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Philosophy of linear analysis of non-linear objects

There are many powerful tools for working with Banach spaces
and Banach lattices. :)

Not everything is nice and linear. :(

Given some non-linear object X (such as a manifold or metric space), we can
often construct a map T : X — Z which embeds X into a Banach lattice Z.
This then allows us to apply our linear tools to study X!

2/17



Outline

Discuss a simple but very useful linear method for the reconstruction of vectors in

a Hilbert space H. This involves inverting a linear operator.

Introduce a situation where we instead need to reconstruct elements of a

non-linear quotient H/ ~ of H.

This now involves inverting a non-linear operator, and we will discuss a new way

of thinking about such operators.

A Go off on a tangent about non-linear quotients of Banach spaces.
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Frames for Hilbert spaces

A collection of vectors (x;)jcy C H is a frame of a Hilbert space H if there are
universal constants 0 < A < B < oo such that

AllxII? <> 1(x, x)1? < BlIx|P? for all x € H.
JjeJ

The analysis operator of (x;)jc is the map © : H — ¢>(J) given by
O(x) = ({x,Xj))jeu for all x € H.

Note: (xj)jey is a frame of H & © is an embedding of H into ¢>(J).

Vector reconstruction using a frame:
X is some object in a Hilbert space H that we are interested in.

The frame coefficients ©(x) = ((x, xj))jc are a collection of rank-1 linear

measurements of x.

We can stably reconstruct x from these measurements by applying the linear

operator (©*©)~10* giving x = (0*0@)~10*(6x).
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Equivalence classes

Let G be a finite group of isometries on H. We are interested in the vector x € H, but
we consider x to be equivalent to all the vectors {gx},cq.

Example 1: x is a point cloud of data in R".
N @
¢

v

We can express the point cloud as any of the following 4x2 matrices:

5 14] [11 23] [1.1 2.3]
1.1 2.3 1.3 2.1 1.3 2.1
1.3 21| |5 14 5 1.4
1.3 25| [1.3 25| [13 25

Thus, if My, is the space of 4x2 matrices and G is the group of all permutations of

rows then a point cloud x € Myy» is equivalent to gx for every g € G.
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Example 2: Phase retrieval

Let (xj)jcs be a frame of H with analysis operator © : H — £>(J).

The goal of phase retrieval is to recover a vector x € H from the magnitude of the
frame coefficients,

[©0()] = ([(x; x7)])je-
Note: We cannot distinguish between x and Ax for any scalar with |A\| =1 as

[©(x)] = [0(Ax)].

Thus, we consider the equivalence relation x ~ A\x for all scalars |\| = 1. We say that
(xj)jes does phase retrieval if the map |©|: H/ ~— £>(J) is one-to-one.

That is, doing phase retrieval means that we can recovery any [x]~ € X/ ~ from the
magnitude of the frame coefficients |©(x)]|.
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Nonlinear quotients of Hilbert spaces

Let G be a finite group of isometries on H. We consider the equivalence relation

x ~ gx for all g € G.

The quotient space H/ ~ is the space of equivalence classes H/~= {[X]N X E H}.
The quotient metric is defined as

d([x|~,|y|~) = min ||x —
(X~ Iyl~) = min fix = gyl
To do analysis and reconstruct elements of H/ ~, we want to embed it back into a

Hilbert space. That is, we need a map T¢ : H/~— 0>(J).

For this to be stable in applications, we need T to be bi-Lipschitz.
That is, there exists A, B > 0 so that

Amin |[x — gy|| < ||Tx — Ty|| < Bmin||x — gy|| for all x,y € H.
geaG geiG

We can measure properties of the embedding T : H/ ~— ¢2(J) by working with the
lifting T : H — ¢>(J) where T(x) = T¢g([x]~)-

How can we think about T : H — ¢5(J)?
What are some nice properties which we can exploit?

Note: T : H — ¢>(J) will never be linear! (except for the trivial case G = {ldy}.)
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Visualizing linear maps vs Phase retrieval

Case 1: T :R? — R3 is linear.
We can visualize T by considering an ortho-normal basis u;i, us corresponding to the

singular value decomposition.
TU.\

Un T
L >

u,

T\k‘j\

Case 2: T :R? — R3 is given by T(x) = (|(x, A)], |{x, B)], [{x, B)])
where f = (0,1), » = (V3/2,—-1/2), f = (—/3/2,—1/2).

£
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Piecewise-linear operators

We say that a function T : RY — R" is a piecewise linear operator with linear
decomposition (X, TJ)JN:1 if for each 1 < j < N we have that X; C RY is a finite
intersection of closed half spaces and T : R? — R” is a linear operator such that
d _
0 RY = LJZL1‘X§'
B T|x = Tjlx; forall1 <j < N.
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Piecewise linear operators for phase retrieval

Let (Ij)JN:1 be a frame of RY.
T RY o RY, T(x) = (|(x, ),

For each choice of signs ¢; = 1 for 1 < j < N,

d .
T(gj)jN—l : R? — RV is the linear operator T(sj)j/\/:1 (x) = ((X, 5J-1§->)J.N:1 for all x € RY.

Case: T :R? — R3 is given by T(x) = (|(x, )], [{x, K], |(x, K)])
where fi = (0,1), »h = (V/3/2,—-1/2), f = (—V/3/2,—1/2).

XU f‘l") F
|

XL-(,\,I)
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Piecewise linear operators for max filtering

G is a finite group of isometries on RY. (15)1’\’:1 is a frame of RY. The map
T : RY — RN is given by

T(x) = (g]eaé( gﬂ))JN:l for all x € RY.

(Real phase retrieval is max filtering for the case G = {/d, —Id}.)
For each choice of (g; J-Nzl c GN,
X(gj)j/\/:1 = {x €R?: (x,gif;) = meaé(x gfi).}

. Tod N . . N
T(gy')szl : R — R" is the linear operator T, w (X) ((x, gj J>)J . for all x € RY.
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G is a finite group of isometries on RY.
x ~ gx for all g € G gives an equivalence relation on R.
We want a bi-Lipschitz embedding T¢ : ]Rd/ ~— RN which lifts to a piecewise
linear operator T : RY — RNV,
It is well known for the case of phase retrieval that if Tg : R /~— RN is one-to-one

then T¢ is bi-Lipschitz.

Question (J. Cahill, J. Iverson, D. Mixon, and D. Packer (2022))

Let G be a finite group of isometries on RY, and let Tg : RY/~— RN be the max
filtering map. Does T being one-to-one imply that T¢ is bi-Lipschitz?

Theorem (R. Balan and E. Tsoukanis (2023))

Let G be a finite group of isometries on RY, and let Tg : RY/~— RN be co-orbit

embedding corresponding to some ordering (this is a generalization of max filtering).

If T is one-to-one then T¢ is bi-Lipschitz.

Theorem (R.Alaifari, F., D. Ghoreishi, M. Taylor, and P. Tradacete (2024))

Let G be a finite group of isometries on RY, and let T¢ : R /~— RN be a map which
lifts to a piece-wise linear operator. If T is one-to-one then T¢ is bi-Lipschitz.
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Upper Lipschitz bound

Theorem (R.Alaifari, F., D. Ghoreishi, M. Taylor, and P. Tradacete (2024))

Let G be a finite group of isometries on RY and let T¢ : RY /~— RN be a one-to-one
function which lifts to a piece-wise linear operator T : RY — RN, Let (X;, Tj)iL, be a
minimal linear decomposition of T. Let 8 = maxi<j<m || T;||. Then,

| Tx — Ty|| < B min |x — gy|| for all x,y € RY.
gc

Furthermore, there exists x,y € R? with x o4 y so that

Tx — Ty|l = B min ||x — )
ITx = Tyl = 8 min |Ix - |
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Sketch of proof for upper Lipschitz bound

Without loss of generality, |

x =yl = mingeg [|x — gy||.

| Tx — Ty|| =||Tx — Tz1 + Tz1 — Tzo + Tz — Ty||
S| Tx = Tzi|| + | Tz1 — Tz|| + [Tz — Ty|
= [|Tix — Tiz1|[ + || Tozr — Toz|| + [ T3z2 — T3y|
< | Tallllx = zill + [ T2l|[[z2 = 22| + || T3][||z2 — ¥l
< B(lIx =zl + Iz - 2/ + |z — vl

= Bllx = yl|
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|dea of proof for lower Lipschitz bound

Without loss of generality, |

x =yl = mingeg [|x — gy||.

| Tx =TI = | Tx — T2 + || Ty — Tzl = 2|| Tx — Tz|l|| Ty — Tz|| cos(6)
> || Tx = Tz + [Ty = Tzl = (I Tx = Tz|? + || Ty = Tz]12) cos(9)
= (1 = cos(0)) (I Tx = Tzl + | Ty — Tz|?)
2
> (1/2)(1 — cos(0)) (Il Tx = Tzl + | Ty — Tz|)

> (1/2)(1 ~ cos(6)) (allx — 2] + ally — 2I|)’

> (1/2)(1 — cos())a?|[x — y||°
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Principle angles

Given subspaces X, Y C RY, the first principle angle 8 between X and Y is defined as
the largest angle 6 € [0, /2] such that the angle between any vector x € X and
y € Y is at least 6. That is,

(6,y) < Ixllllyllcos(0)  forallx € X,y € Y. (1)

Higher order principle angles can be defined inductively by choosing x and y to give
equality in (1) then finding the principle angle between X N x1 and Y Ny,

If XN'Y # {0} then the first principle angle between X and Y is 0. In which case, we
are interested in the first non-zero principle angle between X and Y.
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Principle angles between cones

In order to prove the lower Lipschitz bound, we need to bound an angle between two
cones X and Y which are each the intersection of finitely many closed half-spaces.

The first principle angle between X and Y is the largest angle 6 € [0, 7] such that the
angle between any vector x € X and y € Y is at least 6. That is,

(x,y) < ||x]||||y]|| cos(8) forall x e X,y € Y. (2)

However, we cannot define higher order principle angles in the same way we do for

subspaces because we cannot orthogonalize!

We can define the first non-zero principle angle in a different way though.

Theorem (R.Alaifari, F., D. Ghoreishi, M. Taylor, and P. Tradacete (2024))

Let X, Y C RY be finite intersections of closed half-spaces such that X Z Y and
Y & X. Then there is an angle 6 € (0, 7| so that for all x € X and y € Y, there exists
z € XNY so that the angle between x — z and y — z is at least 6. That is,

(x = z,y = 2) < [|x = z||[ly — z|| cos(6).

We define the first non-zero principle angle between X and Y to be the largest
0 € (0, 7] which satisfies (2).
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