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Plan of the mini-course
Basic definitions; continuity, closeness, density, completeness.

Galois connections and polarities: properties and examples.

Hull operators and hull structures: properties and examples.

Distributivity; Boolean algebras; ordered vector spaces.

Not covered: Zorn’s lemma; vector lattices; combinatorial order theory.

Disclaimer: the author is not an expert! Feedback is welcome!

Some general references:

T.S. Blyth, Lattices and Ordered Algebraic Structures, 2005.
B.A. Davey & H.A. Priestley, Introduction to Lattices and Order,
2002.
P.T. Johnstone, Stone spaces, 1982.
G. Birkhoff, Lattice theory, 1948 & 1967.
S. Vickers, Topology via logic, 1989.

Eugene Bilokopytov (University of Alberta) Introduction to order theory May, 2024 3 / 44



Relations
If X is a set, then P (X ) denotes the collection of all subsets of X .

A relation from X into a set Y is a subset of X × Y . Notations:
ϕ : X → Y ; xϕy for (x , y) ∈ ϕ. Every map is a relation.

If ψ : Y → Z , define ϕψ : X → Z by xϕψz if xϕy and yψz, for some
y ∈ Y . Also, ψ ◦ ϕ := ϕψ agrees with composition of maps. The
composition is associative.

The converse ϕ∗ : Y → X of ϕ is defined by yϕ∗x if xϕy . Then,
ϕ∗∗ = ϕ and (ϕψ)∗ = ψ∗ϕ∗.

We say that ϕ is stronger than ψ if ϕ ⊂ ψ. Define the negation
6 ϕ := X × Y\ϕ of ϕ. Conversion commutes with negation.

The domain of ϕ is {x ∈ X , ∃y ∈ Y : xϕy}, the image is dom(ϕ∗).

The domain of ϕ is X iff IdX ⊂ ϕϕ∗.
ϕϕ∗ ⊂ IdX iff ϕ is injective, i.e. if xϕy and zϕy ⇒ x = z.
ϕ is a map iff IdX ⊂ ϕϕ∗ and ϕ∗ϕ ⊂ IdY .
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A relation on X is a relation from X into X . May be viewed as a
directed graph on X .

IdX , the identity map on X , is also the “diagonal” relation on X . It is
neutral with respect to the composition. A restriction of ϕ to Y ⊂ X is
ϕ ∩ Y × Y . ϕ is:

reflexive if IdX ⊂ ϕ; • total if ϕ ∪ ϕ∗ = X × X ;
symmetric if ϕ∗ = ϕ; • anti-symmetric if ϕ ∩ ϕ∗ ⊂ IdX ;
transitive if ϕ2 ⊂ ϕ;
equivalence relation if it is reflexive, symmetric and transitive.

It is often convenient to view a reflexive symmetric relation as a
measure of “closeness”, i.e refer to xϕy as “y is ϕ-close to x”.

Equivalence relations correspond to partitions of X , i.e. collections
{Xi}i∈I of disjoint sets with X =

⋃
i∈I

Xi . Equivalence 7→ classes of

equivalence; partition 7→ x ∼ y if they are in the same component.

∼ is stronger than ≈ if every ∼-class is contained in a ≈-class.
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Pre-orders
A relation ≤ on P is a pre-order if it is reflexive and transitive.
A pre-ordered set is a pair (P,≤).
Define ≥:=≤∗, and let −P := (P,≥). Clearly, − (−P) = P.

Any equivalence relation is a pre-order. The set inclusion is a pre-order
on P (X ). Divisibility is a pre-order on Z.

p ∈ P is an upper bound of Q ⊂ P if Q ≤ p. Q↑ is the set of all upper
bounds of Q. If Q↑ 6= ∅, Q is bounded from above. If R ⊂ Q, then
R↑ ⊃ Q↑. Same for Q↓. Q is order bounded if Q↑ 6= ∅ 6= Q↓.

P is directed (or directed upward) if any {p,q} is bounded from above,
for p,q ∈ P, and co-directed (or directed downward or filtered) if any
{p,q} is bounded from below, for p,q ∈ P.

If p,q ∈ P, then the order interval [p,q]P := {r ∈ P, p ≤ r ≤ q} (it is
nonempty iff p ≤ q). We will also denote [p)P := {r ∈ P, p ≤ r} and
same for (p]P . If Q ⊂ P denote [p)Q := [p) ∩Q, etc (even if p /∈ Q).
Also, [Q) :=

⋃
q∈Q

[q), etc.
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Q ⊂ P a lower set if (Q] ⊂ Q; (same for upper sets). Upper sets are
complements of lower sets.
Q is full if [Q,Q] ⊂ Q, i.e. if whenever q, r ∈ Q and q ≤ p ≤ r , then
p ∈ Q. Lower and upper sets are full.
Any intersection of upper / lower / full sets and any union of upper /
lower sets is a set of the same type.
The sets Q↑ =

⋂
q∈Q

[q) and [Q) are upper, while Q↓ and (Q] are lower.

Q ⊂ P majorates R ⊂ P if R ⊂ (Q]; the dual notion is refinement or
minorization. These two relations are transitive.

ϕ : P → R is isotone (or order preserving) if p ≤ q ⇒ ϕ (p) ≤ ϕ (q)
(equivalently, if pre-images of [principal] lower / upper sets are lower /
upper), and antitone (or order reversing) if p ≤ q ⇒ ϕ (p) ≥ ϕ (q).
The composition of two isotone or antitone maps is isotone, the
composition of an isotone and antitone maps (in any order) is antitone.
An isotone (antitone) bijection whose inverse is also isotone (antitone)
is called an (anti-)isomorphism.
Call ϕ : P → P expansive if ϕ (p) ≥ p, for p ∈ P and contractive dually.
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Partially ordered sets, a.k.a. posets
An order is an antisymmetric pre-order. A set with a specified order is
called a poset. If ≤ is an order, define the strict order by <:=≤ \IdP .

Any pre-order � can be factorized by � ∩ � to get an order.

If q ∈ Q ⊂ P is an upper bound for Q, call it the maximum or the
greatest element of Q (is unique, if it exists). Same for minimum or the
smallest element; we denote them by maxQ and minQ.
The exact upper bound or supremum

∨
Q of Q is minQ↑. The exact

lower bound (infimum) is defined similarly and is denoted by
∧

Q.
q =

∨
Q iff Q↑ = {q}↑ = [q), and the same for

∧
and lower bounds.

If R ⊂ Q, then
∨

R ≤
∨

Q and
∧

R ≥
∧

Q (if exist).
∨
∅ = minP and∧

∅ = maxP (if exist).

Lemma 1
Let I be an index set, and let {Qi , i ∈ I} ⊂ P (P) and {qi , i ∈ I} ⊂ P
be such that qi =

∨
Qi , for every i ∈ I. Then,

∨⋃
i∈I

Qi =
∨
i∈I

qi (with

existence of one implying existence of another).
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If maxQ exists, then
∨

Q = maxQ; otherwise
∨

Q /∈ Q. Same for
∧

and min.

We will say that p ∈ P is maximal if p ≤ q implies p = q, i.e. [p) = {p}.
Minimal elements are defined similarly.
A set can have more than one (or none) maximal / minimal elements.
Maximal / minimal elements are mutually incomparable. The greatest /
least element of a set is maximal / minimal, but the converse is false.

If p,q ∈ P denote p ∧ q :=
∧
{p,q} and p ∨ q :=

∨
{p,q} (if exist). The

partial operations ∨ and ∧ are commutative and associative, since e.g.
(p ∨ q) ∨ r =

∨
{p,q, r} = p ∨ (q ∨ r), if either LHS or RHS exist.

Theorem 1 (Szpilrajn)
Any order is the intersection of total orders.

We say that ϕ : P → R reflects order if p ≤ q ⇐ ϕ (p) ≥ ϕ (q).
Order reflecting maps are injective.
An order reflecting isotone map is called order embedding. The two
classes are closed under composition.
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Continuity and regularity
If ϕ : P → Q is isotone and R ⊂ P is such that

∨
R and

∨
ϕ (R) exist,

then
∨
ϕ (R) ≤ ϕ (

∨
R).

Say that ϕ is ∨
2
-isotone if p = q ∨ r ⇒ ϕ (p) = ϕ (q) ∨ ϕ (r). Such maps

are isotone, since p ≤ q ⇒ q = p ∨ q ⇒ ϕ (p) ≤ ϕ (p) ∨ ϕ (q) = ϕ (q).

Call ϕ ∨-isotone, if r =
∨

R ⇒ ϕ (r) =
∨
ϕ (R), for every nonempty

finite R ⊂ P, and
∨

-isotone, if the same is true for any R 6= ∅.

EXAMPLE: Let P = {a,b, c,1,2,3, ?} ordered by a,b ≤ 3, ?,
a, c ≤ 2, ? and b, c ≤ 1, ?. Let Q = {0,1} and let ϕ map ? into 1, and
everything else into 0. Such ϕ is ∨

2
-, but not ∨

3
-isotone.

The notions of ∧
2
-, ∧- and

∧
-isotone maps are defined similarly.

Additional variations are
∨
N

-isotone maps (sequences), and
∨
≥0

-isotone

maps (all sets, including ∅). Every isomorphism is
∨
≥0

- and
∧
≥0

- isotone.

All these classes are closed under composition.
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If R ⊂ Q ⊂ P, the supremums of R within Q and within P will be
denoted

∨
P R and

∨
Q R (and same for infimums).

If
∨

Q R and
∨

P R exist, then
∨

Q R ≥
∨

P R.
If
∨

P R exists and is an element of Q, then
∨

Q R =
∨

P R (in
particular, it exists).
If P = `∞, Q = c0 and R = {en}n∈N,

∨
P R exists, but R is not

bounded from above in Q.
If P = R, Q = Q and R = Q ∩ [0, π],

∨
P R exists, R is bounded

from above in Q, but
∨

Q R does not exist.

If P = F [0,1], Q = C [0,1], and R =
{

n
√

t
}

n∈N
, then

∨
Q R and∨

P R exist but are not equal.
If P = [−1,0) ∪ (0,1], Q = [−1,0) ∪ {1}, and R = [0,1), then∨

Q R exists, but
∨

P R does not.

Call Q ⊂ P
∨

-regular if r =
∨

Q R ⇒ r =
∨

P R, for every ∅ 6= R ⊂ Q.
Equivalently, the inclusion map IdQ,P : Q → P is

∨
-isotone.

If Q ⊂ P is
∨

-regular, then for q ∈ P and ∅ 6= R ⊂ Q we have
q =

∨
Q R ⇔ q =

∨
P R & q ∈ Q. Every upper set is

∨
-regular.
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Closure
Say that Q ⊂ P is

∨
-closed if ∅ 6= R ⊂ Q and r =

∨
P R implies r ∈ Q

(and so r =
∨

Q R).

Upper sets and sets Q↓ are
∨

-closed. In particular,
∨

Q↓ =
∧

Q (if
exists).

If P = C [−1,1], then Q = {f ∈ P, f (t) = f (0) , −1 ≤ t ≤ 0} is∨
-closed, but not

∨
-regular. R = {f ∈ P, f (−1) = f (1)} is

∨
-regular,

but not
∨

-closed.

Q
∧
:=
{

p ∈ P, ∃∅ 6= R ⊂ Q : p =
∧

R
}
=
{

p =
∧

[p)Q , [p)Q 6= ∅
}
.

Q is
∧

-closed iff Q = Q
∧

. Clearly, Q ⊂ Q
∧

, and Q ⊂ R ⇒ Q
∧
⊂ R

∧
.

Proposition 1

The operator Q 7→ Q
∧

is idempotent, i.e. Q
∧∧

= Q
∧

, ∀Q ⊂ P.
Q

∧
is the smallest

∧
-closed set, which contains Q.

ϕ : P → R is
∨

-isotone iff it is isotone and such that
ϕ
(
Q

∨)
⊂ ϕ (Q)

∨
, for every ∅ 6= Q ⊂ P.
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Density

We say that Q ⊂ P is
∨

-dense if P = Q
∨

, i.e. Q refines P and
p =

∨
(p]Q, for every p ∈ P.

For example, Q is
∨

-dense in R, singletons are
∨

-dense in P (X ), c0 is∨
-dense in `∞, and and the collection of affine functions on [0,1] is∨
-dense in the set of convex lower semi-continuous functions on [0,1].

Along with
∨

-regularity, closedness and density, we can define
∧

-, ∧-
etc regularity, closedness and density.

Proposition 2∧
-density implies

∨
-regularity, and

∨
-density implies

∧
-regularity.

If Q ⊂ P is
∧

-dense and
∧

-regular, and R ⊂ Q is
∧

-dense in Q,
then R is

∧
-dense in P.

Being simultaneously
∨

-dense and
∧

-dense is a transitive
relation.
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Completeness
Similarly to regularity, closedness and density, we can talk about
completeness.

A ∨-semilattice is a poset in which every pair of elements has a
supremum, hence these are ∨

2
-complete posets.

A ∨
2
-isotone map between ∨-semilattices is called a ∨-homomorphism.

A sub-semilattice of a ∨-semi-lattice is a ∨
2
-closed subset.

Any ∨-semilattice is directed. Any upper set is a ∨-semilattice. An
ideal is a directed lower set. Any ideal is a subsemilattice.
∨-semilattice is ∨-complete. ∨-homomorphism is ∨-isotone.
A maximal element of a ∨-semilattice is its greatest element.
If P is ∨-semilattice, then every full set is

∧
-regular.

Any injective ∨-homomorphism between ∨-semilattices is an order
embedding (the converse is false, affine functions in C [0,1]).
Q ⊂ P is a sub-semilattice iff it is ∨-closed iff it is ∨-regular and a
∨-semilattice in the induced order.
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A ∧-semilattice and ∧-homomorphism is defined similarly.
A poset which is simultaneously a ∨- and ∧-semilattice is called a
lattice. A lattice homomorphism is a ∨- and ∧-isotone map.
A sublattice of a lattice is a ∨- and ∧-closed set. Any intersection of
ideals / filters (=co-ideals) / sub-(semi)lattices is a set of the same type.
The set of all infinite subsets of Z is a ∨-semilattice, but not
∧-semilattice; C1 (−1,1) is neither.

Any totally ordered set is a lattice. If P is a lattice, denote its smallest
and largest elements by 0P and 1P (when they exist).

Proposition 3
A poset is

∨
≥0

-complete iff it is
∧
≥0

-complete iff it is
∨

-complete and has

the least element and iff it is
∧

-complete and has the greatest element.

We will call such posets complete lattices. Among examples of
complete lattices are [0,1], P (X ), N ∪ {∞}, N ∪ {0} with divisibility.
In a

∨
-complete poset a

∨
-closed lower set is a principal lower set of

the form (p].
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Bounded completeness
Let us relax completeness a bit. The bare minimum necessary
condition for a set to have a supremum is that it is bounded from
above. The following property is called bounded completeness.

Proposition 4 (TFAE:)
Every nonempty subset of P which is bounded from above has
supremum;
Every nonempty subset of P which is bounded from below has
infimum;
For every nonempty Q,R ⊂ P such that Q ≤ R, there is p ∈ P
such that Q ≤ p ≤ R.

A discrete order on at least two elements is a boundedly complete
non-lattice; Q is a lattice which is not boundedly complete; Z, N, R, c0,
`p, Lp are boundedly complete lattices.

If P is boundedly complete, “add” 1P and / or 0P (whatever is missing).
The result is a complete lattice.
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Proposition 5
P is boundedly complete directed and co-directed iff it is a lattice such
that the order intervals in P are complete lattices.

Proposition 6
In a boundedly complete poset every

∨
-closed set is

∨
-regular

and boundedly complete.
If Q ⊂ P is

∨
-regular, and either

∨
-complete in the induced order,

or boundedly complete and majorizing, then it is
∨

-closed.

If (X , τ) is a topological space, τ is a complete lattice, which is
⋃

- and
∩-closed in P (X ), but not necessarily

⋂
-regular.

The collection of all convex sets in Rn is
⋂

-closed in P (Rn), but not
∪-closed.

If P is a poset, then the collection P↓ (P) of all lower subsets of P
forms a complete lattice, which is

⋃
- and

⋂
-closed in P (P). P embeds

into P↓ (P) as a
⋃

-dense subset by p 7→ (p].
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Galois connections
The pair (., /) is a Galois connection from P to Q if p. ≤ q ⇔ p ≤ q/.

In other words, the epigraph of . is the converse to the hypograph of /.

Then, / is the left adjoint of ., and . is the right adjoint of /.

Note that P and Q are not in entirely symmetric roles in this
construction. (., /) is a Galois connection from P to Q iff (/, .) is a
Galois connection from −Q to −P.

The pair of mutually inverse order isomorphisms forms a Galois
connection.

If (., /) and (D,E) are Galois connections from P to Q and from Q to
R, then (.D,E/) is a Galois connection from P to R.

Some references:
M. Erné, J. Koslowski, A. Melton, G. Strecker, A primer on Galois
connections, 1993.
M. Erné, Adjunctions and Galois connections: origins, history and
development, 2004.
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Proposition 7
For . : P → Q and / : Q → P TFAE:

(., /) is a Galois connection;
/ and . are isotone, ./ is expansive, and /. is contractive;
/ and . are isotone, and there are a

∨
-dense P ′ ⊂ P, and∧

-dense Q′ ⊂ Q such that ./|P′ is expansive, and /.|Q′ is
contractive.

Proposition 8
/ . / = / and . / . = ., and hence ./ and /. are idempotent.
Q/ = P./ is majorizing and

∧
-closed and P. = Q/. is refining and∨

-closed, and the restrictions of . and / are mutually inverse.
For p, r ∈ P we have p. ≤ r. iff p./ ≤ r./ and iff p ≤ r./.
p. = min {q ∈ Q, p ≤ q/} and q/ = max {p ∈ P, p. ≤ q}. Hence,
the adjoints are unique.
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Proposition 9
For a map . : P → Q the following is true:

. has a left adjoint iff it is isotone and preserves principal lower
sets under the pre-image.
If . has a left adjoint, then it is

∨
≥0

-isotone. The converse holds if P

is a complete lattice.

We call maps with left / right adjoint residuated / residual.

If P = Q = [0,1] residuated =
∨
≥0

-isotone maps are increasing,

continuous from the left (equivalently, lower semi-continuous), which fix
0,1.
Residual =

∧
≥0

-isotone maps are increasing, continuous from the right

(equivalently, upper semi-continuous), which fix 0,1.

The places where the . “stalls” correspond to the places where /
“jumps”, and vice versa.
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If ϕ : X → Y is a relation, define ϕP : P (X )→ P (Y ) and
Pϕ : P (Y )→ P (X ) by ϕP (A) = {y ∈ Y , ∃x ∈ A : xϕy} and

Pϕ (B) = {x ∈ X : y ∈ Y , xϕy ⇒ y ∈ B} = X\ϕ∗P (Y\B)

= {x ∈ X : x 6 ϕy , ∀y ∈ Y\B} = {x ∈ X : y ∈ Y , ϕP ({x}) ⊂ B} ,

for A ⊂ X and B ⊂ Y .

If ϕ is a map, then ϕP (A) = ϕ (A) and Pϕ (B) = ϕ−1 (B), for for A ⊂ X
and B ⊂ Y .

Note that ϕ 7→ ϕP and ϕ 7→P ϕ preserves / reverses compositions.

If ϕ : is a pre-order, ϕP (A) = [A), and Pϕ (A) = {x , [x) ⊂ A}.

Proposition 10
The collection of all relations from X to Y (ordered by inclusion) is
isomorphic to the collection of all residuated maps from P (X ) into
P (Y ). The isomorphism is implemented by ϕ 7→ ϕP and
. 7→ {(x , y) ∈ X × Y , y ∈ {x}.}. Compositions of relations correspond
to compositions of Galois connections.
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Polarities
We will call (., /) a (co)polarity between P and Q if it is a Galois
connection from P to −Q (from −P to Q).

That is, (., /) a polarity if for p ∈ P and q ∈ P we have q ≤ p. ⇔
p ≤ q/, equivalently both . and / are antitone, and both ./ and /. are
expansive. In these configurations P and Q are in symmetric roles.

A composition of a Galois connection and a polarity is a polarity. In
particular, this works for self-anti-isomorphisms.

Corollary 1
If X and Y are sets, then the general form of a polarity from P (X ) to
P (Y ) is A 7→ A⊥, and B 7→ B⊥, where ⊥ : X → Y is a relation, and for
A ⊂ X, B ⊂ Y we have A⊥ = {y ∈ Y , ∀x ∈ A : x⊥y} and
B⊥ = {x ∈ X , ∀y ∈ B : x⊥y} (we will call such sets polars of ⊥).

• For an order ≤ on P the polars are A≤ = A↑ and A≤ = A↓.

• If P is a poset with the smallest element 0P , define disjointness ⊥ on
P by p⊥q if p ∧ q = 0P . The polars are disjoint complements.
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• For the usual orthogonality in a vector space with an inner product
we have that A⊥ = A⊥ is the orthogonal complement of A ⊂ E .
More generally, if E and F are vector spaces in duality, define e⊥f if
〈e, f 〉 = 0, where e ∈ E and f ∈ F . In this case, A⊥ and B⊥ are the
annihilators of A ⊂ E and B ⊂ F .

• If G is a semigroup that acts on a set X , define the stability /
invariance relation ⊥ : G→ X by g⊥x if gx = x . For A ⊂ G, A⊥ is the
stabilizer of A, and is a sub-semi-group of G. For F ⊂ G, F⊥ is the
collection of common fixed points of F .

• Let P := F (E , [−∞,+∞]) and Q := F (E∗, [−∞,+∞]), where E is a
locally convex space. Define the Legendre transform by

f . (e∗) =
∨
e∈E

(〈e∗,e〉 − f (e)) and g/ (e) =
∨

e∗∈E∗
(〈e∗,e〉 − g (e)) .

f . =
∨

e∈E
(e − f (e)), and g/ =

∨
e∗∈E∗

(e∗ − g (e∗)), if we view e as a

function on E∗, hence f . and g/ are both convex.

(., /) is a copolarity since both f . ≤ g and f ≥ g/ are equivalent to
〈e∗,e〉 − f (e) ≤ g (e), for all e ∈ E and e∗ ∈ E∗ (i.e. 〈·, ?〉 ≤ f ⊕ g).
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Hulls

Let P be a poset. Fix a map M: P → P.

Call M a pre-hull if it is isotone and expansive. We then call p ∈ P
hulled if p = pM. Let PM be the collection of all M-hulled elements of P.

Proposition 11
If M is a pre-hull on P, then PM is

∧
≥0

-closed (in particular, if P has

the greatest element 1P , then 1P ∈ PM).
The correspondence M 7→ PM is antitone from the collection of all
pre-hulls on P into P (P).

A hull is an idempotent pre-hull. In this case p is hulled iff it is in the
image PM of M; hence, PM = PM. PM is always majorating.

IdP is a hull on P. If there is 1P , then p 7→ 1P is a hull on P.

For P = R the upper integer part p 7→ dpe is a hull.
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A (pre-)hull operator on a set X is a (pre-)hull on P (X ).

The adherence / closure with respect to any convergence structure on
X is a pre-hull / hull operator.

Order adherence on a poset, sequential weak adherence on a Banach
space are examples of non-idempotent pre-hull operators.

If P is a pre-ordered set Q 7→ (Q] is a hull operator on P.

Q 7→ Q
∨

and other similar closures are hull operators on P.

Some references:

M. Erné, Closure, 2009.
I. Singer, Abstract Convex Analysis, 1997.
M.L.J. van de Vel, Theory of Convex Structures, 1993.
Á. Császár, Generalized open sets, 1997 [a parallel development,
in which an attempt was made to work with hulled sets as with
closed sets and get some results of topological nature, see also
forward citations].
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Hulls vs Galois connections vs polarities
Corollary 2
If (., /) is a polarity between P and Q, then ./ and /. are hulls on P
and Q, respectively.

Every ⊥ : X → Y generates hulls on both P (X ) and P (Y ): A 7→ A⊥⊥,
for A ⊂ X , and B 7→ B ⊥⊥ , for B ⊂ Y . The hulled elements are polars.

• Let X ,Y be sets, let Z ⊂ Y , and let F ⊂ F (X ,Y ). Consider the
relation ⊥ : F → X defined by f⊥x if f (x) ∈ Z .

• Let X be a locally convex space, Y = C and F = X ∗. If Z = {0}, we
get the annihilators as polars, hence closed linear span as hull.
If Z = D, we get the standard polarity from the locally convex theory,
hence closed absolute convex hulls as hulls.

• If Y = R, F is the collection of affine or convex functions and
Z = (−∞,0], we get closed convex hulls as hulls.

• Let X = Cn. Take Y = C and F = polynomials, or Y = R and F =
pluri-sub-harmonic functions to get some hulls from Complex Analysis.
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• Let X = Cn, Y = C, F = polynomials, and Z = {0}. Then, the hull
operator on X corresponds to the Zariski topology.

• If X – spectrum of a Banach algebra A, F = A, and Z = {0}, the hull
operator on X corresponds to the hull-kernel topology.

Other polarities:

• If E is a vector lattice, then the disjointness ⊥ generates a hull
operator A 7→ A⊥⊥.

• If P is a poset, then Q 7→ Q↑↓ is a hull operator. The hulled sets are
of the form Q↓. Call them cuts, and denote the collection of all cuts by
P↑↓ (P).

Proposition 12
Let M and O be respectively a hull and a kernel on P. Then, (M,O) is a
Galois connection from PO to PM. In particular, M O and O M are
idempotent, and M,O are isomorphisms between PMO to POM.

Examples: regularly closed / open sets and normally lower / upper
semi-continuous functions. Latter appear in order completion of C (X ).
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Proposition 13
A map M: P → P is a hull iff

(
M, IdPM,P

)
is a Galois connection.

Corollary 3
Any hull is

∨
-isotone. The image of a hull is majorating,

∧
-regular and∧

-closed.
If M is a hull on P, and r =

∨
P R, for some R ⊂ PM, then rM =

∨
PM R.

Let P be a complete lattice. For R ⊂ P let pMR :=
∧
[p)R.

Proposition 14

MR is a hull, PMR = R
∧

is a complete lattice. If Q ⊂ R, then MQ≥MR.

Examples: If P = P (Rn), R – closed convex sets, or just closed
half-spaces, then MR is the closed convex hull.

F – vector lattice, P = P (F ), R = (prime) ideals, then MR (A) = I (A).
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Proposition 15
R 7→MR and M 7→ PM is a polarity between P (P) and the collection of
all pre-hulls on P. We have PMR = R

∧
and MPM=Mn, for sufficiently

large ordinal n.

Let X be a topological space and P = F (X , [−∞,+∞]). If R is the set
of continuous functions, then we get upper semi-continuous hull.

Assume that X is locally convex and f 7→ f . and f 7→ f / is the Legendre
transform. Then, ./ is a kernel (i.e. a hull on −P). Also, ./ = OR,
where R is the collection of all convex (or affine) upper
semi-continuous functions.

A hull structure on X is a
⋂

-closed subset of P (X ).

Topologically closed, solid, convex sets, ideals of rings, lattices and
vector lattices, sublattices, subgroups, lower subsets in a poset, ......

Kuratowski: A hull operator is a closure with respect to some topology
iff it is ∪-isotone. However, such hulls are almost never

⋃
-isotone.
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Algebraic hull operators
A hull operator on X is called algebraic if AM =

⋃
{BM, B ⊂ A – finite},

for every A ⊂ X . Moreover, we will call it n-algebraic, for n ∈ N, if
AM =

⋃
x1,...,xn∈A

{x1, ..., xn}M, for every A ⊂ X .

Caratheodory: convex sets on Rn form a n + 1-algebraic hull structure.

Solid sets, ideals of rings and vector lattices form 1-algebraic hull
structures.

Full sets on a poset form a 2-algebraic hull structure.

Closed convex sets is neither a topological nor algebraic hull structure.

(Algebraic / topological) hull structures form a hull structure on P (X ).

If Q is a hull structure on X , then QM := {A ⊂ X , BM, B ⊂ A – finite} is
the algebraic hull of Q.

Let M and N be hull operators on X and Y . Then, ϕ : X → Y is
continuous if pre-images of N-hulled sets are M-hulled. Equivalently,
ϕ (AM) ⊂ ϕ (A)N, for everyA ⊂ X .
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Examples from vector lattice theory: A linear map between
Archimedean VL’s is disjointness-preserving iff it is solid-continuous. A
homomorphism is order continuous iff it is band-continuous.

PROJECT: A homomorphism of VL’s induce homomorphisms between
the lattices of all ideals (forward and backward). Same for order
continuous homomorphisms and bands. What information can be
recovered? What information about VL is contained in its ideal lattice?

Proposition 16
Let PM be the set of all M-hulled sets. TFAE:

The hull is algebraic;
If A ⊂ X is such that BM ⊂ A, for every finite B ⊂ A, then A ∈ PM;
PM is ↑-closed, i.e. if (Ai)i∈I ⊂ PM is increasing, then

⋃
i∈I

Ai ∈ PM;

M is ↑-isotone, i.e. For every increasing net (Ai)i∈I ⊂ P (X ) we

have

(⋃
i∈I

Ai

)M

=
⋃
i∈I

AM
i .
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1-algebraic hull structures
1-algebraic hull operators = algebraic & topological hull operators.

In the proposition we can also replace “↑” with “
⋃

”, and “finite” with ”1”.
No analogue for 2-algebraic hulls (convex sets).

If ≤ is a pre-order on X , then upper sets in (X ,≤) form a topology τ≤
with the property that any intersection of open sets is open. This
property is called Alexandrov discreteness. Isotone maps =
continuous.

Conversely, given a hull operator M on X define x ≤M y if x ∈ {y}M.
This is a pre-order. Continuous maps are isotone.

Then, ≤τ≤=≤, and each M-hulled set is τ≤M-closed. Thus, M 7→≤M is
the right adjoint to ≤7→ τ≤. In fact, τ≤M is the 1-algebraic hull of M.

1-algebraic hull operators = closures in Alexandrov-discrete topologies
= lower set hulls with respect to pre-orders on X .

If M,N are (1-) algebraic hull operators on X ,Y . Then, ϕ : X → Y is
continuous iff ϕ(AM) ⊂ ϕ(A)M, for any finite (singleton) A ⊂ X .
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MacNeille completion
The collection P↓ (P) of all lower sets on a poset P is a complete
lattice, such that p 7→ (p] is a an embedding whose image R is∨

-dense. Then, R
∧
= P↑↓ (P) – the collection of all cuts on P, i.e. sets

of the form Q↓.
R is

∧
-dense in P↑↓ (P).

P↑↓ (P) is a complete lattice which verifies the universal property
for isotone maps and order embeddings from P into complete
lattices, BUT in a non-unique way.
Nevertheless, even this weak universal property for order
embeddings determines P↑↓ (P) up to an isomorphism.
Even though the embedding of P into P↑↓ (P) is

∨
≥0

-isotone,

P↑↓ (P) does NOT verify the universal property for
∨
≥0

-isotone

maps from P into complete lattices.

The collection of all
∨

-closed lower subsets of P verifies the universal
property for

∨
≥0

-isotone maps from P into complete lattices.
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Distributivity
Let P be a lattice.

P is distributive if p ∧ (q ∨ r) = (p ∧ q) ∨ (p ∧ r), for any p,q, r ∈ P, i.e.
q 7→ p ∧ q is ∨-isotone. Note that the inequality ≥ is always satisfied.

P is distributive iff −P is distributive, i.e. q 7→ p ∨ q is ∧-isotone.
Another equivalent condition is r ≤ p ∨ q implies existence of
p′ ≤ p and q′ ≤ q with r = p′ ∨ q′. In other words,
(p ∨ q] = (p] ∨ (q], for every p,q ∈ P (and dually).
Yet another one: for any p,q, r ∈ P we have
(p ∨ q) ∧ (q ∨ r) ∧ (r ∨ p) = (p ∧ q) ∨ (q ∧ r) ∨ (r ∧ p).
P is distributive iff it does NOT contain non-distributive sublattices
with 5 elements (can be specified further).

A sublattice of a distributive lattice is distributive.

Any totally ordered set is a distributive lattice. P (X ) is distributive.

Subspaces of a vector space or sublattices of a lattice form
non-distributive complete lattices.
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Theorem 2 (Stone representation theorem)
P is distributive iff it isomorphic to a sublattice of P (X ).

We will say that P is
∨

-distributive, if q 7→ p ∧ q is
∨

-isotone. In this
case

∨
Q ∧

∨
R =

∨
q∈Q, r∈R

p ∧ q, for any Q,R ⊂ P with supremums.

Any vector lattice is
∨

- and
∧

-distributive.

A
∨

-regular sublattice of a
∨

-distributive lattice is
∨

-distributive.

If τ is a topology on X , it is
∨

-distributive, but not always
∧

-distributive.

Denote the set of all ideals (= ∨-closed lower sets) of P by JP .

Proposition 17 (Let P be distributive. Then:)
JP is a

∨
-distributive lattice. It is complete iff P has the least

element. Otherwise, JP ∪ {∅} is complete.
J ∨JP H = J ∨ H := {j ∨ h, j ∈ J, h ∈ H}, for any J,H ∈ JP .
If I ⊂ JP , then

∨
JP
I =

∨
I := {j1 ∨ ... ∨ jn, jk ∈ Jk ∈ I} and∧

JP
I =

⋂
I. In particular, JP ∪ {∅} is

⋂
-closed in P (P).
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Boolean algebras
Let P be a lattice with 0P . Disjointness: p⊥q if p ∧ q = 0P .

P is called a Boolean algebra if it is distributive, there is 1P , and for
every p ∈ P there is p∗ such that p∗⊥p and p∗⊥−Pp, i.e. p ∨ p∗ = 1P .

Every Boolean algebra is
∨

- and
∧

-distributive.

A map between BA’s is a Boolean homomorphism if it preserves
Boolean operations (including 0-nary operations 0 and 1).

(σ-)algebras of sets from measure theory are precisely (
∨

n∈N
-closed)

subalgebras of P (X ). Clop(X ) is a subalgebra of P (X ).

A Boolean algebra is (σ-)complete if it is
∨

-complete (or
∨

n∈N
-).

Theorem 3 (Stone Representation theorem)
For any Boolean algebra P there is a unique totally disconnected
compact Hausdorff space X such that Clop(X ) ' P. Hence, any BA is
isomorphic to an algebra of sets. Homomorphisms between BA’s
correspond to continuous maps of these space via pre-image.
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P is (σ-)complete iff its Stone space is extremally (basically)
disconnected, i.e. the closure of an open (Fσ) set is open.
MacNeille completion of a BA is a BA (not true for distributive).
A homomorphism between BA’s is

∨
-isotone iff the corresponding

Stone map preserves sets with nonempty interior (almost open).
(Loomis-Sikorsky) Any σ-complete BA is isomorphic to a factor of
a σ-algebra of sets over a

∨
n∈N

-closed ideal.

Q ⊂ P is
∨
≥0

-dense iff Q\ {0P} is refining, i.e. (p]Q 6= ∅, for p > 0P .

Isomorphisms of categories:
Boolean Algebras; • Compact totally disconnected spaces;
Hyperarchimedean (=every principal ideal is a projection band)
vector lattices with selected strong units and unit-preserving
homomorphisms.

Complete Boolean Algebras and
∨

-isotone homomorphisms;
Extremally disconnected spaces and almost open maps;
Universally complete vector lattices with selected weak units and
unit-preserving order continuous homomorphisms.
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Theorem 4 (Funayama)
P is

∨
- and

∧
-distributive iff it is isomorphic to a

∨
- and

∧
-regular

sublattice of a Boolean Algebra.

0P 6= p ∈ P is an atom iff (p] = {0P ,p}. P is atomless if there are no
atoms, and atomic if the set of atoms is

∨
≥0

-dense.

Atoms correspond to the isolated points of the Stone space of a BA.
Atomless = no isolated point. Atomic = isolated points are dense.

If P is an atomic BA, then Pδ = P (Pa), where Pa – atoms of P.

There is a unique countable atomless BA. Its Stone space is the
Cantor space.

The set of fragments (=components) of any element of a VL is a BA.

For example, if K is totally disconnected, the characteristic functions of
clopen sets form

∨
- and

∧
-closed and regular subset of C (K ).

Positive disjoint sets in a VL represent embedding of the Boolean ring
(“local Boolean algebra”) of finite sets.
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Proposition 18
If P is a distributive lattice with 0P and 1P , then the set Pc of all
complemented elements in P is a Boolean algebra, which is a
sublattice of P, that contains 0P ,1P . In particular, (p ∧ q)∗ = p∗ ∨ q∗

and (p ∨ q)∗ = p∗ ∧ q∗, for every p,q ∈ Pc .

The pseudo-complement of p is p∗ := max {p}⊥ (if exists).

Theorem 5 (Glivenko Theorem)
Let P be a complete

∨
-distributive lattice. Then:

p∗ exists for every p ∈ P, (∗, ∗) is a polarity from P to P, and
p 7→ p∗∗ is a hull on P.
P∗ = {p∗, p ∈ P} = {p ∈ P, p = p∗∗} is a complete Boolean
algebra, which is also

∧
≥0

-closed in P.

p ∨P∗ q = (p∗ ∧ q∗)∗ = (p ∨ q)∗∗, for every p,q ∈ P∗; we also have
(p ∧ q)∗ = (p∗∗ ∧ q)∗ and (p ∧ q)∗∗ = p∗∗ ∧ q∗∗, for every p,q ∈ P.

For example, regularly open sets form a complete Boolean algebra.
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Let F be a VL. Then, I ⊂ F is an ideal of F iff I+ is an ideal in F+, with
2I+ ⊂ I+ and I = {f , |f | ∈ I+}.
If E and H are ideals, then E ∩ H = {0F} ⇔ e⊥h, for all e ∈ E , h ∈ H;

also E ∨IF H = E + H. If J ⊂ IF , then∨
IF
J =+J = {f1 + ...+ fn, fk ∈ Ek ∈ J } .

I 7→ I+ is
∨

- and
∧

-isotone order embedding from IF into JF+ . Hence,
IF is

∨
-distributive.

Corollary 4
If F is Archimedean, then bands are the pseudo-complemented
elements of IF ; they form a Boolean algebra, which is a

⋂
-closed

subset of IF . Projection bands are the complemented elements of IF ;
they form a Boolean algebra, which is a sublattice of IF .

Theorem 6 (B.)
H ∈ IF is a PB iff H +

⋂
J =

⋂
{H + E , E ∈ J }, for any J ⊂ IF .
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Ordered vector spaces
An order ≤ on a vector space E is linear if e 7→ e + h and e 7→ λe are
isotone, for every h ∈ E and λ > 0. E is directed iff E+ − E+ = E .

E is Archimedean if
∧

n∈N

1
n e = 0E , for every e ≥ 0E .

∅ 6= A  E is called a Dedekind cut iff A = A↑↓.

A is called a Frink ideal if B↑↓ ⊂ A, for every finite B ⊂ A. A linear
T : E → F between VL’s is a homomorphism iff it is Frink-continuous.

Theorem 7 (Dedekind completion)
For every directed Archimedean vector space E there is an (essentially
unique) OVS Eδ and a linear order embedding j : E → Eδ such that:

Eδ is a boundedly complete vector lattice;
jE is

∨
- and

∧
-dense in Eδ;

Eδ verifies the universal property for boundedly complete vector
lattices and: • Frink-continuous linear maps;
Positive operators; •

∨
-isotone linear maps.
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Sketch of the proof for Dedekind completion

Fact: If A ⊂ E is bounded from above, then
∧(

A↑ − A
)
= 0E .

Lemma: If a cone is a group, then it is a vector space.

Every Dedkind cut is convex and bounded from above in E ;
Eδ is directed upward and downward;
Addition is associative;
0Eδ := −E+ = (0E ] = {0E}↓ is the neutral element for addition.
Hint: If A is a Dedekind cut, then A− E+ = A;
Additive inversion is given by −A↑. Hint: use the fact;
If λ > 0, and A ⊂ E , then λA↑↓ = (λA)↑↓;
Show that positive scalar multiplication defined this way turns E
into a cone; then use the Lemma;
The order on Eδ is a linear order.
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If F ⊂ E is a subspace, such that F+ is refining in E+ (i.e. for every
f > 0F there is e ∈ E ∩ (0F , f ]), then F is

∨
-dense.

In general, even though E is
∨

-dense in Eδ, it is not always true that
E+ is refining in Eδ

+.

Theorem 8 (B., Deng, Kalauch, Malinowski, van Gaans)
For a directed Archimedean OVS TFAE:

For every e 6≤ 0 there is f > 0 such that g ≥ e,0⇒ g ≥ f ;
For every e, f ∈ E such that {e, f}↑  E+ there is g > 0F such that
{e, f}↑ ⊂ [g);
If e, f ∈ E+ with e 6≤ f then there is g > f such that {e, f}↑ ⊂ [g);
E+ is refining in Eδ

+;
E+ is ↑-dense in Eδ

+;
E embeds into a vector lattice with E+ refining in F+;(
Eδ
)
+
∪ {+∞} is the MacNeille completion of E+.

Examples: spaces of smooth functions.
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More references
Distributivity:

G. Grätzer, Lattice theory; Foundation, 2010.
R. Balbes & P. Dwinger, Distributive Lattices, 1974.
J. Picado, A. Pultr, Frames and Locales. Topology without points,
2012.

Boolean algebras:

S. Koppelberg, General theory of Boolean algebras in Handbook
of Boolean algebras, 1989.
R. Sikorski, Boolean algebras, 1969.
D.A. Vladimirov, Boolean Algebras in Analysis, 2002.

Ordered vector spaces:

A. Kalauch & O. van Gaans, Pre-Riesz Spaces, 2019.
C.D. Aliprantis & R. Tourky, Cones and duality, 2007.
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