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This talk is a partial survey of the following sources:

González, Martínez-Abejón, Martinón, Dijointly non-singular
operators on Banach lattices, 2021.
Bilokopytov, Disjointly non-singular operators on order continuous
Banach lattices complement the unbounded norm topology, 2022.
Freeman, Oikhberg, Pineau, Taylor, Stable phase retrieval in
function spaces, 2023.
González, Martinón, Disjointly non-singular operators; Extensions
and local variations, 2024.
Bilokopytov, work in progress.

Other sources:

Flores, Hernández, Tradacete, Strict Singularity; A Lattice
Approach, 2019.
González, Martinón, A quantitative approach to disjointly
non-singular operators, 2021.
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USF and SS operators

Let E ,F be Banach spaces.

If S ∈ L (E ,F ) define a semi-norm ρS on E by ρS (e) = ‖Se‖.

S ∈ L (E ,F ) is called strictly singular (SS), if no restriction of S on a
subspace of infinite dimension is bounded from below (never bounded
from below).

This condition is equivalent to:

If H ⊂ E has dimH =∞, then H contains G ⊂ H with dimG =∞
such that S|G is compact (almost compact).

If H ⊂ E has dimH =∞, then there is a normalized ρS-null basic
sequence in H (no respect for basic sequences).

The set of SS operators is a closed subspace of L (E ,F ).

Example: Inclusion of lp into lq, when 1 ≤ p < q is SS but not
compact.
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T ∈ L (E ,F ) is called upper semi-Fredholm (USF), if dimKer T <∞
and TE is closed in F .

Theorem 1 (TFAE:)
T is USF;
There is H ⊂ E of finite co-dimension, such that T |H is bounded
from below (almost bounded from below);
No restriction of T to an infinitely dimensional subspace is
compact (never compact);
No normalized basic sequence is ρT -null (respects basic
sequences);
If (en)n∈N is basic, then there is m ∈ N such that T is bounded
from below on span {en}n≥m;
T 6= 0 and T |BE

is closed, i.e. T (A) is closed, for every closed
A ⊂ BE .

The set of USF operators is open in L (E ,F ).
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DNS and DSS operators

Let F be a Banach lattice and let E be a Banach space.

(Hernández, Rodríguez-Salinas, 1989) S ∈ L (F ,E) is called disjointly
strictly singular (DSS) if S is not bounded from below on span {fn}n∈N,
for any disjoint {fn}n∈N ⊂ F .

These restrictions are in fact SS; it is enough to demand the
restrictions to be SS only for positive disjoint {fn}n∈N.

Equivalently, for every disjoint {fn}n∈N there are disjoint
normalized {hn}n∈N ⊂ span {fn}n∈N which are ρS-null (no respect
for disjoint sequences).

The set of DSS operators is a closed subspace of L (F ,E).

(Open) can we confine to positive disjoint {fn}n∈N in the definition?

Example: Inclusion of Lq into Lp, when 1 ≤ p < q is DSS but not SS.
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T ∈ L (F ,E) is called disjointly non-singular (DNS) if T is not SS on
span {fn}n∈N, for any disjoint {fn}n∈N ⊂ F .

A subspace H ⊂ F is called dispersed if d (fn,H) 6→ 0, for any
normalized disjoint (fn)n∈N ⊂ F .

Theorem 2 (González, Martínez-Abejón, Martinón, 2020)
If S,T ∈ L (F ,E), then S is DSS iff S is only bounded from below on
dispersed subspaces (never* bounded from below). Moreover, TFAE:

T is DNS;
T is USF on span {fn}n∈N, for any (positive) disjoint {fn}n∈N ⊂ F;
No normalized disjoint sequence is ρT -null (respects disjoint
sequences);
No restriction of T to a non-dispersed subspace is compact
(never* compact).

If F is discrete and order continuous, dispersed = finite dimension,
DSS = SS, DNS = USF.

H ⊂ F is dispersed iff the quotient with respect to H is DNS.
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Call T : F → E strictly DNS if there is r > 0 such that lim inf
n→∞

ρT (fn) > r ,
for every normalized disjoint (fn)n∈N.

Equivalently, there are no normalized disjoint {fn}n∈N such that
ρT (fn) ≤ r , for all n.

The set of strictly DNS operators is open in L(F ,E).

H ⊂ F is strictly dispersed if there is r > 0 such that there are no
disjoint normalized {fn}n∈N with d (fn,H) ≤ r , for all n.

Equivalently, if (fn) is disjoint and normalized, then lim inf
n→∞

d (fn,H) ≥ r .

H is strictly dispersed iff the quotient with respect to H is strictly DNS.

The set of strictly dispersed subspaces of F is gap-open.

Clearly, strictly DNS⇒ DNS and strictly dispersed⇒ dispersed.

Question 1 (• Is the converse true? If not: )
Does dispersed = strictly dispersed imply DNS = strictly DNS?
Is the set of DNS operators open in L(F ,E)? Is the set of
dispersed subspaces gap-open?
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Complementary topologies

Let E be a normed space, let ρ be a continuous semi-norm on E and
let τ be a linear topology on E weaker than the norm topology.

We will say that ρ complements τ if there is no net in SE which is
simultaneously τ -null and ρ-null.

Proposition 1 (TFAE: • ρ complements τ ;)
ρ and τ generate the norm topology, i.e. the norm topology is the
weakest topology which is stronger than both ρ-topology and τ ;
There is δ > 0 such that 0 6∈ {e ∈ SE , ρ (e) < δ}τ .

Proposition 2
If E ,F are Banach spaces and T ∈ L (E ,F ), then:

If T complements τ (i.e. ρT does), then τ = ‖ · ‖ on Ker T .
The converse holds if T has a closed range.

Moreover, the set of operators complementing τ is open in L (E ,F ).
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Proposition 3
For a subspace H of E TFAE:

d(·,H) complements τ ;
τ coincides with the norm topology on H;
0 6∈ SH

τ
.

Moreover, the collection of subspaces with this property is gap-open.

Proposition 4
If E ,F are Banach spaces and T ∈ L (E ,F ), then T is USF iff it
complements the weak topology.

Remark: If E is Dunford-Pettis, then T is USF iff it complements the
dual Mackey topology (convergence on weak compacts in E∗).

Theorem 3 (B., 2022)
E is reflexive iff for every USF T : E → H there is δ > 0 such that no
normalized basic sequence (en)n∈N ⊂ E satisfies ρT (en) < δ.
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Some topologies on a Banach lattice

(Troitsky, 2001) The unbounded norm (UN) topology on a Banach
lattice F is the linear topology whose base at 0 consists of the sets

{f , ‖ |f | ∧ h‖ < ε},

where h ∈ F+ and ε > 0. Note that fα
un−→ 0 iff h ∧ |fα| → 0, for all h ≥ 0.

In C0(X ) UN= compact-open topology; in Lp(µ) UN= convergence in µ;
if F is discrete & order continuous, then UN = coordinatewise topology.

Theorem 4 (Kadec-Pelczynski)
Every normalized UN-null net contains an almost disjoint sequence,
i.e. (en)n∈N such that ‖en − fn‖ → 0, where (fn)n∈N ⊂ F is disjoint.

Corollary 1
On every dispersed subspace UN=‖ · ‖. If T : F → E is DNS, then T
complements UN.
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The absolute weak (AW) topology is the linear topology whose base at
0 consists of the sets

{f ∈ F , ν (|f |) < ε} ,

where ν ∈ F ∗+ and ε > 0. Note that fα
aw−−→ 0 iff |fα|

w−→ 0.

Example: If F is order continuous, and F ⊂ L1, then the AW=‖ · ‖1.

Unbounded absolute weak (UAW) topology is described by fα
uaw−−→ 0 if

h ∧ |fα|
w−→ 0, for all h ≥ 0. Any disjoint net is UAW-null.

Proposition 5
If H ⊂ F is such that UAW=‖ · ‖ on H, then H is strictly dispersed. If
T : F → E complements UAW, then it is strictly dispersed.

Recall that a Banach lattice is order continuous iff UN=UAW.

Theorem 5 (B., 2022, for F = Lp – GMM, 2021)
If F is order continuous, then:

T : F → E is DNS iff strictly DNS iff complements UN.
H ⊂ F is dispersed iff strictly dispersed iff UN=‖ · ‖ on H.
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Question 2
Is the converse true?

Proposition 6
If dimF/Fa <∞ then every AW-null net contains an almost disjoint
sequence, and on every dispersed subspace AW=‖ · ‖.

Question 3
Is the converse true? [Fa – the order continuous part of F ]

Proposition 7 (user495577 from MathOverflow, 2023)

If in C(K ) every 0 ≤ fn
p−→ 0 contains an almost disjoint subsequence,

then K has finitely many non-isolated points.

Proposition 8 (B., based on GM, 2024. TFAE:)
F ∗ is order continuous; • Bounded disjoint sequences are AW-null;
AW6= ‖ · ‖ on any closed span of a disjoint sequence;
If AW=‖ · ‖ on a subspace, then it is (strictly) dispersed.
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Corollary 2 (B., based on GM, 2024)
If F ⊂ L1 is order continuous, then the embedding is DSS iff F ∗ is
order continuous.

Corollary 3 (B.)
If F is order continuous, TFAE:

F ∗ is order continuous;
AW=‖ · ‖ precisely on dispersed subspaces;
A set is AW-separated from 0 iff it contains no almost disjoint
sequences.

Corollary 4 (B.)
If S ∈ L (F ,E) does not complement UN on any non-dispersed
subspace, then it is DSS.
If S is DSS, then it does not complement UAW on any
non-dispersed subspace.
All conditions are equivalent if F is order-continuous.
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Call T : E → F pseudo-tauberian if kerT ∗∗ = kerT .

Equivalently, every normalized basic ρT -null sequence is weakly null.

If E = C(K ) or E = L1, this implies DNS.

We will call T tauberian if T ∗∗−1F ⊂ E .

Theorem 6
For T ∈ L(E ,F ) TFAE:

T is tauberian; • T |BE
is a weak-to-weak closed map;

T is pseudo-tauberian, and TBE is closed;
No restriction of T to a non-reflexive subspace is compact;
Every normalized basic ρT -Cauchy sequence is weakly null.

If F ⊂ L1 is order continuous, and H ⊂ F is dispersed, then UN=‖ · ‖1
on H, and UN= convergence in measure on F . Hence, H is reflexive.

Theorem 7 (González, Martinón, 2024)
If F is an order continuous Banach lattice, then if T : F → E is DNS, it
is tauberian.
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Connection with phase retrieval
e, f ∈ F are r -disjoint if ‖|e| ∧ |f |‖ ≤ r .

T : F → E is (n, r)-DNS if there are no disjoint normalized n-tuples of
vectors in rBρT .

Theorem 8 (González, Martinón, 2024)
If T is (n, r)-DNS then for every s < r there is δ > 0 such that
there are no δ-disjoint normalized n-tuples of vectors in sBρT .
If F is order continuous (with a weak unit???), then T : F → E is
DNS iff it is (n, r)-DNS for some n ∈ N and r > 0.

A subspace H ⊂ F is (n, r)-dispersed if there are no disjoint
normalized n-tuples of vectors at the distance at most r from H.

H is n-dispersed if it is (n, r)-dispersed, for some r > 0. Equivalently, it
contains no s-disjoint normalized n-tuples of vectors for some s > 0.

In an order continuous Banach lattice (with a weak unit???) dispersed
is equivalent to n-dispersed, for some n.
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A subspace H ⊂ F has the phase retrieval (PR) property if for any
g,h ∈ H with |g| = |h| we have g = ±h.

Equivalently, H contains no
disjoint pairs. This is an algebraic property.

We say that H has the r -stable phase retrieval (r -SPR) property if
‖g + h‖ ∧ ‖g − h‖ ≤ r ‖|g| − |h||, for every g,h ∈ H.

This property is stable with respect to taking closures.

H has SPR property if it r -SPR property, for some r > 0. This is an
isomorphic property. If dimH <∞, then PR=SPR.

Proposition 9 (Freeman, Oikhberg, Pineau, Taylor, 2023 + B.)

H contains no r-disjoint normalized pairs iff it has 1
r -SPR property.

Hence, SPR is equivalent to being 2-dispersed.

SPR⇒ PR + dispersed; dispersed ; PR; PR + dispersed ; SPR.

Theorem 9 (Freeman, Oikhberg, Pineau, Taylor, 2023)
If dimF =∞, it contains a non-dispersed subspace with PR property.
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Assume that dimF =∞.

Question 4
Can we always find a dispersed H ⊂ F with dimH =∞ and no PR?
Or with PR but no SPR?

Theorem 10 (Freeman, Oikhberg, Pineau, Taylor, 2023)
If F is order continuous then for every closed dispersed subspace H
with dimH =∞ there is a closed 2-dispersed G ⊂ H with dimG =∞.

Question 5
Can order continuity be removed?
At least, is it true that every 3-dispersed subspace H with
dimH =∞ there is a closed 2-dispersed G ⊂ H with dimG =∞?
What is the operator version of the theorem?

THANK YOU!
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