Polyhedral spaces, with a twist

Alberto Salguero Alarcón

Universidad Complutense de Madrid

Lattice Structures in Analysis and Applications May 22nd, 2024

Contents

2 Polyhedral renormings for twisted sums of $c_0(1)$ -spaces

3 Future perspectives

Brief historical account on polyhedral spaces

A Banach space X is *polyhedral* if the unit ball of every finite-dimensional subspace of X is the convex hull of finitely many points.

- (1) V. Klee (1959 1960)
 - ► *c*₀ is polyhedral.
 - ► Is there an infinite-dimensional reflexive polyhedral space?
- (2) J. Lindenstrauss (1966)
 - ► No infinite-dimensional *dual* space can be polyhedral.
- (3) V. P. Fonf. (and collaborators)
 - ► Every polyhedral space is *c*₀-*saturated* (1979 1981).
 - ...and much more.

A relaxation

Polyhedrality is an *isometric* notion, and this can be sometimes inconvenient.

• For instance, in a diagram

$$0 \longrightarrow Y \longrightarrow Z \longrightarrow X \longrightarrow 0$$

we do not necessarily know "the" norm of Z.

Definition

A Banach space is said to be *isomorphically polyhedral* if it admits a polyhedral renorming.

Main question:

Is "to be isomorphically polyhedral" a three-space property?

LSAA

Examples of (isomorphically) polyhedral spaces (1) c_0 is polyhedral, but c is not.

Figure: extracted from A. J. Guirao, V. Montesinos and V. Zizler.

LSAA

Examples of (isomorphically) polyhedral spaces

- (1) c_0 is polyhedral, but c is not. In fact, no C(K)-space can be polyhedral in the usual norm.
- (2) If K is σ -discrete, then C(K) is isomorphically polyhedral. This includes
 - $c_0(I)$ for any set I.
 - C(K) for K scattered of countable height.
- (3) If a C(K)-space admits a polyhedral renorming, then K must be scattered (equivalently, C(K) Asplund).
- (4) The converse is (consistently) not true: Kunen's compact space.

Question 1

Characterize compact spaces K such that C(K) is isomorphically polyhedral.

Polyhedrality vs. \mathcal{L}_{∞} -spaces

- (1) C[0,1] is an \mathcal{L}_{∞} -space which is not isomorphically polyhedral.
- (2) $c_0(\ell_2^n)$ or the Schreier space are isomorphically polyhedral spaces which are not \mathcal{L}_{∞} -spaces.
- (3) However, preduals of ℓ_1 are isomorphically polyhedral.
- (4) But this is no longer (consistently) true for preduals of $\ell_1(\Gamma)$.

It is important to set boundaries

A (James) boundary for a Banach space $(X, \|\cdot\|)$ is a subset $B \subseteq S_{X^*}$ such that for every $x \in X$ there is $x^* \in B$ with $x^*(x) = \|x\|$.

A boundary *B* for a Banach space *X* has property (\star) if every weak*-cluster point x^* of *B* satisfies $x^*(x) < 1$ for every $x \in B_X$.

Proposition (Fonf, Smith, Pallarés, Troyanski)

Every Banach space admitting a boundary with property (\star) is isomorphically polyhedral.

Actually, a *separable* Banach space is isomorphically polyhedral if and only if it has a boundary with property (*).

Question 2

Does the existence of a boundary with property (\star) characterizes isomorphically polyhedral Banach spaces in general?

A bit on twisted sums

The diagram

$$0 \longrightarrow Y \xrightarrow{j} Z \xrightarrow{q} X \longrightarrow 0$$

means:

- *j* is an into isomorphism.
- $j(Y) = \ker q$.
- q is a quotient map.

We say an exact sequence *splits* whenever j(Y) is complemented in Z, or (equivalently) if q admits a linear and bounded selection.

Twisted sums of $c_0(I)$ -spaces (1) $C(K_A)$ -spaces.

$$0 \longrightarrow c_0 \longrightarrow C(\mathcal{K}_{\mathcal{A}}) \longrightarrow c_0(\mathcal{A}) \longrightarrow 0$$

What is $K_{\mathcal{A}}$?

- Let A = {A_i}_{i∈I} ⊆ P(ℕ) with the property that A_i ∩ A_j is finite for every i, j ∈ I.
- Define a topology on

$$\Psi_{\mathcal{A}} = \mathbb{N} \cup \{ p_{\mathcal{A}} : \mathcal{A} \in \mathcal{A} \}$$

by (essentially):

$$(n)_{n\in A} o p_A\;\; ext{for every}\; A\in \mathcal{A}$$

• K_A is the one-point compactification of Ψ_A .

Proposition

 $C(K_A)$ is isomorphically polyhedral.

Twisted sums of $c_0(I)$ -spaces (1) $C(K_A)$ -spaces

$$0 \longrightarrow c_0 \longrightarrow C(K_{\mathcal{A}}) \longrightarrow c_0(\mathcal{A}) \longrightarrow 0$$

(2) More exotic Banach spaces:

$$0 \longrightarrow c_0 \longrightarrow PS_2 \longrightarrow c_0(\mathfrak{c}) \longrightarrow 0$$

- PS₂ produces a counterexample to the complemented subspace problem for C(K)-spaces...
- ...and also for Banach lattices.

Proposition

 PS_2 is isomorphically polyhedral.

The main theorem

Question: are twisted sums of $c_0(I)$ -spaces isomorphically polyhedral? Yes! And we can do a little better:

Theorem (with J. M. F. Castillo)

Assume X admits a boundary with property (*). Then every twisted sum Z of $c_0(I)$ and X admits a boundary with property (*). In particular, Z is isomorphically polyhedral.

The proof stems from a *representation theorem* for twisted sums of $c_0(I)$ and any Banach space X.

How do we obtain twisted sums of C(K)-spaces?

One basic idea: take K and L compact spaces such that

- $K \hookrightarrow L.$
- $L \setminus K$ is discrete of size κ .

And form the exact sequence

$$0 \longrightarrow c_0(\kappa) \longrightarrow C(L) \longrightarrow C(K) \longrightarrow 0$$

In such a case, we say L is a *discrete extension* of K. This is often written as $L = K \cup \kappa$.

A representation theorem

It is no hope that every twisted sum of c_0 and C(K) comes from a discrete extension of K.

Theorem 1 (with J. M. F. Castillo)

For every twisted sum Z of $c_0(\kappa)$ and X, there is a discrete extension L of (B_{X^*}, w^*) such that

where $\phi: X \hookrightarrow C(B_{X^*})$ is the natural embedding.

A bit into the proof

Consider

$$0 \longrightarrow c_0(\kappa) \xrightarrow{j} Z \xrightarrow{q} X \longrightarrow 0$$

• The dual exact sequence must split:

$$0 \longrightarrow X^* \stackrel{q^*}{\longrightarrow} Z^* \stackrel{j^*}{\longrightarrow} \ell_1(\kappa) \longrightarrow 0$$

- Hence there is a bounded set $(z_k^*)_{k \in \kappa}$ satisfying that $j^*(z_k^*) = e_k^*$ for all $k \in \kappa$.
- No z_k^{*} lies in q^{*}(X^{*}), but w^{*}-cluster points of (z_k^{*})_{k∈κ} do lie in (a multiple of) q^{*}(B_{X*}).
- Let $L = q^*(B_{X^*}) \cup \{z_k^* : k \in \kappa\}$, and check.

Back to the main theorem

We are ready to prove:

```
Theorem (with J. M. F. Castillo)
```

Assume X admits a boundary with property (*). Then every twisted sum Z of $c_0(I)$ and X admits a boundary with property (*). In particular, Z is isomorphically polyhedral.

Sketch of the proof

• Consider a twisted sum of c_0 and X, which now involves

In particular, $||z|| = \sup_{t \in L} |u^* \delta_t(z)|$.

• If B is a boundary for X, then

$$\{\pm u^*\delta_k: k \in \kappa\} \cup \{u^*\delta_{b^*}: b^* \in B\}$$

is a boundary for Z.

LSAA

1 is different from 2

- But it is unclear whether it has property (*) if B does.
- So we consider

$$V = \{\pm u^* \delta_k : k \in \kappa\} \cup \{2u^* \delta_{b^*} : b^* \in B\}$$

and define a new norm on Z by

$$|||z||| = \sup_{v \in V} |v(z)|$$

- Now, if f^* is a weak*-cluster point of V, then it is of the form $\lambda \cdot \delta_{x^*}$, for a certain $x^* \in X^*$ and $\lambda \in \{1, 2\}$.
- Either way, it cannot be so that $f^*(x) = 1$ if $|||x||| \le 1$.

LSAA

A detour: the structure of twisted sums of $c_0(I)$

Consider a twisted sum

$$0 \longrightarrow c_0(\kappa) \xrightarrow{j} Z \xrightarrow{q} X \longrightarrow 0$$

Then:

- (1) Z can be renormed to be an $\mathcal{L}_{\infty,1^+}\text{-space}$ provided X is an $\mathcal{L}_{\infty,1^+}\text{-space}.$
- (2) If $X = c_0(I)$, either Z is a subspace of $\ell_{\infty}(\kappa)$ or there is a copy of $c_0(\kappa^+)$ inside Z such that the restriction of q is an isomorphism.

Other candidates: twisted sums of $C(\omega^{\omega})$

- Our proof relies heavily on the fact that every twisted sum of $c_0(I)$ -spaces can be embedded in a "natural C(K)-space.
- It is unlikely that a representation theorem for twisted sums of $C(\omega^{\omega})$ is true:

There is a twisted sum

$$0 \longrightarrow C(\omega^{\omega}) \longrightarrow Z \xrightarrow{q} C(\omega^{\omega}) \longrightarrow 0$$

in which the quotient map q is strictly singular.

In particular:

- Z^* is isomorphic to ℓ_1 .
- But Z is not isomorphic to an ℓ_1 -predual.

Future perspectives

Question 3

Is every twisted sum of $C(\omega^{\omega})$ and $C(\omega^{\omega})$ isomorphically polyhedral?

Despite our results, we still do not know:

Question 4

If X is isomorphically polyhedral, is every twisted sum of $c_0(I)$ and X isomorphically polyhedral?

Thank you very much for your attention!