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Abstract

The well-known James’ Theorem states that a Banach space is reflexive
if and only if every bounded linear functional on it attains its norm. In this
talk we will investigate operator and lattice versions of this result.
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Let T : X → Y be a bounded operator between Banach lattices.

T preserves the order if and only if Tx ≤ Ty whenever x ≤ y . This is
equivalent to 0 ≤ Tx whenever 0 ≤ x (because x ≤ y ⇔ 0 ≤ y − x). An
operator T preserving the order is said to be a positive operator.
Nevertheless, a positive operator might not preserve suprema and infima:

Example

Take (ei , e
∗
i ) the standard biorthogonal system of c0. Then e∗1 + e∗2 is a

positive functional but

(e∗1 + e∗2 )(e1 ∨ e2) = 2 6= 1 = (e∗1 + e∗2 )(e1) ∨ (e∗1 + e∗2 )(e2).

Definition

T : X → Y is a lattice homomorphism if it preserves suprema and infima,
i.e. T (x ∨ y) = T (x) ∨ T (y) and T (x ∧ y) = T (x) ∧ T (y) for every
x , y ∈ X .
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If X is c0

or `p then

(X ∗)+ = {
∑

λne
∗
n : λn ≥ 0, n ∈ N}

and the functionals which are lattice homomorphisms are just

{λe∗n : λ ≥ 0, n ∈ N}.

If X is C(K ), then positive functionals on C(K ) are just identified
with positive measures on K . Nevertheless, the functionals which are
lattice homomorphisms are just those of the form

{λδt : λ ≥ 0, t ∈ K}.

If X is Lp[0, 1], then positive functionals on X are just functions
which are a.e. positive. Nevertheless, the only lattice homomorphism
on Lp[0, 1] is the zero functional.
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Indeed, for a Banach lattice X , a nonzero functional x∗ ∈ X ∗ is a lattice
homomorphism if and only if it is an atom.

Definition

A nonzero element x in a Banach lattice X is an atom if 0 ≤ y ≤ x
implies that λx = y for some scalar λ ≥ 0.

Any Banach lattice X can be embedded into a Banach lattice Y with no
nontrivial lattice homomorphisms. In particular, no nontrivial lattice
homomorphism x∗ ∈ X ∗ can be extended to a lattice homomorphism on
Y .
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Positive functionals attaining the norm

Definition. An element x∗ ∈ X ∗ attains the norm if there is x ∈ BX

such that x∗(x) = ‖x∗‖.

By James Theorem, every functional x∗ ∈ X ∗ attains its norm if and
only if X is reflexive;

Nevertheless, there are nonreflexive Banach lattices in which every
positive functional attains the norm. For example, any C(K )-space.

Theorem (T. Oikhberg and M.A. Tursi, 2019)

If X is a separable AM-space (i.e. ‖x ∨ y‖ = ‖x‖ ∨ ‖y‖ for every disjoint
x , y ∈ X+) in which every positive functional attains its norm, then X is
(lattice) isometric to C(K ).
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Theorem (T. Oikhberg and M.A. Tursi, 2019)

An order continuous Banach lattice X is reflexive if and only if every
positive functional in X ∗ attains its norm.

Indeed, in this case, if x∗ is a
functional which does not attain the norm, then |x∗| is a positive
functional which does not attain the norm.

Definition

X is said to be order continuous if inf{‖x‖ : x ∈ A} = 0 for every
downward directed set A ⊂ X such that inf A = 0. Moreover, X is order
continuous if and only if every monotone order bounded sequence in X is
norm-convergent (a set A ⊂ X is order bounded if there is x , y ∈ X such
that x ≤ z ≤ y for every z ∈ A).
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Theorem (S. Dantas, G.M.C., J.D. Rodŕıguez Abellán and A. Rueda
Zoca, 2020)

If X is order continuous, then every lattice homomorphism in X ∗ attains
its norm.

Sketch of the proof. Take xn ∈ BX such that x∗(xn) converges to
‖x∗‖.WLOG, xn is positive (change xn by |xn| if necessary). Now notice

that x∗
(
‖x∗‖
x∗(xk )xk

)
= ‖x∗‖ and that

(
‖ ‖x

∗‖
x∗(xk )xk‖

)
k∈N

converges to 1.

Define yn :=
∧

k≤n

(
x∗

x∗(xk )xk

)
. Then, yn is a decreasing sequence of

positive elements (so norm-convergent to some element y ∈ BX ) and
x∗(yn) = ‖x∗‖ for every n. Thus, x∗ attains its norm at y .
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Zoca, 2020)

If X is order continuous, then every lattice homomorphism in X ∗ attains
its norm.

Sketch of the proof. Take xn ∈ BX such that x∗(xn) converges to
‖x∗‖.WLOG, xn is positive (change xn by |xn| if necessary). Now notice

that x∗
(
‖x∗‖
x∗(xk )xk

)
= ‖x∗‖ and that

(
‖ ‖x

∗‖
x∗(xk )xk‖

)
k∈N

converges to 1.

Define yn :=
∧

k≤n

(
x∗

x∗(xk )xk

)
. Then, yn is a decreasing sequence of

positive elements (so norm-convergent to some element y ∈ BX ) and
x∗(yn) = ‖x∗‖ for every n. Thus, x∗ attains its norm at y .



Theorem (S. Dantas, G.M.C., J.D. Rodŕıguez Abellán and A. Rueda
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A natural class of Banach lattices generalizing the class of order continuous
Banach lattices is the class of σ-Dedekind complete Banach lattices:

Definition

X is said to be σ-Dedekind complete if every order bounded countable
set in X has a supremum and an infimum.

Question

Does every lattice homomorphism on a σ-Dedekind complete Banach
lattice attain its norm?

Remark. Lattice homomorphisms might not preserve infinite suprema

Take K = N ∪ {∞} the one point compactification of the natural numbers
with the discrete topology. Then, δ∞ ∈ C (K )∗ is a lattice homomorphism.
Take fn = χ{1,...,n} the characteristic function of the set {1, . . . , n}. Then,
(fn)n∈N is an increasing sequence, the supremum

∨
n∈N fn is the constant

function 1. Nevertheless,∨
n∈N

δ∞(fn) = 0 6= 1 = δ∞(1) = δ∞

(∨
n∈N

fn

)
.
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Free Banach lattice generated by a Banach space E

Definition (Avilés, Rodŕıguez, Tradacete 2018)

Let E be a Banach space.

The free Banach lattice generated by E is a
Banach lattice, denoted by FBL[E ], together with a bounded operator
φ : E −→ FBL[E ]

It exists and is unique up to isometries.

It can be constructed as a
sublattice of

{f : E ∗ → R : f (λx∗) = λf (x∗) ∀x∗ ∈ E ∗, λ ≥ 0 and f |BE∗ is w∗-continuous}

with a suitable norm.
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Let E be a Banach space. The free Banach lattice generated by E is a
Banach lattice, denoted by FBL[E ], together with a bounded operator
φ : E −→ FBL[E ] with the property that for every Banach lattice X and
every bounded operator T : E −→ X there is a unique Banach lattice
homomorphism T̂ : FBL[E ] −→ X such that T = T̂ ◦ φ and ‖T̂‖ = ‖T‖.

E

φ
��

T // X

FBL[E ]

It exists and is unique up to isometries. It can be constructed as a
sublattice of

{f : E ∗ → R : f (λx∗) = λf (x∗) ∀x∗ ∈ E ∗, λ ≥ 0 and f |BE∗ is w∗-continuous}

with a suitable norm.



Free Banach lattice generated by a Banach space E

Definition (Avilés, Rodŕıguez, Tradacete 2018)
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attains its norm. But...

Open problem

Does δx∗ attains its norm if and only if x∗ attains its norm?

We have some partial answers.



Definition

Let E be a Banach space. A functional x∗ ∈ E ∗ not attaining the norm
satisfies property (P) if the set

C := {y∗ ∈ E ∗ : |x∗(x)|+ |y∗(x)| ≤ ‖x∗‖ for every x ∈ BE}

satisfies that x∗ is in the w∗-closure of R+C := {λy∗ : λ > 0, y∗ ∈ C}.

E has property (P) if every not norm-attaining functional in E ∗ has
property (P).

Theorem (S. Dantas, G.M.C., J.D. Rodŕıguez Abellán and A. Rueda
Zoca, 2020)

Let E be a Banach space and x∗ ∈ E ∗ a not norm-attaining functional
with property (P). Then, δx∗ is a lattice homomorphism which does not
attain its norm. In particular, if E has property (P), then x∗ ∈ E ∗ attains
its norm if and only if δx∗ ∈ FBL[E ] attains its norm.
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Zoca, 2020)

Let E be a Banach space and x∗ ∈ E ∗ a not norm-attaining functional
with property (P). Then, δx∗ is a lattice homomorphism which does not
attain its norm. In particular, if E has property (P), then x∗ ∈ E ∗ attains
its norm if and only if δx∗ ∈ FBL[E ] attains its norm.



Definition

Let E be a Banach space. A functional x∗ ∈ E ∗ not attaining the norm
satisfies property (P) if the set

C := {y∗ ∈ E ∗ : |x∗(x)|+ |y∗(x)| ≤ ‖x∗‖ for every x ∈ BE}

satisfies that x∗ is in the w∗-closure of R+C := {λy∗ : λ > 0, y∗ ∈ C}.
E has property (P) if every not norm-attaining functional in E ∗ has
property (P).

Theorem (S. Dantas, G.M.C., J.D. Rodŕıguez Abellán and A. Rueda
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`1(Γ) and any isometric predual of `1(Γ) have property (P).

There are
Banach spaces which do not have property (P).
Namely, every separable Banach space admits an equivalent norm for
which the dual is strictly convex.
If E ∗ is strictly convex, every point of the sphere is an extreme point.
If, in addition, E is nonreflexive, then there are points on the sphere of E ∗

which are extreme but do not attain its norm.
Since C 6= {0} for a point x∗ ∈ SX∗ if and only if x∗ is not an extreme
point of the sphere, we conclude that E does not have property (P).
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The only examples we know of Banach lattices with a lattice
homomorphism which does not attain its norm are free Banach lattices.

Question

Does the existence of a lattice homomorphism which does not attain its
norm on a Banach lattice X imply that X contains some kind of free
structure? In particular, does it imply that X contains a copy of FBL[E ]
for some infinite-dimensional Banach space E?
Is the property “every lattice homomorphism attains its norm” invariant
under lattice isomorphisms?
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Operator versions of James’

Theorem.



Theorem (James’ Theorem)

A Banach space X is reflexive if and only if every functional in
X ∗ = L(X ,R) attains the norm.

Thus, the space L(X ,R) is reflexive if and only if every operator in
L(X ,R) attains the norm if and only if X is reflexive.

Problem 1

Characterize those pair of Banach spaces X and Y for which every
operator in L(X ,Y ) attains the norm.

Problem 2

Characterize those pairs of Banach spaces X and Y for which L(X ,Y ) is
reflexive.
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Problem 1

Characterize those pairs of Banach spaces X and Y for which every
operator in L(X ,Y ) attains the norm.

By James’ Theorem, if every operator in L(X ,Y ) attains the norm then X
is reflexive. From now on, we suppose that X denotes a reflexive Banach
space.
Notice that every compact operator in L(X ,Y ) attains the norm.
Thus, we have the following:

Theorem

X reflexive and L(X ,Y ) = K(X ,Y ) =⇒ every operator in L(X ,Y )
attains the norm.
In particular, if X is reflexive and Y has the Schur property then every
operator in L(X ,Y )(= K(X ,Y )) attains the norm.
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Problem 3

If every operator in L(X ,Y ) attains the norm, then L(X ,Y ) = K(X ,Y )?

Theorem (Holub, 1973)

Let X and Y be both reflexive spaces.

(a) If every operator in L(X ,Y ) attains the norm, then L(X ,Y ) is
reflexive.

Proof. Since Y is reflexive, L(X ,Y ) is the dual space of the projective
tensor product X ⊗̂πY ∗. Now, the fact that every operator in L(X ,Y )
attains the norm implies that they attain the norm as functionals in
(X ⊗̂πY ∗)∗ (for every T ∈ L(X ,Y ) there are x ∈ BX and y∗ ∈ BY ∗ such
that T (x ⊗ y∗) = T (x)(y∗) = ‖T‖). Thus, James Theorem asserts that
X ⊗̂πY ∗ is reflexive and therefore (X ⊗̂πY ∗)∗ = L(X ,Y ) is reflexive.
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(a) If every operator in L(X ,Y ) attains the norm, then L(X ,Y ) is
reflexive.

(b) If X or Y has the approximation property (AP), then the following
statements are equivalent.

(i) L(X ,Y ) = K(X ,Y );
(ii) Every operator in L(X ,Y ) attains the norm;
(iii) L(X ,Y ) is reflexive;
(iv) (L(X ,Y ), ‖ · ‖)∗ = (L(X ,Y ), τc)∗, where τc denotes the topology of

compact convergence.
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Theorem (S. Dantas, M. Jung, G.M.C., 2021)

If there exists a relatively WOT-compact set K ⊆ L(X ,Y ) such that

0 ∈ K
WOT

but 0 /∈ co‖·‖(K ),

then there exists a not norm-attaining
operator in L(X ,Y ).

Recall that a net (Tα) in L(X ,Y ) converges in the SOT to T (resp. in
the WOT) if and only if (Tα(x)) converges in norm (resp. in the weak
topology) to T (x) for every x ∈ X .
The proof of the previous theorem uses the fact that if every operator in
L(X ,Y ) attains the norm then

B :=
{
x ⊗ y∗ : x ∈ SX , y

∗ ∈ SY ∗

}
⊆ L(X ,Y )∗

is a James boundary of L(X ,Y ). Then K
WOT

is norm-bounded and

w(L(X ,Y ),B)-compact. By a Theorem of Pfitzner, K
WOT

= K
w

is

weakly compact . Since 0 ∈ K
WOT

= K
w

, then 0 ∈ co‖·‖(K ), which gives
the desired contradiction.
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property and therefore there exists a not norm-attaining operator in
L(X ,Y ).

We say that a pair (X ,Y ) has the pointwise-BCAP property if
L(X ,Y ) =

⋃
λ>0 λBK(X ,Y )

τc
. For such a pair we have that

L(X ,Y ) = K(X ,Y )⇐⇒ (X ,Y ) fails James property.
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Problem (M.I. Ostrovskii, 2005)

Does there exist an infinite-dimensional Banach space X for which
L(X ) = NA(X )?

Notice that in this case we have L(X ) 6= K(X ). If such X exists, then
both X and L(X ) must be reflexive. But if L(X ) is reflexive then X is
separable (Kalton, 1974).

Theorem (S. Dantas, G.M.C., M. Jung, 2021)

If there is an infinite-dimensional Banach space X such that every operator
on L(X ) attains its norm, then X does not have the bounded
A-approximation property for any nontrivial ideal A (i.e. for any ideal
A 6= L(X )).

Thank you for your attention.
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