Asymptotic behaviour of large-scale solutions of Hitchin's equations in higher rank (joint works with Qiongling Li and Szilard Szabo)

Takuro Mochizuki

RIMS, Kyoto University

2023 April

- The asymptotic behaviour of large-scale solutions of the Hitchin equation.
- The existence of harmonic metrics for generic Higgs bundles equipped with a non-degenerate symmetric pairing

Both problems are related with some easy estimates for harmonic metrics satisfying the compatibility condition with non-degenerate symmetric pairing.

Introduction

We consider a stable Higgs bundle (E, θ) of degree 0 and rank *n* on a compact Riemann surface *X*. The spectral curve is denoted by Σ_{θ} We consider the case Σ_{θ} is smooth. (The general fiber of the projection $\Sigma_{\theta} \to X$ consists of *n*-points.) We fix a flat metric $h_{\det(E)}$ of det(E).

Theorem (Hitchin, Simpson) There exists a unique harmonic metric h of (E, θ) such that $det(h) = h_{det(E)}$, i.e., h is a Hermitian metric of E satisfying the Hitchin equation:

$$R(h) + [\theta, \theta_h^{\dagger}] = 0.$$

(*R*(*h*): the curvature of the Chern connection of (*E*,*h*), θ_h^{\dagger} : the adjoint of θ .)

For each t > 0, because $(E, t\theta)$ is stable, there exists a harmonic metric h_t of $(E, t\theta)$ (large-scale solution, large solution) such that $det(h_t) = h_{det(E)}$:

$$R(h_t) + t^2[\theta, \theta_{h_t}^{\dagger}] = 0.$$

Issue Study the asymptotic behaviour of h_t as $t \to \infty$.

Motivation

Let \mathcal{M}_H denote the moduli space of Higgs bundles.

Theorem (Hitchin) \mathcal{M}_H is naturally equipped with the hyperkähler metric g_H .

The tangent space of \mathcal{M}_H at (E, θ) is identified with

 $\mathscr{H}^{1}(E, \theta, h) = \{ \text{harmonic 1-forms of } (\text{End}(E), \theta, h) \}.$

The metric $(g_H)_{(E,\theta)}$ is identified with the natural metric on $\mathscr{H}^1(E,\theta,h)$.

We are interested in the behaviour of g_H around ∞ of \mathcal{M}_H .

Let \mathscr{M}'_H denote the moduli space of Higgs bundles whose spectral curves are smooth. There exists the Hitchin fibration

$$\Phi_H: \mathscr{M}'_H \to A'_H \subset \bigoplus_{j=2}^n H^0(X, K^j_X).$$

There exists a hyperkähler metric g_{sf} of \mathscr{M}'_{H} called the semi-flat metric determined by the structure of the integrable systems.

According to a conjectural description of g_H by Gaiotto-Moore-Neitzke

 $g_H - g_{sf} = e^{-eta t} \quad (eta > 0) \quad \mbox{along the ray} \; (E,t heta) \; (t
ightarrow \infty)$

Known results in the rank 2 case

Suppose rank E = 2. For simplicity, we assume tr $\theta = 0$. We set $D := \{\det \theta = 0\} \subset X$ (the set of the critical value of $\Sigma_{\theta} \to X$).

Theorem (Mazzeo-Swoboda-Weiss-Witt) \exists a decoupled harmonic metric h_{∞} ($R(h_{\infty}) = [\theta, \theta_{h_{\infty}}^{\dagger}] = 0$) of $(E, \theta)_{|X \setminus D}$, such that $\det(h_{\infty}) = h_{\det(E)}$ and

$$h_t - h_\infty = O(e^{-eta(K)t})$$
 on $orall$ compact $K \subset X \setminus D$ for $\exists eta(K) > 0$

More precisely, they constructed a family of metrics \tilde{h}_t of E such that $\det(\tilde{h}_t) = h_{\det(E)}$ and

$$\begin{split} \widetilde{h}_t - h_\infty &= O(e^{-\beta(K)t}) \quad (\text{on } \forall \text{ compact } K \subset X \setminus D \text{ for } \exists \beta(K) > 0) \\ R(\widetilde{h}_t) + t^2[\theta, \theta^{\dagger}_{\widetilde{h}_t}] &= O(e^{-\varepsilon t}) \quad (\text{on } X \text{ for } \exists \varepsilon > 0) \end{split}$$

Theorem (Mazzeo-Swoboda-Weiss-Witt)

$$\widetilde{h}_t - h_t = O(e^{-\delta t}) \quad ext{on } X ext{ for } \exists \delta > 0$$

- On the basis of this result and some ideas of Dumas-Neitzke, MSWW and Fredrickson proved $g_{sf} g_H = O(e^{-\beta t})$ along the ray $(E, t\theta)$.
- It was generalized to some parabolic case by Fredrickson-Mazzeo-Swoboda-Weiss.

Main result

We consider the case where rank(E) is arbitrary. Let $D \subset X$ denote the set of the critical values of $\Sigma_{\theta} \to X$.

Theorem (Fredrickson, M-Szabo) \exists a decoupled harmonic metric h_{∞} of $(E, \theta)_{|X \setminus D}$, and

$$h_t - h_\infty = O(e^{-eta(K)t})$$
 on $orall$ compact $K \subset X \setminus D$ for $\exists eta(K) > 0$

A rough strategy is the same. We construct a family of metrics \tilde{h}_t of E such that $h_{\det(E)} = h_{\det(E)}$ and

$$\widetilde{h}_t - h_{\infty} = O(e^{-\beta(K)t})$$
 (on \forall compact $K \subset X \setminus D$ for $\exists \beta(K) > 0$)
 $R(\widetilde{h}_t) + t^2[\theta, \theta_{\widetilde{h}_t}^{\dagger}] = O(e^{-\varepsilon t})$ (on X for $\exists \varepsilon > 0$)

Theorem (Fredrickson, M-Szabo)

$$\widetilde{h}_t - h_t = O(e^{-\delta t}) \quad ext{on } X ext{ for } \exists \delta > 0$$

But, because the ramification of $\Sigma_{\theta} \to X$ is more complicated, we need new ideas for the proof.

Theorem (M-Szabo) It is generalized to the case of family of Higgs bundles (E_s, θ_s) $(s \in S)$ such that Σ_{θ_s} are smooth.

The fiducial solutions in the rank 2 case

Suppose rank E = 2, det $(E) = \mathcal{O}_X$ and tr $\theta = 0$. Let $P \in D = \{\det \theta = 0\}$. Because Σ_{θ} is smooth, P is a simple zero of det θ . $\exists (X_P, z_P)$ a holomorphic coordinate neighbourhood around P such that

$$z_P(P) = 0$$
, $\det(\theta) = z_P(dz_P)^2$.

We identify $T^*X_P = X_P \times \mathbb{C}_{\xi}$, $(z_P, \xi \, dz_P) \longleftrightarrow (z_P, \xi)$

$$\Sigma_{\theta} \cap T^* X_P = \left\{ (z_P, \xi) \, \middle| \, \xi^2 - z_P = 0 \right\}.$$

 \exists a frame v_1, v_2 of $E_{|X_P|}$ such that

$$\theta(v_1) = v_2 dz_P, \quad \theta(v_2) = v_1 z_P dz_P, \quad v_1 \wedge v_2 = 1.$$

There exists a family of harmonic metrics $h_{P,t}$ (fiducial solutions) of $(E,t\theta)_{|X_P}$ such that

$$h_{P,t}(v_1, v_2) = 0, \quad h_{P,t}(v_i, v_i)(z_P) = h_{P,t}(v_i, v_i)(|z_P|), \quad |v_1 \wedge v_2|_{h_{P,t}} = 1.$$

- It is explicitly described by using a solution of a special case of Painlevé III.
- It is also obtained by a rescaling of a wild harmonic bundle on C.

We consider the Higgs bundle

$$E_0 = \mathscr{O}_{\mathbb{C}} e_1 \oplus \mathscr{O}_{\mathbb{C}} e_2, \quad \theta_0(e_1, e_2) = (e_1, e_2) \begin{pmatrix} 0 & w \\ 1 & 0 \end{pmatrix} dw.$$

This Higgs bundle has a unique harmonic metric h_0 such that $|e_1 \wedge e_2|_{\det(h)} = 1$.

For t > 0, the map $\varphi_t : X_P \to \mathbb{C}$ is defined by $\varphi_t(z_P) = t^{2/3} z_P$.

$$\varphi_t^*(E_0, \theta_0) \simeq (E, t\theta)_{|X_P}, \quad t^{1/6} \varphi_t^*(e_1) \leftrightarrow v_1, \quad t^{-1/6} \varphi_t^*(e_2) \leftrightarrow v_2.$$

We obtain $h_{P,t} = \varphi_t^*(h_0)$.

In the rank 2 case, if the spectral curve is smooth,

- the local structure of Higgs bundle is uniquely determined, and highly symmetric,
- there exists a good family of harmonic metric
 (a solution of an ODE, a rescaling of wild harmonic bundle on (ℙ¹,∞))

A problem in the higher rank case

Suppose rank(E) = 3, det $(E) = \mathcal{O}_X$ and tr $\theta = 0$.

Let P be a critical value of $\Sigma_{\theta} \to X$. Assume that $T_P^* X \cap \Sigma_{\theta} = \{0\}$.

Let (X_P, z_P) be a coordinate neighbourhood around P such that $z_P(P) = 0$.

$$T^*X_P \cap \Sigma_{\theta} = \{(z_P, \xi) | \xi^3 + \alpha_1(z_P)\xi + \alpha_0(z_P) = 0\}.$$

• $\alpha_0(0) = 0$ and $\partial_{z_p} \alpha_0(0) \neq 0$. By changing z_P , we may normalize $\alpha_0(z_P) = -z_P$.

• $\alpha_1(0) = 0$. But, in general, there is no additional condition.

If α_1 is constantly 0, there is a direct generalization of the fiducial solution.

Indeed, $(E, \theta)_{|X_P}$ has a frame v_1, v_2, v_3 such that

$$\boldsymbol{\theta}(v_1) = v_2 \, dz_P, \quad \boldsymbol{\theta}(v_2) = v_3 \, dz_P, \quad \boldsymbol{\theta}(v_3) = z_P \, v_3 \, dz_P, \quad v_1 \wedge v_2 \wedge v_3 = 1.$$

By solving an ODE, or by rescaling a wild harmonic bundle, we can obtain a family of harmonic metrics $h_{P,t}$ of $(E,t\theta)_{|X_P}$ such that

$$h_{P,t}(v_i, v_j) = 0 \ (i \neq j), \quad h_{P,t}(v_i, v_i)(z_P) = h_{P,t}(v_i, v_i)(|z_P|), \quad |v_1 \wedge v_2 \wedge v_3|_{h_{P,t}} = 1.$$

But, to study the case where α_1 is not constantly 0, we need new ideas.

Basic tools

Non-degenerate symmetric pairings

Let (E, θ) be a Higgs bundle on a Riemann surface X.

• A non-degenerate symmetric pairing C of (E, θ) is a non-degenerate symmetric pairing of E such that θ is self-dual with respect to C.

 $C(\theta u, v) = C(u, \theta v)$ for any local sections u, v of E

It induces an isomorphism $\Psi_C : E \simeq E^{\vee}$.

 A Hermitian metric h is compatible with C if Ψ_C is an isometry with respect to h and h[∨].

Dirichlet problem for harmonic metrics

Let $Y \subset X$ be a relatively compact open subset such that ∂Y is smooth. Let $h_{\partial Y}$ be a Hermitian metric of $E_{|\partial Y}$.

Theorem (Donaldson) There exists a unique harmonic metric h of $(E, \theta)_{|Y}$ such that $h_{|\partial Y} = h_{\partial Y}$.

The following is a minor complement.

Proposition (Li-M) If (E, θ) is equipped with a non-degenerate symmetric pairing C, and if $h_{\partial Y}$ is compatible with $C_{|\partial Y}$, then h is compatible with C.

Canonical decoupled harmonic metric in the regular semisimple case Let (E, θ) be a Higgs bundle of rank n on X.

Definition (E, θ) is called regular semisimple if each fiber of $\Sigma_{\theta} \to X$ has *n*-points.

Suppose (E, θ) is equipped with a non-degenerate symmetric pairing C.

Proposition (Li-M) If (E, θ) is regular semisimple, there exists a unique decoupled harmonic metric h^C of (E, θ) compatible with C.

- Let $\pi: \Sigma_{\theta} \to X$ denote the projection. There exists a line bundle L on Σ_{θ} such that $\pi_*(L) = (E, \theta)$.
- There exists a non-degenerate symmetric pairing C_L of L such that $C = \pi_*(C_L)$.
- We obtain a flat metric h_L of L as $h_L(v,v) = |C_L(v,v)|$.
- $\pi_*(h_L)$ is the desired decoupled harmonic metric.

Remark The uniqueness is claimed for decoupled harmonic metrics compatible with *C*. In general, there are many other harmonic metrics compatible with *C*.

Some estimates

Let $\operatorname{Harm}(E, \theta, C)$ be the set of harmonic metrics of (E, θ) compatible with C. For any $h \in \operatorname{Harm}(E, \theta, C)$, we obtain the automorphism $s(h^{C}, h)$ of E determined by

$$h(u,v) = h^C \left(s(h^C,h)u,v \right) \quad u,v \in C^\infty(X,E).$$

Let $X' \subset X$ be a relatively compact open subset.

Estimate 1 (Li-M) There exists $B_1 > 0$, depending only on X, X' and Σ_{θ} , such that $\sup_{X'} |s(h^C, h)|_{h^C} \leq B_1 \quad (\forall h \in \operatorname{Harm}(E, \theta, C)).$

Estimate 2 (M-Szabo)

There exists $B_2, B_3 > 0$ depending only on X, X' and Σ_{θ} , such that

$$\sup_{X'} |s(h^C, h) - \mathrm{id}_E|_{h^C} \le B_2 \exp(-B_3 t) \quad (\forall t \ge 1, \ \forall h \in \mathrm{Harm}(E, t\theta, C)).$$

Remark Higher derivatives are also dominated similarly. These estimates follow from a variant of Simpson's main estimates and elementary calculations for matrices. Let X be a compact Riemann surface. Let (E, θ) be a stable Higgs bundle of degree 0 on X. Suppose the spectral curve is smooth. We fix a flat metric $h_{\det(E)}$ of $\det(E)$. Let h_t be the unique harmonic metric of $(E, t\theta)$ such that $\det(h_t) = h_{\det(E)}$.

We would like to study the behaviour of h_t as $t \to \infty$.

Symmetric case (easy)

If (E, θ) is equipped with a non-degenerate symmetric pairing, it is easy to study. Let D denote the set of the critical values of $\Sigma_{\theta} \to X$. There exists the decoupled harmonic metric h^C of $(E, \theta)_{|X \setminus D}$ compatible with C. The following theorem is a direct consequence of Estimate 2.

Theorem (M-Szabo) For any compact subset $K \subset X \setminus D$, there exists $\beta(K) > 0$ such that

$$\sup_{K} |s(h^{C}, h_{t}) - \mathrm{id}_{E}|_{h^{C}} = O(\exp(-\beta(K)t)) \quad (t \to \infty).$$

Estimate 2 is also useful even in the case (E, θ) is not equipped with C.

Limiting configuration (Mazzeo-Swoboda-Weiss-Witt, Fredrickson)

There exists a line bundle L on Σ_{θ} with an isomorphism $\pi_*(L) \simeq (E, \theta)$.

Let $Q \in \Sigma_{\theta}$ be the critical point of $\pi : \Sigma_{\theta} \to X$. Let r(Q) denote the ramification index at Q, i.e., for an appropriate local coordinate ζ_Q around Q, $\pi(\zeta_Q) = \zeta^{r(Q)}$. Because

$$\deg(L) - \sum_{Q} \frac{1}{2}(r(Q) - 1) = 0,$$

there exists a flat metric h_L of $L_{|\Sigma_{ heta} \setminus \pi^{-1}(D)}$ such that

 $h_L(v_Q, v_Q) = |\zeta_Q|^{-r(Q)+1} \quad \exists \text{ frame } v_Q \text{ of } L \text{ around } Q$

We obtain the decoupled harmonic metric $h_{\infty} = \pi_*(h_L)$ of $(E, \theta)_{|X\setminus D}$ (limiting configuration). We can normalize $\det(h_{\infty}) = h_{\det(E)}$ (C^{∞} on X). We would like to show

$$\lim_{t\to\infty}h_t=h_\infty.$$

Locally defined symmetric pairing

Lemma Let $P \in D$. On a neighbourhood X_P of P, there exists a non-degenerate symmetric pairing C_P of $(E, \theta)_{|X_P|}$ such that $C_{P|X_P \setminus \{P\}}$ is compatible with $h_{\infty|X_P \setminus \{P\}}$.

- $T^*X_P \cap \Sigma_{\theta} = \bigsqcup_{Q \in T_P^*X \cap \Sigma_{\theta}} (\Sigma_{\theta})_Q$ (the connected components)
- Let ζ_Q be a holomorphic coordinate of $(\Sigma_{\theta})_Q$ such that $\zeta_Q(Q) = 0$.
- Let L_Q denote the restriction of L to (Σ_θ)_Q. There exists a frame v_Q of L_Q such that

$$h_L(v_Q, v_Q) = |\zeta_Q|^{-r(Q)+1}.$$

We define

$$C_{\mathcal{Q}}: L_{\mathcal{Q}} \otimes L_{\mathcal{Q}} \longrightarrow \mathscr{O}_{(\Sigma_{\theta})_{\mathcal{Q}}} ((r(\mathcal{Q}) - 1)\mathcal{Q}), \quad C_{\mathcal{Q}}(v_{\mathcal{Q}}, v_{\mathcal{Q}}) = \zeta^{-r(\mathcal{Q})+1}.$$

- C_P = ⊕_Q π_{*}(C_Q) induces a non-degenerate symmetric pairing of (E, θ)_{|X_P\{P}} compatible with h_∞.
- Moreover, C_P induces a non-degenerate symmetric pairing of $(E, \theta)_{|X_P}$.

This pairing C_P is useful in the study of the asymptotic behaviour of large solutions.

Local models and approximate solutions

- For each t > 0, we obtain a harmonic metric $h_{P,t}$ of $(E, t\theta)_{|X_P}$ such that $h_{P,t|\partial X_P} = h_{\infty|\partial X_P}$ as a solution of the Dirichlet problem.
- Because h_{∞} is compatible with C_P , $h_{P,t}$ is compatible with C_P .
- By Estimate 2, on any compact subset K ⊂ X_P \ {P},

$$\sup_{K} |s(h_{\infty}, h_{P,t}) - \mathrm{id}|_{h_{\infty}} \leq B_{2}(K) \exp\left(-B_{3}(K)t\right) \quad (t \to \infty).$$

• By patching h_{∞} and $h_{P,t}$ $(P \in D)$, we construct Hermitian metrics h_t of E such that $\det(\tilde{h}_t) = h_{\det(E)}$ and

$$\begin{split} \sup_{X} & \left| R(\widetilde{h}_{t}) + t^{2} [\theta, \theta_{\widetilde{h}_{t}}^{\dagger}] \right|_{\widetilde{h}_{t}, g_{X}} = O(e^{-\varepsilon t}) \quad (\exists \varepsilon > 0). \\ \sup_{K} & \left| s(h_{\infty}, \widetilde{h}_{t}) - \mathrm{id} \right|_{h_{\infty}} = O(e^{-\beta(K)t}) \quad (\forall K \subset X \setminus D \text{ compact } \exists \beta(K) > 0) \end{split}$$

Theorem (M-Szabo) $\sup_X |s(\tilde{h}_t, h) - \operatorname{id}|_{\tilde{h}_t} = O(e^{-\delta t})$ ($\delta > 0$). The higher derivatives are also dominated similarly.

Outline of the proof

Step 1 We set $s_t = s(\tilde{h}_t, h_t)$. We have $det(s_t) = 1$ and

$$\Delta_{g_X} \operatorname{Tr}(s_t) = \sqrt{-1} \Lambda \operatorname{Tr}\left(\left(R(\widetilde{h}_t) + t^2[\theta, \theta_{\widetilde{h}_t}^{\dagger}]\right) \cdot s_t\right) - \left|\overline{\partial}_E(s_t) s_t^{-1/2}\right|_{\widetilde{h}_t}^2 - \left|[t\theta, s_t] s_t^{-1/2}\right|_{\widetilde{h}_t}^2$$

We obtain

$$\left\|\overline{\partial}_{E}(s_{t})s_{t}^{-1/2}\right\|_{L^{2},\widetilde{h}_{t},g_{X}}^{2}+\left\|[t\theta,s_{t}]s_{t}^{-1/2}\right\|_{L^{2},\widetilde{h}_{t},g_{X}}^{2}=O(e^{-\varepsilon t})\quad (\exists\varepsilon>0)$$

We set $b_t = \sup_X \operatorname{Tr}(s_t)$. Note that $b_t \ge \operatorname{rank}(E)$, and $b_t = \operatorname{rank}(E)$ if and only if $s_t = \operatorname{id}$. We set $u_t = b_t^{-1} s_t$.

- $\exists B > 0$ such that $|u_t|_{\widetilde{h}_t} \leq B$, and $\int_X |\overline{\partial} u_t|_{\widetilde{h}_t}^2 + |[\theta, u_t]|_{\widetilde{h}_t}^2 \to 0$ as $t \to \infty$.
- \exists subsequence $u_{t(i)}$ convergent to u_{∞} in L_1^2 locally on $X \setminus D$.

Lemma u_{∞} is non-zero, bounded with respect to h_{∞} , and satisfies $\overline{\partial}u_{\infty} = [\theta, u_{\infty}] = 0$. Moreover, u_{∞} is self-adjoint with respect to h_{∞} .

- By looking at (E, θ)_{|X\D} with h_∞, it is easy to see that such u_∞ is the multiplication of a positive constant.
- Hence, b_t and b_t^{-1} are bounded. Together with $det(s_t) = 1$, we obtain $s_t \rightarrow id_E$.

Step 2 By the convergence $s_t \rightarrow id_E$, we obtain

$$\left\|\overline{\partial}(s_t)\right\|_{L^2,\widetilde{h}_t,g_X}^2 + \left\|t[\theta,s_t]\right\|_{L^2,\widetilde{h}_t,g_X}^2 = O(e^{-\varepsilon t}) \quad (\exists \varepsilon > 0).$$

Because s_t are self-adjoint, we also obtain

$$\left\|\partial_{\widetilde{h}_t}(s_t)\right\|_{L^2,\widetilde{h}_t,g_X}^2+\left\|t[\theta_{\widetilde{h}_t}^{\dagger},s_t]\right\|_{L^2,\widetilde{h}_t,g_X}^2=O(e^{-\varepsilon t}).$$

By a variant of Simpson's main estimate,

$$\sup_{K} \left| \overline{\partial} (s_t^{-1} \partial_{\widetilde{h}_t} s_t) \right|_{\widetilde{h}_t, g_X} = O(e^{-\beta(K)t}) \quad (\forall K \subset X \setminus D \text{ compact}, \exists \beta(K) > 0)$$

We obtain

$$\sup_{K} \left| \partial_{\widetilde{h}_{t}}(s_{t}) \right|_{\widetilde{h}_{t},g_{X}} = O\left(e^{-\beta'(K)t} \right), \quad \sup_{K} \left| \overline{\partial}(s_{t}) \right|_{\widetilde{h}_{t},g_{X}} = O\left(e^{-\beta'(K)t} \right).$$

It means

$$\sup_{K} |\nabla_{\widetilde{h}_{t}}(s_{t})|_{\widetilde{h}_{t},g_{X}} = O(e^{-\beta'(K)t}).$$

Step 3 Let $P \in X \setminus D$. On a neighbourhood X_P , there exists a decomposition

$$(E, \theta)_{|X_P} = \bigoplus_{i=1}^n (E_{P,i}, \theta_{P,i}) \quad (\operatorname{rank} E_{P,i} = 1).$$

We have the decomposition $s_t = \sum (s_t)_{P,i,j}$ $(s_t)_{P,i,j} \in \text{Hom}(E_{P,j}, E_{P,i}).$

By a variant of Simpson's main estimate, we obtain $|(s_t)_{P,i,j}|_{\widetilde{h}_t} = O(e^{-\beta(X_P)t})$ $(i \neq j)$.

Because det $(s_t) = 1$, we obtain $\prod_{i=1}^n (s_t)_{P,i,i} - 1 = O(e^{-\beta'(X_P)t})$.

Step 4

Let γ be a loop on $X \setminus D$ such that $\gamma(0) = \gamma(1) = P$. We obtain a permutation of the components $E_{P,i}$ as the monodromy of $\Sigma_{\theta} \to X$ along γ . Because $|\nabla_{\tilde{h}_t}(s_t)|_{\tilde{h}_t,g_X} = O(e^{-\beta t})$ along γ (Step 2), we obtain

$$(s_t)_{P,i,i} - (s_t)_{P,j,j} = O(e^{-\beta''(X_P)t}) \quad (\forall i, j).$$

Because $\prod_{i=1}^{n} (s_t)_{P,i,i} - 1 = O(e^{-\beta'(X_P)t})$ by Step 3, we obtain

$$(s_t)_{P,i,i} - 1 = O(e^{-\beta'''(X_P)t}) \quad (\forall i).$$

Namely, $\sup_K |s_t - \mathrm{id}|_{\widetilde{h}_t} = O(e^{-\beta(K)t}) \quad (\forall K \subset X \setminus D \text{ compact } \exists \beta(K) > 0).$

Step 5 Let N(D) be a neighbourhood of D.

$$\sup_{X\setminus N(D)} |s_t - \mathrm{id}|_{\widetilde{h}_t} = O(e^{-\beta t}).$$

$$\Delta_{g_X} \operatorname{Tr}(s_t - \operatorname{id}) \leq O(e^{-\beta t}).$$

By using the maximum principle for subharmonic functions, we obtain

$$\operatorname{Tr}(s_t - \operatorname{id}) = O(e^{-\beta t}).$$

It implies $|s_t - \operatorname{id}|_{\widetilde{h}_t} = O(e^{-\beta t}).$

A Higgs bundle is called generically regular semisimple if there exists a discrete subset $D \subset X$ such that $(E, \theta)_{|X \setminus D}$ is regular semisimple.

Theorem (Li-M)

Let (E, θ) be a generically regular semisimple equipped with a non-degenerate symmetric pairing C on X (not necessarily compact). Then, (E, θ) has a harmonic metric compatible with C.

Remark We can apply this theorem to Higgs bundles in the Hitchin section.

Remark If $X = \overline{X} \setminus D$ for a compact Riemann surface \overline{X} and a finite point D, and if Σ_{θ} is meromorphic along D, we can classify harmonic metrics the associated filtered Higgs bundles. We do not have to care about polystability condition in the symmetric case.

Outline of the proof

- We take an increasing family of open subsets X₁ ⊂ X₂ ⊂ · · · such that (i) X_i are relatively compact in X_{i+1}, (ii) ∪X_i = X, (iii) ∂X_i are smooth, (iv) ∂X_i ∩ D = Ø.
- Let h₀ be a Hermitian metric of E compatible with C. As a solution of the Dirichlet problem, we obtain harmonic metrics h_i of E_{|X_i} such that h_{i|∂X_i} = h_{0|∂X_i}. h_i are also compatible with C.
- Let N(D) denote a neighbourhood of D such that ∂X_i ∩ N(D) = Ø. By Estimate 1, for each i, there exists B_i > 0 such that

$$\sup_{X_i \setminus N(D)} (|s(h^C, h_j)|_{h^C} + |s(h^C, h_j)^{-1}|_{h^C}) \le B_i \quad (\forall j > i).$$

By using the subharmonicity of Tr(s(h_{i+1},h_j)), for each i, there exists B'_i > 0 such that

$$\sup_{X_i} \left(|s(h_{i+1}, h_j)|_{h^c} + |s(h_{i+1}, h_j)^{-1}|_{h^c} \right) \le B'_i \quad (\forall j > i).$$

• Then, we can show the existence of a convergent subsequence by a standard argument.