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Philosophy of linear analysis of non-linear objects

1 There are many powerful tools for working with Banach spaces

and Banach lattices. :)

2 Not everything is nice and linear. :(

3 Given some non-linear object X (such as a manifold or metric space), we can

often construct a map T : X ! Z which embeds X into a Banach lattice Z .

This then allows us to apply our linear tools to study X !
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Outline

1 Discuss a simple but very useful linear method for the reconstruction of vectors in

a Hilbert space H. This involves inverting a linear operator.

2 Introduce a situation where we instead need to reconstruct elements of a

non-linear quotient H/ ⇠ of H.

3 This now involves inverting a non-linear operator, and we will discuss a new way

of thinking about such operators.

4 Go o↵ on a tangent about non-linear quotients of Banach spaces.
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Frames for Hilbert spaces

A collection of vectors (xj )j2J ✓ H is a frame of a Hilbert space H if there are

universal constants 0 < A  B < 1 such that

Akxk2 
X

j2J

|hx , xj i|2  Bkxk2 for all x 2 H.

The analysis operator of (xj )j2J is the map ⇥ : H ! `2(J) given by

⇥(x) = (hx , xj i)j2J for all x 2 H.

Note: (xj )j2J is a frame of H , ⇥ is an embedding of H into `2(J).

Vector reconstruction using a frame:

1 x is some object in a Hilbert space H that we are interested in.

2 The frame coe�cients ⇥(x) = (hx , xj i)j2J are a collection of rank-1 linear

measurements of x .

3 We can stably reconstruct x from these measurements by applying the linear

operator (⇥
⇤
⇥)

�1
⇥

⇤
giving x = (⇥

⇤
⇥)

�1
⇥

⇤
(⇥x).
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Equivalence classes

Let G be a finite group of isometries on H. We are interested in the vector x 2 H, but

we consider x to be equivalent to all the vectors {gx}g2G .

Example 1: x is a point cloud of data in Rn
.

We can express the point cloud as any of the following 4x2 matrices:

2

6664

.5 1.4

1.1 2.3

1.3 2.1

1.3 2.5

3

7775
,

2

6664

1.1 2.3

1.3 2.1

.5 1.4

1.3 2.5

3

7775
,

2

6664

1.1 2.3

1.3 2.1

.5 1.4

1.3 2.5

3

7775
, ...

Thus, if M4x2 is the space of 4x2 matrices and G is the group of all permutations of

rows then a point cloud x 2 M4x2 is equivalent to gx for every g 2 G .
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Example 2: Phase retrieval

Let (xj )j2J be a frame of H with analysis operator ⇥ : H ! `2(J).

The goal of phase retrieval is to recover a vector x 2 H from the magnitude of the

frame coe�cients,

|⇥(x)| = (|hx , xj i|)j2⌦.

Note: We cannot distinguish between x and �x for any scalar with |�| = 1 as

|⇥(x)| = |⇥(�x)|.

Thus, we consider the equivalence relation x ⇠ �x for all scalars |�| = 1. We say that

(xj )j2J does phase retrieval if the map |⇥| : H/ ⇠! `2(J) is one-to-one.

That is, doing phase retrieval means that we can recovery any [x]⇠ 2 X/ ⇠ from the

magnitude of the frame coe�cients |⇥(x)|.
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Nonlinear quotients of Hilbert spaces

Let G be a finite group of isometries on H. We consider the equivalence relation

x ⇠ gx for all g 2 G .

The quotient space H/⇠ is the space of equivalence classes H/⇠=
�
[x]⇠ : x 2 H

 
.

The quotient metric is defined as

d([x]⇠, [y ]⇠) = min
g2G

kx � gyk

To do analysis and reconstruct elements of H/ ⇠, we want to embed it back into a

Hilbert space. That is, we need a map TG : H/⇠! `2(J).

For this to be stable in applications, we need TG to be bi-Lipschitz.

That is, there exists A,B > 0 so that

Amin
g2G

kx � gyk  kTx � Tyk  B min
g2G

kx � gyk for all x , y 2 H.

We can measure properties of the embedding TG : H/ ⇠! `2(J) by working with the

lifting T : H ! `2(J) where T (x) = TG ([x]⇠).

How can we think about T : H ! `2(J)?

What are some nice properties which we can exploit?

Note: T : H ! `2(J) will never be linear! (except for the trivial case G = {IdH}.)
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Visualizing linear maps vs Phase retrieval

Case 1: T : R2 ! R3
is linear.

We can visualize T by considering an ortho-normal basis u1, u2 corresponding to the

singular value decomposition.

Case 2: T : R2 ! R3
is given by T (x) = (|hx , f1i|, |hx , f2i|, |hx , f3i|)

where f1 = (0, 1), f2 = (
p
3/2,�1/2), f3 = (�

p
3/2,�1/2).
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Piecewise-linear operators

We say that a function T : Rd ! Rn
is a piecewise linear operator with linear

decomposition (Xj ,Tj )
N

j=1
if for each 1  j  N we have that Xj ✓ Rd

is a finite

intersection of closed half spaces and T : Rd ! Rn
is a linear operator such that

1 Rd
=
S

m

j=1
Xj ,

2 T |Xj
= Tj |Xj

for all 1  j  N.
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Piecewise linear operators for phase retrieval

Let (fj )
N

j=1
be a frame of Rd

.

T : Rd ! RN
, T (x) = (|hx , fj i|)Nj=1

.

For each choice of signs "j = ±1 for 1  j  N,

X
("j )

N

j=1

= {x 2 Rd
: "j hx , fj i � 0.}

T
("j )

N

j=1

: Rd ! RN is the linear operator T
("j )

N

j=1

(x) =
�
hx , "j fj i

�
N

j=1
for all x 2 Rd .

Case: T : R2 ! R3
is given by T (x) = (|hx , f1i|, |hx , f2i|, |hx , f3i|)

where f1 = (0, 1), f2 = (
p
3/2,�1/2), f3 = (�

p
3/2,�1/2).
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Piecewise linear operators for max filtering

G is a finite group of isometries on Rd
. (fj )

N

j=1
is a frame of Rd

. The map

T : Rd ! RN
is given by

T (x) =
�
max
g2G

hx , gfj i
�
N

j=1
for all x 2 Rd .

(Real phase retrieval is max filtering for the case G = {Id ,�Id}.)

For each choice of (gj )
N

j=1
2 G

N
,

X
(gj )

N

j=1

= {x 2 Rd
: hx , gj fj i = max

g2G

hx , gfj i.}

T
(gj )

N

j=1

: Rd ! RN is the linear operator T
(gj )

N

j=1

(x) =
�
hx , gj fj i

�
N

j=1
for all x 2 Rd .

11 / 17



Summary

1 G is a finite group of isometries on Rd
.

2 x ⇠ gx for all g 2 G gives an equivalence relation on Rd
.

3 We want a bi-Lipschitz embedding TG : Rd/ ⇠! RN
which lifts to a piecewise

linear operator T : Rd ! RN
.

It is well known for the case of phase retrieval that if TG : Rd/⇠! RN
is one-to-one

then TG is bi-Lipschitz.

Question (J. Cahill, J. Iverson, D. Mixon, and D. Packer (2022))

Let G be a finite group of isometries on Rd
, and let TG : Rd/⇠! RN

be the max

filtering map. Does TG being one-to-one imply that TG is bi-Lipschitz?

Theorem (R. Balan and E. Tsoukanis (2023))

Let G be a finite group of isometries on Rd
, and let TG : Rd/⇠! RN

be co-orbit

embedding corresponding to some ordering (this is a generalization of max filtering).

If TG is one-to-one then TG is bi-Lipschitz.

Theorem (R.Alaifari, F., D. Ghoreishi, M. Taylor, and P. Tradacete (2024))

Let G be a finite group of isometries on Rd
, and let TG : Rd/⇠! RN

be a map which

lifts to a piece-wise linear operator. If TG is one-to-one then TG is bi-Lipschitz.
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Upper Lipschitz bound

Theorem (R.Alaifari, F., D. Ghoreishi, M. Taylor, and P. Tradacete (2024))

Let G be a finite group of isometries on Rd
and let TG : Rd/⇠! RN

be a one-to-one

function which lifts to a piece-wise linear operator T : Rd ! RN
. Let (Xj ,Tj )

m

j=1
be a

minimal linear decomposition of T . Let � = max1jm kTjk. Then,

kTx � Tyk  � min
g2G

kx � gyk for all x , y 2 Rd .

Furthermore, there exists x , y 2 Rd
with x 6⇠ y so that

kTx � Tyk = � min
g2G

kx � gyk.
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Sketch of proof for upper Lipschitz bound

Without loss of generality, kx � yk = ming2G kx � gyk.

kTx � Tyk = kTx � Tz1 + Tz1 � Tz2 + Tz2 � Tyk

 kTx � Tz1k+ kTz1 � Tz2k+ kTz2 � Tyk

= kT1x � T1z1k+ kT2z1 � T2z2k+ kT3z2 � T3yk

 kT1kkx � z1k+ kT2kkz1 � z2k+ kT3kkz2 � yk

 �
⇣
kx � z1k+ kz1 � z2k+ kz2 � yk

⌘

= �kx � yk
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Idea of proof for lower Lipschitz bound

Without loss of generality, kx � yk = ming2G kx � gyk.

kTx � Tyk2 = kTx � Tzk2 + kTy � Tzk2 � 2kTx � TzkkTy � Tzk cos(✓)

� kTx � Tzk2 + kTy � Tzk2 �
⇣
kTx � Tzk2 + kTy � Tzk2

⌘
cos(✓)

= (1� cos(✓))
⇣
kTx � Tzk2 + kTy � Tzk2

⌘

� (1/2)(1� cos(✓))
⇣
kTx � Tzk+ kTy � Tzk

⌘
2

� (1/2)(1� cos(✓))
⇣
↵kx � zk+ ↵ky � zk

⌘
2

� (1/2)(1� cos(✓))↵2kx � yk2
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Principle angles

Given subspaces X ,Y ✓ Rd
, the first principle angle ✓ between X and Y is defined as

the largest angle ✓ 2 [0,⇡/2] such that the angle between any vector x 2 X and

y 2 Y is at least ✓. That is,

hx , yi  kxkkyk cos(✓) for all x 2 X , y 2 Y . (1)

Higher order principle angles can be defined inductively by choosing x and y to give

equality in (1) then finding the principle angle between X \ x
?

and Y \ y
?
.

If X \ Y 6= {0} then the first principle angle between X and Y is 0. In which case, we

are interested in the first non-zero principle angle between X and Y .
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Principle angles between cones

In order to prove the lower Lipschitz bound, we need to bound an angle between two

cones X and Y which are each the intersection of finitely many closed half-spaces.

The first principle angle between X and Y is the largest angle ✓ 2 [0,⇡] such that the

angle between any vector x 2 X and y 2 Y is at least ✓. That is,

hx , yi  kxkkyk cos(✓) for all x 2 X , y 2 Y . (2)

However, we cannot define higher order principle angles in the same way we do for

subspaces because we cannot orthogonalize!

We can define the first non-zero principle angle in a di↵erent way though.

Theorem (R.Alaifari, F., D. Ghoreishi, M. Taylor, and P. Tradacete (2024))

Let X ,Y ✓ Rd
be finite intersections of closed half-spaces such that X 6✓ Y and

Y 6✓ X. Then there is an angle ✓ 2 (0,⇡] so that for all x 2 X and y 2 Y , there exists

z 2 X \ Y so that the angle between x � z and y � z is at least ✓. That is,

hx � z, y � zi  kx � zkky � zk cos(✓).

We define the first non-zero principle angle between X and Y to be the largest

✓ 2 (0,⇡] which satisfies (2).
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