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Motivation

Geometric flows are important tools to investigate solutions to a geometric
equation

Properties required

• (strong/weak) parabolicity (ensures short time existence and uniqueness)

• geometric meaning of fixed points

Examples

• Ricci flow [Hamilton 1982]

(and variations with extra structure, e.g. Kähler–Ricci, G2, ...)

∂λgmn = −Rmn

• Donaldson heat flow [Donaldson 1985]

(gauge equivalent to Yang–Mills flow)

h−1∂λh = −giȷ̄Fiȷ̄

→ The flow that we will consider will generalize both examples!
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Motivation

Heuristic motivation: flows arising in string theory expected to behave “nicely”

e.g. Perelman–Ricci flow [Perelman 2002]

∂λgmn = − (Rmn + 2∇m∇nφ) ∂λ(
√
|g| e−2φ) = 0

• Ricci flow as a gradient flow (up to diffeormorphisms)

• with this gauge choice: weakly parabolic→ strongly parabolic (DeTurck trick)

• functional: string-frame effective action for a metric and dilaton

S =

∫
X

√
|g| e−2φ (

R+ 4(∇φ)2
)
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Outline

Goal: set up a heterotic string theory framework for anomaly flows, which are
geometric flows on SU(3) structure manifolds

I) Heterotic supergravity and flux compactifications

II) Anomaly flows

III) Recasting as a gradient flow

IV) Including α′ corrections

V) Generalization to G2 and Spin(7) structure manifolds
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I. Heterotic supergravity and flux compactifications
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Heterotic basics

Bosonic fields:


tetrad eM

A

(metric gMN = eM
AeNA)

dilaton φ
B-field BMN

gauge connection AM

Fermionic fields:


gravitino ψM

dilatino λ
gaugino χ

Heterotic action

S =

∫
M10

|e| e−2φ

(
R+ 4(∇φ)2 − 1

2
H2 − α′

4

(
trF2 − trR2

+

))
+ fermions

• curvature R+ computed from the Hull connection Γ+ = Γ +
1

2
H

• two-form BMN only appears through the field strength

H = dB + α′

4
(ωCS(A)− ωCS(Γ+)) ωCS(A) = tr(dA ∧ A + 2

3A ∧ A ∧ A)

resulting in the Bianchi identity

dH = α′

4
(trF ∧ F − trR+ ∧R+)
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Minkowski heterotic compactifications

Compactify heterotic theory on R1,3 ×X with a compact six-manifold X

• Poincaré invariance
→ fermionic fields vanish
→ bosonic fields supported on X

g = ηR1,3 + gX H,φ,F ∈ Ω∗(X)

• equations of motion and Bianchi identity reduce to the internal space
→ effective six-dimensional bosonic action

S =

∫
X

|e| e−2φ

(
R+ 4(dφ)2 −

1

2
H2 − α′

4

(
trF2 − trR2

+

))
Heterotic equations of motion (bosonic)

eom[e]mn = Rmn + 2∇m∇nφ− 1
4
Hm

pqHnpq − α′

4

(
trFm

pFnp − trR+
m

pR+
np

)
eom[φ] = R+ 4∇2φ− 4(∇φ)2 − 1

2
H2 − α′

8

(
trF2 − trR2

+

)
eom[B] = ⋆ e2φd

(
e−2φ ⋆ H

)
eom[A] = ⋆ e2φD−

(
e−2φ ⋆ F

)
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Supersymmetric compactifications and Hull–Strominger equations

Preserving N = 1 supersymmetry requires solving the Killing spinor equations

Dmϵ = 0 /Dϵ = 0 /Fϵ = 0

with the supersymmetry operators

Dm = ∇m + 1
8
Hmn1n2γ

n1n2

/D = γm∇m + 1
24
Hm1...m3γ

m1...m3 −∇mφγ
m

/F = 1
2
Fm1m2γ

m1m2

→ very restrictive! e.g. ∂m(ϵ†ϵ) = 0

Internal space should be endowed with globally defined forms

Jm1m2 = −iϵ†γm1m2γ⋆ϵ Ωm1...m3 = −iϵ†γm1...m3(I + γ∗)ϵ

defining a SU(3) structure on X
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Supersymmetric compactifications and Hull–Strominger equations

Hull–Strominger system [Hull 1986, Strominger 1986]

Conditions for a supersymmetric solution:

• X is a complex manifold

• X has SU(3) structure: (1, 1)-form J and (3, 0)-form Ω satisfying

J ∧ Ω = 0 J ∧ J ∧ J = 3i
4
Ω ∧ Ω̄

as well as the differential conditions

d
(
e−2φJ ∧ J

)
= 0 d

(
e−2φΩ

)
= 0

• gauge bundle satisfies the Hermitian Yang–Mills equations

J ∧ J ∧ F = 0 Ω ∧ F = Ω̄ ∧ F = 0

• H-flux is defined from H = −i(∂ − ∂̄)J and constrained by the Bianchi
identity

2i ∂∂̄J = α′

4
(trF ∧ F − trR+ ∧R+)
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Flux solutions

H = −i(∂ − ∂̄)J
non-vanishing H-flux ⇔ non-Kähler background

Numerous works on non-Kähler geometry in both math.DG and hep-th
[Adams,Becker,Curio,Dall’Agata,Dasgupta,Ernebjerg,Fei,Fernandez,Fino,Garćıa-Fernández,
Grantcharov,Huang,Israël,Ivanov,Lapan,Lopes Cardoso,Lust,Manousselis,Melnikov,Minasian,

Otal,Petrini,Picard,Sethi,Tseng,Ugarte,Vassilev,Vezzoni,Villacampa,Yau,Zoupanos,...,...]

Fu–Yau backgrounds [Dasgupta–Rajesh–Sethi 1999, Goldstein–Prokushkin 2004]

• well motivated from the physics side (M-theory dual)

• X constructed as a principal torus fibration over a K3 surface

T 2 ↪→ X
↓
K3

• gauge connection pulled back from a HYM connection on K3

• Bianchi identity is a top form on K3 and admits solutions! [Fu–Yau 2008]
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Grantcharov,Huang,Israël,Ivanov,Lapan,Lopes Cardoso,Lust,Manousselis,Melnikov,Minasian,

Otal,Petrini,Picard,Sethi,Tseng,Ugarte,Vassilev,Vezzoni,Villacampa,Yau,Zoupanos,...,...]

Fu–Yau backgrounds [Dasgupta–Rajesh–Sethi 1999, Goldstein–Prokushkin 2004]

• well motivated from the physics side (M-theory dual)

• X constructed as a principal torus fibration over a K3 surface

T 2 ↪→ X
↓
K3

• gauge connection pulled back from a HYM connection on K3

• Bianchi identity is a top form on K3 and admits solutions! [Fu–Yau 2008]

Supersymmetric flows and heterotic compactifications 10 / 39 Yann Proto, LPTHE



Heterotic compactifications Anomaly flows Anomaly flow functional α′ corrections G2 and Spin(7)

II. Anomaly flows
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Anomaly flows [Phong–Picard–Zhang 2015]

Anomaly flows are a coupled flow on a complex manifold X for

• a SU(3) structure on X → Jλ, Ωλ, φλ,

• a hermitian gauge bundle over X → hλ

Anomaly flow equations

∂λ
(
e−2φJ ∧ J

)
= 2i ∂∂̄J − α′

4

(
trF ∧ F − trR[Γ] ∧R[Γ]

)
∂λ

(
e−2φΩ

)
= 0

h−1∂λh = −giȷ̄Fiȷ̄

• preserves supersymmetry: ∂λd
(
e−2φJ ∧ J

)
= 0 ∂λd

(
e−2φΩ

)
= 0

• fixed points solve Bianchi and HYM!

• weakly parabolic → short-time existence
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Anomaly flow on Fu–Yau backgrounds

On Fu–Yau manifolds T 2 ↪→ X → K3, the anomaly flow becomes a flow for a
scalar field on K3 [Phong–Picard–Zhang 2016]

∂λe
2φ =

1

2
∆K3e

2φ − µ[φ]

with µ volK3 = GIJF I ∧ F J + α′

4
(trF ∧ F − trR∧R)

(topological requirement
∫
X µ volK3 = 0)

Properties

• parabolic complex Monge-Ampère type equation

• long time existence

• convergence

→ alternative proof of existence of the Fu–Yau solution!
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Understanding anomaly flows

Embedding anomaly flow in heterotic?

∂λ
(
e−2φJ ∧ J

)
= dH − α′

4
(trF ∧ F − trRC ∧RC)

∂λ
(
e−2φΩ

)
= 0

h−1∂λh = −giȷ̄Fiȷ̄

Heterotic formulation

(1) Connection Γ appearing in Bianchi:
→ change of connection doesn’t affect topology
→ trR∧R should be a (2, 2)-form (?)
→ torsional connection Γ+ singled out by supersymmetry

(2) expect corrections at higher orders in α′

→ α′2-corrected flow equations?

Finding how anomaly flows emerge in the heterotic theory would give insight
on both issues!
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Heterotic formulation

(1) Connection Γ appearing in Bianchi:
→ change of connection doesn’t affect topology
→ trR∧R should be a (2, 2)-form (?)
→ torsional connection Γ+ singled out by supersymmetry

(2) expect corrections at higher orders in α′

→ α′2-corrected flow equations?

Finding how anomaly flows emerge in the heterotic theory would give insight
on both issues!

Supersymmetric flows and heterotic compactifications 14 / 39 Yann Proto, LPTHE



Heterotic compactifications Anomaly flows Anomaly flow functional α′ corrections G2 and Spin(7)

Understanding anomaly flows

For now:

• focus on the geometric part (existence results for HYM)

• set α′ to zero ⇒ α′ corrections later (α′ → 0 limit is only formal!)

Simplified “anomaly flow” on a SU(3) structure manifold X

∂λ
(
e−2φJ ∧ J

)
= dH

∂λ
(
e−2φΩ

)
= 0

• initial data: J0, Ω0, φ0 with

d
(
e−2φJ ∧ J

)∣∣
λ=0

= 0 d
(
e−2φΩ

)∣∣
λ=0

= 0

• X has to be Kähler for convergence. . .

• non-trivial fixed points (astheno-Kähler metrics) [Phong–Picard–Zhang 2018]
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Understanding anomaly flows

The flow of the metric can be integrated from the flow of J ∧ J as

∂λgmn = 1
4
e2φJp1p2Jm

qdHp1p2qn

For supersymmetric configurations, using identities of conformally balanced
manifolds, this flow can be recast in the form

∂λgmn = −e2φ
(
Rmn + 2∇m∇nφ− 1

4
Hm

pqHnpq

)
→ flow by the equation of motion!

Similar structure for the dilaton:

∂λφ = − 1
4
e2φ

(
R+ 4∇2φ− 4(∇φ)2 − 1

2
H2)

Questions

• derive from an action?

• what about the B-field?
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III. Recasting as a gradient flow
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Flow and supergravity fields

Recall for a SU(3) structure: {J,Ω,φ}↔{ea, ϵ, φ}

Flow of the supergravity fields

∂λϵ = − 1
4
e2φ(I − ϵϵ†) /dHϵ

∂λem
a = − 1

4
e2φ 1

3!
(dH)mn1...n3ϵ

†γan1...n3ϵ

∂λφ = − 1
4
e2φϵ† /dHϵ /dH = 1

4!
(dH)m1...m4γ

m1...m4

Correspond to “functional derivatives” of

I =

∫
X

|e| e−2φϵ† /dHϵ

=

∫
X

e−2φJ ∧ dH

(using (J ∧ J)m1...m4
= ϵ†γm1...m4

ϵ)with dH kept fixed. . .
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Where is the B-field?

Missing degree of freedom corresponding to the B-field

Supersymmetric configurations satisfy H = −i(∂ − ∂̄)J = ⋆ e2φd
(
e−2φJ

)
• defining B-field from H as H = dB is inconsistent with dH = 2i∂∂̄J

• however d
(
e−2φ ⋆ H

)
= d2

(
−e−2φJ

)
= 0

→ possible to dualize!

Dual B̃-field

e−2φ ⋆ H = dB̃

• constrained by supersymmetry to be (up to gauge transformations)

B̃ = −e−2φJ

• for consistency with anomaly flow

∂λB̃ = −∂λ
(
e−2φJ

)
= − 1

2
⋆ dH
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A functional for anomaly flows

Define the anomaly flow functional as

I =

∫
X

(
B̃ + e−2φJ

)
∧ dH

The equations of motion of I reproduce the (simplified) anomaly flow equations

Explicitly

∂λe
a = 1

4
e2φ δI

δea
+ 1

8
e2φ δI

δφ
ea

∂λφ = 1
8
e2φ δI

δφ

∂λϵ = − 1
4
e2φ δI

δϵ

∂λB̃ = − 1
2
e−2φ δI

δB̃

→ Does I appear in the heterotic theory?
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Bismut–Lichnerowicz formula

Lichnerowicz formula: (∇m∇m − /∇2
)ϵ = 1

4
Rϵ [Lichnerowicz 1963]

Coupling to H-flux: [Bismut 1989]

Dm =∇m + α 1
2!
Hmn1n2γ

n1n2

/D =γm∇m + β 1
3!
Hm1...m3γ

m1...m3

Difference of squares:

(DmDm − /D
2
)ϵ = 1

4
(R− 12(α2 − 1

3
β2)H2)ϵ− β 1

4!
dHm1...m4γ

m1...m4ϵ

+ 1
2
(α− β)(⋆d ⋆ H)m1m2γ

m1m2ϵ

+ 1
4
(α2 − β2)Hm1m2

nHm3m4nγ
m1...m4ϵ

+ (α− β)Hm1m2

nγm1m2∇nϵ

• setting α = β → Bismut–Lichnerowicz (α = 1
4 for correct normalization of H2)

• coupling to dilaton?
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Bismut–Lichnerowicz formula

With dilaton coupling: [Minasian–Petrini–Svanes 2017]

Dm =∇m + 1
8
Hmn1n2γ

n1n2

/D =γm∇m + 1
24
Hm1...m3γ

m1...m3 −∇mφγ
m

→ supersymmetry operators!
• still non-tensorial. . .

(DmDm − /D
2
)ϵ = 1

4
(R− 1

2
H2 − 4(∇φ)2 + 4∇2φ)ϵ

− 1
4

1
4!
dHm1...m4γ

m1...m4ϵ

+ 2∇mφDmϵ

• contract with ϵ and integrate by part:∫
X

|e| e−2φ(R+ 4(∇φ)2 − 1
2
H2) ϵ†ϵ =4

∫
X

|e| e−2φ (
| /Dϵ|2 − |Dϵ|2

)
+

∫
X

|e| e−2φϵ† /dHϵ
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Dm =∇m + 1
8
Hmn1n2γ

n1n2

/D =γm∇m + 1
24
Hm1...m3γ

m1...m3 −∇mφγ
m

→ supersymmetry operators!
• still non-tensorial. . .

(DmDm − /D
2
)ϵ = 1

4
(R− 1

2
H2 − 4(∇φ)2 + 4∇2φ)ϵ

− 1
4

1
4!
dHm1...m4γ

m1...m4ϵ

+ 2∇mφDmϵ

• contract with ϵ and integrate by part:∫
X

|e| e−2φ(R+ 4(∇φ)2 − 1
2
H2) ϵ†ϵ =4

∫
X

|e| e−2φ (
| /Dϵ|2 − |Dϵ|2

)
+

∫
X

|e| e−2φϵ† /dHϵ
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Hm1...m3γ
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(DmDm − /D
2
)ϵ = 1

4
(R− 1

2
H2 − 4(∇φ)2 + 4∇2φ)ϵ

− 1
4

1
4!
dHm1...m4γ

m1...m4ϵ

+ 2∇mφDmϵ

• contract with ϵ and integrate by part:∫
X

|e| e−2φ(R+ 4(∇φ)2 − 1
2
H2) ϵ†ϵ =4

∫
X

|e| e−2φ (
| /Dϵ|2 − |Dϵ|2

)
+

∫
X

|e| e−2φϵ† /dHϵ ← appears in I
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Recognizing the anomaly flow functional

For a supersymmetric background (ϵ†ϵ = 1 and Dϵ = /Dϵ = 0)

I =

∫
X

|e| e−2φ(R+ 4(∇φ)2 − 1
2
H2) +

∫
X

B̃ ∧ dH

The anomaly flow functional reproduces the dualized heterotic bosonic action

So far

• rephrased (simplified) anomaly flow as a flow for supergravity fields

• defined a functional I for the flow

• identified I with the heterotic bosonic action
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IV. Including α′ corrections
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Choice of connection

Original formulation of anomaly flows uses the Chern connection ΓC

• trRC ∧RC in Bianchi is a (2, 2)-form

• usual choice in (part of) the literature

Changing connection on TX

• does not affect topological properties

• is correlated with the local form of supersymmetry equations

• corresponds to changing regularization scheme in the effective action

Choice singled out by supersymmetry: Hull connection Γ+

(not a new degree of freedom! Γ+ = Γ+[J ])
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Choice of connection

How Γ+ appears in heterotic supergravity

(1) Hull connection fits in a composite Yang–Mills multiplet with the gravitino
curvature ψab [Bergshoeff–de Roo 1989]

δψab =
1
8
R+

abcdγ
cdϵ 1

2
δΓ+

mab = −ϵ
†γmψab

(2) compatibility between susy and eoms requires an instanton condition on
the curvature [Ivanov 2009, de la Ossa–Svanes 2014]

/Rϵ = O(α′)

which distinguishes the Hull connection

/R+
a1a2

ϵ = 2[Da1 , Da2 ]ϵ− 1
4
dHm1m2a1a2γ

m1m2ϵ

= O(α′) for solutions of the Bianchi identity

(can be computed from R−
m1m2n1n2

= R+
n1n2m1m2

+ 1
2dHm1m2n1n2

where Γ− is the

connection associated to Dm)

→ The choice of Γ+ is also singled out by anomaly flows!
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Anomaly flow at first order in α′

Consider the anomaly flow with couplings to an arbitrary connection Γ̌

Flow of the metric
• integrate ∂λg from the SU(3) structure flow

∂λgm1m2 = 1
4
e2φJn1n2Jm1

p∂λ
(
e−2φJ ∧ J

)
n1n2pm2

• rewrite using susy operators D and /D

At zeroth order in α′

∂λgmn = −e2φ
(
Rmn + 2∇m∇nφ− 1

4
Hm

p1p2Hnp1p2

)
+e2φ

(
ϵ†γ(m /DDn)ϵ− ϵ†γ(mDn) /Dϵ+

1
2
H(m

pq ϵ†γn)γpDqϵ+ c.c.
)

+O(α′)

= −e2φeom[g]mn + [D, /D bilinears] +O(α′)

→ for an initial susy configuration, flow by the equation of motion
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Anomaly flow at first order in α′

At first order in α′ this structure breaks down

∂λgmn = −e2φeom[g]mn + [D, /D bilinears]

+α′

4
e2φ

(
tr ϵ†Fmpγn

p /Fϵ− tr ϵ†Řmpγn
p /̌Rϵ

)
• /Fϵ and /̌Rϵ should vanish at fixed points of the flow up to O(α′2) terms

→ /Fϵ = 0 by HYM

→ recover instanton condition /̌Rϵ = O(α′)

Chern connection is generically not an SU(3) instanton [Martelli–Sparks 2011]
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Anomaly flow and α′ expansion

Employing the Hull connection without an α′ expansion is inconsistent

• trR+ ∧R+ is (2, 2) only up to O(α′)

• /R+
ϵ = 0 at fixed points ⇒ X is Calabi–Yau [Ivanov–Papadopoulos 2000]

Higher order α′ corrections

• to the equations of motion

• to the Bianchi identity

• to the supersymmetry operators
e.g. at order α′2

Dmϵ = ∇mϵ+
1
8
Hmn1n2γ

n1n2ϵ− 3
2
α′e2φ∇n

−(e
−2φdHnmp1p2)γ

p1p2ϵ

[de la Ossa–Svanes 2015]

Supersymmetric flows and heterotic compactifications 29 / 39 Yann Proto, LPTHE



Heterotic compactifications Anomaly flows Anomaly flow functional α′ corrections G2 and Spin(7)

Anomaly flow and α′ expansion

At order α′, the functional driving the flow becomes

I =

∫
X

(B̃ + e−2φJ) ∧
(
dH + α′

4
(trF ∧ F − trR+ ∧R+)

)

• functional derivatives of I reproduce the anomaly flow equations

• Lichnerowicz structure

I =∫
X

e−2φL︸ ︷︷ ︸
(dualized) bosonic action

−
∫
X

|e| e−2φ
(
4(| /Dϵ|2 − |Dϵ|2) + α′

4
(tr | /Fϵ|2 − tr | /R+

ϵ|2)
)

︸ ︷︷ ︸
=O(α′2) along the flow or at fixed points

Guiding principle for α′ expansion of the flow (schematically)

• expect the flow to be corrected order by order in α′

• construct I(α′) by maintaining Lichnerowicz structure at every order in α′

(with α′-corrected functional, action and susy operators)
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V. Generalization to G2 and Spin(7) structure manifolds
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Other heterotic flows

Generalizations of anomaly flows

• SU(n) structure manifolds [Phong–Picard–Zhang 2018]

∂λ
(
e−2φJn−1) = 2i ∂∂̄Jn−2 + . . . ∂λ

(
e−2φΩ

)
= 0

• other spaces?
→ supergravity reformulation of the flow is dimension-agnostic
→ Lichnerowicz identity exists on any (spin) manifold

• should extend to any manifold with a covariantly constant spinor
→ properties? (e.g. supersymmetry)

Two examples

• G2 compactifications

• Spin(7) compactifications
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G2 heterotic flow

G2 structure manifolds

• G2 structure defined from a nowhere vanishing spinor in seven dimensions

• associative three-form ϕ and coassociative four-form ⋆ϕ

ϕm1...m3 = −iϵ†γm1...m3ϵ ⋆ϕm1...m4 = ϵ†γm1...m4ϵ

Supersymmetric geometries

• supersymmetry conditions for Minkowski D = 3 compactifications

d
(
e−2φ ⋆ ϕ

)
= 0 ϕ ∧ dϕ = 0

with H-flux is defined as H = −e2φ ⋆ d
(
e−2φϕ

)
• dual three-form field B̃ = −e−2φϕ
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G2 heterotic flow

Define a flow for the supergravity fields — inspired by anomaly flows — as

∂λϵ = α1 e
2φ(I − ϵϵ†) /dHϵ

∂λem
a = α2 e

2φ 1
3!
ϵ†γm

n1...n3ϵdHa
n1...n3

∂λφ = α3 e
2φϵ† /dHϵ

Flow of the G2 form

∂λϕ = e2φ (12α2 P1 + (8α1 − 6α2)P7 − 2α2 P27) ⋆ dH

In particular

∂λ
(
e−2φ ⋆ ϕ

)
= ((16α2 − 14α3)P1 + (8α1 − 6α2)P7 + 2α2 P27) dH
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G2 heterotic flow

Define a flow for the supergravity fields — inspired by anomaly flows — as

∂λϵ = α1 e
2φ(I − ϵϵ†) /dHϵ

∂λem
a = α2 e

2φ 1
3!
ϵ†γm

n1...n3ϵdHa
n1...n3

∂λφ = α3 e
2φϵ† /dHϵ

Flow of the G2 form

∂λϕ = e2φ (12α2 P1 + (8α1 − 6α2)P7 − 2α2 P27) ⋆ dH

In particular

∂λ
(
e−2φ ⋆ ϕ

)
= ((16α2 − 14α3)P1 + (8α1 − 6α2)P7 + 2α2 P27) dH

= 2α1 dH for α1 = α2 = α3
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G2 heterotic flow

G2 version of anomaly flows

∂λ
(
e−2φ ⋆ ϕ

)
= − 1

2

(
dH + α′

4
(trF ∧ F − trR+ ∧R+)

)
• preserves the supersymmetry condition d

(
e−2φ ⋆ ϕ

)
= 0

• fixed points solve Bianchi identity

• reproduces SU(3) anomaly flow on X7 = X6 × S1

• gradient flow formulation with

I =

∫
X

(B̃ + e−2φϕ) ∧
(
dH + α′

4
(trF ∧ F − trR+ ∧R+)

)
Open questions

• supersymmetry condition ϕ ∧ dϕ = 0 not generically preserved
(study torsion classes and G2 cohomology?)

• flow of the gauge bundle?

• weak parabolicity?
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Spin(7) heterotic flow

Spin(7) structure manifolds

• Spin(7) structure defined from a nowhere vanishing spinor in eight
dimensions

• Cayley four-form Φ (self-dual)

Φm1...m4 = ϵ†γm1...m4ϵ

Supersymmetric geometries

• supersymmetry conditions for Minkowski D = 2 compactifications

Φ ∧ ⋆dΦ = 12 ⋆ dφ

with H-flux is defined as H = ⋆ e2φd
(
e−2φΦ

)
• dual four-form field B̃ = −e−2φΦ
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Spin(7) heterotic flow

Similarly

∂λϵ = α1 e
2φ(I − ϵϵ†) /dHϵ

∂λem
a = α2 e

2φ 1
3!
ϵm

n1...n3dHa
n1...n3

∂λφ = α3 e
2φϵ† /dHϵ

Flow of the Spin(7) form

∂λΦ = 1
3
e2φ (84α2 P1 + 48(α1 − α2)P7 + 12α2 P35) ⋆ dH

simplifies for α1 = α2 = α3 = 1
4

∂λ
(
e−2φΦ

)
= − 1

2
(I − ⋆) dH
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Spin(7) heterotic flow

Spin(7) version of anomaly flows

∂λ
(
e−2φΦ

)
= − 1

2
(I − ⋆)

(
dH + α′

4
(trF ∧ F − trR+ ∧R+)

)
• fixed points solve Bianchi identity

• reproduces

{
SU(3)

G2

anomaly flows on X8 = X6 × T 2

anomaly flows on X8 = X7 × S1

• gradient flow formulation with

I =

∫
X

(B̃ + e−2φΦ) ∧
(
dH + α′

4
(trF ∧ F − trR+ ∧R+)

)
Open questions: supersymmetry conditions? gauge bundle?
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Summary and outlook

Conclusions
Anomaly flows from a heterotic perspective

• reframing of the flow equations as the heterotic equations of motion

• gradient flow formulation, I ∼ heterotic action restricted to a susy locus

• generalization to manifolds with parallel spinors, e.g. G2/Spin(7)

Outlook
• understand Yang-Mills part of the flow

→ SU(3): no gradient flow description
→ G2/Spin(7): canonical flow to couple to anomaly flows?

• study stability (and relate to α′ corrections?) [Bedulli–Vezzoni 2020]

• embed the flow in generalized geometry?

• numerical implementation?

• relate to other geometric flows, e.g. spinor flows with flux [Collins–Phong 2021]
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Summary and outlook

Conclusions
Anomaly flows from a heterotic perspective

• reframing of the flow equations as the heterotic equations of motion

• gradient flow formulation, I ∼ heterotic action restricted to a susy locus

• generalization to manifolds with parallel spinors, e.g. G2/Spin(7)

Outlook
• understand Yang-Mills part of the flow

→ SU(3): no gradient flow description
→ G2/Spin(7): canonical flow to couple to anomaly flows?

• study stability (and relate to α′ corrections?) [Bedulli–Vezzoni 2020]

• embed the flow in generalized geometry?

• numerical implementation?

• relate to other geometric flows, e.g. spinor flows with flux [Collins–Phong 2021]

Thank you!
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A little more on anomaly flows. . .
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SU(3) flows on T 2 fibrations over K3

Consider a Fu–Yau background T 2 ↪→ X → K3

• SU(2) structure of K3 1
2
j ∧ j = 1

4
ω ∧ ω = volK3

• one-forms ΘI = dθI +AI associated to U(1)2 isometries dΘI = F I

→ complexified to Θ = Θ2 + iΘ1 and F = F 2 + iF 1

• SU(3) structure

J = e2φj + i
2
aΘ ∧ Θ̄

Ω = e2φ
√
aω ∧Θ

• supersymmetry conditions require F (0,2) = 0

SU(3) flow

∂λe
2φ = 1

2
∆K3e

2φ − µ[φ]
∂λA = ⋆K3dF(2,0)

with
µ[φ] volK3 = 1

2
a (F(1,1)∧ F̄(1,1)−F(2,0)∧ F̄(0,2))+

α′

8

(
trF ∧ F − trR+ ∧R+

)
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G2 flows on T 3 fibrations over K3

Consider a Fu–Yau like background T 3 ↪→ X → K3

• hyper-Kähler structure of K3 1
2
jI ∧ jJ = δIJvolK3

• one-forms ΘI = dθI +AI associated to U(1)3 isometries dΘI = F I

• G2 structure

ϕ = a1/2e2φjI ∧ΘI − 1
6
a3/2εIJKΘI ∧ΘJ ∧ΘK

⋆ϕ = 1
2
a e2φϵIJKj

I ∧ΘJ ∧ΘK − e4φvolK3

• supersymmetry conditions require F I = fI + 1
2
λIJjJ

(fI anti-self dual, λIJ symmetric)

G2 flow

∂λe
2φ = 1

2
∆K3e

2φ + 1
4
aλIJλIJ − µ[φ]

∂λA
I = 1

2
⋆K3 (dλ

IJ ∧ jJ)

with µ[φ] volK3 = 1
2
a fI ∧ fI + α′

8

(
trF ∧ F − trR+ ∧R+

)
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G2 flow and anti-de Sitter compactifications

Supersymmetric D = 3 AdS compactifications allowed with external H-flux
given by 2

ℓ
volAdS3 (ℓ: AdS radius)

Supersymmetric geometries

• supersymmetry conditions for AdS3 backgrounds

d
(
e−2φ ⋆ ϕ

)
= 0 ϕ ∧ dϕ = −12

7ℓ
ϕ ∧ ⋆ϕ

with H-flux is defined as H = −e2φ ⋆ d
(
e−2φϕ

)
− 2

ℓ
ϕ

(Minkowski limit ℓ → ∞)

• G2 flow takes the same form

∂λ
(
e−2φ ⋆ ϕ

)
= − 1

2

(
dH + α′

4
(trF ∧ F − trR+ ∧R+)

)
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G2 flow and anti-de Sitter compactifications

Example: flow on K3× S3

gX = e2φgK3 +
1
4
ℓ2gS3

• hyper-Kähler structure of K3 1
2
jI ∧ jJ = δIJvolK3

• Maurer–Cartan triplet dϑI + 1
2
εIJKϑ

J ∧ ϑK = 0

• G2 structure

ϕ = 1
2
e2φℓ jI ∧ ϑI − 1

8
ℓ3volS3 ⋆ϕ = 1

8
e2φℓ2εIJKj

I ∧ ϑJ ∧ ϑK − e4φvolK3

As dH = ∆K3e
2φ volK3, the G2 flow becomes a flow for the warp factor

∂λe
2φ =

1

2
∆K3e

2φ − µ[φ]

with µ[φ] volK3 = α′

8
(trF ∧ F − trR∧R)
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