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De�nition 1 (Order convergence)

Let (xγ)γ∈Γ be a net and x a point in a poset P. Then (xγ)γ∈Γ is
said to O-converge to x in P if there exists a directed subset
M⊂ P, and a �ltered subset N ⊂ P, such that
supM = infN = x , and for every (m, n) ∈M×N the net is
eventually contained in [m, n].

De�nition 2 (Unbounded order convergence)

A net (xγ)γ∈Γ in a lattice L is said to unbounded order converge

(uO-converge) to x ∈ L, if fs,t(xγ)
O−→ fs,t(x) for every s, t ∈ L

and s ≤ t where fs,t(a) = (a ∧ t) ∨ s.
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Proposition 3

Let X be a Riesz space. Then, (xγ)γ∈Γ uO-converges to x if and

only if |xγ − x | ∧ u
O−→ 0 for every u ∈ X+.

The de�nition of unbounded order convergence coincides with
uO-convergence on Riesz spaces. However, on Riesz spaces,
uO-convergence is order continuous, the following example shows
that this is not necessarily true for distributive lattices.

Example 4

Let L be the collection of closed subsets of [0, 1], ordered by
inclusion. Clearly this is a distributive lattice. However, from the

increasing sequence (
[
1

2n
, 1
]
)n∈N we have that

[
1

2n
, 1
] O−→[0, 1] but[

1

2n
, 1
]
∧ {0}↛O {0}.
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When the lattice L is in�nitely distributive, we have that
uO-convergence is order continuous.

Proposition 5

Let L be an in�nitely distributive lattice. If (xγ)γ∈Γ
O−→ x and

(yω)ω∈Ω
O−→ y , then (xγ ∨ yω)γ×ω∈Γ×Ω

O−→ x ∨ y and dually.

By the adherence of a subset X , we mean all those points which
have a net in X O-converging to them. We denote the �rst

adherence XO
by X1 and for an ordinal λ, we denote the

λ-adherence
⋃

β<λ Xβ
O
by Xλ. The �rst uO-adherence X

uO
is

denoted by X uO
1

and for an ordinal λ we denote the
λ-uO-adherence by X uO

λ .
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A subset X of P is said to be O-closed (uO-closed) if there is no
net in X that is O-converging (uO-converging) to a point outside
of X .

Lemma 6

Let Y be a sublattice of an in�nitely distributive lattice L. Then
both Y1 and Y uO

1
are sublattices.

Theorem 7

Let L be an in�nitely distributive lattice and Y ⊆ L be a

sublattice. Then Yλ is a sublattice for every λ ≤ |L|+. In particular

the order closure of Y is a sublattice.
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Remark 8

We have an example of a non-distributive lattice where the
O-closure of a sublattice is not a sublattice. However, we do not
yet have an example of a distributive lattice, where the O-closure of
a sublattice is not a sublattice.

Now we look at several results on Riesz spaces and extend them to
in�nitely distributive lattices.

Proposition 9 (N. Gao & D. Leung (2017), Proposition 2.1)

Let Y be a sublattice of a Riesz space X . Then, Y1 ⊆ Y uO
1
⊆ Y2.

Moreover,

(i) if Y1 is order closed, then it is the smallest order closed
sublattice of X containing Y , and Y1 = Y uO

1
;

(ii) if Y uO
1

is order closed, then it is the smallest order closed
sublattice of X containing Y , and Y uO

1
= Y2.
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Proposition 10

Let Y be a sublattice of an in�nitely distributive lattice L. Then,
Y1 ⊆ Y uO

1
⊆ Y3. In particular, it follows that

(i) if Y1 is order closed, then it is the smallest order closed
sublattice of L containing Y , and Y1 = Y uO

1
;

(ii) if Y uO
1

is order closed, then it is the smallest order closed
sublattice of L containing Y , and Y uO

1
= Y3.

Theorem 11

Let Y be a sublattice of an in�nitely distributive lattice L. Then,
Y is O-closed if and only if Y is uO-closed.
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Remark 12

We note that in our proposition, we have Y3 not Y2.

Question 1

Is it possible for Proposition 10 to be reduced from Y3 to Y2 or is
there an example of an in�nitely distributive lattice and a sublattice
Y such that Y2 ̸= Y3.

Question 2

Is there any example of a sublattice Y of an in�nitely distributive
lattice L such that Y uO

1
⊈ Y2.

Kevin Abela Unbounded Order convergence on in�nitely distributive lattices



Unbounded Order convergence
MacNeille Completion and Sublattices

De�nition 13

A set A in a lattice L is a down-set if every a ∈ A, x ∈ L with
x ≤ a implies x ∈ A. Furthermore, A is an ideal if it is a down-set
and a ∨ b ∈ A for every a, b ∈ A.

Proposition 14

Let L be an in�nite distributive lattice and A ⊆ L be a down-set.
Then A1 is a down-set. Furthermore, if A is an ideal then A1 and
AuO
1

are ideals.

Theorem 15

Let L be an in�nite distributive lattice and A ⊆ L be an ideal.

Then, A1 is O-closed and A1 = AuO
1

.
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The MacNeille completion has been thoroughly studied over the
years. We shall now look at results that hold for the MacNeille
completion of a Riesz space and see whether these hold when
considering the MacNeille completion of lattices.
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Let P be a poset and D a subset of P.
1 The set of upper-bounds and lower-bounds of D are denoted

by D+ and D−, respectively.

2 A set D ⊆ D is said to be a cut if D+− = D.
3 The MacNeille completion of a poset P denoted by Pδ is the

set of all cuts of P.
4 For every x ∈ P, the set (←, x ] is a cut and the function

φ : P → Pδ de�ned by φ(x) = (←, x ] is an order isomorphism
from P onto the subspace φ[P] of Pδ.

5 φ[P] is join and meet dense in Pδ and the set Pδ is a
complete lattice with respect to set-theoretic inclusion.
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There is a distinction between the MacNeille completion of a poset
P and that of a Riesz space X .

1 The MacNeille completion Pδ has a maximal element while X δ

does not.

2 The following example found in [5, p. 190] shows that
removing the greatest or smallest elements of Pδ might
remove the lattice structure.

Example 16

Let P = {x1, x2} with the partial ordering x1 ≤ x2 implies x1 = x2.
For A ⊆ P, the set Aul consists of either ∅, {x1}, {x2} or P. Thus,
Pδ = {∅, {x1}, {x2},P}.
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Theorem 17 (N. Gao, V. Troitsky & F. Xanthos (2017), Corollary
2.9)

Let X be a Riesz space and (xγ)γ∈Γ be a net in X . Then xγ
O−→ x

in X if and only if xγ
O−→ x in X δ.

Theorem 18 (K.A, E. Chetcuti, H. Weber (2022), Theorem 3 (ii))

Let L be a lattice and (xγ)γ∈Γ be a net in L. Then xγ
O−→ x in X if

and only if xγ
O−→ x in X δ.
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1 If P is a lattice and not a poset, then removing the top or
bottom elements does not a�ect the lattice structure.

2 It is also known that Riesz spaces are in�nitely distributive,
then the MacNeille completion X δ is also in�nitely distributive.
The following example shows that this is not necessarily true
when considering the MacNeille completion of a lattice L.

Example 19

Take L = {(0, b) : 0 ≤ b ≤ 1} ∪ {(1, b) : 0 ≤ b ≤ 1} and
L0 = {(0, b) : 0 ≤ b < 1} ∪ {(1, b) : 0 ≤ b < 1}. Then the
MacNeille completion Lδ

0
is

{(0, b) : 0 ≤ b < 1} ∪ {(1, b) : 0 ≤ b ≤ 1}. This is a sublattice but
not in�nitely distributive. Indeed let xn = (0, 1− 1

n ). Then
supLδ

0
xn = (1, 1) and (supLδ

0
xn) ∧ (1, 0) = (1, 0). On the

other-hand, supLδ
0
(xn ∧ (1, 0)) = (0, 0).

Kevin Abela Unbounded Order convergence on in�nitely distributive lattices



Unbounded Order convergence
MacNeille Completion and Sublattices

Theorem 20 (N. Gao, V. Troitsky & F. Xanthos (2017), Theorem
2.10)

Let Y be a regular sublattice of a Riesz space X . Then Y δ is

regular in X δ.

The same example above shows that Theorem 20 above is not true
when working with lattices.

We shall now give a property under which Theorem 20 remains true
for lattices. First we answer the following questions. Given a
sublattice L0 ⊆ L, is it true that Lδ0 ⊆ Lδ? Moreover, is this still a
sublattice?
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Proposition 21

Let L be a lattice and L0 ⊆ L be a sublattice. Let A,B ⊆ L0 such
that A+− ⊆ B+−. Then, A+L0−L0 ⊆ B+L0−L0 .

Proposition 22

Let L be a lattice and L0 ⊆ L be a sublattice. Then for A ⊆ L0,
(A+− ∩ L0)+− = A+−.

Let L∗
0
= {A+− : A ⊆ L0 and A+L0−L0 = A}.

Theorem 23

Let L be a lattice and L0 ⊆ L be a sublattice. Then L∗
0
is

isomorphic to Lδ
0
.
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To show Theorem 23, we show the following propositions.

Proposition 24

Let L be a lattice and L0 ⊆ L be a sublattice. Then for a ∈ L0,
{a}+L0−L0 = {a}+− ∩ L0 = (←, a] ∩ L0.

Corollary 25

Let L be a lattice and L0 ⊆ L be a sublattice. Then for every

a ∈ L0, ({a}+L0−L0 )+− = ((←, a] ∩ L0)+− = (←, a] = {a}+−.

Proposition 26

Let L be a lattice and L0 ⊆ L be a sublattice. Then L0 is join and
meet-dense in L∗

0
.

Kevin Abela Unbounded Order convergence on in�nitely distributive lattices



Unbounded Order convergence
MacNeille Completion and Sublattices

From Corollary 25, L0 can be embedded in L∗
0
by considering the

map ρ : L0 → L∗0 where ρ(a) = (←, a]. Furthermore by
Proposition 26, as L0 is join and meet-dense in L∗

0
, L∗

0
and Lδ

0
are

order-isomorphic. Thus Lδ
0
can be seen as a subset of Lδ.

De�nition 27

Let L be a lattice and A ⊆ L. Then A is said to be convex if for
x , y ∈ A with x ≤ y then [x , y ] ⊆ A.

Proposition 28

Let L be a lattice and L0 ⊆ L be a convex sublattice. Then
A+L0−L0 = A+− ∩ L0 for every A ⊆ L0 satisfying A+L0 ̸= ∅.
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In the next example we note that if L0 is a convex sublattice and
A ⊆ L0 such that A+L0 = ∅, then Proposition 28 does not hold.

Example 29

Consider L = {(0, a) : 0 ≤ a ≤ 1} ∪ {(1, b) : 0 ≤ b ≤ 1} ∪ {(1
2
, 1)}

ordered by pointwise partial order. Let
L0 = {(0, a) : 0 ≤ a ≤ 1} ∪ {(1, b) : 0 ≤ b < 1} such that L0 is a
convex sublattice of L with no greatest element. Let
A = {(0, a) : 0 ≤ a < 1}, then A+L0−L0 = L0. However,
A+ = {(1

2
, 1), (1, 1)} and A+− = A ∪ {(1

2
, 1)}. Thus,

A+L0−L0 ̸= A+− ∩ L0.

.
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