Unbounded Order convergence on infinitely distributive lattices

Kevin Abela

June 7, 2024

Kevin Abela Unbounded Order convergence on infinitely distributive lati

Unbounded Order convergence

< (目) → (目)

- E

Definition 1 (Order convergence)

Let $(x_{\gamma})_{\gamma \in \Gamma}$ be a net and x a point in a poset \mathcal{P} . Then $(x_{\gamma})_{\gamma \in \Gamma}$ is said to *O-converge* to x in \mathcal{P} if there exists a directed subset $\mathcal{M} \subset \mathcal{P}$, and a filtered subset $\mathcal{N} \subset \mathcal{P}$, such that $\sup \mathcal{M} = \inf \mathcal{N} = x$, and for every $(m, n) \in \mathcal{M} \times \mathcal{N}$ the net is eventually contained in [m, n].

Definition 2 (Unbounded order convergence)

A net $(x_{\gamma})_{\gamma \in \Gamma}$ in a lattice \mathcal{L} is said to unbounded order converge $(\mathfrak{u}O\text{-converge})$ to $x \in \mathcal{L}$, if $f_{s,t}(x_{\gamma}) \xrightarrow{\mathsf{O}} f_{s,t}(x)$ for every $s, t \in \mathcal{L}$ and $s \leq t$ where $f_{s,t}(a) = (a \wedge t) \lor s$.

Proposition 3

Let X be a Riesz space. Then, $(x_{\gamma})_{\gamma \in \Gamma} \mathfrak{u}O$ -converges to x if and only if $|x_{\gamma} - x| \wedge u \xrightarrow{O} 0$ for every $u \in X_+$.

The definition of unbounded order convergence coincides with \mathfrak{uO} -convergence on Riesz spaces. However, on Riesz spaces, \mathfrak{uO} -convergence is order continuous, the following example shows that this is not necessarily true for distributive lattices.

Example 4

Let \mathcal{L} be the collection of closed subsets of [0, 1], ordered by inclusion. Clearly this is a distributive lattice. However, from the increasing sequence $(\left[\frac{1}{2^n}, 1\right])_{n \in \mathbb{N}}$ we have that $\left[\frac{1}{2^n}, 1\right] \xrightarrow{O} [0, 1]$ but $\left[\frac{1}{2^n}, 1\right] \wedge \{0\} \xrightarrow{\to O} \{0\}$.

イロト イボト イヨト イヨト

3

When the lattice \mathcal{L} is infinitely distributive, we have that $\mathfrak{u}O$ -convergence is order continuous.

Proposition 5

Let \mathcal{L} be an infinitely distributive lattice. If $(x_{\gamma})_{\gamma \in \Gamma} \xrightarrow{O} x$ and $(y_{\omega})_{\omega \in \Omega} \xrightarrow{O} y$, then $(x_{\gamma} \vee y_{\omega})_{\gamma \times \omega \in \Gamma \times \Omega} \xrightarrow{O} x \vee y$ and dually.

By the adherence of a subset \mathcal{X} , we mean all those points which have a net in \mathcal{X} O-converging to them. We denote the first adherence $\overline{\mathcal{X}}^O$ by \mathcal{X}_1 and for an ordinal λ , we denote the λ -adherence $\overline{\bigcup_{\beta < \lambda} \mathcal{X}_{\beta}}^O$ by \mathcal{X}_{λ} . The first uO-adherence $\overline{\mathcal{X}}^{uO}$ is denoted by \mathcal{X}_1^{uO} and for an ordinal λ we denote the λ -uO-adherence by $\mathcal{X}_{\lambda}^{uO}$. A subset \mathcal{X} of \mathcal{P} is said to be *O-closed* ($\mathfrak{u}O$ -closed) if there is no net in \mathcal{X} that is O-converging ($\mathfrak{u}O$ -converging) to a point outside of \mathcal{X} .

Lemma 6

Let Y be a sublattice of an infinitely distributive lattice \mathcal{L} . Then both Y_1 and Y_1^{uO} are sublattices.

Theorem 7

Let \mathcal{L} be an infinitely distributive lattice and $Y \subseteq \mathcal{L}$ be a sublattice. Then Y_{λ} is a sublattice for every $\lambda \leq |\mathcal{L}|^+$. In particular the order closure of Y is a sublattice.

- ・ 同 ト ・ ヨ ト - - ヨ

Remark 8

We have an example of a non-distributive lattice where the O-closure of a sublattice is not a sublattice. However, we do not yet have an example of a distributive lattice, where the O-closure of a sublattice is not a sublattice.

Now we look at several results on Riesz spaces and extend them to infinitely distributive lattices.

Proposition 9 (N. Gao & D. Leung (2017), Proposition 2.1)

Let Y be a sublattice of a Riesz space X. Then, $Y_1 \subseteq Y_1^{\mathfrak{uO}} \subseteq Y_2$. Moreover,

() if Y_1 is order closed, then it is the smallest order closed sublattice of X containing Y, and $Y_1 = Y_1^{uO}$;

) if Y_1^{uO} is order closed, then it is the smallest order closed sublattice of X containing Y, and $Y_1^{uO} = Y_2$.

Proposition 10

Let Y be a sublattice of an infinitely distributive lattice \mathcal{L} . Then, $Y_1 \subseteq Y_1^{\mathfrak{uO}} \subseteq Y_3$. In particular, it follows that

- () if Y_1 is order closed, then it is the smallest order closed sublattice of \mathcal{L} containing Y, and $Y_1 = Y_1^{\mathfrak{u}O}$;
- () if $Y_1^{\mathfrak{u}O}$ is order closed, then it is the smallest order closed sublattice of \mathcal{L} containing Y, and $Y_1^{\mathfrak{u}O} = Y_3$.

Theorem 11

Let Y be a sublattice of an infinitely distributive lattice \mathcal{L} . Then, Y is O-closed if and only if Y is \mathfrak{u} O-closed.

-

Remark 12

We note that in our proposition, we have Y_3 not Y_2 .

Question 1

Is it possible for Proposition 10 to be reduced from Y_3 to Y_2 or is there an example of an infinitely distributive lattice and a sublattice Y such that $Y_2 \neq Y_3$.

Question 2

Is there any example of a sublattice Y of an infinitely distributive lattice \mathcal{L} such that $Y_1^{\mathfrak{u}O} \nsubseteq Y_2$.

イロト イポト イラト イラト

Definition 13

A set \mathcal{A} in a lattice \mathcal{L} is a *down-set* if every $a \in \mathcal{A}$, $x \in \mathcal{L}$ with $x \leq a$ implies $x \in \mathcal{A}$. Furthermore, \mathcal{A} is an *ideal* if it is a down-set and $a \lor b \in \mathcal{A}$ for every $a, b \in \mathcal{A}$.

Proposition 14

Let \mathcal{L} be an infinite distributive lattice and $\mathcal{A} \subseteq \mathcal{L}$ be a down-set. Then \mathcal{A}_1 is a down-set. Furthermore, if \mathcal{A} is an ideal then \mathcal{A}_1 and \mathcal{A}_1^{uO} are ideals.

Theorem 15

Let \mathcal{L} be an infinite distributive lattice and $\mathcal{A} \subseteq \mathcal{L}$ be an ideal. Then, \mathcal{A}_1 is O-closed and $\mathcal{A}_1 = \mathcal{A}_1^{uO}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The MacNeille completion has been thoroughly studied over the years. We shall now look at results that hold for the MacNeille completion of a Riesz space and see whether these hold when considering the MacNeille completion of lattices.

Let \mathcal{P} be a poset and \mathcal{D} a subset of \mathcal{P} .

- The set of upper-bounds and lower-bounds of D are denoted by D⁺ and D⁻, respectively.
- 2 A set $\mathcal{D} \subseteq \mathcal{D}$ is said to be a cut if $\mathcal{D}^{+-} = \mathcal{D}$.
- The MacNeille completion of a poset \mathcal{P} denoted by \mathcal{P}^{δ} is the set of all cuts of \mathcal{P} .
- For every $x \in \mathcal{P}$, the set $(\leftarrow, x]$ is a cut and the function $\varphi : \mathcal{P} \to \mathcal{P}^{\delta}$ defined by $\varphi(x) = (\leftarrow, x]$ is an order isomorphism from \mathcal{P} onto the subspace $\varphi[\mathcal{P}]$ of \mathcal{P}^{δ} .
- $\varphi[\mathcal{P}]$ is join and meet dense in \mathcal{P}^{δ} and the set \mathcal{P}^{δ} is a complete lattice with respect to set-theoretic inclusion.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

There is a distinction between the MacNeille completion of a poset \mathcal{P} and that of a Riesz space X.

- The MacNeille completion \mathcal{P}^{δ} has a maximal element while X^{δ} does not.
- ² The following example found in [5, p. 190] shows that removing the greatest or smallest elements of \mathcal{P}^{δ} might remove the lattice structure.

Example 16

Let $\mathcal{P} = \{x_1, x_2\}$ with the partial ordering $x_1 \leq x_2$ implies $x_1 = x_2$. For $\mathcal{A} \subseteq \mathcal{P}$, the set \mathcal{A}^{ul} consists of either $\emptyset, \{x_1\}, \{x_2\}$ or \mathcal{P} . Thus, $\mathcal{P}^{\delta} = \{\emptyset, \{x_1\}, \{x_2\}, \mathcal{P}\}.$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem 17 (N. Gao, V. Troitsky & F. Xanthos (2017), Corollary 2.9)

Let X be a Riesz space and $(x_{\gamma})_{\gamma \in \Gamma}$ be a net in X. Then $x_{\gamma} \xrightarrow{O} x$ in X if and only if $x_{\gamma} \xrightarrow{O} x$ in X^{δ} .

Theorem 18 (K.A, E. Chetcuti, H. Weber (2022), Theorem 3 (ii))

Let \mathcal{L} be a lattice and $(x_{\gamma})_{\gamma \in \Gamma}$ be a net in \mathcal{L} . Then $x_{\gamma} \xrightarrow{O} x$ in X if and only if $x_{\gamma} \xrightarrow{O} x$ in X^{δ} .

Unbounded Order convergence MacNeille Completion and Sublattices

- If P is a lattice and not a poset, then removing the top or bottom elements does not affect the lattice structure.
- ⁽²⁾ It is also known that Riesz spaces are infinitely distributive, then the MacNeille completion X^{δ} is also infinitely distributive. The following example shows that this is not necessarily true when considering the MacNeille completion of a lattice \mathcal{L} .

Example 19

Take $\mathcal{L} = \{(0, b) : 0 \le b \le 1\} \cup \{(1, b) : 0 \le b \le 1\}$ and $\mathcal{L}_0 = \{(0, b) : 0 \le b < 1\} \cup \{(1, b) : 0 \le b < 1\}$. Then the MacNeille completion \mathcal{L}_0^{δ} is $\{(0, b) : 0 \le b < 1\} \cup \{(1, b) : 0 \le b \le 1\}$. This is a sublattice but not infinitely distributive. Indeed let $x_n = (0, 1 - \frac{1}{n})$. Then $\sup_{\mathcal{L}_0^{\delta}} x_n = (1, 1)$ and $(\sup_{\mathcal{L}_0^{\delta}} x_n) \land (1, 0) = (1, 0)$. On the other-hand, $\sup_{\mathcal{L}_0^{\delta}} (x_n \land (1, 0)) = (0, 0)$.

Theorem 20 (N. Gao, V. Troitsky & F. Xanthos (2017), Theorem 2.10)

Let Y be a regular sublattice of a Riesz space X. Then Y^{δ} is regular in $X^{\delta}.$

The same example above shows that Theorem 20 above is not true when working with lattices.

We shall now give a property under which Theorem 20 remains true for lattices. First we answer the following questions. Given a sublattice $\mathcal{L}_0 \subseteq \mathcal{L}$, is it true that $\mathcal{L}_0^{\delta} \subseteq \mathcal{L}^{\delta}$? Moreover, is this still a sublattice?

Proposition 21

Let \mathcal{L} be a lattice and $\mathcal{L}_0 \subseteq \mathcal{L}$ be a sublattice. Let $\mathcal{A}, \mathcal{B} \subseteq \mathcal{L}_0$ such that $\mathcal{A}^{+-} \subseteq \mathcal{B}^{+-}$. Then, $\mathcal{A}^{+_{\mathcal{L}_0}-_{\mathcal{L}_0}} \subseteq \mathcal{B}^{+_{\mathcal{L}_0}-_{\mathcal{L}_0}}$.

Proposition 22

Let \mathcal{L} be a lattice and $\mathcal{L}_0 \subseteq \mathcal{L}$ be a sublattice. Then for $\mathcal{A} \subseteq \mathcal{L}_0$, $(\mathcal{A}^{+-} \cap \mathcal{L}_0)^{+-} = \mathcal{A}^{+-}$.

Let
$$\mathcal{L}_0^* = \{ \mathcal{A}^{+-} : \mathcal{A} \subseteq \mathcal{L}_0 \text{ and } \mathcal{A}^{+\mathcal{L}_0 - \mathcal{L}_0} = \mathcal{A} \}.$$

Theorem 23

Let \mathcal{L} be a lattice and $\mathcal{L}_0 \subseteq \mathcal{L}$ be a sublattice. Then \mathcal{L}_0^* is isomorphic to \mathcal{L}_0^{δ} .

To show Theorem 23, we show the following propositions.

Proposition 24

Let \mathcal{L} be a lattice and $\mathcal{L}_0 \subseteq \mathcal{L}$ be a sublattice. Then for $a \in \mathcal{L}_0$, $\{a\}^{+\mathcal{L}_0-\mathcal{L}_0} = \{a\}^{+-} \cap \mathcal{L}_0 = (\leftarrow, a] \cap \mathcal{L}_0$.

Corollary 25

Let \mathcal{L} be a lattice and $\mathcal{L}_0 \subseteq \mathcal{L}$ be a sublattice. Then for every $a \in \mathcal{L}_0$, $(\{a\}^{+_{\mathcal{L}_0}-_{\mathcal{L}_0}})^{+-} = ((\leftarrow, a] \cap \mathcal{L}_0)^{+-} = (\leftarrow, a] = \{a\}^{+-}$.

Proposition 26

Let \mathcal{L} be a lattice and $\mathcal{L}_0 \subseteq \mathcal{L}$ be a sublattice. Then \mathcal{L}_0 is join and meet-dense in \mathcal{L}_0^* .

イロト イポト イヨト イヨ

From Corollary 25, \mathcal{L}_0 can be embedded in \mathcal{L}_0^* by considering the map $\rho : \mathcal{L}_0 \to \mathcal{L}_0^*$ where $\rho(a) = (\leftarrow, a]$. Furthermore by Proposition 26, as \mathcal{L}_0 is join and meet-dense in \mathcal{L}_0^* , \mathcal{L}_0^* and \mathcal{L}_0^{δ} are order-isomorphic. Thus \mathcal{L}_0^{δ} can be seen as a subset of \mathcal{L}^{δ} .

Definition 27

Let \mathcal{L} be a lattice and $\mathcal{A} \subseteq \mathcal{L}$. Then \mathcal{A} is said to be *convex* if for $x, y \in \mathcal{A}$ with $x \leq y$ then $[x, y] \subseteq \mathcal{A}$.

Proposition 28

Let \mathcal{L} be a lattice and $\mathcal{L}_0 \subseteq \mathcal{L}$ be a convex sublattice. Then $\mathcal{A}^{+_{\mathcal{L}_0}-_{\mathcal{L}_0}} = \mathcal{A}^{+-} \cap \mathcal{L}_0$ for every $\mathcal{A} \subseteq \mathcal{L}_0$ satisfying $\mathcal{A}^{+_{\mathcal{L}_0}} \neq \emptyset$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

In the next example we note that if \mathcal{L}_0 is a convex sublattice and $\mathcal{A} \subseteq \mathcal{L}_0$ such that $\mathcal{A}^{+\mathcal{L}_0} = \emptyset$, then Proposition 28 does not hold.

Example 29

Consider $\mathcal{L} = \{(0, a) : 0 \le a \le 1\} \cup \{(1, b) : 0 \le b \le 1\} \cup \{(\frac{1}{2}, 1)\}$ ordered by pointwise partial order. Let $\mathcal{L}_0 = \{(0, a) : 0 \le a \le 1\} \cup \{(1, b) : 0 \le b < 1\}$ such that \mathcal{L}_0 is a convex sublattice of \mathcal{L} with no greatest element. Let $\mathcal{A} = \{(0, a) : 0 \le a < 1\}$, then $\mathcal{A}^{+\mathcal{L}_0 - \mathcal{L}_0} = \mathcal{L}_0$. However, $\mathcal{A}^+ = \{(\frac{1}{2}, 1), (1, 1)\}$ and $\mathcal{A}^{+-} = \mathcal{A} \cup \{(\frac{1}{2}, 1)\}$. Thus, $\mathcal{A}^{+\mathcal{L}_0 - \mathcal{L}_0} \ne \mathcal{A}^{+-} \cap \mathcal{L}_0$.

- ・ 同 ト ・ ヨ ト - - ヨ

- Kevin Abela, Emmanuel Chetcuti, and Hans Weber, On different modes of order convergence and some applications, Positivity 26 (2022), no. 1, Paper No. 14, 22. MR 4383377
- [2] N. Gao, V. G. Troitsky, and F. Xanthos, *Uo-convergence and its applications to Cesàro means in Banach lattices*, Israel J. Math. 220 (2017), no. 2, 649–689. MR 3666441
- [3] Niushan Gao and Denny Leung, Smallest order closed sublattices and option spanning, Proceedings of the American Mathematical Society 146 (2017).
- [4] Niushan Gao and Denny H. Leung, Smallest order closed sublattices and option spanning, Proc. Amer. Math. Soc. 146 (2018), no. 2, 705–716. MR 3731703
- [5] W. A. J. Luxemburg and A. C. Zaanen, *Riesz spaces*, North-Holland Pub. Co.; American Elsevier Pub. Co, 1971.