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1
Recall: Let X be a projective complex algebraic manifold. A class C of
coherent sheaves on X with fixed Hilbert polynomial χ is called
bounded if there exists a coherent sheaf V on X such that for any E ∈ C
there exists a sheaf epimorphism V ↠ E .
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1
Recall: Let X be a projective complex algebraic manifold. A class C of
coherent sheaves on X with fixed Hilbert polynomial χ is called
bounded if there exists a coherent sheaf V on X such that for any E ∈ C
there exists a sheaf epimorphism V ↠ E .
Grothendieck: There exists a projective complex scheme Quotχ(V) and
an epimorphism p∗

X (V) ↠ Q on Quotχ(V) × X , with Q flat over
Quotχ(V), such that the map

Quotχ(V) ∋ q $→ Q|{q}×X

parameterizes bijectively the quotients of V with Hilbert polynomial χ.
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1
Recall: Let X be a projective complex algebraic manifold. A class C of
coherent sheaves on X with fixed Hilbert polynomial χ is called
bounded if there exists a coherent sheaf V on X such that for any E ∈ C
there exists a sheaf epimorphism V ↠ E .
Grothendieck: There exists a projective complex scheme Quotχ(V) and
an epimorphism p∗

X (V) ↠ Q on Quotχ(V) × X , with Q flat over
Quotχ(V), such that the map

Quotχ(V) ∋ q $→ Q|{q}×X

parameterizes bijectively the quotients of V with Hilbert polynomial χ.
Conclusion: if C is bounded, every E ∈ C is isomorphic to a element of a
flat family (Ft)t∈T parameterized by a projective scheme T .

Andrei Teleman holomorphic bundles framed along a real hypersurface



Motivation and introduction
Holomorphic bundles framed on a real hypersurface

An example

1
Recall: Let X be a projective complex algebraic manifold. A class C of
coherent sheaves on X with fixed Hilbert polynomial χ is called
bounded if there exists a coherent sheaf V on X such that for any E ∈ C
there exists a sheaf epimorphism V ↠ E .
Grothendieck: There exists a projective complex scheme Quotχ(V) and
an epimorphism p∗

X (V) ↠ Q on Quotχ(V) × X , with Q flat over
Quotχ(V), such that the map

Quotχ(V) ∋ q $→ Q|{q}×X

parameterizes bijectively the quotients of V with Hilbert polynomial χ.
Conclusion: if C is bounded, every E ∈ C is isomorphic to a element of a
flat family (Ft)t∈T parameterized by a projective scheme T .
Flat family paramaterized by T means: a coherent sheaf F over T × X ,
which is flat over T .
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1
Recall: Let X be a projective complex algebraic manifold. A class C of
coherent sheaves on X with fixed Hilbert polynomial χ is called
bounded if there exists a coherent sheaf V on X such that for any E ∈ C
there exists a sheaf epimorphism V ↠ E .
Grothendieck: There exists a projective complex scheme Quotχ(V) and
an epimorphism p∗

X (V) ↠ Q on Quotχ(V) × X , with Q flat over
Quotχ(V), such that the map

Quotχ(V) ∋ q $→ Q|{q}×X

parameterizes bijectively the quotients of V with Hilbert polynomial χ.
Conclusion: if C is bounded, every E ∈ C is isomorphic to a element of a
flat family (Ft)t∈T parameterized by a projective scheme T .
Flat family paramaterized by T means: a coherent sheaf F over T × X ,
which is flat over T . For such F we put Ft := F{t}×X .
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A fundamental result in the theory of moduli spaces: the class of slope
semi-stable torsion free coherent sheaves with fixed Hilbert polynomial
is bounded.
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A fundamental result in the theory of moduli spaces: the class of slope
semi-stable torsion free coherent sheaves with fixed Hilbert polynomial
is bounded.
Question: What is the correct (natural, useful) boundedness condition
in non-algebraic complex geometry?
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A fundamental result in the theory of moduli spaces: the class of slope
semi-stable torsion free coherent sheaves with fixed Hilbert polynomial
is bounded.
Question: What is the correct (natural, useful) boundedness condition
in non-algebraic complex geometry?
This is the starting point of a joint research project with Matei Toma.
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2

A fundamental result in the theory of moduli spaces: the class of slope
semi-stable torsion free coherent sheaves with fixed Hilbert polynomial
is bounded.
Question: What is the correct (natural, useful) boundedness condition
in non-algebraic complex geometry?
This is the starting point of a joint research project with Matei Toma.

Definition (M. Toma)
Let X be a compact complex manifold. A class C of coherent sheaves
on X is called bounded, if there exists

a complex space T , a flat family (Ft)t∈T parameterized by T and
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2

A fundamental result in the theory of moduli spaces: the class of slope
semi-stable torsion free coherent sheaves with fixed Hilbert polynomial
is bounded.
Question: What is the correct (natural, useful) boundedness condition
in non-algebraic complex geometry?
This is the starting point of a joint research project with Matei Toma.

Definition (M. Toma)
Let X be a compact complex manifold. A class C of coherent sheaves
on X is called bounded, if there exists

a complex space T , a flat family (Ft)t∈T parameterized by T and
a compact set K ⊂ T ,

such that, for any E ∈ C, there exists t ∈ K with E ≃ Ft .
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Remark: If C is bounded, then any sequence (En)n of C has a
subsequence (Enk )k which is convergent in complex geometric sense,
i.e. we have Enk ≃ Ftk for a flat family (Ft)t∈T and a convergent
sequence (tk)k of T .
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3

Remark: If C is bounded, then any sequence (En)n of C has a
subsequence (Enk )k which is convergent in complex geometric sense,
i.e. we have Enk ≃ Ftk for a flat family (Ft)t∈T and a convergent
sequence (tk)k of T .
Let now g be a Gauduchon metric on X .
Fundamental question: Is the class of slope g-semi-stable torsion
free sheaves with fixed topological type and fixed determinant line
bundle bounded in the sense of this definition?
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3

Remark: If C is bounded, then any sequence (En)n of C has a
subsequence (Enk )k which is convergent in complex geometric sense,
i.e. we have Enk ≃ Ftk for a flat family (Ft)t∈T and a convergent
sequence (tk)k of T .
Let now g be a Gauduchon metric on X .
Fundamental question: Is the class of slope g-semi-stable torsion
free sheaves with fixed topological type and fixed determinant line
bundle bounded in the sense of this definition?
Examples:

D̄
S4

Figure: Two compact moduli spaces on class VII surfaces. In red: the
non-stable semistable locus. Not complex spaces!
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3

Remark: If C is bounded, then any sequence (En)n of C has a
subsequence (Enk )k which is convergent in complex geometric sense,
i.e. we have Enk ≃ Ftk for a flat family (Ft)t∈T and a convergent
sequence (tk)k of T .
Let now g be a Gauduchon metric on X .
Fundamental question: Is the class of slope g-semi-stable torsion
free sheaves with fixed topological type and fixed determinant line
bundle bounded in the sense of this definition?
To prove: Any sequence (En)n of g-stable bundles (with fixed
topological type and fixed determinant line bundle) admits a subse-
quence which is convergent in the complex geometric sense explained
above.
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Approach: (for dim(X ) = 2) Use two crucial results in gauge theory:
The Hitchin-Kobayashi correspondence.
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Approach: (for dim(X ) = 2) Use two crucial results in gauge theory:
The Hitchin-Kobayashi correspondence.
The Donaldson-Uhlenbeck compactification theorem.
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4

Approach: (for dim(X ) = 2) Use two crucial results in gauge theory:
The Hitchin-Kobayashi correspondence.
The Donaldson-Uhlenbeck compactification theorem.

H-K: For any n ∈ N there exists a Hermitian-Einstein metric hn (with
fixed determinant) on En.

Andrei Teleman holomorphic bundles framed along a real hypersurface



Motivation and introduction
Holomorphic bundles framed on a real hypersurface

An example

4

Approach: (for dim(X ) = 2) Use two crucial results in gauge theory:
The Hitchin-Kobayashi correspondence.
The Donaldson-Uhlenbeck compactification theorem.

H-K: For any n ∈ N there exists a Hermitian-Einstein metric hn (with
fixed determinant) on En. The Chern connection of (En, hn) is a
projectively ASD unitary connection An. We can suppose that An is
projectively ASD connection on a fixed Hermitian bundle (E , h).
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4

Approach: (for dim(X ) = 2) Use two crucial results in gauge theory:
The Hitchin-Kobayashi correspondence.
The Donaldson-Uhlenbeck compactification theorem.

H-K: For any n ∈ N there exists a Hermitian-Einstein metric hn (with
fixed determinant) on En. The Chern connection of (En, hn) is a
projectively ASD unitary connection An. We can suppose that An is
projectively ASD connection on a fixed Hermitian bundle (E , h).
D-U: A subsequence of the sequence of gauge classes ([An])n converges
in D-U sense to a "virtual instanton", i.e. to a pair ([A∞], Σ), where
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4

Approach: (for dim(X ) = 2) Use two crucial results in gauge theory:
The Hitchin-Kobayashi correspondence.
The Donaldson-Uhlenbeck compactification theorem.

H-K: For any n ∈ N there exists a Hermitian-Einstein metric hn (with
fixed determinant) on En. The Chern connection of (En, hn) is a
projectively ASD unitary connection An. We can suppose that An is
projectively ASD connection on a fixed Hermitian bundle (E , h).
D-U: A subsequence of the sequence of gauge classes ([An])n converges
in D-U sense to a "virtual instanton", i.e. to a pair ([A∞], Σ), where

A∞ is a projectively ASD connection on a (possibly different)
Hermitian bundle (E∞, h∞) with the same det line bundle.
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4

Approach: (for dim(X ) = 2) Use two crucial results in gauge theory:
The Hitchin-Kobayashi correspondence.
The Donaldson-Uhlenbeck compactification theorem.

H-K: For any n ∈ N there exists a Hermitian-Einstein metric hn (with
fixed determinant) on En. The Chern connection of (En, hn) is a
projectively ASD unitary connection An. We can suppose that An is
projectively ASD connection on a fixed Hermitian bundle (E , h).
D-U: A subsequence of the sequence of gauge classes ([An])n converges
in D-U sense to a "virtual instanton", i.e. to a pair ([A∞], Σ), where

A∞ is a projectively ASD connection on a (possibly different)
Hermitian bundle (E∞, h∞) with the same det line bundle.
Σ is an element of the symmetric power Sc2(E)−c2(E∞)(X ).
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4

Approach: (for dim(X ) = 2) Use two crucial results in gauge theory:
The Hitchin-Kobayashi correspondence.
The Donaldson-Uhlenbeck compactification theorem.

H-K: For any n ∈ N there exists a Hermitian-Einstein metric hn (with
fixed determinant) on En. The Chern connection of (En, hn) is a
projectively ASD unitary connection An. We can suppose that An is
projectively ASD connection on a fixed Hermitian bundle (E , h).
D-U: A subsequence of the sequence of gauge classes ([An])n converges
in D-U sense to a "virtual instanton", i.e. to a pair ([A∞], Σ), where

A∞ is a projectively ASD connection on a (possibly different)
Hermitian bundle (E∞, h∞) with the same det line bundle.
Σ is an element of the symmetric power Sc2(E)−c2(E∞)(X ).

A∞ defines a holomorphic structure E∞ on E∞.
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The desired limit should be a torsion free sheaf Ẽ∞ on X with
reflexivisation Ẽ∗∗

∞ = E∞ and singularity "set" Σ, i.e.
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5
The desired limit should be a torsion free sheaf Ẽ∞ on X with
reflexivisation Ẽ∗∗

∞ = E∞ and singularity "set" Σ, i.e. should fit in an
exact sequence

0 → Ẽ∞ → E∞ → Q → 0,

where supp(Q) = Σ.

Andrei Teleman holomorphic bundles framed along a real hypersurface



Motivation and introduction
Holomorphic bundles framed on a real hypersurface

An example

5
The desired limit should be a torsion free sheaf Ẽ∞ on X with
reflexivisation Ẽ∗∗

∞ = E∞ and singularity "set" Σ, i.e. should fit in an
exact sequence

0 → Ẽ∞ → E∞ → Q → 0,

where supp(Q) = Σ.
We have a new "to prove", more concrete:
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5
The desired limit should be a torsion free sheaf Ẽ∞ on X with
reflexivisation Ẽ∗∗

∞ = E∞ and singularity "set" Σ, i.e. should fit in an
exact sequence

0 → Ẽ∞ → E∞ → Q → 0,

where supp(Q) = Σ.
We have a new "to prove", more concrete:
To prove: There exists an epimorphism q : E∞ → Q onto a torsion
sheaf Q with supp(Q) = Σ and a subsequence of (En)n which
converges in complex geometric sense to ker(q).
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5
The desired limit should be a torsion free sheaf Ẽ∞ on X with
reflexivisation Ẽ∗∗

∞ = E∞ and singularity "set" Σ, i.e. should fit in an
exact sequence

0 → Ẽ∞ → E∞ → Q → 0,

where supp(Q) = Σ.
We have a new "to prove", more concrete:
To prove: There exists an epimorphism q : E∞ → Q onto a torsion
sheaf Q with supp(Q) = Σ and a subsequence of (En)n which
converges in complex geometric sense to ker(q).
The difficulty: Understanding the relation between convergence of
instantons in D-U sense and convergence in complex geometric sense.
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5
The desired limit should be a torsion free sheaf Ẽ∞ on X with
reflexivisation Ẽ∗∗

∞ = E∞ and singularity "set" Σ, i.e. should fit in an
exact sequence

0 → Ẽ∞ → E∞ → Q → 0,

where supp(Q) = Σ.
We have a new "to prove", more concrete:
To prove: There exists an epimorphism q : E∞ → Q onto a torsion
sheaf Q with supp(Q) = Σ and a subsequence of (En)n which
converges in complex geometric sense to ker(q).
The difficulty: Understanding the relation between convergence of
instantons in D-U sense and convergence in complex geometric sense.
The first notion uses analytic methods (estimates for solutions of
non-linear PDE), the second uses homological algebraic tools in
complex geometry, e.g. flatness.
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The difficulty is “concentrated" around the bubbling set Σ. Suppose for
simplicity Σ = kx∞.
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6
The difficulty is “concentrated" around the bubbling set Σ. Suppose for
simplicity Σ = kx∞.
X decomposes as X = X̄− ∪ X̄+, where X̄− is a a compact disk with
smooth boundary around x∞, and X̄+ = X \ X−.
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6
The difficulty is “concentrated" around the bubbling set Σ. Suppose for
simplicity Σ = kx∞.
X decomposes as X = X̄− ∪ X̄+, where X̄− is a a compact disk with
smooth boundary around x∞, and X̄+ = X \ X−. Put S := ∂X̄±.

x∞

X̄+X̄−

S

|F0
An

|2
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Trivializing the C∞ bundle E on the disk X̄−, we get differentiable
trivializations θn of En|S .
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Trivializing the C∞ bundle E on the disk X̄−, we get differentiable
trivializations θn of En|S . We obtain a sequence (En, θn)n of boundary
framed holomorphic bundles in the sense of
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7

Trivializing the C∞ bundle E on the disk X̄−, we get differentiable
trivializations θn of En|S . We obtain a sequence (En, θn)n of boundary
framed holomorphic bundles in the sense of
S. Donaldson, Boundary value problems for Yang-Mills fields, Journal of
Geometry and Physics 8 (1992).
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7

Trivializing the C∞ bundle E on the disk X̄−, we get differentiable
trivializations θn of En|S . We obtain a sequence (En, θn)n of boundary
framed holomorphic bundles in the sense of
S. Donaldson, Boundary value problems for Yang-Mills fields, Journal of
Geometry and Physics 8 (1992).

Definition:
Let X̄ be a compact complex manifold with boundary. A boundary
framed (formally) holomorphic bundle on X̄ is a triple (E , δ, θ), where

E is a differentiable bundle on X̄ ,
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7

Trivializing the C∞ bundle E on the disk X̄−, we get differentiable
trivializations θn of En|S . We obtain a sequence (En, θn)n of boundary
framed holomorphic bundles in the sense of
S. Donaldson, Boundary value problems for Yang-Mills fields, Journal of
Geometry and Physics 8 (1992).

Definition:
Let X̄ be a compact complex manifold with boundary. A boundary
framed (formally) holomorphic bundle on X̄ is a triple (E , δ, θ), where

E is a differentiable bundle on X̄ ,
δ is a Dolbeault operator (semiconnection) satisfying the formal
integrability condition δ2 = 0,
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7

Trivializing the C∞ bundle E on the disk X̄−, we get differentiable
trivializations θn of En|S . We obtain a sequence (En, θn)n of boundary
framed holomorphic bundles in the sense of
S. Donaldson, Boundary value problems for Yang-Mills fields, Journal of
Geometry and Physics 8 (1992).

Definition:
Let X̄ be a compact complex manifold with boundary. A boundary
framed (formally) holomorphic bundle on X̄ is a triple (E , δ, θ), where

E is a differentiable bundle on X̄ ,
δ is a Dolbeault operator (semiconnection) satisfying the formal
integrability condition δ2 = 0,
θ is a C∞ trivialization of E |∂X̄ .
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Careful [Te] : The condition δ2 = 0 does not imply existence of formally
δ-holomorphic local frames around boundary points.
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8

Careful [Te] : The condition δ2 = 0 does not imply existence of formally
δ-holomorphic local frames around boundary points. I used: A local
frame (φ1, . . . , φr ) of E is δ-holomorphic if δφi = 0.
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Careful [Te] : The condition δ2 = 0 does not imply existence of formally
δ-holomorphic local frames around boundary points. I used: A local
frame (φ1, . . . , φr ) of E is δ-holomorphic if δφi = 0.
In loc. cit. Donaldson proves a H-K correspondence on compact
complex manifolds with boundary:

! Iso classes of boundary framed
holomorphic bundles on X̄

"
≃

! Iso classes of boundary framed
proj. ASD connections on X̄

"
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Careful [Te] : The condition δ2 = 0 does not imply existence of formally
δ-holomorphic local frames around boundary points. I used: A local
frame (φ1, . . . , φr ) of E is δ-holomorphic if δφi = 0.
In loc. cit. Donaldson proves a H-K correspondence on compact
complex manifolds with boundary:

! Iso classes of boundary framed
holomorphic bundles on X̄

"
≃

! Iso classes of boundary framed
proj. ASD connections on X̄

"

For the latter moduli spaces one uses unitary trivializations on the
boundary.
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8

Careful [Te] : The condition δ2 = 0 does not imply existence of formally
δ-holomorphic local frames around boundary points. I used: A local
frame (φ1, . . . , φr ) of E is δ-holomorphic if δφi = 0.
In loc. cit. Donaldson proves a H-K correspondence on compact
complex manifolds with boundary:

! Iso classes of boundary framed
holomorphic bundles on X̄

"
≃

! Iso classes of boundary framed
proj. ASD connections on X̄

"

For the latter moduli spaces one uses unitary trivializations on the
boundary.
Idea: Replace the initial sequence (En)n by the sequence (En|X̄− , θn)n,
and
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8

Careful [Te] : The condition δ2 = 0 does not imply existence of formally
δ-holomorphic local frames around boundary points. I used: A local
frame (φ1, . . . , φr ) of E is δ-holomorphic if δφi = 0.
In loc. cit. Donaldson proves a H-K correspondence on compact
complex manifolds with boundary:

! Iso classes of boundary framed
holomorphic bundles on X̄

"
≃

! Iso classes of boundary framed
proj. ASD connections on X̄

"

For the latter moduli spaces one uses unitary trivializations on the
boundary.
Idea: Replace the initial sequence (En)n by the sequence (En|X̄− , θn)n,
and compare the two types of convergences (analytic and complex
geometric) for boundary framed holomorphic bundles, respectively
instantons
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8

Careful [Te] : The condition δ2 = 0 does not imply existence of formally
δ-holomorphic local frames around boundary points. I used: A local
frame (φ1, . . . , φr ) of E is δ-holomorphic if δφi = 0.
In loc. cit. Donaldson proves a H-K correspondence on compact
complex manifolds with boundary:

! Iso classes of boundary framed
holomorphic bundles on X̄

"
≃

! Iso classes of boundary framed
proj. ASD connections on X̄

"

For the latter moduli spaces one uses unitary trivializations on the
boundary.
Idea: Replace the initial sequence (En)n by the sequence (En|X̄− , θn)n,
and compare the two types of convergences (analytic and complex
geometric) for boundary framed holomorphic bundles, respectively
instantons (via Donaldson’s new H-K correspondence).
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9
We gain: We study now objects on a very simple manifold: a disk!
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We gain: We study now objects on a very simple manifold: a disk!
Price to pay:

The moduli spaces of boundary framed holomorphic bundles (of
fixed topological type) are infinite dimensional.
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We gain: We study now objects on a very simple manifold: a disk!
Price to pay:

The moduli spaces of boundary framed holomorphic bundles (of
fixed topological type) are infinite dimensional.
We can no longer describe the local structure of such a moduli
space using complex geometric deformation theory
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9
We gain: We study now objects on a very simple manifold: a disk!
Price to pay:

The moduli spaces of boundary framed holomorphic bundles (of
fixed topological type) are infinite dimensional.
We can no longer describe the local structure of such a moduli
space using complex geometric deformation theory (because we
don’t have a deformation theory on cplx manifolds with boundary).
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9
We gain: We study now objects on a very simple manifold: a disk!
Price to pay:

The moduli spaces of boundary framed holomorphic bundles (of
fixed topological type) are infinite dimensional.
We can no longer describe the local structure of such a moduli
space using complex geometric deformation theory (because we
don’t have a deformation theory on cplx manifolds with boundary).

New idea: Recall that, in our situation, the boundary ∂X̄− is a closed
real hypersurface in a closed complex manifold X .
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9
We gain: We study now objects on a very simple manifold: a disk!
Price to pay:

The moduli spaces of boundary framed holomorphic bundles (of
fixed topological type) are infinite dimensional.
We can no longer describe the local structure of such a moduli
space using complex geometric deformation theory (because we
don’t have a deformation theory on cplx manifolds with boundary).

New idea: Recall that, in our situation, the boundary ∂X̄− is a closed
real hypersurface in a closed complex manifold X .
Definition:
Let S ⊂ X be a closed, separating, real hypersurface.
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We gain: We study now objects on a very simple manifold: a disk!
Price to pay:

The moduli spaces of boundary framed holomorphic bundles (of
fixed topological type) are infinite dimensional.
We can no longer describe the local structure of such a moduli
space using complex geometric deformation theory (because we
don’t have a deformation theory on cplx manifolds with boundary).

New idea: Recall that, in our situation, the boundary ∂X̄− is a closed
real hypersurface in a closed complex manifold X .
Definition:
Let S ⊂ X be a closed, separating, real hypersurface. An S-framed
holomorphic bundle of class Cκ is a pair (E , θ) where

E is a holomorphic bundle on X ,
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9
We gain: We study now objects on a very simple manifold: a disk!
Price to pay:

The moduli spaces of boundary framed holomorphic bundles (of
fixed topological type) are infinite dimensional.
We can no longer describe the local structure of such a moduli
space using complex geometric deformation theory (because we
don’t have a deformation theory on cplx manifolds with boundary).

New idea: Recall that, in our situation, the boundary ∂X̄− is a closed
real hypersurface in a closed complex manifold X .
Definition:
Let S ⊂ X be a closed, separating, real hypersurface. An S-framed
holomorphic bundle of class Cκ is a pair (E , θ) where

E is a holomorphic bundle on X ,
θ is a trivialization of class Cκ of E|S .
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A moduli space of S-framed holomorphic bundles (of fixed topological
type) is still infinite dimensional, but, compared to moduli spaces of
boundary framed holomorphic bundles,
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A moduli space of S-framed holomorphic bundles (of fixed topological
type) is still infinite dimensional, but, compared to moduli spaces of
boundary framed holomorphic bundles, can be described locally using
complex geometric deformation theory.
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A moduli space of S-framed holomorphic bundles (of fixed topological
type) is still infinite dimensional, but, compared to moduli spaces of
boundary framed holomorphic bundles, can be described locally using
complex geometric deformation theory.

Theorem (T-T):
Let κ ∈ (1, +∞) \ N. The moduli set of isomorphism classes of
S-framed holomorphic bundles of class Cκ with fixed topological type
has a natural structure of an infinite dimensional complex analytic space.
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A moduli space of S-framed holomorphic bundles (of fixed topological
type) is still infinite dimensional, but, compared to moduli spaces of
boundary framed holomorphic bundles, can be described locally using
complex geometric deformation theory.

Theorem (T-T):
Let κ ∈ (1, +∞) \ N. The moduli set of isomorphism classes of
S-framed holomorphic bundles of class Cκ with fixed topological type
has a natural structure of an infinite dimensional complex analytic space.

We have two (equivalent) construction methods:
Using gauge theoretical methods, i.e. defining MS(E ) as a
quotient configuration space/gauge group.
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10
A moduli space of S-framed holomorphic bundles (of fixed topological
type) is still infinite dimensional, but, compared to moduli spaces of
boundary framed holomorphic bundles, can be described locally using
complex geometric deformation theory.

Theorem (T-T):
Let κ ∈ (1, +∞) \ N. The moduli set of isomorphism classes of
S-framed holomorphic bundles of class Cκ with fixed topological type
has a natural structure of an infinite dimensional complex analytic space.

We have two (equivalent) construction methods:
Using gauge theoretical methods, i.e. defining MS(E ) as a
quotient configuration space/gauge group.

Using complex geometric deformation theory for holomorphic
bundles on X framed on finite subsets.
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We supposed that S is separating in X , i.e. X = X̄− ∪ X̄+, where X̄±

are compact complex manifolds with boundary and X̄− ∩ X̄+ = S.
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We supposed that S is separating in X , i.e. X = X̄− ∪ X̄+, where X̄±

are compact complex manifolds with boundary and X̄− ∩ X̄+ = S.
Put E± := E |X̄± . The restriction morphism E $→ (E|X̄− , E|X̄+) defines a
map

MS(E ) → M∂X̄−(E−) × M∂X̄+(E+).
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11

We supposed that S is separating in X , i.e. X = X̄− ∪ X̄+, where X̄±

are compact complex manifolds with boundary and X̄− ∩ X̄+ = S.
Put E± := E |X̄± . The restriction morphism E $→ (E|X̄− , E|X̄+) defines a
map

MS(E ) → M∂X̄−(E−) × M∂X̄+(E+).

On the left we have “our" moduli space of S-framed holomorphic
bundles;
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11

We supposed that S is separating in X , i.e. X = X̄− ∪ X̄+, where X̄±

are compact complex manifolds with boundary and X̄− ∩ X̄+ = S.
Put E± := E |X̄± . The restriction morphism E $→ (E|X̄− , E|X̄+) defines a
map

MS(E ) → M∂X̄−(E−) × M∂X̄+(E+).

On the left we have “our" moduli space of S-framed holomorphic
bundles; on the right we have a product of Donaldson moduli spaces of
boundary framed holomorphic bundles.
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11

We supposed that S is separating in X , i.e. X = X̄− ∪ X̄+, where X̄±

are compact complex manifolds with boundary and X̄− ∩ X̄+ = S.
Put E± := E |X̄± . The restriction morphism E $→ (E|X̄− , E|X̄+) defines a
map

MS(E ) → M∂X̄−(E−) × M∂X̄+(E+).

On the left we have “our" moduli space of S-framed holomorphic
bundles; on the right we have a product of Donaldson moduli spaces of
boundary framed holomorphic bundles.
Question: What is the image?
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11

We supposed that S is separating in X , i.e. X = X̄− ∪ X̄+, where X̄±

are compact complex manifolds with boundary and X̄− ∩ X̄+ = S.
Put E± := E |X̄± . The restriction morphism E $→ (E|X̄− , E|X̄+) defines a
map

MS(E ) → M∂X̄−(E−) × M∂X̄+(E+).

On the left we have “our" moduli space of S-framed holomorphic
bundles; on the right we have a product of Donaldson moduli spaces of
boundary framed holomorphic bundles.
Question: What is the image?
We need a brief preparation:
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11

We supposed that S is separating in X , i.e. X = X̄− ∪ X̄+, where X̄±

are compact complex manifolds with boundary and X̄− ∩ X̄+ = S.
Put E± := E |X̄± . The restriction morphism E $→ (E|X̄− , E|X̄+) defines a
map

MS(E ) → M∂X̄−(E−) × M∂X̄+(E+).

On the left we have “our" moduli space of S-framed holomorphic
bundles; on the right we have a product of Donaldson moduli spaces of
boundary framed holomorphic bundles.
Question: What is the image?
We need a brief preparation: The boundary S = ∂X̄ of a complex
manifold with boundary X̄ comes with a canonical almost complex
distribution TS := TS ∩ JX̄ TS .
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11

We supposed that S is separating in X , i.e. X = X̄− ∪ X̄+, where X̄±

are compact complex manifolds with boundary and X̄− ∩ X̄+ = S.
Put E± := E |X̄± . The restriction morphism E $→ (E|X̄− , E|X̄+) defines a
map

MS(E ) → M∂X̄−(E−) × M∂X̄+(E+).

On the left we have “our" moduli space of S-framed holomorphic
bundles; on the right we have a product of Donaldson moduli spaces of
boundary framed holomorphic bundles.
Question: What is the image?
We need a brief preparation: The boundary S = ∂X̄ of a complex
manifold with boundary X̄ comes with a canonical almost complex
distribution TS := TS ∩ JX̄ TS . The complexified dual bundle T∗C

S splits
as T∗C

S =
#1,0

S ⊕
#0,1

S .
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A Dolbeault operator δ with coefficients in Cκ−1 on a differentiable
bundle E on X̄ defines a Cauchy-Riemann operator

δS : Cκ(S, ES) → Cκ−1(S,
#0,1

S ⊗ ES)
on the restriction ES of E to S.
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A Dolbeault operator δ with coefficients in Cκ−1 on a differentiable
bundle E on X̄ defines a Cauchy-Riemann operator

δS : Cκ(S, ES) → Cκ−1(S,
#0,1

S ⊗ ES)
on the restriction ES of E to S.

Remark:
Let S ⊂ X be a separating real hypersurface and δ a Dolbeault operator
on a differentiable bundle E on X .
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12

A Dolbeault operator δ with coefficients in Cκ−1 on a differentiable
bundle E on X̄ defines a Cauchy-Riemann operator

δS : Cκ(S, ES) → Cκ−1(S,
#0,1

S ⊗ ES)
on the restriction ES of E to S.

Remark:
Let S ⊂ X be a separating real hypersurface and δ a Dolbeault operator
on a differentiable bundle E on X .
Let δ± be the induced Dolbeault operator on E± := E |X̄± .
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12

A Dolbeault operator δ with coefficients in Cκ−1 on a differentiable
bundle E on X̄ defines a Cauchy-Riemann operator

δS : Cκ(S, ES) → Cκ−1(S,
#0,1

S ⊗ ES)
on the restriction ES of E to S.

Remark:
Let S ⊂ X be a separating real hypersurface and δ a Dolbeault operator
on a differentiable bundle E on X .
Let δ± be the induced Dolbeault operator on E± := E |X̄± .
Then δ−

S = δ+
S .

Andrei Teleman holomorphic bundles framed along a real hypersurface



Motivation and introduction
Holomorphic bundles framed on a real hypersurface

An example

12

A Dolbeault operator δ with coefficients in Cκ−1 on a differentiable
bundle E on X̄ defines a Cauchy-Riemann operator

δS : Cκ(S, ES) → Cκ−1(S,
#0,1

S ⊗ ES)
on the restriction ES of E to S.

Remark:
Let S ⊂ X be a separating real hypersurface and δ a Dolbeault operator
on a differentiable bundle E on X .
Let δ± be the induced Dolbeault operator on E± := E |X̄± .
Then δ−

S = δ+
S .

This implies:
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Remark:
The image of the restriction morphism

MS(E ) → M∂X̄−(E−) × M∂X̄+(E+)
is contained in the fibre product
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Remark:
The image of the restriction morphism

MS(E ) → M∂X̄−(E−) × M∂X̄+(E+)
is contained in the fibre product

M∂X̄−(E−) ×C M∂X̄+(E+),
where C is the space of Cauchy-Riemann operators on the trivial bundle
on S.
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Remark:
The image of the restriction morphism

MS(E ) → M∂X̄−(E−) × M∂X̄+(E+)
is contained in the fibre product

M∂X̄−(E−) ×C M∂X̄+(E+),
where C is the space of Cauchy-Riemann operators on the trivial bundle
on S.

The maps M∂X̄±(E±) → C are defined by:
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13

Remark:
The image of the restriction morphism

MS(E ) → M∂X̄−(E−) × M∂X̄+(E+)
is contained in the fibre product

M∂X̄−(E−) ×C M∂X̄+(E+),
where C is the space of Cauchy-Riemann operators on the trivial bundle
on S.

The maps M∂X̄±(E±) → C are defined by: (E±, δ±, θ±) $→ θ±(δ±
S ).
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13

Remark:
The image of the restriction morphism

MS(E ) → M∂X̄−(E−) × M∂X̄+(E+)
is contained in the fibre product

M∂X̄−(E−) ×C M∂X̄+(E+),
where C is the space of Cauchy-Riemann operators on the trivial bundle
on S.

The maps M∂X̄±(E±) → C are defined by: (E±, δ±, θ±) $→ θ±(δ±
S ).

Theorem ([Te]):
The obtained map MS(E ) → M∂X̄−(E−) ×C M∂X̄+(E+) is a
homeomorphism.
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Therefore:
Our moduli space of S-framed holomorphic bundles over X can be
identified with the fibre product of the corresponding Donaldson moduli
spaces of boundary framed (formally) holomorphic bundles over
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Therefore:
Our moduli space of S-framed holomorphic bundles over X can be
identified with the fibre product of the corresponding Donaldson moduli
spaces of boundary framed (formally) holomorphic bundles over the
space of Cauchy-Riemann operators on the trivial bundle on S.
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Therefore:
Our moduli space of S-framed holomorphic bundles over X can be
identified with the fibre product of the corresponding Donaldson moduli
spaces of boundary framed (formally) holomorphic bundles over the
space of Cauchy-Riemann operators on the trivial bundle on S.
The difficult part: surjectivity.
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14
Therefore:
Our moduli space of S-framed holomorphic bundles over X can be
identified with the fibre product of the corresponding Donaldson moduli
spaces of boundary framed (formally) holomorphic bundles over the
space of Cauchy-Riemann operators on the trivial bundle on S.
The difficult part: surjectivity.
Fundamental steps in the proof:

A Hölder version of the Newlander-Nirenberg theorem:
Let δ be an integrable Dolbeault operator with coefficients in Cκ−1

on a differentiable bundle E on a complex manifold X .
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14
Therefore:
Our moduli space of S-framed holomorphic bundles over X can be
identified with the fibre product of the corresponding Donaldson moduli
spaces of boundary framed (formally) holomorphic bundles over the
space of Cauchy-Riemann operators on the trivial bundle on S.
The difficult part: surjectivity.
Fundamental steps in the proof:

A Hölder version of the Newlander-Nirenberg theorem:
Let δ be an integrable Dolbeault operator with coefficients in Cκ−1

on a differentiable bundle E on a complex manifold X . Recall that
we have chosen κ ∈ (1, ∞) \ N.
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14
Therefore:
Our moduli space of S-framed holomorphic bundles over X can be
identified with the fibre product of the corresponding Donaldson moduli
spaces of boundary framed (formally) holomorphic bundles over the
space of Cauchy-Riemann operators on the trivial bundle on S.
The difficult part: surjectivity.
Fundamental steps in the proof:

A Hölder version of the Newlander-Nirenberg theorem:
Let δ be an integrable Dolbeault operator with coefficients in Cκ−1

on a differentiable bundle E on a complex manifold X . Recall that
we have chosen κ ∈ (1, ∞) \ N. Around any point there exists a
local δ-holomorphic frame which is of class Cκ.
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14
Therefore:
Our moduli space of S-framed holomorphic bundles over X can be
identified with the fibre product of the corresponding Donaldson moduli
spaces of boundary framed (formally) holomorphic bundles over the
space of Cauchy-Riemann operators on the trivial bundle on S.
The difficult part: surjectivity.
Fundamental steps in the proof:

A Hölder version of the Newlander-Nirenberg theorem:
Let δ be an integrable Dolbeault operator with coefficients in Cκ−1

on a differentiable bundle E on a complex manifold X . Recall that
we have chosen κ ∈ (1, ∞) \ N. Around any point there exists a
local δ-holomorphic frame which is of class Cκ.
Stein’s generalization for "Lipshitz spaces" of Whitney extension
theorem.
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I have recently come to the conclusion that the new moduli spaces and
the isomorphism theorem stated above have applications which go
beyond the initial motivation.
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I have recently come to the conclusion that the new moduli spaces and
the isomorphism theorem stated above have applications which go
beyond the initial motivation. The initial motivation was: boundedness
in non-algebraic complex geometry.
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15

I have recently come to the conclusion that the new moduli spaces and
the isomorphism theorem stated above have applications which go
beyond the initial motivation. The initial motivation was: boundedness
in non-algebraic complex geometry.

Remark:
If dim(X ) = 1, the fibre product M∂X̄−(E−) ×C M∂X̄+(E+) reduces to
M∂X̄−(E−) × M∂X̄+(E+).

The circle S1 is a separating hypersurface in P1
C = C ∪ {∞};
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15

I have recently come to the conclusion that the new moduli spaces and
the isomorphism theorem stated above have applications which go
beyond the initial motivation. The initial motivation was: boundedness
in non-algebraic complex geometry.

Remark:
If dim(X ) = 1, the fibre product M∂X̄−(E−) ×C M∂X̄+(E+) reduces to
M∂X̄−(E−) × M∂X̄+(E+).

The circle S1 is a separating hypersurface in P1
C = C ∪ {∞}; the

corresponding decomposition of P1
C as union of manifolds with

boundary is
P1
C = X̄− ∪ X̄+

where X̄− is the standard disk D̄ ⊂ C and X̄+ = P1 \ D.
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15

I have recently come to the conclusion that the new moduli spaces and
the isomorphism theorem stated above have applications which go
beyond the initial motivation. The initial motivation was: boundedness
in non-algebraic complex geometry.

Remark:
If dim(X ) = 1, the fibre product M∂X̄−(E−) ×C M∂X̄+(E+) reduces to
M∂X̄−(E−) × M∂X̄+(E+).

The circle S1 is a separating hypersurface in P1
C = C ∪ {∞}; the

corresponding decomposition of P1
C as union of manifolds with

boundary is
P1
C = X̄− ∪ X̄+

where X̄− is the standard disk D̄ ⊂ C and X̄+ = P1 \ D.
Let E be the trivial SL(2,C) differentiable bundle on P1

C.
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The isomorphism theorem and the remark above gives a
homeomorphism

MS1(E ) ≃−→ M∂X̄−(E−) × M∂X̄+(E+),
where E± = E |X̄± .
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16
The isomorphism theorem and the remark above gives a
homeomorphism

MS1(E ) ≃−→ M∂X̄−(E−) × M∂X̄+(E+),
where E± = E |X̄± .
The moduli spaces M∂X̄±(E±) on the right can be described using
Doaldson’s H-K correspondence on complex manifolds with boundary.

Andrei Teleman holomorphic bundles framed along a real hypersurface



Motivation and introduction
Holomorphic bundles framed on a real hypersurface

An example

16
The isomorphism theorem and the remark above gives a
homeomorphism

MS1(E ) ≃−→ M∂X̄−(E−) × M∂X̄+(E+),
where E± = E |X̄± .
The moduli spaces M∂X̄±(E±) on the right can be described using
Doaldson’s H-K correspondence on complex manifolds with boundary.
The result is (Donaldson, loc. cit):

M∂X̄±(E±) ≃ Cκ(S1, SU(2))$
SU(2)
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16
The isomorphism theorem and the remark above gives a
homeomorphism

MS1(E ) ≃−→ M∂X̄−(E−) × M∂X̄+(E+),
where E± = E |X̄± .
The moduli spaces M∂X̄±(E±) on the right can be described using
Doaldson’s H-K correspondence on complex manifolds with boundary.
The result is (Donaldson, loc. cit):

M∂X̄±(E±) ≃ Cκ(S1, SU(2))$
SU(2)

(the SU(2)-quotient of the space of “free loops" in SU(2)).
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16
The isomorphism theorem and the remark above gives a
homeomorphism

MS1(E ) ≃−→ M∂X̄−(E−) × M∂X̄+(E+),
where E± = E |X̄± .
The moduli spaces M∂X̄±(E±) on the right can be described using
Doaldson’s H-K correspondence on complex manifolds with boundary.
The result is (Donaldson, loc. cit):

M∂X̄±(E±) ≃ Cκ(S1, SU(2))$
SU(2)

(the SU(2)-quotient of the space of “free loops" in SU(2)).
Question: What is the left hand moduli space MS1(E ) of S1-framed
holomorphic SL(2,C) bundles on P1

C?
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16
The isomorphism theorem and the remark above gives a
homeomorphism

MS1(E ) ≃−→ M∂X̄−(E−) × M∂X̄+(E+),
where E± = E |X̄± .
The moduli spaces M∂X̄±(E±) on the right can be described using
Doaldson’s H-K correspondence on complex manifolds with boundary.
The result is (Donaldson, loc. cit):

M∂X̄±(E±) ≃ Cκ(S1, SU(2))$
SU(2)

(the SU(2)-quotient of the space of “free loops" in SU(2)).
Question: What is the left hand moduli space MS1(E ) of S1-framed
holomorphic SL(2,C) bundles on P1

C?
By Grothendieck theorem, any holomorphic SL(2,C) bundle on P1

C is
isomorphic to one of the bundles Em = O(m) ⊕ O(−m) with m ∈ N.
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17
Therefore the moduli set of holomorphic SL(2,C) bundles on P1

C can be
identified with N.
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17
Therefore the moduli set of holomorphic SL(2,C) bundles on P1

C can be
identified with N.
All these bundles are non-stable and there is no moduli space of
holomorphic SL(2,C) bundles on P1

C.
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17
Therefore the moduli set of holomorphic SL(2,C) bundles on P1

C can be
identified with N.
All these bundles are non-stable and there is no moduli space of
holomorphic SL(2,C) bundles on P1

C. The classical moduli theory fails
in this case.
Theorem:
The moduli space MS1(E ) is a smooth infinite dimensional complex
analytic space, which comes with a natural stratification
MS1(E ) =

%
m∈N Mm.
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17
Therefore the moduli set of holomorphic SL(2,C) bundles on P1

C can be
identified with N.
All these bundles are non-stable and there is no moduli space of
holomorphic SL(2,C) bundles on P1

C. The classical moduli theory fails
in this case.
Theorem:
The moduli space MS1(E ) is a smooth infinite dimensional complex
analytic space, which comes with a natural stratification
MS1(E ) =

%
m∈N Mm. The stratum Mm can be identified with the

quotient
Cκ(S1, SL(2,C))$

Gm ,

where
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Therefore the moduli set of holomorphic SL(2,C) bundles on P1

C can be
identified with N.
All these bundles are non-stable and there is no moduli space of
holomorphic SL(2,C) bundles on P1

C. The classical moduli theory fails
in this case.
Theorem:
The moduli space MS1(E ) is a smooth infinite dimensional complex
analytic space, which comes with a natural stratification
MS1(E ) =

%
m∈N Mm. The stratum Mm can be identified with the

quotient
Cκ(S1, SL(2,C))$

Gm ,

where G0 = SL(2,C) and for m ≥ 1

Gm :=
&'

a P|S1

0 a−1

(

a ∈ C, P ∈ C[z ], deg(P) ≤ 2m
)

.
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Note that Mm ⊂
*

l≥m
Ml
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Note that Mm ⊂
*

l≥m
Ml

In particular M0 is open and dense.
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Note that Mm ⊂
*

l≥m
Ml

In particular M0 is open and dense.
We obtain:
Corollary:
The product

Cκ(S1, SU(2))$
SU(2) × Cκ(S1, SU(2))$

SU(2)
has a natural stratification (Mm)m∈N, with

Mm ≃ Cκ(S1, SL(2,C))$
Gm .
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Cκ(S1, SU(2))$
SU(2) × Cκ(S1, SU(2))$

SU(2)
has a natural stratification (Mm)m∈N, with

Mm ≃ Cκ(S1, SL(2,C))$
Gm .

In order to understand how the strata Mm fit together in the moduli
space MS1(E ) one needs an explicit description of the . . .
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Note that Mm ⊂
*

l≥m
Ml

In particular M0 is open and dense.
We obtain:
Corollary:
The product

Cκ(S1, SU(2))$
SU(2) × Cκ(S1, SU(2))$

SU(2)
has a natural stratification (Mm)m∈N, with

Mm ≃ Cκ(S1, SL(2,C))$
Gm .

In order to understand how the strata Mm fit together in the moduli
space MS1(E ) one needs an explicit description of the . . . moduli stack
of SL(2,C)-bundles on P1

C.
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Final remarks:
In the definition of MS(E ) one can replace bundles by torsion free
sheaves which are locally free around S.
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Final remarks:
In the definition of MS(E ) one can replace bundles by torsion free
sheaves which are locally free around S. Using this larger moduli
spaces (and the comparison theorem), we developed an explicit
proof method to answer positively the fundamental question
(about the boundedness of the slope semistability condition) on
Gauduchon surfaces.
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The fundamental question (and our proof method) can be
formulated in arbitrary dimension. The of D-U compactness
theorem should be replaced by Tian’s compactness theorem.
I have recently generalized the comparison theorem for principal
G-bundles for an arbitrary complex Lie group G .
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