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Classical Hélder spaces .
Introduction

Compact inclusions

Introduction. Holder spaces

Definition
Let0 < « < 1. The Hélder space C*(Q2) is the Banach space

2 (Q) — : e TX) = ()]
C(Q) :={f € C(Q) : pa(f) := )S(L;I;W < oo},

endowed with the norm

Ifllca(@) = [flloo + palf)-
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Introduction

Compact inclusions

Introduction. Holder spaces

Definition
Let0 < « < 1. The Hélder space C*(Q2) is the Banach space

2 (Q) — : e TX) = ()]
C(Q) :={f € C(Q) : pa(f) := )S(L;I;W < oo},

endowed with the norm

Ifllca(@) = [flloo + palf)-

o If « =1, then C*(Q2) = Lip(Q) is the space of Lipschitz functions.
o If & = 0, then C*(Q2) = C(Q2) with an equivalent norm.
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Classical Holder spaces 5
P Introduction

Compact inclusions

Introduction. Holder spaces

Definition
Let0 < « < 1. The Hélder space C*(Q2) is the Banach space
1f(x) — f(y)l
CY(Q) :={f € C(Q) : pa(f) :=sup ——== < o0},
() i={1 € C@): pa() i= sup —Gr=35= < o0}
endowed with the norm

Ifllca(@) = [flloo + palf)-

.

o If « =1, then C*(Q2) = Lip(Q) is the space of Lipschitz functions.
o If & = 0, then C*(Q2) = C(Q2) with an equivalent norm.

Proposition
The inclusion i : C*(Q) — C?(Q) holds for o > B.
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Classical Hélder spaces

Introduction
Compact inclusions

Inclusions between Holder spaces

Theorem (Ascoli-Arzela)
(fa) has an uniformly convergent subsequence < both
@ (fy) is uniformly bounded, i.e. ||fp||c < M for all n.

@ (fy) is uniformly equicontinuous, i.e. |f,(x) — fa(y)| < € for
d(x,y) <é.

Proposition

The inclusion i : C*(Q) — CP(Q) is compact when a > j3.
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Introduction
Compact inclusions

Inclusions between Holder spaces

Theorem (Ascoli-Arzela)
(fa) has an uniformly convergent subsequence < both
@ (fy) is uniformly bounded, i.e. ||fp||c < M for all n.

@ (fy) is uniformly equicontinuous, i.e. |f,(x) — fa(y)| < € for
d(x,y) <é.

Proposition

The inclusion i : C*(Q) — CP(Q) is compact when a > j3.

Proof: Take (up) € C*(Q2) bounded.
sup |Un(X)| < supl||Unllece < M < 0.
Xx,n n

Givene > 0, for § = (%)i >0, neNand x,y € Q with
0 < d(x,y) <4, we have

[Un(X) = Un(y)| < M d(x,y)" <.
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Thus, by Ascoli-Arzela, there exists a subsequence u,, — u
uniformly, i.e. ||un, — U]l — 0. Also, for every x # y,

ng () — UnY)] nsoe, |U(x) — U(Y)
M= =y dx.y)°

)

so u € C*(Q).
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Thus, by Ascoli-Arzela, there exists a subsequence u,, — u
uniformly, i.e. ||up, — ullcc — 0. Also, for every x # y,

ng () — UnY)] nsoe, |U(x) — U(Y)
M= =y dxy)e

so u € C*(2). To prove that ||u,, — u||s — 0, we just calculate
(suppose u = 0 or denote U’ = ug — )

= su ‘Uﬂk( — _ 1—%
— sup (1= 2 00) 1, (0 - un )

Xy
B 1_8
< pa(Un)=(2]|Un,[lc) = — 0.

Hence, the inclusion C*(Q) — C#(Q) is compact. O
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Introduction
A sufficient condition for compact inclusions

Variable Holder spaces

Variable Holder spaces

We introduce now a generalization of Holder spaces taking instead a
function o : Q — [0, 1].

Definition
Leta : Q — [0,1]. The variable order Hélder space is the space

a()(Q) - : : |f(x) = f(y)
Cc(Q) :={fe C(Q): Pa()(f) = )S(L;BW < o0},

endowed with the norm
1l ceer@) = Iflloo + pag(F)-

Mauro Sanchiz Alonso, CEU-UCM Compact inclusions between variable Holder spaces



Introduction
A sufficient condition for compact inclusions

Variable Holder spaces

Variable Holder spaces

We introduce now a generalization of Holder spaces taking instead a
function o : Q — [0, 1].

Definition
Leta : Q — [0,1]. The variable order Hélder space is the space

CoO(Q) = {f € CQ) : pugy(f) = sup T =TV 3

X2y d(X7y)(J.(X)
endowed with the norm

[l cacr@) = Iflloc + pag(F)-

o If a(-) = «, we have the classical Holder spaces C(Q2).

e If a(x) = 0, then C*0)(Q) = C(Q) with an equivalent norm.

o If a(x) = 1, then C*0)(Q) = Lip(Q).

e We can use amax = max{a(x),a(y)} ora, = a(x);a(y) instead of
a(x) as the exponent of d(x, y).
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Introduction

Variable Holder spaces
P A sufficient condition for compact inclusions

When is the inclusion compact?

Proposition
If () > B(-), then the inclusion C*)(Q) — CA)(Q) holds.
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Introduction

Variable Holder spaces
P A sufficient condition for compact inclusions

When is the inclusion compact?

Proposition
If () > B(-), then the inclusion C*)(Q) — CA)(Q) holds.

Slightly different conditions for a(-) and 8(-) might be needed for the
inclusion Com()(Q) < CPr=()(Q) and C*+()(Q) — C*()(Q) be
bounded.
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Introduction

Variable Holder spaces
P A sufficient condition for compact inclusions

When is the inclusion compact?

Proposition
If () > B(-), then the inclusion C*)(Q) — CA)(Q) holds.

Slightly different conditions for a(-) and 8(-) might be needed for the
inclusion Com()(Q) < CPr=()(Q) and C*+()(Q) — C*()(Q) be
bounded.

Proposition

Ifinfy yea(o(X, y) —¥(x,y)) > € > 0, then the inclusion
C?(Q) — C¥(RQ) is compact.
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Introduction

Variable Holder spaces
P A sufficient condition for compact inclusions

When is the inclusion compact?

Proposition
If () > B(-), then the inclusion C*)(Q) — CA)(Q) holds.

Slightly different conditions for a(-) and 8(-) might be needed for the
inclusion Com()(Q) < CPr=()(Q) and C*+()(Q) — C*()(Q) be
bounded.

Proposition

Ifinfy yea(o(X, y) —¥(x,y)) > € > 0, then the inclusion
C?(Q) — C¥(RQ) is compact.

That conditions is, unfortunately, sufficient but not necessary.
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Variable Holder spaces
P A sufficient condition for compact inclusions

The previous reasoning does not work

Thus, by Ascoli-Arzela, there exists a subsequence u,, — u
uniformly, i.e. ||up, — ullcc — 0. Also, for every x # y,

ng () — UnY)] nsoe, |U(x) — U(Y)
M= =y dx.y)°

so u € C*(2). To prove that ||u,, — u||s — 0, we just calculate
(suppose u = 0)

)

XAy
= su ‘Unk(x)_unk(}/)l g _ 17§
‘Lﬂ ) en) = )

8 _B
< pa(Un,) = (2lltn o)~ — 0.

Hence, the inclusion C*(Q) — C#(Q) is compact. O
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Variable Holder spaces Introduction
P A sufficient condition for compact inclusions

The previous reasoning does not work

Thus, by Ascoli-Arzela, there exists a subsequence u,, — u
uniformly, i.e. ||un, — U]l — 0. Also, for every x # y,

|Un, (X) = Un,(¥)| n—oe_ [U(X) — u(y)l
M=z d(x, y)o®) d(x,y)ex) ’

so u € C*0)(Q). To prove that ||un, — ul|5) — O, we just calculate
(suppose u = 0)

o 1Un (X) — Un (y)]
pﬁ(')(unk) - SUp Kd(X, y)ﬁ(f()

XAy
|, (%) — U, (¥)] ) 9 "
o UnkX _Unky e . 1,%
s (i) a0 = ta )

< D0t )220 (2]t [0) '~

Hence, is the inclusion C*()(Q) — C#()(Q) compact?

Compact inclusions between variable Hélder spaces
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Introduction

Variable Hélder spaces
P A sufficient condition for compact inclusions

A sufficient condition

et (2, d) be a metric space and «, 3 : Q — [0, 1] such that
( ) > B(:). If Q is totally bounded and

lim  sup d(X y)2=8() = g, (¢)
0=00<d(x,y)<

then the inclusion C*)(Q) — CP()(Q) is compact.
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Introduction

Variable Hélder spaces
P A sufficient condition for compact inclusions

A sufficient condition

et (2, d) be a metric space and «, 3 : Q — [0, 1] such that
( ) > B(:). If Q is totally bounded and

lim  sup d(X y)2=8() = g, (¢)
0=00<d(x,y)<

then the inclusion C*)(Q) — CP()(Q) is compact.

Proposition

Let (2, d) be a metric space. If there exist order functions
a, B Q — [0, 1] such that the inclusion C*()(Q) — CP()(Q) is
compact, then Q0 is totally bounded.
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ces
aniable Holcer spa A sufficient condition for compact inclusions

The proof now

Given & > 0, take § > 0 S.t. supg_g(x y)<5 d(X, y)* =AM < & (and

[HIES

suppose that u,, —— u=0):

|Un, (X) = Up, (¥)] |Un, (X) = Up, (¥)] }

Up, ) = max su , sup
puUn) {o<d(xf/)<5 dx,y)PX 7 ypyss  d(x,y)PX)

|Un (X) = Un, ()]

for large k) = sup
( g k) 0<dxy)<s  d(x,y)P™)

‘Unk (X) — Up, (y)‘ . d(X’y)rv,(X)*ﬁ(X)

0<d(x,y)<é d(xsy)d(x)

£
< py(Un,) - C <e.

Hence, the inclusion C*()(Q) — C?()(Q) is compact.
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A sufficient condition for compact inclusions
even-more-Variable Holder spaces Is that condition necessary?

Variable Holder spaces (again)

We introduce now a different definition of variable Holder spaces
taking instead a two-variable function ¢ : Q x Q — [0, 1].

Definition

Let¢: Q x Q — [0,1]. The variable order Hélder space is the space

. : . () = f(¥)]
C(Q) = {f € C(Q) : py(f) := iiﬁ’/W < oo},

endowed with the norm
Ifllco@) = Iflloo + po(f).

Mauro Sanchiz Alonso, CEU-UCM Compact inclusions between variable Holder spaces



Introduction?
A sufficient condition for compact inclusions
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Variable Holder spaces (again)

We introduce now a different definition of variable Holder spaces
taking instead a two-variable function ¢ : Q x Q — [0, 1].

Definition
Let¢: Q x Q — [0,1]. The variable order Hélder space is the space

. [f(x) — f(¥)
C(Q) = {f € C(Q) : py(f) := iiﬁ’/W < oo},

endowed with the norm

Iflics@) = Iflloc + po(f)-

The previous definitions are particular cases given « : Q — [0, 1]:
o If ¢(x,y) = a(x), then C?(Q) = C*)(Q).

o If ¢(x,y) = max{a(x),a(y)}, then C?(Q) = C=()(Q).

o If ¢(x, y) = 2L then C%(Q) = C*+O)(Q).
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A sufficient condition for compact inclusions
even-more-Variable Holder spaces Is that condition necessary?

When is the inclusion compact?

Proposition
If ¢ > 4, then the inclusion C?*(Q) — C¥(Q) holds.
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Introduction?
A sufficient condition for compact inclusions
even-more-Variable Holder spaces Is that condition necessary?

When is the inclusion compact?

Proposition

If ¢ > 4, then the inclusion C?*(Q) — C¥(Q) holds.
Also if p(x,y) > ¥(x,y) for d(x,y) < d (for some 6 > 0).
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Introduction?
A sufficient condition for compact inclusions
even-more-Variable Holder spaces Is that condition necessary?

When is the inclusion compact?

Proposition

If ¢ > 4, then the inclusion C?*(Q) — C¥(Q) holds.
Also if p(x,y) > ¥(x,y) for d(x,y) < d (for some 6 > 0).

Let (2, d) be a metric space and ¢, : Q x Q — [0, 1] such that
¢ > . IfQ is totally bounded and

lim sup d(X, y)¢(xv}’)*¢(xv}’) =0, ()
6=00<d(x,y)<s

then the inclusion C?(Q2) — C¥(RQ) is compact.
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A sufficient condition for compact inclusions
even-more-Variable Holder spaces Is that condition necessary?

Is our condition necessary?

Definition
A function ¢ : Q x Q — R is log-Hélder continuous if there exists a
constant Ciog > 0 such that, for all (x,y) # (x',y') € 2 x Q,

CIog

|q{>(x,y)—q5(x’7y’)| S 1 :
log (e + —max{d(x,x'),d(y,y')ﬂ

Let (2, d) be a metric space and ¢,v : Q x Q — [0, 1] such that
Y < ¢. If ¢ is log-Hdblder continuous with ¢~ > 0, then the inclusion
C?(Q) — C¥(Q) is compact if and only if Q0 is totally bounded and

lim  sup  d(x,y)?tN—vxn = ()
0=00<d(x,y)<s
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A sufficient condition for compact inclusions
even-more-Variable Holder spaces Is that condition necessary?

Sketch of the proof

(By contraposition) Take (xp), (¥») in Q with 0 < d(X,, ¥n) < d, and
d(Xn, yn) POy =¥ 00yn) > ¢

Define the sequence

(1) = {9 Ya)?r = d(t,yp)?0e¥n) it t € By,
e d(Xn, Yn)*" = (Xn»Yn)¢(X”’y”) if t e Q\ By

(up) is bounded sequence in C?(Q) and (u,) — 0in C¥(Q).
|Un(x) = un()] _ d(x, yn)®" — d(y, yn)*| _ |d(X,¥n) = d(y, yn)|*"

d(x, ) d(x, y)?) = d(x, )
d(x,y)® . .
< W < (by log-Hélder continuity) Ciog.
|Un(X) — Un(Y)] |d(Xn7Yn)¢" - d(Yn7Yn)¢"|
= >
o py(Un) b d(x, )P = d(Xp, Yn) P 0nn)

=) d(Xmyn)¢(Xn~,}’n)_1/)(Xn7Yn) > €.
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A sufficient condition for compact inclusions
even-more-Variable Holder spaces Is that condition necessary?

How does it matter to be log-Holder continuous?

Proposition

Let (2, d) be a metric space, ¢ : 2 x Q2 — [0,1] and o : Q — [0, 1]
defined by a(x) = ¢(x, x). If ¢ is log-Hélder continuous, then

C?(Q) = C*O)(Q) = Com=)(Q) = C*+)(Q).
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A sufficient condition for compact inclusions
even-more-Variable Holder spaces Is that condition necessary?

How does it matter to be log-Holder continuous?

Proposition
Let (2, d) be a metric space, ¢ : 2 x Q2 — [0,1] and o : Q — [0, 1]
defined by a(x) = ¢(x, x). If ¢ is log-Hélder continuous, then

C?(Q) = C*O)(Q) = Com=)(Q) = C*+)(Q).

This means that, for log-Hdélder continuous order functions, one
definition for variable Hélder spaces was enough.
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How does it matter to be log-Holder continuous?

Proposition
Let (2, d) be a metric space, ¢ : 2 x Q2 — [0,1] and o : Q — [0, 1]
defined by a(x) = ¢(x, x). If ¢ is log-Hélder continuous, then

C?(Q) = C*O)(Q) = Com=)(Q) = C*+)(Q).

This means that, for log-Hélder continuous order functions, one
definition for variable Holder spaces was enough. So, has this talk
been continuously redundant? No, let us look at the theorem again:

Let (2, d) be a metric space and ¢, : Q x Q — [0, 1] such that
Y < ¢. If ¢ is log-Hélder continuous with ¢~ > 0, then the inclusion
C?(Q) — C¥(RQ) is compact if and only if Q is totally bounded and

lim  sup d(X y)PoN vy — o, ()
0=00<d(x,y)<
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Other resulis

(X, d) is uniformly perfect if there exists a constant A € (0,1) s.t., for
each x € X and each r > 0, one has Bx(r) \ Bx(\r) # 0 whenever
X\ By(r) # 0.

Proposition

Let (X, d) be an uniformly perfect metric space and o, 5 : X — [0, 1]
such that g < «, « is log-Hélder continuous and o~ > 0. Then,
C0)(X) — CPU)(X) is compact < X is totally bounded and

inf(e — B8)(-) > 0.

Let (X, d) be a compact metric space without isolated points and ¢
such that the function (x, y) — d(x, y)**¥) is continuous in X x X.
Then, C?(X) — C(X) is compact if and only if

lim sup  d(x,y)?*¥) =0. ()
=0 0<d(x,y)<é
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Conjecture

We could get rid of conditions ¢ be log-Hélder and ¢~ if we just prove
theoretically that there exists some sequence of functions (v,)
satisfying three simple properties:

(1) Va(Xn) = d(Xn, ¥n)?=0 2 and va(yn) = 0,

(2) (vp) is bounded in C?=()(2), and

(3) lIvalls — 0.

To back up this conjecture, we give an example where the order

functions are not continuous, the condition (o) is not satisfied and the
inclusion is not compact.

Let (X, d) be a totally bounded metric space and0 < f < a <~y < 1.
Let xo € X be a non-isolated point and «, 8 : [0,1] — [0, 1] such that
a(x0) = B(x0) := v and a(x) := «, B(x) := B for x # Xo. Then, the
inclusion C*()(X) — CP)(X) is not compact.
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Define the sequence (u;)

B d(X7X0)’y if x € on(1/n)
Un(X) = {1/n7 if x € X'\ By, (1/n).

(un) is bounded in C*0)(X) and ||up||c(x) = O:

|Un(X) U”(y)| O(X7 Y)’Y . —
= < <m m =4
Pa()(Un) )s(;ﬁ)/ 0, ) )s(u;; (X, y)*® ax(1, diam(X))

and
lunllepxy < 1/n7,

Also, no subsequence of (u,) converges to 0 in C°()(X). Take
y € B,(1/n)\ {x0}, we have
[un(X) — tn(¥)| _ d(X0,¥)"
y(un) = > =1.
P ) =20 7P = d(e )7
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