Questions and results around James' Theorem based on joint works with S. Dantas, J.D. Rodríguez Abellán, A. Rueda Zoca and M. Jung

Workshop Banach spaces and Banach lattices

Gonzalo Martínez Cervantes

University of Murcia, Spain

May 20th, 2024

This work was partially supported by grants 21955/Pl/22, funded by Fundación Séneca - ACyT Región de Murcia; PID2021-122126NB-C32, funded by MCIN/AEI/10.13039/501100011033 and FEDER A way of making Europe, and CIGE/2022/9, funded by Generalitat Valenciana

(D) (A) (A)

Abstract

The well-known **James' Theorem** states that a Banach space is reflexive if and only if every bounded linear functional on it attains its norm. In this talk we will investigate operator and lattice versions of this result.

PART I.

< ロ > < 団 > < 豆 > < 豆 > < 豆 > < 豆 < つ < ○

PART I. Lattice versions of James' Theorem.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Let $T : X \to Y$ be a bounded operator between Banach lattices. T preserves the order if and only if $Tx \leq Ty$ whenever $x \leq y$.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ○ 三 ○ ○ ○ ○

Let $T : X \to Y$ be a bounded operator between Banach lattices. *T* preserves the order if and only if $Tx \le Ty$ whenever $x \le y$. This is equivalent to $0 \le Tx$ whenever $0 \le x$ (because $x \le y \Leftrightarrow 0 \le y - x$).

・ロト・日本・モト・モー ショー ショー

T preserves the order if and only if $Tx \le Ty$ whenever $x \le y$. This is equivalent to $0 \le Tx$ whenever $0 \le x$ (because $x \le y \Leftrightarrow 0 \le y - x$). An operator *T* preserving the order is said to be a **positive operator**.

・ロト・日本・モト・モー ショー ショー

T preserves the order if and only if $Tx \le Ty$ whenever $x \le y$. This is equivalent to $0 \le Tx$ whenever $0 \le x$ (because $x \le y \Leftrightarrow 0 \le y - x$). An operator *T* preserving the order is said to be a **positive operator**.

Nevertheless, a positive operator might not preserve suprema and infima:

Example

Take (e_i, e_i^*) the standard biorthogonal system of c_0 .

T preserves the order if and only if $Tx \le Ty$ whenever $x \le y$. This is equivalent to $0 \le Tx$ whenever $0 \le x$ (because $x \le y \Leftrightarrow 0 \le y - x$). An operator *T* preserving the order is said to be a **positive operator**.

Nevertheless, a positive operator might not preserve suprema and infima:

Example

Take (e_i, e_i^*) the standard biorthogonal system of c_0 . Then $e_1^* + e_2^*$ is a positive functional

T preserves the order if and only if $Tx \le Ty$ whenever $x \le y$. This is equivalent to $0 \le Tx$ whenever $0 \le x$ (because $x \le y \Leftrightarrow 0 \le y - x$). An operator *T* preserving the order is said to be a **positive operator**.

Nevertheless, a positive operator might not preserve suprema and infima:

Example

Take (e_i, e_i^*) the standard biorthogonal system of c_0 . Then $e_1^* + e_2^*$ is a positive functional but

$$(e_1^* + e_2^*)(e_1 \vee e_2)$$

T preserves the order if and only if $Tx \le Ty$ whenever $x \le y$. This is equivalent to $0 \le Tx$ whenever $0 \le x$ (because $x \le y \Leftrightarrow 0 \le y - x$). An operator *T* preserving the order is said to be a **positive operator**.

Nevertheless, a positive operator might not preserve suprema and infima:

Example

Take (e_i, e_i^*) the standard biorthogonal system of c_0 . Then $e_1^* + e_2^*$ is a positive functional but

$$(e_1^* + e_2^*)(e_1 \vee e_2) = 2$$

T preserves the order if and only if $Tx \le Ty$ whenever $x \le y$. This is equivalent to $0 \le Tx$ whenever $0 \le x$ (because $x \le y \Leftrightarrow 0 \le y - x$). An operator *T* preserving the order is said to be a **positive operator**.

Nevertheless, a positive operator might not preserve suprema and infima:

Example

Take (e_i, e_i^*) the standard biorthogonal system of c_0 . Then $e_1^* + e_2^*$ is a positive functional but

$$(e_1^* + e_2^*)(e_1 \vee e_2) = 2 \neq 1 = (e_1^* + e_2^*)(e_1) \vee (e_1^* + e_2^*)(e_2).$$

(日)

T preserves the order if and only if $Tx \le Ty$ whenever $x \le y$. This is equivalent to $0 \le Tx$ whenever $0 \le x$ (because $x \le y \Leftrightarrow 0 \le y - x$). An operator *T* preserving the order is said to be a **positive operator**.

Nevertheless, a positive operator might not preserve suprema and infima:

Example

Take (e_i, e_i^*) the standard biorthogonal system of c_0 . Then $e_1^* + e_2^*$ is a positive functional but

$$(e_1^* + e_2^*)(e_1 \vee e_2) = 2 \neq 1 = (e_1^* + e_2^*)(e_1) \vee (e_1^* + e_2^*)(e_2).$$

Definition

 $T: X \to Y$ is a lattice homomorphism if it preserves suprema and infima, i.e. $T(x \lor y) = T(x) \lor T(y)$ and $T(x \land y) = T(x) \land T(y)$ for every $x, y \in X$.

• If X is c_0

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ◆ ○ ● ◆ ○ ●

▲□▶▲□▶▲≣▶▲≣▶ ≣ のQ@

$$(X^*)^+ = \{\sum \lambda_n e_n^* : \lambda_n \ge 0, \ n \in \mathbb{N}\}$$

< ロ > < 団 > < 豆 > < 豆 > < 豆 > < 豆 < つ < ○

$$(X^*)^+ = \{\sum \lambda_n e_n^* : \lambda_n \ge 0, n \in \mathbb{N}\}$$

and the functionals which are lattice homomorphisms are just

$$\{\lambda e_n^* : \lambda \ge 0, n \in \mathbb{N}\}.$$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

$$(X^*)^+ = \{\sum \lambda_n e_n^* : \lambda_n \ge 0, n \in \mathbb{N}\}$$

and the functionals which are lattice homomorphisms are just

$$\{\lambda e_n^* : \lambda \ge 0, n \in \mathbb{N}\}.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

• If X is $\mathcal{C}(K)$, then

$$(X^*)^+ = \{\sum \lambda_n e_n^* : \lambda_n \ge 0, \ n \in \mathbb{N}\}$$

and the functionals which are lattice homomorphisms are just

$$\{\lambda e_n^* : \lambda \ge 0, n \in \mathbb{N}\}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

 If X is C(K), then positive functionals on C(K) are just identified with positive measures on K.

$$(X^*)^+ = \{\sum \lambda_n e_n^* : \lambda_n \ge 0, \ n \in \mathbb{N}\}$$

and the functionals which are lattice homomorphisms are just

$$\{\lambda e_n^* : \lambda \ge 0, n \in \mathbb{N}\}.$$

• If X is C(K), then positive functionals on C(K) are just identified with positive measures on K. Nevertheless, the functionals which are lattice homomorphisms are just those of the form

$$\{\lambda\delta_t:\lambda\geq 0,\ t\in K\}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ● ●

$$(X^*)^+ = \{\sum \lambda_n e_n^* : \lambda_n \ge 0, \ n \in \mathbb{N}\}$$

and the functionals which are lattice homomorphisms are just

$$\{\lambda e_n^* : \lambda \ge 0, n \in \mathbb{N}\}.$$

• If X is C(K), then positive functionals on C(K) are just identified with positive measures on K. Nevertheless, the functionals which are lattice homomorphisms are just those of the form

$$\{\lambda\delta_t:\lambda\geq 0,\ t\in K\}.$$

If X is L_p[0, 1],

$$(X^*)^+ = \{\sum \lambda_n e_n^* : \lambda_n \ge 0, \ n \in \mathbb{N}\}$$

and the functionals which are lattice homomorphisms are just

$$\{\lambda e_n^* : \lambda \ge 0, n \in \mathbb{N}\}.$$

• If X is C(K), then positive functionals on C(K) are just identified with positive measures on K. Nevertheless, the functionals which are lattice homomorphisms are just those of the form

$$\{\lambda\delta_t:\lambda\geq 0,\ t\in K\}.$$

• If X is $L_p[0,1]$, then positive functionals on X are just functions which are a.e. positive.

$$(X^*)^+ = \{\sum \lambda_n e_n^* : \lambda_n \ge 0, \ n \in \mathbb{N}\}$$

and the functionals which are lattice homomorphisms are just

$$\{\lambda e_n^* : \lambda \ge 0, n \in \mathbb{N}\}.$$

• If X is C(K), then positive functionals on C(K) are just identified with positive measures on K. Nevertheless, the functionals which are lattice homomorphisms are just those of the form

$$\{\lambda\delta_t:\lambda\geq 0, t\in K\}.$$

 If X is L_p[0,1], then positive functionals on X are just functions which are a.e. positive. Nevertheless, the only lattice homomorphism on L_p[0,1] is the zero functional.

$$(X^*)^+ = \{\sum \lambda_n e_n^* : \lambda_n \ge 0, \ n \in \mathbb{N}\}$$

and the functionals which are lattice homomorphisms are just

$$\{\lambda e_n^* : \lambda \ge 0, n \in \mathbb{N}\}.$$

• If X is C(K), then positive functionals on C(K) are just identified with positive measures on K. Nevertheless, the functionals which are lattice homomorphisms are just those of the form

$$\{\lambda\delta_t:\lambda\geq 0,\ t\in K\}.$$

 If X is L_p[0,1], then positive functionals on X are just functions which are a.e. positive. Nevertheless, the only lattice homomorphism on L_p[0,1] is the zero functional.

<□▶ <週▶ < ≧▶ < ≧▶ = 差 = のへぐ

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Definition

A nonzero element x in a Banach lattice X is an atom if $0 \le y \le x$ implies that $\lambda x = y$ for some scalar $\lambda \ge 0$.

Definition

A nonzero element x in a Banach lattice X is an atom if $0 \le y \le x$ implies that $\lambda x = y$ for some scalar $\lambda \ge 0$.

Any Banach lattice X can be embedded into a Banach lattice Y with no nontrivial lattice homomorphisms.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Definition

A nonzero element x in a Banach lattice X is an atom if $0 \le y \le x$ implies that $\lambda x = y$ for some scalar $\lambda \ge 0$.

Any Banach lattice X can be embedded into a Banach lattice Y with no nontrivial lattice homomorphisms. In particular, no nontrivial lattice homomorphism $x^* \in X^*$ can be extended to a lattice homomorphism on Y.

• Definition. An element $x^* \in X^*$ attains the norm if there is $x \in B_X$ such that $x^*(x) = ||x^*||$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへで

- Definition. An element x^{*} ∈ X^{*} attains the norm if there is x ∈ B_X such that x^{*}(x) = ||x^{*}||.
- By James Theorem, every functional x^{*} ∈ X^{*} attains its norm if and only if X is reflexive;

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

- Definition. An element x^{*} ∈ X^{*} attains the norm if there is x ∈ B_X such that x^{*}(x) = ||x^{*}||.
- By James Theorem, every functional x^{*} ∈ X^{*} attains its norm if and only if X is reflexive;
- Nevertheless, there are nonreflexive Banach lattices in which every positive functional attains the norm.

- Definition. An element x^{*} ∈ X^{*} attains the norm if there is x ∈ B_X such that x^{*}(x) = ||x^{*}||.
- By James Theorem, every functional x^{*} ∈ X^{*} attains its norm if and only if X is reflexive;
- Nevertheless, there are nonreflexive Banach lattices in which every positive functional attains the norm. For example, any C(K)-space.

- Definition. An element x^{*} ∈ X^{*} attains the norm if there is x ∈ B_X such that x^{*}(x) = ||x^{*}||.
- By James Theorem, every functional x^{*} ∈ X^{*} attains its norm if and only if X is reflexive;
- Nevertheless, there are nonreflexive Banach lattices in which every positive functional attains the norm. For example, any C(K)-space.

Theorem (T. Oikhberg and M.A. Tursi, 2019)

If X is a separable AM-space (i.e. $||x \lor y|| = ||x|| \lor ||y||$ for every disjoint $x, y \in X^+$)

- Definition. An element x^{*} ∈ X^{*} attains the norm if there is x ∈ B_X such that x^{*}(x) = ||x^{*}||.
- By James Theorem, every functional x^{*} ∈ X^{*} attains its norm if and only if X is reflexive;
- Nevertheless, there are nonreflexive Banach lattices in which every positive functional attains the norm. For example, any C(K)-space.

Theorem (T. Oikhberg and M.A. Tursi, 2019)

If X is a separable AM-space (i.e. $||x \vee y|| = ||x|| \vee ||y||$ for every disjoint $x, y \in X^+$) in which every positive functional attains its norm, then X is (lattice) isometric to C(K).

- Definition. An element x^{*} ∈ X^{*} attains the norm if there is x ∈ B_X such that x^{*}(x) = ||x^{*}||.
- By James Theorem, every functional x^{*} ∈ X^{*} attains its norm if and only if X is reflexive;
- Nevertheless, there are nonreflexive Banach lattices in which every positive functional attains the norm. For example, any C(K)-space.

Theorem (T. Oikhberg and M.A. Tursi, 2019)

If X is a separable AM-space (i.e. $||x \vee y|| = ||x|| \vee ||y||$ for every disjoint $x, y \in X^+$) in which every positive functional attains its norm, then X is (lattice) isometric to C(K).
An order continuous Banach lattice X is reflexive if and only if every positive functional in X^* attains its norm.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

An order continuous Banach lattice X is reflexive if and only if every positive functional in X^* attains its norm. Indeed, in this case, if x^* is a functional which does not attain the norm, then $|x^*|$ is a positive functional which does not attain the norm.

An order continuous Banach lattice X is reflexive if and only if every positive functional in X^* attains its norm. Indeed, in this case, if x^* is a functional which does not attain the norm, then $|x^*|$ is a positive functional which does not attain the norm.

Definition

X is said to be order continuous if $\inf\{||x|| : x \in A\} = 0$ for every downward directed set $A \subset X$ such that $\inf A = 0$.

An order continuous Banach lattice X is reflexive if and only if every positive functional in X^* attains its norm. Indeed, in this case, if x^* is a functional which does not attain the norm, then $|x^*|$ is a positive functional which does not attain the norm.

Definition

X is said to be order continuous if $\inf\{||x|| : x \in A\} = 0$ for every downward directed set $A \subset X$ such that $\inf A = 0$. Moreover, X is order continuous if and only if every monotone order bounded sequence in X is norm-convergent

An order continuous Banach lattice X is reflexive if and only if every positive functional in X^* attains its norm. Indeed, in this case, if x^* is a functional which does not attain the norm, then $|x^*|$ is a positive functional which does not attain the norm.

Definition

X is said to be **order continuous** if $\inf\{||x|| : x \in A\} = 0$ for every downward directed set $A \subset X$ such that $\inf A = 0$. Moreover, X is order continuous if and only if every monotone order bounded sequence in X is norm-convergent (a set $A \subset X$ is order bounded if there is $x, y \in X$ such that $x \leq z \leq y$ for every $z \in A$).

If X is order continuous, then every lattice homomorphism in X^* attains its norm.

If X is order continuous, then every lattice homomorphism in X^* attains its norm.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ● ●

Sketch of the proof.

If X is order continuous, then every lattice homomorphism in X^* attains its norm.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ● ●

Sketch of the proof. Take $x_n \in B_X$ such that $x^*(x_n)$ converges to $||x^*||$.

If X is order continuous, then every lattice homomorphism in X^* attains its norm.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Sketch of the proof. Take $x_n \in B_X$ such that $x^*(x_n)$ converges to $||x^*||$.WLOG, x_n is positive (change x_n by $|x_n|$ if necessary).

If X is order continuous, then every lattice homomorphism in X^* attains its norm.

Sketch of the proof. Take $x_n \in B_X$ such that $x^*(x_n)$ converges to $||x^*||$.WLOG, x_n is positive (change x_n by $|x_n|$ if necessary). Now notice that $x^*\left(\frac{||x^*||}{x^*(x_k)}x_k\right) = ||x^*||$ and that $\left(\left\|\frac{||x^*||}{x^*(x_k)}x_k\right\|\right)_{k\in\mathbb{N}}$ converges to 1.

If X is order continuous, then every lattice homomorphism in X^* attains its norm.

Sketch of the proof. Take $x_n \in B_X$ such that $x^*(x_n)$ converges to $||x^*||$.WLOG, x_n is positive (change x_n by $|x_n|$ if necessary). Now notice that $x^*\left(\frac{||x^*||}{x^*(x_k)}x_k\right) = ||x^*||$ and that $\left(\left\|\frac{||x^*||}{x^*(x_k)}x_k\right\|\right)_{k\in\mathbb{N}}$ converges to 1. Define $y_n := \bigwedge_{k\leq n} \left(\frac{x^*}{x^*(x_k)}x_k\right)$. Then, y_n is a decreasing sequence of positive elements (so norm-convergent to some element $y \in B_X$) and $x^*(y_n) = ||x^*||$ for every n.

If X is order continuous, then every lattice homomorphism in X^* attains its norm.

Sketch of the proof. Take $x_n \in B_X$ such that $x^*(x_n)$ converges to $||x^*||$.WLOG, x_n is positive (change x_n by $|x_n|$ if necessary). Now notice that $x^*\left(\frac{||x^*||}{x^*(x_k)}x_k\right) = ||x^*||$ and that $\left(\left\|\frac{||x^*||}{x^*(x_k)}x_k\right\|\right)_{k\in\mathbb{N}}$ converges to 1. Define $y_n := \bigwedge_{k\leq n} \left(\frac{x^*}{x^*(x_k)}x_k\right)$. Then, y_n is a decreasing sequence of positive elements (so norm-convergent to some element $y \in B_X$) and $x^*(y_n) = ||x^*||$ for every n. Thus, x^* attains its norm at y.

If X is order continuous, then every lattice homomorphism in X^* attains its norm.

If X is order continuous, then every lattice homomorphism in X^* attains its norm.

Any reflexive Banach lattice is order continuous.

If X is order continuous, then every lattice homomorphism in X^* attains its norm.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Any reflexive Banach lattice is order continuous. Indeed, any Banach lattice not containing c_0 is order continuous.

If X is order continuous, then every lattice homomorphism in X^* attains its norm.

Any reflexive Banach lattice is order continuous. Indeed, any Banach lattice not containing c_0 is order continuous. But c_0 is also order continuous.

If X is order continuous, then every lattice homomorphism in X^* attains its norm.

Any reflexive Banach lattice is order continuous. Indeed, any Banach lattice not containing c_0 is order continuous. But c_0 is also order continuous. The space c of convergent sequences is not order continuous: the sequence $x_n = e_n + e_{n+1} + e_{n+2} + ...$ is positive and decreasing but it does not converge in norm.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

If X is order continuous, then every lattice homomorphism in X^* attains its norm.

Any reflexive Banach lattice is order continuous. Indeed, any Banach lattice not containing c_0 is order continuous. But c_0 is also order continuous. The space c of convergent sequences is not order continuous: the sequence $x_n = e_n + e_{n+1} + e_{n+2} + ...$ is positive and decreasing but it does not converge in norm.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Definition

X is said to be σ -**Dedekind complete** if every order bounded countable set in X has a supremum and an infimum.

(日) (同) (目) (日) (日) (0) (0)

Definition

X is said to be σ -**Dedekind complete** if every order bounded countable set in X has a supremum and an infimum.

Question

Does every lattice homomorphism on a σ -Dedekind complete Banach lattice attain its norm?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

Definition

X is said to be σ -**Dedekind complete** if every order bounded countable set in X has a supremum and an infimum.

Question

Does every lattice homomorphism on a σ -Dedekind complete Banach lattice attain its norm?

Remark. Lattice homomorphisms might not preserve infinite suprema

Definition

X is said to be σ -**Dedekind complete** if every order bounded countable set in X has a supremum and an infimum.

Question

Does every lattice homomorphism on a σ -Dedekind complete Banach lattice attain its norm?

Remark. Lattice homomorphisms might not preserve infinite suprema

Take $K = \mathbb{N} \cup \{\infty\}$ the one point compactification of the natural numbers with the discrete topology.

Definition

X is said to be σ -**Dedekind complete** if every order bounded countable set in X has a supremum and an infimum.

Question

Does every lattice homomorphism on a σ -Dedekind complete Banach lattice attain its norm?

Remark. Lattice homomorphisms might not preserve infinite suprema

Take $K = \mathbb{N} \cup \{\infty\}$ the one point compactification of the natural numbers with the discrete topology. Then, $\delta_{\infty} \in C(K)^*$ is a lattice homomorphism.

Definition

X is said to be σ -**Dedekind complete** if every order bounded countable set in X has a supremum and an infimum.

Question

Does every lattice homomorphism on a σ -Dedekind complete Banach lattice attain its norm?

Remark. Lattice homomorphisms might not preserve infinite suprema

Take $K = \mathbb{N} \cup \{\infty\}$ the one point compactification of the natural numbers with the discrete topology. Then, $\delta_{\infty} \in C(K)^*$ is a lattice homomorphism. Take $f_n = \chi_{\{1,...,n\}}$ the characteristic function of the set $\{1, ..., n\}$.

Definition

X is said to be σ -**Dedekind complete** if every order bounded countable set in X has a supremum and an infimum.

Question

Does every lattice homomorphism on a σ -Dedekind complete Banach lattice attain its norm?

Remark. Lattice homomorphisms might not preserve infinite suprema

Take $K = \mathbb{N} \cup \{\infty\}$ the one point compactification of the natural numbers with the discrete topology. Then, $\delta_{\infty} \in C(K)^*$ is a lattice homomorphism. Take $f_n = \chi_{\{1,...,n\}}$ the characteristic function of the set $\{1,...,n\}$. Then, $(f_n)_{n\in\mathbb{N}}$ is an increasing sequence, the supremum $\bigvee_{n\in\mathbb{N}} f_n$ is the constant function 1.

Definition

X is said to be σ -**Dedekind complete** if every order bounded countable set in X has a supremum and an infimum.

Question

Does every lattice homomorphism on a σ -Dedekind complete Banach lattice attain its norm?

Remark. Lattice homomorphisms might not preserve infinite suprema

Take $K = \mathbb{N} \cup \{\infty\}$ the one point compactification of the natural numbers with the discrete topology. Then, $\delta_{\infty} \in C(K)^*$ is a lattice homomorphism. Take $f_n = \chi_{\{1,...,n\}}$ the characteristic function of the set $\{1,...,n\}$. Then, $(f_n)_{n\in\mathbb{N}}$ is an increasing sequence, the supremum $\bigvee_{n\in\mathbb{N}} f_n$ is the constant function 1. Nevertheless,

$$\bigvee_{n\in\mathbb{N}}\delta_\infty(f_n)=0
eq1=\delta_\infty(1)=\delta_\infty\left(\bigvee_{n\in\mathbb{N}}f_n
ight).$$

Free Banach lattice generated by a Banach space E

▲ロト ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ● 回 ● の Q @

(日)

Definition (Avilés, Rodríguez, Tradacete 2018)

Let E be a Banach space.

Let *E* be a Banach space. The *free Banach lattice* generated by *E* is a Banach lattice, denoted by FBL[E], together with a bounded operator $\phi: E \longrightarrow FBL[E]$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Let *E* be a Banach space. The *free Banach lattice* generated by *E* is a Banach lattice, denoted by FBL[E], together with a bounded operator $\phi: E \longrightarrow FBL[E]$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Let *E* be a Banach space. The *free Banach lattice* generated by *E* is a Banach lattice, denoted by FBL[E], together with a bounded operator $\phi: E \longrightarrow FBL[E]$ with the property that for every Banach lattice *X* and every bounded operator $T: E \longrightarrow X$

Let *E* be a Banach space. The *free Banach lattice* generated by *E* is a Banach lattice, denoted by *FBL*[*E*], together with a bounded operator $\phi: E \longrightarrow FBL[E]$ with the property that for every Banach lattice *X* and every bounded operator $T: E \longrightarrow X$ there is a unique Banach lattice homomorphism $\hat{T}: FBL[E] \longrightarrow X$ such that $T = \hat{T} \circ \phi$ and $\|\hat{T}\| = \|T\|$.

Let *E* be a Banach space. The *free Banach lattice* generated by *E* is a Banach lattice, denoted by *FBL*[*E*], together with a bounded operator $\phi: E \longrightarrow FBL[E]$ with the property that for every Banach lattice *X* and every bounded operator $T: E \longrightarrow X$ there is a unique Banach lattice homomorphism $\hat{T}: FBL[E] \longrightarrow X$ such that $T = \hat{T} \circ \phi$ and $\|\hat{T}\| = \|T\|$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$E \\ \phi \\ FBL[E]$$

Let *E* be a Banach space. The *free Banach lattice* generated by *E* is a Banach lattice, denoted by *FBL*[*E*], together with a bounded operator $\phi: E \longrightarrow FBL[E]$ with the property that for every Banach lattice *X* and every bounded operator $T: E \longrightarrow X$ there is a unique Banach lattice homomorphism $\hat{T}: FBL[E] \longrightarrow X$ such that $T = \hat{T} \circ \phi$ and $\|\hat{T}\| = \|T\|$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$E \\ \phi \\ FBL[E]$$

Let *E* be a Banach space. The *free Banach lattice* generated by *E* is a Banach lattice, denoted by *FBL*[*E*], together with a bounded operator $\phi: E \longrightarrow FBL[E]$ with the property that for every Banach lattice *X* and every bounded operator $T: E \longrightarrow X$ there is a unique Banach lattice homomorphism $\hat{T}: FBL[E] \longrightarrow X$ such that $T = \hat{T} \circ \phi$ and $\|\hat{T}\| = \|T\|$.

A ロ ト 4 同 ト 4 三 ト 4 三 ト 9 Q Q
Definition (Avilés, Rodríguez, Tradacete 2018)

Let *E* be a Banach space. The *free Banach lattice* generated by *E* is a Banach lattice, denoted by *FBL*[*E*], together with a bounded operator $\phi: E \longrightarrow FBL[E]$ with the property that for every Banach lattice *X* and every bounded operator $T: E \longrightarrow X$ there is a unique Banach lattice homomorphism $\hat{T}: FBL[E] \longrightarrow X$ such that $T = \hat{T} \circ \phi$ and $\|\hat{T}\| = \|T\|$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Definition (Avilés, Rodríguez, Tradacete 2018)

Let *E* be a Banach space. The *free Banach lattice* generated by *E* is a Banach lattice, denoted by *FBL*[*E*], together with a bounded operator $\phi: E \longrightarrow FBL[E]$ with the property that for every Banach lattice *X* and every bounded operator $T: E \longrightarrow X$ there is a unique Banach lattice homomorphism $\hat{T}: FBL[E] \longrightarrow X$ such that $T = \hat{T} \circ \phi$ and $\|\hat{T}\| = \|T\|$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

It exists and is unique up to isometries.

Definition (Avilés, Rodríguez, Tradacete 2018)

Let E be a Banach space. The free Banach lattice generated by E is a Banach lattice, denoted by FBL[E], together with a bounded operator $\phi: E \longrightarrow FBL[E]$ with the property that for every Banach lattice X and every bounded operator $T: E \longrightarrow X$ there is a unique Banach lattice homomorphism $\hat{T}: FBL[E] \longrightarrow X$ such that $T = \hat{T} \circ \phi$ and $\|\hat{T}\| = \|T\|$.

It exists and is unique up to isometries. It can be constructed as a sublattice of

 $\{f: E^* \to \mathbb{R}: f(\lambda x^*) = \lambda f(x^*) \ \forall x^* \in E^*, \lambda \ge 0 \text{ and } f|_{B_{F^*}} \text{ is } w^* \text{-continuous}\}$

with a suitable norm.

・ロト・四・・日・・日・・ 日・

 $\begin{matrix} E \\ \phi \\ \downarrow \\ FBL[E] \end{matrix}$

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ ◆ ◇ ◇ ◇

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Since $\|\delta_{x^*}\| = \|x^*\|$ and δ_{x^*} "extends" x^* ,

Since $\|\delta_{x^*}\| = \|x^*\|$ and δ_{x^*} "extends" x^* , if x^* attains its norm, then δ_{x^*} attains its norm.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Since $\|\delta_{x^*}\| = \|x^*\|$ and δ_{x^*} "extends" x^* , if x^* attains its norm, then δ_{x^*} attains its norm. But...

Open problem

Does δ_{x^*} attains its norm if and only if x^* attains its norm?

Since $\|\delta_{x^*}\| = \|x^*\|$ and δ_{x^*} "extends" x^* , if x^* attains its norm, then δ_{x^*} attains its norm. But...

Open problem

Does δ_{x^*} attains its norm if and only if x^* attains its norm?

We have some partial answers.

Let E be a Banach space. A functional $x^* \in E^*$ not attaining the norm satisfies property (P) if the set

 $C := \{y^* \in E^* : |x^*(x)| + |y^*(x)| \le ||x^*|| \text{ for every } x \in B_E\}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

satisfies that x^* is in the w^{*}-closure of $\mathbb{R}^+ C := \{\lambda y^* : \lambda > 0, y^* \in C\}$.

Let E be a Banach space. A functional $x^* \in E^*$ not attaining the norm satisfies property (P) if the set

 $C := \{y^* \in E^* : |x^*(x)| + |y^*(x)| \le ||x^*|| \text{ for every } x \in B_E\}$

satisfies that x^* is in the w^{*}-closure of $\mathbb{R}^+ C := \{\lambda y^* : \lambda > 0, y^* \in C\}$. E has property (P) if every not norm-attaining functional in E^{*} has property (P).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Let E be a Banach space. A functional $x^* \in E^*$ not attaining the norm satisfies property (P) if the set

 $C := \{y^* \in E^* : |x^*(x)| + |y^*(x)| \le ||x^*|| \text{ for every } x \in B_E\}$

satisfies that x^* is in the w^* -closure of $\mathbb{R}^+ C := \{\lambda y^* : \lambda > 0, y^* \in C\}$. E has property (P) if every not norm-attaining functional in E^* has property (P).

Theorem (S. Dantas, G.M.C., J.D. Rodríguez Abellán and A. Rueda Zoca, 2020)

Let E be a Banach space and $x^* \in E^*$ a not norm-attaining functional with property (P).

Let E be a Banach space. A functional $x^* \in E^*$ not attaining the norm satisfies property (P) if the set

 $C := \{y^* \in E^* : |x^*(x)| + |y^*(x)| \le ||x^*|| \text{ for every } x \in B_E\}$

satisfies that x^* is in the w^* -closure of $\mathbb{R}^+ C := \{\lambda y^* : \lambda > 0, y^* \in C\}$. E has property (P) if every not norm-attaining functional in E^* has property (P).

Theorem (S. Dantas, G.M.C., J.D. Rodríguez Abellán and A. Rueda Zoca, 2020)

Let E be a Banach space and $x^* \in E^*$ a not norm-attaining functional with property (P). Then, δ_{x^*} is a lattice homomorphism which does not attain its norm.

Let E be a Banach space. A functional $x^* \in E^*$ not attaining the norm satisfies property (P) if the set

 $C := \{y^* \in E^* : |x^*(x)| + |y^*(x)| \le ||x^*|| \text{ for every } x \in B_E\}$

satisfies that x^* is in the w^* -closure of $\mathbb{R}^+ C := \{\lambda y^* : \lambda > 0, y^* \in C\}$. E has property (P) if every not norm-attaining functional in E^* has property (P).

Theorem (S. Dantas, G.M.C., J.D. Rodríguez Abellán and A. Rueda Zoca, 2020)

Let E be a Banach space and $x^* \in E^*$ a not norm-attaining functional with property (P). Then, δ_{x^*} is a lattice homomorphism which does not attain its norm. In particular, if E has property (P), then $x^* \in E^*$ attains its norm if and only if $\delta_{x^*} \in FBL[E]$ attains its norm.

Let E be a Banach space. A functional $x^* \in E^*$ not attaining the norm satisfies property (P) if the set

 $C := \{y^* \in E^* : |x^*(x)| + |y^*(x)| \le ||x^*|| \text{ for every } x \in B_E\}$

satisfies that x^* is in the w^* -closure of $\mathbb{R}^+ C := \{\lambda y^* : \lambda > 0, y^* \in C\}$. E has property (P) if every not norm-attaining functional in E^* has property (P).

Theorem (S. Dantas, G.M.C., J.D. Rodríguez Abellán and A. Rueda Zoca, 2020)

Let E be a Banach space and $x^* \in E^*$ a not norm-attaining functional with property (P). Then, δ_{x^*} is a lattice homomorphism which does not attain its norm. In particular, if E has property (P), then $x^* \in E^*$ attains its norm if and only if $\delta_{x^*} \in FBL[E]$ attains its norm. $\ell_1(\Gamma)$ and any isometric predual of $\ell_1(\Gamma)$ have property (P).

<ロト < 団ト < 三ト < 三ト < 三 の Q (P)</p>

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Namely, every separable Banach space admits an equivalent norm for which the dual is strictly convex.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○臣 ○ のへぐ

Namely, every separable Banach space admits an equivalent norm for which the dual is strictly convex.

If E^* is strictly convex, every point of the sphere is an extreme point.

Namely, every separable Banach space admits an equivalent norm for which the dual is strictly convex.

If E^* is strictly convex, every point of the sphere is an extreme point. If, in addition, E is nonreflexive, then there are points on the sphere of E^* which are extreme but do not attain its norm.

Namely, every separable Banach space admits an equivalent norm for which the dual is strictly convex.

If E^* is strictly convex, every point of the sphere is an extreme point.

If, in addition, E is nonreflexive, then there are points on the sphere of E^* which are extreme but do not attain its norm.

Since $C \neq \{0\}$ for a point $x^* \in S_{X^*}$ if and only if x^* is not an extreme point of the sphere,

Namely, every separable Banach space admits an equivalent norm for which the dual is strictly convex.

If E^* is strictly convex, every point of the sphere is an extreme point. If, in addition, E is nonreflexive, then there are points on the sphere of E^* which are extreme but do not attain its norm.

Since $C \neq \{0\}$ for a point $x^* \in S_{X^*}$ if and only if x^* is not an extreme point of the sphere, we conclude that E does not have property (P).

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Question

Does the existence of a lattice homomorphism which does not attain its norm on a Banach lattice X imply that X contains some kind of free structure?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Question

Does the existence of a lattice homomorphism which does not attain its norm on a Banach lattice X imply that X contains some kind of free structure? In particular, does it imply that X contains a copy of FBL[E] for some infinite-dimensional Banach space E?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Question

Does the existence of a lattice homomorphism which does not attain its norm on a Banach lattice X imply that X contains some kind of free structure? In particular, does it imply that X contains a copy of FBL[E] for some infinite-dimensional Banach space E? Is the property "every lattice homomorphism attains its norm" invariant

under lattice isomorphisms?

PART II.

PART II. Operator versions of James' Theorem.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

A Banach space X is reflexive if and only if every functional in $X^* = \mathcal{L}(X, \mathbb{R})$ attains the norm.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

A Banach space X is reflexive if and only if every functional in $X^* = \mathcal{L}(X, \mathbb{R})$ attains the norm.

Thus, the space $\mathcal{L}(X,\mathbb{R})$ is reflexive if and only if every operator in $\mathcal{L}(X,\mathbb{R})$ attains the norm

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - 釣べ⊙

A Banach space X is reflexive if and only if every functional in $X^* = \mathcal{L}(X, \mathbb{R})$ attains the norm.

Thus, the space $\mathcal{L}(X, \mathbb{R})$ is reflexive if and only if every operator in $\mathcal{L}(X, \mathbb{R})$ attains the norm if and only if X is reflexive.

A Banach space X is reflexive if and only if every functional in $X^* = \mathcal{L}(X, \mathbb{R})$ attains the norm.

Thus, the space $\mathcal{L}(X, \mathbb{R})$ is reflexive if and only if every operator in $\mathcal{L}(X, \mathbb{R})$ attains the norm if and only if X is reflexive.

Problem 1

Characterize those pair of Banach spaces X and Y for which every operator in $\mathcal{L}(X, Y)$ attains the norm.

A Banach space X is reflexive if and only if every functional in $X^* = \mathcal{L}(X, \mathbb{R})$ attains the norm.

Thus, the space $\mathcal{L}(X, \mathbb{R})$ is reflexive if and only if every operator in $\mathcal{L}(X, \mathbb{R})$ attains the norm if and only if X is reflexive.

Problem 1

Characterize those pair of Banach spaces X and Y for which every operator in $\mathcal{L}(X, Y)$ attains the norm.

Problem 2

Characterize those pairs of Banach spaces X and Y for which $\mathcal{L}(X, Y)$ is reflexive.

Problem 1

Characterize those pairs of Banach spaces X and Y for which every operator in $\mathcal{L}(X, Y)$ attains the norm.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ
Characterize those pairs of Banach spaces X and Y for which every operator in $\mathcal{L}(X, Y)$ attains the norm.

By James' Theorem, if every operator in $\mathcal{L}(X, Y)$ attains the norm then X is reflexive.

Characterize those pairs of Banach spaces X and Y for which every operator in $\mathcal{L}(X, Y)$ attains the norm.

By James' Theorem, if every operator in $\mathcal{L}(X, Y)$ attains the norm then X is reflexive. From now on, we suppose that X denotes a reflexive Banach space.

Characterize those pairs of Banach spaces X and Y for which every operator in $\mathcal{L}(X, Y)$ attains the norm.

By James' Theorem, if every operator in $\mathcal{L}(X, Y)$ attains the norm then X is reflexive. From now on, we suppose that X denotes a reflexive Banach space.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Notice that every compact operator in $\mathcal{L}(X, Y)$ attains the norm.

Characterize those pairs of Banach spaces X and Y for which every operator in $\mathcal{L}(X, Y)$ attains the norm.

By James' Theorem, if every operator in $\mathcal{L}(X, Y)$ attains the norm then X is reflexive. From now on, we suppose that X denotes a reflexive Banach space.

Notice that every compact operator in $\mathcal{L}(X, Y)$ attains the norm.

Thus, we have the following:

Theorem

X reflexive and $\mathcal{L}(X, Y) = \mathcal{K}(X, Y) \implies$ every operator in $\mathcal{L}(X, Y)$ attains the norm.

Characterize those pairs of Banach spaces X and Y for which every operator in $\mathcal{L}(X, Y)$ attains the norm.

By James' Theorem, if every operator in $\mathcal{L}(X, Y)$ attains the norm then X is reflexive. From now on, we suppose that X denotes a reflexive Banach space.

Notice that every compact operator in $\mathcal{L}(X, Y)$ attains the norm.

Thus, we have the following:

Theorem

X reflexive and $\mathcal{L}(X, Y) = \mathcal{K}(X, Y) \implies$ every operator in $\mathcal{L}(X, Y)$ attains the norm. In particular, if X is reflexive and Y has the Schur property then every operator in $\mathcal{L}(X, Y) (= \mathcal{K}(X, Y))$ attains the norm.

If every operator in $\mathcal{L}(X, Y)$ attains the norm, then $\mathcal{L}(X, Y) = \mathcal{K}(X, Y)$?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへで

If every operator in $\mathcal{L}(X, Y)$ attains the norm, then $\mathcal{L}(X, Y) = \mathcal{K}(X, Y)$?

Theorem (Holub, 1973)

Let X and Y be **both** reflexive spaces.

(a) If every operator in $\mathcal{L}(X, Y)$ attains the norm, then $\mathcal{L}(X, Y)$ is reflexive.

If every operator in $\mathcal{L}(X, Y)$ attains the norm, then $\mathcal{L}(X, Y) = \mathcal{K}(X, Y)$?

Theorem (Holub, 1973)

Let X and Y be **both** reflexive spaces.

(a) If every operator in $\mathcal{L}(X, Y)$ attains the norm, then $\mathcal{L}(X, Y)$ is reflexive.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Proof. Since *Y* is reflexive,

If every operator in $\mathcal{L}(X, Y)$ attains the norm, then $\mathcal{L}(X, Y) = \mathcal{K}(X, Y)$?

Theorem (Holub, 1973)

Let X and Y be **both** reflexive spaces.

(a) If every operator in $\mathcal{L}(X, Y)$ attains the norm, then $\mathcal{L}(X, Y)$ is reflexive.

Proof. Since Y is reflexive, $\mathcal{L}(X, Y)$ is the dual space of the projective tensor product $X \widehat{\otimes}_{\pi} Y^*$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - 釣べ⊙

If every operator in $\mathcal{L}(X, Y)$ attains the norm, then $\mathcal{L}(X, Y) = \mathcal{K}(X, Y)$?

Theorem (Holub, 1973)

Let X and Y be **both** reflexive spaces.

(a) If every operator in $\mathcal{L}(X, Y)$ attains the norm, then $\mathcal{L}(X, Y)$ is reflexive.

Proof. Since Y is reflexive, $\mathcal{L}(X, Y)$ is the dual space of the projective tensor product $X \widehat{\otimes}_{\pi} Y^*$. Now, the fact that every operator in $\mathcal{L}(X, Y)$ attains the norm implies that they attain the norm as functionals in $(X \widehat{\otimes}_{\pi} Y^*)^*$ (for every $T \in \mathcal{L}(X, Y)$ there are $x \in B_X$ and $y^* \in B_{Y^*}$ such that $T(x \otimes y^*) = T(x)(y^*) = ||T||$).

If every operator in $\mathcal{L}(X, Y)$ attains the norm, then $\mathcal{L}(X, Y) = \mathcal{K}(X, Y)$?

Theorem (Holub, 1973)

Let X and Y be **both** reflexive spaces.

(a) If every operator in $\mathcal{L}(X, Y)$ attains the norm, then $\mathcal{L}(X, Y)$ is reflexive.

Proof. Since Y is reflexive, $\mathcal{L}(X, Y)$ is the dual space of the projective tensor product $X \widehat{\otimes}_{\pi} Y^*$. Now, the fact that every operator in $\mathcal{L}(X, Y)$ attains the norm implies that they attain the norm as functionals in $(X \widehat{\otimes}_{\pi} Y^*)^*$ (for every $T \in \mathcal{L}(X, Y)$ there are $x \in B_X$ and $y^* \in B_{Y^*}$ such that $T(x \otimes y^*) = T(x)(y^*) = ||T||$). Thus, James Theorem asserts that $X \widehat{\otimes}_{\pi} Y^*$ is reflexive and therefore $(X \widehat{\otimes}_{\pi} Y^*)^* = \mathcal{L}(X, Y)$ is reflexive.

If every operator in $\mathcal{L}(X, Y)$ attains the norm, then $\mathcal{L}(X, Y) = \mathcal{K}(X, Y)$?

Theorem (Holub, 1973)

Let X and Y be both reflexive spaces.

(a) If every operator in $\mathcal{L}(X, Y)$ attains the norm, then $\mathcal{L}(X, Y)$ is reflexive.

If every operator in $\mathcal{L}(X, Y)$ attains the norm, then $\mathcal{L}(X, Y) = \mathcal{K}(X, Y)$?

Theorem (Holub, 1973)

Let X and Y be both reflexive spaces.

- (a) If every operator in $\mathcal{L}(X, Y)$ attains the norm, then $\mathcal{L}(X, Y)$ is reflexive.
- (b) If X or Y has the approximation property (AP), then the following statements are equivalent.

If every operator in $\mathcal{L}(X, Y)$ attains the norm, then $\mathcal{L}(X, Y) = \mathcal{K}(X, Y)$?

Theorem (Holub, 1973)

Let X and Y be both reflexive spaces.

- (a) If every operator in $\mathcal{L}(X, Y)$ attains the norm, then $\mathcal{L}(X, Y)$ is reflexive.
- (b) If X or Y has the approximation property (AP), then the following statements are equivalent.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

(i) $\mathcal{L}(X, Y) = \mathcal{K}(X, Y);$

If every operator in $\mathcal{L}(X, Y)$ attains the norm, then $\mathcal{L}(X, Y) = \mathcal{K}(X, Y)$?

Theorem (Holub, 1973)

Let X and Y be both reflexive spaces.

- (a) If every operator in $\mathcal{L}(X, Y)$ attains the norm, then $\mathcal{L}(X, Y)$ is reflexive.
- (b) If X or Y has the approximation property (AP), then the following statements are equivalent.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

(i)
$$\mathcal{L}(X,Y) = \mathcal{K}(X,Y);$$

(ii) Every operator in $\mathcal{L}(X, Y)$ attains the norm;

If every operator in $\mathcal{L}(X, Y)$ attains the norm, then $\mathcal{L}(X, Y) = \mathcal{K}(X, Y)$?

Theorem (Holub, 1973)

Let X and Y be both reflexive spaces.

- (a) If every operator in $\mathcal{L}(X, Y)$ attains the norm, then $\mathcal{L}(X, Y)$ is reflexive.
- (b) If X or Y has the approximation property (AP), then the following statements are equivalent.

- (i) $\mathcal{L}(X, Y) = \mathcal{K}(X, Y);$
- (ii) Every operator in $\mathcal{L}(X, Y)$ attains the norm;
- (iii) $\mathcal{L}(X, Y)$ is reflexive;

If every operator in $\mathcal{L}(X, Y)$ attains the norm, then $\mathcal{L}(X, Y) = \mathcal{K}(X, Y)$?

Theorem (Holub, 1973)

Let X and Y be both reflexive spaces.

- (a) If every operator in $\mathcal{L}(X, Y)$ attains the norm, then $\mathcal{L}(X, Y)$ is reflexive.
- (b) If X or Y has the approximation property (AP), then the following statements are equivalent.
 - (i) $\mathcal{L}(X, Y) = \mathcal{K}(X, Y);$
 - (ii) Every operator in $\mathcal{L}(X, Y)$ attains the norm;
 - (iii) $\mathcal{L}(X, Y)$ is reflexive;
 - (iv) $(\mathcal{L}(X, Y), \|\cdot\|)^* = (\mathcal{L}(X, Y), \tau_c)^*$, where τ_c denotes the topology of compact convergence.

If every operator in $\mathcal{L}(X, Y)$ attains the norm, then $\mathcal{L}(X, Y) = \mathcal{K}(X, Y)$?

Theorem (Holub, 1973 and Mujica, 2001)

Let X and Y be both reflexive spaces.

- (a) If every operator in $\mathcal{L}(X, Y)$ attains the norm, then $\mathcal{L}(X, Y)$ is reflexive.
- (b) If X or Y has the compact approximation property (CAP), then the following statements are equivalent.

(i)
$$\mathcal{L}(X,Y) = \mathcal{K}(X,Y);$$

- (ii) Every operator in $\mathcal{L}(X, Y)$ attains the norm;
- (iii) $\mathcal{L}(X, Y)$ is reflexive;
- (iv) $(\mathcal{L}(X, Y), \|\cdot\|)^* = (\mathcal{L}(X, Y), \tau_c)^*$, where τ_c denotes the topology of compact convergence.

If every operator in $\mathcal{L}(X, Y)$ attains the norm, then $\mathcal{L}(X, Y) = \mathcal{K}(X, Y)$?

Theorem (Holub, 1973 and Mujica, 2001)

Let X and Y be both reflexive spaces.

- (a) If every operator in $\mathcal{L}(X, Y)$ attains the norm, then $\mathcal{L}(X, Y)$ is reflexive.
- (b) If X or Y has the compact approximation property (CAP), then the following statements are equivalent.

(i)
$$\mathcal{L}(X,Y) = \mathcal{K}(X,Y);$$

- (ii) Every operator in $\mathcal{L}(X, Y)$ attains the norm;
- (iii) $\mathcal{L}(X, Y)$ is reflexive;
- (iv) $(\mathcal{L}(X, Y), \|\cdot\|)^* = (\mathcal{L}(X, Y), \tau_c)^*$, where τ_c denotes the topology of compact convergence.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Indeed, the implications $(i) \Rightarrow (ii) \Rightarrow (iii) \Leftrightarrow (iv)$ always hold (under the reflexivity of X and Y)

If every operator in $\mathcal{L}(X, Y)$ attains the norm, then $\mathcal{L}(X, Y) = \mathcal{K}(X, Y)$?

Theorem (Holub, 1973 and Mujica, 2001)

Let X and Y be both reflexive spaces.

- (a) If every operator in $\mathcal{L}(X, Y)$ attains the norm, then $\mathcal{L}(X, Y)$ is reflexive.
- (b) If X or Y has the compact approximation property (CAP), then the following statements are equivalent.

(i)
$$\mathcal{L}(X,Y) = \mathcal{K}(X,Y);$$

- (ii) Every operator in $\mathcal{L}(X, Y)$ attains the norm;
- (iii) $\mathcal{L}(X, Y)$ is reflexive;
- (iv) $(\mathcal{L}(X, Y), \|\cdot\|)^* = (\mathcal{L}(X, Y), \tau_c)^*$, where τ_c denotes the topology of compact convergence.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Indeed, the implications $(i) \Rightarrow (ii) \Rightarrow (iii) \Leftrightarrow (iv)$ always hold (under the reflexivity of X and Y) and the CAP is only used to prove $(iv) \Rightarrow (i)$.

$$\mathcal{L}(X,Y) = \mathcal{K}(X,Y)$$

<□> <□> <□> <□> <=> <=> <=> <=> <=> <=> <=> <<</p>

$$\left[\mathcal{L}(X,Y) = \mathcal{K}(X,Y) \right] \Longrightarrow \left[\mathcal{L}(X,Y) = \mathrm{NA}(X,Y) \right]$$

$$\begin{array}{c}
\underbrace{\left(\mathcal{L}(X,Y), \|\cdot\|\right)^* = (\mathcal{L}(X,Y), \tau_c)^*}_{\mathbb{L}(X,Y) = \mathrm{NA}(X,Y)} \\
\overset{\Pi}{\longrightarrow} \\
\underbrace{\mathcal{L}(X,Y) = \mathcal{K}(X,Y)}_{\mathbb{L}(X,Y) = \mathrm{NA}(X,Y)} \\
\overset{\Pi}{\longrightarrow} \\
\overset{\Pi}$$

If there exists a relatively WOT-compact set $K \subseteq \mathcal{L}(X, Y)$ such that $0 \in \overline{K}^{WOT}$ but $0 \notin \overline{co}^{\|\cdot\|}(K)$,

If there exists a relatively WOT-compact set $K \subseteq \mathcal{L}(X, Y)$ such that $0 \in \overline{K}^{WOT}$ but $0 \notin \overline{co}^{\|\cdot\|}(K)$, then there exists a not norm-attaining operator in $\mathcal{L}(X, Y)$.

If there exists a relatively WOT-compact set $K \subseteq \mathcal{L}(X, Y)$ such that $0 \in \overline{K}^{WOT}$ but $0 \notin \overline{\operatorname{co}}^{\|\cdot\|}(K)$, then there exists a not norm-attaining operator in $\mathcal{L}(X, Y)$.

Recall that a net (T_{α}) in $\mathcal{L}(X, Y)$ converges in the **SOT** to T (resp. in the **WOT**) if and only if $(T_{\alpha}(x))$ converges in norm (resp. in the weak topology) to T(x) for every $x \in X$.

If there exists a relatively WOT-compact set $K \subseteq \mathcal{L}(X, Y)$ such that $0 \in \overline{K}^{WOT}$ but $0 \notin \overline{\operatorname{co}}^{\|\cdot\|}(K)$, then there exists a not norm-attaining operator in $\mathcal{L}(X, Y)$.

Recall that a net (T_{α}) in $\mathcal{L}(X, Y)$ converges in the **SOT** to T (resp. in the **WOT**) if and only if $(T_{\alpha}(x))$ converges in norm (resp. in the weak topology) to T(x) for every $x \in X$.

The proof of the previous theorem uses the fact that if every operator in $\mathcal{L}(X, Y)$ attains the norm then

$$B := \left\{ x \otimes y^* : x \in S_X, y^* \in S_{Y^*} \right\} \subseteq \mathcal{L}(X, Y)^*$$

is a **James boundary** of $\mathcal{L}(X, Y)$.

If there exists a relatively WOT-compact set $K \subseteq \mathcal{L}(X, Y)$ such that $0 \in \overline{K}^{WOT}$ but $0 \notin \overline{\operatorname{co}}^{\|\cdot\|}(K)$, then there exists a not norm-attaining operator in $\mathcal{L}(X, Y)$.

Recall that a net (T_{α}) in $\mathcal{L}(X, Y)$ converges in the **SOT** to T (resp. in the **WOT**) if and only if $(T_{\alpha}(x))$ converges in norm (resp. in the weak topology) to T(x) for every $x \in X$.

The proof of the previous theorem uses the fact that if every operator in $\mathcal{L}(X, Y)$ attains the norm then

$$B := \left\{ x \otimes y^* : x \in S_X, y^* \in S_{Y^*} \right\} \subseteq \mathcal{L}(X, Y)^*$$

is a **James boundary** of $\mathcal{L}(X, Y)$. Then \overline{K}^{WOT} is norm-bounded and $w(\mathcal{L}(X, Y), B)$ -compact.

If there exists a relatively WOT-compact set $K \subseteq \mathcal{L}(X, Y)$ such that $0 \in \overline{K}^{WOT}$ but $0 \notin \overline{\operatorname{co}}^{\|\cdot\|}(K)$, then there exists a not norm-attaining operator in $\mathcal{L}(X, Y)$.

Recall that a net (T_{α}) in $\mathcal{L}(X, Y)$ converges in the **SOT** to T (resp. in the **WOT**) if and only if $(T_{\alpha}(x))$ converges in norm (resp. in the weak topology) to T(x) for every $x \in X$.

The proof of the previous theorem uses the fact that if every operator in $\mathcal{L}(X, Y)$ attains the norm then

$$B := \left\{ x \otimes y^* : x \in S_X, y^* \in S_{Y^*}
ight\} \subseteq \mathcal{L}(X, Y)^*$$

is a **James boundary** of $\mathcal{L}(X, Y)$. Then \overline{K}^{WOT} is norm-bounded and $w(\mathcal{L}(X, Y), B)$ -compact. By a **Theorem of Pfitzner**, $\overline{K}^{WOT} = \overline{K}^w$ is weakly compact.

If there exists a relatively WOT-compact set $K \subseteq \mathcal{L}(X, Y)$ such that $0 \in \overline{K}^{WOT}$ but $0 \notin \overline{\operatorname{co}}^{\|\cdot\|}(K)$, then there exists a not norm-attaining operator in $\mathcal{L}(X, Y)$.

Recall that a net (T_{α}) in $\mathcal{L}(X, Y)$ converges in the **SOT** to T (resp. in the **WOT**) if and only if $(T_{\alpha}(x))$ converges in norm (resp. in the weak topology) to T(x) for every $x \in X$.

The proof of the previous theorem uses the fact that if every operator in $\mathcal{L}(X, Y)$ attains the norm then

$$B := \left\{ x \otimes y^* : x \in S_X, y^* \in S_{Y^*}
ight\} \subseteq \mathcal{L}(X, Y)^*$$

is a **James boundary** of $\mathcal{L}(X, Y)$. Then \overline{K}^{WOT} is norm-bounded and $w(\mathcal{L}(X, Y), B)$ -compact. By a **Theorem of Pfitzner**, $\overline{K}^{WOT} = \overline{K}^w$ is weakly compact. Since $0 \in \overline{K}^{WOT} = \overline{K}^w$, then $0 \in \overline{\operatorname{co}}^{\|\cdot\|}(K)$, which gives the desired contradiction.

If there exists a relatively WOT-compact set $K \subseteq \mathcal{L}(X, Y)$ such that $0 \in \overline{K}^{WOT}$ but $0 \notin \overline{co}^{\|\cdot\|}(K)$, then there exists a not norm-attaining operator in $\mathcal{L}(X, Y)$.

If there exists a relatively WOT-compact set $K \subseteq \mathcal{L}(X, Y)$ such that $0 \in \overline{K}^{WOT}$ but $0 \notin \overline{co}^{\|\cdot\|}(K)$, then there exists a not norm-attaining operator in $\mathcal{L}(X, Y)$.

We say that (X, Y) has **James property** if it satisfies the hypothesis of the previous theorem, i.e. if there exists a relatively WOT-compact set $K \subseteq \mathcal{L}(X, Y)$ such that $0 \in \overline{K}^{WOT}$ but $0 \notin \overline{\operatorname{co}}^{\|\cdot\|}(K)$.

If there exists a relatively WOT-compact set $K \subseteq \mathcal{L}(X, Y)$ such that $0 \in \overline{K}^{WOT}$ but $0 \notin \overline{co}^{\|\cdot\|}(K)$, then there exists a not norm-attaining operator in $\mathcal{L}(X, Y)$.

We say that (X, Y) has **James property** if it satisfies the hypothesis of the previous theorem, i.e. if there exists a relatively WOT-compact set $K \subseteq \mathcal{L}(X, Y)$ such that $0 \in \overline{K}^{WOT}$ but $0 \notin \overline{\operatorname{co}}^{\|\cdot\|}(K)$.

If there exists a relatively WOT-compact set $K \subseteq \mathcal{L}(X, Y)$ such that $0 \in \overline{K}^{WOT}$ but $0 \notin \overline{co}^{\|\cdot\|}(K)$, then there exists a not norm-attaining operator in $\mathcal{L}(X, Y)$.

We say that (X, Y) has **James property** if it satisfies the hypothesis of the previous theorem, i.e. if there exists a relatively WOT-compact set $K \subseteq \mathcal{L}(X, Y)$ such that $0 \in \overline{K}^{WOT}$ but $0 \notin \overline{\operatorname{co}}^{\|\cdot\|}(K)$.

Theorem (S. Dantas, M. Jung, G.M.C., 2021)

If $B_{\mathcal{K}(X,Y)}$ is not WOT-closed in $\mathcal{L}(X,Y)$ then (X,Y) has **James property** and therefore there exists a not norm-attaining operator in $\mathcal{L}(X,Y)$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

If there exists a relatively WOT-compact set $K \subseteq \mathcal{L}(X, Y)$ such that $0 \in \overline{K}^{WOT}$ but $0 \notin \overline{co}^{\|\cdot\|}(K)$, then there exists a not norm-attaining operator in $\mathcal{L}(X, Y)$.

We say that (X, Y) has **James property** if it satisfies the hypothesis of the previous theorem, i.e. if there exists a relatively WOT-compact set $K \subseteq \mathcal{L}(X, Y)$ such that $0 \in \overline{K}^{WOT}$ but $0 \notin \overline{\operatorname{co}}^{\|\cdot\|}(K)$.

Theorem (S. Dantas, M. Jung, G.M.C., 2021)

If $B_{\mathcal{K}(X,Y)}$ is not WOT-closed in $\mathcal{L}(X,Y)$ then (X,Y) has **James property** and therefore there exists a not norm-attaining operator in $\mathcal{L}(X,Y)$.

We say that a pair (X, Y) has the **pointwise-BCAP property** if $\mathcal{L}(X, Y) = \bigcup_{\lambda>0} \lambda \overline{B_{\mathcal{K}(X,Y)}}^{\tau_c}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
Theorem (S. Dantas, M. Jung, G.M.C., 2021)

If there exists a relatively WOT-compact set $K \subseteq \mathcal{L}(X, Y)$ such that $0 \in \overline{K}^{WOT}$ but $0 \notin \overline{co}^{\|\cdot\|}(K)$, then there exists a not norm-attaining operator in $\mathcal{L}(X, Y)$.

We say that (X, Y) has **James property** if it satisfies the hypothesis of the previous theorem, i.e. if there exists a relatively WOT-compact set $K \subseteq \mathcal{L}(X, Y)$ such that $0 \in \overline{K}^{WOT}$ but $0 \notin \overline{\operatorname{co}}^{\|\cdot\|}(K)$.

Theorem (S. Dantas, M. Jung, G.M.C., 2021)

If $B_{\mathcal{K}(X,Y)}$ is not WOT-closed in $\mathcal{L}(X,Y)$ then (X,Y) has **James property** and therefore there exists a not norm-attaining operator in $\mathcal{L}(X,Y)$.

We say that a pair (X, Y) has the **pointwise-BCAP property** if $\mathcal{L}(X, Y) = \bigcup_{\lambda>0} \lambda \overline{B_{\mathcal{K}(X,Y)}}^{\tau_c}$. For such a pair we have that

 $\mathcal{L}(X,Y) = \mathcal{K}(X,Y) \iff (X,Y) \text{ fails James property.}$

If X is reflexive:

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

If X is reflexive:

If X is reflexive:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Does there exist an infinite-dimensional Banach space X for which $\mathcal{L}(X) = NA(X)$?

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Does there exist an infinite-dimensional Banach space X for which $\mathcal{L}(X) = NA(X)$?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Notice that in this case we have $\mathcal{L}(X) \neq \mathcal{K}(X)$.

Does there exist an infinite-dimensional Banach space X for which $\mathcal{L}(X) = NA(X)$?

Notice that in this case we have $\mathcal{L}(X) \neq \mathcal{K}(X)$. If such X exists, then both X and $\mathcal{L}(X)$ must be reflexive. But if $\mathcal{L}(X)$ is reflexive then X is separable (Kalton, 1974).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ● ●

Does there exist an infinite-dimensional Banach space X for which $\mathcal{L}(X) = NA(X)$?

Notice that in this case we have $\mathcal{L}(X) \neq \mathcal{K}(X)$. If such X exists, then both X and $\mathcal{L}(X)$ must be reflexive. But if $\mathcal{L}(X)$ is reflexive then X is separable (Kalton, 1974).

Theorem (S. Dantas, G.M.C., M. Jung, 2021)

If there is an infinite-dimensional Banach space X such that every operator on $\mathcal{L}(X)$ attains its norm, then X does not have the bounded \mathcal{A} -approximation property for any nontrivial ideal \mathcal{A} (i.e. for any ideal $\mathcal{A} \neq \mathcal{L}(X)$).

Does there exist an infinite-dimensional Banach space X for which $\mathcal{L}(X) = NA(X)$?

Notice that in this case we have $\mathcal{L}(X) \neq \mathcal{K}(X)$. If such X exists, then both X and $\mathcal{L}(X)$ must be reflexive. But if $\mathcal{L}(X)$ is reflexive then X is separable (Kalton, 1974).

Theorem (S. Dantas, G.M.C., M. Jung, 2021)

If there is an infinite-dimensional Banach space X such that every operator on $\mathcal{L}(X)$ attains its norm, then X does not have the bounded \mathcal{A} -approximation property for any nontrivial ideal \mathcal{A} (i.e. for any ideal $\mathcal{A} \neq \mathcal{L}(X)$).

Thank you for your attention.