The PCP in some Lipschitz-free spaces LSAA workshop: Banach spaces and Banach lattices

Estelle Basset

University of Franche-Comté (France) estelle.basset@univ-fcomte.fr PhD student under the supervision of Gilles Lancien and Tony Procházka

This work was partially supported by the French ANR project No. $\mbox{ANR-20-CE40-0006}.$

Free spaces verifying the PCP as badly as possible and consequences Idea of the proof The Point of Continuity Property (PCP) Lipschitz-free spaces $\mathcal{F}(M)$

Table of contents

Introduction

- The Point of Continuity Property (PCP)
- Lipschitz-free spaces $\mathcal{F}(M)$
- Free spaces verifying the PCP as badly as possible and consequences
 - Uncountable family of pairwise non isomorphic Lipschitz-free spaces
 - Lipschitz-free space not isomorphic to a free space over a compact
 - Universal spaces
 - Compact determination

Idea of the proof

- First space $\mathcal{F}(D_1)$
- The countably branching diamond graphs D_{lpha}
- Stability by taking special convex combinations

(同) (ヨ) (ヨ)

Throughout the presentation, X, Y will stand for real Banach spaces and M, N for metric spaces.

Definition

X is said to have the **Point of Continuity Property** (PCP) if every closed bounded subspace F of X has a **weak point of continuity**, that is, a point at which the identity map

$$\mathit{id} \colon (F, w) \to (F, \|.\|_X)$$

is continuous.

ヘロト 人間 ト ヘヨト ヘヨト

The Point of Continuity Property (PCP) Lipschitz-free spaces $\mathcal{F}(M)$

Geometric characterization of the PCP

Reminder

X has the PCP if every closed bounded subset F of X has a **weak point** of continuity, that is, a point at which the identity map

$$id: (F, w) \to (F, \|.\|_X)$$

is continuous.

Proposition

X has the PCP iff each bounded subset F of X is **w-fragmentable**, i.e., has non-empty relatively w-open subsets of arbitrarily small diameter $(\forall \varepsilon > 0, \exists V \neq \emptyset \text{ w-open}, \operatorname{diam}(V \cap F) < \varepsilon).$

ヘロン 人間 とくほ とくほ とう

The Point of Continuity Property (PCP) Lipschitz-free spaces $\mathcal{F}(M)$

Two closely related properties

X has the PCP iff each closed bounded subset of X has non-empty relatively weakly-open subsets of arbitrarily small diameter.

Proposition

X has the Radon-Nikodým property (RNP) iff each closed bounded subset of X has non-empty slices of arbitrarily small diameter.

Recall that a **slice** of F is any subset of F of the form

$$S(x^*, \alpha) = \{x \in F : x^*(x) > \sup_{y \in F} x^*(y) - \alpha\}$$

where $x^* \in X^*$ and $\alpha > 0$.

Implication

X has the RNP \implies X has the PCP

くロン くぼう くほう くほう

Free spaces verifying the PCP as badly as possible and consequences $${\rm Idea}$$ of the proof

The Point of Continuity Property (PCP) Lipschitz-free spaces $\mathcal{F}(M)$

Examples

- Reflexive spaces, separable dual spaces, ℓ_1 have the RNP, and thus the PCP.
- c₀, ℓ_∞, L₁[0, 1], C[0, 1] do not have the PCP (their norms satisfy the diameter 2 property).
- The dual of the James tree space does not have the RNP but has the PCP.

ヘロン 人間 とくほ とくほ とう

The Point of Continuity Property (PCP) Lipschitz-free spaces $\mathcal{F}(M)$

Derivative sets

Given $F \subset X$ bounded and $\varepsilon > 0$, we define the **first derivative set of** F as

$$\sigma_{\varepsilon}(F) = \sigma_{\varepsilon}^{1}(F) := F \setminus \{ V \subset X \ w - open : diam(V \cap F) < \varepsilon \}.$$

Then, for every ordinal α , we define inductively $\sigma_{\varepsilon}^{\alpha}(F)$ by

$$\sigma_{\varepsilon}^{\alpha+1}(F) = \sigma_{\varepsilon}(\sigma_{\varepsilon}^{\alpha}(F))$$

and

$$\sigma^{\alpha}_{\varepsilon}(F) = \bigcap_{\beta < \alpha} \sigma^{\beta}_{\varepsilon}(F)$$

if α is a limit ordinal.

Consequently: $x \in PC(F)$ iff for every $\varepsilon > 0$, $x \notin \sigma_{\varepsilon}(F)$.

(1日) (日) (日)

Free spaces verifying the PCP as badly as possible and consequences Idea of the proof The Point of Continuity Property (PCP) Lipschitz-free spaces $\mathcal{F}(M)$

Weak-fragmentability index

Let $B_X = \{x \in X : ||x|| \leq 1\}$ denote the closed unit ball of X.

Definition

We define $\Phi(X, \varepsilon)$ as the smallest ordinal α such that $\sigma_{\varepsilon}^{\alpha}(B_X) = \emptyset$ if such an ordinal exists, and write $\Phi(X, \varepsilon) = \infty$ otherwise.

Definition

If $\Phi(X, \varepsilon)$ is well-defined for every $\varepsilon > 0$, we call **w-fragmentability** index of X the ordinal $\Phi(X) := \sup_{\varepsilon > 0} \Phi(X, \varepsilon)$. Otherwise, we write $\Phi(X) = \infty$.

 \longrightarrow same definition as the Szlenk index but with the *w*-topology instead of the *w*^{*}-topology

Example: if X is finite dimensional, $\Phi(X) = 1$.

<ロ > < 同 > < 目 > < 目 > < 日 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Free spaces verifying the PCP as badly as possible and consequences Idea of the proof The Point of Continuity Property (PCP) Lipschitz-free spaces $\mathcal{F}(M)$

Some properties of the *w*-fragmentability index

Proposition

- 1) If $Y \simeq X$ then $\Phi(Y) = \Phi(X)$.
- 2) If $F \subset X$ then $\Phi(F) \leq \Phi(X)$.
- 3) If $\Phi(X)$ is well-defined, there exists an ordinal α such that $\Phi(X) = \omega^{\alpha}$ (where ω denotes the first infinite ordinal).
- If X is separable, X has the PCP iff Φ(X) < ω₁ (where ω₁ denotes the first uncountable ordinal).
- \longrightarrow The PCP is hereditary and invariant under isomorphisms.

イロト 不得 とうき とうとう

Free spaces verifying the PCP as badly as possible and consequences Idea of the proof The Point of Continuity Property (PCP) Lipschitz-free spaces $\mathcal{F}(M)$

A norm on the space of Lipschitz maps?

Definition

Given a Lipschitz map $f: M \to X$, we write $||f||_L$ the best Lipschitz constant of f, that is:

$$\|f\|_{L} := \sup_{x \neq y \in M} \left\{ \frac{\|f(x) - f(y)\|_{X}}{d(x, y)} \right\}$$

Notice that if f is constant, $\|f\|_L = 0...$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Let us distinguish a point 0 of M, and denote $Lip_0(M, X)$ the set of Lipschitz maps $f: M \to X$ such that f(0) = 0.

Proposition

 $\|.\|_{L}$ is a norm on $Lip_{0}(M, X)$, and $Lip_{0}(M, X)$ endowed with this norm is a Banach space.

Setting $Lip_0(M) := Lip_0(M, \mathbb{R})$, let δ be the following isometry:

$$\delta = \begin{cases} M \to Lip_0(M)^* \\ x \mapsto \delta(x) = (f \mapsto f(x)) \end{cases}$$

Definition

The Lipschitz-free space over M is the following subspace of $Lip_0(M)^*$:

$$\mathcal{F}(M) := \overline{Vect(\delta(x), \ x \in M)}.$$

・ロト ・回ト ・ヨト ・ ヨト

Free spaces verifying the PCP as badly as possible and consequences Idea of the proof The Point of Continuity Property (PCP) Lipschitz-free spaces $\mathcal{F}(M)$

Universal extension property

Theorem

Given $f \in \operatorname{Lip}_{0}(M, X)$, there exists a unique bounded operator $\hat{f} : \mathcal{F}(M) \to X$ with $\left\| \hat{f} \right\| = \left\| f \right\|_{L}$ such that $\hat{f} \circ \delta = f$.

In addition to being isometric, $f \mapsto \hat{f}$ is also surjective. Thus:

 $\operatorname{Lip}_0(M,X) \cong \mathcal{L}(\mathcal{F}(M),X).$

Picking $X = \mathbb{R}$, we get that $\operatorname{Lip}_0(M) \cong \mathcal{F}(M)^*$.

(日本) (日本) (日本) 日

Lipschitz-free spaces are of significant interest when dealing with the PCP :

Theorem (R. J. Aliaga, C. Gartland, C. Petitjean, A. Procházka; 2022)

Let M be a pointed metric space. The following are equivalent:

- 1) $\mathcal{F}(M)$ has the PCP.
- 2) $\mathcal{F}(M)$ has the RNP.
- 3) $\mathcal{F}(M)$ has the Schur property.
- 4) $\mathcal{F}(M)$ has the Krein-Milman property.
- 5) $\mathcal{F}(M)$ does not contain any isomorphic copy of L^1 .
- 6) The completion of M is purely 1-unrectifiable.

・ロト ・回ト ・ヨト ・ ヨト

Definition

M is said to be **purely 1-unrectifiable** (**p-1-u**) if for every $A \subset \mathbb{R}$ and for every Lipschitz map $f : A \to M$, the Hausdorff's measure of f(A) is null.

If *M* is a separable metric space, the **Hausdorff's measure** of *M* is the amount $\lim_{\delta\to 0}\mathcal{H}^1_\delta$ where

$$\mathcal{H}^1_{\delta} = \inf \left\{ \sum_{i=1}^{\infty} \operatorname{diam}(E_i) : M \subset \bigcup_{i=1}^{\infty} E_i, \ \operatorname{diam}(E_i) < \delta \right\}.$$

In the sequel, all the metric spaces considered will be countable, and thus purely 1-unrectifiable.

To keep in mind

If M is a countable complete metric space, $\mathcal{F}(M)$ have the PCP.

イロト 不得 トイヨト イヨト

Jncountable family of pairwise non isomorphic Lipschitz-free spaces .ipschitz-free space not isomorphic to a free space over a compact Jniversal spaces .compact determination

Table of contents

Introduction

- The Point of Continuity Property (PCP)
- Lipschitz-free spaces $\mathcal{F}(M)$

2 Free spaces verifying the PCP as badly as possible and consequences

- Uncountable family of pairwise non isomorphic Lipschitz-free spaces
- Lipschitz-free space not isomorphic to a free space over a compact
- Universal spaces
- Compact determination

Idea of the proof

- First space $\mathcal{F}(D_1)$
- The countably branching diamond graphs D_{lpha}
- Stability by taking special convex combinations

Goal

Theorem

For every $\alpha \in (0, \omega_1)$, there exists a countable complete metric space D_α such that $\Phi(\mathcal{F}(D_\alpha)) > \alpha$.

Reminder: if X is separable, X has the PCP iff $\Phi(X) < \omega_1$ (first uncountable ordinal).

イロト 不得 トイヨト イヨト

Uncountable family of pairwise non isomorphic Lipschitz-free spaces Lipschitz-free space not isomorphic to a free space over a compact Universal spaces Compact determination

Uncountable family of pairwise non isomorphic Lipschitz-free spaces

Proposition

There exists an uncountable family $(M_i)_{i \in I}$ of countable complete metric spaces such that their Lipschitz-free spaces $(\mathcal{F}(M_i))_{i \in I}$ are pairwise non isomorphic.

[P. Hájek, G. Lancien, E. Pernecká; 2016] : there exists an uncountable family of pairwise non isomorphic Lipschitz-free spaces over separable Banach spaces.

Uncountable family of pairwise non isomorphic Lipschitz-free spaces Lipschitz-free space not isomorphic to a free space over a compact Universal spaces Compact determination

イロト 不得 とうき とうとう

Lipschitz-free spaces over compact metric spaces

Open question

Given a separable metric space M, does there exist a compact metric space K such that $\mathcal{F}(M) \simeq \mathcal{F}(K)$? (same question with a separable Banach space)

- [P.L. Kaufmann, 2015] : $\mathcal{F}(X) \simeq \mathcal{F}(B_X)$ so YES if dim $(X) < \infty$.

- [L. García-Lirola, A. Procházka; 2019] : YES for the Pełczyński universal space.

Proposition

Let $\alpha \in [\omega, \omega_1)$ and K be any compact metric space. Then: $\mathcal{F}(D_\alpha)$ and $\mathcal{F}(K)$ are not isomorphic.

Uncountable family of pairwise non isomorphic Lipschitz-free spaces Lipschitz-free space not isomorphic to a free space over a compact Universal spaces

(日本) (日本) (日本)

Universal space for countable complete metric spaces

Theorem

Let U be a separable complete metric space such that for every M countable complete, $M \underset{L}{\subset} U$. Then: U is not purely 1-unrectifiable.

Reminder: if X is separable, X has the PCP iff $\Phi(X) < \omega_1$.

[Szlenk, 1968] : a separable reflexive Banach space cannot be universal for separable reflexive Banach spaces.

Introduction Free spaces verifying the PCP as badly as possible and consequences Idea of the proof	Uncountable family of pairwise non isomorphic Lipschitz-free spaces Lipschitz-free space not isomorphic to a free space over a compact Universal spaces Compact determination
--	--

Definition

A Banach space property \mathcal{P} is said to be **compactly determined** if a Lipschitz-free space $\mathcal{F}(M)$ has \mathcal{P} whenever the subspace $\mathcal{F}(K)$ has \mathcal{P} for each compact $K \subset M$.

Examples: the Schur property, the RNP, the approximation property, weak sequential completeness, ...

Introduction Free spaces verifying the PCP as badly as possible and consequences Idea of the proof	Uncountable family of pairwise non isomorphic Lipschitz-free spaces Lipschitz-free space not isomorphic to a free space over a compact Universal spaces Compact determination

Proposition

The following Banach space properties are not compactly determined:

- Being AUC;
- Being AUC renormable;
- Having a weak-fragmentability index lower than ω .

X is said to be asymptotically uniformly convex (AUC) if $\inf_{x\in \mathcal{S}_X} \bar{\delta}_X(t,x) > 0 \text{ for every } t > 0, \text{ where}$

$$\bar{\delta}_X(t,x) = \sup_{\dim(X/Y) < \infty} \inf_{y \in S_Y} \|x + ty\| - 1.$$

First space $\mathcal{F}(D_1)$ The countably branching diamond graphs D_{lpha} Stability by taking special convex combinations

Table of contents

Introduction

- The Point of Continuity Property (PCP)
- Lipschitz-free spaces $\mathcal{F}(M)$
- Free spaces verifying the PCP as badly as possible and consequences
 - Uncountable family of pairwise non isomorphic Lipschitz-free spaces
 - Lipschitz-free space not isomorphic to a free space over a compact
 - Universal spaces
 - Compact determination

Idea of the proof

- First space $\mathcal{F}(D_1)$
- The countably branching diamond graphs D_{lpha}
- Stability by taking special convex combinations

Reminder

Let $\alpha \in (0, \omega_1)$. We want to show that there exists a countable complete metric space D_{α} such that $\Phi(\mathcal{F}(D_{\alpha})) > \alpha$.

To this end, we must find $\varepsilon > 0$ such that $\Phi(\mathcal{F}(D_{\alpha}), \varepsilon) > \alpha$ *i.e.* $\sigma_{\varepsilon}^{\alpha}(B_{\mathcal{F}(D_{\alpha})}) \neq \emptyset$.

Let us fix $\varepsilon := 1$.

Definition

A **molecule** is an element of $\mathcal{F}(M)$ of the form

$$m_{x,y} \coloneqq \frac{\delta(x) - \delta(y)}{d(x,y)}$$

with $x \neq y \in M$.

Molecules are of norm one.

イロト 不得 トイヨト イヨト 二日

First space $\mathcal{F}(D_1)$ The countably branching diamond graphs D_lpha Stability by taking special convex combinations

First derivative set

 D_1 consists of two poles t_1 and b_1 at a distance 2 from each other, and of a sequence $(x_n)_{n \in \mathbb{N}}$ of points at a distance 1 from each pole. For every $n \neq m$, the distance between x_n and x_m is also 2.

The distance on D_1 correspond to the shortest metric path in a connex graph.

Proposition

For
$$\varepsilon = 1$$
, $m_{t_1,b_1} \in \sigma_{\varepsilon}(B_{\mathcal{F}(D_1)})$ and thus $\sigma_{\varepsilon}(B_{\mathcal{F}(D_1)}) \neq \varnothing$.

ヘロト 人間 ト ヘヨト ヘヨト

First space $\mathcal{F}(D_1)$ The countably branching diamond graphs D_lpha Stability by taking special convex combinations

Idea of the proof

Let V be a w-neighborhood of m_{t_1,b_1} in $\mathcal{F}(D_1)$. We must show that diam $(V \cap B_{\mathcal{F}(D_1)}) \ge 1$.

- We show that there exist $j > i \in \mathbb{N}$ such that $\mu_V := \frac{1}{2}(m_{t_1,x_j} + m_{x_i,b_1}) \in V.$

-We compute :

$$\begin{split} \|\mu_{V} - m_{t_{1},b_{1}}\|_{\mathcal{F}(D_{1})} &= \frac{1}{2} \|\delta(t_{1}) - \delta(x_{j}) + \delta(x_{i}) - \delta(b_{1}) - \delta(t_{1}) + \delta(b_{1})\| \\ &= \left\|\frac{\delta(x_{i}) - \delta(x_{j})}{2}\right\| = \left\|m_{x_{i},x_{j}}\right\| = 1. \end{split}$$

ヘロン 人間 とくほ とくほ とう

First space $\mathcal{F}(D_1)$ The countably branching diamond graphs D_lpha Stability by taking special convex combinations

Next step

$$\begin{split} &\sigma_{\varepsilon}^{2}(B_{\mathcal{F}(D_{2})}) \text{ is the set} \\ &\sigma_{\varepsilon}(B_{\mathcal{F}(D_{2})}) \setminus \big\{ V \subset X \ w - \textit{open} : \mathsf{diam}(V \cap \sigma_{\varepsilon}(B_{\mathcal{F}(D_{2})})) < \varepsilon \big\}. \end{split}$$

Is it possible to build a bigger metric space D_2 such that :

- we still have $m_{t,b} \in \sigma_{\varepsilon}^1(B_{\mathcal{F}(D_2)})$ (where $\varepsilon = 1$),
- but also $\mu_V \in \sigma^1_{\varepsilon}(B_{\mathcal{F}(D_2)})$, so that $m_{t,b} \in \sigma^2_{\varepsilon}(B_{\mathcal{F}(D_2)})$?

First space $\mathcal{F}(D_1)$ **Fhe countably branching diamond graphs** D_{α} Stability by taking special convex combinations

Diamond graph D_{α} for α a successor ordinal

Definition

If $\alpha = \beta + 1$ is a successor ordinal, D_{α} is obtained by replacing each edge of D_1 by an isometric copy of D_{β} .

イロト 不得下 イヨト イヨト 二日

First space $\mathcal{F}(D_1)$ **Fhe countably branching diamond graphs** D_{α} Stability by taking special convex combinations

Diamond graph D_{α} for α a limit ordinal

Definition

If α is a limit ordinal, we define

$$D_{lpha} \coloneqq \{t_{lpha}, b_{lpha}\} \cup \bigcup_{eta < lpha} \{eta\} imes D_{eta} \setminus \{t_{eta}, b_{eta}\}$$

with the distance

•
$$d_{\alpha}(t_{\alpha},b_{\alpha})=2;$$

- $d_{\alpha}((\beta, x), (\beta, y)) = d_{\beta}(x, y);$
- $d_{\alpha}((\beta, x), (\gamma, y)) = \min \left(d_{\beta}(x, t_{\beta}) + d_{\gamma}(t_{\gamma}, y), d_{\beta}(x, b_{\beta}) + d_{\gamma}(b_{\gamma}, y) \right)$ if β , $\gamma < \alpha$ with $\beta \neq \gamma$.

ヘロン 人間 とくほ とくほ とう

irst space $\mathcal{F}(D_1)$ **The countably branching diamond graphs** D_{α} tability by taking special convex combinations

$\ln D_2$

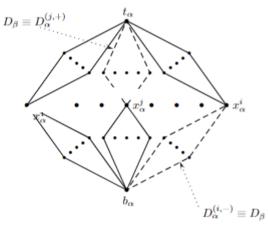
- We can show again that in every *w*-neighborhood *V* of m_{t_2,b_2} , there is a $\mu_V \in V$ of the same form as before (so such that $||m_{t_2,b_2} - \mu_V|| \ge 1$):

$$\mu_V = \frac{1}{2}(m_{t_2, x_2^i} + m_{x_2^i, b_2})$$

- Do we have $\mu_V \in \sigma_{\varepsilon}^1(B_{\mathcal{F}(D_2)})$?

ヘロン 人間 とくほ とくほ とう

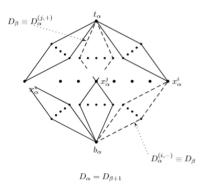
Notation :



 $D_{\alpha} = D_{\beta+1}$

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● の Q ()

Free spaces verifying the PCP as badly as possible and consequences Idea of the proof First space $\mathcal{F}(D_1)$ The countably branching diamond graphs D_{lpha} Stability by taking special convex combinations



Lemma (for α being a successor ordinal)

Let $\alpha \in (0, \omega_1)$, let $i \neq j \in \mathbb{N}$. Let γ^+ , $\gamma^- \in \sigma_{\varepsilon}^{\alpha}(B_{\mathcal{F}(D_{\alpha})})$ such that $\gamma^+ \in \mathcal{F}(D_{\alpha}^{(j,+)})$ and $\gamma^- \in \mathcal{F}(D_{\alpha}^{(i,-)})$. Then: $\frac{\gamma^+ + \gamma^-}{2} \in \sigma_{\varepsilon}^{\alpha}(B_{\mathcal{F}(D_{\alpha})})$.

イロト 不得 とうき とうとう

First space $\mathcal{F}(D_1)$ The countably branching diamond graphs D_{α} Stability by taking special convex combinations

Conclusion

Theorem

Given $\alpha \in (0, \omega_1)$, $m_{t_{\alpha}, b_{\alpha}} \in \sigma_{\varepsilon}^{\alpha}(B_{\mathcal{F}(D_{\alpha})})$ and so $\sigma_{\varepsilon}^{\alpha}(B_{\mathcal{F}(D_{\alpha})}) \neq \emptyset$. Hence: $\Phi(\mathcal{F}(D_{\alpha})) > \alpha$.

Theorem [B.M. Braga, G. Lancien, C. Petitjean, A. Procházka; 2019]

There exists M uniformly discrete such that each Banach space X verifying $\mathcal{F}(M) \subset X^*$ has a Szlenk index greater than ω^2 .

Here: there exists D_{α} such that each Banach space X verifying $\mathcal{F}(D_{\alpha}) \subset X^*$ has a Szlenk index greater than α .

イロト 不得下 イヨト イヨト 二日