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Initial remarks 2/123

Sorry, these are slides ...
... but download at https://christiansaemann.de/talks/
This is an overview:

Not always full definitions
Don’t trust the signs or prefactors

If you have any questions, please ask!
Too fast/complex/unclear or too basic, please let me know.

“In these days the angel of topology and the devil of ab-
stract algebra fight for the soul of every individual discipline
of mathematics.” Hermann Weyl

Presented material based on joint work with:
Leron Borsten, Getachew Demessie, Mehran Jalali Farahani,
Brano Jurčo, Hyungrok Kim, Sam Palmer, Dominik Rist,
Lennart Schmidt, Martin Wolf
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Outline 3/123

I. The local picture
I.1. Motivation
I.2. Categorification
I.3. Higher gauge algebras: L∞-algebras
I.4. Homotopy Maurer–Cartan theory
I.5. L∞-algebras and the BV-formalism

II. The global picture
II.1. 2-groups
II.2. Principal 2-bundles
II.3. Adjusted connections
II.4. Example: Higher monopoles/instantons

III. Applications
III.1. T-duality with higher spaces
III.2. Penrose–Ward transform
III.3. 6d superconformal field theories
III.4. Tensor hierarchies
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Why higher gauge theory? 5/123

D-branes
D-branes interact via strings.
Effective description: theory of endpoints
Parallel transport of these: Gauge theory
Study string theory via gauge theory

M5-branes
M5-branes interact via M2-branes.
Eff. description: theory of self-dual strings
Parallel transport: Higher gauge theory
Long sought (2, 0)-theory a HGT?
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Why higher gauge theory? 6/123

More reasons from Physics:
Kalb–Ramond B-field (connection on gerbe) in string theory
Higher gauge potentials in supergravity in general
Tensor hierarchies in gauged supergravity in particular
6d superconformal field theories and M5-branes

More reasons from Mathematics:
Rich and interesting examples of principal bundles:
Instantons, Monopoles, ADHM construction, twistors, ...
Should generalize to higher bundles (?!)
Current definition of higher connections has open questions
Algebraic structure in generalized geometry
T-duality as a correspondence of principal 2-bundles

Christian Saemann Higher principal bundles and higher gauge theory



Connections describe parallel transport 7/123

Encode gauge theory in parallel transport functor
Mackaay, Picken, 2000

Every manifold comes with path groupoid PM = (PM ⇒M)

x
γ
)) y

Gauge group gives rise to delooping groupoid BG = (G⇒ ∗)
parallel transport functor hol : PM → BG:

assigns to each path a group element
composition of paths: multiplication of group elements
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Formulas do not generalize straightforwardly 8/123

Ordinary parallel transport along path:
holonomy functor hol : path γ 7→ hol(γ) ∈ G

hol(γ) = P exp(
∫
γ A), P : path ordering, trivial for U(1).

Abelian parallel transport along surface:
map hol : surface σ 7→ hol(σ) ∈ U(1)

hol(σ) = exp(
∫
σ B), B: connective structure on gerbe.

Nonabelian case?
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Higher parallel transport requires categorification 9/123

Non-abelian parallel transport of strings problematic:

•
��
oo
^^

g1��

g′1��

•�� oo
]]

g2��

g′2��

Consistency of parallel transport requires:

(g′1g
′
2)(g1g2) = (g′1g1)(g′2g2)

This renders group G abelian. Eckmann and Hilton, 1962
Physicists 80’ies and 90’ies

Way out: 2-categories, Higher Gauge Theory.

Two operations ◦ and ⊗ satisfying Interchange Law:

(g′1 ⊗ g′2) ◦ (g1 ⊗ g2) = (g′1 ◦ g1)⊗ (g′2 ◦ g2) .
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I: The local picture

I.1. Motivation
I.2. Categorification
I.3. Higher gauge algebras: L∞-algebras
I.4. Homotopy Maurer–Cartan theory
I.5. L∞-algebras and the BV-formalism

“We’ll only use as much category theory as is necessary.
Famous last words...”

Dan Abramovich
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Constructing higher structures

A mathematical structure (“Bourbaki-style”) consists of

• Sets • Structure Functions • Structure Equations

Categorification

Sets→ Categories
Structure Functions→ Structure Functors
Structure Equations→ Structure Isomorphisms

+ Coherence Relations

Note: Process is not unique
Choice of weakness/strictness:

weak: most general
semi-, hemi-strict, ...: in between
strict: structure isomorphisms trivial

Choice of coherence relations
Christian Saemann Higher principal bundles and higher gauge theory



Example: Categorified groups 12/123

Group:
Sets: Underlying set G
Structure: unit 1, multiplication, inverse
Structure equations: associativity, g−1g = 1, 1g = g1 = g

2-Group:
Categories: A category C

Structure functors: unit object 1, multiplication ⊗, inverse inv

Structure isomorphisms:
associator: ax,y,z : (x⊗ y)⊗ z ⇒ x⊗ (y ⊗ z)
unitors: lx : x⊗ 1⇒ x and rx : 1⊗ x⇒ x
inv(x)⊗ x⇒ 1⇐ x⊗ inv(x)

Coherence relations ...
more on 2-groups later...
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Categorification: Higher dimensional algebra 13/123

Higher groups: we are doing higher dimensional algebra.

Group: can multiply ordered elements in one dimension:

a · b · . . . · d

2-group: can multiply “vertically” ◦ and “horizontally” ⊗,
i.e. in two dimensions:

•
��
oo
^^

g1��

g′1��

•�� oo
]]

g2��

g′2��

...
n-group: can multiply in n dimensions
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Example: Lie 2-algebras

Lie algebra:
Sets: Vector space g

Structure: bilinear product [−,−] : g× g→ g

Structure equation:
antisymmetry [u, v] = −[v, u]
Jacobi identity: [u, [v, w]]− [[u, v], w]− [v, [u,w]] = 0

Weak Lie 2-algebra: Roytenberg, 2007
Categories: linear category L
(i.e. objects/morphisms are vector spaces)
Structure functors: functor [−,−] : L× L→ L

Structure isomorphisms:
Alternator Alt : [v, w]⇒ −[w, v]
Jacobiator Jac : [u, [v, w]]− [[u, v], w]− [v, [u,w]]⇒ 0

more on weak Lie 2-algebras later...
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Examples of categorified objects 15/123

Categorified space or 2-space: category M = (M1 ⇒M0)

Lie groupoid: categorified space with invertible morphisms
2-group: monoidal category + invertible obj./morph.
strict 2-group: strict monoidal category + ...
Strict 2-groups ∼= crossed modules of Lie groups
Categorified principal circle bundles: abelian gerbes
Categorified principal bundles: principal 2-bundles
2-vector spaces: linear category
Lie 2-algebras: as above
strict Lie 2-algebras ∼= crossed modules of Lie algebras
semistrict Lie 2-algebras ∼= L∞-algebras in degs. {−1, 0}.
semistrict Lie n-algebras ∼= L∞-algs. in degs. {−n+ 1, . . . , 0}
weak Lie n-algebras ∼= EL∞-algs. in degs. {−n+ 1, . . . , 0}
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From Lie algebras to L∞-algebras 17/123

First: local and infinitesimal description of higher gauge theory
Need an analogue of gauge Lie algebra
An excellent choice: semi-strict higher Lie algebras
These are the homotopy/∞-algebras of the Lie operad.
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From Lie algebras to L∞-algebras 18/123

Lie algebra g:
[−,−] : g• ∧ g• → g• ,

[a, [b, c]] = [[a, b], c] + [b, [a, c]]

Generalize naturally to differential graded Lie alg. g =
⊕

k∈Z gk:

d : g• → g•+1 , [−,−] : g• ∧ g• → g• ,

d[a, b] = [da, b]± [a,db] , [a, [b, c]] = [[a, b], c]± [b, [a, c]]

Generalize further to L∞-algebra:
Preserve antisymmetry, but lift Jacobi up to homotopy
Explicitly, introduce µ3 : g• ∧ g• ∧ g• → g•−1 with

[a, [b, c]]− [[a, b], c]∓ [b, [a, c]]

= dµ3(a, b, c) + µ3(da, b, c)± µ3(a,db, c)± µ3(a, b,dc)
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Systematic construction 19/123

Chevalley–Eilenberg algebra of a Lie algebra g:
Free differential graded commutative algebra �•g[1]∗

CE(g) = �•g[1]∗ , Qξα = −1
2f

α
βγξ

βξγ , |Q| = 1

Q2 = 0 ⇔ Jacobi identity

Chevalley–Eilenberg algebra of an L∞-algebra L = ⊕k∈ZLk:
Free differential graded commutative algebra �•L[1]∗

CE(L) = �•L[1]∗ , Qξα =
∑
n

± 1
n!f

α
β1...βnξ

β1 . . . ξβn , |Q| = 1

higher brackets: µn(τβ1 , . . . , τβn) = ±fαβ1...βnτα
Q2 = 0 ⇔ homotopy Jacobi identities
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Example: semi-strict Lie 2-algebras 20/123

2-term L∞-algebra or semi-strict Lie 2-algebra:
Underlying vector space: L = L−1 ⊕ L0

Thus: free dgca �•L[1] generated by wa, vi of degs. 1 and 2

Most general differential:

Qwa = −ma
i v
i − 1

2m
a
bcw

bwc

Qvi = −mi
ajw

avj − 1
3!m

i
abcw

awbwc

Structure constants induce higher products µi on L:
µ1(τi) = ma

i τa , µ2(τa, τb) = mc
abτc ,

µ2(τa, τi) = mj
aiτj , µ3(τa, τb, τc) = mi

abcτi

Q2 = 0: Higher or homotopy Jacobi identity, e.g.
µ2(w1, µ2(w2, w3)) + cycl. = µ1(µ3(w1, w2, w3))
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Direct description 21/123

L∞-algebra in “bracket picture”:
Graded vector space
L = · · · ⊕ L−2 ⊕ L−1 ⊕ L0 ⊕ L1 ⊕ L2 ⊕ . . .
µ1 is a differential, hence (cochain) complex:

. . .
µ1−−−→ L−2

µ1−−−→ L−1
µ1−−−→ L0

µ1−−−→ L1
µ1−−−→ L2

µ1−−−→ . . .

Graded totally antisymmetric multilinear products

µi : ∧iL→ L , |µi| = 2− i

Satisfying higher/homotopy Jacobi identity:∑
i+j=n

∑
σ∈Sh(i,n−i)

±µi+1(µj(`σ(1), . . . , `σ(j)), `σ(j+1), . . . , `σ(n)) = 0

Remark on operadic background:
Actually constructed Lie∞-algebras
Used Koszul duality Lie↔ Com
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L∞-algebras: Homotopy Jacobi Identities 22/123

Homotopy Jacobi identity:∑
i+j=n

∑
σ∈Sh(i,n−i)

±µi+1(µj(`σ(1), . . . , `σ(j)), `σ(j+1), . . . , `σ(n)) = 0

First few homotopy Jacobi identities:
µ1(µ1(`)) = 0:
µ1 is a differential turning L• into a complex
µ1(µ2(`1, `2)) = µ2(µ1(`1), `2)± µ2(`1, µ1(`2)):
µ1 is a derivation with respect to µ2

µ2(µ2(`1, `2), `3) + cycl. = ±µ1(µ3(`1, `2, `3)):
Jacobi identity violated in a controlled way, by cocycle
(last: typical for higher structures.)

L∞-algebras are generalizations of dg Lie algebras.
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L∞-algebras: Examples 23/123

Simple examples:
Trivial L∞-algebra: . . .

µ1−−→ ∗ µ1−−→ ∗ µ1−−→ ∗ µ1−−→ . . .

Lie algebra g: L0 = g, . . .
µ1−−→ ∗ µ1−−→ g

µ1−−→ ∗ µ1−−→ . . .

Lie algebra g, representation ρ : g 7→ End(V )

L0 = g , L−1 = V µ1 = 0 ,
µ2(`1, `2) = [`1, `2]

µ2(`1, v) = ρ(`1)v

de Rham complex on some M : L• = Ω•(M), µ1 = d, µ2 = 0

Above: strict L∞-algebras, that is µi = 0 for i > 2.

More interesting: string Lie 2-algebra (higher spin Lie algebra)

L0 = spin(n) , L−1 = R µ1 = 0 ,
µ2(`1, `2) = [`1, `2]

µ3(`1, `2, `3) = (`1, [`2, `3])
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L∞-algebras: Strict Morphisms 24/123

What are morphisms of L∞-algebras?

Recall: L∞-algebra has underlying complex (L•, µ1)

Naively: Chain maps φ1 : L→ L′

. . .
µ1
// L−1

µ1
//

φ1
��

L0
µ1
//

φ1
��

L1
µ1
//

φ1
��

. . .

. . .
µ1
// L′−1

µ′1 // L′0
µ′1 // L′1

µ′1 // . . .
such that

φ1(µi(`1, . . . , `i)) = µi(φ1(`1), . . . , φ1(`1)) .

These give only strict morphisms, more later.
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L∞-algebras: General morphisms 25/123

L∞-algebras have much more general morphisms:
Morphisms in Chevalley–Eilenberg-picture clear:

CE(L′)
Φ−−→ CE(L) , Q ◦ Φ = Φ ◦Q′

Morphisms of L∞-algebras φ : L→ L′ induced:

φi : L∧i → L′ , |φi| = 1− i , φ1∗ : H•µ1(L)→ H•µ′1
(L′)

(One can write out the detailed relations...)

The notion of quasi-isomorphism of chain complexes generalizes:
L∞-algebras L and L′ quasi-isomorphic:
There is a φ : L→ L′ with φ1 : H•µ1(L) ∼= H•µ1(L′)

Quasi-isomorphisms are the right notion of equivalence.
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Useful structural theorems 26/123

Strictification/rectification theorem
Any L∞-algebra is quasi-isomorphic to a strict one
i.e. a differential graded Lie algebra.

But: strictified L∞-algebra usually much larger than original one.

Homotopy transfer
Given a contracting homotopy from a chain complex L to another
one L′, we can transport an L∞-algebra structure on L to L′.

The latter implies:

Minimal model theorem
Any L∞-algebra is quasi-isomorphicm to an L∞-algebra structure
on its cohomology, the minimal model.
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L∞-algebras: Inner Products 27/123

Inner product on Lie algebra g: 〈−,−〉 : g× g→ R

positive definite/non-degenerate
symmetric
bilinear
satisfying cyclic relation:

〈`1, [`2, `3]〉 = 〈`2, [`3, `1]〉
generalized naturally (more later) to

Cyclic structure on L∞-algebra L: 〈−,−〉 : L× L→ R

non-degenerate
graded symmetric
bilinear
satisfying cyclic relation:

〈`1, µi(`2, . . . , `1+i)〉 = ±〈`2, µi(`3, . . . , `1+i, `1)〉
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I: The local picture

I.1. Motivation
I.2. Categorification
I.3. Higher gauge algebras: L∞-algebras
I.4. Homotopy Maurer–Cartan theory
I.5. L∞-algebras and the BV-formalism

“One ring to rule them all ...”
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L∞-algebras come with their own gauge theory 29/123

Maurer–Cartan equation for differential graded Lie algebra, (g, d):

da+ 1
2 [a, a] = 0 , a ∈ g .

Recall: L∞-algebras are generalizations of dg Lie algebras.
Homotopy Maurer–Cartan eqn: (a: gauge potential f : curvature)

f := µ1(a) + 1
2µ2(a, a) + 1

3!µ3(a, a, a) + · · · = 0 , a ∈ L1

(Higher) gauge transformations: homotopies.

Bianchi identity:

µ1(f)− µ2(f, a) + 1
2µ3(f, a, a)− 1

3!µ4(f, a, a, a) + · · · = 0 .

Homotopy Maurer–Cartan Action:

SMC[a] :=
∑
i≥1

1

(i+ 1)!
〈a, µi(a, . . . , a)〉L .

Later: Any (...) field theory is a hMC theory for some L∞-algebra.
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Construction: L∞-algebras from tensor products 30/123

“dg commutative algebra ⊗ L∞-algebra yields L∞-algebra”

Example: Ω•(M,L) := Ω•(M)⊗ L =
⊕

k∈Z Ω•k(M,L):

Ω•k(M,L) := Ω0(M)⊗Lk ⊕ Ω1(M)⊗Lk−1 ⊕ · · · ⊕ Ωd(M)⊗Lk−d
Higher products:

µ̂1(α1 ⊗ `1) := dα1 ⊗ `1 ± α1 ⊗ µ1(`1)

µ̂i(α1 ⊗ `1, . . . , αi ⊗ `i) := ±(α1 ∧ . . . ∧ αi)⊗ µi(`1, . . . , `i)
Cyclic structure for compact manifolds and cyclic L:

〈α1 ⊗ `1, α2 ⊗ `2〉Ω•(M,L) := ±
∫
M
α1 ∧ α2 〈`1, `2〉L
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Example: Chern–Simons theory 31/123

Tensor product L∞-algebra L̂ = Ω•(M)⊗ g with g Lie algebra:
gauge potential

A ∈ L̂1 = Ω1(M)⊗ g

higher products:

µ̂1 = d and µ2 = ∧ ⊗ [−,−]

Homotopy Maurer–Cartan equation:

F := dA+ 1
2 [A,A] = 0

Homotopy Maurer–Cartan action:

SMC[A] :=

∫
M

〈
1
2(A,dA) + 1

3!(A, [A,A])
〉
.
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Example: 4d Higher Chern–Simons theory 32/123

For d = 4, need cyclic 2-term L∞-algebra: L = L−1 ⊕ L0.
Tensor product L∞-algebra L̂ = Ω•(M)⊗ L:

gauge potential

A+B ∈ L̂1 = Ω1(M)⊗ L0 ⊕ Ω2(M)⊗ L−1

higher products are µ̂1 = d + µ1, µ2, µ3

Homotopy Maurer–Cartan equation:
F = dA+ 1

2µ2(A,A) + µ1(B)

H = dB + µ2(A,B) + 1
3!µ3(A,A,A)

Homotopy Maurer–Cartan action:

SMC =

∫
M

{
〈B, dA+ 1

2µ2(A,A) + 1
2µ1(B)〉L+

+ 1
4!〈µ3(A,A,A), A〉L

}
Generalizes to arbitrary dimensions d ≥ 3!
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Alternative picture 33/123

Connection: splitting of Atiyah algebroid sequence

0 −→ P ×G Lie(G) −→ TP/G −→ TM −→ 0

Atiyah, 1957

Related approach: Cartan, Kotov, Strobl, Schreiber, ...
Gauge potential dually as morphism of graded com algebras:

a∗ : CE(g)→ Ω•(M) , ξα 7→ Aaµdxµ := a∗(ξa)

Curvature: failure of a to be morphism of dgcas:

F a := (d ◦ a∗ − a∗ ◦Q)(ξa) = dAa + 1
2f

a
bcA

b ∧Ac

Infinitesimal gauge transformations: flat homotopies
gca morphisms vs. dgca morphisms a bit strange?
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Non-flat connections 34/123

Double CE algebra to Weil algebra W(g) := CE(inn(g))

W(g) := C∞(
σξα ξα

T [1]g[1]) , Q = QCE + σ , σQCE = −QCEσ

Potentials/curvatures/Bianchi identities from dgca-morphisms

(A,F ) : W(g)→ Ω•(M) = W (M)

ξα 7→ Aα

(σξα) = Qξα + 1
2f

α
βγξ

βξγ 7→ Fα = (dA+ 1
2 [A,A])α

Q(σξα) = −fαβγ(σξα)ξβ 7→ (∇F )α = 0

Gauge transformations: homotopies between dgca-morphisms
Topological invariants: invariant polynomials in W(g)
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Example: higher gauge theory with string(n) 35/123

Recall:

string(n) = (R
0−−→ spin(n)) , µ2 = [−,−] , µ3 = (−, [−,−])

Weil algebra:

W(g) := C∞(T [1]g[1]) = C∞(g[1]⊕ g[2]) , σ : g∗[1]
∼=−−→ g∗[2]

Q|C∞(g[1]) = QCE + σ , QCEσ = −σQCE

Potentials/curvatures/Bianchi identities from dgca-morphisms

(A,B, F,H) : W(g) −→ Ω•(M) = W (M)

ξα 7−→ Aα ∈ Ω1(M) and b 7−→ B ∈ Ω2(M)

(σξα) = Qξα + 1
2f

α
βγξ

βξγ 7−→ Fα = (dA+ 1
2 [A,A])α

(σb) = Qb− 1
3!fαβγξ

αξβξγ 7−→ H = dB − 1
3!(A, [A,A])

Bianchi identities: ∇F = 0 and dH = −1
2(dA, [A,A])

Gauge trafos and top. invariants derived as above
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Classical BRST-BV formalism 37/123

Classical space of observables:

\ Functionals on fields F
/

ideal I := 〈LHS of eom〉 gauge symmetry G

Observation:
Orbit spaces are often not nice
Better: derived quotient

Consider action groupoid
quotient space in cohomology
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BRST formalism: Modding out gauge symmetry 38/123

Action Lie groupoid (“derived quotient”)

(symmetry groupn field space)⇒ field space

Φ
(g,Φ)−−−−→ g B Φ

This differentiates to the action Lie algebroid

FBRST :=
(
Lie(symmetry group) n field space→ field space

)
BRST complex is the dgca-description of this Lie algebroid.

Chevalley–Eilenberg resolution:

0 −→ C∞(F/G) ∼= H0(F/G) ↪−→ C∞0 (FBRST)
Q−−→ C∞1 (FBRST)

Q−−→ · · ·
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Antifields: Equations of motion 39/123

Classical observables:

field configurations modulo symmetries satisfying eom

Field space F

Enlarged: FBV := T ∗[−1]F coords. fields ΦA, “antifields” Φ+
A

Natural symplectic form, Poisson braacket: “anti-bracket”
SBV defines QBV = {SBV,−} with Q2

BV = 0

Note: QBVΦ+
A = {SBV,Φ

+
A} = δΦAS, classical eoms.

Note: QBV(C∞−1(T ∗[−1]F)) = I, ideal vanishing on solutions

Koszul–Tate resolution:
· · · Q−−→ C∞−1(T ∗[−1]F)

Q−−→ C∞0 (T ∗[−1]F) −→ H0(T ∗[−1]F) = C∞(F)/I −−→ 0
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Classical BRST-BV formalism 40/123

Essentially:

Classical BRST-BV
formalism

= Chevalley–Eilenberg
resolution

+ Koszul–Tate
resolution

We have
SBV , QBV := {SBV,−} , Q2

BV = 0

Note:
BV-complex is a free differential graded commutative algebra
Dually, it defines an L∞-algebra
Its homotopy Maurer–Cartan action is the usual action.
There is an extension of this picture producing full BV action.
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Perturb. quantum field theory and homotopy algebras 41/123

There is the following dictionary:

Perturb. quantum field theory Homotopy algebra

classical action cyclic L∞-algebra
tree-level scattering amplitude minimal model

integrating out fields homotopy transfer
semi-classical equivalence quasi-isomorphism

loop level considerations ext. to loop homotopy algebra

Behrends–Giele recursion geometric series in
homolog. pert. lemma

colour-kinematic duality homotopy BV �-algebra
...

...
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Summary 42/123

String/M-theory require higher principal bundles
Effective description expected to be higher gauge theories
We can construct new relevant structures by categorification.
Higher Lie algebras are conveniently modelled by L∞-algebras.
L∞-algebras come with their own gauge theories.
Any field theory is the gauge theory of an L∞-algebra.
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II: The global picture

II.1. 2-groups
II.2. Principal 2-bundles
II.3. Adjusted connections
II.4. Example: Higher monopoles/instantons
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Categorification of groups 45/123

Categorification

Sets→ Categories
Structure Functions→ Structure Functors
Structure Equations→ Structure Isomorphisms

+ Coherence Relations

Group → 2-Group
Set G → Category G

product, identity (1 : ∗ → G), inverse → Functors
a(bc) = (ab)c → Associator a : a⊗ (b⊗ c)⇒ (a⊗ b)⊗ c
1a = a1 = a → Unitors la : a⊗ 1⇒ a, ra : 1⊗ a⇒ a

aa−1 = a−1a = 1 → weak inv. inv(x)⊗ x⇒ 1⇐ x⊗ inv(x)
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Strict Lie 2-groups 46/123

Simplification:

strict Lie 2-groups 1:1←→ Crossed modules of Lie groups

Lie crossed module
Pair of Lie groups (G,H), written as (H

t−→ G) with:
left automorphism action B: G× H→ H

group homomorphism t : H→ G such that

t(g B h) = gt(h)g−1 and t(h1) B h2 = h1h2h
−1
1

Equivalence: every strict 2-group is of the form Baez,Lauda 2003

Gn H G , g t(h−1)g

(g,h)

(g1, h1)⊗ (g2, h2) := (g1g2, (g1 B h2)h1) ,

inv(g1, h1) := (g−1
1 , g−1

1 B h−1
1 )
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Examples of Lie Crossed Modules 47/123

Lie crossed module
Pair of Lie groups (G,H), written as (H

t−→ G) with:
left automorphism action B: G× H→ H

group homomorphism t : H→ G such that

t(g B h) = gt(h)g−1 and t(h1) B h2 = h1h2h
−1
1

Simplest examples:
Lie group G, Lie crossed module: (1

t−→ G).
Abelian Lie group G, Lie crossed module: BG = (G

t−→ 1).
More involved:

Automorphism 2-group of Lie group G: (G
t−→ Aut(G))

Note:
CMs of Lie groups differentiate to CMs of Lie algebras.
CMs of Lie algebras are the same as 2-term dg-Lie algebras.
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Example: The Lie 2-group TDn
48/123

TDn:
R2n × Z2n × U(1) R2n

ξ ξ −m1 ξ −m1 −m2

(ξ,m1,φ1) (ξ−m1,m2,φ2)

(ξ,m1+m2,φ1+φ2)

idξ := (ξ, 0, 0) , (ξ,m, φ)−1 := (ξ −m,−m,−φ)

(ξ1,m1, φ1)⊗ (ξ2,m2, φ2) := (ξ1 + ξ2,m1 +m2, φ1 + φ2 − 〈ξ1,m2〉)
inv(ξ,m, φ) := (−ξ,−m,−φ− 〈ξ,m〉)〈(

ξ̂1

ξ̌2

)
,

(
ξ̂1

ξ̌2

)〉
= ξ̌1ξ̂2

As a crossed module of Lie groups:

TDn :=
(
Z

2n × U(1)
t−→ R

2n
)
,

t(m,φ) = m , ξ B (m,φ) = φ− 〈ξ,m〉 ,
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2-group model of the string group 49/123

Higher analogue of the spin group: String group
Stolz, Teichner, Witten, ...

Defined (up to homotopy) as the 3-connected cover of Spin(n)

Whitehead tower, iteratively delete homotopy groups

. . .→ String(n)→ Spin(n)→ Spin(n)→ SO(n)→ O(n)

Definition only up to homotopy, as a group: ∞-dimensional

2-group model of String(n)
2-group G with 2-group morphism Φ : G → Spin(n)
such that geometric realization of Φ is 3-connected cover.

These 2-groups are perhaps the most important ones.
more later
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2-group model of the string group 50/123

2-group model of String(n)
2-group G with 2-group morphism Φ : G → Spin(n)
such that geometric realization of Φ is 3-connected cover.

Strict 2-group model as crossed module Baez et al. (2005)

G =
(

̂L0Spin(n) −−→ P0Spin(n)
)

L0Spin(n) and P0Spin(n) are based loop and path spaces
̂L0Spin(n) is the Kac–Moody central extension

Products are pointwise
Action B is complicated

There is also a finite-dimensional, weak 2-group model.
It’s very complicated and not explicit. Schommer-Pries (2009)
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Homomorphisms of 2-groups 51/123

Just as L∞-algebras: many more morphisms!
As categories: monoidal functors
As crossed modules: butterflies

Examples:
Lie group U(1)×n ∼= G = (Zn −−→ R

n)

Lie group G ∼= G = (L0G −−→ P0G)
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II: The global picture
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Descriptions of principal bundles 53/123

Principal bundles can be described in many different ways:
Total space perspective:
Fibration P →M , locally trivial, fiberwise G-action, ...
Čech cocycles:
Cover tiUi →M , gij : Ui ∩ Uj → G

Maps into classifying space:
f : M → BG, P = f∗EG
...

All of them are more or less readily categorified.

This yields higher principal bundles or (non-abelian) gerbes.
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Principal fiber bundles, topologically 54/123

Essentially, all definitions of principal bundles have higher versions.

Here: Čech cocycle description subordinate to a cover
Surjective submersion σ : Y � X, e.g. Y = taUa
Čech groupoid:

Č (σ) : Y ×X Y ⇒ Y , (y1, y2) ◦ (y2, y3) = (y1, y3)

Principal G-bundle: functor g : Č (σ)→ BG = (G⇒ ∗)

Y ×X Y
g

//

�� ��

G

�� ��
Y

∗ // ∗

g(y1, y2)g(y2, y3) = g(y1, y3)

Equivalences/bundle isomorphisms: natural isomorphisms
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Principal 2-bundles, topologically 55/123

Lie 2-group, e.g. G = (Gn H⇒ G)

Principal G-bundle: weak 2-functors g : Č (σ)→ BG
After unpacking this for G = (Gn H⇒ G):

g ∈ Ω0(Y [2],G) and h ∈ Ω0(Y [3],H)

t(habc)gabgbc = gac and hacdhabc = habd(gab B hbcd)

Equivalences/bundle isomorphisms: natural 2-isomorphisms
Higher bundle isomorphisms: 2-modifications
Special cases:

H = ∗: principal G-bundle
H = U(1), G = ∗: abelian gerbe

Similarly: groupoid bundles, 2- and n-groupoid bundles
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Application: Differentiation of Lie n-groups 56/123

With our above definition, we can differentiate Lie 2-groups.

To differentiate Lie n-group G : Ševera (2006)
Consider moduli of functor defining principal G -bundles:

X 7→ descent data subordinate to Y = X ×R0|1 � X
(1-jet of G , “representable presheaf”)
Moduli generate free dg com algebra
This is Chevalley–Eilenberg algebra of L∞-algebra Lie(G )
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Application: Differentiation of Lie n-groups 57/123

X 7→ descent data subordinate to Y = X ×R0|1 � X

Example: Lie group G:

g : X ×R0|2 → G , g(θ0, θ1)g(θ1, θ2) = g(θ0, θ2) .

This implies
g(0, θ) = g(θ, 0)−1

g(θ0, θ1) = g(θ0, 0)(g(θ1, 0))−1

g(θ0, 0) = 1+ αθ0 , α ∈ Lie(G)[1] .

g(θ0, θ1) = 1+ α(θ0 − θ1) + 1
2 [α, α]θ0θ1 .

Differential:
Qg(θ0, θ1) :=

∂

∂ε
g(θ0 + ε, θ1 + ε)

Qα = −1
2 [α, α]
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Observations

Differentiating a CM of Lie groups yields CM of Lie algebras.
Differentiating a weak Lie 2-group yields 2-term L∞-algebra.
There is a formal integration procedure; results very large

Classification results: Baez, Lauda and Baez, Crans (2003)
Any Lie 2-group equivalent to “minimal” 2-group given by
Lie group G, Representation V , cocycle H3(G, V )

Any semi-strict Lie 2-algebra equivalent to minimal model
Lie algebra g, Representation V , cocycle H3(g, V )

This does not integrate!

In particular:
String(3) differentiating to minimal string(3) very complicated!

Schommer-Pries (2009)
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A bit harder: Connections 61/123

Many ways of defining connections on principal 2-bundles:
Algebraic geometry Breen, Messing (2005)
Higher bundle gerbes Aschieri, Cantini, Jurčo (2005)
Formally integrating infinitesimal description

Fiorenza, Sati, Schreiber (2012)
Isomorphisms of Maurer–Cartan forms (enhancing Ševera’s
differentiation) Jurčo, CS, Wolf (2014)
Forms on total 2-space Waldorf (2016)
Atiyah algebroid sequence M Farahani, CS (soon)

They all yield essentially the same objects.
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A bit harder: Connections 62/123

Data obtained for 2-group GnH⇒ G and Lie 2-algebra gn h⇒ g:

h ∈ Ω0(Y [3],H) Λ ∈ Ω1(Y [2], h) B ∈ Ω2(Y, h) δ ∈ Ω2(Y [2], h)

g ∈ Ω0(Y [2],G) A ∈ Ω1(Y, g)

Local curvature forms as in the infinitesimal case:
Fa = dAa + 1

2 [Aa, Aa]− t(Ba)

Ha = dBa +Aa B Ba + Tδ

Note: δ sticks out unnaturally
Dropped in most later work (Schreiber, Waldorf (2009), ...)
Price to pay: Fa = 0

Gauge transformations differentiate to infinitesimal description
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Principal 2-Bundles 63/123

Object Principal G-bundle Principal (H t−→ G)-bundle

Cochains (gab) valued in G (gab) valued in G, (habc) valued in H

Cocycle gabgbc = gac t(habc)gabgbc = gac
hacdhabc = habd(gab B hbcd)

Coboundary gag
′
ab = gabgb gag

′
ab = t(hab)gabgb

hachabc = (ga B h′abc)hab(gab B hbc)

gauge pot. Aa ∈ Ω1(Ua)⊗ g Aa ∈ Ω1(Ua)⊗ g, Ba ∈ Ω2(Ua)⊗ h

Curvature Fa = dAa + 1
2 [Aa, Aa] Fa = dAa + 1

2 [Aa, Aa]− t(Ba)
!

= 0
Ha = dBa +Aa B Ba

Gauge trafos Ãa := g−1
a Aaga + g−1

a dga Ãa := g−1
a Aaga + g−1

a dga + t(Λa)

B̃a := g−1
a B Ba + Ãa B Λa + dΛa − Λa ∧ Λa

Remarks:
A principal (1

t−→ G)-bundle is a (flat) principal G-bundle.

A principal (U(1)
t−→ 1) = BU(1)-bundle is an abelian gerbe.
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Side remark: Avoiding higher geometry with loop spaces 64/123

An abelian gerbe over M “is” a principal U(1)-bundle over LM .

3-form H = dd(G ) on M T−−→ 2-form F = c1(P ) on LM

Consider the following double fibration:

M LM

LM × S1

ev pr�
�	

@
@R

Transgression

T : Ωk+1(M)→ Ωk(LM) , vi =

∮
dτ vµi (τ)

δ

δxµ(τ)
∈ TLM

(T ω)x(v1(τ), . . . , vk(τ)) :=

∮
S1

dτ ω(x(τ))(v1(τ), . . . , vk(τ), ẋ(τ))

Nice properties: reparameterization invariant, chain map, ...
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Can’t live with or without fake curvature? 65/123

F := dA+ 1
2 [A,A] + t(B)

!
= 0

Without this condition:
Higher parallel transport is not reparameterization invariant

Closure of gauge transformations and composition of cocycles:

(g−1
23 g

−1
12 ) B (h−1

123(F1 B h123))
!

= 0

6d Self-duality equation H = ?H is not gauge-covariant:

H → H̃ = g B H −F B Λ

With this condition:
Principal (1

t−→ G)-bundle is flat principal G-bundle.
Higher connections are locally abelian!

Gastel (2019), CS, Schmidt (2020)
Reason for bias against non-abelian gerbes in string theory(?)
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Argument 66/123

Lie 2-group (crossed module) (H
t−→ G,B), (h

t−→ g,B)

Potential forms: A ∈ Ω1(Rd, g), B ∈ Ω2(Rd, h)

Fake flatness: F := dA+ 1
2 [A,A] + t(B) = 0

Gauge transformations: g ∈ Ω0(Rd,G), Λ ∈ Ω1(Rd, h)

A 7→ Ã = g−1Ag + g−1dg + t(Λ1)

B 7→ B̃ = g−1 B B + dΛ1 + Ã B Λ1 + 1
2 [Λ1,Λ1]

A and gauge transformations restrict to G◦ = G/im(t)

F ◦ = 0 and non-abelian Poincaré lemma: gauge with Ã◦ = 0

Ã ∈ im(t), gauge away with Λ-transformation: ˜̃A = 0

connection is abelian with ˜̃B ∈ ker(t)!
CS, Schmidt (2020), see also Gastel (2018)
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Comparing to physics: heterotic supergravity 67/123

How to construct “good” curvatures for non-abelian gauge
potentials in presence of Kalb–Ramond B-field?

Answers in the literature:
Use Chern-Simons terms:

F = dA+ 1
2 [A,A] , H = dB + (A,dA) + 1

3(A, [A,A])

Bergshoeff et al. (1982), Chapline et al. (1983)
This is at odds with the “conventional” non-abelian gerbes:

F = dA+ 1
2 [A,A] , H = dB − 1

3(A, [A,A])

Breen/Messing (2001), Aschieri, Cantini, Jurco (2003)
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Local adjustment for skeletal string algebra 68/123

Example: Skeletal string Lie 2-algebra: string(n) = (R→ spin(n))

Adjusted Weil algebra: Fiorenza, Sati, Schreiber (2011)

QWt
α = −1

2f
α
βγt

βtγ + t̂α QWr = 1
3!fαβγt

αtβtγ−καβtαt̂β + r̂

QW t̂
α = −fαβγtβ t̂γ QWr̂ = καβ t̂

αt̂β

Adjustment governed by Killing form καβ .
Gauge potentials:

(A,B) ∈ Ω1(U)⊗ g ⊕ Ω2(U)

Curvatures:
F := dA+ 1

2 [A,A]

H := dB − 1
3!µ3(A,A,A) + χsk(A,F )

= dB + (A,dA) + 1
3(A, [A,A])︸ ︷︷ ︸

cs(A)

Induces modified gauge transformations and Bianchi identities.
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General local adjustment 69/123

Adjustment (local form) CS, Schmidt (2020)
An adjustment is a redefinition of the Weil algebra preserving the
projection onto the Chevalley–Eilenberg algebra such that the
resulting gauge transformations close generically.

Physicists would say:
Unadjusted Weil algebra → BRST complex is open
Adjusted Weil algebra → BRST complex closes off-shell

Remarks:
Appears also for Lie algebroid gauge theories
Extends to higher L∞-algebras
Examples later
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Global adjustment 70/123

Many (not all!) higher gauge groups come with

Adjustment of 2-group G: CS, Schmidt (2020), Rist, CS, Wolf (2022)

Map κ : G × Lie(G)→ Lie(G) of degree −1 such that

(g−1
2 g−1

1 ) B (h−1(X B h)) + g−1
2 B κ(g1, X)

+ κ(g2, g
−1
1 Xg1 − t(κ(g1, X)))− κ(t(h)g1g2, X) = 0

for all g1,2 ∈ G0 and X ∈ Lie(G)0.

Remarks:
Adjustment is additional algebraic datum
Necessary for consistent definition of invariant polynomials.
specifies δ ∈ Ω2(Y [2], h) in terms of g and F
Adjustment of curvature/cocycle/coboundary relations
Can drop fake flatness condition, all problems go away
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Fully adjusted principal 2-bundles

One can construct a global picture
Dominik Rist, CS, Martin Wolf, (2022)

Cocycle description
hiklhijk = hijl(gij B hjkl)

gik = t(hijk)gijgjk

Λik = Λjk + g−1
jk B Λij − g−1

ik B (hijk∇ih−1
ijk) ,

Aj = g−1
ij Aigij + g−1

ij dgij − t(Λij) ,

Bj = g−1
ij B Bi + dΛij +Aj B Λij + 1

2 [Λij ,Λij ]− κ(gij , Fi)

Example: Principal bundles with connection as higher bundles
Gauge group G is equivalent to 2-group G = (L0G→ P0G)

κ(g, α) : p 7→ (1− p · [)(g−1αg − α)
where G matrix Lie group, [g denotes the endpoint of path g
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Properties of adjustment
Without Adjustment With Adjustment

Gauge transformations only Gauge transformations close
close generically if F = 0

Parallel transport only Parallel transport consistent
consistent if F = 0

H = ?H only transforms H = ?H transforms covariantly
covariantly if F = 0

Matches SUGRA expectations Matches SUGRA expectations
only if F = 0

Further properties:
Adjustments also improve properties of invariant polynomials
∃ higher gauge groups that do not allow for an adjustment
There is an adjusted version of parallel transport.
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Teaser for part III 73/123

Evident question:

Where do the structure constants for adjustment come from?

Observation:
There is a family of quasi-isomorphic weak Lie 2-algebras

stringwk,α
sk (g) := (R

0−−→ g) ,

ε1(r) = 0 ,

ε2(x1, x2) = [x1, x2] , ε2(x1, r) = 0 ,

ε3(x1, x2, x3) = (1− α)(x1, [x2, x3]) ,

alt(x1, x2) = −2α(x1, x2)

Conjecture:

Adjustment data from alternators in weak Lie n-algebras
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II: The global picture
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Dirac Monopole 75/123

Dirac Monopole
Dirac postulated in 1931 a new particle: magnetic monopole
Hopf discovered in 1931 the principal U(1)-bundle S3 → S2

“Fundamental” circle bundle (c1=volume form on S2)
Total space carries group structure: S3 ∼= SU(2).
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The self-dual string 76/123

Question: What is a monopole in M-theory?

0 1 2 3 4 5 6
D1 × ×
D3 × × × ×

BPS configuration

Bogomolny monopole eqn.
F = ∇2 = ∗∇Φ on R3

M 0 1 2 3 4 5 6
M2 × × ×
M5 × × × × × ×

BPS configuration

Abelian self-dual string eqn.
H := dB = ∗dΦ on R4
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Principal fiber bundles from cosets

Useful construction:
Symmetric space G/H
i.e. H is subgroup of stabilizer Gσ of some involution σ
Implies Cartan decomposition g = m⊕ h

[h, h] ⊂ h , [h,m] ⊂ m , [m,m] ⊂ h

Principal bundle P = G→ G/H

Connection on P given by prh(ΘG)

Curvature is 2-form on G/H due to Maurer–Cartan eqn.
Examples: Trautman (1977)

Dirac monopole: SU(2)→ SU(2)/U(1) ∼= S2

Doubled instanton: Spin(5)→ Spin(5)/Spin(4) ∼= S4

Many other solutions to YM and YM-Einstein.
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“Categorifying” monopoles and instantons 78/123

Dirac monopole: Spin(3)→ Spin(3)/Spin(2) ∼= S2

Doubled instanton: Spin(5)→ Spin(5)/Spin(4) ∼= S4

Idea: Replace Spin(n) with String(n) Roberts (2014)

Results:
Higher Dirac monop.: String(3)→ String(3)/String(2) ∼= S2

Higher Instanton: String(5)→ String(5)/String(4) ∼= S4

Beyond topology:
Full adjusted differential cocycle data Rist, CS, Wolf (2022)
First ... example non-Abelian principal 2-bundle
String structure on S4

The latter is both a higher instanton and the non-abelian
self-dual string, i.e. a higher non-abelian monopole.
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Summary 79/123

We categorified Lie groups to Lie 2-groups.
A useful description were crossed modules of Lie groups.
Analogue of Čech cocycles for principal 2-bundles clear
Could use these to differentiate Lie 2-groups.
Connections are harder; naive definitions lead to problems.
Adjustment: modify curvatures such that gauge
transformations close generically
Solves all problems, in particular requirement of fake-flatness
Explicit example of a principal 2-bundle with connection:
Higher monopole or fundamental non-abelian self-dual string
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III: Applications

III.1. T-duality with higher spaces
III.2. Penrose–Ward transform
III.3. 6d superconformal field theories
III.4. Tensor hierarchies
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Outline T-duality 82/123

T-duality
Roughly: Equivalence of string theory for strings moving in two
different spaces with 1-cycles.

Simplest example: M̌ = M9 × T 1 and M̂ = M9 × (T 1)∗

Low-energy limit: supergravity with fields (g,B, φ)

Metric g: Kaluza–Klein metric from connection on U(1)-bundle
2-form B-field connective structure on a gerbe

Geometric string background:
A (Riemannian) manifold X
A principal/affine torus bundle π : P → X (with connection)
An abelian gerbe (with connection) G on the total space of P
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Topological T-duality 83/123

E.g. for a principal circle bundle P̌ → X and gerbe Ǧ → P̌ :

Ȟ∈H3(P,Z)

Ǧ
F̌∈H2(X,Z)

P̌

X

π̌

Recall:
Principal circle bundles over X:
characterized by 1st Chern class c1 = F̌ ∈ H2(X,Z)

Abelian gerbe over P̌ :
characterized by Dixmier–Douady class dd = Ȟ ∈ H3(P̌ ,Z)
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Topological T-duality 84/123

E.g. for a principal circle bundle P̌ → X and gerbe Ǧ → P̌ :

H∈H3(P̌ ,Z)

Ǧ
F∈H2(X,Z)

P̌

X

π̌

Topological T-duality from exactness of the Gysin sequence

. . . −→ H3(X,Z)
π∗−→ H3(P,Z)

π∗−→ H2(X,Z)
F ∪−−→ H4(X,Z) −→ . . .

Bouwknegt, Evslin, Hannabuss, Mathai (2004)
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Topological T-duality 85/123

E.g. for a principal circle bundle P̌ → X and gerbe Ǧ → P̌ :

Ȟ∈H3(P̌ ,Z)

Ǧ
F̌∈H2(X,Z)

P̌
F̂∈H2(X,Z)

P̂

X

π̌ π̂

Topological T-duality from exactness of the Gysin sequence

. . . −→ H3(X,Z)
π∗−→ H3(P,Z)

π∗−→ H2(X,Z)
F ∪−−→ H4(X,Z) −→ . . .

1) Pushforward π̌∗Ȟ yields Chern class F̂ of new circle bundle

Christian Saemann Higher principal bundles and higher gauge theory



Topological T-duality 86/123

E.g. for a principal circle bundle P̌ → X and gerbe Ǧ → P̌ :

Ȟ∈H3(P̌ ,Z)

Ǧ
F̌∈H2(X,Z)

P̌
F̂∈H2(X,Z)

P̂

Ĥ∈H3(P̂ ,Z)

Ĝ

X

π̌ π̂

Topological T-duality from exactness of the Gysin sequence

. . . −→ H3(X,Z)
π∗−→ H3(P,Z)

π∗−→ H2(X,Z)
F ∪−−→ H4(X,Z) −→ . . .

1) Pushforward π̌∗Ȟ yields Chern class F̂ of new circle bundle
2) F̌ ∪ F̂ = F̂ ∪ F̌ = 0, so F̌ = π̂∗Ĥ for some Ĥ → new gerbe
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Topological T-duality 87/123

E.g. for a principal circle bundle P̌ → X and gerbe Ǧ → P̌ :

Ȟ∈H3(P̌ ,Z)

Ǧ
F̌∈H2(X,Z)

P̌
F̂∈H2(X,Z)

P̂

Ĥ∈H3(P̂ ,Z)

Ĝ

X

π̌ π̂

Topological T-duality from exactness of the Gysin sequence

. . . −→ H3(X,Z)
π∗−→ H3(P,Z)

π∗−→ H2(X,Z)
F ∪−−→ H4(X,Z) −→ . . .

1) Pushforward π̌∗Ȟ yields Chern class F̂ of new circle bundle
2) F̌ ∪ F̂ = F̂ ∪ F̌ = 0, so F̌ = π̂∗Ĥ for some Ĥ → new gerbe

Topological T-duality here:

(F̌ , Ȟ) = (π∗Ĥ, Ȟ) ←→ (F̂ , Ĥ) = (π∗Ȟ, Ĥ)

Severe topology change, “M × S1”-backgrounds not sufficient!
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Topological T-duality, geometrically 88/123

T-correspondence:

GC = p̌∗Ǧ ⊗ p̂∗Ĝ−1 ∼= I

P̌ ×X P̂

Ǧ P̌ P̂ Ĝ

X

p̌ p̂

π̌ π̂

Bunke, Rumpf, Schick (2005, 2006)

Principal 2-bundles (without connections) over X:

PC

P̌ P̂

p̌ p̂

Nikolaus, Waldorf (2018)
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A 2-group fibration 89/123

String backgrounds: principal TBF2
n -bundles for 2-group TBF2

n

There is an 2-group TDn with BTDn ∼= BTBF2
n :

TDn :=
(
Z

2n × U(1)
t−→ R

2n
)
,

t(m,φ) = m , ξ B (m,φ) = φ− 〈ξ,m〉 ,

T-duality 2-group GO(d, d;Z) is autom. 2-group of TDn
Double fibration of 2-groups:

TDn

TBF2
n TBF2

n

φ̌ φ̂

φ̂: strict morphism
φ̌ = φ̂ ◦ φflip with φflip : TDn → TDn
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Geometric T-duality: Topological picture 90/123

2-group double fibration induces double fib. of principal 2-bundles:

PC

P̌ P̂

p̌ p̂

PC is a principal TDn-bundle
P̌ and P̂ are principal TBF2

n -bundles
Gerbe and circle fibration combined into 2-bundles P̌ and P̂

This describes geometric (F 2 ↔ F 2) topological T-duality
Nikolaus, Waldorf (2018)
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Geometric T-duality: Full Picture 91/123

PC

P̌ P̂

p̌ p̂

Differential refinement: i.e. (g,B, φ) Kim, CS (2022)
TDn comes with very natural adjustment map: 〈−,−〉
(interestingly, TBF2

n does not...)
Have topological and full connection data on PC

Can reconstruct gerbe and bundle data on P̌ and P̂

Generalization to affine torus bundles: use GL(n,Z) n TDn

Extend further to groupoid bundle to accommodate dilaton φ
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Explicit example: Geometric T-duality with nilmanifolds 92/123

Kim, CS (2022)PC

P̌ P̂

p̌ p̂

Lie 2-group:
TD1 :=

(
Z

2 × U(1)
t−→ R

2
)

Topological cocycle data:

g =

(
ξ̂

ξ̌

)
,

ξ̂(x, y;x′, y′) = `(x′ − x)y ,

ξ̌(x, y;x′, y′) = k(x′ − x)y ,

h =

m̂m̌
φ

 ,

m̂(x, y;x′, y′;x′′, y′′) = −`(x′′ − x′)(y′ − y)

m̌(x, y;x′, y′;x′′, y′′) = −k(x′′ − x′)(y′ − y)

φ = 1
2k`
(
y′(xx′′ − xx′ − x′x′′)− (x′′ − x′)(y′2 − y2)x

)
Cocycle data of differential refinement:

A =

(
Ǎ

Â

)
=

(
kx dy
`x dy

)
, B = 0 , Λ = 1

2k`(xx
′ dy + (xy + x′y′ + y2(x′ − x)) dx)

Reconstruction procedure for both string backgrounds fully.
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Buscher rules 93/123

Full verification:
This formalism reproduces the Buscher rules locally.

Waldorf (2022).

Altogether:

Full description of geometric T-duality with non-trivial topology

Also:

Extension to non-geometric T-dualities
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III: Applications

III.1. T-duality with higher spaces
III.2. Penrose–Ward transform
III.3. 6d superconformal field theories
III.4. Tensor hierarchies
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Twistor description of higher gauge theories 95/123

Recall the principle of the Penrose-Ward transform:
Interested in field equations that are equivalent to
flatness of connections along subspaces of spacetime M
Establish a double fibration

P M

F

�
�	

@
@R

P : twistor space, moduli space of subspaces in M
F : correspondence space

Hn(P,S) (e.g. vector bundles) 1:1←→ sols. to field equations.
Explicitly appearing: gauge transformations, moduli,
symmetries of the equations, etc.
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Known Examples of Twistor Descriptions 96/123

CP 3
◦ C4

C4 ×CP 1

�
�	

@
@R

Instantons
hol. vector bundle

TCP 1 C3

C3 ×CP 1

�
�	

@
@R

Monopoles
hol. vector bundle

P 5|6 C4|12

C4|12 ×CP 1 ×CP 1

�
�	

@
@R

(Super) Yang-Mills
hol. vector bundle

P 6 C6

C6 ×CP 3

�
�	

@
@R

abelian H = ?H
hol. gerbe

Hughston, Murray, Eastwood, CS & M.Wolf, Mason et al.

Note: last twistor space reduces nicely to the above ones.
Idea: Put a non-abelian gerbe on the last twistor space.
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Penrose–Ward transform with gerbes 97/123

P 6|4 C6|16

C6|16 ×CP 3

�
�	

@
@R

non-abelian self-dual tensor multiplet
hol. principal 2-bundle
hol. principal 3-bundle

CS & M Wolf, 1205.3108, 1305.4870
Note:

P 6|4 is a straightforward SUSY generalization of P 6

EOMs, abelian: H = ?H, F = t(B), ∇/ ψ = 0, �φ = 0

N = (2, 0) SC non-abelian tensor multiplet EOMs!
EOMs on superspace seem to restrictive...
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Detailed Penrose-Ward Transform 98/123

Double fibration: P 6 π1←− C6 ×CP 3 π1−→ C6

M4-trivial holomorphic gerbe over P 6:

gab = t(h−1
ab )gag

−1
b and habc = h−1

ac hab(gab B hbc)

Penrose-Ward transfrom:
Introduce relative differential forms along π1

aa := g−1
a dπ1ga and bab := g−1

a B (dπ1hab h
−1
ab )

We have bab + bbc + bca = 0 and H1(C6 ×CP 3,Ω1
π) = 0:

Split once more: bab = ba − bb
Define global relative differential forms:

Aa := aa − t(ba) and Ba := −(dπ1ba − ba ∧ ba + aa B ba)

Field equations:
Fπ1 := dAπ1 + 1

2 [Aπ1 , Aπ1 ] = t(Bπ1)

Hπ1 := dBπ1 +Aπ1 B Bπ1 = 0
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Resulting Superspace Constraint Equations 99/123

Supersymmetric case, coordinates xAB, ηAI on space-time:
Field expansions

Fπ1 = −1
4eA ∧ eBλC ε

ABCDFD
EλE + 1

2eAλB ∧ e
EF
I λE ε

ABCD FCD
I
F +

+ 1
2e
CA
I λC ∧ eDBJ λD F

IJ
AB ,

Hπ1 = −1
3eA ∧ eB ∧ eCλDε

ABCDHEFλEλF +

− 1
4eA ∧ eBλC ε

ABCD ∧ eEFI λE (HD
GI
F )0λG +

+ 1
4eAλB ∧ e

EF
I λE ∧ eGHJ λG ε

ABCD (HCD
IJ
FH)0 +

+ 1
6e
DA
I λD ∧ eEBJ λE ∧ eFCK λF H

IJK
ABC ,

Constraint equations

FA
B = t(BA

B) , FAB
I
C = t(BAB

I
C) , F IJAB = t(BIJ

AB) ,

HAB = 0 , HA
BI
C = δBCψ

I
A − 1

4δ
B
Aψ

I
C ,

HAB
IJ
CD = εABCDφ

IJ , HIJK
ABC = 0 ,
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Yet another twistor space 100/123

New twistor space parameterizing hyperplanes in C4:

P 3 C4

C4 ×CP 1 ×CP 1

�
�	

@
@R

self-dual strings
hol. principal 2-bundle
hol. principal 3-bundle

CS & M Wolf, 1111.2539, 1205.3108, 1305.4870
Note:

Hyperplane twistor space P 3: O(1, 1)→ CP 1 ×CP 1.
The spheres CP 1 ×CP 1 parameterize an α- and a β-plane.
The span of both is a hyperplane.
Nonabelian self-dual string equations: H = ?dAΦ, F = t(B).
Reduces nicely to the monopole twistor space: O(2)→ CP 1.
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III: Applications

III.1. T-duality with higher spaces
III.2. Penrose–Ward transform
III.3. 6d superconformal field theories
III.4. Tensor hierarchies

Warning: Much of the following is supposed to be impossible.
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Representation theory suggests and string theory predicts
a mysterious superconformal field theory in six dimensions

People call this Theory X or The (2,0)-Theory.

Little is known. No Lagrangian exists.



We know:
It describes stacks of M5-branes with gravity turned off
(just as Yang–Mills theory describes stack of D-branes)
It has Wilson surfaces as observables
(just as Yang–Mills has Wilson lines)
It is a theory of (“self-dual”) strings

Conjecture

The (2,0)-theory is classically a higher gauge theory.
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“But Witten has said there is no Lagrangian!”

“... by hunting for unicorns we may find other creatures that
are useful in understanding the theory more generally.”

Neil Lambert



Wish:

Reality:

or
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What we know about the (2,0)-theory 106/123

Pre-history:
Conformal QFTs: particularly interesting and important
Conformal algebra on Rp,q: so(p+ 1, q + 1)

Supersymmetric extensions only for p+ q ≤ 6 Nahm, 1978
Examples for p+ q ≤ 4 known for long time
Belief: p+ q = 4 maximum for interacting QFTs

String/M-theory:
First identified in type IIB superstring theory Witten, 1995
Also appears in M-theory Witten, Strominger 1995/1996
Physical field content is clear: N = (2, 0) supermultiplet in 6D
Gravity decouples
Contains 2-form B-field with H = ?H

A theory of strings, observables: Wilson surfaces
Huge interest, would improve our understanding significantly.
Classical description claimed to be impossible.
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Objections to classical description 107/123

Non-abelian higher parallel transport of strings difficult
⇒ Non-abelian principal 2-bundles are fine.
Action for self-dual 2-forms difficult
⇒ BV-formalism: lift any eom to an action, also Sen’s work
No coupling constant, no continuous deformation of free action
⇒ Same for Chern–Simons theory, M2-brane models
Dimensional reduction to 5d and 4d unclear
⇒ We give an example of a reduction
Other points, e.g. parts of action such as

∫
φF 2 unbounded

⇒ same issues as in F-theory.
Unclear how to realize certain gauge groups (“Tachikawa test”)
⇒ ?? Let’s cross that bridge when we get there.
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An action for self-dual fields 108/123

Regard self-duality as homotopy Maurer–Cartan equation:( λ

Ω0(M)︸ ︷︷ ︸
L−1

Λ

Ω1(M)︸ ︷︷ ︸
L0

B

Ω2(M)︸ ︷︷ ︸
L1

H−

Ω3
−(M)︸ ︷︷ ︸
L2

d d −(d−?d)
)

Take cotangent bundle to have action:

λ

Ω0(M)
Λ

Ω1(M)
B

Ω2(M)
H−

Ω3
−(M)

H+
−

Ω3
+(M)

B+

Ω2(M)
Λ+

Ω1(M)
λ+

Ω0(M)

d d −(d−?d)

d† d† d†


Compensate unwanted fields by kernel injection:

λ

Ω0(M)
Λ

Ω1(M)
B

Ω2(M)
H−

Ω3
−(M)

α†

Ω2
+(M)

⊕ ⊕ ⊕ ⊕

α

Ω2
+(M)

H†−

Ω3
+(M)

B†

Ω2(M)
Λ†

Ω1(M)
λ†

Ω0(M)

d d −(d−?d) δ

d d† d† d†
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Adjusted metric string structures 109/123

We know the BPS states ⇒ gauge structure: string(n).
String algebra not cyclic, cf. ĝsk =

(
Rr −→ gt

)
Construct T ∗[−2]ĝsk, imitating BV-formalism

Lennart Schmidt+CS, 2017
Result:

ĝωsk =


g∗v g∗u R∗s R∗p

⊕ ⊕ ⊕
Rq Rr gt

µ1=id µ1=id

µ1=id


Adjustments for metric string structures

Lennart Schmidt+CS, 2019
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Classically well-defined (1,0)-action 110/123

Borrow action from gauged supergravity
Samtleben+Sezgin+Wimmer, 2011

Field content:
(1,0) tensor multiplet (φ, χi, B), values in R2, φ = φs + φr, ...
(1,0) vector multiplet (A, λi, Y ij), values in g⊕R
C-field (3-form), values in R⊕ g∗

D-field (4-form), values in g∗

Lagrangian: D Rist, CS, van der Worp (2020)

LN=(1,0)
TF = −dφs ∧ ?dφr − ?4χ̄s∂/χr + ?4χ̄s (F/t, λt)− ?8χ̄

i
s (Ytij , λ

j
t )

+ φs

(
(Ft, ?Ft)− ?2(Ytij , Y

ij
t ) + ?4(λ̄t,∇/ λt)

)
+ L0,hyper

+ (dBs)
+ ∧

(
dBr + cs(A)r + (λ̄t, γ(3)λt)

)
+ (dBs)

− ∧ C+
q

− is ∧ (dBr + cs(A)r − Cq + (λ̄t, γ(3)λt))

+ (∇Cu)(kt) + 2Bs ∧ (Ft,kt) +Dv(kt)− 2φs(kt, ?Ft)
− ?4χ̄s(k/ t, λt)−Bs ∧ (kt,kt) + φs(kt, ?kt) ,
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Comments on the action 111/123

What properties should a 6d SCFT have?

Mathematically consistent theory of 2-form potential X
Interactions! X
Self-duality of the curvature H := dB + . . . = ?H X

At least some supersymmetry X, ideally N = 2 7

Well-defined quantum theory ?

Suitable reductions to
Yang–Mills theory in 4d X
M2-brane models in 3d X

Non-abelian self-dual strings as BPS states X
Other physics tests ?

Conclusion: perhaps not impossible, but more work needed
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III: Applications

III.1. T-duality with higher spaces
III.2. Penrose–Ward transform
III.3. 6d superconformal field theories
III.4. Tensor hierarchies
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Infinitesimal adjustment from alternators 113/123

Recall:

2-term EL∞-algebras Roytenberg (2007)
2-term cochain complex E = E−1 ⊕ E0 with Leibniz bracket
antisymmetric and Jacobi up to homotopies (alternator, ε3).

Observation:

In example “het. supergravity”, infinitesimal adjustment: alternator.

Idea: Generalize this!
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Generalize to EL∞-algebras 114/123

What we have:
E2L∞-algebras

Take Roytenberg’s 2-term EL∞-algebras
Extract strict part (“hemistrict Lie algebra”)
Generalize to chain complexes: hLie2-algebras
Homotopy algebras from E2L∞-algebras with
products ε01, ε

0
2, ε

00
3 , ε103 , ε013 , . . . and ε12 = alt

Any E2L∞-algebra antisymmetrizes to quasi-iso. L∞-algebra
What we almost have:

EL∞-algebras:
Extend hLie2-algebras to hLie∞-algebras
(also ε22, ε

3
2, . . . controlling symmetry of alternators)

Construct their homotopy algebra

Subsume Dehling’s 3-term EL∞-algebras
Any EL∞-algebra antisymmetrizes to quasi-iso. L∞-algebra
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Useful algebras

The questions
1) Algebraic structure underlying symplectic L∞-algebroids?
2) Algebraic structure underlying multisymplectic manifolds?
3) Algebraic structure underlying higher curvature forms?
4) Cofibrant replacement of Lie?
5) How do you integrate Leibniz algebras?

have a simple, unifying answer:

EL∞-algebras

Christian Saemann Higher principal bundles and higher gauge theory



Back to adjusted higher gauge theory 116/123

First example:

There is a family of quasi-isomorphic weak Lie 2-algebras

stringwk,α
sk (g) := (R

0−−→ g) ,

ε1(r) = 0 ,

ε2(x1, x2) = [x1, x2] , ε2(x1, r) = 0 ,

ε3(x1, x2, x3) = (1− α)(x1, [x2, x3]) ,

alt(x1, x2) = −2α(x1, x2)

Corresponding picture exists for strict 2-group version.

But let’s rather turn to more complicated cases...

Christian Saemann Higher principal bundles and higher gauge theory



Why is this interesting? 117/123

Mostly, because we have the following refinement of

Theorem Fiorenza/Manetti (2006), Getzler (2009), ...
Differential graded Lie algebras carry L∞-algebra structures
on shifted, truncated complex via derived brackets.

dg Lie algebra hLie2-algebra L∞-algebra

shift/truncate

shift/truncate, antisymmetrize

antisymmetrize

Theorem Borsten/Kim/CS (2022)
Differential graded Lie algebras carry hLie2-algebra structures
on shifted, truncated complex via derived brackets.
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Why is this interesting? 118/123

Start from a dg Lie algebra
Construct hLie2-algebra (easy to handle)
If necessary, antisymmetrize to L∞-algebra

This construction is very common in generalized geometry:
Courant algebroid is symplectic Lie 2-algebroid
Roytenberg (2002)
CE-algebra + symplectic form ⇒ dg Poisson algebra
hLie2-algebra contains Dorfman bracket
antisymmetrization to L∞-algebra: Courant bracket
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General adjustment 119/123

Theorem (Borsten, Kim, CS)

Any L∞-algebra obtained by shift/truncation from a differential
graded Lie algebra and subsequent antisymmetrization admits a
mathematically natural adjustment of the definition of the resulting
curvatures.

Note:
Have explicit formulas for adjustment/curvatures
String 2-algebra from dgLA ⇒ adjusted higher gauge theory
Tensor hierarchies from dgLA ⇒ adjusted higher gauge theory
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Tensor Hierarchies in Gauged Supergravities 120/123

Application:
There’s a unique theory of supergravity in 11 dimensions.

“Fields”: representations of supergroup containing ISO(1, 10)
“Action”: functional of fields, invariant under this supergroup

Place this theory on R1,10−n × Tn, Fourier expand on Tn

Modes contain differential forms and “S-duals”
Modes arrange into representations of En(n)

Gauge subgroup G ↪→ En(n)

Data encoding subgroup G and reps. yield dgLA structure g

Construct adjusted connections on higher principal bundles
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Example: 5d max. supersymmetric Tensor Hierarchy 121/123

Differential graded Lie algebra (reps. of e6(6))
Ve6(6) = V−5 ⊕ V−4 ⊕ V−3 ⊕ V−2 ⊕ V−1 ⊕ V0 ⊕ V1

ρ(k) 27⊕ 1728 351c 78 27 27c 78 351

hLie2-algebra:
Ee6(6) = E−4 ⊕ E−3 ⊕ E−2 ⊕ E−1 ⊕ E0

27⊕ 1728 351c 78 27 27c

Curvatures:
F a = dAa + 1

2Xbc
aAb ∧Ac + ZabBb

Ha = dBa − 1
2Xba

cAb ∧Bc − 1
6dabcXde

bAc ∧Ad ∧Ae + dabcA
b ∧ F c + Θa

αCα

Gα = dCα − 1
2Xaα

βAa ∧ Cγ + (1
4Xaα

βtβb
c + 1

3 tαa
dX(db)

c)Aa ∧Ab ∧Bc
+ 1

2 tαa
bF a ∧Bb − 1

2 tαa
bHb ∧Aa − 1

6 tαa
bdbcdA

a ∧Ac ∧ F d − YaαβDβ
a

Note:
Adjustments are given by alternators of hLie2-algebra
Invisible at level of gauge L∞-algebra
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Summary 122/123

Saw concrete examples of applications of higher gauge theory.
T-duality

Geometric T-duality: span of principal 2-groupoid bundles
Buscher rules and compatibility implied

Penrose–Ward transform
Extends to higher bundles
Resulting field equations not that interesting

6d superconformal field theories
Classical descriptions of N = (1, 0)-theory
Many perceived obstacles can be overcome
Still (2,0)-theory seems very difficult

Tensor hierarchies
Gauged supergravities are higher gauge theories
New algebraic structure: hLie2-algebras
dg Lie algebras come with hLie2-algebras
hLie2-algebras come with adjustment
Field strengths of gauged supergravity: adjusted curvatures
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Thank You!
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