Banach lattices with disjointness preserving isometries: Linear versus vector lattice structures

Yves Raynaud

Institut de Mathématiques de Jussieu Paris Rive Gauche (Sorbonne-Université)

Workshop on Banach spaces and Banach lattices ICMAT May 20-24, 2024

- 2. Logic background
- 3. The ultraroot problem
- 4. Transferring axiomatizability

Basic definitions

Definition

Let $(E_i)_{i \in I}$ be a family of Banach spaces indexed by I and \mathcal{U} be an utrafilter over the index set I. The *ultraproduct* $\prod_{i,\mathcal{U}} E_i$ is defined as the quotient Banach space

$$\ell_{\infty}(E_i; i \in I)/c_{0,\mathcal{U}}(E_i; i \in I)$$

with $\ell_{\infty}(E_i; i \in I)$ = space of bounded families in $\prod_{i \in I} E_i$ with sup-norm and $c_{0,\mathcal{U}}(E_i; i \in I)$ = the subspace of families \mathcal{U} -converging to zero. If $E_i = E$ for all $i \in I$ then we speak of an *ultrapower* of E, denoted by $E_{\mathcal{U}}$.

Notation

If
$$(x_i) \in \ell_{\infty}(E_i; i \in I)$$
 denote by $[x_i]_{\mathcal{U}}$ the element it defines in $\prod_{i,\mathcal{U}} E_i$.

Remark

$$\|[x_i]_{\mathcal{U}}\| = \lim_{i,\mathcal{U}} \|x_i\|$$

Lattice ultraproducts

These concepts extend easily to other categories of *normed structures*, i. e. Banach spaces with additional structures: Banach lattices, modulared Banach spaces, Banach algebras, operator spaces...

In this talk, beside the category of Banach spaces we shall consider only that of Banach lattices.

If (E_i) = Banach lattices, then $\ell_{\infty}(E_i; i \in I)$ is also a Banach lattice and $c_{0,\mathcal{U}}(E_i; i \in I)$ is a closed order ideal in this Banach lattice. Thus the quotient $\prod_{\mathcal{U}} E_i$ has a natural Banach lattice structure too.

The inf operation on the ultraproduct $\prod_{\mathcal{U}} E_i$ is given by

 $[x_i]_{\mathcal{U}} \wedge [y_i]_{\mathcal{U}} = [x_i \wedge y_i]_{\mathcal{U}}$

Some classes which are closed under ultraproducts

- C(K) spaces (as Banach lattices or as Banach algebras)
- L_p -spaces, $1 \le p < \infty$ (Banach lattices) [Krivine, Henson-Moore]
- Nakano spaces $L_{p(\cdot)}$ (or Lebesgue spaces with variable exponents). The class $\mathcal{N}_{\mathcal{K}}$ of Nakano spaces with exponent function taking values in a given compact set $\mathcal{K} \subset [1, \infty)$ is closed by ultraproducts. (as Banach lattices)
- Preduals of von Neumann algebras. [U. Groh]
- General non-commutative L_p -spaces, $1 \le p < \infty$ (Operator spaces) [YR].

Classes which are not closed under ultrapowers, but...

but a suitable enlargement is closed under ultraproducts:

- $L_p + L_q$ -spaces, $1 \le p \ne q < \infty$; but the class of "generalized sums" $L_p(\Omega_1) + L_q(\Omega_2)$ (Ω_1 , Ω_2 subsets of the same measure space) is closed under ultraproducts. [YR]
- Orlicz spaces. But the class of Musielak-Orlicz spaces (generalized Orlicz spaces with variable Orlicz function) satisfying a prescribed uniform Δ₂-estimate is closed under ultraproducts. [Dacunha-Castelle]
- $L_p(L_q)$ -spaces. But the class BL_pL_q of Banach lattices isomorphic to a band in some $L_p(L_q)$ -space, $1 \le p \ne q < \infty$ is closed under ultraproducts. [M. Levy, Y.R]

How similar are a normed structure and its ultrapowers?

- A normed structure and its ultrapowers have "approximatively" the same set of finite dimensional substructures.
- Indeed
 - ► the canonical embedding D_E : E → E_U, x ↦ [x]_U preserves the norm and the operations.
 - $E_{\mathcal{U}}$ is finitely representable in E .
- In fact the similarity between E and E_U goes far beyond finite representability.
 - ► To clarify this question C. W. Henson introduced his "logic of positive bounded formulas and approximate satisfaction", for B. space setting.
 - It was later adapted to normed space structures by Henson and Iovino.
 - Later on "Continuous Logic" was designed for model theoretical purposes (but is more adapted to bounded metric structures). [Ben Yaacov, Berenstein, Henson, Usviatsov]

Sentences in Henson's language

Such sentences have the form

$$Q_{r_1}^1 x_1 Q_{r_2}^2 x_2 \dots Q_{r_n}^n x_n \varphi(x_1, \dots x_n)$$

The variables $x_1, \ldots x_n$ represent elements of the normed structure (but never heigher level objects like subsets, functions ...).

Each Q^i is a quantifier (\forall or \exists). $Q^i_{r_i}$ means that the scope of the quantifier Q^i is limited to the ball of radius r_i .

 φ is a logical formula which is constructed iteratively from basic formulas using the logical connectives \land and \lor (but never \neg).

Basic formulas

The basic formulas have the form

 $F(||t_1(x_1,\ldots,x_n)||, ||t_2(x_1,\ldots,x_n)||,\ldots,||t_m(x_1,\ldots,x_n)||) \le r$ where r is a real constant, $F : \mathbb{R}^m \to \mathbb{R}$ is a continuous function and the $t_j(x_1,\ldots,x_n)$ are "terms".

- In the language of Banach spaces such terms are simply linear combinations: t(x₁,..., x_n) = ∑_{j=1}ⁿ a_jx_j (the a_j's are real constants).
- In the language of Banach lattices the terms are more complicated, since their writing may involve the lattice operations ∧ and ∨.

Approximate satisfaction

- Given a sentence A we define a set of weakenings of A by "relaxing all the conditions appearing in basic formulas and quantifiers".
- A is approximately satisfied in a normed structure E if all of its weakenings are satisfied in E.

Two classical theorems revisited

If X is a normed structure the *theory* of X is the set Th(X) of all sentences that are approximately satisfied in X.

Theorem (Loś)

X and any of its ultrapowers have the same theory.

Theorem (Shelah; Henson; Henson-Iovino)

X and Y have the same theory iff they have two isomorphic ultrapowers (that is, $X_{\mathcal{U}} \simeq Y_{\mathcal{U}}$, for some ultrafilter \mathcal{U}).

Remark

An isomorphism preserves not only the operations of the category under consideration *but also the norm* so it must be isometric.

Axiomatizable classes

Let $\ensuremath{\mathcal{C}}$ be a class of normed structures.

- The theory of C is the set Th(C) of all sentences approximately satisfied by all elements of C.
- A normed structure which satisfies approximately all sentences in Th(C) is called a *model* of Th(C).
- C is called axiomatizable if it contains all the models of Th(C).

Theorem

A normed structure X is a model of Th(C) iff some ultrapower of X is isomorphic to some ultraproduct of members of C.

Corollary

 ${\cal C}$ is axiomatizable iff it is closed under isomorphisms, ultraproducts, and ultraroots.

(X is an ultraroot of Y if for some ultrafilter $X_{\mathcal{U}} \simeq Y$.)

Ultraroots: the Banach space case

Within the list of classes of Banach spaces which are closed under ultraproduct, very few are known to be closed under ultraroots (and thus axiomatizable):

- L_p -spaces, $1 \le p < \infty$ (Henson)
- L₁-preduals, and various subclasses (in particular, C(K) spaces) (Heinrich, 1981)
- *p*-direct sums of spaces $L_p(H_i)$, $1 , <math>H_i$ Hilbert (Y.R., 2004)

Ultraroots: the Banach lattice case

In the Banach lattice setting, the question is easier to settle. Classes known to be axiomatizable in the Banach lattice setting are

- L_p -spaces, $1 \le p < \infty$ (easy), C(K) spaces.
- The class $\mathcal{MO}_{\mathcal{K}}$ of Musielak-Orlicz spaces, satisfying an uniform Δ_2 -estimate with constant \mathcal{K} (easy).
- The class $\mathcal{N}_{\mathcal{K}}$ of Nakano spaces, $\mathcal{K} \subset [1,\infty)$ (Poitevin, 2006)
- BL_pL_q -spaces, $1 \le p, q < \infty$ (C.W. Henson, Y. R., 2007.)

Tools for showing closure under ultraroots

- the class is closed under substructures [$E \subset E_U$ as a substructure]
- the class is closed under contractive projections (on a substructure) and consists of reflexive B. spaces or of B. lattices not containing c_0 [A contractive projection $E_U \rightarrow E$ exists in both cases]
- the class equals its script-class (example: class of L_p spaces = class $SL_{p,1}$ of isometric script L_p spaces)
- duality (for a class of superreflexive normed structures)
- convexification/concavification (Banach lattices setting) [Both operations preserve ultraproducts]

All these tools are internal to the category to which belongs the class (B. spaces, B. lattices...) In this talk we shall introduce a new tool which links distinct categories:

Property DPIU

We introduce now a property which provides a direct link between axiomatizability in Banach lattice sense and in Banach space sense.

Definition

We say that a Banach lattice L has property DPIU if every linear isometric embedding of L into any of its ultrapowers preserves disjointness.

Example

For
$$1 \le p < \infty$$
, $p \ne 2$, L_p spaces have property DPIU.

Indeed for $p \in [1,2) \cap (2,\infty)$, disjointness of two elements x, y in a given L_p -space is characterized by the equation:

$$||x + y||^{p} + ||x - y||^{p} = 2(||x||^{p} + ||y||^{p})$$

which involves only Banach spaces operations and the norm. Thus any isometry from a L_p -space to another one is disjointness preserving.

Other classes of Banach lattices with DPIU

Let us say that a Banach lattice X is exactly *s*-convex (resp. *s*-concave) iff it is *r*-convex (resp.concave) with constant one, i.e.

$$\forall x_1, \dots, x_n \in X \quad \|(\sum_i |x_i|^s)^{1/s}\| \le (\sum_i \|x_i\|^s)^{1/s} \quad (\text{resp.} \ge)$$

Proposition

Let X, Y be exactly r-convex Banach lattices, r > 2, with stricly monotone norms. Every linear isometry from X to Y preserves disjointness.

Corollary

Every exactly r-convex, s-concave Banach lattice, with $2 < r \le s < \infty$ has property (DPIU).

Proposition

Let $1 \le p, q < \infty$ with $p, q \ne 2$. If p > 2 or q > 2, the class BL_pL_q has property (DPIU).

From Lattice to Banach axiomatizability

Theorem (Banach ultraroots of DPIU lattices)

Let L be an order continuous Banach lattice satisfying (DPIU). Assume that X is a Banach space which has an ultrapower $X_{\mathcal{U}}$ linearly isometric to L. Then X itself is linearly isometric to a closed sublattice Y of L. Furthermore the ultrapower $Y_{\mathcal{U}}$ is lattice isomorphic to L.

As an immediate corollary we obtain the main result of this section:

Theorem (Transfer of axiomatizability: Y.R.)

Let C be an axiomatizable class of Banach lattices consisting of order continuous Banach lattices with property (DPIU). Then the class C^B of Banach spaces linearly isometric to members of C is axiomatizable.

Vector sublattices "up to a sign change"

Let X be a Banach lattice.

- A sign change on X is a modulus preserving operator $U: X \to X$.
- Equivalently U = P Q, where P, Q are complementary band projections. If X can be represented as a Köthe function space, U is a sign multiplication operator.
- A linear subspace *E* of *X* is called a "sublattice up to a sign change" if for some sign change *U*, *UX* is a vector sublattice of *X*.

An intrinsic characterization of vector sublattices up to a sign change

Notation (Lacey's b-function)

For $x, y \in X$ set $b(x, y) = |x| \wedge y_+ - |x| \wedge y_-$.

Lemma

Assume that X is an order continuous Banach lattice. Then for a closed linear subspace E of X the following assertions are equivalent: i) E is a closed vector sublattice up to a sign change. ii) The function b maps $E \times E$ into E.

Lemma

The function b is preserved under bounded linear disjointness preserving maps: i. e. Tb(x, y) = b(Tx, Ty) for such a map $T : X \to Y$.

Banach ultraroots of Banach lattices: sketch of proof

Let *L* be a lattice with DPIU property, *X* a Banach space such that X_U is linearly isometric to *L*.

X is linear isometric to a subspace of $X_{\mathcal{U}}$, and thus to a subspace X_0 of L. We may assume w.l.o.g. $X = X_0$. We prove that X is a vector sublattice up to a sign change.

Then the isometry $J: L \to X_U$ fixes points of X, this gives a commutative diagramme, that we insert in a second one. We complete by setting $S = i_U J$.

Proof cont'd

Note that

- the isometry S is disjointness preserving (DPIU property for L).

- For the natural position of L in $L_{\mathcal{U}}$ we have $X = L \cap X_{\mathcal{U}}$ (*) (i.e. $i_{\mathcal{U}}X_{\mathcal{U}} \cap D_L L = i_{\mathcal{U}}D_X X$).

Since S is disjointness preserving and D_L is a vector lattice isomorphism, we have for $x, y \in X$

$$i_{\mathcal{U}}Jb(ix, iy) = Sb(ix, iy) = b(Six, Siy) = b(D_Lix, D_Liy) = D_Lb(ix, iy)$$

which implies by (*) that $Jb(ix, iy) = D_X z = Jiz$, for some $z \in X$, hence b(ix, iy) = iz and thus iX = X is a (closed) vector sublattice up to a sign change in L.

Final step

We have $X \simeq E \subset L$, with E a Banach sublattice of L. Thus passing to ultrapowers:

$$L\simeq X_{\mathcal{U}}\simeq E_{\mathcal{U}}\subset L_{\mathcal{U}}$$

Consider the maps

$$L \xrightarrow{V} E_{\mathcal{U}} \xrightarrow{j_{\mathcal{U}}} L_{\mathcal{U}}$$

V linear isometry (onto), $j_{\mathcal{U}}$ inclusion map.

DPIU for $L \implies j_{\mathcal{U}} V$ is disjointness preserving

 $j_{\mathcal{U}}$ is a normed lattice embedding $\implies V$ also disjointness preserving. By a general theorem it has a modulus |V| which is an isometric lattice isomorphism.

Thus *E* is a Banach lattice ultraroot of *L*.

After reading our work, Henson found an improvement of our result.

Definition (C.W. Henson)

A Banach lattice X has property DPA [*Disjointness preserving automorphisms*] if every surjective linear isometry from X to itself preserves disjointness.

Theorem (C. W. Henson, unpublished manuscript)

If C is an axiomatizable class of order continuous Banach lattices and every member of C has DPA, then C^B is an axiomatizable class of Banach spaces.