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@ Structure of the Dedekind completion of BLA

© Arens regularity of BLA

@ Representation of a BLA
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[[Idea of the proof]]

1.:Suppose that for all € > 0 and a € A we can find a positive element
e € A satisfying ||e|| < M and ||ea— a|| <e.

I ={FCA":|F| <oco}
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such that ||er.a — a|| < & for all a € F ( by induction on the
cardinality of F)
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If Ais a Banach algebra which possesses both a left B-A-l and right B-A-I
then A has a two sided B-A-I.

Indeed, Let (€x)aca be a left B-A-l and (fz)ger be a right B-A-l. Then
(U(wp)) w.p)
U(:x,/S) = e + fﬁ — fﬁe,x.

is a B-A-I.

Problem

If a Banach lattice algebra A possesses both left and right positive
approximate identities, does A necessarily admit a positive approximate
identity?
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Fact (Cohen's factorization property)
If A is a Banach algebra with a B-A-I. Then A= A? = {xy : (x,y) € A?}

Problem

(Positive Cohen's Factorization): If a Banach lattice algebra A has a
positive approximate identity, Does AT = {xy : (x,y) € AT} holds?

\

Remark: The answer is positive if A is a Banach f-algebra with
positive approximate identity. Let 0 < x € A, By Cohen’s
factorization x = ab. So, x = |x| = |a| | b|.
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Theorem (Fremlin 1974)

Let E ®, F denote the completion of E ® F with respect to the positive
projective norm |[|ul|| /.

Q@ E ®|n F is a Banach lattice.

@ (Universal property): For any Banach lattice G and any positive
bilinear map ¢ : E x F — G there exist a unique positive linear map

T : E® F — G such that ¢(x,y) = T(x®y) for all
(x,y) € EXF.

° Co(X) ®‘7-[| C()(Y) = Co(X X Y).

o 0 F = {x=(w) € PNl = E Il < oo
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Fremlin tensor product of Banach lattice algebras

Let A and B be Banach lattice algebras. The algebraic tensor product
A ® B can be furnished in a canonical way with an algebra product
satisfying

(a@b)(d @ b') = (ad' @ bb').

Theorem (Jaber 2021)

The canonical multiplication can be extended to a Banach lattice algeb
product on the Fremlin projective tensor product A ®),| B.

Moreover, A® | B satisfy the universal property:

For any Banach lattice algebra G and any bilinear and multiplicative

@ : E X F — G there exist a unique positive multiplicative linear map
T:E®y F — G such that ¢(x,y) = T(x®y) for all (x,y) € E X

ra

F.
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Let A and B be two Banach lattice algebras. Then the Fremlin projective
tensor product A @\ B has a positive (left-right) bounded approximate
identity if and only if both A and B have a positive (left-right) bounded
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Proof.
Assume that (u)rea be a positive B-A-l in A®|,| B. Choose 0 < x € A

and 0 < f € A" with f(x) = 1. Let @ : (a, b) —> f(a)b =% there exist
Tr: A®|y B — Bwith Tf(a® b) = f(a)b. Let y € B.

Trx(a®b)y = Tr((a®b)(x®y)) forall (a,b) e AxB. (1)
Trx(u)y = Tr(n(x®y)) — Tr(x®y) =y (2)

(T¢x(up))aren is a left B-A-1 on B. Since uy > 0 and T¢, > 0, then B
has a positive B-A-I. O
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Representation of approximately unital Banach lattice
algebra

Problem (Wickstead 2017)

Is every Banach lattice algebra (isometrically) isomorphic to a closed
subalgebra and sublattice of some algebra of regular operators L' (E)?

Let A be a Banach lattice algebra with a contractive B-A-I.
for all x € A,

o A — A

; e fa fx:yr— f(yx)

Q@ o, € L(A) forall x € A
Q@ o, =000, forall x,y € A
Q |loi|| = ||x]| for all x € A.
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Representation of approximately unital Banach lattice

algebra

Let A be a Banach lattice algebra with a contractive B-A-l. Define

cg:A — L'(A)

X — Oy

@ o is an algebra homomorphism.
o [le()|l = lIx|l.

@ A is isometrically isomorphic to a closed subalgebra of L"(A").
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Representation of approximately unital Banach f-algebra

Let A be a approximately unital Banach f-algebra, then A is isomorphic to
a closed subalgebra and sublattice of L"(A").
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Representation of approximately unital Banach f-algebra

Let A be a approximately unital Banach f-algebra, then A is isomorphic to
a closed subalgebra and sublattice of L"(A").

[Idea] If A is an f-algebra then for all 0 < f € A, (f.x) = f.x*. So,
lo(x)| = o(|x]) for all x € A.
le GOl = e G = I = lIx]l- D

(Institute) 14/05 22 /24
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