Countable unions of operator ranges and spaceability

Miguel Ángel Ruiz Risueño Departamento de Matemáticas, Universidad de Castilla-La Mancha Joint work with Mar Jiménez Sevilla and Sebastián Lajara

> Workshop on Banach spaces and Banach lattices ICMAT, Madrid, May 2024

- 2 Increasing sequences of operator ranges
- 3 Countable unions and spaceability
- Quasicomplements with disjointness properties
- 5 Separable quotients and rangeability

2 Increasing sequences of operator ranges

3 Countable unions and spaceability

Quasicomplements with disjointness properties

5 Separable quotients and rangeability

Definition (Operator range)

A linear subspace $R \subset E$ is an operator range if there exist a Banach space F and an operator $T : F \to E$ such that

$$R=T(F).$$

Theorem (Rosenthal, 1969; Saxon and Wilansky, 1979)

Let E be a Banach space. Then TFAE:

- There exists $X \subset E$ closed such that E/X is separable.
- **②** There exists a proper dense operator range in *E*.
- There exists a strictly increasing chain of closed subspaces {X_m}_m in E such that ∪_m X_m is dense in E.
- **③** There exists a pair of proper **quasicomplements** $Y_1, Y_2 \subset E$; i. e.,

$$Y_1 \cap Y_2 = \{0\}, \quad \overline{Y_1 + Y_2} = E \quad \text{and} \quad Y_1 + Y_2 \neq E.$$

< (17) > < (27 >)

Theorem (Plichko, 1981; Drewnowski, 1984)

If *E* is a Banach space, then for every infinite-codimensional operator range *R* in *E*, the set $(E \setminus R) \cup \{0\}$ is **spaceable**, i. e., there exists $X \subset E$ closed with dim $X = \infty$ s. t.

$$R \cap X = \{0\}.$$

Theorem (Kitson and Timoney, 2011)

Let E be a Banach space. Let R_m be operator ranges and set

$$R = \operatorname{span}\left(\bigcup_m R_m\right).$$

If R is not closed in E, then

$$(E \setminus R) \cup \{0\}$$
 is spaceable.

Notation

 $\mathcal{R}(E) = \{R \subset E : R \text{ operator range with } \operatorname{codim}_{E} R = \infty\}$ $\mathcal{R}_{d}(E) = \{R \subset E : R \text{ proper dense operator range}\}$ $\mathcal{S}(E) = \left\{\bigcup_{m} R_{m} \subset E : \{R_{m}\}_{m} \subset \mathcal{R}(E)\right\}$

3

Increasing sequences of operator ranges

3 Countable unions and spaceability

Quasicomplements with disjointness properties

5 Separable quotients and rangeability

Theorem (Bennett and Kalton, 1973)

Let $\{X_m\}_m$ be a strictly increasing chain of closed subspaces in E such that

$$\overline{\bigcup_m X_m} = E.$$

Then there exists $R \in \mathcal{R}_d(E)$ such that

$$\bigcup_m X_m \subset R.$$

Miguel Ángel Ruiz Risueño Countable operator ranges and spaceability

Let $\{R_m\}_{m\geq 1}\subset \mathcal{R}(E)$ be a strictly increasing sequence such that

$$\bigcup_m R_m = E.$$

Then there exists $R \in \mathcal{R}_d(E)$ such that

$$\bigcup_m R_m \subset R.$$

Miguel Ángel Ruiz Risueño Countable operator ranges and spaceability

2 Increasing sequences of operator ranges

3 Countable unions and spaceability

Quasicomplements with disjointness properties

5 Separable quotients and rangeability

If $S \in \mathcal{S}(E)$, then there is $X \subset E$ closed such that

 $S \cap X = \{0\}.$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

э

Lemma (Jiménez Sevilla and Lajara, 2023)

Let $S \in S(E)$ and $\{x_n\}_n \subset E$ minimal. Then, there exist an isomorphism $\varphi : E \to E$ and $\{u_n\}_n \subset B_E$ minimal such that

• $\varphi(x_n)$ and u_n are collinear and thus

$$\varphi([\{x_n\}_n]) = [\{u_n\}_n].$$

2 $\{u_n\}_n$ satisfies **property** (*) with respect to *S*: if $\{\alpha_n\}_n \in \ell_1$ satisfies that $\sum_n \alpha_n u_n \in S$, then

$$\alpha_n = 0$$
 for all $n \ge 1$.

Lemma (Generalization of a result by Drewnowski)

Let $\{w_j\}_j \subset E$ be a sequence of linearly independent elements and let $\{C_n\}_n$ be a sequence of bounded closed convex subsets such that

$$C_n \cap \operatorname{span}\{w_j\}_j = \emptyset$$
 for each $n \ge 1$.

Then there is a block sequence $\{z_j\}_j \subset E \setminus \{0\}$ of $\{w_j\}_j$ such that

 $C_n \cap [\{z_j\}_j] = \emptyset.$

Let *E* be a Banach space which has a quotient with separable dual, then for every $S \in S(E^*)$ there exists $Z \subset E^*$ *w*^{*}-closed such that

 $S\cap Z=\{0\}.$

Theorem (Johnson and Rosenthal, 1972

If E^* is separable, then there exists $\{f_n\}_n \subset E^*$ w*-basic such that $[\{f_n\}_n]$ is w*-closed.

2 Increasing sequences of operator ranges

3 Countable unions and spaceability

Quasicomplements with disjointness properties

5 Separable quotients and rangeability

Theorem (Cross and Shevchik, 1998)

Let *E* be a separable Banach space and let $R \in \mathcal{R}(E)$. Then there exists a pair of proper quasicomplements $X, Y \subset E$ such that

 $R\cap (X+Y)=\{0\}.$

15 / 27

Definition (Nuclear operator)

A bounded operator $T : E \to F$ is **nuclear** if there exist $\{x_n\}_{n \ge 1} \subset E$ and $\{f_n\}_{n \ge 1} \subset E^*$ such that $\sum_n \|f_n\| \|x_n\| < \infty$ and

$$T(u)=\sum_n f_n(u)x_n, \quad u\in E.$$

Definition (Nuclearly adjacent quasicomplements)

Let X, Y be two quasicomplements in E. Y is **nuclearly adjacent** to X if for the quotient map $Q_X : E \to E/X$, the restriction $Q_X|_Y$ is a nuclear map.

X and Y are **mutually** nuclearly adjacent if X is nuclearly adjacent to Y and vice versa.

16 / 27

Let *E* be a separable Banach space and let $S \in S(E)$. Then, for every $\varepsilon > 0$ there exists an isomorphism $\varphi : E \to E$ such that $\|\varphi - I_E\| < \varepsilon$, and a closed subspace $X \subset E$ such that

φ(X) and X are mutually nuclearly adjacent quasicomplements.
(φ(X) + X) ∩ S = {0}.

Definition (*M*-basis)

A biorthogonal system $\{x_n, f_n\}_n \subset E$ is a Markushevich basis (*M*-basis) if

$$[\{x_n\}_n] = E \quad \text{and} \quad \overline{[\{f_n\}]}^{w^*} = E^*.$$

Lemma (Jiménez Sevilla and Lajara, 2023)

Let $S \in S(E)$ and $\{x_n\}_n \subset E$ minimal. Then, there exist an isomorphism $\varphi : E \to E$ and $\{u_n\}_n \subset B_E$ minimal such that

 $\|\varphi - I_E\| < \varepsilon.$

2 $\varphi(x_n)$ and u_n are collinear and thus

$$\varphi([\{x_n\}_n]) = [\{u_n\}_n].$$

● $\{u_n\}_n$ satisfies **property** (*) with respect to *S*: if $\{\alpha_n\}_n \in \ell_1$ satisfies that $\sum_n \alpha_n u_n \in S$, then

$$\alpha_n = 0$$
 for all $n \ge 1$.

Theorem (Jiménez Sevilla and Lajara, 2023)

Let *E* be a separable Banach space, let $X \subset E$ and let $\{R_k\}_{k \ge 1} \subset \mathcal{R}(E)$ be such that

$$X\subset \bigcap_{k\geq 1}R_k.$$

Then, for every $\varepsilon > 0$ there exists an isomorphism $\varphi : E \to E$ with $\|\varphi - I_E\| < \varepsilon$ satisfying the following properties:

- $\varphi(X)$ is a nuclearly adjacent quasicomplement of Y and $\varphi(X) \cap \left(\bigcup_{k \ge 1} R_k\right) = \{0\}.$
- **2** X is a nuclearly adjacent quasicomplement of $\varphi(Y)$.

Suppose that *E* is separable and let $S \in \mathcal{S}(E)$. Then, for every $Y \subset E$ and every $\varepsilon > 0$ there exist two isomorphisms $\psi, \varphi : E \to E$ such that $\|\psi - I_E\| < \varepsilon$ and $\|\varphi - I_E\| < \varepsilon$, and a closed subspace $X \subset \psi(Y)$ such that

φ(X) and X are mutually nuclearly adjacent quasicomplements.
(φ(X) + X) ∩ S = {0}.

Theorem (dual version)

Suppose that E^* is separable and let $S \in \mathcal{S}(E^*)$. Then, for every $Y \subset E^*$ and every $\varepsilon > 0$ there exist two isomorphisms $\psi, \varphi : E \to E$ such that $\|\psi - I_E\| < \varepsilon$ and $\|\varphi - I_E\| < \varepsilon$, and $Z \subset \psi^*(Y)$ w*-closed such that (1) $\varphi^*(Z)$ and Z are mutually nuclearly adjacent quasicomplements. (2) $(\varphi^*(Z) + Z) \cap S = \{0\}$.

3

Theorem (Johnson, 1973)

Let *E* be a Banach space s. t. E^* is separable and let $Y \subset E^*$. Then there exists a w^* -closed quasicomplement $Z \subset E$ of *Y*.

Theorem

Let *E* be a Banach space s. t. E^* is separable and let $\{R_m\}_{m\geq 1} \subset \mathcal{R}(E^*)$ such that

$$\bigcap_m R_m \quad \text{is spaceable.}$$

Then, for every $Z \subset \bigcap_m R_m$ closed there exists $Y \subset E^*$ w*-closed which is a quasicomplement of Z and

$$\left(\bigcup_m R_m\right)\cap Y=\{0\}.$$

2 Increasing sequences of operator ranges

3 Countable unions and spaceability

Quasicomplements with disjointness properties

5 Separable quotients and rangeability

MAD 2024

Proposition (Jiménez Sevilla and Lajara, 2024)

Let *E* be a Banach space and $R \in \mathcal{R}_d(E)$. Then there exists $X \subset E$ closed such that E/X is separable and

 $\operatorname{codim}_{E}(R+X) = \infty.$

Proposition

Let *E* be a Banach space with a separable quotient and let $\{R_m\}_{m\geq 1} \subset \mathcal{R}(E)$. Then TFAE:

- (1) There exists $X \subset E$ closed such that E/X is separable and $\operatorname{codim}_E(R_m + X) = \infty$ for all $m \ge 1$.
- (2) There exists a pair of quasicomplements X, Y ⊂ E such that codim_E(R_m + X + Y) = ∞ for all m ≥ 1.
- (3) There exists $R \in \mathcal{R}_d(E)$ such that $\operatorname{codim}_E(R_m + R) = \infty$ for all $m \ge 1$.

24 / 27

Let *E* be a Banach space with w^* -separable dual and let $\{R_m\}_{m\geq 1} \subset \mathcal{R}(E)$. Then TFAE:

- (1) There exists $X \subset E$ closed such that E/X is separable, codim_E($R_m + X$) = ∞ and $R_m \cap X = \{0\}$ for all $m \ge 1$.
- (2) There exists $X \subset E$ closed such that E/X is separable, $\operatorname{codim}_E(R_m + X) = \infty$ and $R_m \cap X = \{0\}$, and for every $\varepsilon > 0$ there exists an isomorphism $\varphi : E \to E$ with $\|\varphi - I_E\| < \varepsilon$ such that $\varphi(R_m + X) \cap (R_m + X) = \{0\}$ for all $m \ge 1$ and $\varphi(X)$ and X are mutually nuclearly adjacent quasicomplements.
- (3) There exist $X, Y \subset E$ mutually nuclearly adjacent quasicomplementary such that $R_m \cap (X + Y) = \{0\}$ for all $m \ge 1$.
- (4) There exists $R \in \mathcal{R}_d(E)$ such that $R_m \cap R = \{0\}$ for all $m \ge 1$.

э

- G. Bennet and N. J. Kalton, *Inclusion theorems for K-spaces*, Can. J. Math., **25** (1973), no. 3, 511-524.
- R. W. Cross and V. V. Shevchik, *Disjointness of operator ranges in Banach spaces*, Quaest. Math. **21** (1998), no. 3-4, 247–260.
- [3] L. Drewnowski, *Quasi-complements in F-spaces*, Studia Mathematica **77** (1984), no. 4, 373-391.
- [4] V. P. Fonf, One property of families of imbedded Banach spaces, Translation of Teor. Funktsii Funktsional. Anal. i Prilozhen. No. 55 (1991), 140–145. J. Soviet Math.
- [5] M. Jiménez Sevilla, S. Lajara and M. Á. Ruiz Risueño, *Countable unions of operator ranges and spaceability*, Preprint (in preparation).

▲ 同 ▶ → ● ▶

- [6] W. Johnson and H. Rosenthal, On w*-basic sequences and their applications to the study of Banach spaces, Studia Mathematica 43 (1972), no. 1, 77-92.
- [7] A. N. Plichko, Selection of subspaces with special properties in a Banach space and some properties of quasicomplements, Funct. Anal. Appl. 15 (1981), no. 1, 67-68.
- [8] S. A. Saxon and A. Wilansky, *The equivalence of some Banach space problems*, Colloq. Math., **2**, 1977, 217-226.