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Throughout the presentation, X , Y will stand for real Banach spaces and
M, N for metric spaces.

Definition
X is said to have the Point of Continuity Property (PCP) if every
closed bounded subspace F of X has a weak point of continuity, that
is, a point at which the identity map

id : pF , wq Ñ pF , ‖.‖X q

is continuous.
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Geometric characterization of the PCP

Reminder
X has the PCP if every closed bounded subset F of X has a weak point
of continuity, that is, a point at which the identity map

id : pF , wq Ñ pF , ‖.‖X q

is continuous.

Proposition
X has the PCP iff each bounded subset F of X is w-fragmentable, i.e.,
has non-empty relatively w-open subsets of arbitrarily small diameter
(@ε ą 0, DV ‰ ∅ w-open, diampV X F q ă ε).
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Two closely related properties

X has the PCP iff each closed bounded subset of X has non-empty
relatively weakly-open subsets of arbitrarily small diameter.

Proposition
X has the Radon-Nikodým property (RNP) iff each closed bounded
subset of X has non-empty slices of arbitrarily small diameter.

Recall that a slice of F is any subset of F of the form

Spx˚, αq “ tx P F : x˚pxq ą sup
yPF

x˚pyq ´ αu

where x˚ P X˚ and α ą 0.

Implication
X has the RNP ùñ X has the PCP

Estelle Basset The PCP in some Lipschitz-free spaces



Introduction
Free spaces verifying the PCP as badly as possible and consequences

Idea of the proof

The Point of Continuity Property (PCP)
Lipschitz-free spaces FpMq

Examples
‚ Reflexive spaces, separable dual spaces, `1 have the RNP, and thus

the PCP.
‚ c0, `8, L1r0, 1s, Cr0, 1s do not have the PCP (their norms satisfy

the diameter 2 property).
‚ The dual of the James tree space does not have the RNP but has

the PCP.
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Derivative sets
Given F Ă X bounded and ε ą 0, we define the first derivative set of F
as

σεpF q “ σ1
εpF q :“ Fz tV Ă X w ´ open : diampV X F q ă εu .

Then, for every ordinal α, we define inductively σα
ε pF q by

σα`1
ε pF q “ σεpσα

ε pF qq

and
σα
ε pF q “

č

βăα

σβ
ε pF q

if α is a limit ordinal.

Consequently: x P PCpF q iff for every ε ą 0, x R σεpF q.
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Weak-fragmentability index

Let BX “ tx P X : ‖x‖ ď 1u denote the closed unit ball of X .

Definition
We define ΦpX , εq as the smallest ordinal α such that σα

ε pBX q “ ∅ if
such an ordinal exists, and write ΦpX , εq “ 8 otherwise.

Definition
If ΦpX , εq is well-defined for every ε ą 0, we call w-fragmentability
index of X the ordinal ΦpXq :“ sup

εą0
ΦpX , εq. Otherwise, we write

ΦpXq “ 8.

ÝÑ same definition as the Szlenk index but with the w-topology instead
of the w˚-topology

Example: if X is finite dimensional, ΦpXq “ 1.
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Some properties of the w -fragmentability index

Proposition
1q If Y » X then ΦpY q “ ΦpXq.
2q If F Ă X then ΦpF q ď ΦpXq.
3q If ΦpXq is well-defined, there exists an ordinal α such that

ΦpXq “ ωα (where ω denotes the first infinite ordinal).
4q If X is separable, X has the PCP iff ΦpXq ă ω1 (where ω1 denotes

the first uncountable ordinal).

ÝÑ The PCP is hereditary and invariant under isomorphisms.
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A norm on the space of Lipschitz maps?

Definition
Given a Lipschitz map f : M Ñ X, we write ‖f ‖L the best Lipschitz
constant of f , that is:

‖f ‖L :“ sup
x‰yPM

"

‖f pxq ´ f pyq‖X
dpx , yq

*

.

Notice that if f is constant, ‖f ‖L “ 0...
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Let us distinguish a point 0 of M, and denote Lip0pM,Xq the set of
Lipschitz maps f : M Ñ X such that f p0q “ 0.

Proposition
‖.‖L is a norm on Lip0pM,Xq, and Lip0pM,Xq endowed with this norm is
a Banach space.

Setting Lip0pMq :“ Lip0pM,Rq, let δ be the following isometry:

δ “

"

M Ñ Lip0pMq˚

x ÞÑ δpxq “ pf ÞÑ f pxqq
.

Definition
The Lipschitz-free space over M is the following subspace of Lip0pMq˚:

FpMq :“ Vectpδpxq, x P Mq.
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Universal extension property

Theorem
Given f P Lip0pM,Xq, there exists a unique bounded operator
pf : FpMq Ñ X with

∥∥∥pf ∥∥∥ “ ‖f ‖L such that pf ˝ δ “ f .

In addition to being isometric, f ÞÑ pf is also surjective. Thus:

Lip0pM,Xq – LpFpMq,Xq.

Picking X “ R, we get that Lip0pMq – FpMq
˚.
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Lipschitz-free spaces are of significant interest when dealing with the
PCP :

Theorem (R. J. Aliaga, C. Gartland, C. Petitjean, A. Procházka; 2022)
Let M be a pointed metric space. The following are equivalent:
1) FpMq has the PCP.
2) FpMq has the RNP.
3) FpMq has the Schur property.
4) FpMq has the Krein-Milman property.
5) FpMq does not contain any isomorphic copy of L1.
6) The completion of M is purely 1-unrectifiable.
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Definition
M is said to be purely 1-unrectifiable (p-1-u) if for every A Ă R and for
every Lipschitz map f : A Ñ M, the Hausdorff’s measure of f pAq is null.

If M is a separable metric space, the Hausdorff’s measure of M is the
amount lim

δÑ0
H1

δ where

H1
δ “ inf

#

8
ÿ

i“1
diampEiq : M Ă

8
ď

i“1
Ei , diampEiq ă δ

+

.

In the sequel, all the metric spaces considered will be countable, and thus
purely 1-unrectifiable.

To keep in mind
If M is a countable complete metric space, FpMq have the PCP.
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Goal

Theorem
For every α P p0, ω1q, there exists a countable complete metric space Dα

such that ΦpFpDαqq ą α.

Reminder: if X is separable, X has the PCP iff ΦpXq ă ω1 (first
uncountable ordinal).
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Uncountable family of pairwise non isomorphic
Lipschitz-free spaces

Proposition
There exists an uncountable family pMiqiPI of countable complete metric
spaces such that their Lipschitz-free spaces pFpMiqqiPI are pairwise non
isomorphic.

[P. Hájek, G. Lancien, E. Pernecká; 2016] : there exists an uncountable
family of pairwise non isomorphic Lipschitz-free spaces over separable
Banach spaces.
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Lipschitz-free spaces over compact metric spaces

Open question
Given a separable metric space M, does there exist a compact metric
space K such that FpMq » FpKq?
(same question with a separable Banach space)

- [P.L. Kaufmann, 2015] : FpXq » FpBX q so YES if dimpXq ă 8.
- [L. García-Lirola, A. Procházka; 2019] : YES for the Pełczyński
universal space.

Proposition
Let α P rω, ω1q and K be any compact metric space. Then: FpDαq and
FpKq are not isomorphic.
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Universal space for countable complete metric spaces

Theorem
Let U be a separable complete metric space such that for every M
countable complete, M Ă

L
U. Then: U is not purely 1-unrectifiable.

Reminder: if X is separable, X has the PCP iff ΦpXq ă ω1.

[Szlenk, 1968] : a separable reflexive Banach space cannot be universal
for separable reflexive Banach spaces.
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Definition
A Banach space property P is said to be compactly determined if a
Lipschitz-free space FpMq has P whenever the subspace FpKq has P for
each compact K Ă M.

Examples: the Schur property, the RNP, the approximation property,
weak sequential completeness, ...
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Proposition
The following Banach space properties are not compactly determined:

‚ Being AUC;
‚ Being AUC renormable;
‚ Having a weak-fragmentability index lower than ω.

X is said to be asymptotically uniformly convex (AUC) if
inf

xPSX
δ̄X pt, xq ą 0 for every t ą 0, where

δ̄X pt, xq “ sup
dimpX{Y qă8

inf
yPSY

‖x ` ty‖ ´ 1.
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Reminder
Let α P p0, ω1q. We want to show that there exists a countable complete
metric space Dα such that ΦpFpDαqq ą α.

To this end, we must find ε ą 0 such that ΦpFpDαq, εq ą α
i.e. σα

ε pBFpDαqq ‰ ∅.

Let us fix ε :“ 1.

Definition
A molecule is an element of FpMq of the form

mx,y :“
δpxq ´ δpyq

dpx , yq

with x ‰ y P M.

Molecules are of norm one.
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First derivative set

D1 consists of two poles t1 and b1 at a distance 2 from each other, and
of a sequence pxnqnPN of points at a distance 1 from each pole. For every
n ‰ m, the distance between xn and xm is also 2.

The distance on D1 correspond to the shortest metric path in a connex
graph.

Proposition
For ε “ 1, mt1,b1 P σεpBFpD1qq and thus σεpBFpD1qq ‰ ∅.
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Let V be a w-neighborhood of mt1,b1 in FpD1q. We must show that
diampV X BFpD1qq ě 1.

- We show that there exist j ą i P N such that
µV :“ 1

2 pmt1,xj ` mxi ,b1 q P V .

-We compute :

‖µV ´ mt1,b1‖FpD1q
“

1
2‖δpt1q ´ δpxjq ` δpxiq ´ δpb1q ´ δpt1q ` δpb1q‖

“

∥∥∥∥δpxiq ´ δpxjq

2

∥∥∥∥ “
∥∥mxi ,xj

∥∥ “ 1.
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Next step

σ2
εpBFpD2qq is the set

σεpBFpD2qqz
 

V Ă X w ´ open : diampV X σεpBFpD2qqq ă ε
(

.

Is it possible to build a bigger metric space D2 such that :
- we still have mt,b P σ1

εpBFpD2qq (where ε “ 1),
- but also µV P σ1

εpBFpD2qq, so that mt,b P σ2
εpBFpD2qq?
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Diamond graph Dα for α a successor ordinal

Definition
If α “ β ` 1 is a successor ordinal, Dα is obtained by replacing each edge
of D1 by an isometric copy of Dβ .
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Diamond graph Dα for α a limit ordinal

Definition
If α is a limit ordinal, we define

Dα :“ ttα, bαu Y
ď

βăα

tβu ˆ Dβzttβ , bβu

with the distance
‚ dαptα, bαq “ 2;
‚ dαppβ, xq, pβ, yqq “ dβpx , yq;
‚ dαppβ, xq, pγ, yqq “ min

`

dβpx , tβq`dγptγ , yq, dβpx , bβq`dγpbγ , yq
˘

if β, γ ă α with β ‰ γ.
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In D2

- We can show again that in every w-neighborhood V of mt2,b2 , there is a
µV P V of the same form as before (so such that ‖mt2,b2 ´ µV ‖ ě 1):

µV “
1
2 pmt2,x j

2
` mx i

2,b2 q

- Do we have µV P σ1
εpBFpD2qq?
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Notation :
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Lemma (for α being a successor ordinal)
Let α P p0, ω1q, let i ‰ j P N. Let γ`, γ´ P σα

ε pBFpDαqq such that
γ` P FpDpj,`q

α q and γ´ P FpDpi,´q
α q. Then: γ`

`γ´

2 P σα
ε pBFpDαqq.
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Conclusion

Theorem
Given α P p0, ω1q, mtα,bα P σα

ε pBFpDαqq and so σα
ε pBFpDαqq ‰ ∅.

Hence: ΦpFpDαqq ą α.

Theorem [B.M. Braga, G. Lancien, C. Petitjean, A. Procházka; 2019]
There exists M uniformly discrete such that each Banach space X
verifying FpMq Ă

„
X˚ has a Szlenk index greater than ω2.

Here: there exists Dα such that each Banach space X verifying
FpDαq Ă

„
X˚ has a Szlenk index greater than α.
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