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A general overview of the question

The Complemented Subspace Problem

CSP in Banach lattices: Is every complemented subspace of a Banach lattice
isomorphic to a Banach lattice?

A Banach lattice is a real Banach space (X, ∥ · ∥) equipped with a lattice order ≤
which is compatible with the linear structure of X (1) and with its norm (2) in
the sense that

1 If x ≤ y, then x+ z ≤ y + z and ax ≤ ay for any a ∈ R+

2 If |x| ≤ |y|, then ∥x∥ ≤ ∥y∥.
By an isomorphism T : E → F (E, F Banach spaces) we mean a bijective
continuous linear mapping such that T−1 is also continuous.
We say that a subspace F of a Banach space E is complemented if there exists a
continuous linear mapping P : E → E, with P ◦ P = P , such that P (E) = F .

One of the most important problems in the theory of Banach lattices, which is still
open, is whether any complemented subspace of a Banach lattice must be linearly
isomorphic to a Banach lattice.

P. Casazza, N. Kalton and L. Tzafriri (1987)
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A general overview of the question

The Complemented Subspace Problem

Let X be a Banach lattice and let E ⊂ X be a Banach space complemented by a
linear projection P : X → X. An important remark:

We are not assuming any relation between the lattice structure of X and the
projection P .

If P is a lattice homomorphism (that is, P (x ∨ y) = Px ∨ Py), then E is a
sublattice of X.

If P is positive (that is, Px ≥ 0 whenever x ≥ 0), then E with the order
inherited, its lattice operations given by

x ∨E y = P (x ∨ y), x ∧E y = P (x ∧ y) and |x|E = P (|x|),

and with the renorming |||x||| = ∥P |x|∥ (for x ∈ E) is a Banach lattice.
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A general overview of the question

Some Banach spaces which are not Banach lattices

Let X be a Banach lattice.

Criteria Examples

• c0 ̸⊂ X and ℓ1 ̸⊂ X ⇐⇒ X reflexive. James J .
• X has an unconditional basic sequence. Gowers-Maurey (1993).
• X has the GL-lust property. H∞(D), Z2 (Kalton-Peck) . . .

Obstacle: These criteria remain valid when X is a complemented subspace of a
Banach lattice.

Free Banach lattices provide a (not very tractable) criterion to distinguish between
the two:

X is complemented in a Banach lattice ⇐⇒ X is complemented in FBL[X].

X is isomorphic to a Banach lattice ⇐⇒ there is an ideal I ⊂ FBL[X] such
that FBL[X] = I ⊕X.
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A general overview of the question

Some answers and some open questions

Positive answers

Every 1-complemented subspace of an
Lp-space (1 ≤ p < ∞) is an Lp-space
(Bernau-Lacey 1974).

Every 1-complemented subspace of a
separable C(K)-space is isomorphic to a
C(K)-space (Benyamini 1973).

In the complex case: every
1-complemented subspace of a space with
1-unconditional basis also has
1-unconditional basis. (Kalton-Wood
1976)

Conjectures (?)

Every complemented subspace
of L1[0, 1] is isomorphic to ℓ1 or
L1[0, 1].

Every complemented subspace
of C[0, 1] is isomorphic to a
C(K)-space.

Every complemented subspace
of a space with unconditional
basis has unconditional basis.

Recently (2021), G. Plebanek and A. Salguero have constructed an example
(denoted by PS2) of a complemented subspace of C(K)-space which is not
isomorphic to any C(K)-space.

Actually, PS2 cannot be isomorphic to a Banach lattice.
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Some remarks about PS2

Lp-spaces

Definition. Given 1 ≤ p ≤ ∞ and λ > 1, a Banach space X is an Lp,λ-space if
for every finite-dimensional subspace E of X there exists a finite-dimensional
subspace F of X such that

E ⊂ F ;

d(F, ℓdimF
p ) ≤ λ (there is an isomorphism T : F → ℓdimF

p such that
∥T∥∥T−1∥ ≤ λ).

We say that a Banach space is an Lp-space if it is an Lp,λ-space for some λ > 1.

Examples: Lp(µ)-spaces are Lp-spaces for any 1 ≤ p ≤ ∞. C(K)-spaces are
L∞-spaces.

This property is preserved by isomorphisms.

Every complemented subspace of an L1-space (resp., L∞-space) is an L1-space
(resp., L∞-space).

Definition. A Banach lattice X is said to be an AM-space if
∥x ∨ y∥ = max{∥x∥, ∥y∥} for any x, y ∈ X+. An AL-space is a Banach lattice
such that ∥x+ y∥ = ∥x∥+ ∥y∥ for every x, y ∈ X+.

David de Hevia (ICMAT) A counterexample to the CSP BSBL III, 2024 8 / 18



Some remarks about PS2

Lp-spaces

Definition. Given 1 ≤ p ≤ ∞ and λ > 1, a Banach space X is an Lp,λ-space if
for every finite-dimensional subspace E of X there exists a finite-dimensional
subspace F of X such that

E ⊂ F ;

d(F, ℓdimF
p ) ≤ λ (there is an isomorphism T : F → ℓdimF

p such that
∥T∥∥T−1∥ ≤ λ).

We say that a Banach space is an Lp-space if it is an Lp,λ-space for some λ > 1.

Examples: Lp(µ)-spaces are Lp-spaces for any 1 ≤ p ≤ ∞. C(K)-spaces are
L∞-spaces.

This property is preserved by isomorphisms.

Every complemented subspace of an L1-space (resp., L∞-space) is an L1-space
(resp., L∞-space).

Definition. A Banach lattice X is said to be an AM-space if
∥x ∨ y∥ = max{∥x∥, ∥y∥} for any x, y ∈ X+. An AL-space is a Banach lattice
such that ∥x+ y∥ = ∥x∥+ ∥y∥ for every x, y ∈ X+.

David de Hevia (ICMAT) A counterexample to the CSP BSBL III, 2024 8 / 18



Some remarks about PS2

Lp-spaces

Definition. Given 1 ≤ p ≤ ∞ and λ > 1, a Banach space X is an Lp,λ-space if
for every finite-dimensional subspace E of X there exists a finite-dimensional
subspace F of X such that

E ⊂ F ;

d(F, ℓdimF
p ) ≤ λ (there is an isomorphism T : F → ℓdimF

p such that
∥T∥∥T−1∥ ≤ λ).

We say that a Banach space is an Lp-space if it is an Lp,λ-space for some λ > 1.

Examples: Lp(µ)-spaces are Lp-spaces for any 1 ≤ p ≤ ∞. C(K)-spaces are
L∞-spaces.

This property is preserved by isomorphisms.

Every complemented subspace of an L1-space (resp., L∞-space) is an L1-space
(resp., L∞-space).

Definition. A Banach lattice X is said to be an AM-space if
∥x ∨ y∥ = max{∥x∥, ∥y∥} for any x, y ∈ X+. An AL-space is a Banach lattice
such that ∥x+ y∥ = ∥x∥+ ∥y∥ for every x, y ∈ X+.

David de Hevia (ICMAT) A counterexample to the CSP BSBL III, 2024 8 / 18



Some remarks about PS2

Lp-spaces

Definition. Given 1 ≤ p ≤ ∞ and λ > 1, a Banach space X is an Lp,λ-space if
for every finite-dimensional subspace E of X there exists a finite-dimensional
subspace F of X such that

E ⊂ F ;

d(F, ℓdimF
p ) ≤ λ (there is an isomorphism T : F → ℓdimF

p such that
∥T∥∥T−1∥ ≤ λ).

We say that a Banach space is an Lp-space if it is an Lp,λ-space for some λ > 1.

Examples: Lp(µ)-spaces are Lp-spaces for any 1 ≤ p ≤ ∞. C(K)-spaces are
L∞-spaces.

This property is preserved by isomorphisms.

Every complemented subspace of an L1-space (resp., L∞-space) is an L1-space
(resp., L∞-space).

Definition. A Banach lattice X is said to be an AM-space if
∥x ∨ y∥ = max{∥x∥, ∥y∥} for any x, y ∈ X+. An AL-space is a Banach lattice
such that ∥x+ y∥ = ∥x∥+ ∥y∥ for every x, y ∈ X+.

David de Hevia (ICMAT) A counterexample to the CSP BSBL III, 2024 8 / 18



Some remarks about PS2

Lp-spaces

Definition. Given 1 ≤ p ≤ ∞ and λ > 1, a Banach space X is an Lp,λ-space if
for every finite-dimensional subspace E of X there exists a finite-dimensional
subspace F of X such that

E ⊂ F ;

d(F, ℓdimF
p ) ≤ λ (there is an isomorphism T : F → ℓdimF

p such that
∥T∥∥T−1∥ ≤ λ).

We say that a Banach space is an Lp-space if it is an Lp,λ-space for some λ > 1.

Examples: Lp(µ)-spaces are Lp-spaces for any 1 ≤ p ≤ ∞. C(K)-spaces are
L∞-spaces.

This property is preserved by isomorphisms.

Every complemented subspace of an L1-space (resp., L∞-space) is an L1-space
(resp., L∞-space).

Definition. A Banach lattice X is said to be an AM-space if
∥x ∨ y∥ = max{∥x∥, ∥y∥} for any x, y ∈ X+. An AL-space is a Banach lattice
such that ∥x+ y∥ = ∥x∥+ ∥y∥ for every x, y ∈ X+.

David de Hevia (ICMAT) A counterexample to the CSP BSBL III, 2024 8 / 18



Some remarks about PS2

A first remark

PS2 is complemented in a C(K)-space. Thus, it is an L∞-space.

Consequence. If PS2 were isomorphic to a Banach lattice, then it would be
isomorphic to an AM-space. Why?

Theorem

Let X be a Banach lattice which is an L1-space. Then X is lattice isomorphic to
an L1(µ)-space.

Idea (Abramovich-Wojtaszczyk, 1975). For every x ∈ X, define

|||x||| = sup

{
m∑
i=1

∥xi∥ : (xi)
m
i=1 with |xi| ∧ |xj | = 0 s.t. x =

m∑
i=1

xi

}
.

|||·||| is an AL-norm (compatible with the lattice order of X) and is related with
the original norm by

∥x∥ ≤ |||x||| ≤ (KGλ)
2∥x∥, x ∈ X.
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Some remarks about PS2

Theorem

Let X be a Banach lattice which is an L1-space. Then X is lattice isomorphic to
an L1(µ)-space.

Corollary 1. Let X be a Banach lattice which is an L∞-space. Then X is lattice
isomorphic to an AM -space.

Proof. X∗ Banach lattice and L1-space, hence X∗ is lattice isomorphic to an
AL-space. Then, X∗∗ is lattice isomorphic to certain C(K)-space, so X is lattice
embeddable into that C(K)-space. □

Corollary 2. If the CSP had a positive answer in the separable setting:

1 Every complemented subspace of L1[0, 1] would be isomorphic to ℓ1 or to
L1[0, 1].

2 Every complemented subpace of C[0, 1] would be isomorphic to a
C(K)-space.
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Some remarks about PS2

Some comments about PS2

Let A = {Aξ : ξ < c} ⊂ P(N) be an almost disjoint family, that is, |Aξ| is
infinite for every ξ and |Aξ ∩Aξ′ | is finite whenever ξ ̸= ξ′.

For every ξ < c we decompose Aξ × {0, 1} = Âξ = B0
ξ

⊎
B1

ξ in the following way

Âξ

{
. . .

. . .

We define:

JL(B) = span
(
{1B0

ξ
, 1B1

ξ
: ξ < c} ∪ c00(N̂) ∪ {1N̂}

)
⊂ ℓ∞(N× 2),

JL(A) = span
(
{1

Âξ
: ξ < c} ∪ ĉ00(N) ∪ {1̂N}

)
⊂ ℓ∞(N× 2).

These spaces can be identified with C(K)-spaces, with K scattered.

Moreover, we can define a norm-one projection

P : JL(B) −→ JL(A)

f 7−→ Pf(n, 0) = Pf(n, 1) =
f(n, 0) + f(n, 1)

2
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ξ

⊎
B1

ξ in the following way

Âξ
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Âξ
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Some remarks about PS2

We define X := Ker(P ), which is complemented in JL(B) by Q = Id− P .

Since for every f ∈ JL(B)

Qf(n, 0) = −Qf(n, 1) =
f(n, 0)− f(n, 1)

2
,

then ∥Q∥ = 1.

G. Plebanek and A. Salguero Alarcón show, through an inductive process of
cardinality c, that there exist almost disjoint families A, B such that X is not
isomorphic to a C(K)-space. This X was christened PS2.
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Some remarks about PS2

A simplification of our problem

Since PS2 ⊂ ℓ∞, then it has a countable norming set.

Moreover, PS2 is 1-complemented in C(K)-space, with K scattered compact, so
it is an isometric predual of ℓ1(Γ).

Consequently, the following statements are equivalent:

1 PS2 is isomorphic to a Banach lattice.

2 PS2 is isomorphic to a sublattice of ℓ∞.

3 There exists a norming sequence (x∗
n)

∞
n=0 in BPS∗

2
such that for every

f ∈ PS2 there is an element g ∈ PS2 such that

x∗
n(g) = |x∗

n(f)|, for every n ∈ N.
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Concluding remarks
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Concluding remarks

Concluding remarks

CSP in complex Banach lattices: Is every complemented subspace of a
complex Banach lattice isomorphic to a complex Banach lattice?

Recall that a complex Banach lattice is the complexification of a real Banach
lattice X ⊕ iX equipped with the norm ∥x+ iy∥ := ∥|x+ iy|∥X , where

|x+ iy| = sup
θ∈[0,2π]

{x cos θ + y sin θ}, for every x, y ∈ X.

Question: If E,F are real Banach spaces such that E ⊕ iE, F ⊕ iF are C-linear
isomorphic, then must E and F be isomorphic?

With slight modifications, it is possible to construct a P̃S2 space such that

P̃S2 ⊕ iP̃S2 is not isomorphic to a complex Banach lattice.
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Concluding remarks

Ultrapowers

In 1983, S. Heinrich, C. Henson and L. Moore constructed a Banach space
X ⊂ ℓ∞ not isometric to a Banach lattice such that:

1 X is not isometric to a Banach lattice;

2 XU is isometric to (c0)
U for some ultrafilter U .

It is an immediate consequence of a result of Heinrich, Henson and Moore (1986)
that PS2 satisfies the second property.
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Concluding remarks

Open questions

Question (separable case) Must every complemented subspace of a separable
Banach lattice be isomorphic to a Banach lattice?

What about 1-complemented
subspaces of Banach lattices (1-CSP)?

Question (1-CSP=CSP?) If E is a complemented subspace of a Banach
lattice, is X 1-complemented in some Banach lattice?

Question (The hyperplane problem) Given a Banach lattice X, we do not
know whether its hyperplanes must be isomorphic to Banach lattices.

1 This is trivial if Hom(X,R) ̸= {0}.
2 Gowers’ solution to Banach’s Hyperplane problem (E non-isomorphic to

E ⊕ R) does not work for us.
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1 This is trivial if Hom(X,R) ̸= {0}.
2 Gowers’ solution to Banach’s Hyperplane problem (E non-isomorphic to

E ⊕ R) does not work for us.
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Concluding remarks

Thank you!
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