Compact inclusions between variable Hölder spaces

Mauro Sanchiz Alonso

CEU San Pablo - Universidad Complutense de Madrid

Joint work with Przemysław Górka and César Ruiz

WORKSHOP BANACH SPACES AND BANACH LATTICES
MAY 23, 2024

Introduction. Hölder spaces

Definition

Let $0 \le \alpha \le 1$. The Hölder space $C^{\alpha}(\Omega)$ is the Banach space

$$C^{\alpha}(\Omega) := \{ f \in C(\Omega) : \rho_{\alpha}(f) := \sup_{x \neq y} \frac{|f(x) - f(y)|}{d(x, y)^{\alpha}} < \infty \},$$

endowed with the norm

$$||f||_{\mathcal{C}^{\alpha}(\Omega)} = ||f||_{\infty} + \rho_{\alpha}(f).$$

Introduction. Hölder spaces

Definition

Let $0 \le \alpha \le 1$. The Hölder space $C^{\alpha}(\Omega)$ is the Banach space

$$C^{\alpha}(\Omega) := \{ f \in C(\Omega) : \rho_{\alpha}(f) := \sup_{x \neq y} \frac{|f(x) - f(y)|}{d(x, y)^{\alpha}} < \infty \},$$

endowed with the norm

$$||f||_{\mathcal{C}^{\alpha}(\Omega)}=||f||_{\infty}+\rho_{\alpha}(f).$$

- If $\alpha = 1$, then $C^{\alpha}(\Omega) = Lip(\Omega)$ is the space of Lipschitz functions.
- If $\alpha = 0$, then $C^{\alpha}(\Omega) = C(\Omega)$ with an equivalent norm.

Introduction. Hölder spaces

Definition

Let $0 \le \alpha \le 1$. The Hölder space $C^{\alpha}(\Omega)$ is the Banach space

$$C^{\alpha}(\Omega) := \{ f \in C(\Omega) : \rho_{\alpha}(f) := \sup_{x \neq y} \frac{|f(x) - f(y)|}{d(x, y)^{\alpha}} < \infty \},$$

endowed with the norm

$$||f||_{\mathcal{C}^{\alpha}(\Omega)}=||f||_{\infty}+\rho_{\alpha}(f).$$

- If $\alpha = 1$, then $C^{\alpha}(\Omega) = Lip(\Omega)$ is the space of Lipschitz functions.
- If $\alpha = 0$, then $C^{\alpha}(\Omega) = C(\Omega)$ with an equivalent norm.

Proposition

The inclusion $i: C^{\alpha}(\Omega) \hookrightarrow C^{\beta}(\Omega)$ holds for $\alpha \geq \beta$.

Inclusions between Hölder spaces

Theorem (Ascoli-Arzelà)

 (f_n) has an uniformly convergent subsequence \Leftrightarrow both

- (f_n) is uniformly bounded, i.e. $||f_n||_{\infty} \leq M$ for all n.
- (f_n) is uniformly equicontinuous, i.e. $|f_n(x) f_n(y)| \le \varepsilon$ for $d(x, y) \le \delta$.

Proposition

The inclusion $i: C^{\alpha}(\Omega) \hookrightarrow C^{\beta}(\Omega)$ is compact when $\alpha > \beta$.

Inclusions between Hölder spaces

Theorem (Ascoli-Arzelà)

 (f_n) has an uniformly convergent subsequence \Leftrightarrow both

- (f_n) is uniformly bounded, i.e. $||f_n||_{\infty} \leq M$ for all n.
- (f_n) is uniformly equicontinuous, i.e. $|f_n(x) f_n(y)| \le \varepsilon$ for $d(x, y) \le \delta$.

Proposition

The inclusion $i: C^{\alpha}(\Omega) \hookrightarrow C^{\beta}(\Omega)$ is compact when $\alpha > \beta$.

Proof: Take $(u_n) \subset C^{\alpha}(\Omega)$ bounded.

$$\sup_{x,n}|u_n(x)|\leq \sup_n\|u_n\|_\infty\leq M<\infty.$$

Given $\varepsilon>0$, for $\delta=\left(\frac{\varepsilon}{M}\right)^{\frac{1}{\alpha}}>0$, $n\in\mathbb{N}$ and $x,y\in\Omega$ with $0< d(x,y)\leq\delta$, we have

$$|u_n(x)-u_n(y)|\leq M\ d(x,y)^{\alpha}\leq \varepsilon.$$

Proof

Thus, by Ascoli-Arzelà, there exists a subsequence $u_{n_k} \to u$ uniformly, i.e. $||u_{n_k} - u||_{\infty} \to 0$. Also, for every $x \neq y$,

$$M \geq \frac{|u_{n_k}(x) - u_{n_k}(y)|}{d(x,y)^{\alpha}} \xrightarrow{n \to \infty} \frac{|u(x) - u(y)|}{d(x,y)^{\alpha}},$$

so $u \in C^{\alpha}(\Omega)$.

Proof

Thus, by Ascoli-Arzelà, there exists a subsequence $u_{n_k} \to u$ uniformly, i.e. $||u_{n_k} - u||_{\infty} \to 0$. Also, for every $x \neq y$,

$$M \geq rac{|u_{n_k}(x) - u_{n_k}(y)|}{d(x,y)^{lpha}} \xrightarrow{n o \infty} rac{|u(x) - u(y)|}{d(x,y)^{lpha}},$$

so $u \in C^{\alpha}(\Omega)$. To prove that $||u_{n_k} - u||_{\beta} \to 0$, we just calculate (suppose $u \equiv 0$ or denote $u' = u_k - u$)

$$\rho_{\beta}(u_{n_k}) = \sup_{x \neq y} \frac{|u_{n_k}(x) - u_{n_k}(y)|}{d(x, y)^{\beta}}
= \sup_{x \neq y} \left(\frac{|u_{n_k}(x) - u_{n_k}(y)|}{d(x, y)^{\alpha}}\right)^{\frac{\beta}{\alpha}} |u_{n_k}(x) - u_{n_k}(y)|^{1 - \frac{\beta}{\alpha}}
\leq \rho_{\alpha}(u_{n_k})^{\frac{\beta}{\alpha}} (2||u_{n_k}||_{\infty})^{1 - \frac{\beta}{\alpha}} \to 0.$$

Hence, the inclusion $C^{\alpha}(\Omega) \hookrightarrow C^{\beta}(\Omega)$ is compact.

Variable Hölder spaces

We introduce now a generalization of Hölder spaces taking instead a function $\alpha: \Omega \to [0,1]$.

Definition

Let $\alpha: \Omega \to [0,1]$. The variable order Hölder space is the space

$$C^{\alpha(\cdot)}(\Omega) := \{ f \in C(\Omega) : \rho_{\alpha(\cdot)}(f) := \sup_{\mathbf{x} \neq \mathbf{y}} \frac{|f(\mathbf{x}) - f(\mathbf{y})|}{d(\mathbf{x}, \mathbf{y})^{\alpha(\mathbf{x})}} < \infty \},$$

endowed with the norm

$$||f||_{C^{\alpha(\cdot)}(\Omega)} = ||f||_{\infty} + \rho_{\alpha(\cdot)}(f).$$

Variable Hölder spaces

We introduce now a generalization of Hölder spaces taking instead a function $\alpha: \Omega \to [0,1]$.

Definition

Let $\alpha: \Omega \to [0,1]$. The variable order Hölder space is the space

$$C^{\alpha(\cdot)}(\Omega) := \{ f \in C(\Omega) : \rho_{\alpha(\cdot)}(f) := \sup_{\mathbf{x} \neq \mathbf{y}} \frac{|f(\mathbf{x}) - f(\mathbf{y})|}{d(\mathbf{x}, \mathbf{y})^{\alpha(\mathbf{x})}} < \infty \},$$

endowed with the norm

$$||f||_{C^{\alpha(\cdot)}(\Omega)} = ||f||_{\infty} + \rho_{\alpha(\cdot)}(f).$$

- If $\alpha(\cdot) \equiv \alpha$, we have the classical Hölder spaces $C^{\alpha}(\Omega)$.
- If $\alpha(x) \equiv 0$, then $C^{\alpha(\cdot)}(\Omega) = C(\Omega)$ with an equivalent norm.
- If $\alpha(x) \equiv 1$, then $C^{\alpha(\cdot)}(\Omega) = Lip(\Omega)$.
- We can use $\alpha_{\max} = \max\{\alpha(x), \alpha(y)\}$ or $\alpha_+ = \frac{\alpha(x) + \alpha(y)}{2}$ instead of $\alpha(x)$ as the exponent of $\alpha(x, y)$.

Proposition

If $\alpha(\cdot) \geq \beta(\cdot)$, then the inclusion $C^{\alpha(\cdot)}(\Omega) \hookrightarrow C^{\beta(\cdot)}(\Omega)$ holds.

Proposition

If $\alpha(\cdot) \geq \beta(\cdot)$, then the inclusion $C^{\alpha(\cdot)}(\Omega) \hookrightarrow C^{\beta(\cdot)}(\Omega)$ holds.

Slightly different conditions for $\alpha(\cdot)$ and $\beta(\cdot)$ might be needed for the inclusion $C^{\alpha_{\max}(\cdot)}(\Omega) \hookrightarrow C^{\beta_{\max}(\cdot)}(\Omega)$ and $C^{\alpha_{+}(\cdot)}(\Omega) \hookrightarrow C^{\beta_{+}(\cdot)}(\Omega)$ be bounded.

Proposition

If $\alpha(\cdot) \geq \beta(\cdot)$, then the inclusion $C^{\alpha(\cdot)}(\Omega) \hookrightarrow C^{\beta(\cdot)}(\Omega)$ holds.

Slightly different conditions for $\alpha(\cdot)$ and $\beta(\cdot)$ might be needed for the inclusion $C^{\alpha_{\max}(\cdot)}(\Omega) \hookrightarrow C^{\beta_{\max}(\cdot)}(\Omega)$ and $C^{\alpha_{+}(\cdot)}(\Omega) \hookrightarrow C^{\beta_{+}(\cdot)}(\Omega)$ be bounded.

Proposition

If $\inf_{x,y\in\Omega}(\phi(x,y)-\psi(x,y))\geq \varepsilon>0$, then the inclusion $C^{\phi}(\Omega)\hookrightarrow C^{\psi}(\Omega)$ is compact.

Proposition

If $\alpha(\cdot) \geq \beta(\cdot)$, then the inclusion $C^{\alpha(\cdot)}(\Omega) \hookrightarrow C^{\beta(\cdot)}(\Omega)$ holds.

Slightly different conditions for $\alpha(\cdot)$ and $\beta(\cdot)$ might be needed for the inclusion $C^{\alpha_{\max}(\cdot)}(\Omega) \hookrightarrow C^{\beta_{\max}(\cdot)}(\Omega)$ and $C^{\alpha_{+}(\cdot)}(\Omega) \hookrightarrow C^{\beta_{+}(\cdot)}(\Omega)$ be bounded.

Proposition

If $\inf_{x,y\in\Omega}(\phi(x,y)-\psi(x,y))\geq \varepsilon>0$, then the inclusion $C^{\phi}(\Omega)\hookrightarrow C^{\psi}(\Omega)$ is compact.

That conditions is, unfortunately, sufficient but not necessary.

The previous reasoning does not work

Thus, by Ascoli-Arzelà, there exists a subsequence $u_{n_k} \to u$ uniformly, i.e. $||u_{n_k} - u||_{\infty} \to 0$. Also, for every $x \neq y$,

$$M \geq rac{|u_{n_k}(x) - u_{n_k}(y)|}{d(x,y)^{lpha}} \xrightarrow{n o \infty} rac{|u(x) - u(y)|}{d(x,y)^{lpha}},$$

so $u \in C^{\alpha}(\Omega)$. To prove that $||u_{n_k} - u||_{\beta} \to 0$, we just calculate (suppose $u \equiv 0$)

$$\rho_{\beta}(u_{n_k}) = \sup_{x \neq y} \frac{|u_{n_k}(x) - u_{n_k}(y)|}{d(x, y)^{\beta}}$$

$$= \sup_{x \neq y} \left(\frac{|u_{n_k}(x) - u_{n_k}(y)|}{d(x, y)^{\alpha}}\right)^{\frac{\beta}{\alpha}} |u_{n_k}(x) - u_{n_k}(y)|^{1 - \frac{\beta}{\alpha}}$$

$$< \rho_{\alpha}(u_{n_k})^{\frac{\beta}{\alpha}} (2||u_{n_k}||_{\infty})^{1 - \frac{\beta}{\alpha}} \to 0.$$

Hence, the inclusion $C^{\alpha}(\Omega) \hookrightarrow C^{\beta}(\Omega)$ is compact.

The previous reasoning does not work

Thus, by Ascoli-Arzelà, there exists a subsequence $u_{n_k} \to u$ uniformly, i.e. $||u_{n_k} - u||_{\infty} \to 0$. Also, for every $x \neq y$,

$$M \geq \frac{|u_{n_k}(x) - u_{n_k}(y)|}{d(x,y)^{\alpha(x)}} \xrightarrow{n \to \infty} \frac{|u(x) - u(y)|}{d(x,y)^{\alpha(x)}},$$

so $u \in C^{\alpha(\cdot)}(\Omega)$. To prove that $||u_{n_k} - u||_{\beta(\cdot)} \to 0$, we just calculate (suppose $u \equiv 0$)

$$\rho_{\beta(\cdot)}(u_{n_k}) = \sup_{x \neq y} \frac{|u_{n_k}(x) - u_{n_k}(y)|}{d(x, y)^{\beta(x)}}
= \sup_{x \neq y} \left(\frac{|u_{n_k}(x) - u_{n_k}(y)|}{d(x, y)^{\alpha(x)}} \right)^{\frac{\beta(x)}{\alpha(x)}} |u_{n_k}(x) - u_{n_k}(y)|^{1 - \frac{\beta(x)}{\alpha(x)}}
\leq \rho_{\alpha}(u_{n_k})^{c_{\alpha(\cdot),\beta(\cdot)}} (2||u_{n_k}||_{\infty})^{1 - \frac{\beta(x)}{\alpha(x)}} \stackrel{?}{\to} 0.$$

Hence, is the inclusion $C^{\alpha(\cdot)}(\Omega) \hookrightarrow C^{\beta(\cdot)}(\Omega)$ compact?

A sufficient condition

Theorem

Let (Ω, d) be a metric space and $\alpha, \beta : \Omega \to [0, 1]$ such that $\alpha(\cdot) \geq \beta(\cdot)$. If Ω is totally bounded and

$$\lim_{\delta \to 0} \sup_{0 < d(x,y) \le \delta} d(x,y)^{\alpha(x) - \beta(x)} = 0, \qquad (\diamond)$$

then the inclusion $C^{\alpha(\cdot)}(\Omega) \hookrightarrow C^{\beta(\cdot)}(\Omega)$ is compact.

Theorem

Let (Ω, d) be a metric space and $\alpha, \beta : \Omega \to [0, 1]$ such that $\alpha(\cdot) \geq \beta(\cdot)$. If Ω is totally bounded and

$$\lim_{\delta \to 0} \sup_{0 < d(x,y) \le \delta} d(x,y)^{\alpha(x) - \beta(x)} = 0, \qquad (\diamond)$$

then the inclusion $C^{\alpha(\cdot)}(\Omega) \hookrightarrow C^{\beta(\cdot)}(\Omega)$ is compact.

Proposition

Let (Ω, d) be a metric space. If there exist order functions $\alpha, \beta: \Omega \to [0, 1]$ such that the inclusion $C^{\alpha(\cdot)}(\Omega) \hookrightarrow C^{\beta(\cdot)}(\Omega)$ is compact, then Ω is totally bounded.

The proof now

Given $\varepsilon > 0$, take $\delta > 0$ s.t. $\sup_{0 < d(x,y) < \delta} d(x,y)^{\alpha(x)-\beta(x)} \le \frac{\varepsilon}{M}$ (and suppose that $u_{n_k} \xrightarrow{\|\cdot\|_{\infty}} u \equiv 0$):

$$\begin{split} \rho_{\psi}(u_{n_k}) &= \max \left\{ \sup_{0 < d(x,y) < \delta} \frac{|u_{n_k}(x) - u_{n_k}(y)|}{d(x,y)^{\beta(x)}}, \sup_{d(x,y) > \delta} \frac{|u_{n_k}(x) - u_{n_k}(y)|}{d(x,y)^{\beta(x)}} \right\} \\ \text{(for large } k) &= \sup_{0 < d(x,y) < \delta} \frac{|u_{n_k}(x) - u_{n_k}(y)|}{d(x,y)^{\beta(x)}} \\ &= \sup_{0 < d(x,y) < \delta} \frac{|u_{n_k}(x) - u_{n_k}(y)|}{d(x,y)^{\beta(x)}} \cdot d(x,y)^{\alpha(x) - \beta(x)} \\ &\leq \rho_{\psi}(u_{n_k}) \cdot \frac{\varepsilon}{C} \leq \varepsilon. \end{split}$$

Hence, the inclusion $C^{\alpha(\cdot)}(\Omega) \hookrightarrow C^{\beta(\cdot)}(\Omega)$ is compact.

Variable Hölder spaces (again)

We introduce now a different definition of variable Hölder spaces taking instead a two-variable function $\phi: \Omega \times \Omega \to [0, 1]$.

Definition

Let $\phi: \Omega \times \Omega \to [0,1]$. The variable order Hölder space is the space

$$C^{\phi}(\Omega):=\{f\in C(\Omega):
ho_{\phi}(f):=\sup_{x
eq y}rac{|f(x)-f(y)|}{d(x,y)^{\phi(x,y)}}<\infty\},$$

endowed with the norm

$$||f||_{C^{\phi}(\Omega)} = ||f||_{\infty} + \rho_{\phi}(f).$$

Variable Hölder spaces (again)

We introduce now a different definition of variable Hölder spaces taking instead a two-variable function $\phi: \Omega \times \Omega \to [0,1]$.

Definition

Let $\phi: \Omega \times \Omega \to [0,1]$. The variable order Hölder space is the space

$$\mathcal{C}^{\phi}(\Omega) := \{f \in \mathcal{C}(\Omega) : \rho_{\phi}(f) := \sup_{x \neq y} \frac{|f(x) - f(y)|}{d(x,y)^{\phi(x,y)}} < \infty\},$$

endowed with the norm

$$||f||_{C^{\phi}(\Omega)}=||f||_{\infty}+\rho_{\phi}(f).$$

The previous definitions are particular cases given $\alpha: \Omega \to [0,1]$:

- If $\phi(x,y) = \alpha(x)$, then $C^{\phi}(\Omega) = C^{\alpha(\cdot)}(\Omega)$.
- If $\phi(x, y) = \max\{\alpha(x), \alpha(y)\}$, then $C^{\phi}(\Omega) = C^{\alpha_{\max}(\cdot)}(\Omega)$.
- If $\phi(x,y) = \frac{\alpha(x) + \alpha(y)}{2}$, then $C^{\phi}(\Omega) = C^{\alpha_{+}(\cdot)}(\Omega)$.

Proposition

If $\phi \geq \psi$, then the inclusion $C^{\phi}(\Omega) \hookrightarrow C^{\psi}(\Omega)$ holds.

Proposition

If $\phi \geq \psi$, then the inclusion $C^{\phi}(\Omega) \hookrightarrow C^{\psi}(\Omega)$ holds. Also if $\phi(x,y) \geq \psi(x,y)$ for $d(x,y) \leq \delta$ (for some $\delta > 0$).

Proposition

If $\phi \geq \psi$, then the inclusion $C^{\phi}(\Omega) \hookrightarrow C^{\psi}(\Omega)$ holds. Also if $\phi(x,y) \geq \psi(x,y)$ for $d(x,y) \leq \delta$ (for some $\delta > 0$).

Theorem

Let (Ω, d) be a metric space and $\phi, \psi : \Omega \times \Omega \to [0, 1]$ such that $\phi > \psi$. If Ω is totally bounded and

$$\lim_{\delta \to 0} \sup_{0 < d(x,y) \le \delta} d(x,y)^{\phi(x,y) - \psi(x,y)} = 0, \qquad (\diamond)$$

then the inclusion $C^{\phi}(\Omega) \hookrightarrow C^{\psi}(\Omega)$ is compact.

Is our condition necessary?

Definition

A function $\phi: \Omega \times \Omega \to \mathbb{R}$ is log-Hölder continuous if there exists a constant $C_{log} > 0$ such that, for all $(x, y) \neq (x', y') \in \Omega \times \Omega$,

$$|\phi(x,y) - \phi(x',y')| \leq \frac{C_{\log}}{\log\left(e + \frac{1}{\max\{d(x,x'),d(y,y')\}}\right)}.$$

Theorem

Let (Ω, d) be a metric space and $\phi, \psi : \Omega \times \Omega \to [0, 1]$ such that $\psi \leq \phi$. If ϕ is log-Hölder continuous with $\phi^- > 0$, then the inclusion $C^{\phi}(\Omega) \hookrightarrow C^{\psi}(\Omega)$ is compact if and only if Ω is totally bounded and

$$\lim_{\delta \to 0} \sup_{0 < d(x,y) < \delta} d(x,y)^{\phi(x,y) - \psi(x,y)} = 0.$$
 (\$\infty\$)

Sketch of the proof

(By contraposition) Take (x_n) , (y_n) in Ω with $0 < d(x_n, y_n) \le \delta_n$ and $d(x_n, y_n)^{\phi(x_n, y_n) - \psi(x_n, y_n)} > \varepsilon$.

Define the sequence

$$u_n(t) = \begin{cases} d(t, y_n)^{\phi_n} = d(t, y_n)^{\phi(x_n, y_n)} & \text{if } t \in B_n, \\ d(x_n, y_n)^{\phi_n} = d(x_n, y_n)^{\phi(x_n, y_n)} & \text{if } t \in \Omega \setminus B_n. \end{cases}$$

 (u_n) is bounded sequence in $C^{\phi}(\Omega)$ and $(u_n) \to 0$ in $C^{\psi}(\Omega)$.

$$\begin{aligned} \bullet \quad & \frac{|u_n(x) - u_n(y)|}{d(x,y)^{\phi(x,y)}} = \frac{|d(x,y_n)^{\phi_n} - d(y,y_n)^{\phi_n}|}{d(x,y)^{\phi(x,y)}} \leq \frac{|d(x,y_n) - d(y,y_n)|^{\phi_n}}{d(x,y)^{\phi(x,y)}} \\ & \leq \frac{d(x,y)^{\phi_n}}{d(x,y)^{\phi(x,y)}} \leq \text{ (by log-H\"older continuity) } C_{\log}. \end{aligned}$$

•
$$\rho_{\psi}(u_n) = \sup_{x \neq y} \frac{|u_n(x) - u_n(y)|}{d(x, y)^{\psi(x, y)}} \ge \frac{|d(x_n, y_n)^{\phi_n} - d(y_n, y_n)^{\phi_n}|}{d(x_n, y_n)^{\psi(x_n, y_n)}}$$

= $d(x_n, y_n)^{\phi(x_n, y_n) - \psi(x_n, y_n)} > \varepsilon$.

How does it matter to be log-Hölder continuous?

Proposition

Let (Ω, d) be a metric space, $\phi : \Omega \times \Omega \to [0, 1]$ and $\alpha : \Omega \to [0, 1]$ defined by $\alpha(x) = \phi(x, x)$. If ϕ is log-Hölder continuous, then

$$oldsymbol{\mathcal{C}}^\phi(\Omega) = oldsymbol{\mathcal{C}}^{lpha(\cdot)}(\Omega) = oldsymbol{\mathcal{C}}^{lpha_{\sf max}(\cdot)}(\Omega) = oldsymbol{\mathcal{C}}^{lpha_+(\cdot)}(\Omega).$$

How does it matter to be log-Hölder continuous?

Proposition

Let (Ω, d) be a metric space, $\phi : \Omega \times \Omega \to [0, 1]$ and $\alpha : \Omega \to [0, 1]$ defined by $\alpha(x) = \phi(x, x)$. If ϕ is log-Hölder continuous, then

$$C^{\phi}(\Omega) = C^{\alpha(\cdot)}(\Omega) = C^{\alpha_{\mathsf{max}}(\cdot)}(\Omega) = C^{\alpha_{+}(\cdot)}(\Omega).$$

This means that, for log-Hölder continuous order functions, one definition for variable Hölder spaces was enough.

How does it matter to be log-Hölder continuous?

Proposition

Let (Ω, d) be a metric space, $\phi : \Omega \times \Omega \to [0, 1]$ and $\alpha : \Omega \to [0, 1]$ defined by $\alpha(x) = \phi(x, x)$. If ϕ is log-Hölder continuous, then

$$oldsymbol{C}^\phi(\Omega) = oldsymbol{C}^{lpha(\cdot)}(\Omega) = oldsymbol{C}^{lpha_{\sf max}(\cdot)}(\Omega) = oldsymbol{C}^{lpha_+(\cdot)}(\Omega).$$

This means that, for log-Hölder continuous order functions, one definition for variable Hölder spaces was enough. So, has this talk been continuously redundant? No, let us look at the theorem again:

Theorem

Let (Ω, d) be a metric space and $\phi, \psi : \Omega \times \Omega \to [0, 1]$ such that $\psi \leq \phi$. If ϕ is log-Hölder continuous with $\phi^- > 0$, then the inclusion $C^{\phi}(\Omega) \hookrightarrow C^{\psi}(\Omega)$ is compact if and only if Ω is totally bounded and

$$\lim_{\delta \to 0} \sup_{0 < d(x,y) \le \delta} d(x,y)^{\phi(x,y) - \psi(x,y)} = 0. \tag{\diamond}$$

Other results

(X, d) is uniformly perfect if there exists a constant $\lambda \in (0, 1)$ s.t., for each $x \in X$ and each r > 0, one has $B_x(r) \setminus B_x(\lambda r) \neq \emptyset$ whenever $X \setminus B_x(r) \neq \emptyset$.

Proposition

Let (X,d) be an uniformly perfect metric space and $\alpha, \beta: X \to [0,1]$ such that $\beta \leq \alpha$, α is log-Hölder continuous and $\alpha^- > 0$. Then, $C^{\alpha(\cdot)}(X) \hookrightarrow C^{\beta(\cdot)}(X)$ is compact $\Leftrightarrow X$ is totally bounded and $\inf(\alpha - \beta)(\cdot) > 0$.

Theorem

Let (X,d) be a compact metric space without isolated points and ϕ such that the function $(x,y) \mapsto d(x,y)^{\phi(x,y)}$ is continuous in $X \times X$. Then, $C^{\phi}(X) \hookrightarrow C(X)$ is compact if and only if

$$\lim_{\delta \to 0} \sup_{0 < d(x,y) \le \delta} d(x,y)^{\phi(x,y)} = 0. \tag{\diamond}$$

Conjecture

We could get rid of conditions ϕ be log-Hölder and ϕ^- if we just prove theoretically that there exists some sequence of functions (v_n) satisfying three simple properties:

- (1) $v_n(x_n) = d(x_n, y_n)^{\phi_{\alpha}(\cdot)(x_n, y_n)}$ and $v_n(y_n) = 0$,
- (2) (v_n) is bounded in $C^{\phi_{\alpha(\cdot)}}(\Omega)$, and
- (3) $||v_n||_{\infty} \to 0$.

To back up this conjecture, we give an example where the order functions are not continuous, the condition (\diamond) is not satisfied and the inclusion is not compact.

Exemple

Let (X,d) be a totally bounded metric space and $0<\beta<\alpha<\gamma\leq 1$. Let $x_0\in X$ be a non-isolated point and $\alpha,\beta:[0,1]\to [0,1]$ such that $\alpha(x_0)=\beta(x_0):=\gamma$ and $\alpha(x):=\alpha,\,\beta(x):=\beta$ for $x\neq x_0$. Then, the inclusion $C^{\alpha(\cdot)}(X)\hookrightarrow C^{\beta(\cdot)}(X)$ is not compact.

Proof.

Define the sequence (u_n)

$$u_n(x) = \begin{cases} d(x, x_0)^{\gamma} & \text{if } x \in B_{x_0}(1/n) \\ 1/n^{\gamma} & \text{if } x \in X \setminus B_{x_0}(1/n). \end{cases}$$

 (u_n) is bounded in $C^{\alpha(\cdot)}(X)$ and $||u_n||_{C(X)} \xrightarrow{n \to \infty} 0$:

$$\rho_{\alpha(\cdot)}(u_n) = \sup_{x \neq y} \frac{|u_n(x) - u_n(y)|}{d(x,y)^{\alpha(x)}} \leq \sup_{x \neq y} \frac{d(x,y)^{\gamma}}{d(x,y)^{\alpha(x)}} \leq \max(1, \operatorname{diam}(X))^{\gamma - \alpha},$$

and

$$||u_n||_{C(X)} \leq 1/n^{\gamma},$$

Also, no subsequence of (u_n) converges to 0 in $C^{\beta(\cdot)}(X)$. Take $y \in B_{x_0}(1/n) \setminus \{x_0\}$, we have

$$\rho_{\beta(\cdot)}(u_n) = \sup_{x \neq y} \frac{|u_n(x) - u_n(y)|}{d(x,y)^{\beta(x)}} \ge \frac{d(x_0,y)^{\gamma}}{d(x_0,y)^{\gamma}} = 1.$$

Bibliography

- Almeida, A., Samko, S. (2009). *Embeddings of variable Hajłasz–Sobolev spaces into Hölder spaces of variable order*. J. Math. Anal. Appl., 353(2), 489–496.
- Bies P.M., Górka P. (2015). Schauder theory in variable Hölder spaces. J. Differential Equations, 259, 2850–2883.
- Kokilashvili, V., Meskhi, A., Rafeiro, H., Samko, S. (2016). *Integral Operators in Non-Standard Function Spaces: Volume 2: Variable Exponent Hölder, Morrey-Campanato and Grand Spaces: 249 (Operator Theory: Advances and Applications)*. Birkhaüser.
- P. Górka, C. Ruiz and M. Sanchiz (2024). *Compact inclusions between variable Hölder spaces*. J. Math. Anal. Appl., 538, 128328.

THANK YOU VERY MUCH