
Saturation Recovery and Phase Retrieval

Dorsa Ghoreishi
Saint Louis University

Workshop on Banach spaces and Banach lattices
ICMAT, May 2024

1



Acknowledgments

Projects:

• Declipping and the recovery of vectors from saturated measurements
with Wedad Alhardi, Daniel Freeman, Brody Johnson and Lova

Randrianarivony

• Stable phase retrieval and perturbations of frames,
with Wedad Alhardi, Daniel Freeman, Clair Lois, and Shanea Sebastian

• Discretizing the Lp norms and frame theory
with Daniel Freeman

2



Discrete Frames

Frame
A family of vectors (xj )j2J in a Hilbert space H is a frame if there are constants
0 < A  B < 1 so that for all x 2 H

Akxk2 
X

j2J

|hx, xji|2  Bkxk2

where A and B are the lower and upper frame bounds.

Analysis operator
For a frame (xj )j2J , analysis operator is defined as an operator ⇥ : H ! `2(J) to be

⇥x = (hx, xji)j2J for all x 2 H.
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Continuous setting

The notion of a frame can be generalized to a continuous frame by changing the summation
to integration over a measure space.

Continuous Frame
A family of vectors (xj )j2⌦ is a continuous frame of H over a measure space (⌦, µ) if there are
constants 0 < A  B < 1 so that for all x 2 H,

Akxk2 
Z

j2⌦
|hx, xji|2dµ(j)  Bkxk2

The analysis operator of a continuous frame (xj )j2⌦ of H is the map ⇥ : H ! L2(⌦) given by

⇥x = (hx, xji)j2⌦

(xj )j2⌦ is a continuous frame of H is equivalent to say that ⇥ is an embedding of H into L2(⌦).
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Recovery of vectors from linear measurements

Let (xj )j2⌦ be a continuous frame in H and assume we are given the image of a signal x in H

under the analysis operator. We can reconstruct x from these linear measurements by applying
the linear operator (⇥⇤⇥)�1⇥⇤ such that:

(⇥⇤⇥)�1⇥⇤(hx, xji)j2⌦ = (⇥⇤⇥)�1⇥⇤⇥x = x
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Phase retrieval and �-saturation recovery

Phase retrieval is the problem of recovering a vector x 2 H from the magnitude of

the frame coefficients,

|⇥x | = (|hx , xj i|)j2⌦

�-saturation recovery is the problem of recovering a vector x 2 H from saturated

frame coefficients,

��⇥x = (��(hx , xj i))j2⌦

when for � > 0, the function �� : R ! [��,�] given by:

��(t) =

8
>><

>>:

� if t > �

t if � �  t  �

�� if t < ��

6



Phase retrieval and �-saturation recovery

Phase retrieval is the problem of recovering a vector x 2 H from the magnitude of

the frame coefficients,

|⇥x | = (|hx , xj i|)j2⌦

�-saturation recovery is the problem of recovering a vector x 2 H from saturated

frame coefficients,

��⇥x = (��(hx , xj i))j2⌦

when for � > 0, the function �� : R ! [��,�] given by:

��(t) =

8
>><

>>:

� if t > �

t if � �  t  �

�� if t < ��

6



Phase retrieval and �-saturation recovery

Phase retrieval is the problem of recovering a vector x 2 H from the magnitude of

the frame coefficients,|⇥x | = (|hx , xj i|)j2J

�-saturation recovery is the problem of recovering a vector x 2 H from saturated

frame coefficients, ��⇥(x) = (��(hx , xj i))j2J

7

-> M&
1 : /

I M& Wi
F

-
-

-
- - - - - -

-
-

-

-

-



Phase retrieval and �-saturation recovery

Phase retrieval is the problem of recovering a vector x 2 H from the magnitude of

the frame coefficients,|⇥x | = (|hx , xj i|)j2J

�-saturation recovery is the problem of recovering a vector x 2 H from saturated

frame coefficients, ��⇥(x) = (��(hx , xj i))j2J

7

& 1 : /

-> M
N

↳ I M& Wi
F
- ------------

O &x

-> N -> N

X I I· Wi :
F-

-------------



�-saturation

Saturation of continuous frame coefficients:

Saturation of discrete frame coefficients:

(a) Unsaturated frame coefficients (b) Saturated frame coefficients. 8



Phase retieval and �-saturation recovery

Phase retrieval: A frame (xj )j2J yields phase retrieval when for all x , y 2 H we have

|⇥x | = |⇥y |

if and only if x = �y for some |�| = 1.

�-saturation recovery: A frame (xj )j2J yields �-saturation recovery on the unit ball

BH when for all x , y 2 H we have

��(hx , xj i)j2J = ��(hy , xj i))j2J

if and only if x = y .
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When can we do phase retrieval and �-saturation recovery?

In phase retrieval
A frame (xj )j2J in Hilbert space H satisfies the complement property if for all

subsets J0 ⇢ J, either span(xj )j2J0 = H or span(xj )j2Jc0
= H.

Theorem (Balan, Casazza, Edidin ’06)

If a frame does phase retrieval then it satisfies the complement property. In the R
n
, if

a frame satisfies the complement property then it does phase retrieval.

In �-saturation recovery
For x 2 H, we denote the coordinates corresponding to the unsaturated frame

coefficients of x by J�(x) = {j 2 J : |hx , xj i|  �}.

Theorem (Alharbi, Freeman, G., Johnson, Randrianarivony ’23)

Let (xj )j2J be a frame for a finite dimensional Hilbert space H and let �,↵ > 0 then

(xj )j2J does �-saturation recovery on ↵BH if and only if for all x 2 H with kxk  ↵,

(xj )j2J�(x) is a frame of H.
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Minimal structure for the recovery

In phase retrieval
In R

n
, generic frames do phase retrieval if they have at least 2n � 1 vectors.

In C
n
, generic frames do phase retrieval if they have at least 4n � 4 vectors. (not

sharp)

In �-saturation recovery
The number of unit vectors required to do �-saturation recovery on the ball BRn

depends on both the value � > 0 and the dimension n 2 N. We propose the following

problems:

• Problem: Let n 2 N and � > 0. What is the smallest m � n so that there exists

a frame of m unit vectors which does �-saturation recovery on BRn?

• Problem: Let m � n. What is the smallest � > 0 so that there exists a frame of

m unit vectors which does �� saturation recovery on BRn

| {z }
such that (xj )j2J�(x) is a frame for all x 2 BRn

?
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Minimal structure for �-saturation recovery

Problem: Let m � n. What is the smallest � > 0 so that there exists a frame of m

unit vectors such that (xj )j2J�(x) is a frame for all x 2 BRn . We considered two cases:

• If m = n, in this case we have 1-saturation recovery on BRn for every basis of unit

vectors of R
n
. If 1 > � > 0 then no basis of unit vectors for R

n
does �-saturation

recovery on BRn .

• If m = n + 1, then we have 2
�1/2(1 + 1/n)1/2

-saturation recovery on BRn for an

equiangular frame of (xj )
n+1
j=1 in R

n
.

If 2
�1/2(1 + 1/n)1/2 > � > 0, then no frame of n + 1 unit vectors for R

n
does

�-saturation recovery on BRn .
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Stability of the recovery

• We say that a frame does C -stable phase retrieval if the recovery of x from |⇥x| 2 `2(J) is
C -Lipschitz.

C -stable phase retrieval: A frame (xj )j2J of H which satisfies phase retrieval for H with
analysis operator ⇥ : H ! `2(J) yields C -stable phase retrieval if for all x, y 2 H,

min
|�|=1

kx � �ykH  Ck|⇥x| � |⇥y |k`2(J) = C

⇣X

j2J

��|hx, xji| � |hy , xji|
��2
⌘1/2

• We say that a frame does C -stable �-saturation recovery if the recovery of x from
��⇥x 2 `2(J) is C -Lipschitz.

C -stable �-saturation recovery: A frame (xj )j2J of H which does �-saturation recovery for BH,
with analysis operator ⇥ : H ! `2(J) yields C -stable �-saturation recovery on BH if for all
x, y 2 BH we have that

kx � ykH  C
����⇥x � ��⇥y

��
`2(J)

= C

⇣X

j2J

|��(hx, xji) � ��(hy , xji)|2
⌘1/2

13



Stability of the recovery

• We say that a frame does C -stable phase retrieval if the recovery of x from |⇥x| 2 `2(J) is
C -Lipschitz.

C -stable phase retrieval: A frame (xj )j2J of H which satisfies phase retrieval for H with
analysis operator ⇥ : H ! `2(J) yields C -stable phase retrieval if for all x, y 2 H,

min
|�|=1

kx � �ykH  Ck|⇥x| � |⇥y |k`2(J) = C

⇣X

j2J

��|hx, xji| � |hy , xji|
��2
⌘1/2

• We say that a frame does C -stable �-saturation recovery if the recovery of x from
��⇥x 2 `2(J) is C -Lipschitz.

C -stable �-saturation recovery: A frame (xj )j2J of H which does �-saturation recovery for BH,
with analysis operator ⇥ : H ! `2(J) yields C -stable �-saturation recovery on BH if for all
x, y 2 BH we have that

kx � ykH  C
����⇥x � ��⇥y

��
`2(J)

= C

⇣X

j2J

|��(hx, xji) � ��(hy , xji)|2
⌘1/2

13



Stability of the recovery

Theorem (Bandeira, Cahill, Mixon, and Nelson ’14)(Balan and Wang ’15)

A frame for a finite dimensional Hilbert space does phase retrieval if and only if it does

stable phase retrieval.

Critical level of saturation: consider �c to be the critical level of saturation,

�c = inf {� : (xj )
m

j=1 does �-saturation recovery on BRn}

Theorem (Alharbi, Freeman, G., Johnson, Randrianarivony ’24)

Let (xj )j2J be a frame for R
n
, and let �c be the critical value for (xj )i2J to do

�c -saturation recovery on BRn . Then for all � > �c there exists C� > 0 so that

(xj )j2J does C�-stable �-saturation recovery.

Problem: Does (xj )j2J do stable �c -saturation recovery on BRn?
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Does the stability preserve under perturbation?

A frame (yj )j2J is called an "-perturbation of a frame (xj )j2J if

X

j2J

kyj � xjk2 < "

• If a frame does stable phase retrieval then any sufficiently small perturbation of

the frame vectors will do stable phase retrieval but the stability bound gets worse.

• How is the stability constant for phase retrieval affected by a small perturbation

of the frame vectors?
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Perturbing frames and stability

Theorem (Christensen ’95)

Let (xj )j2J be a frame of a Hilbert space H with frame bounds 0 < A  B. Let 0 < " < A and
(yj )j2J ✓ H is an "-perturbation of (xj )j2J . Then, (yj )j2J is a frame of H with upper frame
bound B

�
1 +

p
"
B

�2 and lower frame bound A
�
1 �

p
"
A

�2.

Corollary (Balan ’17)

Let (xj )
m

j=1 be a frame for H
n with upper and lower frame bound 0 < A  B which does

C-stable phase retrieval. Let A,B,C > 0 and m 2 N then there exists " > 0 so that
(yj )j2J ✓ H is an "-perturbation of (xj )j2J . Then (yj )

m

j=1 is a frame of Hn which does
2C-stable phase retrieval.

Theorem (Alharbi, Freeman, G., Lois, Sebastian ’23)

Let (xj )j2J be a frame of a finite-dimensional Hilbert space H with frame bounds 0 < A  B

which does C -stable phase retrieval. Let " > 0 satisfy " < 2�4
C

�4
B

�1 and let (yj )j2J ✓ H

be an "-perturbation of (xj )j2J . Then, (yj )j2J is a frame of H with upper frame bound
B
�
1 +

p
"
B

�2 and lower frame bound A
�
1 �

p
"
B

�2 which does C(1 � 4C
2p"B)�1/2-stable

phase retrieval for H.
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Perturbing frames and stability of �-saturation recovery

Can we say that if (xj )j2J does �-saturation recovery, then every small perturbation of

the frame would yield �-saturation recovery?

• Suppose �c is the critical level of saturation for the frame (xj )j2J then if � > �c ,

then there exists and " > 0 such that every "-perturbation of (xj )j2J does

�-saturation recovery.

• However, for all " > 0,

✓
(1 +

p
"

|J|kxjk
)xj

◆

j2J

is "-perturbations of (xj )j2J that

does not do �c -saturation recovery.
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How to construct frames which do C-stable phase retrieval

• Recall: almost every family of m vectors in R
n

satisfy phase retrieval as long as

m � 2n � 1.

• But it is very difficult to create frames which satisfy C -stable phase retrieval for

higher dimensions.

How do we create frames that satisfy C-stable phase retrieval?

We are looking at the subspaces of L2(⌦):

Suppose X
n

is an n-dimensional subspace in L2(⌦). For almost every t 2 ⌦, point

evaluation at t is a bounded linear functional on X
n
. That is, there exists (xt) 2 X

n

such that

hf , xti = f (t) for all f 2 X
n

Then (xt)t2⌦ is a continuous Parseval frame of X
n
.

18
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How to construct frames which do C-stable phase retrieval

• In order to create a frame for H
n

which does C -stable phase retrieval and is close

to being a Parseval frame, we need to have a continuous Parseval frame (xt)t2⌦

which does C -stable phase retrieval.

• Then, we would like to sample m points (tj )mj=1 ✓ ⌦ so that ( 1p
m
xtj )

m

j=1 does

C
0
-stable phase retrieval and has frame bounds close to 1.

• Notice that discrete frames are much better suited for computations than

continuous frames. Therefore, creating a discrete frame by sampling the

continuous frame and then use the discrete frame for computations instead of the

entire continuous frame is widely used by researchers.
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How to construct frames which do C-stable phase retrieval

Theorem (E. J. Candès, T. Strohmer, and V. Voroninski ’13)

There exists C ,C 0 > 0 so that for all n 2 N, if (xt)t2⌦ is uniformly distributed in
p
nSRn then

(xt)t2⌦ is a continuous Parseval frame which does C -stable phase retrieval.

If m is on the order of n log(n) and (tj )
m

j=1 is randomly sampled in ⌦ then with high probability
( 1p

m
xtj

)m
j=1 does C

0-stable phase retrieval.

Theorem (E. J. Candès and X. Li ’14, Y. C. Eldar and S. Mendelson ’13)

There exists C ,C 0 > 0 so that for all n 2 N, if (xt)t2⌦ is uniformly distributed in
p
nSRn or has

Gaussian distribution then (xt)t2⌦ does C -stable phase retrieval.

If m is on the order of n and (tj )
m

j=1 is randomly sampled in ⌦ then with high probability
( 1p

m
xtj

)m
j=1 does C

0-stable phase retrieval.

[F. Krahmer and Y. Liu ’18, F. Krahmer and D. Stöger ’20] Greatly extend these results to
very general classes of sub-Gaussian distributions.
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When does this work for phase retrieval?

Suppose that (xt)t2⌦ is a continuous Parseval frame of H
n

which does C -stable phase

retrieval.

When can we choose m on the order of n sampling points (tj )mj=1 so that ( 1p
m
xtj )

m

j=1
does C

0
-stable phase retrieval?

Every known result for obtaining m on the order of n is for sub-Gaussian distributions.
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Discretization examples

Problem (S. Ali, J. Antoine, J. Gazeau ’00)

When can a continuous frame be sampled to obtain a discrete frame?

Theorem (D. Freeman, D. Speegle ’18)

Every bounded continuous frame can be discretized.

Theorem (I. Limonova, V. Temlyakov ’22)

Every bounded continous frame for an n-dimentional Hilbert space can be discretized using m

on the order of n sampling points.
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When can we have the discretization?

We want to know when can a continuous frame which does C -stable phase retrieval

for `n2 be discretized using m on the order of n sampling points to obtain a frame

which does C
0
-stable phase retrieval?

Let (xt)t2⌦ be a continuous Parseval frame for H
n

over a probability space ⌦.

Let ⇥ : Hn ! L2(⌦) be the analysis operator.

Discretizing (xt)t2⌦ to do phase retrieval requires both:

1. Discretizing the L2 norm on ⇥(Hn) ✓ L2(⌦).

2. Discretizing the L1 norm on ⇥(Hn) ✓ L1(⌦).
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C-stable phase retrieval and sampling

Theorem (D. Freeman, G. ’23)

Let (xt)t2⌦ be a continuous Parseval frame for `n2 over a probability space ⌦ which does
-stable phase retrieval and kxtk  �

p
n for all t 2 ⌦. Let ⇥ : `n2 ! L2(⌦) be the analysis

operator. Suppose that ( 1p
m
xtj

)m
j=1 is a frame of `n2 with upper frame bound B and lower

frame bound A which does C -stable phase retrieval. Then both the L2 norm and the L1 norm
on the range of the analysis operator are discretized in the following way for all x 2 `n2,

1.

Ak⇥xk2
L2(⌦) 

1
m

mX

j=1
|hx, xtj i|

2  Bk⇥xk2
L2(⌦)

2. A
1/2

B
3/2

C3(1+A�1�2)3/2 k⇥xkL1(⌦) 
1
m

mX

j=1
|hx, xtj i|  B

1/23(1 + �2)3/2k⇥xkL1(⌦)

• In order to sample a continuous Parseval frame to obtain a frame which does stable phase
retrieval, it is necessary to simultaneously discretize both the L1-norm and the L2-norm
on the range of the analysis operator.
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Construction frames satistfying C -stable �-saturation recovery

Theorem (J. Laska, P. Boufounos, M. Davenport, R. Baraniuk ’13)( S. Foucart,
T. Needham ’17)

There exists 1 > ↵ > 0 and a constant C↵ > 0 such that for all n 2 N if � � ↵/
p
n

and (xj )mj=1 are chosen randomly and independently with uniform distribution in SRn

and m is chosen on the order of n then with high probability, for all x , y 2 SRn ,

kx � yk2  C
2
↵
n

m

mX

j=1
|��(hx , xj i)� ��(hy , xj i)|2

Theorem (W. Alharbi, D. Freeman, G., B. Johnson, N. Randrianarivony ’24)

For all ↵ > 0 there exists C↵ > 0 such that for all n 2 N if � � ↵/
p
n and (xj )mj=1 are

chosen randomly and independently with uniform distribution in SRn and m is chosen

on the order of n log(n) then with high probability , for all x , y 2 SRn

kx � yk2  C
2
↵
n

m

mX

j=1
|��(hx , xj i)� ��(hy , xj i)|2
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Implementation of �-saturation recovery

• For a frame (xj )j2J , �-saturation recovery is the problem of reconstructing a vector

x 2 H from the measurements ��⇥x = (��(hx , xj i)j2J).

We are constructing y 2 H such that:

hy , xj i � � if ��(hx , xj i) = �

hy , xj i = ��(hx , xj i) if � �  ��(hx , xj i)  �

hy , xj i  �� if ��(hx , xj i) = ��

In (Foucart, Needham ’17)(Foucart, Li ’18) the conditions above are expressed as a

linear programming problem.
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Implementation of �-saturation recovery

• For a frame (xj )j2J , �-saturation recovery is the problem of reconstructing a vector

x 2 H from the measurements ��⇥x = (��(hx , xj i)j2J)

Frame Algorithm (no saturation)
Let (xj )j2J be a frame of a Hilbert space H with frame bounds A,B and analysis

operator ⇥ : H ! `2(J). Let 0 < ↵ < B/2. Given an element in the range of the

analysis operator ⇥x 2 `2(J), define a sequence (yk )1k=0 in H by y0 = 0 and

yk+1 := yk + ↵⇥⇤(⇥x �⇥yk ) = yk + ↵
X

j2J

hx � yk , xj ixj for all k � 0.

Then kx � yk+1k  C↵kx � ykk for all k � 0, where C↵ := max {|1 � ↵A|, |1 � ↵B|}.

Thus, (yk )1k=0 converges to x and satisfies

kx � ykk  C
k

↵kxk for all k � 0.

Note that
B�A

B+A
is the optimal value for C↵ and it occurs when ↵ = 2

A+B
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�-saturated frame algorithm

• Our goal is to adapt the frame algorithm to the non-linear problem of recovering a vector
from saturated measurements.

Let (xj )j2J be a frame of a Hilbert space H and let � > 0. For x 2 H we denote the following
sets,

Unsaturated coordinates: J�(x) = {j 2 J : |hx, xji|  �},

Positively saturated coordinates: J
+
� (x) = {j 2 J : hx, xji > �},

Negatively saturated coordinates: J
�
� (x) = {j 2 J : hx, xji < ��}.

Define a subsets of J+
� (x) and J

�
� (x), respectively, relative to a fixed element y 2 H,

J
+
� (x, y) = {j 2 J

+
� (x) : hy , xji < �},

J
�
� (x, y) = {j 2 J

�
� (x) : hy , xji > ��}.

Recursively define the �-saturated frame algorithm. We set y0 = 0 and for k 2 N [ {0} and
yk 2 H we choose ↵k , �k � 0 and let

yk+1 = yk + ↵k

X

j2J�(x)

⇣
hx, xji � hyk , xji

⌘
xj + �k

X

j2J
+
�

(x,y
k
)

⇣
� � hyk , xji

⌘
xj

+ �k

X

j2J
�
�

(x,y
k
)

⇣
� � � hyk , xji

⌘
xj .
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�-saturated frame algorithm

• Vector yk 2 H is known and we can use the actual frame coefficients (hyk , xji)j2J rather
than the saturated frame coefficients (��(hyk , xji))j2J .

• In the frame algorithm, the optimal choice for the scalar ↵ is ↵ = 2/(A + B) where A and B

are the frame bounds.

• In �-saturated frame algorithm, the optimal choice for ↵k and �k can change at each step.

Theorem (Alharbi, Freeman, G., Johnson, Randrianarivony ’23)

Let (xj )j2J be a frame for a Hilbert space H with frame bounds A  B. Let x 2 H and
suppose that (yk )

1
k=0 ✓ H is constructed by the �-saturated frame algorithm with

↵k = �k = 2/(A + B) for all k 2 N [ {0}. For each k 2 N [ {0}, if the optimal lower frame
bound for (xj )j2J�(x) is strictly less than the optimal lower frame bound for
(xj )

j2J�(x)[J
+
�

(x,y
k
)[J

�
�

(x,y
k
)
then there exists "x,y

k
> 0 so that

kx � yk+1k  (1 � "x,y
k
)C2/(A+B)kx � ykk,

where C2/(A+B) is the constant for applying the frame algorithm to (xj )j2J�(x) with coefficient
↵ = 2/(A + B).
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Numerical implementation: different saturation levels

Using random frames of 30 vectors for R
10. Mean error kyk � xk for frame algorithm (�) and

�-saturation frame algorithm (⇤)
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High and low levels of saturation

• In all cases, the �-saturated frame algorithm outperforms the frame algorithm based only
on unsaturated coefficients.

• Considering the saturated frame coefficients improves the convergence in the first few
iterations, (steeper slope between consecutive iterations).

• Question: When saturation is high, the frame algorithm fails, and using the saturation
recovery algorithm does a better job at the recovery, how does the percentage of
saturation change the recovery?
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Thank you!
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