Piecewise linear operators

Rima Alaifari, Daniel Freeman*, Dorsa Ghoreishi, Mitchell Taylor, and Pedro Tradacete

Department of Mathematics and Statistics, Saint Louis University, USA

ICMAT: Workshop on Banach spaces and Banach lattices

21 May, 2024

Supported by NSF grant DMS-2154931

 There are many powerful tools for working with Banach spaces and Banach lattices. :)

2 Not everything is nice and linear. :(

Given some non-linear object X (such as a manifold or metric space), we can often construct a map T : X → Z which embeds X into a Banach lattice Z. This then allows us to apply our linear tools to study X!

- Discuss a simple but very useful linear method for the reconstruction of vectors in a Hilbert space H. This involves inverting a linear operator.
- 2 Introduce a situation where we instead need to reconstruct elements of a non-linear quotient H/\sim of H.
- 3 This now involves inverting a non-linear operator, and we will discuss a new way of thinking about such operators.
- Go off on a tangent about non-linear quotients of Banach spaces.

Frames for Hilbert spaces

A collection of vectors $(x_j)_{j \in J} \subseteq H$ is a *frame* of a Hilbert space H if there are universal constants $0 < A \leq B < \infty$ such that

$$A\|x\|^2 \leq \sum_{j \in J} |\langle x, x_j \rangle|^2 \leq B\|x\|^2$$
 for all $x \in H$.

The analysis operator of $(x_j)_{j \in J}$ is the map $\Theta : H \to \ell_2(J)$ given by

$$\Theta(x) = (\langle x, x_j \rangle)_{j \in J}$$
 for all $x \in H$.

Note: $(x_j)_{j \in J}$ is a frame of $H \Leftrightarrow \Theta$ is an embedding of H into $\ell_2(J)$.

Vector reconstruction using a frame:

- 1 x is some object in a Hilbert space H that we are interested in.
- 2 The frame coefficients Θ(x) = (⟨x, x_j⟩)_{j∈J} are a collection of rank-1 linear measurements of x.
- **3** We can stably reconstruct x from these measurements by applying the linear operator $(\Theta^*\Theta)^{-1}\Theta^*$ giving $x = (\Theta^*\Theta)^{-1}\Theta^*(\Theta x)$.

Let G be a finite group of isometries on H. We are interested in the vector $x \in H$, but we consider x to be equivalent to all the vectors $\{gx\}_{g \in G}$.

Example 1: x is a point cloud of data in \mathbb{R}^n .

We can express the point cloud as any of the following $4x^2$ matrices:

$$\begin{bmatrix} .5 & 1.4 \\ 1.1 & 2.3 \\ 1.3 & 2.1 \\ 1.3 & 2.5 \end{bmatrix}, \begin{bmatrix} 1.1 & 2.3 \\ 1.3 & 2.1 \\ .5 & 1.4 \\ 1.3 & 2.5 \end{bmatrix}, \begin{bmatrix} 1.1 & 2.3 \\ 1.3 & 2.1 \\ .5 & 1.4 \\ 1.3 & 2.5 \end{bmatrix}, \begin{bmatrix} 1.1 & 2.3 \\ 1.3 & 2.1 \\ .5 & 1.4 \\ 1.3 & 2.5 \end{bmatrix}, \dots$$

Thus, if $M_{4\times 2}$ is the space of 4×2 matrices and G is the group of all permutations of rows then a point cloud $x \in M_{4\times 2}$ is equivalent to gx for every $g \in G$.

Let $(x_j)_{j \in J}$ be a frame of H with analysis operator $\Theta : H \to \ell_2(J)$.

The goal of phase retrieval is to recover a vector $x \in H$ from the magnitude of the frame coefficients,

$$\Theta(x)| = (|\langle x, x_j \rangle|)_{j \in \Omega}.$$

Note: We cannot distinguish between x and λx for any scalar with $|\lambda| = 1$ as $|\Theta(x)| = |\Theta(\lambda x)|$.

Thus, we consider the equivalence relation $x \sim \lambda x$ for all scalars $|\lambda| = 1$. We say that $(x_j)_{j \in J}$ does phase retrieval if the map $|\Theta| : H/ \to \ell_2(J)$ is one-to-one.

That is, doing phase retrieval means that we can recovery any $[x]_{\sim} \in X / \sim$ from the magnitude of the frame coefficients $|\Theta(x)|$.

Nonlinear quotients of Hilbert spaces

Let G be a finite group of isometries on H. We consider the equivalence relation $x \sim gx$ for all $g \in G$.

The quotient space H/\sim is the space of equivalence classes $H/\sim = \{[x]_{\sim} : x \in H\}$. The quotient metric is defined as

$$d([x]_{\sim},[y]_{\sim}) = \min_{g \in G} ||x - gy||$$

To do analysis and reconstruct elements of H/\sim , we want to embed it back into a Hilbert space. That is, we need a map $T_G : H/\sim \rightarrow \ell_2(J)$.

For this to be stable in applications, we need T_G to be bi-Lipschitz. That is, there exists A, B > 0 so that

$$A\min_{g\in G} \|x-gy\| \le \|Tx-Ty\| \le B\min_{g\in G} \|x-gy\| \quad \text{for all } x, y\in H.$$

We can measure properties of the embedding $T_G : H/ \sim \to \ell_2(J)$ by working with the lifting $T : H \to \ell_2(J)$ where $T(x) = T_G([x]_{\sim})$.

How can we think about $T: H \rightarrow \ell_2(J)$?

What are some nice properties which we can exploit?

Note: $T : H \to \ell_2(J)$ will never be linear! (except for the trivial case $G = \{Id_H\}$.)

Case 1: $T : \mathbb{R}^2 \to \mathbb{R}^3$ is linear.

We can visualize T by considering an ortho-normal basis u_1, u_2 corresponding to the singular value decomposition.

Case 2: $T : \mathbb{R}^2 \to \mathbb{R}^3$ is given by $T(x) = (|\langle x, f_1 \rangle|, |\langle x, f_2 \rangle|, |\langle x, f_3 \rangle|)$ where $f_1 = (0, 1)$, $f_2 = (\sqrt{3}/2, -1/2)$, $f_3 = (-\sqrt{3}/2, -1/2)$.

We say that a function $T : \mathbb{R}^d \to \mathbb{R}^n$ is a piecewise linear operator with linear decomposition $(X_j, T_j)_{j=1}^N$ if for each $1 \le j \le N$ we have that $X_j \subseteq \mathbb{R}^d$ is a finite intersection of closed half spaces and $T : \mathbb{R}^d \to \mathbb{R}^n$ is a linear operator such that

1 $\mathbb{R}^{d} = \bigcup_{j=1}^{m} X_{j},$ 2 $T|_{X_{j}} = T_{j}|_{X_{j}}$ for all $1 \le j \le N.$

Piecewise linear operators for phase retrieval

Let $(f_j)_{j=1}^N$ be a frame of \mathbb{R}^d . $T : \mathbb{R}^d \to \mathbb{R}^N$, $T(x) = (|\langle x, f_j \rangle|)_{j=1}^N$.

For each choice of signs $\varepsilon_j = \pm 1$ for $1 \le j \le N$,

$$\begin{split} X_{(\varepsilon_j)_{j=1}^N} &= \{ x \in \mathbb{R}^d : \varepsilon_j \langle x, f_j \rangle \geq 0. \} \\ T_{(\varepsilon_j)_{j=1}^N} : \mathbb{R}^d \to \mathbb{R}^N \text{ is the linear operator } T_{(\varepsilon_j)_{j=1}^N}(x) = \left(\langle x, \varepsilon_j f_j \rangle \right)_{j=1}^N \quad \text{ for all } x \in \mathbb{R}^d. \end{split}$$

Case: $T : \mathbb{R}^2 \to \mathbb{R}^3$ is given by $T(x) = (|\langle x, f_1 \rangle|, |\langle x, f_2 \rangle|, |\langle x, f_3 \rangle|)$ where $f_1 = (0, 1), f_2 = (\sqrt{3}/2, -1/2), f_3 = (-\sqrt{3}/2, -1/2).$

G is a finite group of isometries on \mathbb{R}^d . $(f_j)_{j=1}^N$ is a frame of \mathbb{R}^d . The map $T : \mathbb{R}^d \to \mathbb{R}^N$ is given by

$$T(x) = \left(\max_{g \in G} \langle x, gf_j \rangle \right)_{j=1}^N$$
 for all $x \in \mathbb{R}^d$.

(Real phase retrieval is max filtering for the case $G = \{Id, -Id\}$.)

For each choice of $(g_j)_{j=1}^N \in G^N$,

$$X_{(g_j)_{j=1}^N} = \{ x \in \mathbb{R}^d : \langle x, g_j f_j \rangle = \max_{g \in G} \langle x, g f_j \rangle. \}$$

 $T_{(g_j)_{j=1}^N}: \mathbb{R}^d \to \mathbb{R}^N \text{ is the linear operator } T_{(g_j)_{j=1}^N}(x) = \left(\langle x, g_j f_j \rangle\right)_{j=1}^N \quad \text{ for all } x \in \mathbb{R}^d.$

Summary

- **1** G is a finite group of isometries on \mathbb{R}^d .
- 2 $x \sim gx$ for all $g \in G$ gives an equivalence relation on \mathbb{R}^d .
- 3 We want a bi-Lipschitz embedding $T_G : \mathbb{R}^d / \sim \to \mathbb{R}^N$ which lifts to a piecewise linear operator $T : \mathbb{R}^d \to \mathbb{R}^N$.

It is well known for the case of phase retrieval that if $T_G : \mathbb{R}^d / \sim \to \mathbb{R}^N$ is one-to-one then T_G is bi-Lipschitz.

Question (J. Cahill, J. Iverson, D. Mixon, and D. Packer (2022))

Let G be a finite group of isometries on \mathbb{R}^d , and let $T_G : \mathbb{R}^d / \sim \to \mathbb{R}^N$ be the max filtering map. Does T_G being one-to-one imply that T_G is bi-Lipschitz?

Theorem (R. Balan and E. Tsoukanis (2023))

Let G be a finite group of isometries on \mathbb{R}^d , and let $T_G : \mathbb{R}^d / \sim \to \mathbb{R}^N$ be co-orbit embedding corresponding to some ordering (this is a generalization of max filtering). If T_G is one-to-one then T_G is bi-Lipschitz.

Theorem (R.Alaifari, F., D. Ghoreishi, M. Taylor, and P. Tradacete (2024))

Let G be a finite group of isometries on \mathbb{R}^d , and let $T_G : \mathbb{R}^d / \sim \to \mathbb{R}^N$ be a map which lifts to a piece-wise linear operator. If T_G is one-to-one then T_G is bi-Lipschitz.

Theorem (R.Alaifari, F., D. Ghoreishi, M. Taylor, and P. Tradacete (2024))

Let G be a finite group of isometries on \mathbb{R}^d and let $T_G : \mathbb{R}^d / \sim \to \mathbb{R}^N$ be a one-to-one function which lifts to a piece-wise linear operator $T : \mathbb{R}^d \to \mathbb{R}^N$. Let $(X_j, T_j)_{j=1}^m$ be a minimal linear decomposition of T. Let $\beta = \max_{1 \le j \le m} ||T_j||$. Then,

$$||Tx - Ty|| \leq \beta \min_{g \in G} ||x - gy||$$
 for all $x, y \in \mathbb{R}^d$.

Furthermore, there exists $x, y \in \mathbb{R}^d$ with $x \not\sim y$ so that

$$||Tx - Ty|| = \beta \min_{g \in G} ||x - gy||.$$

Sketch of proof for upper Lipschitz bound

Without loss of generality, $||x - y|| = \min_{g \in G} ||x - gy||$.

$$\begin{aligned} \|Tx - Ty\| &= \|Tx - Tz_1 + Tz_1 - Tz_2 + Tz_2 - Ty\| \\ &\leq \|Tx - Tz_1\| + \|Tz_1 - Tz_2\| + \|Tz_2 - Ty\| \\ &= \|T_1x - T_1z_1\| + \|T_2z_1 - T_2z_2\| + \|T_3z_2 - T_3y\| \\ &\leq \|T_1\|\|x - z_1\| + \|T_2\|\|z_1 - z_2\| + \|T_3\|\|z_2 - y\| \\ &\leq \beta \Big(\|x - z_1\| + \|z_1 - z_2\| + \|z_2 - y\| \Big) \\ &= \beta \|x - y\| \end{aligned}$$

Idea of proof for lower Lipschitz bound

Without loss of generality, $||x - y|| = \min_{g \in G} ||x - gy||$.

$$\begin{aligned} \|Tx - Ty\|^2 &= \|Tx - Tz\|^2 + \|Ty - Tz\|^2 - 2\|Tx - Tz\| \|Ty - Tz\|\cos(\theta) \\ &\geq \|Tx - Tz\|^2 + \|Ty - Tz\|^2 - \left(\|Tx - Tz\|^2 + \|Ty - Tz\|^2\right)\cos(\theta) \\ &= (1 - \cos(\theta)) \left(\|Tx - Tz\|^2 + \|Ty - Tz\|^2\right) \\ &\geq (1/2)(1 - \cos(\theta)) \left(\|Tx - Tz\| + \|Ty - Tz\|\right)^2 \\ &\geq (1/2)(1 - \cos(\theta)) \left(\alpha\|x - z\| + \alpha\|y - z\|\right)^2 \\ &\geq (1/2)(1 - \cos(\theta)) \alpha^2\|x - y\|^2 \end{aligned}$$

15 / 17

Principle angles

Given subspaces $X, Y \subseteq \mathbb{R}^d$, the first principle angle θ between X and Y is defined as the largest angle $\theta \in [0, \pi/2]$ such that the angle between any vector $x \in X$ and $y \in Y$ is at least θ . That is,

$$\langle x, y \rangle \le ||x|| ||y|| \cos(\theta) \quad \text{for all } x \in X, y \in Y.$$
 (1)

Higher order principle angles can be defined inductively by choosing x and y to give equality in (1) then finding the principle angle between $X \cap x^{\perp}$ and $Y \cap y^{\perp}$.

If $X \cap Y \neq \{0\}$ then the first principle angle between X and Y is 0. In which case, we are interested in the first non-zero principle angle between X and Y.

Principle angles between cones

In order to prove the lower Lipschitz bound, we need to bound an angle between two cones X and Y which are each the intersection of finitely many closed half-spaces.

The first principle angle between X and Y is the largest angle $\theta \in [0, \pi]$ such that the angle between any vector $x \in X$ and $y \in Y$ is at least θ . That is,

$$\langle x, y \rangle \le ||x|| ||y|| \cos(\theta) \quad \text{for all } x \in X, y \in Y.$$
 (2)

However, we cannot define higher order principle angles in the same way we do for subspaces because we cannot orthogonalize!

We can define the first non-zero principle angle in a different way though.

Theorem (R.Alaifari, F., D. Ghoreishi, M. Taylor, and P. Tradacete (2024))

Let $X, Y \subseteq \mathbb{R}^d$ be finite intersections of closed half-spaces such that $X \not\subseteq Y$ and $Y \not\subseteq X$. Then there is an angle $\theta \in (0, \pi]$ so that for all $x \in X$ and $y \in Y$, there exists $z \in X \cap Y$ so that the angle between x - z and y - z is at least θ . That is,

 $\langle x-z, y-z \rangle \leq ||x-z|| ||y-z|| \cos(\theta).$

We define the first non-zero principle angle between X and Y to be the largest $\theta \in (0, \pi]$ which satisfies (2).