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Banach lattices

C(K,R), Lp(p,R), o, £p, R ~ partial order defined pointwise
Definition
A vector space equipped with a partial order (E,>) is an
ordered vector space if
oVx,y,ze X, x<y: x+z<y+z
o Vx,ye X, x<y, VIeR,: Ax < )\y.
In this case we say that > is a linear order.
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C(K,R), Ly(¢,R), co, £p, R ~ partial order defined pointwise
~ f Ag,fV g defined pointwise

Definition
A vector space equipped with a partial order (E,>) is an
ordered vector space if

oVx,y,zeX, x<y: x+z<y+z

o Vx,ye X, x<y,VIeR,: Ax < \y.

In this case we say that > is a linear order.

Definition
A partial ordered set (S, >) is called a lattice if for all x,y € S,
both x Ay :=inf{x,y} and x Vy := sup{x, y} exist in S.
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C(K,R), Ly(p,R), cp, £p, R ~ partial order defined pointwise
~ f A\ g,fV g defined pointwise
OVS + lattice = vector lattice
We can define lattice operations

xT=xVv0, x =(—x)V0, |x|=xV(~x).
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Banach lattices

C(K,R), Lp(¢,R), cg, £p, R ~ partial order defined pointwise
~ f Ag,fV g defined pointwise
OVS + lattice = vector lattice
We can define lattice operations
xT=xVv0, x =(-x)V0, I|x]=xV(—x).

Definition
We say that a vector lattice which is also a normed space
(X, >, |I-1|) is a normed lattice if
o Vx,y € Xp, x <y [Ix]| < lyll,
o Vxe X x|l = [lxI]l
If (X,]|-||) is also complete, we say it is Banach lattice.
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Banach lattices

C(K,R), Lp(¢,R), cg, £p, R ~ partial order defined pointwise
~ f Ag,fV g defined pointwise
OVS + lattice = vector lattice
We can define lattice operations
xT=xVv0, x =(—x)V0, [xl=xV(=x).
Definition
We say that a vector lattice which is also a normed space
(X, >, ]/-]|) is a normed lattice if

o Vx,y € Xy, x<y: x| <yl
o Vxe X Ix|| = [lx]ll.

If (X,]|-||) is also complete, we say it is Banach lattice.
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PR problems

@ Wolfgang Pauli and Norbert Straumann. Die allgemeinen Prinzipien der
Wellenmechanik. Springer Berlin Heidelberg, 1990.

Die mathematische Frage, ob bei gegebenen Funktio-
nen W(X) und W(p) die Wellenfunktionen & stets eindeutig
bestimmt ist, wenn es eine solche zugehdrige Wellenfunktion
iberhaupt gibt [d. h. wenn W(X) und W(p) physikalisch ve-
reinbar sind], ist noch nicht all-gemein untersucht worden.
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@ Wolfgang Pauli and Norbert Straumann. Die allgemeinen Prinzipien der
Wellenmechanik. Springer Berlin Heidelberg, 1990.

Die mathematische Frage, ob bei gegebenen Funktio-
nen W(X) und W(p) die Wellenfunktionen & stets eindeutig
bestimmt ist, wenn es eine solche zugehdrige Wellenfunktion
iberhaupt gibt [d. h. wenn W(X) und W(p) physikalisch ve-
reinbar sind], ist noch nicht all-gemein untersucht worden.

This raised

Question (Pauli problem)

Given both the amplitude of a complex valued square integrable function
and the amplitude of its Fourier transform, can we recover the function?
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From |f| and |Ff| is not possible to difference between f and e*’f.

Question (Pauli problem)

Given both the amplitude of a complex valued square integrable function
and the amplitude of its Fourier transform, can we recover the function up
to any unimodular scalar?
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From |f| and |Ff| is not possible to difference between f and e*’f.

Question (Pauli problem)

Given both the amplitude of a complex valued square integrable function
and the amplitude of its Fourier transform, can we recover the function up
to any unimodular scalar?

Example (Corbett '77)
If ¢ € La(R) verifies that ¢(—x) = £p(x) for all x € R then

FTel| = 17 [l

Take for example,
QD(X) — e—(l:l:i)7rx2.

So we must restrict our attention to a proper subset/subspace of Ly(R).
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If E C Ly(R) does this recovery, then on
Graph(Flg) = (E, FE) := {(¢, Fl¢]), ¢ € E} C La(R) x Ly(R)

we can recover elements therein from |- |
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If E C Ly(R) does this recovery, then on
Graph(Flg) = (E, FE) := {(¢, Fl¢]), ¢ € E} C La(R) x Ly(R)
we can recover elements therein from |- |

Question (Pauli problem for subspaces)

For which subspaces E of La(R) the map

I'lp: (E,FE)/T — La(R) x Ly(R)
@ = (lel, [Flel])

is injective?
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If E C Ly(R) does this recovery, then on
Graph(Flg) = (E, FE) := {(¢, Fl¢]), ¢ € E} C La(R) x Ly(R)
we can recover elements therein from |- |

Question (Pauli problem for subspaces)

For which subspaces E of La(R) the map

I'lp: (E,FE)/T — La(R) x Ly(R)
@ = (lel, [Flel])

is injective?
Question (Fourier transform problem)

Given the amplitude of the Fourier transform of a real/complex valued
square integrable function, can we recover the function?

Jjillesca@ucm.es PR problems
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Question (Pauli problem for subspaces)

For which subspaces E of Ly(R) the map

|lp: (E,FE)/T — La(R) x Lao(R)
@ = (lel, [FTel])

is injective?
Question (Fourier problem for subspaces)
For which subspaces E of Ly(R) the map

[“les E/T — La(R)
o= Tl

is injective?

Jjillesca@ucm.es PR problems
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Question (Pauli problem for subspaces)

For which subspaces E of Ly(R) the map

|lp: (E,FE)/T — La(R) x Lao(R)
@ = (lel, [FTel])

is injective?
Question (Gabor problem for subspaces)
For which subspaces E of Ly(R) the map

|'lc: E/T — Lo(R)
® = [Velyl|

is injective?

Jjillesca@ucm.es PR problems
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Definition
Let H be a Hilbert space. A collection ® = {p;};e7s C H is
called a frame if there are uniform constants B > A > 0 called

the frame bounds such that

AllfliE < 2 [KFonl? < BIIfIE, VfeH.
jeJg

Jjillesca@ucm.es PR problems

6/34



Definition
Let H be a Hilbert space. A collection ® = {p;};e7s C H is
called a frame if there are uniform constants B > A > 0 called

the frame bounds such that

AllfliE < 2 [KFonl? < BIIfIE, VfeH.
jeJg

We also define the analysis operator of ¢ as

To: H — 2(7)
fo= (..., en,...)

We can provide a linear, stable, and unconditional reconstruction formula:

f=> (f,¢)p;, VfeEH.
jeT

Jjillesca@ucm.es PR problems 6/34



Question (Frame problem for subspaces)
For which subspaces E of H the map

|y, . E/T — 0
f = (. e, - n
is injective?
Jjillesca@ucm.es PR problems
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Question (Frame problem for subspaces)
For which subspaces E of H the map

|y, . E/T — I
oo (o omly o)

is injective?

|-lp: (E,FE))T — La(R)x Ly(R)
@ = (el |Flel]),

les E/T — La(R)

[ s

o = | Velell,

Iy 0 E/T — I
£ = ([(Ff,en))n
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Definition

Let E C X be a subspace of a given Banach lattice X. We say
that E does PR when the map |- | : E/T — X is injective.
Equivalently, if

Vi, g€E, Ifl=lg|, INEK: f =g
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Definition

Let E C X be a subspace of a given Banach lattice X. We say
that E does PR when the map |- | : E/T — X is injective.
Equivalently, if

Vi, g€E, Ifl=lg|, INEK: f =g
Definition
Let E C X be a subspace of a given Banach lattice X. We say

that E does SPR with constant C, or just that E is a C-SPR
subspace, if

‘ _ <C. _
minf - gl < €| I~ 1el | vr.g ek

that is, if the inverse of the map | -| is C-Lipschitz.
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Observation
If we can find f,g € E C X, so that f | g... then

If + gl =If —g|=|f|+]g]

s

[} H ‘X
‘\ lg

v
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Observation
If we can find f,g € E C X, so that f | g... then

If + gl =If —g|=|f|+]g]

e

[} H ‘X
N /9

v

but f + g # A(f — g) for all A € C. Otherwise, (A —1)f = (A + 1)g and
1 -pairs are L.i.
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Banach lattice theory < Phase retrieval problems

Observation
If we can find f, g € E C X, so that f L g... then

If +g|=I|f —g|=I|f|+ g

but f + g # A(f — g) for all A € C. Otherwise, (A —1)f = (A + 1)g and
L -pairs are L.i.

’EI Pairs of disjoint vectors — no PR‘
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3 Pairs of disjoint vectors —>- no PR

—> no SPR
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3 Pairs of disjoint vectors —>- no PR

= no PR\

Ix

Definition
We say that f, g € X : ||[f|| = ||g|| =1 are
an e-almost disjoint pair if

H £ A lgl H <e,

which would be denoted by f 1. g.
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3 Pairs of disjoint vectors —>- no PR

= no PR\

Ix

Definition
Wesay that f, g € X : |[f| = lg| =1 are | &~

an e-almost disjoint pair if \

RS

H £ A lgl H <e,

which would be denoted by f 1. g.

Observation

If forany1>¢ >0, f,g€e Se C X :f L. g, then E is not a 1/e-SPR
subspace of X.

Jjillesca@ucm.es Banach lattices ~ PR problems 9/34



Observation (for R-Banach lattices)

If foranyl>e >0, f,geSe CX:f 1l.g, as
17+~ 1f — gl =2( 17 A le1 )

— H|f+g|—|f—g\H <2,
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Observation (for R-Banach lattices)
If foranyl>e >0, f,geSe CX:f 1l.g, as

1x
17+~ 1f — gl =2( 17 A le1 ) PO
\ X
— H|f+g|—\f—g\H <o,
Tx
but
.
2= (F+a)+(F-g)l = (F+8)— (F-g) |& B
we have

1
in [|f — Agll =2 > =|||f + g - |f -
min [|f — Agl| >EH\ +gl—| gIH.
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Observation (for R-Banach lattices)
If foranyl>e >0, f,geSe CX:f 1l.g, as

1x
17+~ 1f — gl =2( 17 A le1 ) PO
\ X
— H|f+g|—|f—gH <o,
Tx
but
®
2= (F+e)+(F—g)l = I(F+8)— (F—g)| [ & B
we have

1
in |f—Xgll=2>=||f+g|—|f -
min [|f —Ag|| =2> EH\ +gl - | gIH.

d some c-almost disjoint pair of vectors — no 1/5—SPR‘
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Definition
E contains almost disjoint pairs of vectors if Ve > 0 we can
find f., g. € Sg so that . 1. g..

3 almost disjoint pairs of vectors — no SPR
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Definition
E contains almost disjoint pairs of vectors if Ve > 0 we can
find f., g. € Sg so that . 1. g..

’3 almost disjoint pairs of vectors — no SPR

Theorem (FOPTB)

Let E be a subspace of a R-Banach lattice X. Then the
following conditions are equivalent.

o E does C-SPR,
o E does not contain 1/ C-almost disjoint pairs.

In particular,

E does SPR <= E does not contain almost disjoint pairs.
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For R-Banach lattices,
SPR subspaces = subspaces lacking almost disjoint pairs.

Banach latticers know (a lot?) about...



Kadec-Petczysiiki <~ SPR

For R-Banach lattices,
SPR subspaces = subspaces lacking almost disjoint pairs.
Banach latticers know (a lot?) about...

subspaces lacking normalized almost disjoint sequences!
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Kadec-Petczysiiki <~ SPR

For R-Banach lattices,
SPR subspaces = subspaces lacking almost disjoint pairs.
Banach latticers know (a lot?) about...

subspaces lacking normalized almost disjoint sequences!
Definition
A sequence {xn}n C X in a Banach lattice X is called:

o normalized if
Ixa] =1, Vn>1.

o almost disjoint if

3{dp}n C X, di Ldy ifi # k, ||xn — dn|| —=2- 0.

jillesca@uem.es Kadec-Petfczysiki ~ SPR 12 /34



Observation

If {xn}52; C E is a normalized almost disjoint sequence, with

n—oo

|Xn — dnllx ——— 0, {dn};p=; C X disjoint,

then

Jjillesca@ucm.es Kadec-Petfczysiki ~ SPR 13 /34



Observation

If {xn}52; C E is a normalized almost disjoint sequence, with

X0 — dllx ——2=0, {d,}32; C X disjoint,
then
X0 A Xml| = [|(xn = dn) A xm =+ dn A x|
< [(xn = dn) A Ximll + [[dn A Xim]|
< lxn — dall + [|dn A Xim]|
= [Ixn = dnll + [[dn A (xm — dm)[| < [|IXn = dnll + [[xm —
Jjillesca@ucm.es Kadec-Pefczysiiki ~ SPR

dml| -
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Observation
If {xn}52; C E is a normalized almost disjoint sequence, with

[Xn = dllx ——2=0, {d,}>2; C X disjoint,

then

n, m—oo

%0 A Xmll < [[Xn = dnll + IxXm — dml| 0.

E does SPR = E lacks normalized almost disjoint sequences
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Observation
If {xn}52; C E is a normalized almost disjoint sequence, with

[Xn = dllx ——2=0, {d,}>2; C X disjoint,

then

n, m—oo

%0 A Xmll < [[Xn = dnll + IxXm — dml| 0.

E does SPR = E lacks normalized almost disjoint sequences

Definition
We say that a subspace E of a Banach lattice is dispersed if it
fails to contain normalized almost disjoint sequences.
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Observation
If {xn}52; C E is a normalized almost disjoint sequence, with

[Xn = dllx ——2=0, {d,}>2; C X disjoint,

then

n, m—oo

%0 A Xmll < [[Xn = dnll + IxXm — dml| 0.

E does SPR = E lacks normalized almost disjoint sequences

Definition
We say that a subspace E of a Banach lattice is dispersed if it
fails to contain normalized almost disjoint sequences.

E does SPR — E is dispersed
=7

Jjillesca@ucm.es Kadec-Pefczysiki ~ SPR 13 /34



o Kadec-Petczynski: Bases, lacunary sequences and complemented subspaces
in the spaces L,. ~ isomorphic structure of subspaces of L, ()
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Kadec-Petczysnki circle of ideas

o Kadec-Petczynski: Bases, lacunary sequences and complemented subspaces
in the spaces L,. ~ isomorphic structure of subspaces of L0, 1]

Definition
For any p > 1 and ¢ > 0 we define a Kadec-Pelczysnki class as

KP? = {f € L,[0.1], m{t, |f(t)| = < |Ifll,} = <}
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Kadec-Petczysnki circle of ideas

o Kadec-Petczynski: Bases, lacunary sequences and complemented subspaces
in the spaces L,. ~ isomorphic structure of subspaces of L0, 1]

Definition
For any p > 1 and ¢ > 0 we define a Kadec-Pelczysnki class as

KP? = {f € L,[0.1], m{t, |f(t)| = < |Ifll,} = <}

o If &2 >¢1 >0, then KP? C KP?

€17
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Kadec-Petczysnki circle of ideas

o Kadec-Petczynski: Bases, lacunary sequences and complemented subspaces
in the spaces L,. ~ isomorphic structure of subspaces of L0, 1]

Definition
For any p > 1 and ¢ > 0 we define a Kadec-Pelczysnki class as

KP? = {f € L,[0.1], m{t, |f(t)| = < |Ifll,} = <}

o If eg > €1 >0, then KP§2 - KP\';17
° LP[Ov 1] = U5>0 KP?.?
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Kadec-Petczysnki circle of ideas

Kadec-Petczynski: Bases, lacunary sequences and complemented subspaces
in the spaces L,. ~ isomorphic structure of subspaces of L0, 1]
Definition
For any p > 1 and ¢ > 0 we define a Kadec-Pelczysnki class as

KP? = {f € L,[0.1], m{t, |f(t)| = < |Ifll,} = <}

If e > €1 >0, then KP§2 - KP\';17
LP[Ov 1] = Ueso KP?.?
If ¢ & KPP, then 3A C [0, 1] with m(A) < ¢ and

J

p

f(t) dm(t) >1—e.

(
I

I,
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Theorem

V(Xn)zoz]_ - SLP[071], Ve > 0, ElX,,E ¢ I(P{SJ

we can find a subsequence (xn, )72, equivalent
to the canonical basis of £, and whose closed
span is complemented on L,[0, 1].

Jjillesca@ucm.es Kadec-Petczysnki circle of ideas
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Theorem

V(Xn)zoz]_ - SLP[071], Ve > 0, ElX,,E ¢ I(PéJ

we can find a subsequence (xn, )32, equivalent
to the canonical basis of £, and whose closed 1 |
span is complemented on L,[0, 1]. ' !

For p > 2 KP classes are stronger

Lemma

Let p > 2 and KP? any class. Then

2Nl 0.y < WFlisjony < Ifllypoy» ¥ € Lp[0,1].
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Lemma

Let p > 2 and KP? any class. Then

2101 < Il < I1fllio0y ¥ € Lp[0,1].

Poof. [...] [ |
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Lemma

Let p > 2 and KP? any class. Then
2101 < Il < I1fllio0y ¥ € Lp[0,1].

Poof. [...] |

Corollary

On any subspace E C L,[0,1], p > 2, contained on any KPclass
the norms || - ||, and || - ||, are equivalent.
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Theorem
V(Xn)gozl - SLP[Ovll’ Ve > O, EanE g KPg

we can find a subsequence (xn, )32, equivalent to the canonical
basis of £, and whose closed span is complemented on L[0, 1].
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Theorem
V(Xn)gozl - SLP[Ovll’ Ve > O, EanE g KPg

we can find a subsequence (xn, )32, equivalent to the canonical
basis of £, and whose closed span is complemented on L[0, 1].

Theorem

Let p > 2 and let E be an infinite dimensional subspace of
L,[0,1]. Then the following conditions are equivalent:

Q E C KPP for some e > 0,
Q E is isomorphic to {5,
@ no subspace of E is isomorphic to {p,

Q@ the norms |- ||, and || - ||, are equivalent on E.

Jjillesca@ucm.es Kadec-Petczysnki circle of ideas

16 /34



Li-representations

Theorem (L;-rep’s.)

Let X be an order continuous Banach lattice with weak unit.
Then we can view X as a norm and order dense ideal of some
L1(p), with pv a probability measure, so that both

Loo (1) X La(p)

Dense ideal Dense ideal

inclusion are continuous.
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Li-representations

Theorem (L;-rep’s.)

Let X be an order continuous Banach lattice with weak unit.
Then we can view X as a norm and order dense ideal of some
L1(p), with pv a probability measure, so that both

Loo (1) X La(p)

Dense ideal Dense ideal

inclusion are continuous.

Theorem (Kadec-Petczysnki)
Let X be an order continuous Banach lattice cont. embedded as
an ideal of some L1(u), for some probability m. Let (x,) C X be

a bounded sequence in X. If x, —*— 0 on Ly(u) then (x,) has a
normalized almost disjoint subsequence on X.
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Kadec-Petczysnki dichotomy

Theorem (Kadec-Petczysnki)

Let X be an order continuous Banach lattice cont. embedded as
an ideal of some L1(p), for some probability m. Let (x,) C X be
a bounded sequence in X. If x, == 0 on Ly(u) then (x,) has a
normalized almost disjoint subsequence on X.

Jjillesca@ucm.es Kadec-Petczysnki dichotomy
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Kadec-Petczysnki dichotomy

Theorem (Kadec-Petczysnki)

Let X be an order continuous Banach lattice cont. embedded as
an ideal of some L1(p), for some probability m. Let (x,) C X be

a bounded sequence in X. If x, == 0 on Ly(u) then (x,) has a
normalized almost disjoint subsequence on X.

Corollary (Kadec-Petczynski dichotomy for sequences)

Let X be an order continuous Banach lattice with a weak unit
represented as an ideal of some L1 (yu)-space, with p a probability

measure, and let (x,)5%; be a bounded sequence in X, \ {0}.
Then:

o either (xp) is semi-normalized when viewed in L1 (u),

@ or (x,) has an almost disjoint subsequence in X.

Jjillesca@ucm.es Kadec-Petczysnki dichotomy
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(xn)n € E + x, %0 = E not dispersed —> E not SPR
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(xn)n € E + x, %0 = E not dispersed —> E not SPR

Corollary (Kadec-Petfczynski dichotomy for subspaces)

Let X be an order continuous Banach lattice with a weak unit
represented as an ideal of some L1 (u)-space, with p a probability
measure. Then, for any closed subspace E C X, either

o E fails to be dispersed,

o E is isomorphic to a subspace of L1 ().
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SPR subspaces ~ Dispersed subspaces

(xn)n € E + x, 240 = E not dispersed — E not SPR

Corollary (Kadec-Petczynski dichotomy for subspaces)

Let X be an order continuous Banach lattice with a weak unit
represented as an ideal of some Li(u)-space, with u a probability
measure. Then, for any closed subspace E C X, either

o E fails to be dispersed,

o E is isomorphic to a subspace of L1 ().
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SPR subspaces ~ Dispersed subspaces

(xn)n € E + x, 240 = E not dispersed — E not SPR

Corollary (Kadec-Petczynski dichotomy for subspaces)

Let X be an order continuous Banach lattice with a weak unit
represented as an ideal of some Li(u)-space, with u a probability
measure. Then, for any closed subspace E C X, either

o E fails to be dispersed,

o E is isomorphic to a subspace of L1 ().

Theorem (FOPT)

For every infinite dimensional subspace E of an order continuous
Banach lattice X we can find a further subspace E C E that
does SPR in X.
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Proof. Reduction to the Ll(,u)-case‘

Jjillesca@ucm.es SPR subspaces ~qc Dispersed subspaces 21/34



Theorem (FOPT)

For every infinite dimensional subspace E of an order continuous

Banach lattice X we can find a further subspace E C E that
does SPR in X.

Proof. ’Reduction to the Ll(,u)-case‘
Moreover, we can assume that:

o E is separable,

o X is precisely Lat(E) = X is separable = Lj(u)-rep th. applies
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Theorem (FOPT)

For every infinite dimensional subspace E of an order continuous
Banach lattice X we can find a further subspace E C E that
does SPR in X.

Proof. ’Reduction to the Ll(,u)-case‘

Moreover, we can assume that:
o E is separable,

o X is precisely Lat(E) = X is separable = Lj(u)-rep th. applies
Then,

X dense ideal Ll

dispersedT /

E

E must be dispersed when viewed on Lj(u).
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I hen,
dense ideal

dispersed
dispersed

E

E must be dispersed on L1 (p). If not, E contains an almost disjoint sequence
(fn)0, so that

1o = dnllr, () » for some disjoint sequence (dy);Z; € La(p).

Thus, f, —“ 0.
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I hen,
dense ideal

dispersed
dispersed

E

E must be dispersed on L1 (p). If not, E contains an almost disjoint sequence
(fn)0, so that

1o = dnllr, () » for some disjoint sequence (dy);Z; € La(p).
Thus, f, =% 0. But then (f,)%2; has an almost disjoint sequence on X.

L1(p)-case FOPT Maurey-Krivine results + Clarkson SPR. |
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KP on L,-spaces

Kadec-Petczysnki dichotomy is stronger here thanks to KP classes.

Theorem (Kadec-Petczysnki)

Let 1 < p < oo and p a probability measure. For a closed
subspace E C Ly(u) the following are equivalent:

Q E is dispersed,

Q there exists 0 < q < p such that || ||~ |- on E,
Q forall0<qg<np, ||y, IL,,

Q E is strongly embedded on Lp(1).

~ |-

Proof. [2 <= 3 <= 4]are well known.

3 <= 1| Follows from KP dichotomy for subspaces.
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Theorem (KP)

Let 1 < p < oo and p a probability measure. For a closed
subspace E C Ly(u) the following are equivalent:

Q E is dispersed,

Q there exists 0 < q < p such that || ||~ |- onE,
Q forall0<qg<p, |- ”L,, HLq,

@ E is strongly embedded on Ly(p).

Moreover,

~ |-

o if p# 2, a closed subspace of L, is dispersed <= it does
not contain £, as an isomorphic copy,

o for p > 2, a closed subspace of L, is dispersed <= it is
isomorphic to a Hilbert space.
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Observation
Being dispersed passes up between L,-spaces.
Lp[0,1] —— L4[0, 1] —— L0, 1]
dispersed T dispersed T dispersed T

E E E

|What happens with SPR?|

LP[O’ 1] - LQ[Ov 1]

N

E—FE



This is no longer true.

Theorem (FOPT ’23)

For all 2 < p < +o00, there exists a closed subspace E C L,[0,1]
such that E is an SPR-subspace of L,[0, 1], but fails to be an
SPR-subspace for each1 < q < p < o0.

L,[0, 1] — Lg[0, 1] — L1[0, 1]

se| mi w—l

E

Observation
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This is no longer true.

Theorem (FOPT ’23)

For all 2 < p < +o00, there exists a closed subspace E C L,[0,1]
such that E is an SPR-subspace of L,[0, 1], but fails to be an
SPR-subspace for each1 < q < p < o0.

L,[0, 1] — Lg[0, 1] — L1[0, 1]

se| mi w—l

E

Observation

o We know that E must be isomorphic to a Hilbert space. Moreover,
thanks to KP we also know that E can not a dispersed subspace of
any Ly[0,1] with p < p'.
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Sketch of the proof. Recall that for the Rademacher system on L,[0, 1],
Khintchine inequality says

) 1/2 ) 1/2
Ap<Z]an] ) < SBP(Z\an\ )

LP [071] new

E antn

new

We have that spanH ' HP{r,,} 2 /5. Thus, their span is dispersed, but it can
not make PR. Idea:
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Sketch of the proof. Recall that for the Rademacher system on L,[0, 1],
Khintchine inequality says

) 1/2 ) 1/2
Ap<Z]an] ) < SBP(Z\an\ )

LP [071] new

E antn

new

We have that spanH ' HP{r,,} 2 /5. Thus, their span is dispersed, but it can
not make PR. Idea: perturb (on a smart way) this system.
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Observation

The functions

t, = 2P [1+5, 1+2n171}

verify that

on—1

r . /o e
||tn||L,[172] —/[172]2 pﬂ[l-i—zin,l—i- 1 ] =2 .
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Observation

The functions

tn = 2”/p]1[1+2%’1+2n171} i T

verify that

n n _ r_q
ltallf, 1y = /[12]2"’1[1+;,1+ Ly =2 =2

7T
Thus,
[tnll, 1,21 = 00, if r>p,
thHL,[l,z] =1 Vn, ifr=p,
Itallr, 1,20 = O, if r<p.

and then for p > r

Jim (l[ta] = [tat1lllL, .2 = M ltallL, 12 + 1tatallL, g =0+ 0=0.
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Set

gn(t) := r(t) + ta(t), t €0, 2],

E:=span I {gn}2 ;.
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Set

gn(t) := r(t) + ta(t), t €0, 2],

E:=span I {gn}2 ;.

E fails SPR for g < p:
q_ q_
@ Illmn_>00 ”‘gn‘ - ‘gn‘f'lwgq[og] = ||’mn 2”(p 1) + 2(n+1)(p 1) e 07
o If m> n, then

Jev =8l jozy > I & o = f o ol

[0
2m 1
:7‘27"7‘2(]:2(7*1>0.
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Set

gn(t) := r(t) + ta(t), t €0, 2],

E:=span I {gn}2 ;.

E fails SPR for g < p:
q_ q_
@ Illmn_>00 ”‘gn‘ - ‘gn‘f'lwgq[og] = ||’mn 2”(p 1) + 2(n+1)(p 1) e 07
o If m> n, then

lev 8l o1 > I £ ol o = f ol

[0
2m 1
=" .29=20"1>0.
2 2m
It is less easy, but possible, to check that
E does SPR on L,[0,2] <= Holder SPR! |
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What happens with SPR? L,[0,1] —=Lg4[0,1]

We need something more! (namely, dispersion SPRT 'nT
info)

E—FE
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What happens with SPR? L,[0,1] —=Lg4[0,1]

We need something more! (namely, dispersion SPRT 'nT
info)

E—FE

Suppose that

Lg[0, 1] — L,[0, 1] — L[0, 1]

dispersedT SPRT ??T

E E E
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What happens with SPR? L,[0,1] —=Lg4[0,1]

We need something more! (namely, dispersion SPRT 'nT
info)

E—FE

Suppose that

Lg[0, 1] — L,[0, 1] — L[0, 1]

dispersedT SPRT ??T

E E E

Then

Ls[0,1] — = L,[0,1] — L,[0,1] — = L,[0,1] — = L4[0, 1]

DispersedT SPRT SPRT SPRT SPRT

E E E E E
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Proof.
Ls[0,1] —L,[0,1] — L,[0, 1]

DispersedT ,:SPR?T SPRT

E E E
Recall that
- lls ~ -l on By 1Ml < -l < - -
Thus, Vf, g € E
‘ml_n If = Agll, < m@l If — Agll,
< P |f|—lgl| <C@|f|- gl
P r.
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Proof.
Ls[0,1] —L,[0,1] — L,[0, 1]

DispersedT SPRT LSPR?T

E E E

Recall that
[ Als ~ -l on Ex 1Ml < M-l < M- Ml -
Thus, VI, g€ E

mm If = Agll, < ‘&mn I = Agll,

< P |f| - gl

p

< C(P)

£l

] — g

r.

For fixing this... Holder SPR!
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In contrast with

Theorem (FOPT ’23)

For all 2 < p < +o0, there exists a closed subspace E C L[0,1]
such that E is an SPR-subspace of L,[0, 1], but fails to be an
SPR-subspace for each 1 < q < p < o0.

L,[0, 1] — Lg[0, 1] — L1[0, 1]

se| Mi yﬁi

E

the range 1 < p < 2 behaves in a different way, as

Theorem (FOPT ’23)

If1 < p <2, a closed subspace E C L,[0,1] does SPR if, and
only if, it does SPR on Lg[0,1] for1 < g < p < 2.
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