Disjointly non-singular operators and dispersed subspaces

Eugene Bilokopytov

UofA and PIMS

24th of May, 2024

Eugene Bilokopytov (University of Alberta)

This talk is a partial survey of the following sources:

- González, Martínez-Abejón, Martinón, Dijointly non-singular operators on Banach lattices, 2021.
- Bilokopytov, Disjointly non-singular operators on order continuous Banach lattices complement the unbounded norm topology, 2022.
- Freeman, Oikhberg, Pineau, Taylor, *Stable phase retrieval in function spaces*, 2023.
- González, Martinón, Disjointly non-singular operators; Extensions and local variations, 2024.
- Bilokopytov, work in progress.

This talk is a partial survey of the following sources:

- González, Martínez-Abejón, Martinón, *Dijointly non-singular* operators on Banach lattices, 2021.
- Bilokopytov, Disjointly non-singular operators on order continuous Banach lattices complement the unbounded norm topology, 2022.
- Freeman, Oikhberg, Pineau, Taylor, *Stable phase retrieval in function spaces*, 2023.
- González, Martinón, *Disjointly non-singular operators; Extensions and local variations*, 2024.
- Bilokopytov, work in progress.

Other sources:

- Flores, Hernández, Tradacete, *Strict Singularity; A Lattice Approach*, 2019.
- González, Martinón, A quantitative approach to disjointly non-singular operators, 2021.

Let *E*, *F* be Banach spaces.

Let *E*, *F* be Banach spaces.

If $S \in \mathcal{L}(E, F)$ define a semi-norm ρ_S on E by $\rho_S(e) = ||Se||$.

Let E, F be Banach spaces.

If $S \in \mathcal{L}(E, F)$ define a semi-norm ρ_S on E by $\rho_S(e) = \|Se\|$.

 $S \in \mathcal{L}(E, F)$ is called *strictly singular (SS)*, if no restriction of S on a subspace of infinite dimension is bounded from below (never bounded from below).

Let E, F be Banach spaces.

If $S \in \mathcal{L}(E, F)$ define a semi-norm ρ_S on E by $\rho_S(e) = \|Se\|$.

 $S \in \mathcal{L}(E, F)$ is called *strictly singular (SS)*, if no restriction of S on a subspace of infinite dimension is bounded from below (never bounded from below).

This condition is equivalent to:

Let E, F be Banach spaces.

If $S \in \mathcal{L}(E, F)$ define a semi-norm ρ_S on E by $\rho_S(e) = \|Se\|$.

 $S \in \mathcal{L}(E, F)$ is called *strictly singular (SS)*, if no restriction of S on a subspace of infinite dimension is bounded from below (never bounded from below).

This condition is equivalent to:

If *H* ⊂ *E* has dim *H* = ∞, then *H* contains *G* ⊂ *H* with dim *G* = ∞ such that *S*|_{*G*} is compact (almost compact).

Let E, F be Banach spaces.

If $S \in \mathcal{L}(E, F)$ define a semi-norm ρ_S on E by $\rho_S(e) = \|Se\|$.

 $S \in \mathcal{L}(E, F)$ is called *strictly singular (SS)*, if no restriction of S on a subspace of infinite dimension is bounded from below (never bounded from below).

This condition is equivalent to:

- If $H \subset E$ has dim $H = \infty$, then H contains $G \subset H$ with dim $G = \infty$ such that $S|_G$ is compact (almost compact).
- If *H* ⊂ *E* has dim *H* = ∞, then there is a normalized *ρ*_S-null basic sequence in *H* (no respect for basic sequences).

Let E, F be Banach spaces.

If $S \in \mathcal{L}(E, F)$ define a semi-norm ρ_S on E by $\rho_S(e) = \|Se\|$.

 $S \in \mathcal{L}(E, F)$ is called *strictly singular (SS)*, if no restriction of S on a subspace of infinite dimension is bounded from below (never bounded from below).

This condition is equivalent to:

- If $H \subset E$ has dim $H = \infty$, then H contains $G \subset H$ with dim $G = \infty$ such that $S|_G$ is compact (almost compact).
- If *H* ⊂ *E* has dim *H* = ∞, then there is a normalized *ρ*_S-null basic sequence in *H* (no respect for basic sequences).

The set of SS operators is a closed subspace of $\mathcal{L}(E, F)$.

Let E, F be Banach spaces.

If $S \in \mathcal{L}(E, F)$ define a semi-norm ρ_S on E by $\rho_S(e) = \|Se\|$.

 $S \in \mathcal{L}(E, F)$ is called *strictly singular (SS)*, if no restriction of S on a subspace of infinite dimension is bounded from below (never bounded from below).

This condition is equivalent to:

- If $H \subset E$ has dim $H = \infty$, then H contains $G \subset H$ with dim $G = \infty$ such that $S|_G$ is compact (almost compact).
- If *H* ⊂ *E* has dim *H* = ∞, then there is a normalized *ρ*_S-null basic sequence in *H* (no respect for basic sequences).

The set of SS operators is a closed subspace of $\mathcal{L}(E, F)$.

Example: Inclusion of l^p into l^q , when $1 \le p < q$ is SS but not compact.

Theorem 1 (TFAE:)

• T is USF;

- T is USF;
- There is H ⊂ E of finite co-dimension, such that T|_H is bounded from below (almost bounded from below);

- T is USF;
- There is H ⊂ E of finite co-dimension, such that T|_H is bounded from below (almost bounded from below);
- No restriction of T to an infinitely dimensional subspace is compact (never compact);

- T is USF;
- There is H ⊂ E of finite co-dimension, such that T|_H is bounded from below (almost bounded from below);
- No restriction of T to an infinitely dimensional subspace is compact (never compact);
- No normalized basic sequence is ρ_T-null (respects basic sequences);

- T is USF;
- There is H ⊂ E of finite co-dimension, such that T|_H is bounded from below (almost bounded from below);
- No restriction of T to an infinitely dimensional subspace is compact (never compact);
- No normalized basic sequence is ρ_T-null (respects basic sequences);
- If (e_n)_{n∈ℕ} is basic, then there is m ∈ ℕ such that T is bounded from below on span {e_n}_{n≥m};

- T is USF;
- There is H ⊂ E of finite co-dimension, such that T|_H is bounded from below (almost bounded from below);
- No restriction of T to an infinitely dimensional subspace is compact (never compact);
- No normalized basic sequence is ρ_T-null (respects basic sequences);
- If (e_n)_{n∈ℕ} is basic, then there is m ∈ ℕ such that T is bounded from below on span {e_n}_{n>m};
- $T \neq 0$ and $T|_{B_E}$ is closed, i.e. T(A) is closed, for every closed $A \subset B_E$.

Theorem 1 (TFAE:)

- T is USF;
- There is H ⊂ E of finite co-dimension, such that T|_H is bounded from below (almost bounded from below);
- No restriction of T to an infinitely dimensional subspace is compact (never compact);
- No normalized basic sequence is ρ_T-null (respects basic sequences);
- If (e_n)_{n∈ℕ} is basic, then there is m ∈ ℕ such that T is bounded from below on span {e_n}_{n>m};
- $T \neq 0$ and $T|_{B_E}$ is closed, i.e. T(A) is closed, for every closed $A \subset B_E$.

The set of USF operators is open in $\mathcal{L}(E, F)$.

Let *F* be a Banach lattice and let *E* be a Banach space.

Let F be a Banach lattice and let E be a Banach space.

Let F be a Banach lattice and let E be a Banach space.

(Hernández, Rodríguez-Salinas, 1989) $S \in \mathcal{L}(F, E)$ is called *disjointly strictly singular (DSS)* if *S* is not bounded from below on $\overline{\text{span}} \{f_n\}_{n \in \mathbb{N}}$, for any disjoint $\{f_n\}_{n \in \mathbb{N}} \subset F$.

 These restrictions are in fact SS; it is enough to demand the restrictions to be SS only for positive disjoint {*f_n*}_{*n*∈ℕ}.

Let F be a Banach lattice and let E be a Banach space.

- These restrictions are in fact SS; it is enough to demand the restrictions to be SS only for positive disjoint {*f_n*}_{*n*∈ℕ}.
- Equivalently, for every disjoint {*f_n*}_{*n*∈ℕ} there are disjoint normalized {*h_n*}_{*n*∈ℕ} ⊂ span {*f_n*}_{*n*∈ℕ} which are *ρ_S*-null (no respect for disjoint sequences).

Let F be a Banach lattice and let E be a Banach space.

- These restrictions are in fact SS; it is enough to demand the restrictions to be SS only for positive disjoint {*f_n*}_{*n*∈ℕ}.
- Equivalently, for every disjoint {*f_n*}_{*n*∈ℕ} there are disjoint normalized {*h_n*}_{*n*∈ℕ} ⊂ span {*f_n*}_{*n*∈ℕ} which are *ρ_S*-null (no respect for disjoint sequences).
- The set of DSS operators is a closed subspace of $\mathcal{L}(F, E)$.

Let F be a Banach lattice and let E be a Banach space.

- These restrictions are in fact SS; it is enough to demand the restrictions to be SS only for positive disjoint {*f_n*}_{*n*∈ℕ}.
- Equivalently, for every disjoint {*f_n*}_{*n*∈ℕ} there are disjoint normalized {*h_n*}_{*n*∈ℕ} ⊂ span {*f_n*}_{*n*∈ℕ} which are *ρ_S*-null (no respect for disjoint sequences).
- The set of DSS operators is a closed subspace of $\mathcal{L}(F, E)$.
- (**Open**) can we confine to positive disjoint $\{f_n\}_{n \in \mathbb{N}}$ in the definition?

Let F be a Banach lattice and let E be a Banach space.

(Hernández, Rodríguez-Salinas, 1989) $S \in \mathcal{L}(F, E)$ is called *disjointly strictly singular (DSS)* if *S* is not bounded from below on $\overline{\text{span}} \{f_n\}_{n \in \mathbb{N}}$, for any disjoint $\{f_n\}_{n \in \mathbb{N}} \subset F$.

- These restrictions are in fact SS; it is enough to demand the restrictions to be SS only for positive disjoint {*f_n*}_{*n*∈ℕ}.
- Equivalently, for every disjoint {*f_n*}_{*n*∈ℕ} there are disjoint normalized {*h_n*}_{*n*∈ℕ} ⊂ span {*f_n*}_{*n*∈ℕ} which are *ρ_S*-null (no respect for disjoint sequences).
- The set of DSS operators is a closed subspace of $\mathcal{L}(F, E)$.
- (**Open**) can we confine to positive disjoint $\{f_n\}_{n \in \mathbb{N}}$ in the definition?

Example: Inclusion of L^q into L^p , when $1 \le p < q$ is DSS but not SS.

A subspace $H \subset F$ is called *dispersed* if $d(f_n, H) \not\rightarrow 0$, for any normalized disjoint $(f_n)_{n \in \mathbb{N}} \subset F$.

A subspace $H \subset F$ is called *dispersed* if $d(f_n, H) \not\rightarrow 0$, for any normalized disjoint $(f_n)_{n \in \mathbb{N}} \subset F$.

Theorem 2 (González, Martínez-Abejón, Martinón, 2020)

A subspace $H \subset F$ is called *dispersed* if $d(f_n, H) \not\rightarrow 0$, for any normalized disjoint $(f_n)_{n \in \mathbb{N}} \subset F$.

Theorem 2 (González, Martínez-Abejón, Martinón, 2020)

If $S, T \in \mathcal{L}(F, E)$, then S is DSS iff S is only bounded from below on dispersed subspaces (never^{*} bounded from below).

A subspace $H \subset F$ is called *dispersed* if $d(f_n, H) \not\rightarrow 0$, for any normalized disjoint $(f_n)_{n \in \mathbb{N}} \subset F$.

Theorem 2 (González, Martínez-Abejón, Martinón, 2020)

If $S, T \in \mathcal{L}(F, E)$, then S is DSS iff S is only bounded from below on dispersed subspaces (never* bounded from below). Moreover, TFAE:

• T is DNS;

A subspace $H \subset F$ is called *dispersed* if $d(f_n, H) \not\rightarrow 0$, for any normalized disjoint $(f_n)_{n \in \mathbb{N}} \subset F$.

Theorem 2 (González, Martínez-Abejón, Martinón, 2020)

If $S, T \in \mathcal{L}(F, E)$, then S is DSS iff S is only bounded from below on dispersed subspaces (never* bounded from below). Moreover, TFAE:

• T is DNS;

• *T* is USF on $\overline{\text{span}} \{f_n\}_{n \in \mathbb{N}}$, for any (positive) disjoint $\{f_n\}_{n \in \mathbb{N}} \subset F$;

A subspace $H \subset F$ is called *dispersed* if $d(f_n, H) \not\rightarrow 0$, for any normalized disjoint $(f_n)_{n \in \mathbb{N}} \subset F$.

Theorem 2 (González, Martínez-Abejón, Martinón, 2020)

If $S, T \in \mathcal{L}(F, E)$, then S is DSS iff S is only bounded from below on dispersed subspaces (never* bounded from below). Moreover, TFAE:

- T is DNS;
- *T* is USF on $\overline{\text{span}} \{f_n\}_{n \in \mathbb{N}}$, for any (positive) disjoint $\{f_n\}_{n \in \mathbb{N}} \subset F$;
- No normalized disjoint sequence is ρ_T-null (respects disjoint sequences);
$T \in \mathcal{L}(F, E)$ is called *disjointly non-singular (DNS)* if *T* is not SS on $\overline{\text{span}} \{f_n\}_{n \in \mathbb{N}}$, for any disjoint $\{f_n\}_{n \in \mathbb{N}} \subset F$.

A subspace $H \subset F$ is called *dispersed* if $d(f_n, H) \not\rightarrow 0$, for any normalized disjoint $(f_n)_{n \in \mathbb{N}} \subset F$.

Theorem 2 (González, Martínez-Abejón, Martinón, 2020)

If $S, T \in \mathcal{L}(F, E)$, then S is DSS iff S is only bounded from below on dispersed subspaces (never* bounded from below). Moreover, TFAE:

- T is DNS;
- *T* is USF on $\overline{\text{span}} \{f_n\}_{n \in \mathbb{N}}$, for any (positive) disjoint $\{f_n\}_{n \in \mathbb{N}} \subset F$;
- No normalized disjoint sequence is ρ_T-null (respects disjoint sequences);
- No restriction of T to a non-dispersed subspace is compact (never* compact).

 $T \in \mathcal{L}(F, E)$ is called *disjointly non-singular (DNS)* if *T* is not SS on $\overline{\text{span}} \{f_n\}_{n \in \mathbb{N}}$, for any disjoint $\{f_n\}_{n \in \mathbb{N}} \subset F$.

A subspace $H \subset F$ is called *dispersed* if $d(f_n, H) \not\rightarrow 0$, for any normalized disjoint $(f_n)_{n \in \mathbb{N}} \subset F$.

Theorem 2 (González, Martínez-Abejón, Martinón, 2020)

If $S, T \in \mathcal{L}(F, E)$, then S is DSS iff S is only bounded from below on dispersed subspaces (never* bounded from below). Moreover, TFAE:

- T is DNS;
- *T* is USF on $\overline{\text{span}} \{f_n\}_{n \in \mathbb{N}}$, for any (positive) disjoint $\{f_n\}_{n \in \mathbb{N}} \subset F$;
- No normalized disjoint sequence is ρ_T-null (respects disjoint sequences);
- No restriction of T to a non-dispersed subspace is compact (never* compact).

If F is discrete and order continuous, dispersed = finite dimension, DSS = SS, DNS = USF. $T \in \mathcal{L}(F, E)$ is called *disjointly non-singular (DNS)* if *T* is not SS on $\overline{\text{span}} \{f_n\}_{n \in \mathbb{N}}$, for any disjoint $\{f_n\}_{n \in \mathbb{N}} \subset F$.

A subspace $H \subset F$ is called *dispersed* if $d(f_n, H) \not\rightarrow 0$, for any normalized disjoint $(f_n)_{n \in \mathbb{N}} \subset F$.

Theorem 2 (González, Martínez-Abejón, Martinón, 2020)

If $S, T \in \mathcal{L}(F, E)$, then S is DSS iff S is only bounded from below on dispersed subspaces (never* bounded from below). Moreover, TFAE:

- T is DNS;
- *T* is USF on $\overline{\text{span}} \{f_n\}_{n \in \mathbb{N}}$, for any (positive) disjoint $\{f_n\}_{n \in \mathbb{N}} \subset F$;
- No normalized disjoint sequence is ρ_T-null (respects disjoint sequences);
- No restriction of T to a non-dispersed subspace is compact (never* compact).

If F is discrete and order continuous, dispersed = finite dimension, DSS = SS, DNS = USF.

 $H \subset F$ is dispersed iff the quotient with respect to H is DNS.

Equivalently, there are no normalized disjoint $\{f_n\}_{n\in\mathbb{N}}$ such that $\rho_T(f_n) \leq r$, for all n.

Equivalently, there are no normalized disjoint $\{f_n\}_{n\in\mathbb{N}}$ such that $\rho_T(f_n) \leq r$, for all n.

The set of strictly DNS operators is open in $\mathcal{L}(F, E)$.

Equivalently, there are no normalized disjoint $\{f_n\}_{n\in\mathbb{N}}$ such that $\rho_T(f_n) \leq r$, for all n.

The set of strictly DNS operators is open in $\mathcal{L}(F, E)$.

 $H \subset F$ is *strictly dispersed* if there is r > 0 such that there are no disjoint normalized $\{f_n\}_{n \in \mathbb{N}}$ with $d(f_n, H) \leq r$, for all n.

Equivalently, there are no normalized disjoint $\{f_n\}_{n \in \mathbb{N}}$ such that $\rho_T(f_n) \leq r$, for all n.

The set of strictly DNS operators is open in $\mathcal{L}(F, E)$.

 $H \subset F$ is *strictly dispersed* if there is r > 0 such that there are no disjoint normalized $\{f_n\}_{n \in \mathbb{N}}$ with $d(f_n, H) \leq r$, for all n.

Equivalently, if (f_n) is disjoint and normalized, then $\liminf_{n\to\infty} d(f_n, H) \ge r$.

Equivalently, there are no normalized disjoint $\{f_n\}_{n \in \mathbb{N}}$ such that $\rho_T(f_n) \leq r$, for all n.

The set of strictly DNS operators is open in $\mathcal{L}(F, E)$.

 $H \subset F$ is *strictly dispersed* if there is r > 0 such that there are no disjoint normalized $\{f_n\}_{n \in \mathbb{N}}$ with $d(f_n, H) \leq r$, for all n.

Equivalently, if (f_n) is disjoint and normalized, then $\liminf_{n\to\infty} d(f_n, H) \ge r$.

H is strictly dispersed iff the quotient with respect to H is strictly DNS.

Equivalently, there are no normalized disjoint $\{f_n\}_{n \in \mathbb{N}}$ such that $\rho_T(f_n) \leq r$, for all n.

The set of strictly DNS operators is open in $\mathcal{L}(F, E)$.

 $H \subset F$ is *strictly dispersed* if there is r > 0 such that there are no disjoint normalized $\{f_n\}_{n \in \mathbb{N}}$ with $d(f_n, H) \leq r$, for all n.

Equivalently, if (f_n) is disjoint and normalized, then $\liminf_{n\to\infty} d(f_n, H) \ge r$.

H is strictly dispersed iff the quotient with respect to *H* is strictly DNS. The set of strictly dispersed subspaces of *F* is gap-open.

Equivalently, there are no normalized disjoint $\{f_n\}_{n \in \mathbb{N}}$ such that $\rho_T(f_n) \leq r$, for all n.

The set of strictly DNS operators is open in $\mathcal{L}(F, E)$.

 $H \subset F$ is *strictly dispersed* if there is r > 0 such that there are no disjoint normalized $\{f_n\}_{n \in \mathbb{N}}$ with $d(f_n, H) \leq r$, for all n.

Equivalently, if (f_n) is disjoint and normalized, then $\liminf_{n\to\infty} d(f_n, H) \ge r$.

H is strictly dispersed iff the quotient with respect to *H* is strictly DNS. The set of strictly dispersed subspaces of *F* is gap-open.

Clearly, strictly DNS \Rightarrow DNS and strictly dispersed \Rightarrow dispersed.

Equivalently, there are no normalized disjoint $\{f_n\}_{n\in\mathbb{N}}$ such that $\rho_T(f_n) \leq r$, for all n.

The set of strictly DNS operators is open in $\mathcal{L}(F, E)$.

 $H \subset F$ is *strictly dispersed* if there is r > 0 such that there are no disjoint normalized $\{f_n\}_{n \in \mathbb{N}}$ with $d(f_n, H) \leq r$, for all n.

Equivalently, if (f_n) is disjoint and normalized, then $\liminf_{n\to\infty} d(f_n, H) \ge r$.

H is strictly dispersed iff the quotient with respect to H is strictly DNS.

The set of strictly dispersed subspaces of F is gap-open.

Clearly, strictly DNS \Rightarrow DNS and strictly dispersed \Rightarrow dispersed.

Question 1 (• Is the converse true?

Equivalently, there are no normalized disjoint $\{f_n\}_{n \in \mathbb{N}}$ such that $\rho_T(f_n) \leq r$, for all n.

The set of strictly DNS operators is open in $\mathcal{L}(F, E)$.

 $H \subset F$ is *strictly dispersed* if there is r > 0 such that there are no disjoint normalized $\{f_n\}_{n \in \mathbb{N}}$ with $d(f_n, H) \leq r$, for all n.

Equivalently, if (f_n) is disjoint and normalized, then $\liminf_{n\to\infty} d(f_n, H) \ge r$.

H is strictly dispersed iff the quotient with respect to *H* is strictly DNS. The set of strictly dispersed subspaces of *F* is gap-open.

Clearly, strictly DNS \Rightarrow DNS and strictly dispersed \Rightarrow dispersed.

Question 1 (• Is the converse true? If not:

• Does dispersed = strictly dispersed imply DNS = strictly DNS?

Equivalently, there are no normalized disjoint $\{f_n\}_{n \in \mathbb{N}}$ such that $\rho_T(f_n) \leq r$, for all n.

The set of strictly DNS operators is open in $\mathcal{L}(F, E)$.

 $H \subset F$ is *strictly dispersed* if there is r > 0 such that there are no disjoint normalized $\{f_n\}_{n \in \mathbb{N}}$ with $d(f_n, H) \leq r$, for all n.

Equivalently, if (f_n) is disjoint and normalized, then $\liminf_{n\to\infty} d(f_n, H) \ge r$.

H is strictly dispersed iff the quotient with respect to *H* is strictly DNS. The set of strictly dispersed subspaces of *F* is gap-open.

Clearly, strictly DNS \Rightarrow DNS and strictly dispersed \Rightarrow dispersed.

Question 1 (• Is the converse true? If not:

- Does dispersed = strictly dispersed imply DNS = strictly DNS?
- Is the set of DNS operators open in L(F, E)? Is the set of dispersed subspaces gap-open?

Let *E* be a normed space, let ρ be a continuous semi-norm on *E* and let τ be a linear topology on *E* weaker than the norm topology.

Let *E* be a normed space, let ρ be a continuous semi-norm on *E* and let τ be a linear topology on *E* weaker than the norm topology.

We will say that ρ complements τ if there is no net in S_E which is simultaneously τ -null and ρ -null.

Let *E* be a normed space, let ρ be a continuous semi-norm on *E* and let τ be a linear topology on *E* weaker than the norm topology.

We will say that ρ complements τ if there is no net in S_E which is simultaneously τ -null and ρ -null.

Proposition 1 (TFAE:

• ρ complements τ ;)

Let *E* be a normed space, let ρ be a continuous semi-norm on *E* and let τ be a linear topology on *E* weaker than the norm topology.

We will say that ρ complements τ if there is no net in S_E which is simultaneously τ -null and ρ -null.

Proposition 1 (TFAE: • ρ complements τ ;)

ρ and *τ* generate the norm topology, i.e. the norm topology is the weakest topology which is stronger than both *ρ*-topology and *τ*;

Let *E* be a normed space, let ρ be a continuous semi-norm on *E* and let τ be a linear topology on *E* weaker than the norm topology.

We will say that ρ complements τ if there is no net in S_E which is simultaneously τ -null and ρ -null.

Proposition 1 (TFAE: • ρ complements τ ;)

ρ and *τ* generate the norm topology, i.e. the norm topology is the weakest topology which is stronger than both *ρ*-topology and *τ*;

• There is $\delta > 0$ such that $0 \notin \overline{\{e \in S_E, \rho(e) < \delta\}}^{\tau}$.

Let *E* be a normed space, let ρ be a continuous semi-norm on *E* and let τ be a linear topology on *E* weaker than the norm topology.

We will say that ρ complements τ if there is no net in S_E which is simultaneously τ -null and ρ -null.

Proposition 1 (TFAE: • ρ complements τ ;)

- *ρ* and *τ* generate the norm topology, i.e. the norm topology is the weakest topology which is stronger than both *ρ*-topology and *τ*;
- There is $\delta > 0$ such that $0 \notin \overline{\{e \in S_E, \rho(e) < \delta\}}^{\tau}$.

Proposition 2

If E, F are Banach spaces and $T \in \mathcal{L}(E, F)$, then:

Let *E* be a normed space, let ρ be a continuous semi-norm on *E* and let τ be a linear topology on *E* weaker than the norm topology.

We will say that ρ complements τ if there is no net in S_E which is simultaneously τ -null and ρ -null.

Proposition 1 (TFAE: • ρ complements τ ;)

- *ρ* and *τ* generate the norm topology, i.e. the norm topology is the weakest topology which is stronger than both *ρ*-topology and *τ*;
- There is $\delta > 0$ such that $0 \notin \overline{\{e \in S_E, \rho(e) < \delta\}}^{\tau}$.

Proposition 2

- If E, F are Banach spaces and $T \in \mathcal{L}(E, F)$, then:
 - If T complements τ (i.e. ρ_T does), then $\tau = \| \cdot \|$ on Ker T.

Let *E* be a normed space, let ρ be a continuous semi-norm on *E* and let τ be a linear topology on *E* weaker than the norm topology.

We will say that ρ complements τ if there is no net in S_E which is simultaneously τ -null and ρ -null.

Proposition 1 (TFAE: • ρ complements τ ;)

- *ρ* and *τ* generate the norm topology, i.e. the norm topology is the weakest topology which is stronger than both *ρ*-topology and *τ*;
- There is $\delta > 0$ such that $0 \notin \overline{\{e \in S_E, \rho(e) < \delta\}}^{\tau}$.

Proposition 2

- If E, F are Banach spaces and $T \in \mathcal{L}(E, F)$, then:
 - If T complements τ (i.e. ρ_T does), then $\tau = \|\cdot\|$ on Ker T.
 - The converse holds if T has a closed range.

Let *E* be a normed space, let ρ be a continuous semi-norm on *E* and let τ be a linear topology on *E* weaker than the norm topology.

We will say that ρ complements τ if there is no net in S_E which is simultaneously τ -null and ρ -null.

Proposition 1 (TFAE: • ρ complements τ ;)

- *ρ* and *τ* generate the norm topology, i.e. the norm topology is the weakest topology which is stronger than both *ρ*-topology and *τ*;
- There is $\delta > 0$ such that $0 \notin \overline{\{e \in S_E, \rho(e) < \delta\}}^{\tau}$.

Proposition 2

- If E, F are Banach spaces and $T \in \mathcal{L}(E, F)$, then:
 - If T complements τ (i.e. ρ_T does), then $\tau = \| \cdot \|$ on Ker T.
 - The converse holds if T has a closed range.

Moreover, the set of operators complementing τ is open in $\mathcal{L}(E, F)$.

For a subspace H of E TFAE:

For a subspace H of E TFAE:

• $d(\cdot, H)$ complements τ ;

For a subspace H of E TFAE:

- $d(\cdot, H)$ complements τ ;
- τ coincides with the norm topology on H;

For a subspace H of E TFAE:

- $d(\cdot, H)$ complements τ ;
- τ coincides with the norm topology on H;
- $0 \notin \overline{S_H}^{\tau}$.

For a subspace H of E TFAE:

- $d(\cdot, H)$ complements τ ;
- τ coincides with the norm topology on H;
- $0 \notin \overline{S_H}^{\tau}$.

Moreover, the collection of subspaces with this property is gap-open.

For a subspace H of E TFAE:

- $d(\cdot, H)$ complements τ ;
- τ coincides with the norm topology on H;
- $0 \notin \overline{S_H}^{\tau}$.

Moreover, the collection of subspaces with this property is gap-open.

Proposition 4

If E, F are Banach spaces and $T \in \mathcal{L}(E, F)$, then T is USF iff it complements the weak topology.

For a subspace H of E TFAE:

- $d(\cdot, H)$ complements τ ;
- τ coincides with the norm topology on H;
- $0 \notin \overline{S_H}^{\tau}$.

Moreover, the collection of subspaces with this property is gap-open.

Proposition 4

If E, F are Banach spaces and $T \in \mathcal{L}(E, F)$, then T is USF iff it complements the weak topology.

Remark: If *E* is Dunford-Pettis, then *T* is USF iff it complements the *dual Mackey* topology (convergence on weak compacts in E^*).

For a subspace H of E TFAE:

- $d(\cdot, H)$ complements τ ;
- τ coincides with the norm topology on H;
- $0 \notin \overline{S_H}^{\tau}$.

Moreover, the collection of subspaces with this property is gap-open.

Proposition 4

If E, F are Banach spaces and $T \in \mathcal{L}(E, F)$, then T is USF iff it complements the weak topology.

Remark: If *E* is Dunford-Pettis, then *T* is USF iff it complements the *dual Mackey* topology (convergence on weak compacts in E^*).

Theorem 3 (B., 2022)

E is reflexive iff for every USF $T : E \to H$ there is $\delta > 0$ such that no normalized basic sequence $(e_n)_{n \in \mathbb{N}} \subset E$ satisfies $\rho_T(e_n) < \delta$.

(Troitsky, 2001) The *unbounded norm (UN) topology* on a Banach lattice F is the linear topology whose base at 0 consists of the sets

 $\{f, \| |f| \wedge h\| < \varepsilon\},\$

where $h \in F_+$ and $\varepsilon > 0$.

(Troitsky, 2001) The *unbounded norm (UN) topology* on a Banach lattice F is the linear topology whose base at 0 consists of the sets

 $\{f, \| |f| \wedge h\| < \varepsilon\},\$

where $h \in F_+$ and $\varepsilon > 0$. Note that $f_{\alpha} \xrightarrow{un} 0$ iff $h \wedge |f_{\alpha}| \to 0$, for all $h \ge 0$.

(Troitsky, 2001) The *unbounded norm (UN) topology* on a Banach lattice F is the linear topology whose base at 0 consists of the sets

 $\{f, \| \|f\| \wedge h\| < \varepsilon\},\$

where $h \in F_+$ and $\varepsilon > 0$. Note that $f_{\alpha} \xrightarrow{un} 0$ iff $h \wedge |f_{\alpha}| \to 0$, for all $h \ge 0$.

In $C_0(X)$ UN= compact-open topology; in $L_p(\mu)$ UN= convergence in μ ; if *F* is discrete & order continuous, then UN = coordinatewise topology.
Some topologies on a Banach lattice

(Troitsky, 2001) The *unbounded norm (UN) topology* on a Banach lattice F is the linear topology whose base at 0 consists of the sets

 $\{f, \| \|f\| \wedge h\| < \varepsilon\},\$

where $h \in F_+$ and $\varepsilon > 0$. Note that $f_{\alpha} \xrightarrow{un} 0$ iff $h \wedge |f_{\alpha}| \to 0$, for all $h \ge 0$.

In $C_0(X)$ UN= compact-open topology; in $L_p(\mu)$ UN= convergence in μ ; if *F* is discrete & order continuous, then UN = coordinatewise topology.

Theorem 4 (Kadec-Pelczynski)

Every normalized UN-null net contains an almost disjoint sequence, *i.e.* $(e_n)_{n \in \mathbb{N}}$ such that $||e_n - f_n|| \to 0$, where $(f_n)_{n \in \mathbb{N}} \subset F$ is disjoint.

Some topologies on a Banach lattice

(Troitsky, 2001) The *unbounded norm (UN) topology* on a Banach lattice F is the linear topology whose base at 0 consists of the sets

 $\{f, \| \|f\| \wedge h\| < \varepsilon\},\$

where $h \in F_+$ and $\varepsilon > 0$. Note that $f_{\alpha} \xrightarrow{un} 0$ iff $h \wedge |f_{\alpha}| \to 0$, for all $h \ge 0$.

In $C_0(X)$ UN= compact-open topology; in $L_p(\mu)$ UN= convergence in μ ; if *F* is discrete & order continuous, then UN = coordinatewise topology.

Theorem 4 (Kadec-Pelczynski)

Every normalized UN-null net contains an almost disjoint sequence, *i.e.* $(e_n)_{n \in \mathbb{N}}$ such that $||e_n - f_n|| \to 0$, where $(f_n)_{n \in \mathbb{N}} \subset F$ is disjoint.

Corollary 1

On every dispersed subspace UN= $\|\cdot\|$. If $T : F \to E$ is DNS, then T complements UN.

$$\{f\in F, \nu(|f|)<\varepsilon\},\$$

where $\nu \in F_+^*$ and $\varepsilon > 0$. Note that $f_\alpha \xrightarrow{aw} 0$ iff $|f_\alpha| \xrightarrow{w} 0$.

$$\{f \in F, \nu(|f|) < \varepsilon\},\$$

where $\nu \in F_+^*$ and $\varepsilon > 0$. Note that $f_{\alpha} \xrightarrow{aw} 0$ iff $|f_{\alpha}| \xrightarrow{w} 0$.

Example: If *F* is order continuous, and $F \subset L_1$, then the AW= $\|\cdot\|_1$.

 $\left\{ f\in F,\nu\left(\left|f\right| \right) <\varepsilon\right\} ,$

where $\nu \in F_+^*$ and $\varepsilon > 0$. Note that $f_\alpha \xrightarrow{aw} 0$ iff $|f_\alpha| \xrightarrow{w} 0$.

Example: If *F* is order continuous, and $F \subset L_1$, then the AW= $\|\cdot\|_1$.

Unbounded absolute weak (UAW) topology is described by $f_{\alpha} \xrightarrow{uaw} 0$ if $h \wedge |f_{\alpha}| \xrightarrow{w} 0$, for all $h \ge 0$. Any disjoint net is UAW-null.

 $\left\{ f\in F,\nu\left(\left|f\right| \right) <\varepsilon\right\} ,$

where $\nu \in F_+^*$ and $\varepsilon > 0$. Note that $f_{\alpha} \xrightarrow{aw} 0$ iff $|f_{\alpha}| \xrightarrow{w} 0$.

Example: If *F* is order continuous, and $F \subset L_1$, then the AW= $\|\cdot\|_1$.

Unbounded absolute weak (UAW) topology is described by $f_{\alpha} \xrightarrow{uaw} 0$ if $h \wedge |f_{\alpha}| \xrightarrow{w} 0$, for all $h \ge 0$. Any disjoint net is UAW-null.

Proposition 5

If $H \subset F$ is such that UAW= $\|\cdot\|$ on H, then H is strictly dispersed. If $T: F \rightarrow E$ complements UAW, then it is strictly dispersed.

 $\left\{ f\in F,\nu\left(\left|f\right| \right) <\varepsilon\right\} ,$

where $\nu \in F_+^*$ and $\varepsilon > 0$. Note that $f_{\alpha} \xrightarrow{aw} 0$ iff $|f_{\alpha}| \xrightarrow{w} 0$.

Example: If *F* is order continuous, and $F \subset L_1$, then the AW= $\|\cdot\|_1$.

Unbounded absolute weak (UAW) topology is described by $f_{\alpha} \xrightarrow{uaw} 0$ if $h \wedge |f_{\alpha}| \xrightarrow{w} 0$, for all $h \ge 0$. Any disjoint net is UAW-null.

Proposition 5

If $H \subset F$ is such that UAW= $\|\cdot\|$ on H, then H is strictly dispersed. If $T: F \rightarrow E$ complements UAW, then it is strictly dispersed.

Recall that a Banach lattice is order continuous iff UN=UAW.

 $\left\{ f\in F,\nu\left(\left|f\right| \right) <\varepsilon\right\} ,$

where $\nu \in F_+^*$ and $\varepsilon > 0$. Note that $f_{\alpha} \xrightarrow{aw} 0$ iff $|f_{\alpha}| \xrightarrow{w} 0$.

Example: If *F* is order continuous, and $F \subset L_1$, then the AW= $\|\cdot\|_1$.

Unbounded absolute weak (UAW) topology is described by $f_{\alpha} \xrightarrow{uaw} 0$ if $h \wedge |f_{\alpha}| \xrightarrow{w} 0$, for all $h \ge 0$. Any disjoint net is UAW-null.

Proposition 5

If $H \subset F$ is such that UAW= $\|\cdot\|$ on H, then H is strictly dispersed. If $T: F \rightarrow E$ complements UAW, then it is strictly dispersed.

Recall that a Banach lattice is order continuous iff UN=UAW.

Theorem 5 (B., 2022, for $F = L_p - GMM$, 2021)

If F is order continuous, then:

 $\left\{ f\in F,\nu\left(\left|f\right| \right) <\varepsilon\right\} ,$

where $\nu \in F_+^*$ and $\varepsilon > 0$. Note that $f_{\alpha} \xrightarrow{aw} 0$ iff $|f_{\alpha}| \xrightarrow{w} 0$.

Example: If *F* is order continuous, and $F \subset L_1$, then the AW= $\|\cdot\|_1$.

Unbounded absolute weak (UAW) topology is described by $f_{\alpha} \xrightarrow{uaw} 0$ if $h \wedge |f_{\alpha}| \xrightarrow{w} 0$, for all $h \ge 0$. Any disjoint net is UAW-null.

Proposition 5

If $H \subset F$ is such that UAW= $\|\cdot\|$ on H, then H is strictly dispersed. If $T: F \rightarrow E$ complements UAW, then it is strictly dispersed.

Recall that a Banach lattice is order continuous iff UN=UAW.

Theorem 5 (B., 2022, for $F = L_p - GMM$, 2021)

If F is order continuous, then:

• $T: F \rightarrow E$ is DNS iff strictly DNS iff complements UN.

 $\left\{ f\in \mathcal{F},\nu\left(\left|f\right| \right) <\varepsilon\right\} ,$

where $\nu \in F_+^*$ and $\varepsilon > 0$. Note that $f_{\alpha} \xrightarrow{aw} 0$ iff $|f_{\alpha}| \xrightarrow{w} 0$.

Example: If *F* is order continuous, and $F \subset L_1$, then the AW= $\|\cdot\|_1$.

Unbounded absolute weak (UAW) topology is described by $f_{\alpha} \xrightarrow{uaw} 0$ if $h \wedge |f_{\alpha}| \xrightarrow{w} 0$, for all $h \ge 0$. Any disjoint net is UAW-null.

Proposition 5

If $H \subset F$ is such that UAW= $\|\cdot\|$ on H, then H is strictly dispersed. If $T: F \rightarrow E$ complements UAW, then it is strictly dispersed.

Recall that a Banach lattice is order continuous iff UN=UAW.

Theorem 5 (B., 2022, for $F = L_p - GMM$, 2021)

If F is order continuous, then:

• $T: F \rightarrow E$ is DNS iff strictly DNS iff complements UN.

• $H \subset F$ is dispersed iff strictly dispersed iff $UN= \|\cdot\|$ on H.

Is the converse true?

Is the converse true?

Proposition 6

If dim $F/F_a < \infty$ then every AW-null net contains an almost disjoint sequence, and on every dispersed subspace $AW= \|\cdot\|$.

Is the converse true?

Proposition 6

If dim $F/F_a < \infty$ then every AW-null net contains an almost disjoint sequence, and on every dispersed subspace $AW= \|\cdot\|$.

Question 3

Is the converse true? $[F_a - the order continuous part of F]$

Is the converse true?

Proposition 6

If dim $F/F_a < \infty$ then every AW-null net contains an almost disjoint sequence, and on every dispersed subspace $AW= \|\cdot\|$.

Question 3

Is the converse true? $[F_a - the order continuous part of F]$

Proposition 7 (user495577 from MathOverflow, 2023)

If in C(K) every $0 \le f_n \xrightarrow{p} 0$ contains an almost disjoint subsequence, then K has finitely many non-isolated points.

Is the converse true?

Proposition 6

If dim $F/F_a < \infty$ then every AW-null net contains an almost disjoint sequence, and on every dispersed subspace $AW= \|\cdot\|$.

Question 3

Is the converse true? $[F_a - the order continuous part of F]$

Proposition 7 (user495577 from MathOverflow, 2023)

If in C(K) every $0 \le f_n \xrightarrow{p} 0$ contains an almost disjoint subsequence, then K has finitely many non-isolated points.

Proposition 8 (B., based on GM, 2024.

• *F** is order continuous;

Is the converse true?

Proposition 6

If dim $F/F_a < \infty$ then every AW-null net contains an almost disjoint sequence, and on every dispersed subspace $AW= \|\cdot\|$.

Question 3

Is the converse true? $[F_a - the order continuous part of F]$

Proposition 7 (user495577 from MathOverflow, 2023)

If in C(K) every $0 \le f_n \xrightarrow{p} 0$ contains an almost disjoint subsequence, then K has finitely many non-isolated points.

Proposition 8 (B., based on GM, 2024. TFAE:)

• F* is order continuous; • Bounded disjoint sequences are AW-null;

Is the converse true?

Proposition 6

If dim $F/F_a < \infty$ then every AW-null net contains an almost disjoint sequence, and on every dispersed subspace $AW= \|\cdot\|$.

Question 3

Is the converse true? $[F_a - the order continuous part of F]$

Proposition 7 (user495577 from MathOverflow, 2023)

If in C(K) every $0 \le f_n \xrightarrow{p} 0$ contains an almost disjoint subsequence, then K has finitely many non-isolated points.

Proposition 8 (B., based on GM, 2024. TFAE:)

- F* is order continuous; Bounded disjoint sequences are AW-null;
- $AW \neq \| \cdot \|$ on any closed span of a disjoint sequence;

Is the converse true?

Proposition 6

If dim $F/F_a < \infty$ then every AW-null net contains an almost disjoint sequence, and on every dispersed subspace $AW= \|\cdot\|$.

Question 3

Is the converse true? $[F_a - the order continuous part of F]$

Proposition 7 (user495577 from MathOverflow, 2023)

If in C(K) every $0 \le f_n \xrightarrow{p} 0$ contains an almost disjoint subsequence, then K has finitely many non-isolated points.

Proposition 8 (B., based on GM, 2024. TFAE:)

- F* is order continuous; Bounded disjoint sequences are AW-null;
- $AW \neq \| \cdot \|$ on any closed span of a disjoint sequence;

If $F \subset L_1$ is order continuous, then the embedding is DSS iff F^* is order continuous.

If $F \subset L_1$ is order continuous, then the embedding is DSS iff F^* is order continuous.

Corollary 3 (B.)

If F is order continuous, TFAE:

If $F \subset L_1$ is order continuous, then the embedding is DSS iff F^* is order continuous.

Corollary 3 (B.)

If F is order continuous, TFAE:

• *F** *is order continuous;*

If $F \subset L_1$ is order continuous, then the embedding is DSS iff F^* is order continuous.

Corollary 3 (B.)

If F is order continuous, TFAE:

- *F** is order continuous;
- *AW*=|| · || *precisely on dispersed subspaces;*

If $F \subset L_1$ is order continuous, then the embedding is DSS iff F^* is order continuous.

Corollary 3 (B.)

If F is order continuous, TFAE:

- *F** *is order continuous;*
- *AW*=|| · || *precisely on dispersed subspaces;*
- A set is AW-separated from 0 iff it contains no almost disjoint sequences.

If $F \subset L_1$ is order continuous, then the embedding is DSS iff F^* is order continuous.

Corollary 3 (B.)

If F is order continuous, TFAE:

- *F** is order continuous;
- *AW*=|| · || *precisely on dispersed subspaces;*
- A set is AW-separated from 0 iff it contains no almost disjoint sequences.

Corollary 4 (B.)

If $F \subset L_1$ is order continuous, then the embedding is DSS iff F^* is order continuous.

Corollary 3 (B.)

If F is order continuous, TFAE:

- *F** is order continuous;
- *AW*=|| · || *precisely on dispersed subspaces;*
- A set is AW-separated from 0 iff it contains no almost disjoint sequences.

Corollary 4 (B.)

 If S ∈ L (F, E) does not complement UN on any non-dispersed subspace, then it is DSS.

If $F \subset L_1$ is order continuous, then the embedding is DSS iff F^* is order continuous.

Corollary 3 (B.)

If F is order continuous, TFAE:

- *F** is order continuous;
- AW=|| · || precisely on dispersed subspaces;
- A set is AW-separated from 0 iff it contains no almost disjoint sequences.

Corollary 4 (B.)

- If S ∈ L (F, E) does not complement UN on any non-dispersed subspace, then it is DSS.
- If S is DSS, then it does not complement UAW on any non-dispersed subspace.

If $F \subset L_1$ is order continuous, then the embedding is DSS iff F^* is order continuous.

Corollary 3 (B.)

If F is order continuous, TFAE:

- *F** is order continuous;
- AW=|| · || precisely on dispersed subspaces;
- A set is AW-separated from 0 iff it contains no almost disjoint sequences.

Corollary 4 (B.)

- If S ∈ L (F, E) does not complement UN on any non-dispersed subspace, then it is DSS.
- If S is DSS, then it does not complement UAW on any non-dispersed subspace.
- All conditions are equivalent if F is order-continuous.

Equivalently, every normalized basic ρ_T -null sequence is weakly null.

Equivalently, every normalized basic ρ_T -null sequence is weakly null. If E = C(K) or $E = L_1$, this implies DNS.

Equivalently, every normalized basic ρ_T -null sequence is weakly null.

If E = C(K) or $E = L_1$, this implies DNS.

We will call *T* tauberian if $T^{**-1}F \subset E$.

Equivalently, every normalized basic ρ_T -null sequence is weakly null.

If E = C(K) or $E = L_1$, this implies DNS.

We will call *T* tauberian if $T^{**-1}F \subset E$.

Theorem 6

For $T \in \mathcal{L}(E, F)$ TFAE:

Equivalently, every normalized basic ρ_T -null sequence is weakly null.

If E = C(K) or $E = L_1$, this implies DNS.

We will call *T* tauberian if $T^{**-1}F \subset E$.

Theorem 6

For $T \in \mathcal{L}(E, F)$ TFAE:

• *T* is tauberian; • *T*|_{*B_F*} is a weak-to-weak closed map;
Call $T : E \to F$ pseudo-tauberian if ker $T^{**} = \ker T$.

Equivalently, every normalized basic ρ_T -null sequence is weakly null.

If E = C(K) or $E = L_1$, this implies DNS.

We will call *T* tauberian if $T^{**-1}F \subset E$.

Theorem 6

For $T \in \mathcal{L}(E, F)$ TFAE:

- T is tauberian;
 T|_{B_F} is a weak-to-weak closed map;
- T is pseudo-tauberian, and TB_E is closed;

Call $T : E \to F$ pseudo-tauberian if ker $T^{**} = \ker T$.

Equivalently, every normalized basic ρ_T -null sequence is weakly null.

If E = C(K) or $E = L_1$, this implies DNS.

We will call *T* tauberian if $T^{**-1}F \subset E$.

Theorem 6

For $T \in \mathcal{L}(E, F)$ TFAE:

- *T* is tauberian; $T|_{B_F}$ is a weak-to-weak closed map;
- T is pseudo-tauberian, and TB_E is closed;
- No restriction of T to a non-reflexive subspace is compact;

Call $T : E \to F$ pseudo-tauberian if ker $T^{**} = \ker T$.

Equivalently, every normalized basic ρ_T -null sequence is weakly null.

If E = C(K) or $E = L_1$, this implies DNS.

We will call *T* tauberian if $T^{**-1}F \subset E$.

Theorem 6

For $T \in \mathcal{L}(E, F)$ TFAE:

- *T* is tauberian; $T|_{B_F}$ is a weak-to-weak closed map;
- T is pseudo-tauberian, and TB_E is closed;
- No restriction of T to a non-reflexive subspace is compact;
- Every normalized basic ρ_T-Cauchy sequence is weakly null.

Call $T : E \to F$ pseudo-tauberian if ker $T^{**} = \text{ker } T$.

Equivalently, every normalized basic ρ_T -null sequence is weakly null.

If E = C(K) or $E = L_1$, this implies DNS.

We will call *T* tauberian if $T^{**-1}F \subset E$.

Theorem 6

For $T \in \mathcal{L}(E, F)$ TFAE:

- *T* is tauberian; $T|_{B_F}$ is a weak-to-weak closed map;
- T is pseudo-tauberian, and TB_E is closed;
- No restriction of T to a non-reflexive subspace is compact;
- Every normalized basic ρ_T-Cauchy sequence is weakly null.

If $F \subset L_1$ is order continuous, and $H \subset F$ is dispersed, then $UN = || \cdot ||_1$ on H, and UN = convergence in measure on F. Hence, H is reflexive.

Call $T : E \to F$ pseudo-tauberian if ker $T^{**} = \text{ker } T$.

Equivalently, every normalized basic ρ_T -null sequence is weakly null.

If E = C(K) or $E = L_1$, this implies DNS.

We will call *T* tauberian if $T^{**-1}F \subset E$.

Theorem 6

For $T \in \mathcal{L}(E, F)$ TFAE:

- *T* is tauberian; $T|_{B_F}$ is a weak-to-weak closed map;
- T is pseudo-tauberian, and TB_E is closed;
- No restriction of T to a non-reflexive subspace is compact;
- Every normalized basic ρ_T-Cauchy sequence is weakly null.

If $F \subset L_1$ is order continuous, and $H \subset F$ is dispersed, then $UN=\|\cdot\|_1$ on H, and UN= convergence in measure on F. Hence, H is reflexive.

Theorem 7 (González, Martinón, 2024)

If F is an order continuous Banach lattice, then if $T : F \to E$ is DNS, it is tauberian.

 $e, f \in F$ are *r*-disjoint if $|||e| \wedge |f||| \leq r$.

 $e, f \in F$ are *r*-disjoint if $|||e| \wedge |f||| \leq r$.

 $T: F \rightarrow E$ is (n, r)-DNS if there are no disjoint normalized *n*-tuples of vectors in rB_{ρ_T} .

 $e, f \in F$ are *r*-disjoint if $|||e| \wedge |f||| \leq r$.

 $T: F \rightarrow E$ is (n, r)-DNS if there are no disjoint normalized *n*-tuples of vectors in rB_{ρ_T} .

Theorem 8 (González, Martinón, 2024)

 $e, f \in F$ are *r*-disjoint if $|||e| \wedge |f||| \leq r$.

 $T: F \rightarrow E$ is (n, r)-DNS if there are no disjoint normalized *n*-tuples of vectors in rB_{ρ_T} .

Theorem 8 (González, Martinón, 2024)

 If T is (n, r)-DNS then for every s < r there is δ > 0 such that there are no δ-disjoint normalized n-tuples of vectors in sB_{ρτ}.

 $e, f \in F$ are *r*-disjoint if $|||e| \wedge |f||| \leq r$.

 $T: F \rightarrow E$ is (n, r)-DNS if there are no disjoint normalized *n*-tuples of vectors in rB_{ρ_T} .

Theorem 8 (González, Martinón, 2024)

- If T is (n, r)-DNS then for every s < r there is δ > 0 such that there are no δ-disjoint normalized n-tuples of vectors in sB_{ρτ}.
- If F is order continuous (with a weak unit???), then T : F → E is DNS iff it is (n,r)-DNS for some n ∈ N and r > 0.

 $e, f \in F$ are *r*-disjoint if $|||e| \wedge |f||| \leq r$.

 $T: F \rightarrow E$ is (n, r)-DNS if there are no disjoint normalized *n*-tuples of vectors in rB_{ρ_T} .

Theorem 8 (González, Martinón, 2024)

- If T is (n, r)-DNS then for every s < r there is δ > 0 such that there are no δ-disjoint normalized n-tuples of vectors in sB_{ρτ}.
- If F is order continuous (with a weak unit???), then T : F → E is DNS iff it is (n,r)-DNS for some n ∈ N and r > 0.

A subspace $H \subset F$ is (n, r)-dispersed if there are no disjoint normalized *n*-tuples of vectors at the distance at most *r* from *H*.

 $e, f \in F$ are *r*-disjoint if $|||e| \wedge |f||| \leq r$.

 $T: F \rightarrow E$ is (n, r)-DNS if there are no disjoint normalized *n*-tuples of vectors in rB_{ρ_T} .

Theorem 8 (González, Martinón, 2024)

- If T is (n, r)-DNS then for every s < r there is δ > 0 such that there are no δ-disjoint normalized n-tuples of vectors in sB_{ρτ}.
- If F is order continuous (with a weak unit???), then T : F → E is DNS iff it is (n, r)-DNS for some n ∈ N and r > 0.

A subspace $H \subset F$ is (n, r)-dispersed if there are no disjoint normalized *n*-tuples of vectors at the distance at most *r* from *H*.

H is *n*-dispersed if it is (n, r)-dispersed, for some r > 0. Equivalently, it contains no *s*-disjoint normalized *n*-tuples of vectors for some s > 0.

 $e, f \in F$ are *r*-disjoint if $|||e| \wedge |f||| \leq r$.

 $T: F \rightarrow E$ is (n, r)-DNS if there are no disjoint normalized *n*-tuples of vectors in rB_{ρ_T} .

Theorem 8 (González, Martinón, 2024)

- If T is (n, r)-DNS then for every s < r there is δ > 0 such that there are no δ-disjoint normalized n-tuples of vectors in sB_{ρT}.
- If F is order continuous (with a weak unit???), then T : F → E is DNS iff it is (n, r)-DNS for some n ∈ N and r > 0.

A subspace $H \subset F$ is (n, r)-dispersed if there are no disjoint normalized *n*-tuples of vectors at the distance at most *r* from *H*.

H is *n*-dispersed if it is (n, r)-dispersed, for some r > 0. Equivalently, it contains no *s*-disjoint normalized *n*-tuples of vectors for some s > 0.

In an order continuous Banach lattice (with a weak unit???) dispersed is equivalent to *n*-dispersed, for some *n*.

A subspace $H \subset F$ has the *phase retrieval (PR)* property if for any $g, h \in H$ with |g| = |h| we have $g = \pm h$.

We say that *H* has the *r*-stable phase retrieval (*r*-SPR) property if $||g + h|| \wedge ||g - h|| \leq r |||g| - |h||$, for every $g, h \in H$.

We say that *H* has the *r*-stable phase retrieval (*r*-SPR) property if $||g + h|| \wedge ||g - h|| \leq r |||g| - |h||$, for every $g, h \in H$.

This property is stable with respect to taking closures.

We say that *H* has the *r*-stable phase retrieval (*r*-SPR) property if $||g + h|| \wedge ||g - h|| \leq r |||g| - |h||$, for every $g, h \in H$.

This property is stable with respect to taking closures.

H has SPR property if it *r*-SPR property, for some r > 0. This is an isomorphic property. If dim $H < \infty$, then PR=SPR.

We say that *H* has the *r*-stable phase retrieval (*r*-SPR) property if $||g + h|| \wedge ||g - h|| \le r |||g| - |h||$, for every $g, h \in H$.

This property is stable with respect to taking closures.

H has SPR property if it *r*-SPR property, for some r > 0. This is an isomorphic property. If dim $H < \infty$, then PR=SPR.

Proposition 9 (Freeman, Oikhberg, Pineau, Taylor, 2023 + B.)

H contains no r-disjoint normalized pairs iff it has $\frac{1}{r}$ -SPR property.

We say that *H* has the *r*-stable phase retrieval (*r*-SPR) property if $||g + h|| \wedge ||g - h|| \le r |||g| - |h||$, for every $g, h \in H$.

This property is stable with respect to taking closures.

H has SPR property if it *r*-SPR property, for some r > 0. This is an isomorphic property. If dim $H < \infty$, then PR=SPR.

Proposition 9 (Freeman, Oikhberg, Pineau, Taylor, 2023 + B.)

H contains no r-disjoint normalized pairs iff it has $\frac{1}{r}$ -SPR property.

Hence, SPR is equivalent to being 2-dispersed.

SPR \Rightarrow PR + dispersed; dispersed \Rightarrow PR; PR + dispersed \Rightarrow SPR.

We say that *H* has the *r*-stable phase retrieval (*r*-SPR) property if $||g + h|| \wedge ||g - h|| \leq r |||g| - |h||$, for every $g, h \in H$.

This property is stable with respect to taking closures.

H has SPR property if it *r*-SPR property, for some r > 0. This is an isomorphic property. If dim $H < \infty$, then PR=SPR.

Proposition 9 (Freeman, Oikhberg, Pineau, Taylor, 2023 + B.)

H contains no r-disjoint normalized pairs iff it has $\frac{1}{r}$ -SPR property.

Hence, SPR is equivalent to being 2-dispersed.

 $\mathsf{SPR} \Rightarrow \mathsf{PR} + \mathsf{dispersed}; \ \mathsf{dispersed} \Rightarrow \mathsf{PR}; \ \mathsf{PR} + \mathsf{dispersed} \Rightarrow \mathsf{SPR}.$

Theorem 9 (Freeman, Oikhberg, Pineau, Taylor, 2023)

If dim $F = \infty$, it contains a non-dispersed subspace with PR property.

Question 4

Can we always find a dispersed $H \subset F$ with dim $H = \infty$ and no PR? Or with PR but no SPR?

Question 4

Can we always find a dispersed $H \subset F$ with dim $H = \infty$ and no PR? Or with PR but no SPR?

Theorem 10 (Freeman, Oikhberg, Pineau, Taylor, 2023)

If *F* is order continuous then for every closed dispersed subspace *H* with dim $H = \infty$ there is a closed 2-dispersed $G \subset H$ with dim $G = \infty$.

Question 4

Can we always find a dispersed $H \subset F$ with dim $H = \infty$ and no PR? Or with PR but no SPR?

Theorem 10 (Freeman, Oikhberg, Pineau, Taylor, 2023)

If F is order continuous then for every closed dispersed subspace H with dim $H = \infty$ there is a closed 2-dispersed $G \subset H$ with dim $G = \infty$.

Question 5

• Can order continuity be removed?

Question 4

Can we always find a dispersed $H \subset F$ with dim $H = \infty$ and no PR? Or with PR but no SPR?

Theorem 10 (Freeman, Oikhberg, Pineau, Taylor, 2023)

If F is order continuous then for every closed dispersed subspace H with dim $H = \infty$ there is a closed 2-dispersed $G \subset H$ with dim $G = \infty$.

Question 5

- Can order continuity be removed?
- At least, is it true that every 3-dispersed subspace H with dim H = ∞ there is a closed 2-dispersed G ⊂ H with dim G = ∞?

Question 4

Can we always find a dispersed $H \subset F$ with dim $H = \infty$ and no PR? Or with PR but no SPR?

Theorem 10 (Freeman, Oikhberg, Pineau, Taylor, 2023)

If F is order continuous then for every closed dispersed subspace H with dim $H = \infty$ there is a closed 2-dispersed $G \subset H$ with dim $G = \infty$.

Question 5

- Can order continuity be removed?
- At least, is it true that every 3-dispersed subspace H with dim H = ∞ there is a closed 2-dispersed G ⊂ H with dim G = ∞?
- What is the operator version of the theorem?

Question 4

Can we always find a dispersed $H \subset F$ with dim $H = \infty$ and no PR? Or with PR but no SPR?

Theorem 10 (Freeman, Oikhberg, Pineau, Taylor, 2023)

If F is order continuous then for every closed dispersed subspace H with dim $H = \infty$ there is a closed 2-dispersed $G \subset H$ with dim $G = \infty$.

Question 5

- Can order continuity be removed?
- At least, is it true that every 3-dispersed subspace H with dim H = ∞ there is a closed 2-dispersed G ⊂ H with dim G = ∞?
- What is the operator version of the theorem?

THANK YOU!