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1. Preliminaries: ultraproducts 1.1 Basic definitions

Basic definitions
Definition
Let (E;j)jc/ be a family of Banach spaces indexed by / and U be an

utrafilter over the index set /. The ultraproduct H,-M E; is defined as the
quotient Banach space

EOO(E,'; i € /)/COJ,{(E,‘; i € I)

with {oo(Ej; i € I)= space of bounded families in ], E; with sup-norm
and ¢y (Ej; i € I)= the subspace of families {/-converging to zero.
If E; = E for all i € | then we speak of an ultrapower of E, denoted by Eu.J

Notation
If (x;) € loo(Ei; i € 1) denote by [xi]y/ the element it defines in [, E;.

Remark

1Dxiluall = limj a1 ]|
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1. Preliminaries: ultraproducts 1.1 Basic definitions

Lattice ultraproducts

These concepts extend easily to other categories of normed structures, i.
e. Banach spaces with additional structures: Banach lattices, modulared
Banach spaces, Banach algebras, operator spaces...

In this talk, beside the category of Banach spaces we shall consider only
that of Banach lattices.

If (E;) = Banach lattices, then ¢ (E;; i € I) is also a Banach lattice and
cou(Ei; i € 1) is a closed order ideal in this Banach lattice.

Thus the quotient ], E; has a natural Banach lattice structure too.

The inf operation on the ultraproduct [[,, E; is given by

[xilue A lvilu = [xi A yilu
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1. Preliminaries: ultraproducts 1.2 Examples

Some classes which are closed under ultraproducts

o C(K) spaces (as Banach lattices or as Banach algebras)
o L,-spaces, 1 < p < oo (Banach lattices) [Krivine,Henson-Moore]

o Nakano spaces L.y (or Lebesgue spaces with variable exponents).
The class Nk of Nakano spaces with exponent function taking values
in a given compact set K C [1,00) is closed by ultraproducts. (as
Banach lattices)

@ Preduals of von Neumann algebras. [U. Groh]

@ General non-commutative L,-spaces, 1 < p < oo (Operator spaces)
[YR].
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1. Preliminaries: ultraproducts 1.2 Examples

Classes which are not closed under ultrapowers, but...

but a suitable enlargement is closed under ultraproducts:

o L, + Lg-spaces, 1 < p # q < oo; but the class of “generalized sums”
Lp(21) + Lg(€22) (€21, Q2 subsets of the same measure space) is
closed under ultraproducts. [YR]

@ Orlicz spaces. But the class of Musielak-Orlicz spaces (generalized
Orlicz spaces with variable Orlicz function) satisfying a prescribed
uniform Aj-estimate is closed under ultraproducts.
[Dacunha-Castelle]

o L,(Lg)-spaces. But the class BL,L, of Banach lattices isomorphic to
a band in some L,(Lg)-space, 1 < p # q < oo is closed under
ultraproducts. [M. Levy, Y.R]
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2. Logic background 2.1 Henson's logic

How similar are a normed structure and its ultrapowers?

@ A normed structure and its ultrapowers have “approximatively” the
same set of finite dimensional substructures.

@ Indeed
» the canonical embedding Dg : E — Eyy, x — [x]y preserves the norm
and the operations.
> E is finitely representable in E .

@ In fact the similarity between E and E;; goes far beyond finite
representability.

» To clarify this question C. W. Henson introduced his “logic of positive
bounded formulas and approximate satisfaction” , for B. space setting.
> It was later adapted to normed space structures by Henson and lovino.

» Later on “Continuous Logic” was designed for model theoretical
purposes (but is more adapted to bounded metric structures).
[Ben Yaacov, Berenstein, Henson, Usviatsov]
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2. Logic background 2.1 Henson's logic

Sentences in Henson's language

Such sentences have the form
1 2
Qrx1Qnx2 ... Q xn @(x1, ... Xp)

The variables xi, . .. x, represent elements of the normed structure (but
never heigher level objects like subsets, functions ...).

Each Q' is a quantifier (V or 3). Q;'I, means that the scope of the
quantifier Q' is limited to the ball of radius r;.

@ is a logical formula which is constructed iteratively from basic formulas
using the logical connectives A and V (but never —).
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2. Logic background 2.1 Henson's logic

Basic formulas

The basic formulas have the form

F(llti(xt, - x|l e2(xa, oo xn)ll - - o5 [lEm(xa, - oxn)|]) < r

where r is a real constant, F : R™ — R is a continuous function and the
ti(x1,...xn) are “terms”.

@ In the language of Banach spaces such terms are simply linear
combinations: t(x1,...,x,) = >.7_; a;x; (the a;'s are real constants).

@ In the language of Banach lattices the terms are more complicated,
since their writing may involve the lattice operations A and V.
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2. Logic background 2.1 Henson's logic

Approximate satisfaction

@ Given a sentence A we define a set of weakenings of A by “relaxing all
the conditions appearing in basic formulas and quantifiers”.

@ A is approximately satisfied in a normed structure E if all of its
weakenings are satisfied in E.
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Two classical theorems revisited
If X is a normed structure the theory of X is the set Th(X) of all
sentences that are approximately satisfied in X.

Theorem (Los)

X and any of its ultrapowers have the same theory.

Theorem (Shelah; Henson; Henson-lovino)

X and Y have the same theory iff they have two isomorphic ultrapowers
(that is, Xyy ~ Yy, for some ultrafilter U ).

Remark

An isomorphism preserves not only the operations of the category under
consideration but also the norm so it must be isometric.
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2. Logic background 2.3 Axiomatizable classes

Axiomatizable classes
Let C be a class of normed structures.

@ The theory of C is the set Th(C) of all sentences approximately
satisfied by all elements of C.

@ A normed structure which satisfies approximately all sentences in
Th(C) is called a model of Th(C).

@ C is called axiomatizable if it contains all the models of Th(C).

Theorem

A normed structure X is a model of Th(C) iff some ultrapower of X is
isomorphic to some ultraproduct of members of C.

Corollary

C is axiomatizable iff it is closed under isomorphisms, ultraproducts, and
ultraroots.

(X is an ultraroot of Y if for some ultrafilter Xy ~ Y'.)
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3. The ultraroot problem 3.1: Axiomatizable classes: known results

Ultraroots: the Banach space case

Within the list of classes of Banach spaces which are closed under
ultraproduct, very few are known to be closed under ultraroots (and thus
axiomatizable):

o L,-spaces, 1 < p < oo (Henson)

@ Lj-preduals, and various subclasses (in particular, C(K) spaces)
(Heinrich, 1981)

e p-direct sums of spaces L,(H;), 1 < p < oo, H; Hilbert (Y.R., 2004)
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3. The ultraroot problem 3.1: Axiomatizable classes: known results

Ultraroots: the Banach lattice case

In the Banach lattice setting, the question is easier to settle. Classes
known to be axiomatizable in the Banach lattice setting are
o L,-spaces, 1 < p < oo (easy), C(K) spaces.
@ The class MOk of Musielak-Orlicz spaces, satisfying an uniform
Ap-estimate with constant K (easy).
@ The class N of Nakano spaces, K C [1, 00) (Poitevin, 2006)
@ Bl,Lg-spaces, 1 < p,q < oo (C.W. Henson, Y. R., 2007.)
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3. The ultraroot problem 3.2 Tools for closure under ultraroots

Tools for showing closure under ultraroots

o the class is closed under substructures [E C Ey as a substructure]

o the class is closed under contractive projections (on a substructure)
and consists of reflexive B. spaces or of B. lattices not containing ¢
[A contractive projection Eyy — E exists in both cases|

@ the class equals its script-class (example: class of L, spaces = class
SLp 1 of isometric script L, spaces)

@ duality (for a class of superreflexive normed structures)

@ convexification/concavification (Banach lattices setting)
[Both operations preserve ultraproducts|

All these tools are internal to the category to which belongs the class (B.
spaces, B. lattices...) In this talk we shall introduce a new tool which links
distinct categories:
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AR
Property DPIU

We introduce now a property which provides a direct link between
axiomatizability in Banach lattice sense and in Banach space sense.

Definition
We say that a Banach lattice L has property DPIU if every linear isometric
embedding of L into any of its ultrapowers preserves disjointness.

v

Example
For 1 < p < o0, p# 2, L, spaces have property DPIU.

Indeed for p € [1,2) N (2, 00), disjointness of two elements x, y in a given
L,-space is characterized by the equation:

1+ y 1P+ lix = ylIP = 2([x117 + [y 117)

which involves only Banach spaces operations and the norm.
Thus any isometry from a L,-space to another one is disjointness
preserving.
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4. Transferring axiomatizability 4.1 DPIU property

Other classes of Banach lattices with DPIU

Let us say that a Banach lattice X is exactly s-convex (resp. s-concave) iff
it is r-convex (resp.concave) with constant one, i.e.

Vi, € X O )Y < O I16l9)Y5 (vesp. >)
i i

Proposition

Let X, Y be exactly r-convex Banach lattices, r > 2, with stricly monotone

norms. Every linear isometry from X to Y preserves disjointness.

v

Corollary

Every exactly r-convex, s-concave Banach lattice, with2 < r < s < oo has
property (DPIU).

v

Proposition

Let1 < p,q<oowithp,q#2. Ifp>2orq>2, the class BL,L, has
property (DPIU).
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RN IEE SN IEINETPEl WAl 4.2 Main theorem

From Lattice to Banach axiomatizability

Theorem (Banach ultraroots of DPIU lattices)

Let L be an order continuous Banach lattice satisfying (DPIU). Assume
that X is a Banach space which has an ultrapower Xy, linearly isometric to
L. Then X itself is linearly isometric to a closed sublattice Y of L.
Furthermore the ultrapower Yy, is lattice isomorphic to L.

As an immediate corollary we obtain the main result of this section:

Theorem (Transfer of axiomatizability: Y.R.)

Let C be an axiomatizable class of Banach lattices consisting of order
continuous Banach lattices with property (DPIU). Then the class CB of
Banach spaces linearly isometric to members of C is axiomatizable.
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N VS S eI E P2 ITWAl  4.3. Preparation to proof

Vector sublattices "up to a sign change”

Let X be a Banach lattice.
@ A sign change on X is a modulus preserving operator U : X — X.

e Equivalently U= P — Q, where P, @ are complementary band
projections. If X can be represented as a Kothe function space, U is a
sign multiplication operator.

@ A linear subspace E of X is called a “sublattice up to a sign change”
if for some sign change U, UX is a vector sublattice of X.
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4. Transferring axiomatizability 4.3. Preparation to proof

An intrinsic characterization
of vector sublattices up to a sign change

Notation (Lacey’'s b-function)
For x,y € X set b(x,y) = |x| Ays+ — |x| Ay_.

Lemma

Assume that X is an order continuous Banach lattice. Then for a closed
linear subspace E of X the following assertions are equivalent:

i) E is a closed vector sublattice up to a sign change.

i) The function b maps E x E into E.

Lemma

The function b is preserved under bounded linear disjointness preserving
maps: i. e. Tb(x,y) = b(Tx, Ty) forsuchamap T : X — Y.
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U NS LRV E P2 IWAN 4.4 B-ultraroots: sketch of proof

Banach ultraroots of Banach lattices: sketch of proof

Let L be a lattice with DPIU property, X a Banach space such that X, is

linearly isometric to L.
X is linear isometric to a subspace of X;;, and thus to a subspace Xj of L.
We may assume w.l.o.g. X = Xg. We prove that X is a vector sublattice

up to a sign change.

Then the isometry J : L — X fixes points Xy

of X, this gives a commutative diagramme, Dy iv
that we insert in a second one. We / TJ\
complete by setting S = iy J. X——>1 — Ly

N A
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U LS L VT E P2 SIIWAN 4.4 B-ultraroots: sketch of proof

Proof cont'd
Xu Note that

LV TJ\ - the isometry S is disjointness preserving
(DPIU property for L).

X—>L—>Lu

- For the natural position of L in Ly we
\ / have X = LN Xy (*)
(i.e. uXuyN D L= iuDXx).

Since S is disjointness preserving and D; is a vector lattice isomorphism,

we have for x,y € X
i Jb(ix, iy) = Sb(ix, iy) = b(Six, Siy) = b(Drix, Dyiy) = Dy b(ix, iy)

which implies by (*) that Jb(ix, iy) = Dxz = Jiz, for some z € X, henc

e

b(ix, iy) = iz and thus iX = X is a (closed) vector sublattice up to a sign

change in L.
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G0 B SR sy
Final step

We have X ~ E C L, with E a Banach sublattice of L.
Thus passing to ultrapowers:

L~ Xy ~EyCly

Consider the maps
LY B, 21,
V linear isometry (onto), ji; inclusion map.
DPIU for L = j;;V is disjointness preserving
Ju is a normed lattice embedding = V also disjointness preserving.
By a general theorem it has a modulus | V| which is an isometric lattice
isomorphism.
Thus E is a Banach lattice ultraroot of L. O
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CRRIELE SR EPELI WA 4.5. Further improvements

After reading our work, Henson found an improvement of our result.

Definition (C.W. Henson)

A Banach lattice X has property DPA [Disjointness preserving
automorphisms| if every surjective linear isometry from X to itself
preserves disjointness.

Theorem (C. W. Henson, unpublished manuscript)

If C is an axiomatizable class of order continuous Banach lattices and
every member of C has DPA, then CB is an axiomatizable class of Banach
spaces.
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