
y6κ−1 · v2 − 1

2
(n− 1)κ

∫
Cε
y2κ−2r−1 · v2

+
1

4
(n− 1)(n− 3)

∫
Cε
y2κr−3 · v2

− C
∫
Cε

(y−2 + y2κ−1r−2) · v2 −
∫

Γε

Sf,zv ·Dνv

+
1

2

∫
Γε

∇νf ·DβvD
βv +

1

2

∫
Γε

∇νwf,z · v2

− 1

2

∫
Γε

[λ2(y4κ − 4c2t2)− 8cλ]∇νf · v2

+ 2κ(2κ− 1)

∫
Γε

y2κ−2∇νy · v2 .

(Here, C may differ from previous lines, but still depends only on n and κ.)

Let d > 0, and define now the (positive) quantities

J := dy2κ−2r−3 + C(y−2 + y2κ−1r−2) , J0 := −κλ2y6κ−1 , (1.3.21)

J1 := −1

2
(n− 1)κy2κ−2r−1 , J2 :=

1

4
(n− 1)(n− 3)y2κr−3 .

Observe that for sufficiently small d (depending on n and κ), there is some 0 <
δ � 1 (also depending on n and κ) such that:

i) J 6 J2 whenever 0 < r < δ.

ii) J 6 J1 whenever 1− δ < r < 1.

iii) For sufficiently large λ0, we have that J 6 J0 whenever δ 6 r 6 1− δ.

Combining the above with (1.3.20) yields the desired bound (1.3.4), in the case
n > 4.

Case 2: n 6 3. For the cases n = 1 and n = 3, we first note that (1.3.2) implies

240c2t2 6 240c2T 2 6 1 6 y4κ . (1.3.22)

In this setting, we must deal with (Sf,zv)2 a bit differently. To this end, we
use (1.2.5), the fact that λ0 is sufficiently large, and the inequality

(A+B)2 > (1− 2ε)A2 − 1

2ε
(1− 2ε)B2
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1.3 The Carleman estimates

(with the values ε := 1
3
, A := y2κDrv, and B := 2ct(∂tv) + wf,zv) in order to

obtain

λ(Sf,zv)2 > 60c

[
1

3
y4κ(Drv)2 − 4c2t2(∂tv)2 − w2

f,zv
2

]
. (1.3.23)

Moreover, expanding w2
f,z using (1.2.6) and excluding terms with favorable sign

yields

λ(Sf,zv)2 > 20cy4κ(Drv)2 − 240c3t2(∂tv)2 − 540c3v2 (1.3.24)

− 60c

[
4κ2y4κ−2 +

(n− 1)2

4r2
y4κ − 2κ(n− 1)

r
y4κ−1

]
v2 .

The pointwise Hardy inequality (1.1.10), with q := 4κ+ 1, yields

y4κ(Drv)2 >
1

4
(1− 6κ)2y4κ−2 · v2 +

(1− 6κ)(n− 1)

2r
y4κ−1 · v2

+∇β

[
(1− 6κ)

2
y4κ−1∇βy · v2

]
.

Combining the above with (1.3.22) and (1.3.24), and noting that

15

4
(1− 6κ)2 > 240κ2 ,

we then obtain the bound

λ(Sf,zv)2 > 5c(Drv)2 − c(∂tv)2 − 15c(n− 1)2y4κr−2v2 (1.3.25)

− C(n− 1)y4κ−1r−1v2 +∇β

[
15c(1− 6κ)

2
y4κ−1∇βy · v2

]
,

where C > 0 depends on n and κ.

Now, applying the multiplier inequality (1.2.11) and (1.3.25) to (1.3.15), we
see that
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1. CARLEMAN ESTIMATES AND OBSERVABILITY

1

4λ

∫
Cε

(Lv)2 >
∫
Cε

[
(1− 4c)| /∇v|2 + c(∂tv)2 + c(Drv)2

]
(1.3.26)

− κλ2

∫
Cε
y6κ−1 · v2 − 1

2
(n− 1)κ

∫
Cε
y2κ−2r−1 · v2

+
1

2
(n− 1)(n− 4)κ

∫
Cε
y2κ−1r−2 · v2

− 15c(n− 1)2

∫
Cε
y4κr−2 · v2

− C(n− 1)

∫
Cε
y4κ−1r−1 · v2

−
∫

Γε

Sf,zv ·Dνv +
1

2

∫
Γε

∇νf ·DβvD
βv

+
1

2

∫
Γε

∇νwf,z · v2 + 2κ(2κ− 1)

∫
Γε

y2κ−2∇νy · v2

− 1

2

∫
Γε

[λ2(y4κ − 4c2t2)− 8cλ]∇νf · v2

+ c2

∫
Γε

y4κ−1∇νy · v2 .

For n = 1, the bound (1.3.26) immediately implies (1.3.4).

For the remaining case n = 3, we also note from (1.3.2) that

1

2
(n− 1)(n− 4)κy2κ−1r−2 − 15c(n− 1)2y4κr−2 > −1

2
κy2κ−1r−2 . (1.3.27)

To control the remaining bulk integrand −C(n− 1)y4κ−1r−1 · v−2, we define

K := dy2κ−2r−2 + C(n− 1)y4κ−1r−1 , K0 := −κλ2y6κ−1 , (1.3.28)

K1 := −1

2
(n− 1)κy2κ−2r−1 , K2 := −1

2
κy2κ−1r−2 .

Like for the n > 4 case, as long as d is sufficiently small (depending on n and
κ), then there exists 0 < δ � 1 (depending on n and κ) such that:

i) K 6 K2 whenever 0 < r < δ.

ii) K 6 K1 whenever 1− δ < r < 1.

iii) For large enough λ0, we have that K 6 K0 whenever δ 6 r 6 1− δ.

Combining the above with (1.3.26) and (1.3.27) yields (1.3.4) for n = 3.
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1.3 The Carleman estimates

We next derive and control the limits of the boundary terms in (1.3.4) when
ε↘ 0. More specifically, we show the following:

Lemma 1.3.4. Let Γ±ε be as in (1.A). Then, for λ > λ0,

−c3

∫
Γ

e2λf (Nκu)2 6 lim inf
ε↘0

[∫
Γ+
ε

∇νf ·DβvD
βv − 2

∫
Γ+
ε

Sf,zvDνv

]
(1.3.29)

− lim
ε↘0

∫
Γ+
ε

[λ2(y4κ − 4c2t2)− 8cλ]∇νf · v2

+ lim
ε↘0

∫
Γ+
ε

∇νwf,z · v2

+ 4κ(2κ− 1) lim
ε↘0

∫
Γ+
ε

y2κ−2∇νy · v2 ,

0 = lim
ε↘0

∫
Γ+
ε

y4κ−1∇νy · v2 ,

where the constant c3 > 0 depends on κ. In addition, for λ > λ0,

0 6 lim
ε↘0

[∫
Γ−ε

∇νf ·DβvD
βv − 2

∫
Γ−ε

Sf,zvDνv

]
(1.3.30)

− lim
ε↘0

∫
Γ−ε

[λ2(y4κ − 4c2t2)− 8cλ]∇νf · v2

+ lim
ε↘0

∫
Γ−ε

∇νwf,z · v2 + 4κ(2κ− 1) lim
ε↘0

∫
Γ−ε

y2κ−2∇νy · v2 ,

0 6 lim
ε↘0

∫
Γ−ε

y4κ−1∇νy · v2 .

Proof. First, note that on Γ±ε , we have

ν|Γ±ε = ±∂r , ∇νy|Γ±ε = ∓1 , ∇νf |Γ±ε = ±y2κ|Γ±ε . (1.3.31)

Moreover, note that (1.2.3) and (1.2.5) imply

Sf,zv = y2κDrv + 2ct · ∂tv + wf,z · v . (1.3.32)

We begin with the outer limits (1.3.29). The main observation is that by
(1.2.3) and by the assumption that u is boundary admissible (see Definition 1.1.2),
we have

lim
ε↘0

∫
Γ+
ε

y2κ(∂tv)2 = 0 , (1.3.33)

lim
ε↘0

∫
Γ+
ε

y2κ(Drv)2 =

∫
Γ

e2λf (Nκu)2 ,

lim
ε↘0

∫
Γ+
ε

y−2+2κv2 = (1− 2κ)−2

∫
Γ

e2λf (Nκu)2 .
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1. CARLEMAN ESTIMATES AND OBSERVABILITY

We also recall that we have assumed −1
2
< κ < 0.

For the first boundary term, we apply (1.3.31) and (1.3.33) to obtain

lim inf
ε↘0

∫
Γ+
ε

∇νf ·DβvD
βv > lim

ε↘0

∫
Γ+
ε

y2κ[−(∂tv)2 + (Drv)2] (1.3.34)

=

∫
Γ

e2λf (Nκu)2 .

Next, expanding Sf,zv using (1.3.32), noting from (1.2.6) that the leading-order
behavior of wf,z near Γ is −2κ · y2κ−1, and applying (1.3.33), we obtain that

−2 lim
ε↘0

∫
Γ+
ε

Sf,zvDνv = −2 lim
ε↘0

∫
Γ+
ε

[y2κ(Drv)2 + 2ct∂tvDrv + wf,zvDrv] (1.3.35)

= −2

∫
Γ

e2λf (Nκu)2 + 4κ lim
ε↘0

∫
Γ+
ε

y2κ−1vDrv

=

(
−2 +

4κ

1− 2κ

)∫
Γ

e2λf (Nκu)2 .

The remaining outer boundary terms are treated similarly. By (1.3.31) and
(1.3.33),

− lim
ε↘0

∫
Γ+
ε

[λ2(y4κ − 4c2t2)− 8cλ]∇νf · v2 = − lim
ε↘0

∫
Γ+
ε

y6κv2 = 0 , (1.3.36)

4κ(2κ− 1) lim
ε↘0

∫
Γ+
ε

y2κ−2∇νy · v2 =
4κ

1− 2κ

∫
Γ

e2λf (Nκu)2 .

Moreover, by (1.2.6) and (1.3.31), we see that the leading-order behavior of ∂rwf,z
is given by −2κ(1− 2κ)y2κ−2. Combining this with (1.3.31) and (1.3.33) yields

lim
ε↘0

∫
Γ+
ε

∇νwf,z · v2 = −2κ(1− 2κ) lim
ε↘0

∫
Γ

y2κ−2v2 (1.3.37)

= − 2κ

1− 2κ

∫
Γ

e2λf (Nκu)2 .

Summing (1.3.34)–(1.3.37) yields the first part of (1.3.29). The second part
of (1.3.29) similarly follows by applying (1.3.31) and (1.3.33).

Next, for the interior limits (1.3.30), we split into two cases:

Case 1: n > 3. In this case, we begin by noting that the volume of Γ−ε satisfies

|Γ−ε | .T,n εn−1 . (1.3.38)

Furthermore, since u is smooth on C, then (1.2.3) and (2.2.7) imply that ∂tv, /∇v,
Drv, and v are all uniformly bounded whenever r is sufficiently small. Combining
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1.3 The Carleman estimates

the above with (1.2.6), (1.3.31), (1.3.32), we obtain that the following limits
vanish:

0 = lim
ε↘0

[∫
Γ−ε

∇νf ·DβvD
βv − 2

∫
Γ−ε

Sf,zvDνv

]
(1.3.39)

− lim
ε↘0

∫
Γ−ε

[λ2(y4κ − 4c2t2)− 8cλ]∇νf · v2

+ 4κ(2κ− 1) lim
ε↘0

∫
Γ−ε

y2κ−2∇νy · v2 ,

0 = lim
ε↘0

∫
Γ−ε

y4κ−1∇νy · v2 .

This leaves only one remaining limit in (1.3.30); for this, we note, from (1.2.6),
that the leading-order behavior of −∂rwf,z near r = 0 is 1

2
(n − 1)r−2y2κ. As a

result,

lim
ε↘0

∫
Γ−ε

∇νwf,z · v2 =
n− 1

2
lim
ε↘0

∫
Γ−ε

r−2y2κv2 (1.3.40)

=

{
0 n > 3

C
∫ T
−T |v(t, 0)|2dt n = 3

,

where the last integral is over the line r = 0, and where the constant C depends
only on n. Combining (1.3.39) and (1.3.40) yields (1.3.30) in this case.

Case 2: n = 1. Here, we can no longer rely on (1.3.38) to force most limits to
vanish, so we must examine all the terms more carefully.

First, from (1.2.6), (1.3.31), (1.3.32), we have that∫
Γ−ε

∇νf ·DβvD
βv − 2

∫
Γ−ε

Sf,zvDνv

=

∫
Γ−ε

y2κ[(∂tv)2 + (Drv)2] +

∫
Γ−ε

[4ct · ∂tvDrv − 4κy2κ−1vDrv] .

Recalling also our assumption (1.3.2) for c, we conclude from the above that

lim
ε↘0

[∫
Γ−ε

∇νf ·DβvD
βv − 2

∫
Γ−ε

Sf,zvDνv

]
> −C lim

ε↘0

∫
Γ−ε

y2κ−2v2 (1.3.41)

= −C
∫ T

−T
|v(t, 0)|2dt ,

where the last integral is over the line r = 0, and where C depends only on κ.
Moreover, letting λ0 be sufficiently large and recalling (1.3.2) and (1.3.31), we
obtain

− lim
ε↘0

∫
Γ−ε

[λ2(y4κ − 4c2t2)− 8cλ]∇νf · v2 > C̃λ2

∫ T

−T
|v(t, 0)|2dt , (1.3.42)
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for some constant C̃ > 0.

Next, applying (1.2.6) and (1.3.31) in a similar manner as before, we obtain
inequalities for the remaining limits in the right-hand side of (1.3.30):

lim
ε↘0

∫
Γ−ε

∇νwf,z · v2 > −C
∫ T

−T
|v(t, 0)|2dt , (1.3.43)

4κ(2κ− 1) lim
ε↘0

∫
Γ−ε

y2κ−2∇νy · v2 > −C
∫ T

−T
|v(t, 0)|2dt ,

lim
ε↘0

∫
Γ−ε

y4κ−1∇νy · v2 = 2

∫ T

−T
|v(t, 0)|2dt .

Here, C denotes various positive constants that depend on κ. Finally, combining
(1.3.41)–(1.3.43) and taking λ0 to be sufficiently large results in (1.3.30).

We are now in position to complete the proof of Theorem 1.3.1. First, recalling
the definitions (1.2.3) and (2.2.7) of f and v and the fact that c2t2 . 1 by our
assumption (1.3.2), we have that

e2λf (∂tu)2 . (∂tv)2 + λ2c2t2v2 . (∂tv)2 + λ2y6κ−1v2 , (1.3.44)

e2λf (Dru)2 . (Drv)2 + λ2y4κv2 . (Drv)2 + λ2y6κ−1v2 ,

e2λf | /∇u|2 = | /∇v|2 .

Furthermore, by (1.1.9) and (2.2.7), we observe that

(Lv)2 6 2e2λf [(�κu)2 + κ(n− 1)y−2r−2 · u2] . (1.3.45)

Therefore, using these bounds in Lemma 1.3.3, it follows that

2

∫
Cε
e2λf (�κu)2 + 2κ(n− 1)

∫
Cε
e2λfy−1r−1 · u2 (1.3.46)

> Cλ

∫
Cε
e2λf [(∂tu)2 + | /∇u|2 + (Dru)2] + Cλ3

∫
Cε
e2λfy6κ−1u2

+ 2λ

∫
Γε

∇νf ·DβvD
βv − 4λ

∫
Γε

Sf,zv ·Dνv

− 2λ

∫
Γε

[λ2(y4κ − 4c2t2)− 8cλ]∇νf · v2

+ 2λ

∫
Γε

∇νwf,z · v2 + 8λκ(2κ− 1)

∫
Γε

y2κ−2∇νy · v2

+


Cλ
∫
Cε e

2λfy2κ−2r−3 · u2 n > 4

Cλ
∫
Cε e

2λfy2κ−2r−2 · u2 + 4c2λ
∫

Γε
y4κ−1∇νy · v2 n = 3

4c2λ
∫

Γε
y4κ−1∇νy · v2 n = 1

,
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for some constant C > 0 depending on n and κ. Note that if λ0 is sufficiently
large, then the last term on the left-hand side of (1.3.46) can be absorbed into
the last term on the right-hand side of (1.3.46) (for all values of n). From this,
we obtain∫

Cε
e2λf (�κu)2 > Cλ

∫
Cε
e2λf [(∂tu)2 + | /∇u|2 + (Dru)2 + λ2y6κ−1u2] (1.3.47)

+


Cλ
∫
Cε e

2λfy2κ−2r−3 · u2 n > 4

Cλ
∫
Cε e

2λfy2κ−2r−2 · u2 n = 3

0 n = 1

+ λ

∫
Γε

∇νf ·DβvD
βv − 2λ

∫
Γε

Sf,zv ·Dνv

− λ
∫

Γε

[λ2(y4κ − 4c2t2)− 8cλ]∇νf · v2

+ λ

∫
Γε

∇νwf,z · v2 + 4λκ(2κ− 1)

∫
Γε

y2κ−2∇νy · v2

+

{
0 n > 4

2c2λ
∫

Γε
y4κ−1∇νy · v2 n 6 3

.

Finally, the desired inequality (1.3.1) follows by taking the limit ε ↘ 0 in
(1.3.47) and applying all the inequalities from Lemma 1.3.4.

1.4 Observability

Our aim in this section is to show that the Carleman estimates of Theorem
1.3.1 imply a boundary observability property for solutions to wave equations on
the cylindrical spacetime C containing potentials that are critically singular at
the boundary Γ. More specifically, we establish the following result, which is a
precise and a slightly stronger version of the result stated in Theorem 2.

Theorem 1.4.1. Assume n 6= 2, and fix −1
2
< κ < 0. Let u be a solution to

�κu = DXu+ V u , (1.4.1)

on C, where the vector field X : C → R1+n and the potential V : C → R satisfy

|X| . 1 , |V | . 1

y
+
n− 1

r
, (1.4.2)

In addition, assume that:

i) u is boundary admissible (in the sense of Definition 1.1.2).
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ii) u has finite twisted H1-energy for any τ ∈ (−T, T ):

E1[u](τ) =

∫
C∩{t=τ}

((∂tu)2 + (Dru)2 + | /∇u|2 + u2) <∞ . (1.4.3)

Then, for sufficiently large observation time T satisfying
T > 4

√
3

1+2κ
n > 4

T > max

{
4
√

15
1+2κ

, 2
√

30√
|κ|(1+2κ)

}
n = 3

T > 4
√

15
1+2κ

n = 1

, (1.4.4)

we have the boundary observability inequality∫
Γ

(Nκu)2 & E1[u](0) , (1.4.5)

where the constant of the inequality depends on n, κ, T , X, and V .

In order to prove Theorem 1.4.1, we require preliminary estimates. The first
is a Hardy estimate to control singular integrands:

Lemma 1.4.2. Assume the hypotheses of Theorem 1.4.1. Then,∫
C∩{t0<t<t1}

(
1

y2
+
n− 1

r2

)
u2 .

∫
C∩{t0<t<t1}

(Dru)2 , (1.4.6)

for any −T 6 t0 < t1 6 T , where the constant depends only on n and κ.

Proof. The inequality (1.1.10), with q = 1, yields

(Dru)2 >
1

8
(1− 2κ)2u

2

y2
+

(n− 1)

9

u2

r2
+

(1− 2κ)

2
∇β(∇βy · y−1u2) .

Letting 0 < ε� 1 and integrating the above over C ∩ {t0 < t < t1} yields∫
Cε∩{t0<t<t1}

(Dru)2 > C

∫
Cε∩{t0<t<t1}

(
1

y2
+
n− 1

r2

)
u2

− (1− 2κ)

2

∫
Γ+
ε ∩{t0<t<t1}

y−1u2

+
(1− 2κ)

2

∫
Γ−ε ∩{t0<t<t1}

y−1u2

> C

∫
Cε∩{t0<t<t1}

(
1

y2
+
n− 1

r2

)
u2

− (1− 2κ)

2

∫
Γ+
ε ∩{t0<t<t1}

y−1u2 .

(Here, we have also made use of the identities (1.3.31).) Letting ε ↘ 0 and
recalling that u is boundary admissible results in the estimate (1.4.6).
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We will also need the following energy estimate for solutions to (1.4.1):

Lemma 1.4.3. Assume the hypotheses of Theorem 1.4.1. Then,

E1[u](t1) 6 eM |t1−t0|E1[u](t0) , t0, t1 ∈ (−T, T ) , (1.4.7)

where the constant M depends on n, κ, X, and V .

Proof. We assume for convenience that t0 < t1; the opposite case can be proved
analogously. By a standard density argument, we can assume u is smooth within
C. Fix now a sufficiently small 0 < ε� 1, and define

E1,ε[u](τ) =

∫
Cε∩{t=τ}

((∂tu)2 + (Dru)2 + | /∇u|2 + u2) . (1.4.8)

DifferentiatingE1,ε[u] and integrating by parts, we obtain, for any τ ∈ (−T, T ),

d

dτ
E1,ε[u](τ) = 2

∫
Cε∩{t=τ}

(∂ttu∂tu+DjuDj∂tu+ u∂tu) (1.4.9)

= −2

∫
Cε∩{t=τ}

∂tu(�yu− u) + 2

∫
Γε∩{t=τ}

∂tuDνu .

Note that (1.1.9), (1.4.1), and (1.4.2) imply

|�yu| .
∣∣∣∣DXu+ V u+

(n− 1)κ

ry
u

∣∣∣∣
. |∂tu|+ | /∇u|+ |Dru|+

(
1

y
+
n− 1

r

)
|u| .

Combining the above with (1.4.9) yields

d

dτ
E1,ε[u](τ) 6 C · E1[u](τ) + C · E

1
2
1 [u](τ)

[∫
C∩{t=τ}

(
1

y2
+
n− 1

r2

)
u2

] 1
2

+ 2

∫
Γε∩{t=τ}

∂tuDνu .

Next, integrating the above in τ and applying Lemma 1.4.2, we obtain

E1,ε[u](t1) 6 E1[u](t0) + C

∫ t1

t0

E1[u](τ) dτ + 2

∫
Γε∩{t0<t<t1}

∂tuDνu . (1.4.10)

Since u is boundary admissible, it follows that

lim
ε↘0

∫
Γ+
ε ∩{t0<t<t1}

∂tuDνu = 0 . (1.4.11)
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1. CARLEMAN ESTIMATES AND OBSERVABILITY

Moreover, since ν points radially along Γ−ε , then by symmetry,

lim
ε↘0

∫
Γ−ε ∩{t0<t<t1}

∂tuDνu = 0 . (1.4.12)

(Alternatively, when n > 1, we can also use (1.3.38).)

Letting ε↘ 0 in (1.4.10) and applying (1.4.11)–(1.4.12), we conclude that

E1[u](t1) 6 E1[u](t0) + C

∫ t1

t0

E1[u](τ) dτ .

The estimate (1.4.7) now follows from the Grönwall inequality.

Assume the hypotheses of Theorem 1.4.1, and set

c =


1

4
√

3·T n > 4

min
{

1
4
√

15·T ,
|κ|
120

}
n = 3

1
4
√

15·T n = 1

. (1.4.13)

Note, in particular, that (1.4.13) and (1.4.4) imply that the conditions (1.3.2)
hold.

Moreover, we define the function f as in the statement of Theorem 1.3.1, with
c as in (1.4.13). Then, direct computations, along with (1.4.4), imply that

inf
C∩{t=0}

f > −(1 + 2κ)−1 , sup
C∩{t=±T}

f < −(1 + 2κ)−1 .

Hence, one can find constants 0 < δ � T and µκ > (1 + 2κ)−1 such that{
f 6 −µκ when t ∈ (−T,−T + δ) ∪ (T − δ, T )

f > −µκ when t ∈ (−δ, δ)
. (1.4.14)

In addition, we define the shorthands

Iδ = [−T + δ, T − δ] , Jδ = (−T,−T + δ) ∪ (T − δ, T ) . (1.4.15)

We also let ξ ∈ C∞(C) be a cutoff function satisfying:

i) ξ depends only on t.

ii) ξ = 1 when t ∈ Iδ.

iii) ξ = 0 near t = ±T .
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1.4 Observability

We can then apply the Carleman inequality in Theorem 1.3.1, with our above
choice (1.4.13) of c and to the function ξu, in order to obtain

λ

∫
Γ

e2λfξ2(Nκu)2 +

∫
C
e2λf |�κ(ξu)|2 (1.4.16)

& λ

∫
C
e2λf [|∂t(ξu)|2 + ξ2| /∇u|2 + ξ2(Dru)2 + λ2y−1+6κξ2u2]

& λ

∫
Iδ×B1

e2λf [(∂tu)2 + | /∇u|2 + (Dru)2 + λ2y−1+6κu2] .

Moreover, noting that

|�κ(ξu)| . |ξ�κu|+ |∂tξ|∂tu|+ |∂2
t ξ||u|

. |�κu|+ |∂tu|+ |u| ,

and recalling (1.4.2) and (1.4.14), we derive that∫
C
e2λf |�κ(ξu)|2 .

∫
Iδ×B1

e2λf |�κu|2 +

∫
Jδ×B1

e2λf (|�κu|+ |∂tu|+ |u|)

.
∫
Iδ×B1

e2λf (|∂tu|2 + |Dru|2 + | /∇u|2)

+

∫
Iδ×B1

(
1

y2
+
n− 1

r2

)
(eλfu)2

+ e−2λµκ

∫
Jδ×B1

(|∂tu|2 + |Dru|2 + | /∇u|2)

+ e−2λµκ

∫
Jδ×B1

(
1

y2
+
n− 1

r2

)
u2 ,

where the implicit constants of the inequalities depend also onX and V . Applying
Lemma 1.4.2 and recalling the definition of f , the above becomes∫
C
e2λf |�κ(ξu)|2 .

∫
Iδ×B1

[e2λf (|∂tu|2 + |Dru|2 + | /∇u|2) + |Dr(e
λfu)|2] (1.4.17)

+ e−2λµκ

∫
Jδ×B1

(|∂tu|2 + |Dru|2 + | /∇u|2)

.
∫
Iδ×B1

e2λf (|∂tu|2 + |Dru|2 + | /∇u|2 + λ2y4κu2)

+ e−2λµκ

∫
Jδ

E1[u](τ) dτ ,

Combining the inequalities (1.4.16) and (1.4.17) and letting λ be sufficiently
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1. CARLEMAN ESTIMATES AND OBSERVABILITY

large (depending also on X and V ), we then arrive at the bound

λ

∫
Γ

e2λf (Nκu)2 + e−2λµκ

∫
Jδ

E1[u](τ) dτ

& λ

∫
Iδ×B1

e2λf (|∂tu|2 + | /∇u|2 + |Dru|2 + λ2y6κ−1u2)

Further restricting the domain of the integral in the right-hand side to (−δ, δ)×B1

and recalling the lower bound in (1.4.14), the above becomes

λ

∫
Γ

e2λf (Nκu)2 + e−2λµκ

∫
Jδ

E1[u](τ) dτ & λe−2λµκ

∫ δ

−δ
E1[u](τ) dτ . (1.4.18)

Finally, the energy estimate (1.4.7) implies

e−MTE1[u](0) 6 E1[u](t) 6 eMTE1[u](0) ,

which, when combined with (1.4.18), yields

λ

∫
Γ

e2λf (Nκu)2 + δe−2λµκeMT · E1[u](0) & λδe−2λµκe−MT · E1[u](0) . (1.4.19)

Taking λ in (1.4.19) large enough such that e2MT � λ results in (1.4.5).

1.A One-dimensional results

To highlight even more the differences with the classical case, in this appendix
we would like to illustrate the multiplier method in the simplest model of the free
wave equation in one spatial dimension. We also recall the concept of pseudocon-
vexity and show that an observability estimate is precisely a necessary condition
for controllability. At the end of the appendix, we describe the spectral approach
of [40], which suggests that a one-dimensional analog of our Theorem 1.3.1 is false
for positive values of the strength parameter κ.

Free wave equation

Let us begin by considering a regular enough solution to the (1 + 1)-dimensional
wave equation

�u = −∂ttu+ ∂yyu = 0 (1.A.1)

in (−T, T )× [0, 1], together with trivial boundary conditions u|Γ̂ = 0 on

Γ̂ := [(−T, T )× {y = 0}] ∪ [(−T, T )× {y = 1}] ,

and initial data u(0, ·) = u0 ∈ H1([0, 1]) and ∂tu(0, ·) = u1 ∈ L2([0, 1]).
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1.A One-dimensional results

As in the rest of the chapter, here we adopt the summation convention for
repeated indices, contracted always with the Minkowski metric η = −dt2 + dy2.
Of course, in this simple case we employ the usual partial derivatives instead of
covariant or twisted derivatives. Taking the classical weight

f0(t, y) = (y − 1)2 − ct2 ,
we perform the following integration by parts:

0 =

∫
(−T,T )×[0,1]

�u · ∂αf0∂αu

=

∫
Γ̂

∂αf0∂αu∂βu · νβ −
1

2

∫
(−T,T )×[0,1]

∂α(∂βu∂βu) · ∂αf0

−
∫

(−T,T )×[0,1]

∂αβf0 · ∂αu∂βu

=

∫
Γ̂

(
∂αf0∂βu−

1

2
∂βf0∂

αu
)
νβ∂αu−

∫
(−T,T )×[0,1]

(
∂αβf0 −

1

2
�f0η

αβ
)
∂αu∂βu .

This computation immediately implies that, when 0 < c < 1,∫
{y=0}

(∂yu)2 & ‖u0‖2
H1([0,1]) + ‖u1‖2

L2([0,1]) (1.A.2)

by the prescribed boundary conditions and energy estimates analogues to the
ones in Lemma 1.4.3. Here one also needs to assume that T > 1 so that there is
time for the wave to travel from y = 1 to y = 0 with velocity 1.

The main point here is that one can exploit the pseudoconvexity of f0 with
respect to � to obtain positivity for the bulk term, which here simply means that(

∂αβf0 −
1

2
�f0η

αβ
)
XαXβ & |X|2

for all X ∈ Rn+1. This property has the geometric interpretation of null geodesics
remaining in the region f0 < 0 after hitting tangentially the surface f0 = 0
(see [43, Ch. 28.4] for more details on the role of pseudoconvexity in the unique-
ness of linear PDEs). Notice that more robust Carleman inequalities for � can
be easily obtained from estimates for the commutator eλf0�e−λf0 , by taking the
parameter λ to be large enough. Again, these estimates rely ultimately on the
positivity that stems from the pseudoconvexity of the classical weight f0.

Boundary controllability

With the notation of the previous subsection, consider now the following initial
boundary value problem:

−wtt + wyy = 0 in (−T, T )× [0, 1]

w = F on Γ̂

w(0, ·) = w0 , wt(0, ·) = w1 in [0, 1] ,

(1.A.3)
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1. CARLEMAN ESTIMATES AND OBSERVABILITY

where (w0, w1) ∈ L2([0, 1])×H1([0, 1]), and F is a “control function” supported

in (−T, T )× {y = 0} ⊂ Γ̂. Let us also recall the definition of controllability:

Definition 1.A.1. The system (1.A.3) is said to be (null) boundary controllable
in time T if for every initial data (w0, w1) ∈ L2([0, 1]) × H−1([0, 1]) there ex-

ists F ∈ L2(Γ̂) such that the corresponding solution w satisfies that w(T, ·) =
wt(T, ·) = 0.

It is well-known that the Hilbert uniqueness method (HUM) [55] allows us
to derive a necessary and sufficient condition for controllability. In this duality
argument one defines a mapping

θ : H1([0, 1])× L2([0, 1])→ L2([0, 1])×H−1([0, 1])

through θ(u0, u1) = (w0,−w1), where u0, u1 denote initial data of (1.A.1). In
particular, it is clear that

‖θ(u0, u1)‖L2([0,1])×H−1([0,1]) . ‖F‖L2([0,1])

holds by the well-posedness of (1.A.3).

Moreover, it is not difficult to show the equivalence between the L2-norm of
the normal derivative and the H1-energy, so that

‖θ(u0, u1)‖2
L2(Ω)×H−1(Ω) . ‖u0‖2

H1([0,1]) + ‖u1‖2
L2([0,1]) . (1.A.4)

Hence the linear map θ is bounded.

On the other hand, denoting by 〈·, ·〉 the duality pairing between H1([0, 1])×
L2([0, 1]) and L2([0, 1])×H−1([0, 1]), the observability inequality (1.A.2) implies
that θ is also injective,

〈θ(u0, u1), (u0, u1)〉 =

∫
{y=0}

(∂yu)2 & ‖u0‖2
H1 + ‖u1‖2

L2 , (1.A.5)

so there exists a unique (u∗0, u
∗
1) such that θ(u∗0, u

∗
1) = (w0,−w1). The geometric

control is given then by F = limy↘0 ∂yu
∗, where u∗ is solution to (1.A.1) with

initial data (u∗0, u
∗
1).

Spectral approach

Let us finally discuss the boundary observability properties of the one-dimensional
equation 

−∂ttu+DyDyu = 0 , in [−T, T ]× [0, 1]

Dκu = 0 , on {y = 0}
u(t, 1) = 0 , on {y = 1} ,
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1.A One-dimensional results

where Dy, Dy are twisted derivatives (1.1.6) and where Dκu = limy↘0 y
−κu de-

notes the Dirichlet trace.

Note that according to Sturm-Liouville theory, the Bessel-Laplacian −DyDy

is a self-adjoint operator in L2([0, 1]) when κ < 1/2, and also positive by the
Hardy inequality (1.1.10). Consequently, the eigenfunctions of −DyDy satisfy
the equation

−DyDyψl = ρ2
lψl ,

where {ρl}l∈N denote the corresponding L2-eigenvalues. A straightforward com-
putation using the homogeneous boundary conditions shows that the number ρl
agrees with the l-th zero of the first kind Bessel function of order 1

2
− κ, i.e.

J 1
2
−κ(ρl) = 0 with ρ0 = 0 and l > 0, while the eigenfunctions are given by

ψl(y) =
C
√
y

J ′1
2
−κ(ρl)

J 1
2
−κ(ρly) ,

where we have fixed the normalization factor using the orthogonality relation∫ 1

0

yJ 1
2
−κ(yρl)J 1

2
−κ(yρm) dy =

δl,m
2

(
J ′1

2
−κ(ρl)

)2
.

We can then separate variables and expand u in Fourier-Bessel series,

u(t, y) =
∑
l>0

ul(t)ψl(y) , u0
l := ul(0) , u1

l := ∂tul(0) ,

to find that the Neumann data can be written as

Nκu(t) =
∑
l>0

(
cos(ρlt)u

0
l +

sin(ρlt)

ρl
u1
l

) ρ
1
2
−κ

l

J ′1
2
−κ(ρl)

,

where we have used the asymptotic behavior of the Bessel functions [78]

Jα(z) =
1

Γ(1 + α)

(z
2

)α
, α /∈ Z− , 0 < z �

√
1 + α .

Finally, since the smallest eigengap is at least some positive constant γ when the
observation time T is large, we can make use of the following Ingham inequal-
ity [45]:

Lemma 1.A.2. Let {ρl}l∈Z be an increasing sequence of positive real numbers
such that ρl+1 − ρl > γ > 0, ∀l > 0, and let {cl}l∈Z be any sequence of complex
numbers. Then, for T > 0 such that γT > 2π, it follows that∫ T

−T

∣∣∑
l

cle
iρlt
∣∣2 dt &∑

l

|cl|2 .
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1. CARLEMAN ESTIMATES AND OBSERVABILITY

By using the above estimate together with the asymptotic formula

|J ′α(z)| 6 C√
z
, z � 1 ,

and the expansion of large eigenvalues ρl = πl + O(1
l
) (see [78]), we then arrive

at the boundary observability inequality

‖Nκu‖2
L2([−T,T ]) > C

∑
l>0

ρ2−2κ
l (u0

l )
2 + ρ−2κ

l (u1
l )

2 .

As a final remark, it should be noticed that this spectral approach is in gen-
eral unsuitable for higher-dimensional problems. However, the regularity in the
above observability estimate strongly suggests that analogues of the Carleman
Theorem 1.3.1 for κ > 0 are false.
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Chapter 2

Fractional wave operators

Preliminaries

There is a considerable body of classical work on fractional wave operators, which
have never appeared naturally in a physical problem but which are studied in
detail in the theory of hypersingular integrals (see e.g. [65] and references therein).
In particular, the fractional wave operator (−�)α is defined for all noninteger α
as the multiplier

̂(−�)αf(τ, ξ) := σα(τ, ξ) f̂(τ, ξ) , (2.0.1)

where the symbol σα is defined as

σα(τ, ξ) := (|ξ|2 − τ 2)αχ+(τ, ξ) + eiπα sgn(τ)(τ 2 − |ξ|2)αχ−(τ, ξ), (2.0.2)

with χ±(τ, ξ) denotes the indicator function of the set ±(|ξ|2 − τ 2) > 0. Equiva-
lently, choosing the principal branch of the complex logarithm one can write

σα(τ, ξ) := lim
ε↘0

(
|ξ|2 − (τ − iε)2

)α
. (2.0.3)

Our aim in this chapter is to show the connection between fractional wave
operators and scattering operators in asymptotically AdS backgrounds. To this
end, let us start by recalling the basic structure of the AdS spacetime of dimension
n + 1, which is a Lorentzian manifold of negative constant sectional curvature
(which we set here to −1) and, as such, satisfies the Einstein equations with
a negative cosmological constant. For concreteness, we will consider the AdS
half-space (see e.g. [4] for a mathematical analysis of the problem and [5] for
the physics of this space). The metric can be written using Poincaré coordinates
(t, x, y) ∈ R× Rn−1 × R+ as

g+ :=
dt2 − dy2 − |dx|2

y2
, (2.0.4)

where |dx|2 denotes the standard flat metric on Rn−1.

Analytically, here one can take boundary conditions on the set y = 0 (which
is conformal to the n-dimensional Minkowski space) and decay conditions at
y = ∞. This makes it the obvious generalization of the half-space model of the
(n+1)-dimensional hyperbolic space, which one describes in terms of the Poincaré
coordinates (y, x) ∈ R+ × Rn through the metric

g+
H :=

dy2 + |dx|2

y2
,
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2. FRACTIONAL WAVE OPERATORS

which is the natural setting for the elliptic equation considered in the introduction
after a conformal change.

While here we prefer to stick to the AdS half-space, let us mention that in
Section 2.3 we will also consider in detail the problem for the usual AdS space,
whose conformal timelike infinity is the cylinder R × Sn−1. This is sometimes
referred to as the global AdS space in the context of the AdS/CFT conjecture
and can be covered by two half-space AdS charts. The results are qualitatively
the same but the algebra is less transparent. We will also encounter the same
behavior when we analyze more general stationary asymptotically anti-de Sitter
metrics, again in Section 2.3.

Let us then consider the Klein–Gordon equation with parameter µ in the AdS
space (2.0.4),

�g+φ+ µφ = 0 , (2.0.5)

where �g+ is the wave operator associated with the AdS metric:

�g+φ := y2(∂ttφ−∆xφ− ∂yyφ)− (1− n)y∂yφ.

Physically, µ is the mass of the particle modeled by the Klein–Gordon equation
plus a negative contribution from the scalar curvature of the underlying space [76,
Section 4.3]. For our purposes, it is convenient to assume that the parameter

α :=

(
n2

4
+ µ

)1/2

takes values in the interval (0, n
2
).

We then have that Equation (2.0.5) can be rewritten as a wave equation with
coefficients critically singular at y = 0,

∂ttφ−∆xφ− ∂yyφ−
1− n
y

∂yφ+
4α2 − n2

4y2
φ = 0 . (2.0.6)

A simple look at the singularities of the equation reveals that the solutions are

expected to scale at conformal infinity as y
n
2
±α. Then, since we are assuming

α > 0, the natural Dirichlet condition for this problem is

lim
y↘0

yα−
n
2 φ(t, x, y) = f(t, x) . (2.0.7)

If one prefers to prescribe a Neumann condition [77], one must instead impose

lim
y↘0

y1−2α ∂y
(
yα−

n
2 φ(t, x, y)

)
= h(t, x) ,

for α ∈ (0, 1), and a generalized Neumann condition α ∈ (1, n
2
), as we will see

below. With this notation in place, the main result of this chapter is that the
fractional wave operator (−�)α (in flat space) is the Dirichlet-to-Neumann map
associated to switching on a nontrivial boundary datum in an anti-de Sitter space:
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2.1 Fractional powers of the free wave operator

Theorem 2.0.1. For any function f ∈ C∞0 (Rn), let φ be the solution of the
Klein–Gordon equation (2.0.5) with this Dirichlet boundary condition (Eq. (2.0.7))
and trivial initial data at −∞: φ(−∞, x, y) = φt(−∞, x, y) = 0. Assume more-
over that the mass parameter α takes values in (0, 1). Then, one has the identity

(−�)αf(t, x) = cα lim
y↘0

y1−2α ∂y
(
yα−

n
2 φ(t, x, y)

)
for an explicit constant cα = −22α−1Γ(α)/Γ(1− α). More generally, if α ∈ (0, n

2
)

is not an integer and we write α = m+ α0, with m := bαc the integer part, then

(−�)αf(t, x) = cα lim
y↘0

y2(1−α0)
(1

y
∂y

)m+1(
yα−

n
2 φ(t, x, y)

)
,

with cα := (−1)m+12α+α0−1 Γ(α)

Γ(1− α0)
.

Several remarks are in order. First, an elementary observation is that this
identity, which obviously applies to much for general data by the bounds that
we establish here, implies that the well-known estimates for the fractional wave
operator immediately translate into assertions about the Dirichlet datum of the
solution and its associated Neumann condition, and viceversa. Second, it is worth
emphasizing that this relation can be generalized to more general asymptotically
AdS metrics, as we will do it Section 2.3. A third comment is that Theorem 2.0.1
implies for α ∈ (1, n

2
) the operator (−�)α can be naturally interpreted as the

scattering operator of the manifold. In Riemannian signature, this connection is
discussed in detail in [19], and quite remarkably the interest in the the conformally
covariant operators on the boundary that it defines (see e.g. [39, 58, 36]) was
originally fueled by work of Newman, Penrose and LeBrun [54] on gravitational
physics quite in the spirit of Maldacena’s AdS/CFT correspondence.

Recall that, in the Lorentzian case, the construction of the scattering operator
for a general asymptotically AdS metric was carried out in [74], but the resulting
operator was not characterized.

The chapter is organized as follows. In Section 2.1 we will recall some basic
facts and definitions about fractional wave operators in a form that is particularly
convenient for our purposes, and in particular, a convolution formula with a
singular kernel. In Section 2.2 we will analyze the Klein–Gordon equation and
establish the main result in the half-space region of anti-de Sitter space. This
identity will be extended to more general asymptotically AdS spaces, and to the
global AdS space, in Section 2.3.

2.1 Fractional powers of the free wave operator

In this section we will recall some basic facts about fractional powers of the wave
operator, as defined in (2.0.1). In the following we will see that, just as in the case
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2. FRACTIONAL WAVE OPERATORS

of the fractional Laplacian [51], one can represent (−�)αf as a regularized integral
depending analytically on the power α when f is a sufficiently smooth function.
To derive this result in full generality, we will need the analytic continuation of
the classical hyperbolic Riesz potential [64], which will be explicitly constructed
when the power is not a positive half-integer.

A careful analysis of the poles of the multiplier (2.0.2) shows that one can
regard σα as a tempered distribution on Rn, analytic in the parameter α for
α 6= −n

2
− k with k a non-negative integer (cf. e.g. [37, Chapter III]). This

property is of crucial importance to recover the fractional wave operator as a
convolution

(−�)αf = kα ∗ f,
where the kernel kα coincides with the inverse Fourier transform of σα in a sense
that will be specified later on. Notice that, while this relation holds true distri-
butionally, it is not easy to transform it into a pointwise converging formula due
to the singularities that the multiplier presents on the light cone.

To regularize the integrals that appear, we will use Riesz distributions. Let us
recall that, for any complex parameter α with Reα > n

2
−1, Rα is the distribution

whose action on a function ϕ ∈ C∞0 (Rn) is given by the absolutely convergent
integral

〈Rα, ϕ〉 = Cn,α

∫
K+

+

(t2 − |x|2)α−
n
2ϕ(t, x) dt dx, ϕ ∈ C∞0 (K+

+),

where we write the points in Rn as (t, x) ∈ R× Rn−1, the set

K+
+ := {(t, x) ∈ Rn : t2 > |x|2, t > 0}

is the forward causal cone and the constant Cn,α takes the value

Cn,α :=
21−2απ1−n

2

Γ(α) Γ
(
α + 1− n

2

) . (2.1.1)

A straightforward computation shows that the map α 7→ 〈Rα, ϕ〉 is analytic in
the half-plane Reα > n

2
−1. It is well-known (see e.g. [49]) that this mapping can

be analytically continued to the whole complex plane by means of the identity
(−�)Rα+1 = Rα. Hence for any complex number α it makes sense to consider
the convolution of the distribution Rα a smooth compactly supported function
f ∈ C∞0 (Rn), which we will denote by Iαf and call the hyperbolic Riesz potential
of f . Notice that for Reα > n

2
− 1 the Riesz potential simply reads as

Iαf(t, x) =

∫
K+

+

(s2 − |y|2)α−
n
2 f(t− s, x− y) ds dy. (2.1.2)

In the following proposition we establish the relationship among the powers
of the wave operator, the Riesz distribution and its associated potential, showing
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2.1 Fractional powers of the free wave operator

that, as in the Euclidean case, it is possible to understand (−�)αf as a regularized
integral represented by the analytic extension of the Riesz potential. This relation
was essentially stated in [65] using the results of [37] on the Fourier transform
of analytically continued quadratic forms, but we prefer to sketch the proof here
rather than to refer to vague variations on results from the above references.

Proposition 2.1.1. Let α be a complex number such that α + n
2

is not a non-
positive integer. Then the Fourier transform of Rα is the function

R̂α(τ, ξ) = σ−α(τ, ξ), (2.1.3)

so, in particular, for any function f ∈ C∞0 (Rn) the αth power of the wave operator
is given by

(−�)αf = I−αf. (2.1.4)

Proof. Let us first assume that Reα > n
2
− 1. The Fourier transform R̂α is then

the distribution given by

〈R̂α, ϕ〉 = 〈Rα, ϕ̂〉 = Cn,α

∫
K+

+

(t2 − |x|2)α−
n
2 ϕ̂(t, x) dt dx

= Cn,α lim
ε→0+

∫
K+

+

(t2 − |x|2)α−
n
2 e−εtϕ̂(t, x) dt dx

= Cn,α

∫
Rn

lim
ε→0+

(∫
K+

+

(t2 − |x|2)α−
n
2 e−iξxe−t(ε+iτ) dt dx

)
ϕ(τ, ξ) dτ dξ,

where we have used dominated convergence and Fubini’s theorem.

The inner integral is computed (for n > 3; the case n = 3 is much simpler) by
first passing to polar coordinates (r, φ1, φ2, . . . , φn−2) with r > 0, φj ∈ [0, π] for
j = 1, . . . , n− 3 and φn−2 ∈ [0, 2π]:

x1 = r cos(φ1), xj = r cos(φj)

j−1∏
i=1

sin(φi), xn−2 = r

n−2∏
i=1

sin(φi),

with dx = rn−2 sinn−3(φ1) sinn−4(φ2) · · · sin(φn−3) dr dφ1 dφ2 · · · dφn−2 the volume
element. On the other hand, we also need the well-known representation formulas
[78] for the Bessel functions

Jν(z) =
zν

2νΓ(ν + 1
2
)
√
π

∫ 1

−1

eizs(1− s2)ν−
1
2 ds, Re(ν) > −1

2
, z ∈ C

Kν(z) =

√
πzν

2νΓ(ν + 1
2
)

∫ ∞
1

e−zw(w2 − 1)ν−
1
2 dw, Re(ν) > −1

2
, |Arg(z)| < π

2
,

(2.1.5)
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2. FRACTIONAL WAVE OPERATORS

and the Bessel integral∫ ∞
0

rµ+ν+1Kµ(ar)Jν(br)dr =
(2a)µ(2b)νΓ(µ+ ν + 1)

(a2 + b2)µ+ν+1
,

for Re ν + 1 > |Reµ| and Re a > Im b. Making then the change s = cos(φ1) and
using the above integral formulas, it is not difficult to check that in the half-plane
Reα > n

2
− 1,∫

K+
+

(t2 − |x|2)α−
n
2 e−iξxe−t(ε+iτ) dt dx

=
2π

n−2
2

Γ(n−2
2

)
·
∫ ∞

0

dr rn−2

∫
{t2>r2}

(t2 − r2)α−
n
2 e−t(ε+iτ)dt

∫ 1

−1

(1− s2)
n
2
−2e−i|ξ|rs ds

= 2απ
n
2
−1Γ(α + 1− n

2
) · |ξ|

3−n
2 (ε+ iτ)

n−1
2
−α

·
∫ ∞

0

dr rαKα+ 1−n
2

(r(ε+ iτ))Jn−3
2

(r|ξ|)

=
1

Cn,α
(|ξ|2 + (ε+ iτ)2)−α,

where we have used in the second line that the surface of the (n − 3)-sphere is
given by 1

Γ(n/2−1)
· 2π n

2
−1. Taking now the limit as ε↘ 0 we get (2.1.3).

To complete the proof we recall that, as pointed out right before introducing
the concept of Riesz distribution, σα defines a tempered distribution that is ana-
lytic for any complex α except for α = −n

2
− k with k ∈ N. Therefore, although

we have proved (2.1.3) when the parameter takes values in a certain open set of
the complex plane, this relation must hold in the whole domain where Rα can be

analytically continued. Moreover, since by definition ̂(−�)αf = σαf̂ for all α, it
is also true that (−�)αf = R−α ∗ f = I−αf . The proposition then follows.

The above proposition is roughly the analog of the formula for the fractional
Laplacian discussed in the introduction [51], which for 0 < α < n allows us to
write the fractional Laplacian (−∆)−αf , up to a multiplicative constant, as the
convolution of f with the locally integrable function |x|2α−n. Notice, however,
that the singularities in the integral kernel are much stronger here.

For the benefit of the reader we shall next record an explicit formula for (−�)αf
in terms of integrals regularized via suitable finite difference operators, which we
borrow from [65, Eq. (9.93)], and connect it with the previous proposition. Before
we can state the result, let us first introduce some further notation. For q a real
parameter and k, l ∈ N, let us denote the q-number of k, its q-factorial and the
q-binomial coefficient as

[k]q =
1− qk

1− q
, [k]q! = [1]q[2]q · · · [k]q,

(
l

k

)
q

=
[l]q!

[k]q! [l − k]q!
(k 6 l),
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2.1 Fractional powers of the free wave operator

respectively. In addition, let us define the q-functions

C l
k = qk( k+1

2
−l)
(
l

k

)
q

, Alµ =
l∑

k=0

(−1)kqkµC l
k, (2.1.6)

with µ ∈ C and where we omit the dependence on q for notational simplicity.

We are now ready to write down the integral formula for (−�)αf . For sim-
plicity we will assume that f ∈ C∞0 (Rn), but the result it is still true e.g. for
C l(Rn) functions that decay fast enough at infinity, with l > 2α.

Proposition 2.1.2. Let us take a real α ∈ (0, l
2
), where l ∈ N and we assume that

α is not a half-integer. Then for any f ∈ C∞0 (Rn) the fractional wave operator
(−�)α is given by the absolutely convergent integral

(−�)αf(t, x) = Cn,−α

∫
R+×Rn−1

∆l,α
s,yf(t, x)

s
n
2

+α|y|n+2α−1
ds dy, (2.1.7)

where ∆n,α
s,y stands for the difference operator

∆l,α
s,yf(t, x) =

1

Al
∗
n
2
−1+αA

l
2α

l∗∑
j=0

l∑
k=0

(−1)j+kC l∗

j C
l
k

(1 + qjs)2α

(2 + qjs)
n
2

+α
f
(
t−qk|y|, x− qky

1 + qjs

)
,

l∗ is the integer part of n+l−1
2

, q 6= 1 is a positive constant, C l
k and Alµ are the

q-functions defined in (2.1.6), and the constant Cn,α is given by (2.1.1).

Proof. By Proposition 2.1.1 the result is equivalent to showing that the integral
(2.1.7) represents the extension of I−αf to the strip 0 < α < l/2. Firstly, observe
that this integral converges absolutely on this interval except for integers and
semi-integers values of α. Indeed, a tedious but straightforward computation of
the Taylor series of ∆l,α

s,yf about zero combined with the fact that Alm = 0 for
0 6 m 6 l − 1 as a consequence of the well-known identity [21]

l∑
k=0

qk
(k−1)

2 zk
(
l

k

)
q

=
l−1∏
k=0

(1 + zqk)

applied to z = −q1+m−l, reveal that

|∆l,α
s,yf | 6 Cqs

l∗|y|l‖Dlf‖∞ +O
(
sl
∗|y|l+1‖D(l+1)f‖∞

)
for (s, y) close to zero and where Cq is a real constant that depends only on q.
From this bound and since f vanishes at infinity, it immediately follows that the
integral is finite when α ∈ (0, l

2
) except for the zeros of Al

∗
n
2
−1+α and Al2α, which

correspond to the points of the form α = k
2
, k ∈ N when q 6= 1 is a positive real

number.
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2. FRACTIONAL WAVE OPERATORS

Now we need to prove that the formula above actually represents the analytic
continuation of the Riesz potential from the half-plane Reα > n

2
− 1 to the range

α ∈ (0, l
2
). Note that by (2.1.4) and the form of the differences operator, it suffices

to show that (2.1.7) coincides with the expression of the potential given in (2.1.2)
replacing α by −α. This assertion can be readily checked by introducing new
variables

u := qk|y|, v := qk
|y|

1 + qjs

and changing to polar coordinates in y. Incidentally, since the above substitutions
also remove the dependence of the operator (−�)αf on the parameter q, then
one can safely choose any positive q other than the limit value q = 1.

Remark 2.1.3. It is worth noticing that even in the simplest case, 0 < α < 1 and
n = 2, the formula for the fractional wave operator is much more involved than its
Euclidean counterpart and cannot be deduced from it. This reflects the different
nature of the singularities of the corresponding kernels: the entire light cone in
the hyperbolic case and a single point in the Euclidean setting. Remarkably, in
the simple case that we are now discussing (n = 2, 0 < α < 1) there is another
realization of (−�)α (cf. [65, Theorem 9.30]) that is easier to compare with its
fractional Laplacian analog:

(−�)αf(t, x) =
C2,−α

21+2α

∫
K+

+

Ts,yf(t, x)

(s2 − y2)1+α
ds dy, (2.1.8)

where we are using the finite difference operator

Ts,yf(t, x) := f(t, x)− f
(
t− s+y

2
, x− s+y

2

)
− f

(
t− s−y

2
, x+ s−y

2

)
+ f(t− s, x− y).

Note that one can readily use this formula and the crude approximations

Ts,yf(t, x) = sy �f(t, x) +O(s2 + y2) , Γ(−1 + ε)−1 = −ε+O(ε2)

to prove the pointwise convergence of (−�)αf to (−�)f as α→ 1.

2.2 The Klein–Gordon equation in AdS spaces

In this section we will connect the fractional powers of the wave operator with
the solutions to the mixed initial-boundary problem corresponding to the Klein–
Gordon equation in an anti-de Sitter space. Our specific goal here is to give a local
realization of the fractional wave operator as a Dirichlet-to-Neumann map that
is the Lorentzian counterpart of the relation for the fractional Laplacian derived
in [16] and extended in [19]. For this purpose, we will use a Laplace–Fourier
transform in order to transform our wave equation into an ODE that contains
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2.2 The Klein–Gordon equation in AdS spaces

the relevant information about the solution at infinity, which will enable us to
derive the Dirichlet-to-Neumann map in Fourier space.

Recall that our starting point was the Klein–Gordon equation

�g+φ+
(
α2 − n2

4

)
φ = 0,

where �g+ denotes the wave operator associated to the AdS metric (2.0.4). As
discussed in the Introduction, this equation can be thought as a wave equation
with coefficients that are singular at conformal infinity and whose indicial roots
are n/2±α. For simplicity, we will henceforth assume that α is not a half-integer
(i.e., 2α 6∈ N) in order to ensure that the solution does not have a logaritheoremic
branch cut. The argument carries over to the case that α 6∈ N with minor
modifications.

Let us begin with the analysis of the wave equation (2.0.6). For this, is
convenient to define the function

u(t, x, y) := yα−
n
2 φ(t, x, y) ,

which satisfies the equation

∂ttu−∆xu− ∂yyu−
1− 2α

y
∂yu = 0 (2.2.1)

with Dirichlet datum
u(t, x, 0) = f(t, x) . (2.2.2)

Notice that the above equation agrees with the leading part of (1.0.3) upon
making the substitution

α =
1

2
− κ ,

with κ the strength parameter on which the estimates of Chapter 1 depend on.
Nonetheless, in this chapter it is slightly more convenient to use α as the com-
parison with the analogous elliptic result is clearer in terms of this parameter.

We shall next prove a bound for u that will be needed later in this section.
To state it, let us consider the weighted Lebesgue space

L2
α := L2(Rn

+, y
1−2αdx dy) ,

endowed with the norm

‖v‖2
L2
α

:=

∫
Rn+
v2 y1−2αdx dy ,

and denote by Ḣ1
α (respectively, Ḣ1

α,0) the closure of C∞0 (Rn
+) (respectively, C∞0 (Rn

+))
with respect to the norm

‖v‖2
Ḣ1
α

:=

∫
Rn+

(
|∇xv|2 + (∂yv)2

)
y1−2αdx dy .
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2. FRACTIONAL WAVE OPERATORS

In the following theorem we only state a qualitative result for boundary data
f ∈ C∞0 (Rn), which is what we need here, but in the proof we provide quantitative
estimates that obviously extend the result to data in more general function spaces.

Lemma 2.2.1. Let k be the lowest integer such that k > 1+α
2

. Given a boundary
datum f ∈ C∞0 (Rn) and an integer j < k, define

uj(t, x, y) := y2j χ(y) (−�)jf(t, x) ,

where χ(y) is a fixed smooth cutoff function identically 1 in y < 1 and 0 in y > 2,
and (−�)j denotes the j-th power of the wave operator −� = ∂tt − ∆x. Then
there are real numbers cj and a function v ∈ L∞(R, Ḣ1

α) such that

u(t, x, y) :=
k−1∑
j=0

cjuj(t, x, y) + v(t, x, y) , (2.2.3)

is the unique solution of Equation (2.2.1) with trivial initial data u(−∞, x, y) =
ut(−∞, x, y) = 0 and boundary condition u(t, x, 0) = f(t, x).

Proof. Let us consider the initial condition

u(t0, ·) = ut(t0, ·) = 0 , (2.2.4)

where t0 is any number such that f(t, x) = 0 for all t < t0. We shall see in the
proof that the solution is independent of the choice of t0, so it is equivalent to
imposing u(−∞, ·) = ut(−∞, ·) = 0.

We shall start by considering an auxiliary non-homogeneous Cauchy problem
of the form

∂ttv −∆xv − ∂yyv −
1− 2α

y
∂yv = F (t, x, y), (2.2.5a)

v(t0, ·) = vt(t0, ·) = 0. (2.2.5b)

We shall next show that if F ∈ L1(R, L2
α), there is a unique solution

v ∈ L2
loc(R, Ḣ1

α,0) ∩H1
loc(R, L2

α)

to this equation. Notice that the fact that v(t, ·) takes values in Ḣ1
α,0 means that

we are imposing the boundary condition v|y=0 = 0.

To prove this, we will use an a priori estimate for the energy associated to the
solution v, which we define as

Ev(t) :=
1

2

∫
Rn+1
+

(v2
t + |∇xv|2 + v2

y) y
1−2α dx dy.
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2.2 The Klein–Gordon equation in AdS spaces

To prove this estimate, it is standard that by a density argument one can assume
that v is in C∞0 (Rn+1

+ ), differentiate under the integral sign and integrate by parts
to find that

d

dt
Ev(t) =

∫
Rn+

(vtvtt +∇xvt · ∇xv + vyvyt) y
1−2αdx dy

=

∫
Rn+
vt

(
vtt −∆xv − vyy −

1− 2α

y
vy

)
y1−2αdx dy

=

∫
Rn+
F vt y

1−2αdx dy

6 C‖F (t, ·)‖L2
α
Ev(t)

1/2 .

Using now Grönwall’s inequality, we arrive at

Ev(t)
1/2 6 Ev(t0)1/2 + C

∣∣∣∣ ∫ t

t0

‖F (t′, ·)‖L2
α
dt′
∣∣∣∣,

which, by the trivial initial conditions, readily implies the estimate

sup
t∈R

(‖v(t, ·)‖Ḣ1
α

+ ‖vt(t, ·)‖L2
α
) 6 C

∫ ∞
−∞
‖F (t′, ·)‖L2

α
dt′, (2.2.6)

thereby ensuring that v ∈ L∞(R, Ḣ1
α,0). It is standard that this estimate leads

to the existence of a unique solution v ∈ L2
loc(R, Ḣ1

α,0) ∩H1
loc(R, L2

α) to the prob-
lem (2.2.5).

To apply the estimate (2.2.6) in our problem, let us set

v(t, x, y) := u(t, x, y)−
k−1∑
j=0

(−1)jy2jχ(y)∏j
l=1 4l(l − α)

(−�)jf(t, x) ,

where the product is to be taken as 1 when l = 0. Using now that(
∂yy +

1− 2α

y
∂y

)
yj = j(j − 2α) yj−2 ,

a direct calculation shows that

∂ttv −∆xv − ∂yyv −
1− 2α

y
∂yv

=
(−1)ky2k−2χ(y)∏k−1

l=1 4l(l − α)
(−�)kf +

k−1∑
j=0

χj(y) (−�)jf ,
(2.2.7)

where χj(y) is a smooth function whose support is contained in the interval [1, 2].
Moreover, by construction v satisfies the initial and boundary conditions

v(t0, x, y) = vt(t0, x, y) = v(t, x, 0) = 0.

57



2. FRACTIONAL WAVE OPERATORS

The point now is that, as the right hand side of (2.2.7) behaves as y2k−2 and
vanishes for y > 2, it is easy to see that it is in L1(R, L2

α), so the estimate (2.2.6)
ensures that u written as in (2.2.3) is the unique solution of (2.2.1) satisfying the
boundary condition u|y=0 = f and vanishing initial data.

Remark 2.2.2. Arguing as in [34, Proposition 5.2], we could have proved higher
regularity estimates for the solution in suitable weighted spaces, but we will not
need that result. The global L∞ bound in time, on the contrary, will be essential
and is not proved in the aforementioned paper, as it does not hold for the more
general equations there considered.

Given a positive real parameter α that is not a half-integer, let us write it as
α = α0 + m, where m denotes its integer part and α0 ∈ (0, 1). The generalized
Dirichlet-to-Neumann map Λα is then defined as in [19, Theorem 3.3]

Λαf(t, x) = cα lim
y↘0

y2(1−α0)
(1

y
∂y

)m+1

u(t, x, y), (2.2.8)

with

cα := (−1)m+12α+α0−1 Γ(α)

Γ(1− α0)

an inessential normalizing factor.

The following theorem, which is the central result of this chapter, is essentially
a rewording of Theorem 2.0.1:

Theorem 2.2.3. Given a positive real number α which is not an integer and
a function f ∈ C∞0 (Rn), let u be the solution of the initial-boundary problem
in the Poincaré-AdS space (2.2.1) with Dirichlet datum (2.2.2) and initial data
u(−∞, ·) = ut(−∞, ·) = 0. Then the map Λα defined in (2.2.8) is given by the
αth power of the wave operator:

Λαf = (−�)αf. (2.2.9)

Proof. To begin with, let us start by noticing that the solution with the initial
condition u(−∞, ·) = ut(−∞, ·) = 0 is well defined, and it can be equivalently
defined by the condition u(t0, ·) = ut(t0, ·) = 0 where t0 is any number such that
f(t, x) = 0 for all t < t0. In what follows, t0 will denote a number with this
property.

Consider the Laplace transform of u(t, ·),

U(s, ·) =

∫ ∞
t0

e−s(t−t0) u(t, ·) dt,

where s = ε + iτ with ε > 0 and τ ∈ R. Notice this expression converges as a
vector-valued function because u is a Banach-space valued L∞ function of time
by Lemma 2.2.1. (When α < 1, the norm is simply that of Ḣ1

α, while for α > 1
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2.2 The Klein–Gordon equation in AdS spaces

the norm must also control the terms uj appearing in (2.2.3), for example by
decomposing

u(t, x, y) =: χ(y)
k−1∑
j=0

y2j uj(t, x) + v(t, x, y)

and adding the L∞ norm of the functions uj and the L∞(R, Ḣ1
α) norm of v).

Furthermore, observe that one can then recover u through the inverse Laplace
transform formula

u(t, ·) =
1

2πi

∫ ε+i∞

ε−i∞
es(t−t0) U(s, ·) ds,

where the integration contour is the vertical line of numbers whose real part is
ε > 0.

We tackle the problem of finding explicit solutions to problem (2.2.1)-(2.2.2) as
follows. First, we apply the Laplace transform on the equation for u to remove the
time derivatives by integration by parts and then use the trivial initial conditions
in the LHS above,∫ ∞

t0

e−s(t−t0) utt(t, ·) dt = s2U(s, ·)− ut(t0, ·)− su(t0, ·) = s2U(s, ·)

to find that U(s, x, y) satisfies the equation

∂yyU(s, x, y) +
1− 2α

y
∂yU(s, ξ, y) + (∆x − s2)U(s, x, y) = 0.

Next we take the Fourier transform in space with respect to the variable x,
which here is denoted with a tilde to avoid confusions with the space-time Fourier
transform. This yields the ODE

∂yyŨ(s, ξ, y) +
1− 2α

y
∂yŨ(s, ξ, y)− (|ξ|2 + s2)Ũ(s, ξ, y) = 0.

The general solution of this equation can be written as a linear combination of
Bessel functions multiplied by a certain power of y, and spans a two-dimensional
vector space. However, by Lemma 2.2.1 the solution u(t, ·) is given by the sum of
a function bounded in Ḣ1

α and other terms that are uniformly bounded in y, so
we may discard the independent solution that grows exponentially in y as y →∞
to arrive at the formula

Ũ(s, ξ, y) =
21−α

Γ(α)
yα(|ξ|2 + s2)

α
2Kα(y

√
|ξ|2 + s2)F̃ (s, ξ), (2.2.10)

where Kα denotes the modified Bessel function of the second kind defined in
(2.1.5). The constant (which depends on s and ξ) has been chosen to ensure that
the Dirichlet condition is satisfied:

Ũ(s, ξ, 0) = F̃ (s, ξ).
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Here and in what follows, F (s, x) denotes the Laplace transform of f(t, x), com-
puted as above, and the tilde denotes the Fourier transform in space.

Therefore, using the identities(
1

z

d

dz

)k
(zνKν(z)) = (−1)kzν−kKν−k(z), k = 0, 1, 2, . . .

Kν(z) ' Γ(ν)

2

(z
2

)−ν
, 0 < |z| �

√
ν + 1, ν > 0

for modified Bessel functions (cf. [78]), we readily infer that the Dirichlet-to-
Neumann map (2.2.8) reads in the Laplace-Fourier space as

Λ̃αF (s, ξ) := cα lim
y↘0

y2(1−α0)
(1

y
∂y

)m+1

Ũ(s, ξ, y) = (|ξ|2 + s2)αF̃ (s, ξ).

The key point now is that one can relate the inverse Laplace transform with
the inverse Fourier transform in time using the freedom in the choice of the
parameter ε. To show this, notice that by the Laplace inversion formula, we have
that the Dirichlet-to-Neumann map in the variables (t, ξ) can be written as

Λ̃αf(t, ξ) =
1

2πi

∫ ε+i∞

ε−i∞
es(t−t0)(|ξ|2 + s2)αF̃ (s, ξ) ds

=
1

2π

∫ ∞
−∞

∫ ∞
t0

e(ε+iτ)(t−t′)(|ξ|2 + (ε+ iτ)2)αf̃(t′, ξ) dτ dt′.

Since the latter integral does not depend on the value of ε and f is smooth with
compact support in {t > t0}, by the dominated convergence theorem one can
take the limit as ε↘ 0 inside the integral to find that

Λ̃αf(t, ξ) =
1

2π

∫ ∞
−∞

eiτtσα(τ, ξ)f̂(τ, ξ) dτ,

with σα as in (2.0.3) and f̂(τ, ξ) denoting the Fourier transform of f with respect
to both time and space variables as in Section 2. Taking now the Fourier transform
with respect to the time, we obtain

Λ̂αf(τ, ξ) = σα(τ, ξ)f̂(τ, ξ),

proving our claim.

A consequence of the proof is an explicit formula for the spacetime energy of
the solution in terms of its boundary datum that is analogous to the result in
Euclidean signature from [16]:

Corollary 2.2.4. With u and f be as in Theorem 2.2.3, the total energy of u is∫
Rn+1
+

[
(∂yu)2 + |∇xu|2 + (∂tu)2

]
y1−2α dt dx dy = Cα

∫
Rn
σα(τ, ξ) |f̂(τ, ξ)|2 dτ dξ ,

with Cα a nonzero constant.
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2.2 The Klein–Gordon equation in AdS spaces

Proof. We first note that the Laplace transform of the function u(s, ·) at s = ε+iτ ,

U(ε+ iτ) =

∫ ∞
0

e−iτte−εtu(t, ·) dt,

is the Fourier transform of the function e−εtu(t, ·). Thus by Plancherel theorem
we can write∫ ε+i∞

ε−i∞
|U(s, ·)|2 ds =

∫ +∞

−∞
|U(ε+ iτ, ·)|2 dτ =

∫ ∞
0

e−2εt|u(t, ·)|2 dt. (2.2.11)

Now we consider the energy for equation (2.2.1), given by

E =

∫ ∞
0

y1−2α

∫
Rn−1

∫ ∞
0

[
(∂yu)2 + |∇xu|2 + (∂tu)2

]
dt dx dy

= lim
ε↘0

∫ ∞
0

y1−2α

∫
Rn−1

∫ ∞
0

[
(∂yu)2 + |∇xu|2 + (∂tu)2

]
e−2εt dt dx dy,

which, using Plancherel identity (2.2.11) for the Laplace transform, becomes

E = lim
ε↘0

∫ ∞
0

y1−2α

∫
Rn−1

∫ ε+i∞

ε−i∞

[
|∂yU(s, x, y)|2 + |∇xU(s, x, y)|2

+ s2|U(s, x, y)|2
]
ds dx dy.

Now we take Fourier transform in the variable x, yielding

E = lim
ε↘0

∫ ∞
0

y1−2α

∫
Rn−1

∫ ε+i∞

ε−i∞

[
|∂yŨ(s, ξ, y)|2+(|ξ|2+s2)|Ũ(s, ξ, y)|2

]
ds dξ dy.

Substituting the explicit expression (2.2.10) we arrive at

E = lim
ε↘0

∫ ∞
0

y1−2α

∫
Rn−1

∫ ε+i∞

ε−i∞
(|ξ|2 + s2)

[
|K ′1(y

√
|ξ|2 + s2)|2

+ |K1(y
√
|ξ|2 + s2)|2

]
|F̃ (s, ξ)|2 ds dξ dy,

where, for simplicity, we have set K1(y) :=
21−α

Γ(α)
yαKα(y). A change of variable

allows us to integrate in y, obtaining

E = lim
ε↘0

Cα

∫
Rn−1

∫ ε+i∞

ε−i∞
(|ξ|2 + s2)α|F̃ (s, ξ)|2 ds dξ

with Cα an explicit constant, as claimed.
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2.3 Applications

Our point in this section is to show that the identities established in Theorem 2.0.1
remain valid in considerably more general situations. We will illustrate this fact
by connecting other fractional wave operators with the Dirichlet-to-Neumann
map (or, more generally, the scattering operator) of two simple classes of static
asymptotically AdS manifolds:

Fractional waves in product spaces

Consider a compact Riemannian manifold M of dimension n − 1 endowed with
a Riemannian metric g0 and take the natural wave operator on R×M, which is

�0 := ∂tt −∆g0 ,

where ∆g0 stands for the Laplace-Beltrami operator on M.

Since M is compact, we can take an orthonormal basis {Yj}j∈N of eigenfunc-
tions of the Laplacian ∆g0 , which satisfy

−∆g0Yj = λ2
jYj ,

and write any L2 function f on M (depending on t as a parameter) as the L2-
convergent series f(t, ·) =

∑
j fj(t)Yj(·). Let us denote by (�0f)j(t) the jth

component of the function �0f in this basis. Taking the Fourier transform with
respect to t we obtain that

�̂0fj(τ) = (λ2
j − τ 2)f̂j(τ)

and, given a real parameter α, we can define here the αth power of the wave
operator as the pseudo-differential operator that in the Fourier space reads as

�̂α0fj(τ) := σα(τ, λj)f̂j(τ), (2.3.1)

with σα the function defined in (2.0.3).

Consider now an (n+ 1)-dimensional Lorentzian spacetime with the metric

g+ :=
dt2 − dy2 − g0

y2
, (2.3.2)

where t ∈ R is the time coordinate and y ∈ R+ is a spatial coordinate. Comparing
with the metric defined in (2.0.4), it is clear that the Klein-Gordon equation with
parameter µ := (α2 − n2/4) associated to the metric (2.3.2) then takes the form

∂ttφ−∆g0φ− ∂yyφ−
1− n
y

∂yφ+
4α2 − n2

4y2
φ = 0 ,
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2.3 Applications

where one must prescribe some suitable initial-boundary conditions for the scalar
field φ. As in the last section, the above equation can be rewritten in terms of
the rescaled function u := yα−

n
2 φ as

∂ttu = ∆g0u+
1− 2α

y
∂yu+ ∂yyu, (2.3.3)

where we take trivial initial data at time −∞ and prescribe the boundary condi-
tion at timelike conformal infinity: u|y=0 = f .

We can next define the (generalized) Dirichlet-to-Neumann map through its
coefficients

(Λαf)j = cα lim
y↘0

y2(1−α0)
(1

y
∂y

)m+1

uj, (2.3.4)

with cα as before, α = α0 +m, m = bαc the integer part of α and α0 ∈ (0, 1).

By means of expansion in eigenfunctions of the Laplacian ∆g0 and the Laplace
transform in time (together with the vanishing initial conditions), the equation
(2.3.3) can be transformed into our well-known ordinary equation

∂yyUj(s, y) +
1− 2α

y
∂yUj(s, y)− (λ2

j + s2)Uj(s, y) = 0,

with boundary condition Fj(s) = Uj(s, 0), where

Uj(s, y) :=

∫ ∞
t0

e−s(t−t0) uj(s, y) dt

is the Laplace transform of the coefficient uj with s = ε + iτ and ε a fixed
positive constant. Notice that Uj can be shown to be well defined for ε > 0 by
an L∞ bound in time that goes exactly as in Lemma 2.2.1.

Arguing just as in the previous section, we find that the Dirichlet-to-Neumann
map in the transformed space reads as

ΛαFj := cα lim
y↘0

y2(1−α0)
(1

y
∂y

)m+1

Uj(s, y) = (λ2
j + s2)αFj(s),

and therefore, by the inverse Laplace transform formula and the Fourier transform
in time,

Λ̂f j(τ) = σα(τ, λj)f̂j(τ).

Thereby, we can identify the Dirichlet-to-Neumann map in the Lorenztian space
with metric (2.3.2) with the powers of the wave operator �0.

The global anti-de Sitter space

Consider now the global anti-de Sitter mentioned in the introduction, which is
diffeomorphic to Rn+1 and one can describe through spherical coordinates

(t, r, θ) ∈ R× R+ × Sn−2 ,

63



2. FRACTIONAL WAVE OPERATORS

which cover the whole manifold modulo the usual abuse of notation at the origin.
In these coordinates the metric of AdSn+1 reads as

g+ := (1 + r2)dt2 − 1

1 + r2
dr2 − r2gSn−2 , (2.3.5)

where gSn−2 is the canonical metric on the unit (n− 2)-dimensional sphere, asso-
ciated with the coordinate θ.

In this space we can picture the spatial limit r → +∞ as the cylinder Rt×Sn−2

with the standard metric
g0 := dt2 − gSn−2 ,

which defines the timelike conformal infinity of the spacetime.

Let us now focus on the Klein–Gordon equation on this anti-de Sitter space
with the natural Dirichlet datum

lim
r→∞

r
n
2
−αφ(t, r, θ) = f(t, θ),

f ∈ C∞0 (Rn+1) and trivial initial conditions at time −∞. Upon expanding the
operator �g+ associated to the metric (2.3.5), we obtain the Klein–Gordon equa-
tion

∂ttφ =
1 + r2

r2
∆θφ+ (1 + r2)2∂rrφ

+ (1 + r2)
(n− 1

r
+ (n+ 1)r

)
∂rφ− (1 + r2)

(
α2 − n2

4

)
φ .

(2.3.6)

As before, in order obtain the scattering operator we take a basis {Yj}j∈N of
spherical harmonics of energy λ2

j := j(j + n− 3). They satisfy the equation

−∆θYj = λ2
jYj,

with ∆θ the Laplace-Beltrami operator on Sn−2. Introducing the coefficients

φj(t, r) :=

∫
Sn−2

φ(t, r, θ)Yj(θ) dθ ,

one can apply the Laplace transform and expand the Klein–Gordon equation in
the basis of spherical harmonics to obtain an ODE in the variable r,

(1+r2)∂rrΦj+
(n− 1

r
+(n+1)r

)
∂rΦj+

( s2

1 + r2
+
λ2
j

r2
+α2− n

2

4

)
Φj = 0 , (2.3.7)

where

Φj(s, r) :=

∫ ∞
t0

e−s(t−t0) φj(t, r) dt
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2.3 Applications

is the Laplace transform of φj(r, θ).

The explicit solution of this equation is a combination of certain powers of r
multiplied by ordinary hypergeometric functions. Discarding the solution that is
not locally in H1 at the origin, r = 0, we then obtain

Φj(s, r) = cj(s)r
βe−

i
2

log(1+r2)s

2F1

(
1
2
(β−is+ n

2
−α), 1

2
(β−is+ n

2
+α), β+ n

2
,−r2

)
,

where

β :=
1

2

(
2− n+

√
4λ2 + (n− 2)2

)
.

The coefficient cj(s) is readily computed using that Fj(s) := limr→∞ r
n
2
−αΦj(s, r)

must be the Laplace transform of the jth component of the boundary datum.

The transformed Dirichlet-to-Neumann operator is then readily shown to be

ΛαFj(s) := lim
r→∞

r1+2α∂r(r
n
2
−αΦj(s, r)).

Using now the explicit solution, we obtain that

ΛαFj(s) =
Γ(−α)Γ

(
1
2
(β − is+ n

2
+ α)

)
Γ
(

1
2
(β + is+ n

2
+ α)

)
Γ(α)Γ

(
1
2
(β − is+ n

2
− α)

)
Γ
(

1
2
(β + is+ n

2
− α)

)
· (β − is+ n

2
− α)Fj(s),

which can be written using the Fourier transform in time as

Λ̂f j(τ) := lim
ε↘0

ΛαFj(ε+ iτ).

It should be noticed that in the limit of large frequencies of the multiplier σα(τ, λj)
is, up to some numerical factor, the principal symbol of the scattering operator
in this globally defined AdS space, as one would have expected.
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Chapter 3

Whitham’s highest waves

Preliminaries

In this chapter we prove the existence of a limiting periodic traveling wave solution
to the Whitham equation

Lϕ− µϕ+ ϕ2 = 0 , (3.0.1)

that features cusps of C1/2-regularity and is convex between consecutive crests
as in Figure 1. Our work, which is analogous to the Stokes waves result for the
Euler equation [62], answers to the following conjecture due to Ehrnström and
Wahlén:

Conjecture 3.0.1. (Convexity of Whitham’s highest cusped wave [32, p. 4])
Whitham’s highest wave ϕ is everywhere convex and its asymptotic behavior
at x = 0 is

ϕ(x) =
µ

2
−
√
π

8
|x|1/2 + o(|x|) .

For the benefit of the reader, here we record again the statement of Theorem 4,
which addresses the above conjecture and is the main result of this chapter.
Taking for concreteness ϕ as a function on T := R/2πZ, we have:

Theorem 3.0.2. The 2π-periodic highest cusped traveling wave ϕ ∈ C1/2(T) of
the Whitham equation is a convex function and behaves asymptotically as

ϕ(x) =
µ

2
−
√
π

8
|x|1/2 +O(|x|1+η) (3.0.2)

for some η > 0. Furthermore, ϕ is even and strictly decreasing on the interval
[0, π].

Before presenting the main ingredients behind the proof of this theorem, let us
recall that solutions to the Whitham equation are smooth away from the cusps.
In fact, one should note that if ϕ solves (3.0.1), then for all x1, x2 ∈ T,

(µ− ϕ(x1)− ϕ(x2))(ϕ(x1) + ϕ(x2)) = L(ϕ(x1)− ϕ(x2)) .

A bootstrapping argument then guarantees the smoothness of solutions when
ϕ < µ/2, while the sharp C1/2-regularity can be only attained if ϕ(0) = µ/2.
Of course, this Hölder regularity is expected in view of the balance between the
nonlinearity and the order of the operator (quadratic and −1/2, respectively).
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3. WHITHAM’S HIGHEST WAVES

The proof of Theorem 3.0.2 is rather involved and relies in part on computer-
assisted estimates. We start off by noticing that the function

u(x) =
µ

2
− ϕ(x) (3.0.3)

satisfies an equation that does not explicitly depend on the parameter µ, which
can nonetheless be recovered from u. Making a guess of what u should look like,
we then write

u(x) = u0(x) + |x|v0(x) ,

where u0(x) ∼
√
π/8|x|1/2 is an explicit, carefully chosen approximate solution of

the equation and the correction term v0(x) should then be obtained via an inverse
function theorem on L∞(T). Up to a technicality (namely, that v0(x) appears in
this formula with a factor of |x| instead of |x|1+η), this proves the easier part of
Theorem 3.0.2, namely, the asymptotic formula (3.0.2).

We should emphasize, however, that this description hides three key difficulties
that make the proof much harder than it looks. A first, fairly obvious one is that
the argument boils down to estimates on L∞([−π, π]) for the linear operator

T0f(x) :=
1

2|x|u0(x)

[
L(| · |f)(x) + L(| · |f(− · ))(x)− 2L(| · |f)(0)

]
,

whose kernel is rather difficult to control. Indeed, the convolution kernel of the
operator L acting on L∞(T) that appears in the definition of T0 has the rather
awkward expression [32]

Lf(x) =

∫ π

−π
K(y) f(x− y) dy , (3.0.4)

K(x) =
∞∑
n=1

∫ nπ

(n− 1
2

)π

cosh[s(π − |x|)]
π sinh(sπ)

(
| tan s|
s

)1/2

ds (3.0.5)

for x ∈ (−π, π).

A second, less obvious difficulty is that the operator norm of T0 turns out to
be very slightly smaller than 1. Therefore, the bound for the norm of (I − T0)−1

that we need in the argument is large, and this has the crucial consequence
that it becomes very hard to construct an approximate solution u0 such that the
associated error T0u0 − u0

2|x| is small enough in L∞(T).

Finally, the third difficulty is that, as the solution ϕ is not smooth at the origin,
one cannot effectively use ordinary or trigonometric polynomials to construct the
approximate solution u0 (which would interact well with the operator L), as is
customary in computer-assisted proofs, and plain powers |x|s cannot be used to
approximate the 2π-periodic function u properly either as they do not glue well
at x = ±π and do not have simple representations whenever L acts on them.
Instead, to construct u0 we utilize information about the asymptotic behavior
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of the solutions at 0 and carefully concoct a linear combination of trigonometric
polynomials and Clausen functions of different orders, defined as

Cz(x) =
∞∑
n=1

cos(nx)

nz
, Sz(x) =

∞∑
n=1

sin(nx)

nz
. (3.0.6)

Suitable estimates for Clausen functions are derived in order to obtain the re-
quired uniform bounds for the approximate solution. Two relevant additional
remarks are that choosing u0 just from asymptotic information at 0 is not possi-
ble, as the approximation that one obtains away from zero is poor, and that u0

is a combination of 20 different terms, so carrying out the estimates without a
computer seems unwise. The need of so many terms is due to the almost non-
invertibility of (I−T0), which results in the need for a very accurate approximate
solution that cannot be constructed using just a few explicit terms.

It should be stressed that the hardest part of Theorem 3.0.2, that is the
proof of the convexity of the solution, is considerably more technical but is based
on the same principles, suitably strengthened to control two derivatives of the
function u. This is ultimately accomplished by solving an extended system of
equations that is controlled by three linear operators: the aforementioned T0 and
two new, more complicated operators T1 and T2 that involve up to two derivatives
of the (extremely messy) approximate solution u0. Just as before, one needs to
invert I − Ti for 0 6 i 6 2 and the norms of the three operators Ti are very close
but strictly less than 1.

A major theme of our work is the interplay between rigorous computer calcu-
lations and traditional mathematics; in this work we use interval arithmetics as
part of a proof whenever they are needed. Lately, computer-assisted proofs have
been made possible due to the increment of computational resources. Naturally,
floating-point operations can result in numerical errors. In order to overcome
these, we will employ interval arithmetics to deal with this issue. The main
paradigm is the following: instead of working with arbitrary real numbers, we
perform computations over intervals which have representable numbers by the
computer as endpoints in order to guarantee that the true result at any point
belongs to the interval by which is represented. On these objects, an arithmetic
is defined in such a way that we are guaranteed that for every x ∈ X, y ∈ Y

x ? y ∈ X ? Y,

for any operation ?. For example,

[x, x] + [y, y] = [x+ y, x+ y]

[x, x]× [y, y] = [min{xy, xy, xy, xy},max{xy, xy, xy, xy}].

We can also define the interval version of a function f(X) as an interval I that
satisfies that for every x ∈ X, f(x) ∈ I. Rigorous computation of integrals has
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3. WHITHAM’S HIGHEST WAVES

been theoretically developed since the seminal works of Moore and many others
[12, 18, 23, 50, 52]. We also refer the reader to the books [60, 72] and to the
survey [38] for a more specific treatment of computer-assisted proofs in PDE.

Of course, the proof of Theorem 3.0.2 would be much easier if one could come
up with a simpler strategy where soft analysis could be used to bypass the need
for hard estimates, but it is difficult to imagine what such a strategy could be
based on. Let us briefly comment on this important point. For instance, a first
idea would be to try to adapt the proof of Ehrnström and Wahlén to include as
part of the functional space the additional fact that the functions are convex.
However, some work shows that this philosophy cannot be easily implemented
since it is by no means clear how to carry out the local or global bifurcation
argument within this framework. Another obvious idea is to carry out the global
bifurcation argument directly in a C1/2 Hölder space. Alas, showing that C1/2 is
indeed the sharp Hölder regularity of the resulting solution, meaning that it does
not belong to a higher space in the Hölder scale, turns out to be highly nontrivial
in this approach.

The chapter is organized as follows. In Section 3.1 we give some technical
results concerning generalized Clausen functions and their asymptotic behavior at
x = 0. Equipped with these formulas, in Section 3.2 we construct an approximate
solution (3.2.7) to the equation verified by (3.0.3). A linearized version of the
Whitham equation is studied in Section 3.3. Here we use a fixed point argument
together with the invertibility of 1− T0 to show the existence of a solution which
is an L∞ small perturbation of our approximate solution that displays (almost)
the right asymptotic behavior claimed in Conjecture 3.0.1. Section 3.4 is devoted
to the proof of the main Theorem 3.0.2. We exploit the bounds for the norms of
linear operators T0, T1 and T2 to obtain a priori estimates that help us to conclude
the convexity of a highest cusped Whitham wave. Two appendices are given at
the end of the chapter. For convenience, we leave the study of the norm of T2

for Appendix 3.A meanwhile in Appendix 3.B, we give details on the computer
assisted proofs.

3.1 Clausen functions

In this section we provide all the estimates for the generalized Clausen functions
introduced in (3.0.6) that we use in the rest of the chapter. In particular, as
mentioned in the introduction, these functions play a fundamental role in the
proof of Theorem 3.0.2 as they are the building blocks of the approximate solution
that we shall present in the next section.

Let us begin with the relationship between Clausen functions and the poly-
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3.1 Clausen functions

logarithm Liz(s) [25, Eq. 25.12.10]:

Liz(s) :=
∞∑
n=1

sn

nz
. (3.1.1)

This series defines an analytic function for all complex z whenever |s| < 1 and
it can be analytically continued for other values. Further, recalling the definition
of Clausen functions (3.0.6), it is clear now that

Cz(x) :=
1

2

(
Liz(e

ix) + Liz(e
−ix)

)
= Re

(
Liz(e

ix)
)
,

Sz(x) :=
1

2i

(
Liz(e

ix)− Liz(e
−ix)

)
= Im

(
Liz(e

ix)
)
.

By the well-known identity [25, Eq. 25.12.12],

Liz(s) = Γ(1− z)
(

log(s−1)
)z−1

+
∞∑
n=0

ζ(z − n)
(log s)n

n!
, z /∈ Z+ , | log(s)| < 2π .

one has the following series representations for Cz and Sz:

Cz(x) = Γ(1− z) sin(π
2
z)|x|z−1 +

∞∑
m=0

(−1)mζ(z − 2m)
x2m

(2m)!
(3.1.2)

Sz(x) = Γ(1− z) cos(π
2
z)sgn (x)|x|z−1 +

∞∑
m=0

(−1)mζ(z − 2m− 1)
x2m+1

(2m+ 1)!
,

(3.1.3)

where ζ(z) is the Riemann zeta function. Observe that these formulas (analyti-
cally) extend the definition (3.0.6) when Re(z) < 1 for all x real.

As it will be useful later on, in the following lemma we give uniform bounds
for the lower order terms in the above series:

Lemma 3.1.1. Let z be a positive real number and let M :=
⌈
z+1

2

⌉
. Then the

Clausen functions can be expressed as

Cz(x) = Γ(1− z) sin(π
2
z)|x|z−1 + ζ(z)

+
M−1∑
m=1

(−1)mζ(z − 2m)
x2m

(2m)!
+ ECz(x)

Sz(x) = Γ(1− z) cos(π
2
z)sgn (x)|x|z−1

+
M−1∑
m=0

(−1)mζ(z − 2m− 1)
x2m+1

(2m+ 1)!
+ ESz(x) ,
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where the error terms satisfy

|ECz(x)| 6 2(2π)1+z−2Mζ(2M + 1− z)
x2M

4π2 − x2
, (3.1.4)

|ESz(x)| 6 2(2π)z−2Mζ(2M + 2− z)
|x|2M+1

4π2 − x2
. (3.1.5)

Proof. As they are similar, for simplicity we only prove the estimate for Cz(x).
From (3.1.2) we have that for any positive integer M ,

Cz(x) = Γ(1− z) sin(π
2
z)|x|z−1 + ζ(z) +

M−1∑
m=1

(−1)mζ(z − 2m)
x2m

(2m)!

+ sin(π
2
z)

∞∑
m=M

Γ(2m+ 1− z)

Γ(2m+ 1)
2z−2mπz−2m−1ζ(2m+ 1− z)x2m .

Here we have used that Γ(2m+ 1) = (2m)! and the functional identity

ζ(s) = 2sπs−1 sin(π
2
s)Γ(1− s)ζ(1− s) , (3.1.6)

which is valid for all s ∈ C.

Since ζ(s) and Γ(s) are, respectively, monotonically decreasing and increasing

functions on s > 2, by taking M =
⌈
z+1

2

⌉
, we arrive at

|ECz(x)| 6 ζ(2M + 1− z)| sin(π
2
z)|

∞∑
m=M

2z−2mπz−2m−1x2m .

By computing the above infinite sum in closed form,

∞∑
m=M

2z−2mπz−2m−1x2m = 2(2π)1+z−2M x2M

4π2 − x2
,

the estimate for Cz follows.

3.2 Approximate solution

Our objective here is to introduce an approximate solution u0 to the Whitham
equation and study its asymptotic behavior at x = 0. Making use of the estimates
derived in the previous section, we will be able to control the L∞-norm of the
error and prove that it is sufficiently small for the purposes of the fixed point
iteration scheme that we set up later in the chapter.

Let us begin by introducing the linear operator

Lu(x) :=
1

2

∫ π

−π

(
K(x− y) +K(x+ y)− 2K(y)

)
u(y) dy , (3.2.1)
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with K(x) as in (3.0.4). Furthermore, it will be useful to express the kernel K
alternatively as the Fourier series [32]

K(x) =
1

2π

∑
n∈Z

m(n)einx =
1

2π
+

1

π

∞∑
n=1

m(n) cos(nx) , (3.2.2)

where in the second equality we have used the parity of m(n) :=

√
tanh(n)

n
.

Remark 3.2.1. Notice that by the representation of the Clausen function C1/2

given in Lemma 3.1.1, the above kernel satisfies

K(x) =
1√

2π|x|
+Ereg(x) , Ereg(x) = EC 1

2

(x)+
1

π

∞∑
n=1

1−
√

tanh(n)√
n

cos(nx) ,

which agrees with the description given in [32, Prop. 3.1].

Through this chapter we will take advantage of the fact that u defined as
in (3.0.3) satisfies a quadratic equation that does not depend explicitly on the
parameter µ:

Proposition 3.2.2. Let ϕ(x) be a solution of (3.0.1). Then, the function u(x) :=
µ
2
− ϕ(x) satisfies the reduced Whitham equation

(u(x))2 = Lu(x) , (3.2.3)

where the wavespeed µ is recovered through

µ
(

1− µ

2

)
= 4

∫ π

0

K(y)u(y) dy . (3.2.4)

Remark 3.2.3. Notice that in view of the Galilean transformation

µ 7→ 2− µ , ϕ 7→ ϕ+ 1− µ ,

solutions ϕ to (3.0.1) with wavespeed µ ∈ [1, 2] are mapped bijectively to solutions
for µ ∈ [0, 1] with maxima in [0, µ/2]. Since K and u are positive by (3.0.4) and
ϕ < µ

2
, the quadratic equation (3.2.4) for µ has only one root in [0, 1], which is

precisely the value of µ associated to the highest wave ϕ.

As we will show in the next section, (3.2.3) imposes strong restrictions on the
asymptotic behavior of the solution u. In particular, since Remark 3.2.1 implies
that ∫ π

0

(
C 1

2
(x− y) + C 1

2
(x+ y)− 2C 1

2
(y)
)√

y dy =
π

2
|x|+O(x2) ,

by using the formula (3.1.2) one can easily show the following asymptotic formula:
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3. WHITHAM’S HIGHEST WAVES

Proposition 3.2.4. Let λ > 0 and assume that u is a solution of (3.2.3) with
the asymptotic behavior

u(x) = λ
√
|x|+O(|x|

1
2

+p) , p > 0 ,

close to |x| = 0. Then the constant λ must take the value

λ :=

√
π

8
. (3.2.5)

An approximate solution to the reduced Whitham equation is given now in
terms of Clausen functions and trigonometric polynomials. We postpone to the
next section the construction of an actual solution of (3.2.3) with the desired
behavior at x = 0.

Definition 3.2.5. Let p0 ∈ (0, 1) and p1 ∈ (2, 3) be numbers such that

Γ(−1/2− pj)
Γ(−1− pj)

(
1− cot(π

2
pj)
)

=
2√
π
. (3.2.6)

Then, we define

u0(x) =

Nj∑
k=0

1∑
j=0

ajk
(
ζ
(
3/2 + kp0 + jp1

)
− C 3

2
+kp0+jp1

(x)
)

+

N2∑
n=1

bn
(

cos(nx)− 1
)
,

(3.2.7)
where the coefficients ajk and bn are real and N0, N1 and N2 are fixed non-negative
integers.

In view of this definition and the formulas (3.1.2) and (3.1.3), we have in
addition that the derivatives of u0 can be written as

u′0(x) =

Nj∑
k=0

1∑
j=0

ajkS 1
2

+kp0+jp1
(x)−

N2∑
n=1

nbn sin(nx) , (3.2.8)

u′′0(x) =

Nj∑
k=0

1∑
j=0

ajkC− 1
2

+kp0+jp1
(x)−

N2∑
n=1

n2bn cos(nx) . (3.2.9)

Moreover, the explicit values of the numbers p0, p1 can be enclosed with high pre-
cision, as shown in the following Lemma. Its proof will be given in Appendix 3.B.

Lemma 3.2.6. The only solutions p0, p1 of the equation (3.2.6) in the above
intervals are

p0 = 0.611 . . . , p1 = 2.762 . . . , .
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3.2 Approximate solution

A key feature of the approximate solution u0 is precisely its asymptotic be-
havior near x = 0. In fact, the bounds shown in Lemma 3.1.1 imply the following
asymptotic expansions that we give without proof as they involve tedious but
largely standard computations:

Lemma 3.2.7. Let u0 be a function of the form (3.2.7) and let M be the small-
est integer such that M > 3/2 + max{N0p0, N1p0 + p1}. Then, the following
asymptotic expansions hold near x = 0:

u0(x) =

Nj∑
k=0

1∑
j=0

a0
jk|x|

1
2

+kp0+jp1 +
(
a0

1 −
1

2

N2∑
n=1

n2bn

)
x2

+
(
a0

2 +
1

24

N2∑
n=1

n4bn

)
x4 + Eu0(x) , (3.2.10)

u′0(x) =

Nj∑
k=0

1∑
j=0

a1
jk|x|−

1
2

+kp0+jp1 +
(
a1

0 −
N2∑
n=1

n2bn

)
|x|

+
(
a1

1 +
1

6

N2∑
n=1

n4bn

)
|x|3 + Eu′0(x) , (3.2.11)

and

u′′0(x) =

Nj∑
k=0

1∑
j=0

a2
jk|x|−

3
2

+kp0+jp1 +
(
a2

1 −
N2∑
n=1

n2bn

)
+
(
a2

2 +
1

2

N2∑
n=1

n4bn

)
x2 + Eu′′0 (x) , (3.2.12)

where

a0
jk := −Γ(−1/2− kp0 − jp1) sin

(
π
2
(3

2
+ kp0 + jp1)

)
ajk ,

a0
m :=

(−1)m+1

(2m)!

Nj∑
k=0

1∑
j=0

ajkζ(3/2 + kp0 + jp1 − 2m) , m = 1, 2 ,

a1
jk := Γ(1/2− kp0 − jp1) cos

(
π
2
(1

2
+ kp0 + jp1)

)
ajk ,

a1
m :=

(−1)m

(2m+ 1)!

Nj∑
k=0

1∑
j=0

ajkζ(−1/2 + kp0 + jp1 − 2m) , m = 0, 1 ,

a2
jk := −Γ(3/2− kp0 − jp1) sin

(
π
2
(−1

2
+ kp0 + jp1)

)
ajk

a2
m :=

(−1)m

(2m)!

Nj∑
k=0

1∑
j=0

ajkζ(−1/2 + kp0 + jp1 − 2m) , m = 1, 2 ,
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3. WHITHAM’S HIGHEST WAVES

and

|Eu0(x)| 6 2(2π)5/2−2M

Nj∑
k=0

1∑
j=0

(2π)kp0+jp1|ζ(2M − 1/2−kp0− jp1)ajk|
x2M

4π2 − x2

+
x6

6!

N2∑
n=1

n6|bn|+
M−1∑
m=3

|a0
m|x2m , (3.2.13)

|Eu′0(x)| 6 2(2π)3/2−2M

Nj∑
k=0

1∑
j=0

(2π)kp0+jp1|ζ(2M + 3/2−kp0− jp1)ajk|
|x|2M+1

4π2 − x2

+
|x|5

5!

N2∑
n=1

n6|bn|+
M−1∑
m=2

|a1
m||x|2m+1 . (3.2.14)

|Eu′′0 (x)| 6 2(2π)1/2−2M

Nj∑
k=0

1∑
j=0

(2π)kp0+jp1|ζ(2M + 5/2−kp0− jp1)ajk|
x2M

4π2 − x2

+
x4

4!

N2∑
n=1

n6|bn|+
M−1∑
m=2

|a2
m|x2m . (3.2.15)

Moreover, the derivatives of the error term Eu0(x) are trivially bounded as

|E ′u0(x)| 6 |Eu′0(x)| , |E ′′u0(x)| 6 |Eu′′0 (x)| .

Analogously, we will need asymptotics for Lu0 with L the linear operator
introduced in (3.2.1). We also omit the proof, which is tedious but elementary.

Lemma 3.2.8. The asymptotic expansion of Lu0 close x = 0 is

Lu0 =

Nj∑
k=0

1∑
j=0

A0
jk|x|1+kp0+jp1

+
(
A0

1 −
1

2

N2∑
n=1

bnn
3/2
√

tanh(n) +
1

2

∞∑
n=1

Nj∑
k=0

1∑
j=0

ajk

√
tanh(n)

nkp0+jp1

)
x2

+
(
A0

2 +
1

24

N2∑
n=1

bnn
7/2
√

tanh(n)− 1

24

∞∑
n=1

Nj∑
k=0

1∑
j=0

ajk

√
tanh(n)

nkp0+jp1−2

)
x4 +ELu0(x) ,

(3.2.16)
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where

A0
jk := Γ(−1− kp0 − jp1) sin

(
π
2
(kp0 + jp1)

)
ajk .

A0
m :=

(−1)m+1

(2m)!

Nj∑
k=0

1∑
j=0

ajkζ(2 + kp0 + jp1 − 2m) ,

and

|ELu0(x)| 6 2(2π)3−2M

Nj∑
k=0

1∑
j=0

(2π)kp0+jp1 |ζ(2M − 1− kp0 − jp1)ajk|
x2M

4π2 − x2

+
x6

6!

N2∑
n=1

n3/2
√

tanh(n)|bn|+
M−1∑
m=3

|A0
m|x2m .

Moreover, the derivatives of the error term have the following bounds:

|E ′Lu0(x)| 6 2(2π)2−2M

Nj∑
k=0

1∑
j=0

(2π)kp0+jp1|ζ(2M + 1 + kp0 − jp1)ajk|
|x|2M+1

4π2 − x2

+
|x|5

5!

N2∑
n=1

n3/2
√

tanh(n)|bn|+
M−1∑
m=2

|A1
m||x|2m+1 ,

|E ′′Lu0(x)| 6 2(2π)1−2M

Nj∑
k=0

1∑
j=0

(2π)kp0+jp1 |ζ(2M + 3 + kp0 − jp1)ajk|
x2M

4π2 − x2

+
x4

4!

N2∑
n=1

n3/2
√

tanh(n)|bn|+
M−1∑
m=3

|A2
m|x2m ,

with

A1
m =

(−1)m

(2m+ 1)!

Nj∑
k=0

1∑
j=0

ajkζ(kp0 + jp1 − 2m) ,

A2
m =

(−1)m

(2m)!

Nj∑
k=0

1∑
j=0

ajkζ(kp0 + jp1 − 2m) .

At this point we can now understand the construction of the approximate
solution u0 and how it helps us to address Conjecture 3.0.1. Indeed, let u(x) =
u0(x)+ |x|v0(x) be a solution of the reduced Whitham equation (3.2.3) with u0(x)
as before and v0(x) ∈ L∞(T). In terms of the perturbation v0 the equation can
be recast as

(I − T0)v0 = F0 −
|x|
2u0

v2
0 , (3.2.17)
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with T0 : L∞(T)→ L∞(T) the operator

T0v0(x) :=
1

2|x|u0

∫ π

0

(
K(x− y) +K(x+ y)− 2K(y)

)
y v0(y) dy , (3.2.18)

and where we have defined

F0 :=
1

2|x|u0

(Lu0 − u2
0) . (3.2.19)

Since we aim to show the existence of a small v0 in L∞(T), the idea we uso to
pick u0 in (3.2.7) becomes apparent: we choose the coefficients ajk so that the
defect term F0 is bounded in L∞(T) and arbitrarily small close to x = 0, while
the constants bn are chosen to control the norm globally.

For notational convenience and before we give a uniform bound for F0, let us
introduce an auxiliary function

û0(x) :=
λ
√
x− u0(x)

u0(x)
, x ∈ [0, π] , (3.2.20)

which is small close to x = 0 as the following lemma shows:

Lemma 3.2.9. Let û0 be as before and take ε > 0 a small fixed number. Then,
for 0 6 x 6 ε,

û0(x) 6 cε,û0x
p0 .

Proof. By the definition of û0(x),

û0(x) 6
( ∑
j+k>0

|a0
jk||x|(k−1)p0+jp1 +

∣∣∣a0
1 −

1

2

N2∑
n=1

n2bn

∣∣∣|x| 32−p0
+
∣∣∣a0

2 +
1

24

N2∑
n=1

n4bn

∣∣∣|x| 72−p0 + |x|−1/2|Eu0(x)|
)
·
(
λ−

∑
j+k>0

|a0
jk||x|kp0+jp1

−
∣∣∣a0

1 −
1

2

N2∑
n=1

n2bn

∣∣∣|x|3/2 − ∣∣∣a0
2 +

1

24

N2∑
n=1

n4bn

∣∣∣|x|7/2 − |x|−1/2|Eu0(x)|
)−1

|x|p0 .

Using the monotonicity of all the terms in the above expression, by evaluating
the fraction at |x| = ε we obtain the constant cε,û0 :

cε,û0 :=
(
ε−1/2|Eε,u0|+

∑
j+k>0

|a0
jk|ε(k−1)p0+jp1 +

∣∣∣a0
1 −

1

2

N2∑
n=1

n2bn

∣∣∣ε 3
2
−p0

+
∣∣∣a0

2 +
1

24

N2∑
n=1

n4bn

∣∣∣ε 7
2
−p0
)
·
(
λ−

∑
j+k>0

|a0
jk|εkp0+jp1 −

∣∣∣a0
1 −

1

2

N2∑
n=1

n2bn

∣∣∣ε3/2
−
∣∣∣a0

2 +
1

24

N2∑
n=1

n4bn

∣∣∣ε7/2 − |x|−1/2Eε,u0|
)−1

,
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where

Eε,u0 := 2(2π)5/2−2M

Nj∑
k=0

1∑
j=0

(2π)kp0+jp1|ζ(2M − 1/2− kp0 − jp1)ajk|
ε2M

4π2 − ε2

+
ε6

6!

N2∑
n=1

n6|bn|+
M−1∑
m=3

|a0
m|ε2m

denotes the RHS of (3.2.13) at x = ε.

Lemma 3.2.10. Let u0 be as in (3.2.7) with a00 = 1
4
. Then F0 ∈ L∞(T) and

δ0 := ‖F0‖L∞(T) 6 9.1 · 10−8 . (3.2.21)

Proof. A long but straightforward computation shows that

Lu0(x)−u2
0(x) =

(
A0

00−(a0
00)2
)
|x|+(A0

01−2a0
00a

0
01)|x|1+p0+(A0

10−2a0
00a

0
10)|x|1+p1

+ (A0
11 − a0

00a
0
11 − a0

01a
0
10)|x|1+p0+p1

+

N0∑
k=2

(
A0

0k −
1

2
((−1)k + 1)(a0

0b k
2
c)

2 − 2

b k−1
2
c∑

j=0

a0
0ja

0
0(k−j)

)
|x|1+kp0

+
[
A0

1 −
1

2

( N2∑
n=1

bnn
3/2
√

tanh(n)−
∞∑
n=1

Nj∑
k=0

1∑
j=0

ajk

√
tanh(n)

nkp0+jp1

)]
x2

+
[
A0

2 +
1

24

( N2∑
n=1

bnn
7/2
√

tanh(n)−
∞∑
n=1

Nj∑
k=0

1∑
j=0

ajk

√
tanh(n)

nkp0+jp1−2

)
−
(
a0

1 −
1

2

N2∑
n=1

n2bn

)2]
x4 −

(
a0

2 +
1

24

N2∑
n=1

n4bn

)2

x8

− 2
(
a0

1 −
1

2

N2∑
n=1

n2bn

) Nj∑
k=0

1∑
j=0

a0
jk|x|

5
2

+kp0+jp1

− 2
(
a0

1 −
1

24

N2∑
n=1

n4bn

) Nj∑
k=0

1∑
j=0

a0
jk|x|

9
2

+kp0+jp1

− 2Eu0(x)

Nj∑
k=0

1∑
j=0

a0
jk|x|

1
2

+kp0+jp1 + ELu0 (x)− (Eu0(x))2 . (3.2.22)

Using now Lemma 3.2.9 to write

1

u0(x)
=

1 + û0(x)

λ
√
x

,
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by (3.2.19) the coefficient A0
00− (a0

00)2 must then vanish identically to ensure that
F0 ∈ L∞(T). This is the case when a00 takes the value 1

4
by Lemma 3.2.7. The

rest of the proof is computer assisted. See Appendix 3.B.

Remark 3.2.11. Notice that a00 = 1
4

is equivalent to fixing a0
00 = λ in (3.2.10),

with λ the constant of (3.2.5). Since we write a solution of (3.2.3) as u(x) =
u0(x) + |x|v0(x) for some v0 ∈ L∞(T), this condition is naturally expected by
Proposition 3.2.4

Lemma 3.2.12. Let u0 be the approximate solution (3.2.7) and take ε = 0.1.
Then, the following inequalities hold for 0 6 x 6 ε:

1

λ
√
x

(λ
√
x− u0(x)) 6

1

λ
cε,p0x

p0 , (3.2.23)

1

2x
− u′0(x)

u0(x)
6

1

λ
c′ε,p0x

p0−1 , (3.2.24)

3

4x2
− 1

(u0(x))2

(
2(u′0(x))2 − u0(x)u′′0(x)

)
6
c′′ε,p0
λ
xp0−2 , (3.2.25)

where the constants cε,p0 , c
′
ε,p0
, c′′ε,p0 verify

cε,p0 < 0.142 , c′ε,p0 < 0.16 , c′′ε,p0 < 0.178 . (3.2.26)

Proof. We only show the first two bounds as the third is obtained in the same
way. To start, observe that by (3.2.20),

1

2x
− u′0(x)

u0(x)
=

(λ
√
x− u0(x))′ − û0(x)u′0(x)

λ
√
x

.

By the monotonicity of all the quantities involved, we also have that

λ
√
x− u0(x) 6

( ∑
j+k>0

|a0
jk|ε(k−1)p0+jp1 +

∣∣∣a0
1 −

1

2

N2∑
n=1

n2bn

∣∣∣ε 3
2
−p0

+
∣∣∣a0

2 +
1

24

N2∑
n=1

n4bn

∣∣∣ε 7
2
−p0 + ε−

1
2
−p0Eε,u0

)
x

1
2

+p0 6 cε,p0x
1
2

+p0 ,

(3.2.27)

(λ
√
x− u0(x))′ − û0(x)u′0(x) 6

( ∑
j+k>0

|a1
jk|ε(k−1)p0+jp1 +

∣∣∣a1
0 −

1

2

N2∑
n=1

n2bn

∣∣∣ε 3
2
−p0

+
∣∣∣a1

1 +
1

24

N2∑
n=1

n4bn

∣∣∣ε 7
2
−p0 + ε

1
2
−p0Eε,u′0

)
xp0−

1
2 6 c′ε,p0x

p0− 1
2 ,

(3.2.28)

where Eε,u0 (resp. Eε,u′0) denotes the RHS of (3.2.13) (resp. (3.2.14)) evaluated at
x = ε and where the numbers cε,p0 , c

′
ε,p0

are obtained letting ε = 0.1 in the above
bounds.
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3.3 Analysis of the linearized equation

For the arguments of the subsequent sections, we need to show that not only
F0, but also its first and second order (weighted) derivatives

F1(x) = F ′0(x) , F2(x) = |x|F ′′0 (x) , (3.2.29)

are bounded and small near x = 0. This is the content of the following lemma,
whose proof is omitted as it follows the same scheme of Lemma 3.2.10, that is, it
relies on the asymptotic analysis of Lu0− u2

0 given in (3.2.22), and the estimates
of the Lemmas 3.2.7, 3.2.8 and 3.2.12. See Appendix 3.B for more details.

Lemma 3.2.13. Let u0 be as in (3.2.7), in which the coefficients ajk and bn
satisfy the relations

a00 −
1

4
= 0 ,

A0
01 − 2a0

00a
0
01 = 0 ,

A0
1 −

1

2

( N2∑
n=1

bnn
3/2
√

tanh(n)−
∞∑
n=1

Nj∑
k=0

1∑
j=0

ajk

√
tanh(n)

nkp0+jp1

)
= 0 ,

A0
02 − (a0

02)2 − 2a0
00a

0
02 = 0 ,

a0
1 −

1

2

N2∑
n=1

n2bn = 0 .

Then F1, F2 ∈ L∞(T) and

δ1 := ‖F1‖L∞(T) 6 9.2 · 10−7 , δ2 := ‖F2‖L∞(T) 6 1.2 · 10−5. (3.2.30)

3.3 Analysis of the linearized equation

As we discussed in the introduction, one of the key elements in this work is that
we are able to exploit the (rather nontrivial) invertibility of the linear operator
that renders the reduced Whitham equation. The linearized equations for the
derivatives of the solution are also given by operators that one can invert and
that we will study in the following section.

Indeed, it is clear that Equation (3.2.17) suggests to invert the linear operator
I − T0 to show the existence of a function v0 ∈ L∞(T) that allows us to express
a solution of the reduced Whitham equation (3.2.3) as

u(x) = u0(x) + |x|v0(x) , (3.3.1)

with u0(x) our approximate solution (3.2.7). Although this ansatz by itself is
not sufficient to prove the first part of the Conjecture 3.0.1 on the asymptotic
behavior of Whitham waves, as we shall see in the next section one can argue
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3. WHITHAM’S HIGHEST WAVES

that the continuity of all the estimates with respect to a small parameter η > 0
associated to the weight |x|1+η is sufficient to obtain the conclusion.

To begin with this analysis, in the following lemma we show that the norm
of the operator T0 is smaller than 1. For notational simplicity, here and in what
follows we will denote by ‖T‖ the L∞(T)→ L∞(T) norm of a linear operator T .

Lemma 3.3.1. Let CB be the constant given by

CB :=
1

π

∫ ∞
0

∣∣∣ 1√
1− t

+
1√

1 + t
− 2
∣∣∣t−5/2 dt = 0.997362 . . . . (3.3.2)

The number CB, which can be computed explicitly as the root of a quartic poly-
nomial, coincides with the norm of the operator T0:

‖T0‖ = CB . (3.3.3)

Proof. Let us start with the computation of CB. For convenience we split CB =
c1
B + c2

B as

c1
B : =

1

π

∫ 1

0

( 1√
1− t

+
1√

1 + t
− 2
)
t−5/2 dt ,

c2
B : =

1

π

∫ ∞
1

∣∣∣ 1√
t− 1

+
1√

1 + t
− 2
∣∣∣t−5/2 dt .

Notice now that the first integral is immediate,

c1
B =

1

π

∫ 1

0

( 1√
1− t

+
1√

1 + t
− 2
)
t−5/2 dt =

2

3π
(
√

2 + 2) = 0.724519 . . . .

Furthermore, a simple analysis of the sign of the integrand

I(t) :=
1

π

( 1√
t− 1

+
1√

1 + t
− 2
)
t−5/2

reveals that I(t) is positive when 1 < t < t∗, where t∗ := 1.531623 . . . denotes the
largest (real) root of the quartic polynomial 4t4 − 4t3 − 8t2 + 4t+ 5. Then,

c2
B =

∫ t∗

1

I(t) dt−
∫ ∞
t∗

I(t) dt = 0.272842 . . . ,

where this number can be obtained with high precision using that a primitive of
I(t) is

2

3πt3/2

(√
t− 1−

√
t+ 1 + 2t(

√
t− 1 +

√
t+ 1) + 2

)
.

Summing both contributions we see that CB takes the value of (3.3.2).
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From the expression of the kernel of T0 (which is even by equation (3.2.18)),
it is standard that the norm of T0 is

‖T0‖ := sup
0<x<π

1

2|x|u0(x)

∫ π

0

∣∣K(x− y) +K(x+ y)− 2K(y)
∣∣y dy .

Here we have used a simple parity argument to ensure we can take x, y > 0
and analyze separately the integral in (3.3.3) over the regions x < y < π and
0 < y < x. We will show next that the supremum of the above expression in the
interval 0 < x 6 ε, where ε ∈ (0, 1) is a certain number, is attained at x = 0,
where the above integral takes the value CB. To compute the supremum in the
interval ε < x < π we then proceed as explained in Appendix 3.B.

By the formula (3.2.2) of the Whitham kernel K, we notice that

K(x− y) +K(x+ y)− 2K(y) =
2

π

∞∑
n=1

m(n)(cos(nx)− 1) cos(ny) .

Moreover, this expression is positive when y > x by Lemma 3.4.1. Therefore, by
the definition (3.0.6) of Clausen functions,

1

2xu0

∫ π

x

∣∣K(x− y) +K(x+ y)− 2K(y)
∣∣y dy

=
1

πxu0

∞∑
n=1

m(n)

n2
(cos(nx)− 1)

(
(−1)n − nx sin(nx)− cos(nx)

)
=

1

πxu0

(
xS 3

2
(x)− x

2
S 3

2
(2x) +

√
2− 2

4
(C 5

2
(2x)− ζ(5/2))

+
∞∑
n=1

1−
√

tanh(n)

n5/2
(1− cos(nx))

(
(−1)n − nx sin(nx)− cos(nx)

))
(3.3.4)

Using now the estimates proved in (3.1.1), we readily find that

1

2xu0

∫ π

x

∣∣K(x− y) +K(x+ y)− 2K(y)
∣∣y dy

=: c1
B −

2(1−
√

2)ζ(1/2)

π3/2
(1 + û0(x))

√
x+ E1

T0
(x) , (3.3.5)

with û0 the auxiliary function (3.2.20) and where the error term E1
T0

(x) can be
estimated as

|E1
T0

(x)| 6 c1
Bû0(x) +

1

4λ

(10
√

2ζ(5/2)

4π2 − x2
+

3

π

∞∑
n=1

n3/2(1−
√

tanh(n))
)

· (1 + û0(x))x5/2 = c1
Bû0(x) +

1

λ
c1
T0

(1 + û0(x))x5/2 .
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For the region 0 < y < x, we rewrite the integrand in terms of Clausen
functions and then make use of the asymptotic formulas in order to obtain an
explicit error term that is small when x < ε. In fact, observe first that

∞∑
n=1

1√
n

(cos(nx)− 1) cos(ny) =
1

2

(
C 1

2
(x− y) + C 1

2
(x+ y)− 2C 1

2
(y)
)
.

Hence, by the series representation (3.1.2),√
2

π

1

x3/2

∫ x

0

∣∣K(x− y) +K(x+ y)− 2K(y)
∣∣y dy

=
1

πx3/2

∫ x

0

∣∣∣ 1√
x− y

+
1√
x+ y

− 2
√
y

+

√
2

π

(
EC 1

2

(x−y)+EC 1
2

(x+y)−2EC 1
2

(y)
)

+ 2

√
2

π

∞∑
n=1

1−
√

tanh(n)√
n

(1− cos(nx)) cos(ny)
∣∣∣y dy

Using now the fact that EC 1
2

(x− y) +EC 1
2

(x+ y)− 2EC 1
2

(y) > 0 and the formula

of EC 1
2

(x), we obtain that∫ x

0

(
EC 1

2

(x− y) + EC 1
2

(x+ y)− 2EC 1
2

(y)
)
y dy

=
∞∑
m=1

(−1)m

(2m)!
ζ(1/2− 2m)

∫ x

0

(
|x− y|2m + |x+ y|2m − 2y2m

)
y dy

= 2
√

2
∞∑
m=1

ζ(1/2+2m)
Γ(1/2 + 2m)

Γ(1 + 2m)

m(4m − 1)

(m+ 1)(2m+ 1)
(2π)−1/2−2mx2m+2 6 cεx

4

where the constant cε is given by

cε :=
1

4!
f
′′′′

(ε) ,

f(x) =
2

3

√
π
(√

2
√
π2 − x2

√√
π2 − x2 + π − 5

√
2π

√√
π2 − x2 + π

− 2
√

4π2 − x2

√√
4π2 − x2 + 2π + 20π

√√
4π2 − x2 + 2π − 24π3/2

)
ζ(5/2) .

(3.3.6)

Furthermore, since∣∣∣ ∞∑
n=1

1−
√

tanh(n)√
n

(1− cos(nx)) cos(ny)
∣∣∣ 6 x2

2

∞∑
n=1

n3/2
(
1−

√
tanh(n)

)
,

we arrive at the estimate

1

2|x|u0

∫ x

0

∣∣K(x− y) +K(x+ y)− 2K(y)
∣∣y dy 6 c2

B + E2
T0

(x), (3.3.7)
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where

|E2
T0

(x)| 6 c2
Bû0(x) +

1

4πλ

(
2cε +

∞∑
n=1

n3/2
(
1−

√
tanh(n)

))
(1 + û0(x))|x|5/2

=: c2
Bû0(x) +

1

λ
c2
T0

(1 + û0(x))|x|5/2

In this way, to obtain that ‖T0‖ = CB, we need first to verify that

E1
T0

(x) + E2
T0
− 2(1−

√
2)ζ(1/2)

π3/2
(1 + û0(x))

√
x 6 0

in the range 0 < x < ε for sufficiently small ε. This in turn follows from the
bounds that we have derived here together with Lemma 3.2.12 and the numerical
inequality

CBcε,p0ε
p0−1/2 + (c1

T0
+ c2

T0
)ε2 <

√
2− 2

2π
ζ(1/2) . (3.3.8)

See Appendix 3.B to see how to deal with the case x > ε.

Using this lemma, the inverse on L∞(T) of the operator I−T0 can be written
as a Neumann series with norm bounded as ‖(I − T0)−1‖L∞ 6 β0, where

β0 :=
1

1− CB
= 379.017 . . . (3.3.9)

is a parameter that we will use hereafter. It is well-known that if we show that
the mapping G0 : L∞(T)→ L∞(T),

v0 7→ G0(v0) := (I − T0)−1
(
F0 −

|x|
2u0

v2
0

)
, (3.3.10)

is contractive and takes the ball of a certain radius ε0 in L∞(T) into itself, then
the existence of a solution v0 of (3.2.17) is guaranteed by the Banach fixed point
theorem. More precisely, letting

Xε0 := {v0 ∈ L∞(T) : v0(x) = v0(−x) , ‖v0‖L∞(T) 6 ε0}

be the functional space on which we consider (3.2.17), the next result holds for
the constants β0 and δ0 of before:

Proposition 3.3.2. Let u0 be the approximate solution (3.2.7) of the reduced
Whitham equation (3.2.3) for which its associated defect δ0 := ‖F0‖L∞(T) is
bounded as

δ0 6
1

4α0β2
0

, α0 := sup
x∈T

∣∣∣ x

2u0(x)

∣∣∣ .
Then, for a radius ε0 such that

1−
√

1− 4α0β2
0δ0

2α0β0

6 ε0 6
1

2α0β0

, (3.3.11)

the following statements are true:
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(i) G0(Xε0) ⊆ Xε0.

(ii) ‖G0(v0) − G0(w0)‖L∞(T) 6 k0‖v0 − w0‖L∞(T) with k0 < 1 for all v0 , w0 in
Xε0.

Proof. As shown in Lemma 3.4.4, the estimate for û0 given in Lemma 3.2.9 yields
that α0 6 2.696. Moreover, by Lemma 3.2.10,

δ0 6 9.1 · 10−8 <
1

4α0β2
0

= 5.2 · 10−7 .

Using now (3.3.10), it is not difficult to show that the first condition above is
equivalent to the inequality β0

(
δ0 +α0ε

2
0

)
6 ε0, which holds in view of the bound

from below for ε0, and the fact that the operator T0 takes even functions into
even functions, with u0 and F0 also even functions by construction.

Moreover,

‖G0(v0)−G0(w0)‖L∞(T) 6 β0 sup
x∈T

∣∣∣ x

2u0(x)

(
v2

0 − w2
0

)∣∣∣ 6 2α0β0ε0‖v0 − w0‖L∞(T) ,

which by the bound from above for ε0 makes k0 < 1 and completes the proof.

3.4 Convexity

In this section we prove the convexity part of the conjecture on Whitham waves,
namely the existence of a highest cusped traveling wave solution to (3.0.1) with
convex profile. To this end, we prove a priori estimates for the first and second
order derivatives of the solution of the reduced Whitham equation (3.2.3). The
conclusion of the main Theorem 3.0.2 will then follow from the smallness of the
perturbation and the convexity of our approximate solution u0.

Let us begin by considering operators Ti : L∞(T)→ L∞(T) with i = 1, 2 that
will play an analogous role as T0 in (3.2.17):

T1v1(x) :=
1

2u0(x)

∫ π

0

(
K(x− y)−K(x+ y) +

u′0(x)

u0(x)
K1(x, y)

)
v1(y) dy ,

(3.4.1)

T2v2(x) :=
|x|

2u0(x)

∫ π

0

(
K(x− y) +K(x+ y) +

2u′0(x)

u0(x)
K2(x, y)

+
1

(u0(x))2

(
2(u′0(x))2 − u0(x)u′′0(x)

)
K2(x, y)− χ(x, y)f(x)

)v2(y)

y
dy .

(3.4.2)
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Here χ(x, y) denotes a step function that is 1 when y < x and zero otherwise,

f(x) := 2K(x) +
2u′0(x)

u0(x)
K2(x, 0) +

1

(u0(x))2

(
2(u′0(x))2 − u0(x)u′′0(x)

)
K2(x, 0) ,

(3.4.3)
and we have introduced the following functions of the Whitham kernel K:

K1(x, y) :=

∫ x+y

0

K(t) dt−
∫ x−y

0

K(t) dt− 2

∫ y

0

K(t) dt , (3.4.4)

K2(x, y) := −
∫ x+y

0

K(t) dt−
∫ x−y

0

K(t) dt , (3.4.5)

K2(x, y) =

∫ x−y

0

∫ s

0

K(t) dt ds+

∫ x+y

0

∫ s

0

K(t) dt ds− 2

∫ y

0

∫ s

0

K(t) dt ds ,

(3.4.6)

In the next lemma we show that the kernels of the three operators Ti have a
definite sign when y > x, in the above notation. This feature will be remarkably
useful in the computation of the norms ‖Ti‖.

Lemma 3.4.1. Let u0 be our approximate solution (3.2.7). Then,

K(x− y) +K(x+ y)− 2K(y) , (3.4.7)

K(x− y)−K(x+ y) +
u′0(x)

u0(x)
K1(x, y) , (3.4.8)

K(x− y) +K(x+ y) +
2u′0(x)

u0(x)
K2(x, y)

+
1

(u0(x))2

(
2(u′0(x))2 − u0(x)u′′0(x)

)
K2(x, y) (3.4.9)

are positive functions for y > x.

Proof. By parity considerations and the representation formula of the Whitham
Kernel (3.0.4) that stems from [32, Eq. 2.18], it is enough to check that

sinh
(
s(π − y)

)(
sinh(sx) +

(1− cosh(sx))

s

u′0(x)

u0(x)

)
> 0 ,

cosh
(
s(π − y)

)(
cosh(sx)− 2

u′0(x)

u0(x)

sinh(sx)

s

+
1

(u0(x))2

(
2(u′0(x))2 − u0(x)u′′0(x)

)(cosh(sx)− 1)

s2

)
> 0

for y > x > 0 and s > 0. In fact, the proof relies on the fact that the sign
in the three expressions (3.4.7), (3.4.8) and (3.4.9) depends on the sign of some
combinations of the function cosh[s(π − |x|)] (and its derivatives) that appears
in the integrand of (3.0.4).
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Notice first that (3.4.7) is positive as

cosh
(
s(π − x− y)

)
+ cosh

(
s(π + x− y)

)
− 2 cosh

(
s(π − y)

)
= 4 cosh

(
s(π − y)

)
sinh(1

2
sx)2 > 0

for all s > 0. Furthermore, since the functional inequality

α sinh(z) +
1− cosh(z)

2z
> 0

holds for all z > 0 and α > 1/4, the positivity of (3.4.8) follows immediately by
the bound (3.2.24) stated in Lemma 3.2.12. Analogously, for the last expression
we use (3.2.25), the above inequality and the fact that

cosh(z)− 1

z
sinh(z) +

3

4z2

(
cosh(z)− 1

)
> 0 .

Lemma 3.4.2. The norm of the operator T1 is

‖T1‖ = CB , (3.4.10)

where CB is the constant defined in (3.3.2).

Proof. As in the proof of the norm of T0, we divide the integral (3.4.10) into
two pieces and make use of the bounds for the Clausen functions to show that
the integral is bounded by CB for x 6 ε. For x > ε the proof is detailed in
Appendix 3.B.

Let us first analyze the integral when x < y < π (as before, we can assume
that x and y are positive by parity):

1

2u0(x)

∫ π

x

(
K(x− y)−K(x+ y) +

u′0(x)

u0(x)
K1(x, y)

)
dy

=
1

πu0(x)

[
S 3

2
(x) +

1−
√

2

2
S 3

2
(2x) +

2−
√

2

4

(
C 5

2
(2x)− ζ(5/2)

)u′0(x)

u0(x)

+
∞∑
n=1

1−
√

tanh(n)

n3/2

(
sin(nx) +

u′0(x)

nu0(x)

(
cos(nx)− 1

))(
(−1)n − cos(nx)

)]
.

(3.4.11)

Noticing that

∞∑
n=1

1−
√

tanh(n)

n3/2

(
sin(nx) +

u′0(x)

nu0(x)

(
cos(nx)− 1

))(
(−1)n − cos(nx)

)
6

5

4
x
∞∑
n=1

|1− (−1)n|√
n

(
1−

√
tanh(n)

)
+

5

8
x3

∞∑
n=1

n3/2
(
1−

√
tanh(n)

)
,
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and using Lemma 3.1.1 combined with Lemma 3.2.12, we then have that

1

2u0(x)

∫ π

x

(
K(x− y)−K(x+ y) +

u′0(x)

u0(x)
K1(x, y)

)
dy

6 c1
B −

1

4πλ

(
3(
√

2− 2)ζ(1/2) + 5
∞∑
n=1

|1− (−1)n|√
n

(
1−

√
tanh(n)

))
· (1 + û0(x))

√
x+ E1

T1
(x) =: c1

B −
1

λ
c 1

2
(1 + û0(x))

√
x+ E1

T1
(x) , (3.4.12)

with

|E1
T1

(x)| 6 c1
Bû0(x) +

c′ε,p0(
√

2− 1)

λπ
√
π

(2
√

2π

3
+
|ζ(1/2)|

2

√
x+
|ζ(5/2)|√

π

x5/2

4π2 − x2

+
5
√
π

8c′ε,p0(
√

2− 1)

∞∑
n=1

n3/2
(
1−

√
tanh(n)

)
x5/2−p0

)
(1 + û0(x))xp0

6 c1
Bû0(x) +

1

λ
c′ε,p0c

1
T1

(1 + û0(x))xp0 .

Here we have used that

1

π
√
x

∫ π

x

( 1√
y − x

− 1√
x+ y

+
1

x

(√
x+ y +

√
y − x− 2

√
y
))
dy =: c1

B .

As for the integral in the region 0 < y < x, the proof relies on the formula

∞∑
n=1

1√
n

sin(ny)
(

sin(nx) +
1

2nx

(
cos(nx)− 1

))
=

1

2

(
C 1

2
(x− y)− C 1

2
(x+ y) +

1

2x

(
S3/2(x+ y)− S3/2(x− y)− 2S3/2(y)

))
,

the estimates for the Clausen functions stemming from Lemma 3.1.1 and the
value of the integral

1

π
√
x

∫ x

0

∣∣∣ 1√
x− y

− 1√
x+ y

+
1

x

(√
x+ y −

√
x− y − 2

√
y
)∣∣∣ dy = c2

B .
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In fact, we have

1

2u0(x)

∫ x

0

∣∣∣K(x− y)−K(x+ y) +
u′0(x)

u0(x)
K1(x, y)

∣∣∣ dy
=

1 + û0(x)

π
√
x

∫ x

0

∣∣∣ 1√
x− y

− 1√
x+ y

+
1

x

(√
x+ y −

√
x− y − 2

√
y
)

+ 2
(u′0(x)

u0(x)
− 1

2x

)(√
x+ y −

√
x− y − 2

√
y
)

+

√
2

π

(
EC1/2

(x− y)− EC1/2
(x+ y)

+
u′0(x)

u0(x)

(
ES3/2

(x+ y)− ES3/2
(x− y)− 2ES3/2

(x+ y)
))

+ 2

√
2

π

∞∑
n=1

1−
√

tanh(n)√
n

sin(ny)
(

sin(nx) +
u′0(x)

nu0(x)

(
cos(nx)− 1

))∣∣∣ dy
6 c2

B + E2
T1

(x) . (3.4.13)

In the above bound,

|E2
T1

(x)| 6 c2
Bû0 +

8c′ε,p0
15πλ

(5− 5
√

2 + 2
√

5)(1 + û0(x))xp0

+
1

λ

( 5

4π

∞∑
n=1

n1/2
(
1−

√
tanh(n)

)
+ c′εx

)
(1 + û0(x))x3/2

6 c2
Bû0 +

1

λ
c′ε,p0c

2
T1

(1 + û0(x))xp0 +
1

λ
c3
T1

(1 + û0(x))x3/2 , (3.4.14)

where the number c′ε is a bound for the integrals coming from the Clausen error
terms:

c′ε :=
g′′′(ε)

3!
,

g(x) :=
x√
π

( √
2√√

π2 − x2 + π
− 2√√

4π2 − x2 + 2π

)
ζ(5/2)

+
2

3
√
πx

(
x
(
−
√
π − x+

√
x+ π −

√
2
√
x+ 2π +

√
4π − 2x

)
+ π
(√

π − x+
√
x+ π − 2

√
2
√
x+ 2π − 2

√
4π − 2x

)
+ 6π3/2

)
ζ(5/2) .

Then, since the numerical inequality

(CBcε,p0 + c′ε,p0(c
1
T1

+ c2
T1

))εp0−1/2 + c3
T1
ε < c 1

2
(3.4.15)

holds for small enough ε, it follows that ‖T1‖ = CB.
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Likewise, using Lemma 3.4.1 we can prove that the norm of the operator T2 on
L∞(T) is also less than 1. As the proof involves some careful computations related
to the singularity y−1 in the integrand of (3.4.3), we leave it for Appendix 3.A:

Lemma 3.4.3. The norm of T2 is also given by the constant CB, i.e.

‖T2‖ = CB . (3.4.16)

For the following, it will be also useful to have explicit control of the following
numerical constants obtained from the approximate solution u0:

Lemma 3.4.4. Let u0 be the approximation given by (3.2.7) and let

α0 := sup
x∈T

∣∣∣ x

2u0(x)

∣∣∣ , α1 := sup
x∈T

∣∣∣x2u′0(x)

2u2
0(x)

∣∣∣ , αf := sup
x∈T

∣∣∣ x

2u0(x)
f(x)

∣∣∣ ,
α2 := sup

x∈T

∣∣∣ x3

2(u0(x))2

(
u′′0(x)− 2(u′0(x))2

u0(x)

)∣∣∣ , α2 := sup
x∈T

∣∣∣2x2u′0(x)

(u0(x))2

∣∣∣ .
Then, the values of these constants are

α0 6 2.696 , α1 6 0.32 , α2 6 1.382 , α2 6 1.280 , αf 6 0.448 .

Proof. As for the rest of quantities that we estimate through the chapter, the
bounds near x = 0 follow from the asymptotic analysis carried out in Section 3.2
and particularly from Lemma 3.2.12. The proof of the estimates away from 0 is
presented in Appendix 3.B.

Our objective now is to control the derivatives of the solution u to the reduced
Whitham equation (3.2.3) in terms of our knowledge about the approximate
solution u0. To this end we will derive a priori estimates to bound in L∞ the
functions v1, v2 defined as

v1(x) : = u′(x)− u′0(x) (3.4.17)

v2(x) : = |x|
(
u′′(x)− u′′0(x)

)
. (3.4.18)

For convenience, we also recall the definition of the function

v0(x) :=
1

|x|
(
u(x)− u0(x)

)
, (3.4.19)

which are introduced in (3.3.1) in order to control the difference between the
exact and the approximate solutions. Furthermore, in terms of β0 := (1−CB)−1

and δ0 := ‖F0‖L∞(T), we have

‖v0‖L∞(T) 6 ε0 :=
1−

√
1− 4α0β2

0δ0

2α0β0

6 3.59 · 10−5 , (3.4.20)

by Proposition 3.3.2. It is not difficult to show that the errors v1 and v2 are small
in L∞, with bounds depending on the radius ε0:
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Lemma 3.4.5. Let v1 , v2 be defined as above and let F0(x), F1(x) and F2(x) be
the error terms given by Lemmas 3.2.10 and 3.2.13:

F0(x) :=
1

2|x|u0

(Lu0 − u2
0) , F1(x) := F ′0(x) , F2(x) := |x|F ′′0 (x) ,

with δj := ‖Fj‖L∞(T) for j = 0, 1, 2. Then, for α0, α1, α2, α2, αf as in Lemma 3.4.4,
the functions v1 and v2 satisfy the estimates

‖v1‖L∞(T) 6 ε1 , ‖v2‖L∞(T) 6 ε2 , (3.4.21)

where the constants εj are

ε1 := β
(
δ1 + α1ε

2
0

)
6 3.77 · 10−4 , (3.4.22)

ε2 := β
(
δ2 + αfε1 + α2ε

2
0 + 2α0ε

2
1 + α2ε0ε1

)
6 7.46 · 10−2 , (3.4.23)

and where

β :=
1

1− CB − 2α0ε0
. (3.4.24)

Proof. Let us write u(x) := u0(x) + u(x). Since

u(x)− 1

2u0(x)
Lu(x) = F0(x)− 1

2u0(x)
u2(x) ,

it is clear that by taking u(x) := |x|v0(x) we obtain (3.2.17). On the other hand,
differentiating in the above equation we have that

F1(x)+
u′0(x)

2u2
0(x)

u2(x)− 1

u0(x)
u′(x)u(x)

= u′(x) +
u′0(x)

2u2
0(x)

∫ π

0

(
K(x+ y) +K(x− y)− 2K(y)

)
u(y) dy

− 1

2u0(x)

∫ π

0

(
K ′(x+ y) +K ′(x− y)

)
u(y) dy

= u′(x) +
u′0(x)

2u2
0(x)

∫ π

0

K1(x, y)u(y) dy

+
1

2u0(x)

∫ π

0

(
K(x− y)−K(x+ y)

)
u(y) dy .

Integrating by parts again (where the boundary terms are zero by parity), by the
definition of the operator T1 and letting v1(x) := u′(x), one has that(

I +
|x|
u0(x)

v0(x)− T1

)
v1(x) = F1(x) +

x2u′0(x)

2u2
0(x)

v2
0(x) , (3.4.25)
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Furthermore, defining v2(x) := u′′(x)/|x|, differentiating twice and integrating by
parts, we obtain the equation(

I +
|x|
u0(x)

v0(x)− T2

)
v2(x) = F2(x) +

|x|3

2u3
0(x)

(
u0(x)u′′0(x)− 2(u′0(x))2

)
v2

0(x)

+
|x|

2u0(x)
f(x)v1(x)− |x|

u0(x)
v1(x)2 +

2x2u′0(x)

u2
0(x)

v0(x)v1(x) .

(3.4.26)

Inverting the linear operators on the LHS of (3.4.25) and (3.4.26), by using the
fact that ‖Ti‖ = CB for i = 0, 1, 2 and the above definitions one readily obtains
L∞-bounds for v1 and v2 which immediately yield the estimates (3.4.21).

Now we are ready to prove the main result of this chapter. Firstly, we use the
fact that there exists a negative constant c such that u′′0(x) < c/|x| < 0 every-
where. Since ε2 is sufficiently small, then the second derivative of the solution u
of (3.2.3) has a sign too. More precisely:

Lemma 3.4.6. Let ε2 be the bound (3.4.23) for the perturbation v2 solution
to (3.4.26). Then,

u′′(x) 6 u′′0(x) +
ε2
|x|

< 0 (3.4.27)

for x ∈ (−π, π).

Proof. Sufficiently close to x = 0 the proof follows by the asymptotic formula (3.2.9)
and the bound ε2 obtained in Lemma 3.4.5. For x bounded away from zero the
proof is done as explained in Appendix 3.B.

Finally, we prove the convexity of the highest cusped Whitham wave:

Proof of Theorem 3.0.2: From Proposition 3.3.2 and Lemma 3.4.5, it follows
that there exists a solution u such that the associated errors v0, v1 and v2 defined
in Equations (3.4.17) and (3.4.19) are bounded as

‖vj‖ 6 εj , j = 0, 1, 2 ,

with εj as in (3.4.21) and (3.4.20). In particular, Lemma 3.4.6 ensures that for
this solution we have that u′′(x) < 0 for all x ∈ (−π, π).

To complete the proof of the theorem, it is enough to show that |u(x) −
u0(x)| 6 C|x|1+η for some η > 0, so that u(x)− u0(x) = o(|x|). For this purpose,
let us write the error v0(x) =: |x|ηvη(x). Thus, it is clear that the function

vη(x) :=
1

|x|1+η

(
u(x)− u0(x)

)
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3. WHITHAM’S HIGHEST WAVES

satisfies the equation

(I − Tη)vη = Fη −
|x|1+η

2u0

v2
η .

Here the defect is Fη(x) = |x|−ηF0(x) and the linear operator that controls the
equation is Tηvη(x) := |x|−ηT0(|x|ηvη(x)), whose L∞(T)→ L∞(T) norm is

‖Tη‖ := sup
0<x<π

1

2|x|1+ηu0(x)

∫ π

0

∣∣K(x− y) +K(x+ y)− 2K(y)
∣∣y1+η dy .

Observe now that the dominated convergence theorem easily implies that ‖Tη‖ is
continuous in η at η = 0. Therefore, as ‖T0‖ = ‖Tη‖|η=0 = CB < 1, there exists
a sufficiently small η > 0 such that ‖Tη‖ < 1. Hence, by a completely analogous
fixed point argument (based again on the smallness of the defect Fη), we find the
estimate ‖vη‖L∞(T) 6 C, which readily implies that

|u(x)− u0(x)| = ||x|1+ηvη(x)| = o(|x|) .

The theorem then follows.
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3.A The norm of T2

This Appendix is devoted to the computation of the norm of the operator T2 given
in (3.4.2). As in the cases of T0 and T1, using the asymptotic analysis carried out
in Section 3.2 we show that ‖T2‖ is precisely the constant CB.

Proof of Lemma 3.4.3. Arguing as in Lemma 3.4.2, let us take x, y > 0 and let ε
be a small positive number. In this way, notice that the integrand of (3.4.2) can
be expressed as

2

π

∞∑
n=1

m(n)
[

cos(nx)− 2
u′0(x)

nu0(x)
sin(nx)

+
1

n2(u0(x))2

(
2(u′0(x))2 − u0(x)u′′0(x)

)(
1− cos(nx)

)]
·
(

cos(ny)− χ(x, y)
)

y

=
1

πy

[
C 1

2
(x− y) + C 1

2
(x+ y)− 2χ(x, y)C 1

2
(x)

− 2
u′0(x)

u0(x)
·
(
S 3

2
(x− y) + S 3

2
(x+ y)− 2χ(x, y)S 3

2
(x)
)

− 1

(u0(x))2

(
2(u′0(x))2 − u0(x)u′′0(x)

)
·
(
C 5

2
(x− y) + C 5

2
(x+ y)− 2C 5

2
(y)− 2χ(x, y)(C 5

2
(x)− ζ(5/2))

)]
+

2

π

∞∑
n=1

(√
tanh(n)− 1

)
√
n

[
cos(nx)− 2

u′0(x)

nu0(x)
sin(nx)

+
1

n2(u0(x))2

(
2(u′0(x))2 − u0(x)u′′0(x)

)(
1− cos(nx)

)]
·
(

cos(ny)− χ(x, y)
)

y
.
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Then, the norm of T2 is obtained by taking the supremum in x ∈ [0, π] of
the integral

√
x

π
(1 + û0(x))

∫ π

0

∣∣∣ 1√
|x− y|

+
1√
x+ y

− 2

x

(√
x+ y + sgn (x− y)

√
|x− y|

)
+

1

x2

(
(x+ y)3/2 + |x− y|3/2 − 2y3/2

)
+ 4
( 1

2x
− u′0(x)

u0(x)

)(√
x+ y + sgn (x− y)

√
|x− y| − 2χ(x, y)

√
x
)

− 4

3

( 3

4x2
− 1

(u0(x))2

(
2(u′0(x))2 − u0(x)u′′0(x)

))
(
(x+ y)3/2 + |x− y|3/2 − 2y3/2 − 2χ(x, y)x3/2

)
+

√
2

π

[
EC 1

2

(x− y) + EC 1
2

(x+ y)− 2χ(x, y)EC 1
2

(x)

− 2u′0(x)

u0(x)

(
ES 3

2

(x− y) + ES 3
2

(x+ y)− 2χ(x, y)ES 3
2

(x)
)

− 1

(u0(x))2

(
2(u′0(x))2 − u0(x)u′′0(x)

)
(
EC 5

2

(x− y) + EC 5
2

(x+ y)− 2EC 5
2

(y)− 2χ(x, y)EC 5
2

(x)
)

+ 2
∞∑
m=1

1√
n

(
1−

√
tanh(n)

)(
cos(nx)− 2

u′0(x)

nu0(x)
sin(nx)

+
1

n2(u0(x))2

(
2(u′0(x))2 − u0(x)u′′0(x)

)(
1− cos(nx)

))
(
χ(x, y)− cos(ny)

)]∣∣∣ dy
y
.

As before, we carry out the analysis of the norm by dividing the above integral
into two pieces: the regions x < y < π, in which χ(x, y) = 0 so the integrand is
positive by Lemma 3.4.1, and 0 < y < x.

Notice that the integral on x < y < π yields

x

πu0(x)

∞∑
n=1

m(n)
(

cos(nx)− 2
u′0(x)

nu0(x)
sin(nx)

+
1

n2(u0(x))2

(
2(u′0(x))2 − u0(x)u′′0(x)

)(
1− cos(nx)

))(
Ci(nπ)− Ci(nx)

)
,

where Ci(nπ) denotes the cosine integral function (see e.g. [25, Chapter 6] for
the definition of Ci(x) and its properties). In this region, we will use the integral
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estimates

4
( 1

2x
− u′0(x)

u0(x)

)∫ π

x

(√
x+ y −

√
y − x

) dy
y

− 4

3

( 3

4x2
− 1

(u0(x))2

(
2(u′0(x))2 − u0(x)u′′0(x)

)) ∫ π

x

(
(x+ y)3/2 + (y − x)3/2

) dy
y

6
πĉ′p0
λ
xp0−1/2 ,

and

− 2

π

∞∑
n=1

1√
n

(
1−

√
tanh(n)

)(
cos(nx)− 2

u′0(x)

nu0(x)
sin(nx)

+
1

n2(u0(x))2

(
2(u′0(x))2 − u0(x)u′′0(x)

)(
1− cos(nx)

)) ∫ π

x

cos(ny)

y
dy

6
3

4π

∞∑
n=1

1−
√

tanh(n)√
n

(
log(x) + log(n) + γ −Ci(nπ)

)
+ 2π(c1

p0
− log(x)c2

p0
)xp0

6 − 1

12
log(π)ζ(1/2) +

3

4π

∞∑
n=1

1−
√

tanh(n)√
n

log(x) + 2π(c1
p0
− log(x)c2

p0
)xp0 ,

which holds for small constants ĉ′p0 , c
1
p0
, c2
p0

that only depend on the bounds
obtained in Lemma 3.2.12. In the last estimate we have used that∫ π

x

cos(ny)

y
dy = Ci(nπ)− Ci(nx) > Ci(nπ)− γ − log(n)− log(x) ,

and the numerical inequality

∞∑
n=1

√
tanh(n)− 1√

n
(Ci(nπ)− log(n)− γ) +

log(π)

9π
ζ(1/2) < 0 , (3.A.1)

with γ the Euler constant.

Since in addition∫ π

x

(
EC 1

2

(x− y) + EC 1
2

(x+ y)− 2u′0(x)

u0(x)

(
ES 3

2

(x− y) + ES 3
2

(x+ y)
)

− 1

(u0(x))2

(
2(u′0(x))2 − u0(x)u′′0(x)

)(
EC 5

2

(x− y) + EC 5
2

(x+ y)− 2EC 5
2

(y)
) dy
y

6
3

4
ζ(1/2) log

(π
x

)
+ 2πc1

T2
x2 ,
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putting together the above estimates we arrive at

x

2u0(x)

∫ π

x

(
K(x− y) +K(x+ y) +

2u′0(x)

u0(x)
K2(x, y)

+
1

(u0(x))2

(
2(u′0(x))2 − u0(x)u′′0(x)

)
K2(x, y)

) dy
y

6 c1
B −

1

λ
c′′1

2

√
x(1 + û0(x)) + E1

T2
(x) , (3.A.2)

where c′′1
2

:= − 1
3π

log(π)ζ(1/2) ,

|E1
T2

(x)| 6 c1
Bû0(x) +

3

8π2λ
log(x)

( ∞∑
n=1

1−
√

tanh(n)√
n

− πζ(1/2)
)√

x(1 + û0(x))

+
1

λ
ĉ′p0x

p0(1 + û0(x)) +
1

λ
(c1
p0
− log(x)c2

p0
)xp0+1/2(1 + û0(x))

+
c1
T2

λ
x5/2(1 + û0(x))

=: c1
Bû0(x) +

1

λ
c̃1/2 log(x)

√
x(1 + û0(x))

+
1

λ

(
ĉ′p0 + (c1

p0
− log(x)c2

p0
)
√
x
)
xp0(1 + û0(x)) +

c1
T2

λ
x5/2(1 + û0(x)).

(3.A.3)

On the other hand, analogous estimates yield

x

2u0(x)

∫ x

0

∣∣∣K(x− y) +K(x+ y) +
2u′0(x)

u0(x)
K2(x, y)

+
1

(u0(x))2

(
2(u′0(x))2 − u0(x)u′′0(x)

)
K2(x, y)

∣∣∣ dy
y

6 c2
B + E2

T2
(x) , (3.A.4)

with

|E2
T2

(x)| 6 c2
Bû0(x) +

1

λ
ĉ′′p0x

p0(1 + û0(x)) +
c2
T2

λ
x5/2(1 + û0(x)) . (3.A.5)

Then, since for sufficiently small ε(
CBcp0 + ĉ′p0 + ĉ′′p0 + (c1

p0
− log(ε)c2

p0
)
√
ε
)
εp0−1/2 + (c1

T2
+ c2

T2
)ε2−p0 < c′′1

2
− c̃ 1

2
log(ε) ,

(3.A.6)
the proof follows in the same manner as in Lemmas 3.3.1 and 3.4.2.
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3.B Technical details concerning computer assis-

ted estimates

In this section we discuss the technical details about the implementation of the
different rigorous numerical computations such as the integrals that appear in
the proofs along the chapter. We remark that we are computing explicit (but
complicated) functions on a one dimensional domain. In order to perform the
rigorous computations we used the Arb library [47]; the code can be found in the
supplementary material.

The implementation is split into several files, and many of the headers of
the functions (such as the integration methods) contain pointers to functions
(the integrands) so that they can be reused for an arbitrary number of integrals
with minimal changes and easy and safe debugging. We first describe the data
structures that will appear in the different parts of the code and later get to the
specific algorithms of each lemma.

There is a basic class that encloses all the necessary information used through-
out the computations in Lemmas 3.2.10, 3.2.13, 3.3.1, 3.4.2 and 3.4.3. It is called
Integration params struct and has the following members: three integers, N 0,
N 1 and N 2; three vectors of intervals a0k, a1k and bi of sizes N0, N1 and N2

respectively, containing the coefficients that describe the approximate solution
u0 of (3.2.7). There is also an interval called x, which is used only in Lem-
mas 3.3.1, 3.4.2 and 3.4.3, indicating the value of x used for the integration.

We had to implement the Clausen functions, since they are not part of the
Arb library. A naive implementation of Cz(x) (resp. Sz(x)) would be to evaluate
the real (resp. imaginary) parts of Liz(e

ix). When x is an interval, this gives a
disastrous error. Instead, we will make use of the following lemma:

Lemma 3.B.1. Let z be a fixed non-integer real number. Then, the Clausen
function Cz(x) is strictly monotonic for x ∈ (0, π].

Proof. Notice that C ′z(x) = −Sz−1(x) for all x and assume first that z > 1. By
[25, Eq. 25.12.11], we have that

Sz−1(x) =
sin(x)

Γ(z − 1)

∫ ∞
0

tz−1 et(
et − cos(x)

)2
+ sin(x)2

dt .

Since Γ(z − 1) > 0 for z > 1 and sin(x) > 0 in [0, π], C ′z(x) < 0 in that range.

Likewise, when z < 1 we can use the representation formula

Sz−1(x) = sin(π
2
z)

∫ ∞
0

t1−z
sinh

(
t(π − x)

)
sinh(πt)

dt

that follows from the well-known relationship between zeta functions and poly-
logarithms, cf. [25, Eq. 25.11.25].
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This shows that if X = [x, x] ⊂ (0, π], then Cz(X) is contained in the convex
hull of Cz(x) and Cz(x). That is exactly how we implement it. We compute
Cz at the endpoints using the polylogarithm function and we take their convex
hull. In order to implement Sz (which is not monotonic in (0, π]) we use that
S ′z(x) = Cz−1(x) and Sz(X) = Sz(x0) + (X − x0)Cz−1(X) by virtue of the mean
value theorem, choosing x0 as the midpoint of X.

It is also important to remark that given the delicate set of calculations that
need to be performed, working with double precision is not enough and multi-
precision is needed. In all our calculations we worked with 100 bits (as opposed
to the usual 53).

Proof of Lemma 3.2.6. We will enclose a solution to (3.2.6) by applying a Newton
method to the difference of the LHS and the RHS of the equation. We discuss
the details of the algorithm below.

The first step of the algorithm is to isolate the roots. This is done by checking
the signs of the endpoints and ensuring that the derivative of the function has a
definite sign between the endpoints. On the contrary, if the signs of the function
at the endpoints are the same and the function is monotone, there is no root in
that interval and it is discarded. Finally, if none of these two conditions are met,
the interval is split by the midpoint in two and the isolating function is called
recursively with the two resulting subintervals. The second step is to refine the in-
terval even more using a bisection method. Finally, a Newton zero-finding method
is applied. The code can be found in the file Lemma p0 p1.c. The total execution
time was a few seconds. The initial intervals for p0 and p1 were [0.5125, 0.75] and
[2.625, 2.875], and the final enclosures were 0.61120158988884395 ± 7.01 · 10−19

and 2.7624011603378232± 2.00 · 10−17, respectively.

Proof of Lemmas 3.2.9, 3.2.12. This concerns the proof of the inequalities 3.3.8
and 3.4.15, and all the Lemmas such as 3.2.9 which involve evaluations at a single
point. We refer the reader to the file Constant checking.c.

Proof of Lemmas 3.2.10, 3.2.13 3.4.4 and 3.4.6. This describes the bounding of
the quantities α0, α1, α2, α2, αf and δ0, δ1, δ2, which are all done the same way.

We start by splitting I = [0, π] into two pieces, I1 = [0, ε] and I2 = [ε, π], with
ε = 10−2. The bounds of the different quantities over x ∈ I1 were obtained using
asymptotics for small x (see e.g. Lemmas 3.2.7 and 3.2.8). In order to deal with
the case x ∈ I2, we constructed a function called compute bound Linfty norm C1

that takes as arguments a function func, its derivative deriv, a bound bound,
an interval min width and an interval inp and performs recursively the following
branch and bound algorithm: we first compute an enclosure of func (which we
call F). The enclosure is a C1 one, given by
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F (X) = F (x0) + (X − x0)F ′(X),

taking x0 as the midpoint of X. Given F, the function performs the following
algorithm:

• If F > bound it returns false

• If F < bound it returns true

• If none of the two conditions are met:

– If width(inp) < min width, split into two pieces and return true if
both true, otherwise false

– Else return false

It is clear that if the algorithm returns true, then bound is a guaranteed upper
bound of f(x), x ∈ I2. For all the above quantities, the total time of computation
was a few minutes. The code can be found in the file Lemma bound functions.c.

Proof of Lemmas 3.3.1, 3.4.2 and 3.4.3. We now explain how the integrals are
calculated. For simplicity, we will explain how to calculate T0 but the same
method applies to T1 and T2. First, we split the interval I = [0, π] into I1 = [0, ε]
and I2 = [ε, π] (we take ε = 0.1 in all three cases T0, T1, T2). Calling T0(x) the
function in (3.3.3) whose supremum on I gives ‖T0‖, it is clear that when x ∈ I1

then T0(x) is bounded using the asymptotic expansion described in Lemma 3.3.3.

We here explain the calculation when x ∈ I2. The first step is to split the
integral

T0(x) =
1

2xu0

∫ π

0

∣∣K(x− y) +K(x+ y)− 2K(y)
∣∣y dy

=
1

2xu0

∫ x

0

∣∣K(x− y) +K(x+ y)− 2K(y)
∣∣y dy

+
1

2xu0

∫ π

x

∣∣K(x− y) +K(x+ y)− 2K(y)
∣∣y dy

=: T 1
0 (x) + T 2

0 (x).

The expression of T 2
0 (x) can be calculated explicitly (see Equation (3.3.4)) so

we will focus on the calculation of T 1
0 (x). Changing variables, we write
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T 1
0 (x) =

x

2u0

∫ 1

0

∣∣K(x(1− w)) +K(x(1 + w))− 2K(xw)
∣∣w dw

We should note, however, that the integrand is singular (although integrable)
at w = 0 and w = 1. The next step is to remove those singularities and treat
them separately. We thus split T 1

0 (x) as

T 1
0 (x) =

x

2u0

∫ δ0

0

∣∣K(x(1− w)) +K(x(1 + w))− 2K(xw)
∣∣w dw

+
x

2u0

∫ 1−δ1

δ0

∣∣K(x(1− w)) +K(x(1 + w))− 2K(xw)
∣∣w dw

+
x

2u0

∫ 1

1−δ1

∣∣K(x(1− w)) +K(x(1 + w))− 2K(xw)
∣∣w dw

=: T 1,1
0 (x) + T 1,2

0 (x) + T 1,3
0 (x)

with δ0 = δ1 = 10−6 for T0, T1, and δ0 = 0.0625, δ1 = 10−4 for T2. The values
of T 1,1

0 (x) and T 1,3
0 (x) are calculated using asymptotic expansions at w = 0 and

w = 1 respectively. We remark that the integrand of T 1
1 (x) (the analog of T 1

0 (x)
for the operator T1), is not singular at w = 0 so we do not have to consider
another splitting of the singularity. We are left with the calculation of T 1,2

0 (x),
which we pass to explain now for a fixed interval x.

In this case, the integration is done recursively. For each subdomain, we
compute an enclosure of the integral. Since the integrand is not smooth because of
the absolute value, we first compute a C0 enclosure (i.e. evaluating the integrand
at the full integration region). If the enclosure is sign-definite, the integrand is
C2 inside it, so we can improve on the width of the enclosure by performing a
midpoint quadrature, given by:

∫ b

a

f(y)dy ∈ (b− a)f

(
a+ b

2

)
+

1

24
(b− a)3f ′′([a, b])

We now decide to accept or reject the result, based on its width in an absolute
and a relative (to the length of the integration region) way. Specifically, it has
to be smaller than abs tol and rel tol respectively. In the latter case, we split
the region and recompute the integral on both subregions. The splitting is done
as the midpoint. We keep track of the regions over which we need to integrate
in a queue, implemented using a circular array. In order to avoid infinite loops
— which could potentially happen since there is an uncertainty in the value of x
—, the size of the queue is limited at all times to QSIZE elements. In our code,
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QSIZE = 1024. If the program is not able to calculate an enclosure of the integral
with the desired tolerances, we split in x (by the midpoint) and recalculate each
part until the tolerances are met.

The integration region I2 is further split into three regions. This is because
the source of the error comes from different places: for x small, most of the error
will come from the evaluation of u and its derivatives. For x large, it will come
from the integral. If x is close to π, we do not decide based on relative tolerances
since the result is very small (even 0). The different subregions were I2,1 = [0.1, 1],
I2,2 = [1, 3] and I2,3 = [3, π]. The total runtime (for the three regions combined)
was about 2 hours for T0, about 8 hours for T1 and about 50 hours for T2.
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