Presenting *p*-multinormed spaces on Banach lattices

T.O. + V.Troitsky (work in progress)

ICMAT, May 2024

Category of *p*-multinormed spaces

Definition

p-multinormed space $(1 \le p \le \infty)$ is a Banach space X equipped with a sequence of norms $\|\cdot\|_n$ on $\ell_n^p \otimes X \sim X^n$, satisfying:

- $\forall a \in \ell_n^p \text{ and } x \in X, \|a \otimes x\|_n = \|a\| \|x\| \text{ (cross-norm)}.$
- $@ \forall u: \ell^p_n \to \ell^p_m, \ \|u \otimes I_X: \ell^p_n \otimes X \to \ell^p_m \otimes X \| \leqslant \|u\| \ (\text{left tensoriality}).$

Equivalently: a left tensorial cross-norm on $\ell^p \otimes X$ ($c_0 \otimes X$ for $p = \infty$). Convention. Field of scalars = \mathbb{R} .

Why study *p*-multinormed spaces?

• "Abstract" characterization of subspaces of Banach lattices.

[Casazza, Nielsen 2001]: GL-type properties of Banach spaces via embeddings into Banach lattices.

• [Dales, Daws, Pham, Ramsden 2012]: connection between injectivity of Banach modules and amenability of locally compact groups.

Examples of *p*-multinorms

- Minimal *p*-multinorm on a Banach space X, MIN_p(X): arising from injective product ℓ^p ⊗X.
- Maximal *p*-multinorm on a Banach space X, MAX_p(X): arising from projective product ℓ^p ⊗̂X.
- *p*-power multinorm: *l*^p(X) (when X is a subquotient of an *L^p* space [Kwapien]).
- X is a Banach lattice: identify $\ell_n^p(X)$ with $X(\ell_n^p)$; $\|\sum_j \delta_j \otimes x_j\| = \|(\sum_j |x_j|^p)^{1/p}\|.$

Operators between *p*-multinormed spaces

Definition (p-multiboudned operators)

Suppose X and Y are *p*-multinormed spaces. $T \in B(X, Y)$ is *p*-multibounded if $||T||_p = ||I_{\ell^p} \otimes T|| = \sup_n ||I_{\ell^p_n} \otimes T|| < \infty$.

$$\begin{split} \|T\|_{p} \ge \|T\|, \text{ and the inequality may be strict.} \\ \textbf{Example. } p = 2, \ X = \text{MIN}_{2}(\ell_{n}^{2}), \ Y = \text{MAX}_{2}(\ell_{n}^{2}). \\ \ell_{m}^{2} \otimes X = \ell_{m}^{2} \bigotimes \ell_{n}^{2} \sim B(\ell_{m}^{2}, \ell_{n}^{2}) \text{ (injective product).} \\ \ell_{m}^{2} \otimes Y = \ell_{m}^{2} \bigotimes \ell_{n}^{2} \sim N(\ell_{m}^{2}, \ell_{n}^{2}) \text{ (projective product).} \\ \text{For } m \ge n, \ T : \ell_{m}^{2} \to \ell_{n}^{2} \text{ with singular values } \lambda_{1}, \dots, \lambda_{n}, \\ \|T\|_{\ell_{m}^{2} \otimes X} = \max_{i} \lambda_{i}, \ \|T\|_{\ell_{m}^{2} \otimes Y} = \sum_{i} \lambda_{i}. \text{ Thus, } \|id : X \to Y\|_{2} = n. \end{split}$$

Definition (p-multiisometry, p-multiisomorphism)

$$T: X \to Y$$
 is a *p*-multiisometry if $||T||_p = 1 = ||T^{-1}||_p$,
p-multiisomorphism if T, T^{-1} are *p*-multibounded.

Ordered spaces

 $C \subset X$ is a cone if $C = [0, \infty) \cdot C = C + C$. We assume all cones are closed. A cone $C \subset X$ determines order: $x \leq y$ if $y - x \in C$.

Definition (Regular spaces (normal + generating))

An ordered Banach space $(X, C, \|\cdot\|)$ is called:

- Normal if $||x|| \leq ||y||$ whenever $-y \leq x \leq y$.
- Generating if $\forall x \in X$ with $||x|| < 1 \exists y$ with $||y|| < 1, -y \leq x \leq y$.
- Regular if it is normal and generating.

Note: normality implies that C is pointed: $-C \cap C = \{0\}$. Examples of regular spaces.

- Normed lattices.
- Space of affine functions on convex compact set, with $\|\cdot\|_\infty.$
- $[S_p]_h$ the space of Hermitian matrices with *p*-Schatten norm.

Multinorms on ordered spaces

Throughout, (δ_j) is the canonical basis of ℓ^p (or c_0 if $p = \infty$). $\frac{1}{p} + \frac{1}{p'} = 1$. X is a regular Banach space.

Definition (Canonical *p*-multinorm on a regular space X) For $\overline{x} = \sum_{j=1}^{n} \delta_j \otimes x_j$, define $\|\overline{x}\|_{p,X}$ as $\inf \|u\|$, taken over all $u \in X$ s.t. $u \ge \sum_j \alpha_j x_j$ whenever $\sum_j |\alpha_j|^{p'} = 1$.

Remarks. (1) For any \overline{x} , u as above exists.

(2)
$$\left\|\sum_{j} \delta_{j} \otimes a_{j} x\right\|_{p,X} = \left(\sum_{j} |a_{j}|^{p}\right)^{1/p} \|x\|$$
. So, $\|\cdot\|_{p,X}$ is a cross-norm.
(3) $\|\cdot\|_{p,X}$ is left tensorial (see below for more).
(4) If X is a Banach lattice, then
 $\|\overline{x}\|_{p,X} = \|\vee\{\sum_{j} \alpha_{j} x_{j} : \sum_{j} |\alpha_{j}|^{p'} = 1\}\| = \|\left(\sum_{j} |x_{j}|^{p}\right)^{1/p}\|.$

Which *p*-multinorms come from ordered spaces?

Definition

We say that a *p*-multinormed space *E* is presented on a regular ordered space *X* if there exists a *p*-multiisometric embedding $J : E \to X$.

Question

Which p-multinormed spaces can be presented (on Banach lattices)?

Example: 2-multinormed spaces with no Banach lattice presentation.

Take $E = MAX_2(\ell_n^2)$. Show: if X a Banach lattice, $T : E \to X$ is a contraction, then $||T^{-1}||_2 \succ \sqrt{n}$.

$$\begin{split} \|\sum_{i=1}^{n} \delta_{i} \otimes \delta_{i}\| &= n. \text{ Let } x_{i} = T\delta_{i}. \\ \text{Want: } \|\sum_{i=1}^{n} \delta_{i} \otimes x_{i}\| &= \|(\sum_{i} |x_{i}|^{2})^{1/2}\| \prec \sqrt{n}. \\ \text{Khintchine: } (\sum_{i} |x_{i}|^{2})^{1/2} \leqslant \sqrt{2} \cdot 2^{-n} \sum_{\varepsilon_{i}=\pm 1} \left|\sum_{i} \varepsilon_{i} x_{i}\right|. \\ \|(\sum_{i} |x_{i}|^{2})^{1/2}\| &\leq \sqrt{2} \cdot 2^{-n} \sum_{\varepsilon_{i}=\pm 1} \left\|\sum_{i} \varepsilon_{i} x_{i}\right\| \leqslant \sqrt{2n}, \text{ since } \\ \|\sum_{i} \varepsilon_{i} x_{i}\| &= \left\|T(\sum_{i} \varepsilon_{i} \delta_{i})\right\| \leqslant \|\sum_{i} \varepsilon_{i} \delta_{i}\| = \sqrt{n}. \end{split}$$

Strong and super-strong multinorms

Definition (Strong multinorms)

A *p*-multinorm on a Banach space X is strong if for any $E \subset \ell_n^p$, and any $u: E \to \ell_m^p$, we have $||u \otimes I_X : E \otimes X \to \ell_m^p \otimes X|| = ||u||$ (the norm on $E \otimes X$ is inherited from $\ell_n^p \otimes X$). Stronger than left tensoriality.

Observation. For $p \in \{2, \infty\}$, any *p*-multinorm is strong.

Definition (Super-strong multinorms)

A *p*-multinormed space X is super-strong if the following holds. Suppose $J : \ell^p \to \ell^\infty$ is an isometric embedding. Suppose $\overline{x}, \overline{x_1}, \ldots, \overline{x_n} \in \ell^p \otimes X$ are finitely supported, and $S_1, \ldots, S_n : \ell^p \to \ell^\infty$ satisfy $J \cdot \overline{x} = \sum_i S_i \cdot \overline{x_i}$. Then $\|\overline{x}\| \leq \sum_i \|S_i\| \|\overline{x_i}\|$.

Proposition

Any super-strong p-multinorm is strong. The converse is false.

Strong *p*-multinorm on *X*: $\forall E \subset \ell_n^p$, $u : E \to \ell_m^p$, $\overline{y} \in E \otimes X$, we have $||u \cdot \overline{y}|| \leq ||u|| ||\overline{y}||$.

$$\begin{split} J:\ell_m^p\to\ell^\infty \text{ isometric embedding. Find extension } S:\ell_n^p\to\ell^\infty \text{ s.t.}\\ \|S\|=\|u\|,\ S|_E=Ju. \text{ Let } \overline{x}=u\cdot\overline{y}, \text{ then } \boxed{J\cdot\overline{x}=S\cdot\overline{y},\ \|\overline{x}\|\leqslant\|S\|\|\overline{y}\|} \end{split}$$

Super-strong *p*-multinorm on *X*: $J : \ell^p \to \ell^\infty$ isometric embedding. Suppose $\overline{x}, \overline{x_1}, \ldots, \overline{x_n} \in \ell^p \otimes X$ are finitely supported, and $S_1, \ldots, S_n : \ell^p \to \ell^\infty$ satisfy $J \cdot \overline{x} = \sum_i S_i \cdot \overline{x_i}$. Then $\|\overline{x}\| \leq \sum_i \|S_i\| \|\overline{x_i}\|$.

Proposition

Any super-strong p-multinorm is strong. The converse is false.

Presentation and super-strength

Theorem

For a p-multinormed space X, TFAE:

- X can be presented on a regular ordered space.
- 2 X can be presented on a Banach lattice.
- X is super-strong.

Proposition

Every ∞ -multinorm is super-strong, hence it can be presented on a Banach lattice.

Case of $p = \infty$: [L. McClaran 1994], [J. Marcolino-Nhany 2001], [Casazza, Nielsen 2001].

Some other cases: [Dales, Laustsen, O., T., 2017].

p-convexity

Definition (p-convexity)

A *p*-multinorm on X is called *p*-convex if, for any k < n, and any $x_1, \ldots, x_n \in X$, we have $\|\sum_{i=1}^n \delta_i \otimes x_i\|^p \leq \|\sum_{i=1}^k \delta_i \otimes x_i\|^p + \|\sum_{i=k+1}^n \delta_i \otimes x_i\|^p$.

- Any 1-multinorm is 1-convex (triangle ineq.).
 For p > 1, ∃ p-multinorms which are not p-convex.
- The canonical *p*-multinorm on a Banach lattice X is *p*-convex iff X is *p*-convex as a Banach lattice, with constant 1.

Proposition

Every p-convex strong p-multinorm is super-strong.

Theorem (Dales, Laustsen, O., T., 2017)

Every p-convex strong p-multinormed space can be presented on a p-convex Banach lattice.

Non-uniqueness of presentation

Suppose $(E, \|\cdot\|)$ is a super-strong *p*-multinorm, *X* is a Banach lattice, and $J: E \to X$ is a presentation of *E* (a *p*-multiisometry) – that is, for every *n*, $I_{\ell_n^p} \otimes J: \ell_n^p \otimes E \to X(\ell_n^p)$ is an isometry. What can we say about $\operatorname{Lat}(J(E))$ – the Banach lattice generated in *X* by J(E)?

We say that the presentations J_1 , J_2 are equivalent if $Lat(J_1(E))$, $Lat(J_2(E))$ are lattice isomorphic (lattice isomorphism between them need not take $J_1(E)$ to $J_2(E)$).

Theorem

If E is a super-strong p-multinormed space with dim $E \ge 2$, then it has infinitely many non-equivalent presentations.

The proof produces presentations s.t. $C(\mathbb{T})$ factors through Lat(J(E)) via lattice homomorphisms.

Question

For what E can Lat(J(E)) be "small" (say a KB-space)?

Open question: super-strength and π_1 -majorization

An operator $T: E \to F$ is 1-summing if $\exists C > 0$ s.t. $\forall x_1, \ldots, x_n \in E$, $\sum_i ||Tx_i|| \leq C \max_{\varepsilon_i = \pm 1} ||\sum_i \varepsilon_i x_i||$. $\pi_1(T) := \inf C$.

Suppose X is a *p*-multinormed space. For $\overline{x} = \sum_j \delta_j \otimes x_j \in \ell_n^p \otimes X$, define $O_{\overline{x}}^p : X^* \to \ell_n^p : x^* \mapsto \sum_j \langle x^*, x_j \rangle \delta_j$.

Proposition (Majorization by π_1)

If X is super-strong, then, $\forall \overline{x} \in \ell_n^p \otimes X$, $\|\overline{x}\| \leq \pi_1(O_{\overline{x}}^p)$.

Proof. Suppose *Z* is a BL, $J: X \to Z$ presentation, $\phi: X \to FBL[X]$, lattice homomorphism $\widehat{J}: FBL[X] \to Z$ extends $J. \forall x_1, \ldots, x_n$, $\|\sum_j \delta_j \otimes x_j\| = \|(\sum_j |Jx_j|^p)^{1/p}\|_Z = \|(\sum_j |\widehat{J}\phi x_j|^p)^{1/p}\|_Z$ $\leq \|(\sum_j |\phi x_j|^p)^{1/p}\|_{FBL} = \pi_1(O_{\overline{x}}^p).$

Question (π_1 -dominated + strong \Rightarrow super-strong?)

Suppose X is a strong p-multinormed space, s.t. $\forall \overline{x} \in \ell_n^p \otimes X$, $\|\overline{x}\| \leq \pi_1(O_{\overline{x}}^p)$. Is X super-strong?

Operator "idealist" looks at p-multinorms

Suppose, for simplicity, dim $E < \infty$. $\ell^p \otimes E \iff B(E^*, \ell^p)$: For $\overline{x} = \sum_{j=1}^n \delta_j \otimes x_j$, $O_{\overline{x}}^p : E^* \to \ell^p : x^* \mapsto \sum_j \langle x^*, x_j \rangle \delta_j$. *p*-multinorm $\|\cdot\|$ on $E \iff$ norm $\beta(\cdot)$ on $B(E^*, \ell^p)$: $\beta(O_{\overline{x}}^p) := \|\overline{x}\|$.

• $\|\cdot\|$ is a *p*-multinorm $\Leftrightarrow \beta$ is a left ideal norm: for $E^* \xrightarrow{T} \ell^p \xrightarrow{u} \ell^p$, $\beta(uT) \leq \|u\|\beta(T)$.

• $\|\cdot\|$ is a strong *p*-multinorm $\Leftrightarrow \forall Z \stackrel{i}{\hookrightarrow} \ell^p$, $E^* \stackrel{T}{\longrightarrow} Z \stackrel{u}{\longrightarrow} \ell^p$, $\beta(uT) \leq \|u\|\beta(iT)$ (we say β is strong).

 $J: \ell^p \hookrightarrow \ell^\infty$ isometric embedding; extend Ju to $v: \ell^p \to \ell^\infty$, $\|v\| = \|u\|$.

Let
$$T' = uT : E^* \to \ell^p$$
,
 $S = iT : E^* \to \ell^p$;
 $JT' = vS$, $\beta(T') \leq ||v||\beta(S)$.

Super-strength of *p*-multinorms from operator standpoint

Recall: $\|\cdot\|$ is a *p*-multinorm on *E*, β is the corresponding norm on $B(E^*, \ell^p)$. $J : \ell^p \hookrightarrow \ell^\infty$ is an isometric embedding.

• $\|\cdot\|$ is super-strong $\Leftrightarrow \forall T : E^* \to \ell^p, S_i : E^* \to \ell^p, v_i : \ell^p \to \ell^\infty, \beta(T) \leq \sum_i \|v_i\|\beta(S_i)$ if $JT = \sum_i v_i S_i.$

Question

If β is strong, and $\beta(\cdot) \leq \pi_1(\cdot)$, is β super-strong?

Possible approach. For $U : E^* \to \ell^{\infty}$, let $\beta'(U) = \inf\{\sum_i ||v_i|| \beta(S_i) : U = \sum_i v_i S_i\}$. Prove that $\beta'(JT) = \beta(T)$. **Note:** then $\beta(T) = \beta'(JT) \leq \nu_1(JT) = \pi_1(JT) = \pi_1(T)$.

Open question: non-linear maps

Definition (Pleasant maps)

Suppose X, Y are Banach spaces, $A \subset X^*$, $B \subset Y^*$ satisfy $\mathbb{R}_+A = A$, $\mathbb{R}_+B = B$. A map $\Phi : A \to B$ is called pleasant if:

- $\Phi(ta) = t\Phi(a)$ for $a \in A$, $t \ge 0$ (positive homogeneity).
- Φ is weak^{*} to weak^{*} continuous on bounded sets (hence bounded).

A, B are pleasantly homeomorphic if $\exists \Phi : A \rightarrow B$ s.t. Φ, Φ^{-1} are pleasant.

Theorem (O., T., Taylor, Tradacete)

If the Banach spaces X, Y have FDD, then X^*, Y^* are pleasantly homeomorphic.

Questions about pleasant maps

Suppose X, Y are Banach spaces, $A \subset X^*, B \subset Y^*$ satisfy $\mathbb{R}_+A = A$, $\mathbb{R}_+B = B$. A map $\Phi : A \to B$ is called pleasant if:

• $\Phi(ta) = t\Phi(a)$ for $a \in A$, $t \ge 0$ (positive homogeneity).

• Φ is weak* to weak* continuous on bounded sets (hence bounded).

A, B are pleasantly homeomorphic if $\exists \Phi : A \to B$ s.t. Φ, Φ^{-1} are pleasant.

Question

If X, Y are separable, are X^*, Y^* pleasantly homeomorphic?

In the non-separable case, the answer can be negative.

Question

Suppose X is a Banach space, $\dim X = \infty$, $x \in X$, $A = \{x^* \in X^* : \langle x^*, x \rangle \ge 0\}$. Are X^* , A pleasantly homeomorphic?

Banach-Mazur distances between fin. dim. spaces

Recall: if dim $E = n = \dim F$, define the Banach-Mazur distance: $d(E, F) = \inf\{||T|| ||T^{-1}|| : T \in B(E, F)\}$ (multiplicative distance: $d(E, G) \leq d(E, F)d(F, G)$).

Set of all *n*-dim spaces (or: centrally symmetric convex bodies) = Minkowski compactum (which is indeed compact).

Geometry of Minkowski compactum.

[F. John 1948]: ∀ n-dim E, d(E, l_n²) ≤ √n. ⇒ d(E, F) ≤ n.
Sharpness: d(l_n², l_n¹) = d(l_n², l_n[∞]) = √n. d(l_n¹, l_n[∞]) ~ √n.
[E. Gluskin 1980]: sup {d(E, F) : dim E = n = dim F} ~ n (random)

• [E. Gluskin 1980]: sup $\{d(E, F) : \dim E = n = \dim F\} \sim n$ (random construction).

Open problems: p-multinormed Minkowski compactum

Definition (p-Banach-Mazur distance)

For *p*-multinormed *n*-dim spaces *E* and *F*, define $d_p(E, F) = \inf\{||T||_p ||T^{-1}||_p : T \in B(E, F)\}.$

 $\mathcal{M}(p, n) =$ set of *n*-dim *p*-multinormed spaces, with this metric.

Question

Geometry of $\mathcal{M}(p, n)$?

Theorem (0. '18)

For $n \in \mathbb{N}, \varepsilon > 0$ let $N = \lceil 8n^3/\varepsilon \rceil^n$. If $T : E \to F$ has rank n, then $\|T\|_p \leq (1+\varepsilon) \|I_{\ell_n^p} \otimes T : \ell_N^p \otimes E \to \ell_N^p \otimes F\|$.

Tentative corollary. $\mathcal{M}(p, n)$ is compact.

Beyond this, see [Marcolino-Nhani 2001].

Duality of *p*-multinormed spaces

The dual of a *p*-multinormed space is *p*'-multinormed (1/p + 1/p' = 1). Let (δ_i) and (δ_i^*) be the canonical bases in $\ell^p, \ell^{p'}$.

Definition (Duality bracket) $\langle \sum_{i} \delta_{i} \otimes x_{i}, \sum_{i} \delta_{i}^{*} \otimes x_{i}^{*} \rangle = \sum_{i} \langle x_{i}, x_{i}^{*} \rangle.$

Proposition (Duality of MIN and MAX spaces) $MIN_{\rho}(E)^* = MAX_{\rho'}(E^*), MAX_{\rho}(E)^* = MIN_{\rho'}(E^*).$

Proposition

For $T: X \to Y$, $||T||_p = ||T^*||_{p'}$.

Weakness: duality changes category

The dual of a *p*-multinormed space is p'-multinormed, 1/p + 1/p' = 1.

Theorem (L. McClaran '94: need to change category)

There is no way to assign, to each fin. dim. ∞ -multinormed space X, an ∞ -multinormed space X^* in such a way that:

1
$$X = X^{**}$$
 for any X;

So For any
$$T: X \to Y$$
, $||T||_{\infty} = ||T^*||_{\infty}$.

Question

Does a similar result hold for other $p \neq 2$?

Question

Develop duality theory for 2-multinormed spaces.

Thank you for your attention! Questions welcome!

