A counterexample to the complemented subspace problem in Banach lattices

David de Hevia

joint work with G. Martínez Cervantes, A. Salguero Alarcón, and P. Tradacete

Instituto de Ciencias Matemáticas

Workshop on Banach spaces and Banach lattices (LSAA)

Madrid, May 21, 2024

Supported by grants CEX2019-000904-S and PID2020-116398GB-100 funded by MCIN/AEI/10.13039/501100011033 and by an FPU grant FPU20/03334 funded by Ministerio de Universidades.

イロト イヨト イヨト

Table of Contents

A general overview of the question

2 Some remarks about PS_2

æ

イロト イ団ト イヨト イヨト

CSP in Banach lattices: Is every complemented subspace of a Banach lattice isomorphic to a Banach lattice?

イロト イヨト イヨト

æ

CSP in Banach lattices: Is every complemented subspace of a Banach lattice isomorphic to a Banach lattice?

A Banach lattice is a real Banach space $(X, \|\cdot\|)$ equipped with a lattice order \leq which is compatible with the linear structure of X (1) and with its norm (2) in the sense that

- $\textbf{0} \ \ \text{If} \ x \leq y, \ \text{then} \ x+z \leq y+z \ \text{and} \ ax \leq ay \ \text{for any} \ a \in \mathbb{R}^+$
- **2** If $|x| \le |y|$, then $||x|| \le ||y||$.

イロト イポト イヨト イヨト

CSP in Banach lattices: Is every complemented subspace of a Banach lattice isomorphic to a Banach lattice?

A Banach lattice is a real Banach space $(X, \|\cdot\|)$ equipped with a lattice order \leq which is compatible with the linear structure of X (1) and with its norm (2) in the sense that

$$\textbf{0} \ \ \text{If} \ x \leq y, \ \text{then} \ x+z \leq y+z \ \text{and} \ ax \leq ay \ \text{for any} \ a \in \mathbb{R}^+$$

2 If $|x| \le |y|$, then $||x|| \le ||y||$.

By an isomorphism $T: E \to F$ (E, F Banach spaces) we mean a bijective continuous linear mapping such that T^{-1} is also continuous.

CSP in Banach lattices: Is every complemented subspace of a Banach lattice isomorphic to a Banach lattice?

A Banach lattice is a real Banach space $(X, \|\cdot\|)$ equipped with a lattice order \leq which is compatible with the linear structure of X (1) and with its norm (2) in the sense that

$$If x \leq y, then x + z \leq y + z and ax \leq ay for any a \in \mathbb{R}^+$$

2 If
$$|x| \le |y|$$
, then $||x|| \le ||y||$.

By an isomorphism $T: E \to F$ (E, F Banach spaces) we mean a bijective continuous linear mapping such that T^{-1} is also continuous.

We say that a subspace F of a Banach space E is complemented if there exists a continuous linear mapping $P: E \to E$, with $P \circ P = P$, such that P(E) = F.

< ロ > < 同 > < 三 > < 三 > 、

CSP in Banach lattices: Is every complemented subspace of a Banach lattice isomorphic to a Banach lattice?

A Banach lattice is a real Banach space $(X, \|\cdot\|)$ equipped with a lattice order \leq which is compatible with the linear structure of X (1) and with its norm (2) in the sense that

$$\textbf{0} \ \ \text{If} \ x \leq y \text{, then} \ x + z \leq y + z \text{ and } ax \leq ay \text{ for any } a \in \mathbb{R}^+$$

2 If $|x| \le |y|$, then $||x|| \le ||y||$.

By an isomorphism $T: E \to F$ (*E*, *F* Banach spaces) we mean a bijective continuous linear mapping such that T^{-1} is also continuous.

We say that a subspace F of a Banach space E is complemented if there exists a continuous linear mapping $P: E \to E$, with $P \circ P = P$, such that P(E) = F.

One of the most important problems in the theory of Banach lattices, which is still open, is whether any complemented subspace of a Banach lattice must be linearly isomorphic to a Banach lattice.

P. Casazza, N. Kalton and L. Tzafriri (1987)

イロト イボト イヨト イヨト

= 990

Let X be a Banach lattice and let $E \subset X$ be a Banach space complemented by a linear projection $P: X \to X$. An important remark:

We are not assuming any relation between the lattice structure of X and the projection P.

Let X be a Banach lattice and let $E \subset X$ be a Banach space complemented by a linear projection $P: X \to X$. An important remark:

We are not assuming any relation between the lattice structure of X and the projection P.

• If P is a lattice homomorphism (that is, $P(x \lor y) = Px \lor Py$), then E is a sublattice of X.

Let X be a Banach lattice and let $E \subset X$ be a Banach space complemented by a linear projection $P: X \to X$. An important remark:

We are not assuming any relation between the lattice structure of X and the projection P.

- If P is a lattice homomorphism (that is, $P(x \lor y) = Px \lor Py$), then E is a sublattice of X.
- If P is positive (that is, $Px \ge 0$ whenever $x \ge 0$), then E with the order inherited, its lattice operations given by

$$x\vee_E y=P(x\vee y),\quad x\wedge_E y=P(x\wedge y)\quad \text{and}\quad |x|_E=P(|x|),$$

and with the renorming |||x||| = ||P|x||| (for $x \in E$) is a Banach lattice.

イロト イポト イヨト イヨト

Let X be a Banach lattice. Criteria

Examples

イロト イ団ト イヨト イヨト

æ

Let X be a Banach lattice.

Criteria

• $c_0 \not\subset X$ and $\ell_1 \not\subset X \iff X$ reflexive.

Examples James \mathcal{J} .

æ

Let X be a Banach lattice.

Criteria

- $c_0 \not\subset X$ and $\ell_1 \not\subset X \iff X$ reflexive.
- X has an unconditional basic sequence.

Examples

James \mathcal{J} . Gowers-Maurey (1993).

Let X be a Banach lattice.

Criteria

- $c_0 \not\subset X$ and $\ell_1 \not\subset X \iff X$ reflexive.
- X has an unconditional basic sequence.
- X has the *GL-lust* property.

Examples

James \mathcal{J} . Gowers-Maurey (1993). $\mathcal{H}^{\infty}(\mathbb{D}), Z_2$ (Kalton-Peck)...

Let X be a Banach lattice.

Criteria

- $c_0 \not\subset X$ and $\ell_1 \not\subset X \iff X$ reflexive.
- X has an unconditional basic sequence.
- X has the *GL-lust* property.

Examples

James \mathcal{J} . Gowers-Maurey (1993). $\mathcal{H}^{\infty}(\mathbb{D}), Z_2$ (Kalton-Peck)...

Obstacle: These criteria remain valid when X is a complemented subspace of a Banach lattice.

(日) (四) (日) (日) (日)

5 / 18

Let X be a Banach lattice.

Criteria

- $c_0 \not\subset X$ and $\ell_1 \not\subset X \iff X$ reflexive.
- X has an unconditional basic sequence. Gowers-Maurey (1993).
- X has the *GL-lust* property.

Examples

James \mathcal{J} . Gowers-Maurey (1993). $\mathcal{H}^{\infty}(\mathbb{D}), Z_2$ (Kalton-Peck)...

Obstacle: These criteria remain valid when X is a complemented subspace of a Banach lattice.

Free Banach lattices provide a (not very tractable) criterion to distinguish between the two:

Let X be a Banach lattice.

Criteria

- $c_0 \not\subset X$ and $\ell_1 \not\subset X \iff X$ reflexive.
- X has an unconditional basic sequence. Gowers-Maurey (1993).
- X has the *GL-lust* property.

Examples

James \mathcal{J} . Gowers-Maurey (1993). $\mathcal{H}^{\infty}(\mathbb{D}), Z_2$ (Kalton-Peck)...

Obstacle: These criteria remain valid when X is a complemented subspace of a Banach lattice.

Free Banach lattices provide a (not very tractable) criterion to distinguish between the two:

• X is complemented in a Banach lattice $\iff X$ is complemented in FBL[X].

Let X be a Banach lattice.

Criteria

- $c_0 \not\subset X$ and $\ell_1 \not\subset X \iff X$ reflexive.
- X has an unconditional basic sequence. Gowers-Maurey (1993).
- X has the *GL-lust* property.

Examples

James \mathcal{J} . Gowers-Maurey (1993). $\mathcal{H}^{\infty}(\mathbb{D}), Z_2$ (Kalton-Peck)...

Obstacle: These criteria remain valid when X is a complemented subspace of a Banach lattice.

Free Banach lattices provide a (not very tractable) criterion to distinguish between the two:

- X is complemented in a Banach lattice $\iff X$ is complemented in FBL[X].
- X is isomorphic to a Banach lattice \iff there is an ideal $I \subset \mathsf{FBL}[X]$ such that $\mathsf{FBL}[X] = I \oplus X$.

Positive answers

• Every 1-complemented subspace of an L_p -space $(1 \le p < \infty)$ is an L_p -space (Bernau-Lacey 1974).

Conjectures (?)

• Every complemented subspace of $L_1[0,1]$ is isomorphic to ℓ_1 or $L_1[0,1]$.

Positive answers

- Every 1-complemented subspace of an L_p -space $(1 \le p < \infty)$ is an L_p -space (Bernau-Lacey 1974).
- Every 1-complemented subspace of a separable C(K)-space is isomorphic to a C(K)-space (Benyamini 1973).

Conjectures (?)

- Every complemented subspace of $L_1[0,1]$ is isomorphic to ℓ_1 or $L_1[0,1]$.
- Every complemented subspace of C[0,1] is isomorphic to a C(K)-space.

(日)

Positive answers

- Every 1-complemented subspace of an L_p -space $(1 \le p < \infty)$ is an L_p -space (Bernau-Lacey 1974).
- Every 1-complemented subspace of a separable C(K)-space is isomorphic to a C(K)-space (Benyamini 1973).
- In the complex case: every 1-complemented subspace of a space with 1-unconditional basis also has 1-unconditional basis. (Kalton-Wood 1976)

Conjectures (?)

- Every complemented subspace of $L_1[0,1]$ is isomorphic to ℓ_1 or $L_1[0,1]$.
- Every complemented subspace of C[0,1] is isomorphic to a C(K)-space.
- Every complemented subspace of a space with unconditional basis has unconditional basis.

• • • • • • • • • • • •

Positive answers

- Every 1-complemented subspace of an L_p -space $(1 \le p < \infty)$ is an L_p -space (Bernau-Lacey 1974).
- Every 1-complemented subspace of a separable C(K)-space is isomorphic to a C(K)-space (Benyamini 1973).
- In the complex case: every 1-complemented subspace of a space with 1-unconditional basis also has 1-unconditional basis. (Kalton-Wood 1976)

Conjectures (?)

- Every complemented subspace of $L_1[0,1]$ is isomorphic to ℓ_1 or $L_1[0,1]$.
- Every complemented subspace of C[0,1] is isomorphic to a C(K)-space.
- Every complemented subspace of a space with unconditional basis has unconditional basis.

Recently (2021), G. Plebanek and A. Salguero have constructed an example (denoted by PS_2) of a complemented subspace of C(K)-space which is not isomorphic to any C(K)-space.

Positive answers

- Every 1-complemented subspace of an L_p -space $(1 \le p < \infty)$ is an L_p -space (Bernau-Lacey 1974).
- Every 1-complemented subspace of a separable C(K)-space is isomorphic to a C(K)-space (Benyamini 1973).
- In the complex case: every 1-complemented subspace of a space with 1-unconditional basis also has 1-unconditional basis. (Kalton-Wood 1976)

Conjectures (?)

- Every complemented subspace of $L_1[0,1]$ is isomorphic to ℓ_1 or $L_1[0,1]$.
- Every complemented subspace of C[0,1] is isomorphic to a C(K)-space.
- Every complemented subspace of a space with unconditional basis has unconditional basis.

Recently (2021), G. Plebanek and A. Salguero have constructed an example (denoted by PS_2) of a complemented subspace of C(K)-space which is not isomorphic to any C(K)-space.

Actually, PS₂ cannot be isomorphic to a Banach lattice.

(A) → (A) ⇒ (A)

Table of Contents

1 A general overview of the question

(2) Some remarks about PS_2

Concluding remarks

イロト イ団ト イヨト イヨト

æ

Definition. Given $1 \le p \le \infty$ and $\lambda > 1$, a Banach space X is an $\mathcal{L}_{p,\lambda}$ -space if for every finite-dimensional subspace E of X there exists a finite-dimensional subspace F of X such that

- $E \subset F$;
- $d(F, \ell_p^{\dim F}) \leq \lambda$ (there is an isomorphism $T: F \to \ell_p^{\dim F}$ such that $\|T\| \|T^{-1}\| \leq \lambda$).

We say that a Banach space is an \mathcal{L}_p -space if it is an $\mathcal{L}_{p,\lambda}$ -space for some $\lambda > 1$.

Definition. Given $1 \le p \le \infty$ and $\lambda > 1$, a Banach space X is an $\mathcal{L}_{p,\lambda}$ -space if for every finite-dimensional subspace E of X there exists a finite-dimensional subspace F of X such that

- $E \subset F$;
- $d(F, \ell_p^{\dim F}) \leq \lambda$ (there is an isomorphism $T: F \to \ell_p^{\dim F}$ such that $\|T\| \|T^{-1}\| \leq \lambda$).

We say that a Banach space is an \mathcal{L}_p -space if it is an $\mathcal{L}_{p,\lambda}$ -space for some $\lambda > 1$.

Examples: $L_p(\mu)$ -spaces are \mathcal{L}_p -spaces for any $1 \le p \le \infty$. C(K)-spaces are \mathcal{L}_∞ -spaces.

Definition. Given $1 \le p \le \infty$ and $\lambda > 1$, a Banach space X is an $\mathcal{L}_{p,\lambda}$ -space if for every finite-dimensional subspace E of X there exists a finite-dimensional subspace F of X such that

- $E \subset F$;
- $d(F, \ell_p^{\dim F}) \leq \lambda$ (there is an isomorphism $T: F \to \ell_p^{\dim F}$ such that $\|T\| \|T^{-1}\| \leq \lambda$).

We say that a Banach space is an \mathcal{L}_p -space if it is an $\mathcal{L}_{p,\lambda}$ -space for some $\lambda > 1$.

Examples: $L_p(\mu)$ -spaces are \mathcal{L}_p -spaces for any $1 \le p \le \infty$. C(K)-spaces are \mathcal{L}_∞ -spaces.

This property is preserved by isomorphisms.

Definition. Given $1 \le p \le \infty$ and $\lambda > 1$, a Banach space X is an $\mathcal{L}_{p,\lambda}$ -space if for every finite-dimensional subspace E of X there exists a finite-dimensional subspace F of X such that

- $E \subset F$;
- $d(F, \ell_p^{\dim F}) \leq \lambda$ (there is an isomorphism $T: F \to \ell_p^{\dim F}$ such that $\|T\| \|T^{-1}\| \leq \lambda$).

We say that a Banach space is an \mathcal{L}_p -space if it is an $\mathcal{L}_{p,\lambda}$ -space for some $\lambda > 1$.

Examples: $L_p(\mu)$ -spaces are \mathcal{L}_p -spaces for any $1 \le p \le \infty$. C(K)-spaces are \mathcal{L}_∞ -spaces.

This property is preserved by isomorphisms.

Every complemented subspace of an \mathcal{L}_1 -space (resp., \mathcal{L}_∞ -space) is an \mathcal{L}_1 -space (resp., \mathcal{L}_∞ -space).

イロト イヨト イヨト --

Definition. Given $1 \le p \le \infty$ and $\lambda > 1$, a Banach space X is an $\mathcal{L}_{p,\lambda}$ -space if for every finite-dimensional subspace E of X there exists a finite-dimensional subspace F of X such that

- $E \subset F$;
- $d(F, \ell_p^{\dim F}) \leq \lambda$ (there is an isomorphism $T: F \to \ell_p^{\dim F}$ such that $\|T\| \|T^{-1}\| \leq \lambda$).

We say that a Banach space is an \mathcal{L}_p -space if it is an $\mathcal{L}_{p,\lambda}$ -space for some $\lambda > 1$.

Examples: $L_p(\mu)$ -spaces are \mathcal{L}_p -spaces for any $1 \le p \le \infty$. C(K)-spaces are \mathcal{L}_∞ -spaces.

This property is preserved by isomorphisms.

Every complemented subspace of an \mathcal{L}_1 -space (resp., \mathcal{L}_∞ -space) is an \mathcal{L}_1 -space (resp., \mathcal{L}_∞ -space).

Definition. A Banach lattice X is said to be an AM-space if $||x \vee y|| = \max\{||x||, ||y||\}$ for any $x, y \in X^+$. An AL-space is a Banach lattice such that ||x + y|| = ||x|| + ||y|| for every $x, y \in X^+$.

イロト イヨト イヨト イヨト

= 990

 PS_2 is complemented in a C(K)-space. Thus, it is an $\mathcal{L}_\infty\text{-space}.$

イロト イヨト イヨト イヨト

 PS_2 is complemented in a C(K)-space. Thus, it is an \mathcal{L}_∞ -space. **Consequence.** If PS_2 were isomorphic to a Banach lattice, then it would be isomorphic to an AM-space. Why?

イロト イヨト イヨト イヨト

æ

 PS_2 is complemented in a C(K)-space. Thus, it is an \mathcal{L}_∞ -space. **Consequence.** If PS_2 were isomorphic to a Banach lattice, then it would be isomorphic to an AM-space. Why?

Theorem

Let X be a Banach lattice which is an \mathcal{L}_1 -space. Then X is lattice isomorphic to an $L_1(\mu)$ -space.

 PS_2 is complemented in a C(K)-space. Thus, it is an \mathcal{L}_∞ -space. **Consequence.** If PS_2 were isomorphic to a Banach lattice, then it would be isomorphic to an AM-space. Why?

Theorem

Let X be a Banach lattice which is an \mathcal{L}_1 -space. Then X is lattice isomorphic to an $L_1(\mu)$ -space.

Idea (Abramovich-Wojtaszczyk, 1975). For every $x \in X$, define

$$|||x||| = \sup\left\{\sum_{i=1}^{m} ||x_i|| : (x_i)_{i=1}^{m} \text{ with } |x_i| \wedge |x_j| = 0 \ s.t. \ x = \sum_{i=1}^{m} x_i\right\}.$$

イロト イポト イヨト イヨト

 PS_2 is complemented in a C(K)-space. Thus, it is an \mathcal{L}_∞ -space. **Consequence.** If PS_2 were isomorphic to a Banach lattice, then it would be isomorphic to an AM-space. Why?

Theorem

Let X be a Banach lattice which is an \mathcal{L}_1 -space. Then X is lattice isomorphic to an $L_1(\mu)$ -space.

Idea (Abramovich-Wojtaszczyk, 1975). For every $x \in X$, define

$$|||x||| = \sup\left\{\sum_{i=1}^{m} ||x_i|| : (x_i)_{i=1}^{m} \text{ with } |x_i| \wedge |x_j| = 0 \ s.t. \ x = \sum_{i=1}^{m} x_i\right\}.$$

 $\|\!|\!|\!||$ is an AL-norm (compatible with the lattice order of X) and is related with the original norm by

$$||x|| \le ||x||| \le (K_G \lambda)^2 ||x||, \quad x \in X.$$

Theorem

Let X be a Banach lattice which is an \mathcal{L}_1 -space. Then X is lattice isomorphic to an $L_1(\mu)$ -space.

イロト イ団ト イヨト イヨト

Theorem

Let X be a Banach lattice which is an \mathcal{L}_1 -space. Then X is lattice isomorphic to an $L_1(\mu)$ -space.

Corollary 1. Let X be a Banach lattice which is an \mathcal{L}_{∞} -space. Then X is lattice isomorphic to an AM-space.

イロト イ団ト イヨト イヨト

Theorem

Let X be a Banach lattice which is an \mathcal{L}_1 -space. Then X is lattice isomorphic to an $L_1(\mu)$ -space.

Corollary 1. Let X be a Banach lattice which is an \mathcal{L}_{∞} -space. Then X is lattice isomorphic to an AM-space.

Proof. X^* Banach lattice and \mathcal{L}_1 -space, hence X^* is lattice isomorphic to an AL-space. Then, X^{**} is lattice isomorphic to certain C(K)-space, so X is lattice embeddable into that C(K)-space.

< □ > < 同 > < 回 > < 回 >

Theorem

Let X be a Banach lattice which is an \mathcal{L}_1 -space. Then X is lattice isomorphic to an $L_1(\mu)$ -space.

Corollary 1. Let X be a Banach lattice which is an \mathcal{L}_{∞} -space. Then X is lattice isomorphic to an AM-space.

Proof. X^* Banach lattice and \mathcal{L}_1 -space, hence X^* is lattice isomorphic to an AL-space. Then, X^{**} is lattice isomorphic to certain C(K)-space, so X is lattice embeddable into that C(K)-space.

Corollary 2. If the CSP had a positive answer in the separable setting:

- Every complemented subspace of $L_1[0,1]$ would be isomorphic to ℓ_1 or to $L_1[0,1]$.
- **②** Every complemented subpace of $\mathcal{C}[0,1]$ would be isomorphic to a C(K)-space.

Some comments about PS_2

Let $\mathcal{A} = \{A_{\xi} : \xi < \mathfrak{c}\} \subset \mathcal{P}(\mathbb{N})$ be an almost disjoint family, that is, $|A_{\xi}|$ is infinite for every ξ and $|A_{\xi} \cap A_{\xi'}|$ is finite whenever $\xi \neq \xi'$.

For every $\xi < \mathfrak{c}$ we decompose $A_{\xi} \times \{0,1\} = \widehat{A_{\xi}} = B_{\xi}^0 \biguplus B_{\xi}^1$ in the following way

イロト イポト イヨト イヨト

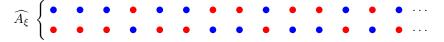
Let $\mathcal{A} = \{A_{\xi} : \xi < \mathfrak{c}\} \subset \mathcal{P}(\mathbb{N})$ be an almost disjoint family, that is, $|A_{\xi}|$ is infinite for every ξ and $|A_{\xi} \cap A_{\xi'}|$ is finite whenever $\xi \neq \xi'$.

For every $\xi < \mathfrak{c}$ we decompose $A_{\xi} \times \{0,1\} = \widehat{A_{\xi}} = B_{\xi}^0 \biguplus B_{\xi}^1$ in the following way

< ロ > < 同 > < 三 > < 三 > < 二 > 、

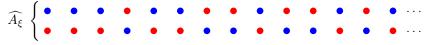
Let $\mathcal{A} = \{A_{\xi} : \xi < \mathfrak{c}\} \subset \mathcal{P}(\mathbb{N})$ be an almost disjoint family, that is, $|A_{\xi}|$ is infinite for every ξ and $|A_{\xi} \cap A_{\xi'}|$ is finite whenever $\xi \neq \xi'$.

For every $\xi < \mathfrak{c}$ we decompose $A_{\xi} \times \{0,1\} = \widehat{A_{\xi}} = B_{\xi}^0 \biguplus B_{\xi}^1$ in the following way



Let $\mathcal{A} = \{A_{\xi} : \xi < \mathfrak{c}\} \subset \mathcal{P}(\mathbb{N})$ be an almost disjoint family, that is, $|A_{\xi}|$ is infinite for every ξ and $|A_{\xi} \cap A_{\xi'}|$ is finite whenever $\xi \neq \xi'$.

For every $\xi < \mathfrak{c}$ we decompose $A_{\xi} \times \{0,1\} = \widehat{A_{\xi}} = B^0_{\xi} \biguplus B^1_{\xi}$ in the following way



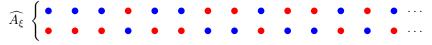
We define:

$$\begin{split} \mathsf{JL}(\mathcal{B}) &= \overline{\mathsf{span}}\big(\{\mathbf{1}_{B^0_{\xi}}, \ \mathbf{1}_{B^1_{\xi}} \ : \ \xi < \mathfrak{c}\} \cup c_{00}(\widehat{\mathbb{N}}) \cup \{\mathbf{1}_{\widehat{\mathbb{N}}}\}\big) \subset \ell_{\infty}(\mathbb{N} \times 2), \\ \mathsf{JL}(\mathcal{A}) &= \overline{\mathsf{span}}\big(\{\mathbf{1}_{\widehat{A_{\xi}}} \ : \ \xi < \mathfrak{c}\} \cup \widehat{c_{00}(\mathbb{N})} \cup \{\widehat{\mathbf{1}_{\mathbb{N}}}\}\big) \subset \ell_{\infty}(\mathbb{N} \times 2). \end{split}$$

(日) (同) (三) (三)

Let $\mathcal{A} = \{A_{\xi} : \xi < \mathfrak{c}\} \subset \mathcal{P}(\mathbb{N})$ be an almost disjoint family, that is, $|A_{\xi}|$ is infinite for every ξ and $|A_{\xi} \cap A_{\xi'}|$ is finite whenever $\xi \neq \xi'$.

For every $\xi < \mathfrak{c}$ we decompose $A_{\xi} \times \{0,1\} = \widehat{A_{\xi}} = B^0_{\xi} \biguplus B^1_{\xi}$ in the following way



We define:

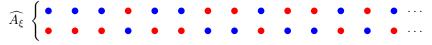
$$\begin{split} \mathsf{JL}(\mathcal{B}) &= \overline{\mathsf{span}}\big(\{\mathbf{1}_{B^0_{\xi}}, \ \mathbf{1}_{B^1_{\xi}} \ : \ \xi < \mathfrak{c}\} \cup c_{00}(\widehat{\mathbb{N}}) \cup \{\mathbf{1}_{\widehat{\mathbb{N}}}\}\big) \subset \ell_{\infty}(\mathbb{N} \times 2), \\ \mathsf{JL}(\mathcal{A}) &= \overline{\mathsf{span}}\big(\{\mathbf{1}_{\widehat{A_{\xi}}} \ : \ \xi < \mathfrak{c}\} \cup \widehat{c_{00}(\mathbb{N})} \cup \{\widehat{\mathbf{1}_{\mathbb{N}}}\}\big) \subset \ell_{\infty}(\mathbb{N} \times 2). \end{split}$$

These spaces can be identified with C(K)-spaces, with K scattered.

イロト 不得下 イヨト イヨト

Let $\mathcal{A} = \{A_{\xi} : \xi < \mathfrak{c}\} \subset \mathcal{P}(\mathbb{N})$ be an almost disjoint family, that is, $|A_{\xi}|$ is infinite for every ξ and $|A_{\xi} \cap A_{\xi'}|$ is finite whenever $\xi \neq \xi'$.

For every $\xi < \mathfrak{c}$ we decompose $A_{\xi} \times \{0,1\} = \widehat{A_{\xi}} = B^0_{\xi} \biguplus B^1_{\xi}$ in the following way



We define:

$$\begin{split} \mathsf{JL}(\mathcal{B}) &= \overline{\mathsf{span}}\big(\{\mathbf{1}_{B^0_{\xi}}, \ \mathbf{1}_{B^1_{\xi}} \ : \ \xi < \mathfrak{c}\} \cup c_{00}(\widehat{\mathbb{N}}) \cup \{\mathbf{1}_{\widehat{\mathbb{N}}}\}\big) \subset \ell_{\infty}(\mathbb{N} \times 2), \\ \mathsf{JL}(\mathcal{A}) &= \overline{\mathsf{span}}\big(\{\mathbf{1}_{\widehat{A_{\xi}}} \ : \ \xi < \mathfrak{c}\} \cup \widehat{c_{00}(\mathbb{N})} \cup \{\widehat{\mathbf{1}_{\mathbb{N}}}\}\big) \subset \ell_{\infty}(\mathbb{N} \times 2). \end{split}$$

These spaces can be identified with C(K)-spaces, with K scattered. Moreover, we can define a norm-one projection

$$P: \mathsf{JL}(\mathcal{B}) \longrightarrow \mathsf{JL}(\mathcal{A})$$
$$f \longmapsto Pf(n,0) = Pf(n,1) = \frac{f(n,0) + f(n,1)}{2}$$

We define X := Ker(P), which is complemented in JL(B) by Q = Id - P.

2

メロト メタト メヨト メヨト

We define X := Ker(P), which is complemented in JL(B) by Q = Id - P. Since for every $f \in JL(B)$

$$Qf(n,0) = -Qf(n,1) = \frac{f(n,0) - f(n,1)}{2},$$

then $\|Q\| = 1$.

Ξ.

イロト イ団ト イヨト イヨト

We define X := Ker(P), which is complemented in JL(B) by Q = Id - P. Since for every $f \in JL(B)$

$$Qf(n,0) = -Qf(n,1) = \frac{f(n,0) - f(n,1)}{2},$$

then $\|Q\| = 1$.

G. Plebanek and A. Salguero Alarcón show, through an inductive process of cardinality \mathfrak{c} , that there exist almost disjoint families \mathcal{A} , \mathcal{B} such that X is not isomorphic to a C(K)-space. This X was christened PS₂.

イロト イポト イヨト イヨト

Since $\mathsf{PS}_2 \subset \ell_\infty$, then it has a countable norming set.

Ξ.

イロト イヨト イヨト イヨト

Since $\mathsf{PS}_2 \subset \ell_\infty$, then it has a countable norming set.

Moreover, PS_2 is 1-complemented in C(K)-space, with K scattered compact, so it is an isometric predual of $\ell_1(\Gamma)$.

Since $\mathsf{PS}_2 \subset \ell_\infty$, then it has a countable norming set.

Moreover, PS_2 is 1-complemented in C(K)-space, with K scattered compact, so it is an isometric predual of $\ell_1(\Gamma)$.

Consequently, the following statements are equivalent:

\bigcirc PS₂ is isomorphic to a Banach lattice.

Since $\mathsf{PS}_2 \subset \ell_\infty$, then it has a countable norming set.

Moreover, PS_2 is 1-complemented in C(K)-space, with K scattered compact, so it is an isometric predual of $\ell_1(\Gamma)$.

Consequently, the following statements are equivalent:

- **Q** PS_2 is isomorphic to a Banach lattice.
- **2** PS_2 is isomorphic to a sublattice of ℓ_{∞} .

Since $\mathsf{PS}_2 \subset \ell_\infty$, then it has a countable norming set.

Moreover, PS_2 is 1-complemented in C(K)-space, with K scattered compact, so it is an isometric predual of $\ell_1(\Gamma)$.

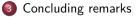
Consequently, the following statements are equivalent:

- **\bigcirc** PS₂ is isomorphic to a Banach lattice.
- **2** PS_2 is isomorphic to a sublattice of ℓ_{∞} .
- **③** There exists a norming sequence $(x_n^*)_{n=0}^{\infty}$ in $B_{\mathsf{PS}_2^*}$ such that for every $f \in \mathsf{PS}_2$ there is an element $g \in \mathsf{PS}_2$ such that

$$x_n^*(g)=|x_n^*(f)|, \text{ for every } n\in\mathbb{N}.$$

Table of Contents

2) Some remarks about PS_2



æ

イロト イ団ト イヨト イヨト

CSP in complex Banach lattices: Is every complemented subspace of a complex Banach lattice isomorphic to a complex Banach lattice?

æ

イロト イ団ト イヨト イヨト

CSP in complex Banach lattices: Is every complemented subspace of a complex Banach lattice isomorphic to a complex Banach lattice?

Recall that a complex Banach lattice is the complexification of a real Banach lattice $X \oplus iX$ equipped with the norm $||x + iy|| := |||x + iy||_X$, where

$$|x + iy| = \sup_{\theta \in [0, 2\pi]} \{x \cos \theta + y \sin \theta\}, \quad \text{for every } x, y \in X.$$

CSP in complex Banach lattices: Is every complemented subspace of a complex Banach lattice isomorphic to a complex Banach lattice?

Recall that a complex Banach lattice is the complexification of a real Banach lattice $X \oplus iX$ equipped with the norm $||x + iy|| := |||x + iy|||_X$, where

$$|x+iy| = \sup_{\theta \in [0,2\pi]} \{x \cos \theta + y \sin \theta\}, \quad \text{for every } x, y \in X.$$

Question: If E, F are real Banach spaces such that $E \oplus iE, F \oplus iF$ are \mathbb{C} -linear isomorphic, then must E and F be isomorphic?

< ロ > < 同 > < 三 > < 三 > 、

CSP in complex Banach lattices: Is every complemented subspace of a complex Banach lattice isomorphic to a complex Banach lattice?

Recall that a complex Banach lattice is the complexification of a real Banach lattice $X \oplus iX$ equipped with the norm $||x + iy|| := |||x + iy|||_X$, where

$$|x+iy| = \sup_{\theta \in [0,2\pi]} \{x \cos \theta + y \sin \theta\}, \quad \text{for every } x, y \in X.$$

Question: If E, F are real Banach spaces such that $E \oplus iE, F \oplus iF$ are \mathbb{C} -linear isomorphic, then must E and F be isomorphic?

With slight modifications, it is possible to construct a $\widetilde{PS_2}$ space such that $\widetilde{PS_2} \oplus i\widetilde{PS_2}$ is not isomorphic to a complex Banach lattice.

イロト 不得 トイヨト イヨト

3

Ultrapowers

In 1983, S. Heinrich, C. Henson and L. Moore constructed a Banach space $X \subset \ell_{\infty}$ not isometric to a Banach lattice such that:

- I X is not isometric to a Banach lattice;
- **2** $X^{\mathcal{U}}$ is isometric to $(c_0)^{\mathcal{U}}$ for some ultrafilter \mathcal{U} .

Ultrapowers

- In 1983, S. Heinrich, C. Henson and L. Moore constructed a Banach space $X \subset \ell_{\infty}$ not isometric to a Banach lattice such that:
 - I X is not isometric to a Banach lattice;
 - **2** $X^{\mathcal{U}}$ is isometric to $(c_0)^{\mathcal{U}}$ for some ultrafilter \mathcal{U} .

It is an *immediate consequence* of a result of Heinrich, Henson and Moore (1986) that PS_2 satisfies the second property.

Question (separable case) Must every complemented subspace of a separable Banach lattice be isomorphic to a Banach lattice?

æ

イロト イ団ト イヨト イヨト

Question (separable case) Must every complemented subspace of a separable Banach lattice be isomorphic to a Banach lattice? What about 1-complemented subspaces of Banach lattices (1-CSP)?

イロト イ団ト イヨト イヨト

Question (separable case) Must every complemented subspace of a separable Banach lattice be isomorphic to a Banach lattice? What about 1-complemented subspaces of Banach lattices (1-CSP)?

Question (1-CSP = CSP?) If E is a complemented subspace of a Banach lattice, is X 1-complemented in some Banach lattice?

イロト イポト イヨト イヨト

Question (separable case) Must every complemented subspace of a separable Banach lattice be isomorphic to a Banach lattice? What about 1-complemented subspaces of Banach lattices (1-CSP)?

Question (1-CSP = CSP?) If E is a complemented subspace of a Banach lattice, is X 1-complemented in some Banach lattice?

Question (The hyperplane problem) Given a Banach lattice *X*, we do not know whether its hyperplanes must be isomorphic to Banach lattices.

< ロ > < 同 > < 三 > < 三 > 、

Question (separable case) Must every complemented subspace of a separable Banach lattice be isomorphic to a Banach lattice? What about 1-complemented subspaces of Banach lattices (1-CSP)?

Question (1-CSP = CSP?) If E is a complemented subspace of a Banach lattice, is X 1-complemented in some Banach lattice?

Question (The hyperplane problem) Given a Banach lattice *X*, we do not know whether its hyperplanes must be isomorphic to Banach lattices.

• This is trivial if $Hom(X, \mathbb{R}) \neq \{0\}$.

3

イロト イヨト イヨト --

Question (separable case) Must every complemented subspace of a separable Banach lattice be isomorphic to a Banach lattice? What about 1-complemented subspaces of Banach lattices (1-CSP)?

Question (1-CSP = CSP?) If E is a complemented subspace of a Banach lattice, is X 1-complemented in some Banach lattice?

Question (The hyperplane problem) Given a Banach lattice *X*, we do not know whether its hyperplanes must be isomorphic to Banach lattices.

- This is trivial if $Hom(X, \mathbb{R}) \neq \{0\}$.
- **Q** Gowers' solution to Banach's Hyperplane problem (E non-isomorphic to E ⊕ ℝ) does not work for us.

イロト イヨト イヨト イヨト

Ξ.

Thank you!

イロト イヨト イヨト イヨト

2