Heterotic compactifications	Anomaly flows	Anomaly flow functional	lpha' corrections 0000000	G ₂ and Spin(7) 000000000

Supersymmetric flows and heterotic compactifications

Yann Proto LPTHE, Paris

Gauge theory, canonical metrics and geometric structures, ICMAT June 19-23, 2023

based on [2302.06624] with Anthony Ashmore and Ruben Minasian

Motivation

Geometric flows are important tools to investigate solutions to a geometric equation

Properties required

- (strong/weak) parabolicity (ensures short time existence and uniqueness)
- · geometric meaning of fixed points

Examples

• Ricci flow [Hamilton 1982] (and variations with extra structure, e.g. Kähler–Ricci, G₂, ...)

$$\partial_{\lambda}g_{mn} = -R_{mn}$$

Donaldson heat flow

(gauge equivalent to Yang-Mills flow)

$$h^{-1}\partial_{\lambda}h = -g^{i\bar{j}}\mathcal{F}_{i\bar{j}}$$

 $\rightarrow~$ The flow that we will consider will generalize both examples!

[Donaldson 1985]

Heterotic compactifications	Anomaly flows 000000	Anomaly flow functional	lpha' corrections 0000000	G ₂ and Spin(7) 000000000
Motivation				

Heuristic motivation: flows arising in string theory expected to behave "nicely"

e.g. Perelman-Ricci flow

[Perelman 2002]

$$\partial_{\lambda}g_{mn} = -(R_{mn} + 2\nabla_m \nabla_n \varphi) \qquad \partial_{\lambda}(\sqrt{|g|} e^{-2\varphi}) = 0$$

- Ricci flow as a gradient flow (up to diffeormorphisms)
- with this gauge choice: weakly parabolic \rightarrow strongly parabolic (DeTurck trick)
- · functional: string-frame effective action for a metric and dilaton

$$S = \int_X \sqrt{|g|} e^{-2\varphi} \left(R + 4(\nabla \varphi)^2 \right)$$

Heterotic compactifications	Anomaly flows 000000	Anomaly flow functional	lpha' corrections 0000000	G ₂ and Spin(7) 000000000
Outline				

Goal: set up a heterotic string theory framework for anomaly flows, which are geometric flows on ${\rm SU}(3)$ structure manifolds

- I) Heterotic supergravity and flux compactifications
- II) Anomaly flows
- III) Recasting as a gradient flow
- IV) Including α' corrections
- V) Generalization to G_2 and Spin(7) structure manifolds

Heterotic compactifications ●00000	Anomaly flows	Anomaly flow functional	lpha' corrections 0000000	G ₂ and Spin(7) 000000000

I. Heterotic supergravity and flux compactifications

Heterotic compactifications	Anomaly flows 000000	Anomaly flow functional	α' corrections 0000000	G ₂ and Spin(7) 000000000
Heterotic basics				
Bosonic fields:	$\left\{ \begin{array}{l} {\rm tetrad} \ e_{\rm M}{}^{\rm A} \\ {\rm (metric} \ g_{\rm M} \\ {\rm dilaton} \ \varphi \\ B{\rm -field} \ B_{\rm MN} \\ {\rm gauge \ conne} \end{array} \right.$	${}_{ m N}=e_{ m M}{}^{ m A}e_{ m NA}$)	Fermionic fields:	$\left\{egin{array}{c} { m gravitino} \ \psi_{ m M} \ { m dilatino} \ \lambda \ { m gaugino} \ \chi \end{array} ight.$

Heterotic action

$$S = \int_{M_{10}} |e| e^{-2\varphi} \left(R + 4(\nabla \varphi)^2 - \frac{1}{2}H^2 - \frac{\alpha'}{4} \left(\operatorname{tr} \mathcal{F}^2 - \operatorname{tr} \mathcal{R}_+^2 \right) \right) + \text{fermions}$$

- curvature \mathcal{R}_+ computed from the Hull connection $\Gamma_+ = \Gamma + \frac{1}{2}I$
- two-form $B_{\rm MN}$ only appears through the field strength

$$H = \mathrm{d}B + \frac{\alpha'}{4} \left(\omega_{\mathrm{CS}}(\mathcal{A}) - \omega_{\mathrm{CS}}(\Gamma_{+}) \right) \qquad \omega_{\mathrm{CS}}(\mathcal{A}) = \mathrm{tr}(\mathrm{d}\mathcal{A} \wedge \mathcal{A} + \frac{2}{3}\mathcal{A} \wedge \mathcal{A} \wedge \mathcal{A})$$

resulting in the Bianchi identity

$$\mathrm{d} H = rac{lpha'}{4} \left(\mathrm{tr}\, \mathcal{F} \wedge \mathcal{F} - \mathrm{tr}\, \mathcal{R}_+ \wedge \mathcal{R}_+
ight)$$

Heterotic compactifications 000000	Anomaly flows 000000	Anomaly flow functional	lpha' corrections 0000000	G ₂ and Spin(7) 000000000
Heterotic basics				
Bosonic fields:	$\left\{ \begin{array}{l} {\rm tetrad} \ {e_{\rm M}}^{\rm A} \\ {\rm (metric} \ g_{\rm MN} \\ {\rm dilaton} \ \varphi \\ B{\rm -field} \ B_{\rm MN} \\ {\rm gauge \ connect} \end{array} \right.$	$= e_{ m M}{}^{ m A}e_{ m NA})$ F	Fermionic fields: {	gravitino $\psi_{ m M}$ dilatino λ gaugino χ

Heterotic action

$$S = \int_{M_{10}} |e| e^{-2\varphi} \left(R + 4(\nabla \varphi)^2 - \frac{1}{2}H^2 - \frac{\alpha'}{4} \left(\operatorname{tr} \mathcal{F}^2 - \operatorname{tr} \mathcal{R}_+^2 \right) \right) + \text{fermions}$$

- curvature \mathcal{R}_+ computed from the Hull connection $\Gamma_+ = \Gamma + \frac{1}{2}H$
- two-form B_{MN} only appears through the field strength

$$H = \mathrm{d}B + \frac{\alpha'}{4} \left(\omega_{\mathrm{CS}}(\mathcal{A}) - \omega_{\mathrm{CS}}(\Gamma_+) \right) \qquad \omega_{\mathrm{CS}}(\mathcal{A}) = \mathrm{tr}(\mathrm{d}\mathcal{A} \wedge \mathcal{A} + \frac{2}{3}\mathcal{A} \wedge \mathcal{A} \wedge \mathcal{A})$$

resulting in the Bianchi identity

$$dH = \frac{\alpha'}{4} \left(\operatorname{tr} \mathcal{F} \wedge \mathcal{F} - \operatorname{tr} \mathcal{R}_{+} \wedge \mathcal{R}_{+} \right)$$

Minkowski heterotic compactifications

Compactify heterotic theory on $\mathbb{R}^{1,3} \times X$ with a compact six-manifold X

- Poincaré invariance
 - \rightarrow fermionic fields vanish
 - \rightarrow bosonic fields supported on X

$$g = \eta_{\mathbb{R}^{1,3}} + g_X \qquad H, \varphi, \mathcal{F} \in \Omega^*(X)$$

- · equations of motion and Bianchi identity reduce to the internal space
 - \rightarrow effective six-dimensional bosonic action

$$S = \int_X |e| e^{-2\varphi} \left(R + 4(\mathrm{d}\varphi)^2 - \frac{1}{2}H^2 - \frac{\alpha'}{4} \left(\operatorname{tr} \mathcal{F}^2 - \operatorname{tr} \mathcal{R}^2_+ \right) \right)$$

Heterotic equations of motion (bosonic)

$$\operatorname{eom}[e]_{mn} = R_{mn} + 2\nabla_m \nabla_n \varphi - \frac{1}{4} H_m{}^{pq} H_{npq} - \frac{\alpha'}{4} \left(\operatorname{tr} \mathcal{F}_m{}^p \mathcal{F}_{np} - \operatorname{tr} \mathcal{R}_m{}^p \mathcal{R}_{np} \right)$$
$$\operatorname{eom}[\varphi] = R + 4\nabla^2 \varphi - 4(\nabla \varphi)^2 - \frac{1}{2} H^2 - \frac{\alpha'}{8} \left(\operatorname{tr} \mathcal{F}^2 - \operatorname{tr} \mathcal{R}_+^2 \right)$$
$$\operatorname{eom}[B] = \ast e^{2\varphi} \operatorname{d} \left(e^{-2\varphi} \ast H \right)$$
$$\operatorname{eom}[\mathcal{A}] = \ast e^{2\varphi} \mathcal{D}_- \left(e^{-2\varphi} \ast \mathcal{F} \right)$$

Minkowski heterotic compactifications

Compactify heterotic theory on $\mathbb{R}^{1,3} \times X$ with a compact six-manifold X

- Poincaré invariance
 - \rightarrow fermionic fields vanish
 - \rightarrow bosonic fields supported on X

$$g = \eta_{\mathbb{R}^{1,3}} + g_X \qquad H, \varphi, \mathcal{F} \in \Omega^*(X)$$

- · equations of motion and Bianchi identity reduce to the internal space
 - \rightarrow effective six-dimensional bosonic action

$$S = \int_X |e| e^{-2\varphi} \left(R + 4(\mathrm{d}\varphi)^2 - \frac{1}{2}H^2 - \frac{\alpha'}{4} \left(\operatorname{tr} \mathcal{F}^2 - \operatorname{tr} \mathcal{R}^2_+ \right) \right)$$

Heterotic equations of motion (bosonic)

$$\operatorname{eom}[e]_{mn} = R_{mn} + 2\nabla_m \nabla_n \varphi - \frac{1}{4} H_m{}^{pq} H_{npq} - \frac{\alpha'}{4} \left(\operatorname{tr} \mathcal{F}_m{}^p \mathcal{F}_{np} - \operatorname{tr} \mathcal{R}_m{}^p \mathcal{R}_{np}^+ \right)$$
$$\operatorname{eom}[\varphi] = R + 4\nabla^2 \varphi - 4(\nabla \varphi)^2 - \frac{1}{2} H^2 - \frac{\alpha'}{8} \left(\operatorname{tr} \mathcal{F}^2 - \operatorname{tr} \mathcal{R}_+^2 \right)$$
$$\operatorname{eom}[B] = \star e^{2\varphi} \operatorname{d} \left(e^{-2\varphi} \star H \right)$$
$$\operatorname{eom}[\mathcal{A}] = \star e^{2\varphi} \mathcal{D}_- \left(e^{-2\varphi} \star \mathcal{F} \right)$$

Supersymmetric compactifications and Hull–Strominger equations

Preserving $\mathcal{N}=1$ supersymmetry requires solving the Killing spinor equations

$$D_m \epsilon = 0$$
 $\not D \epsilon = 0$ $\not F \epsilon = 0$

with the supersymmetry operators

$$D_m = \nabla_m + \frac{1}{8} H_{mn_1n_2} \gamma^{n_1n_2}$$
$$\not D = \gamma^m \nabla_m + \frac{1}{24} H_{m_1\dots m_3} \gamma^{m_1\dots m_3} - \nabla_m \varphi \gamma^m$$
$$\not f = \frac{1}{2} \mathcal{F}_{m_1m_2} \gamma^{m_1m_2}$$

 \rightarrow very restrictive! e.g. $\partial_m(\epsilon^{\dagger}\epsilon) = 0$

Internal space should be endowed with globally defined forms

$$J_{m_1m_2} = -i\epsilon^{\dagger}\gamma_{m_1m_2}\gamma_{\star}\epsilon \qquad \Omega_{m_1\dots m_3} = -i\epsilon^{\dagger}\gamma_{m_1\dots m_3}(I+\gamma_{\star})\epsilon$$

defining a SU(3) structure on X

Supersymmetric compactifications and Hull–Strominger equations

Preserving $\mathcal{N}=1$ supersymmetry requires solving the Killing spinor equations

$$D_m \epsilon = 0$$
 $\not D \epsilon = 0$ $\not F \epsilon = 0$

with the supersymmetry operators

 \rightarrow very restrictive! e.g. $\partial_m(\epsilon^{\dagger}\epsilon) = 0$

Internal space should be endowed with globally defined forms

$$J_{m_1m_2} = -i\epsilon^{\dagger}\gamma_{m_1m_2}\gamma_{\star}\epsilon \qquad \Omega_{m_1\dots m_3} = -i\epsilon^{\dagger}\gamma_{m_1\dots m_3}(I+\gamma_{\star})\epsilon$$

defining a SU(3) structure on X

Supersymmetric compactifications and Hull–Strominger equations

Hull-Strominger system

[Hull 1986, Strominger 1986]

Conditions for a supersymmetric solution:

- X is a complex manifold
- X has SU(3) structure: (1,1)-form J and (3,0)-form Ω satisfying

$$J \wedge \Omega = 0$$
 $J \wedge J \wedge J = \frac{3i}{4}\Omega \wedge \overline{\Omega}$

as well as the differential conditions

$$d(e^{-2\varphi}J \wedge J) = 0$$
 $d(e^{-2\varphi}\Omega) = 0$

• gauge bundle satisfies the Hermitian Yang-Mills equations

$$J \wedge J \wedge \mathcal{F} = 0 \qquad \Omega \wedge \mathcal{F} = \bar{\Omega} \wedge \mathcal{F} = 0$$

• *H*-flux is defined from $H = -i(\partial - \bar{\partial})J$ and constrained by the Bianchi identity

$$2i \,\partial \bar{\partial} J = \frac{\alpha'}{4} \left(\operatorname{tr} \mathcal{F} \wedge \mathcal{F} - \operatorname{tr} \mathcal{R}_{+} \wedge \mathcal{R}_{+} \right)$$

Heterotic compactifications	Anomaly flows	Anomaly flow functional	α' corrections	G ₂ and Spin(7)
00000●	000000		0000000	000000000

Flux solutions

$H = -i(\partial - \bar{\partial})J$ non-vanishing <u>H</u>-flux \Leftrightarrow non-Kähler background

Numerous works on non-Kähler geometry in both math.DG and hep-th

[Adams, Becker, Curio, Dall'Agata, Dasgupta, Ernebjerg, Fei, Fernandez, Fino, García-Fernández, Grantcharov, Huang, Israël, Ivanov, Lapan, Lopes Cardoso, Lust, Manousselis, Melnikov, Minasian, Otal, Petrini, Picard, Sethi, Tseng, Ugarte, Vassilev, Vezzoni, Villacampa, Yau, Zoupanos,...,..]

Fu-Yau backgrounds

[Dasgupta-Rajesh-Sethi 1999, Goldstein-Prokushkin 2004]

- well motivated from the physics side (M-theory dual)
- X constructed as a principal torus fibration over a K3 surface

$$\begin{array}{c} T^2 \hookrightarrow X \\ \downarrow \\ \mathrm{K3} \end{array}$$

- gauge connection pulled back from a HYM connection on K3
- Bianchi identity is a top form on $\mathrm{K3}$ and admits solutions!

[Fu–Yau 2008]

Heterotic compactifications	Anomaly flows	Anomaly flow functional	α' corrections	G ₂ and Spin(7)
00000●	000000		0000000	000000000

Flux solutions

 $H = -i(\partial - \bar{\partial})J$ non-vanishing <u>H</u>-flux \Leftrightarrow non-Kähler background

Numerous works on non-Kähler geometry in both math.DG and hep-th

[Adams, Becker, Curio, Dall'Agata, Dasgupta, Ernebjerg, Fei, Fernandez, Fino, García-Fernández, Grantcharov, Huang, Israël, Ivanov, Lapan, Lopes Cardoso, Lust, Manousselis, Melnikov, Minasian, Otal, Petrini, Picard, Sethi, Tseng, Ugarte, Vassilev, Vezzoni, Villacampa, Yau, Zoupanos,.....]

Fu-Yau backgrounds

[Dasgupta-Rajesh-Sethi 1999, Goldstein-Prokushkin 2004]

- well motivated from the physics side (M-theory dual)
- X constructed as a principal torus fibration over a $\mathrm{K3}$ surface

$$\begin{array}{c} T^2 \hookrightarrow X \\ \downarrow \\ K3 \end{array}$$

- gauge connection pulled back from a HYM connection on ${\rm K3}$
- Bianchi identity is a top form on ${\rm K3}$ and admits solutions!

[Fu-Yau 2008]

Heterotic compactifications	Anomaly flows	Anomaly flow functional	lpha' corrections	G ₂ and Spin(7)
000000	●00000		0000000	000000000

II. Anomaly flows

Anomaly flows [Phong–Picard–Zhang 2015]

Anomaly flows are a coupled flow on a complex manifold X for

- a SU(3) structure on $X \to J_{\lambda}$, Ω_{λ} , φ_{λ} ,
- a hermitian gauge bundle over $X \to h_{\lambda}$

Anomaly flow equations

$$\begin{aligned} \partial_{\lambda} \left(e^{-2\varphi} J \wedge J \right) &= 2i \, \partial \bar{\partial} J - \frac{\alpha'}{4} \left(\operatorname{tr} \mathcal{F} \wedge \mathcal{F} - \operatorname{tr} \mathcal{R}_{[\Gamma]} \wedge \mathcal{R}_{[\Gamma]} \right) \\ \partial_{\lambda} \left(e^{-2\varphi} \Omega \right) &= 0 \\ h^{-1} \partial_{\lambda} h &= -g^{i\bar{j}} \mathcal{F}_{i\bar{j}} \end{aligned}$$

- preserves supersymmetry: $\partial_{\lambda} d\left(e^{-2\varphi}J \wedge J\right) = 0$ $\partial_{\lambda} d\left(e^{-2\varphi}\Omega\right) = 0$
- fixed points solve Bianchi and HYM!
- weakly parabolic \rightarrow short-time existence

Anomaly flow on Fu–Yau backgrounds

On Fu–Yau manifolds $T^2 \hookrightarrow X \to K3$, the anomaly flow becomes a flow for a scalar field on K3 [Phong-Picard-Zhang 2016]

$$\partial_{\lambda}e^{2\varphi} = \frac{1}{2}\Delta_{\rm K3}e^{2\varphi} - \mu[\varphi]$$

with $\mu \operatorname{vol}_{\mathrm{K3}} = \mathcal{G}_{IJ}F^I \wedge F^J + \frac{\alpha'}{4} (\operatorname{tr} \mathcal{F} \wedge \mathcal{F} - \operatorname{tr} \mathcal{R} \wedge \mathcal{R})$ (topological requirement $\int_X \mu \operatorname{vol}_{\mathrm{K3}} = 0$)

Properties

- parabolic complex Monge-Ampère type equation
- long time existence
- convergence
- \rightarrow alternative proof of existence of the Fu–Yau solution!

Embedding anomaly flow in heterotic?

$$\partial_{\lambda} \left(e^{-2\varphi} J \wedge J \right) = \mathrm{d}H - \frac{\alpha'}{4} (\operatorname{tr} \mathcal{F} \wedge \mathcal{F} - \operatorname{tr} \mathcal{R}^{\mathrm{C}} \wedge \mathcal{R}^{\mathrm{C}})$$
$$\partial_{\lambda} \left(e^{-2\varphi} \Omega \right) = 0$$
$$h^{-1} \partial_{\lambda} h = -g^{i\bar{\jmath}} \mathcal{F}_{i\bar{\jmath}}$$

Heterotic formulation

(1) Connection Γ appearing in Bianchi:

- \rightarrow change of connection doesn't affect topology
- $\rightarrow \operatorname{tr} \mathcal{R} \wedge \mathcal{R}$ should be a (2,2)-form (?)
- \rightarrow torsional connection Γ_+ singled out by supersymmetry
- (2) expect corrections at higher orders in α
 - $\rightarrow \alpha'^2$ -corrected flow equations?

Finding how anomaly flows emerge in the heterotic theory would give insight on both issues!

Embedding anomaly flow in heterotic:

$$\partial_{\lambda} \left(e^{-2\varphi} J \wedge J \right) = \mathrm{d}H - \frac{\alpha'}{4} (\operatorname{tr} \mathcal{F} \wedge \mathcal{F} - \operatorname{tr} \mathcal{R}^{+} \wedge \mathcal{R}^{+})$$
$$\partial_{\lambda} \left(e^{-2\varphi} \Omega \right) = 0$$
$$h^{-1} \partial_{\lambda} h = -g^{i\bar{\jmath}} \mathcal{F}_{i\bar{\jmath}}$$

Heterotic formulation

(1) Connection Γ appearing in Bianchi:

- \rightarrow change of connection doesn't affect topology
- \rightarrow tr $\mathcal{R} \wedge \mathcal{R}$ should be a (2,2)-form (?)
- \rightarrow torsional connection Γ_+ singled out by supersymmetry

```
(2) expect corrections at higher orders in lpha
```

 $\rightarrow \alpha'^2$ -corrected flow equations?

Finding how anomaly flows emerge in the heterotic theory would give insight on both issues!

Embedding anomaly flow in heterotic

$$\partial_{\lambda} \left(e^{-2\varphi} J \wedge J \right) = \mathrm{d}H - \frac{\alpha'}{4} (\mathrm{tr} \,\mathcal{F} \wedge \mathcal{F} - \mathrm{tr} \,\mathcal{R}^{+} \wedge \mathcal{R}^{+}) + \mathcal{O}(\alpha'^{2})$$
$$\partial_{\lambda} \left(e^{-2\varphi} \Omega \right) = \mathcal{O}(\alpha'^{2})$$
$$h^{-1} \partial_{\lambda} h = -g^{i\bar{\jmath}} \mathcal{F}_{i\bar{\jmath}} + \mathcal{O}(\alpha'^{2})$$

Heterotic formulation

(1) Connection Γ appearing in Bianchi:

- \rightarrow change of connection doesn't affect topology
- \rightarrow tr $\mathcal{R} \wedge \mathcal{R}$ should be a (2,2)-form (?)
- \rightarrow torsional connection Γ_+ singled out by supersymmetry
- (2) expect corrections at higher orders in α'
 - $\rightarrow~\alpha'^2\text{-corrected}$ flow equations?

Finding how anomaly flows emerge in the heterotic theory would give insight on both issues!

For now:

- focus on the geometric part (existence results for HYM)
- set α' to zero $\Rightarrow \alpha'$ corrections later ($\alpha' \rightarrow 0$ limit is only formal!)

Simplified "anomaly flow" on a SU(3) structure manifold X

 $\partial_{\lambda} \left(e^{-2\varphi} J \wedge J \right) = \mathrm{d}H$ $\partial_{\lambda} \left(e^{-2\varphi} \Omega \right) = 0$

• initial data: J_0 , Ω_0 , φ_0 with

$$\mathbf{d} \left(e^{-2\varphi} J \wedge J \right) \big|_{\lambda=0} = 0 \qquad \mathbf{d} \left(e^{-2\varphi} \Omega \right) \big|_{\lambda=0} = 0$$

- X has to be Kähler for convergence...
- non-trivial fixed points (astheno-Kähler metrics)

[Phong-Picard-Zhang 2018]

The flow of the metric can be integrated from the flow of $J \wedge J$ as

$$\partial_{\lambda}g_{mn} = \frac{1}{4} \mathrm{e}^{2\varphi} J^{p_1 p_2} J_m{}^q \mathrm{d}H_{p_1 p_2 q_n}$$

For supersymmetric configurations, using identities of conformally balanced manifolds, this flow can be recast in the form

$$\partial_{\lambda}g_{mn} = -\mathrm{e}^{2\varphi} \left(R_{mn} + 2\nabla_m \nabla_n \varphi - \frac{1}{4} H_m{}^{pq} H_{npq} \right)$$

 \rightarrow flow by the equation of motion!

Similar structure for the dilaton:

$$\partial_{\lambda}\varphi = -\frac{1}{4}e^{2\varphi} \left(R + 4\nabla^{2}\varphi - 4(\nabla\varphi)^{2} - \frac{1}{2}H^{2} \right)$$

Questions

- derive from an action?
- what about the *B*-field?

Heterotic compactifications 000000	Anomaly flows	Anomaly flow functional ●000000	lpha' corrections 0000000	G ₂ and Spin(7) 000000000

III. Recasting as a gradient flow

Flow and supergravity fields

Recall for a ${\rm SU}(3)$ structure: $\{J,\Omega,\varphi\} \leftrightarrow \{e^a,\epsilon,\varphi\}$

Flow of the supergravity fields

$$\partial_{\lambda}\epsilon = -\frac{1}{4}e^{2\varphi}(I - \epsilon\epsilon^{\dagger})dH\epsilon$$
$$\partial_{\lambda}e_{m}^{\ a} = -\frac{1}{4}e^{2\varphi}\frac{1}{3!}(dH)_{mn_{1}...n_{3}}\epsilon^{\dagger}\gamma^{an_{1}...n_{3}}\epsilon$$
$$\partial_{\lambda}\varphi = -\frac{1}{4}e^{2\varphi}\epsilon^{\dagger}dH\epsilon \qquad dH = \frac{1}{4!}(dH)_{m_{1}...m_{4}}\gamma^{m_{1}...m_{4}}$$

Correspond to "functional derivatives" of

$$I = \int_X |e| e^{-2\varphi} \epsilon^{\dagger} dH \epsilon$$
$$= \int_X e^{-2\varphi} J \wedge dH$$

with dH kept fixed...

(using $(J \wedge J)_{m_1...m_4} = \epsilon^{\dagger} \gamma_{m_1...m_4} \epsilon$)

Where is the *B*-field?

Missing degree of freedom corresponding to the B-field

Supersymmetric configurations satisfy $H = -i(\partial - \bar{\partial})J = \star e^{2\varphi} d(e^{-2\varphi}J)$

- defining B-field from H as H = dB is inconsistent with $dH = 2i\partial \bar{\partial} J$
- however $d\left(e^{-2\varphi}\star H\right) = d^2\left(-e^{-2\varphi}J\right) = 0$
- \rightarrow possible to dualize!

Dual \widetilde{B} -field

$$\mathrm{e}^{-2\varphi} \star H = \mathrm{d}\widetilde{B}$$

• constrained by supersymmetry to be (up to gauge transformations)

$$\widetilde{B} = -\mathrm{e}^{-2\varphi}J$$

for consistency with anomaly flow

$$\partial_{\lambda} \widetilde{B} = -\partial_{\lambda} \left(e^{-2\varphi} J \right)$$
$$= -\frac{1}{2} \star dH$$

Where is the *B*-field?

Missing degree of freedom corresponding to the B-field

Supersymmetric configurations satisfy $H = -i(\partial - \bar{\partial})J = \star e^{2\varphi} d(e^{-2\varphi}J)$

- defining B-field from H as H = dB is inconsistent with $dH = 2i\partial \bar{\partial} J$
- however $d\left(e^{-2\varphi}\star H\right) = d^2\left(-e^{-2\varphi}J\right) = 0$
- \rightarrow possible to dualize!

Dual \widetilde{B} -field

$$\mathrm{e}^{-2\varphi} \star H = \mathrm{d}\widetilde{B}$$

• constrained by supersymmetry to be (up to gauge transformations)

$$\widetilde{B}=-{\rm e}^{-2\varphi}J$$

· for consistency with anomaly flow

$$\partial_{\lambda} \widetilde{B} = -\partial_{\lambda} \left(e^{-2\varphi} J \right)$$
$$= -\frac{1}{2} \star dH$$

A functional for anomaly flows

Define the anomaly flow functional as

$$\mathcal{I} = \int_X \left(\widetilde{B} + \mathrm{e}^{-2\varphi} J \right) \wedge \mathrm{d}H$$

The equations of motion of ${\cal I}$ reproduce the (simplified) anomaly flow equations Explicitly

$$\begin{array}{lll} \partial_{\lambda}e^{a} &= \frac{1}{4}e^{2\varphi}\frac{\delta\mathcal{I}}{\delta\epsilon_{a}} + \frac{1}{8}e^{2\varphi}\frac{\delta\mathcal{I}}{\delta\varphi}e^{a} & \partial_{\lambda}\epsilon &= -\frac{1}{4}e^{2\varphi}\frac{\delta\mathcal{I}}{\delta\epsilon} \\ \partial_{\lambda}\varphi &= \frac{1}{8}e^{2\varphi}\frac{\delta\mathcal{I}}{\delta\varphi} & \partial_{\lambda}\widetilde{B} &= -\frac{1}{2}e^{-2\varphi}\frac{\delta\mathcal{I}}{\delta\widetilde{B}} \end{array}$$

 \rightarrow Does \mathcal{I} appear in the heterotic theory?

Heterotic compactifications	Anomaly flows	Anomaly flow functional	lpha' corrections 0000000	G ₂ and Spin(7) 000000000

Lichnerowicz formula:
$$(\nabla^m \nabla_m - \nabla^2) \epsilon = \frac{1}{4} R \epsilon$$
 [Lichnerowicz 1963]

Coupling to *H*-flux:

[Bismut 1989]

$$D_m = \nabla_m + \alpha \frac{1}{2!} H_{mn_1 n_2} \gamma^{n_1 n_2}$$
$$D = \gamma^m \nabla_m + \beta \frac{1}{3!} H_{m_1 \dots m_3} \gamma^{m_1 \dots m_3}$$

Difference of squares:

$$(D^{m}D_{m} - \not{D}^{2})\epsilon = \frac{1}{4}(R - 12(\alpha^{2} - \frac{1}{3}\beta^{2})H^{2})\epsilon - \beta \frac{1}{4!}dH_{m_{1}...m_{4}}\gamma^{m_{1}...m_{4}}\epsilon + \frac{1}{2}(\alpha - \beta)(\star d \star H)_{m_{1}m_{2}}\gamma^{m_{1}m_{2}}\epsilon + \frac{1}{4}(\alpha^{2} - \beta^{2})H_{m_{1}m_{2}}{}^{n}H_{m_{3}m_{4}n}\gamma^{m_{1}...m_{4}}\epsilon + (\alpha - \beta)H_{m_{1}m_{2}}{}^{n}\gamma^{m_{1}m_{2}}\nabla_{n}\epsilon$$

- setting $\alpha = \beta \rightarrow \text{Bismut-Lichnerowicz}$ $(\alpha = \frac{1}{4}$ for correct normalization of H^2)
- coupling to dilaton?

Heterotic compactifications	Anomaly flows	Anomaly flow functional	lpha' corrections 0000000	G ₂ and Spin(7) 000000000

Lichnerowicz formula:
$$(\nabla^m \nabla_m - \nabla^2) \epsilon = \frac{1}{4} R \epsilon$$
 [Lichnerowicz 1963]

Coupling to *H*-flux:

[Bismut 1989]

$$D_m = \nabla_m + \alpha \frac{1}{2!} H_{mn_1n_2} \gamma^{n_1n_2}$$
$$\not \! D = \gamma^m \nabla_m + \beta \frac{1}{3!} H_{m_1...m_3} \gamma^{m_1...m_3}$$

Difference of squares:

$$(D^{m}D_{m} - \not{D}^{2})\epsilon = \frac{1}{4}(R - 12(\alpha^{2} - \frac{1}{3}\beta^{2})H^{2})\epsilon - \beta \frac{1}{4!}dH_{m_{1}...m_{4}}\gamma^{m_{1}...m_{4}}\epsilon + \frac{1}{2}(\alpha - \beta)(\star d \star H)_{m_{1}m_{2}}\gamma^{m_{1}m_{2}}\epsilon + \frac{1}{4}(\alpha^{2} - \beta^{2})H_{m_{1}m_{2}}{}^{n}H_{m_{3}m_{4}n}\gamma^{m_{1}...m_{4}}\epsilon + (\alpha - \beta)H_{m_{1}m_{2}}{}^{n}\gamma^{m_{1}m_{2}}\nabla_{n}\epsilon$$

• setting $\alpha = \beta \rightarrow \text{Bismut-Lichnerowicz}$ $(\alpha = \frac{1}{4} \text{ for correct normalization of } H^2)$

coupling to dilaton?

With dilaton coupling:

[Minasian-Petrini-Svanes 2017]

$$D_m = \nabla_m + \frac{1}{8} H_{mn_1 n_2} \gamma^{n_1 n_2}$$
$$D = \gamma^m \nabla_m + \frac{1}{24} H_{m_1 \dots m_3} \gamma^{m_1 \dots m_3} - \nabla_m \varphi \gamma^m$$

- → supersymmetry operators!
 - still non-tensorial...

$$(D^m D_m - \not D^2)\epsilon = \frac{1}{4}(R - \frac{1}{2}H^2 - 4(\nabla\varphi)^2 + 4\nabla^2\varphi)\epsilon - \frac{1}{4}\frac{1}{4!}dH_{m_1...m_4}\gamma^{m_1...m_4}\epsilon + 2\nabla^m\varphi D_m\epsilon$$

• contract with ϵ and integrate by part:

$$\int_{X} |e| e^{-2\varphi} (R + 4(\nabla \varphi)^{2} - \frac{1}{2}H^{2}) \epsilon^{\dagger} \epsilon = 4 \int_{X} |e| e^{-2\varphi} \left(|\not\!\!D \epsilon|^{2} - |D\epsilon|^{2} \right)$$
$$+ \int_{X} |e| e^{-2\varphi} \epsilon^{\dagger} d\not\!\!H \epsilon$$

With dilaton coupling:

[Minasian-Petrini-Svanes 2017]

$$D_m = \nabla_m + \frac{1}{8} H_{mn_1 n_2} \gamma^{n_1 n_2}$$
$$D = \gamma^m \nabla_m + \frac{1}{24} H_{m_1 \dots m_3} \gamma^{m_1 \dots m_3} - \nabla_m \varphi \gamma^m$$

- → supersymmetry operators!
 - still non-tensorial...

$$(D^m D_m - \not D^2)\epsilon = \frac{1}{4}(R - \frac{1}{2}H^2 - 4(\nabla\varphi)^2 + 4\nabla^2\varphi)\epsilon - \frac{1}{4}\frac{1}{4!}dH_{m_1...m_4}\gamma^{m_1...m_4}\epsilon + 2\nabla^m\varphi D_m\epsilon$$

• contract with ϵ and integrate by part:

$$\begin{split} \int_{X} |e| e^{-2\varphi} (R + 4(\nabla \varphi)^{2} - \frac{1}{2}H^{2}) \epsilon^{\dagger} \epsilon &= 4 \int_{X} |e| e^{-2\varphi} \left(|\not\!\!D \epsilon|^{2} - |D\epsilon|^{2} \right) \\ &+ \int_{X} |e| e^{-2\varphi} \epsilon^{\dagger} \mathrm{d} \not\!\!H \epsilon \end{split}$$

With dilaton coupling:

[Minasian-Petrini-Svanes 2017]

$$D_m = \nabla_m + \frac{1}{8} H_{mn_1 n_2} \gamma^{n_1 n_2}$$
$$D = \gamma^m \nabla_m + \frac{1}{24} H_{m_1 \dots m_3} \gamma^{m_1 \dots m_3} - \nabla_m \varphi \gamma^m$$

- → supersymmetry operators!
 - still non-tensorial...

$$(D^m D_m - \not D^2)\epsilon = \frac{1}{4}(R - \frac{1}{2}H^2 - 4(\nabla\varphi)^2 + 4\nabla^2\varphi)\epsilon - \frac{1}{4}\frac{1}{4!}dH_{m_1...m_4}\gamma^{m_1...m_4}\epsilon + 2\nabla^m\varphi D_m\epsilon$$

• contract with ϵ and integrate by part:

$$\begin{split} \int_{X} |e| e^{-2\varphi} (R + 4(\nabla \varphi)^{2} - \frac{1}{2}H^{2}) \epsilon^{\dagger} \epsilon &= 4 \int_{X} |e| e^{-2\varphi} \left(|\not\!\!D \epsilon|^{2} - |D\epsilon|^{2} \right) \\ &+ \int_{X} |e| e^{-2\varphi} \epsilon^{\dagger} d\not\!\!H \epsilon \quad \leftarrow \text{appears in } \mathcal{I} \end{split}$$

Heterotic compactifications	Anomaly flows	Anomaly flow functional 000000●	lpha' corrections 0000000	G ₂ and Spin(7) 000000000

Recognizing the anomaly flow functional

For a supersymmetric background ($\epsilon^{\dagger}\epsilon = 1$ and $D\epsilon = \not D \epsilon = 0$)

$$\mathcal{I} = \int_X |e| e^{-2\varphi} (R + 4(\nabla \varphi)^2 - \frac{1}{2}H^2) + \int_X \widetilde{B} \wedge dH$$

The anomaly flow functional reproduces the dualized heterotic bosonic action

So far

- rephrased (simplified) anomaly flow as a flow for supergravity fields
- defined a functional ${\mathcal I}$ for the flow
- identified $\ensuremath{\mathcal{I}}$ with the heterotic bosonic action

Heterotic compactifications 000000	Anomaly flows	Anomaly flow functional	α' corrections	G ₂ and Spin(7) 000000000

IV. Including α' corrections

Choice of connection

Original formulation of anomaly flows uses the Chern connection $\Gamma^{\rm C}$

- $\operatorname{tr} \mathcal{R}^{C} \wedge \mathcal{R}^{C}$ in Bianchi is a (2,2)-form
- usual choice in (part of) the literature

Changing connection on TX

- does not affect topological properties
- is correlated with the local form of supersymmetry equations
- · corresponds to changing regularization scheme in the effective action

Choice singled out by supersymmetry: Hull connection Γ^+ (not a new degree of freedom! $\Gamma^+ = \Gamma^+[J]$)

Choice of connection

How Γ^+ appears in heterotic supergravity

(1) Hull connection fits in a composite Yang–Mills multiplet with the gravitino curvature ψ_{ab} [Bergshoeff-de Roo 1989]

$$\delta\psi_{ab} = \frac{1}{8}R^+_{abcd}\gamma^{cd}\epsilon \qquad \frac{1}{2}\delta\Gamma^+_{mab} = -\epsilon^\dagger\gamma_m\psi_{ab}$$

(2) compatibility between susy and eoms requires an instanton condition on the curvature [Ivanov 2009, de la Ossa-Svanes 2014]

$$\mathcal{R}\epsilon=\mathcal{O}(\alpha')$$

which distinguishes the Hull connection

$$\mathcal{R}^+_{a_1a_2}\epsilon = 2[D_{a_1}, D_{a_2}]\epsilon - \frac{1}{4}\mathrm{d}H_{m_1m_2a_1a_2}\gamma^{m_1m_2}\epsilon$$
$$= \mathcal{O}(\alpha') \text{ for solutions of the Bianchi identity}$$

(can be computed from $R_{m_1m_2n_1n_2}^- = R_{n_1n_2m_1m_2}^+ + \frac{1}{2} dH_{m_1m_2n_1n_2}$ where Γ^- is the connection associated to D_m)

 $\rightarrow~$ The choice of Γ^+ is also singled out by anomaly flows!

Anomaly flow at first order in α'

Consider the anomaly flow with couplings to an arbitrary connection $\check{\Gamma}$

Flow of the metric

• integrate $\partial_{\lambda}g$ from the SU(3) structure flow

$$\partial_{\lambda}g_{m_1m_2} = \frac{1}{4} e^{2\varphi} J^{n_1n_2} J_{m_1}{}^p \partial_{\lambda} \left(e^{-2\varphi} J \wedge J \right)_{n_1n_2pm_2}$$

- rewrite using susy operators D and $D \!\!\!/$

$$\partial_{\lambda}g_{mn} = -e^{2\varphi} \left(R_{mn} + 2\nabla_m \nabla_n \varphi - \frac{1}{4} H_m^{p_1 p_2} H_{n p_1 p_2} \right) + e^{2\varphi} \left(\epsilon^{\dagger} \gamma_{(m} \not\!\!D_n) \epsilon - \epsilon^{\dagger} \gamma_{(m} D_n) \not\!\!D \epsilon + \frac{1}{2} H_{(m}^{pq} \epsilon^{\dagger} \gamma_n) \gamma_p D_q \epsilon + \text{c.c.} \right) + \mathcal{O}(\alpha')$$

$$= -e^{2\varphi} eom[g]_{mn} + [D, \not\!\!D \text{ bilinears}] + \mathcal{O}(\alpha')$$

 \rightarrow for an initial susy configuration, flow by the equation of motion

Anomaly flow at first order in α'

Consider the anomaly flow with couplings to an arbitrary connection $\check{\Gamma}$

Flow of the metric

• integrate $\partial_{\lambda}g$ from the SU(3) structure flow

$$\partial_{\lambda}g_{m_1m_2} = \frac{1}{4} e^{2\varphi} J^{n_1n_2} J_{m_1}{}^p \partial_{\lambda} \left(e^{-2\varphi} J \wedge J \right)_{n_1n_2pm_2}$$

- rewrite using susy operators D and $D \!\!\!/$

At zeroth order in α^\prime

$$\partial_{\lambda}g_{mn} = -e^{2\varphi} \left(R_{mn} + 2\nabla_m \nabla_n \varphi - \frac{1}{4} H_m^{p_1 p_2} H_{np_1 p_2} \right) \\ + e^{2\varphi} \left(\epsilon^{\dagger} \gamma_{(m} \not D_{n)} \epsilon - \epsilon^{\dagger} \gamma_{(m} D_{n)} \not D \epsilon + \frac{1}{2} H_{(m}^{pq} \epsilon^{\dagger} \gamma_{n)} \gamma_p D_q \epsilon + \text{c.c.} \right) \\ + \mathcal{O}(\alpha')$$

$$= -e^{2\varphi} \operatorname{eom}[g]_{mn} + [D, \not\!\!\!D \text{ bilinears}] + \mathcal{O}(\alpha')$$

 $\rightarrow~$ for an initial susy configuration, flow by the equation of motion

Anomaly flow at first order in α'

At first order in α^\prime this structure breaks down

- $\mathcal{F}\epsilon$ and $\mathcal{R}\epsilon$ should vanish at fixed points of the flow up to $\mathcal{O}(\alpha'^2)$ terms $\rightarrow \mathcal{F}\epsilon = 0$ by HYM
 - \rightarrow recover instanton condition $\mathcal{R}\epsilon = \mathcal{O}(\alpha')$

Chern connection is generically not an SU(3) instanton [Martelli–Sparks 2011]

Anomaly flow and α' expansion

Employing the Hull connection without an α' expansion is inconsistent

- $\operatorname{tr} \mathcal{R}^+ \wedge \mathcal{R}^+$ is (2,2) only up to $\mathcal{O}(\alpha')$
- $\mathcal{R}^+ \epsilon = 0$ at fixed points $\Rightarrow X$ is Calabi–Yau

[Ivanov-Papadopoulos 2000]

Higher order α' corrections

- to the equations of motion
- to the Bianchi identity
- to the supersymmetry operators e.g. at order $\alpha^{\prime\,2}$

$$D_m \epsilon = \nabla_m \epsilon + \frac{1}{8} H_{mn_1 n_2} \gamma^{n_1 n_2} \epsilon - \frac{3}{2} \alpha' e^{2\varphi} \nabla_-^n (e^{-2\varphi} dH_{nmp_1 p_2}) \gamma^{p_1 p_2} \epsilon$$

[de la Ossa-Svanes 2015]

Anomaly flow and α' expansion

At order α' , the functional driving the flow becomes

$$\mathcal{I} = \int_X (\widetilde{B} + e^{-2\varphi}J) \wedge \left(dH + \frac{\alpha'}{4} \left(\operatorname{tr} \mathcal{F} \wedge \mathcal{F} - \operatorname{tr} \mathcal{R}_+ \wedge \mathcal{R}_+ \right) \right)$$

- functional derivatives of $\ensuremath{\mathcal{I}}$ reproduce the anomaly flow equations
- · Lichnerowicz structure

$$\mathcal{I} = \underbrace{\int_{X} e^{-2\varphi} \mathscr{L}}_{X} - \underbrace{\int_{X} |e| e^{-2\varphi} \left(4(|\not D \epsilon|^{2} - |D \epsilon|^{2}) + \frac{\alpha'}{4} (\operatorname{tr} |\not F \epsilon|^{2} - \operatorname{tr} |\not R^{+} \epsilon|^{2}) \right)}_{A}$$

(dualized) bosonic action

 $=\!\mathcal{O}(\alpha'^2)$ along the flow or at fixed points

Guiding principle for α' expansion of the flow (schematically)

- expect the flow to be corrected order by order in lpha
- construct $\mathcal{I}(\alpha')$ by maintaining Lichnerowicz structure at every order in α' (with α' -corrected functional, action and susy operators)

Anomaly flow and α' expansion

At order α' , the functional driving the flow becomes

$$\mathcal{I} = \int_X (\widetilde{B} + e^{-2\varphi}J) \wedge \left(dH + \frac{\alpha'}{4} \left(\operatorname{tr} \mathcal{F} \wedge \mathcal{F} - \operatorname{tr} \mathcal{R}_+ \wedge \mathcal{R}_+ \right) \right)$$

- functional derivatives of ${\mathcal I}$ reproduce the anomaly flow equations
- Lichnerowicz structure

$$\mathcal{I} = \underbrace{\int_{X} e^{-2\varphi} \mathscr{L}}_{X} - \underbrace{\int_{X} |e| e^{-2\varphi} \left(4(|\not\!\!D \epsilon|^{2} - |D\epsilon|^{2}) + \frac{\alpha'}{4} (\operatorname{tr} |\not\!\!F \epsilon|^{2} - \operatorname{tr} |\not\!\!R^{+} \epsilon|^{2}) \right)}_{Y}$$

(dualized) bosonic action

 $=\!\mathcal{O}(\alpha'^2)$ along the flow or at fixed points

Guiding principle for α' expansion of the flow (schematically)

- expect the flow to be corrected order by order in lpha'
- construct $\mathcal{I}(\alpha')$ by maintaining Lichnerowicz structure at every order in α' (with α' -corrected functional, action and susy operators)

Heterotic compactifications	Anomaly flows	Anomaly flow functional	lpha' corrections 0000000	G ₂ and Spin(7)
000000	000000	0000000		●00000000

V. Generalization to G_2 and Spin(7) structure manifolds

Heterotic compactifications	Anomaly flows	Anomaly flow functional	α' corrections	G ₂ and Spin(7)
000000	000000		0000000	○●○○○○○○○

Other heterotic flows

Generalizations of anomaly flows

• SU(n) structure manifolds

[Phong-Picard-Zhang 2018]

$$\partial_{\lambda} \left(e^{-2\varphi} J^{n-1} \right) = 2i \, \partial \bar{\partial} J^{n-2} + \dots \qquad \partial_{\lambda} \left(e^{-2\varphi} \Omega \right) = 0$$

- other spaces?
 - \rightarrow supergravity reformulation of the flow is dimension-agnostic
 - \rightarrow Lichnerowicz identity exists on any (spin) manifold
- should extend to any manifold with a covariantly constant spinor
 - \rightarrow properties? (e.g. supersymmetry)

Two examples

- G₂ compactifications
- Spin(7) compactifications

G_2 heterotic flow

G_2 structure manifolds

- G_2 structure defined from a nowhere vanishing spinor in seven dimensions
- associative three-form ϕ and coassociative four-form $\star\phi$

$$\phi_{m_1...m_3}=-\mathrm{i}\epsilon^\dagger\gamma_{m_1...m_3}\epsilon$$

$$\star\phi_{m_1...m_4} = \epsilon^{\dagger}\gamma_{m_1...m_4}\epsilon$$

Supersymmetric geometries

• supersymmetry conditions for Minkowski D = 3 compactifications

$$d\left(e^{-2\varphi}\star\phi\right) = 0 \qquad \phi \wedge d\phi = 0$$

with H-flux is defined as $H = -e^{2\varphi} \star d \left(e^{-2\varphi} \phi \right)$

- dual three-form field
$$\widetilde{B}=-{\rm e}^{-2\varphi}\phi$$

Heterotic compactifications	Anomaly flows	Anomaly flow functional	α' corrections	G ₂ and Spin(7)
000000	000000		0000000	○○○●○○○○○
${ m G}_2$ heterotic flow				

Define a flow for the supergravity fields — inspired by anomaly flows — as

$$\partial_{\lambda}\epsilon = \alpha_{1} e^{2\varphi} (I - \epsilon \epsilon^{\dagger}) dH \epsilon$$
$$\partial_{\lambda}e_{m}{}^{a} = \alpha_{2} e^{2\varphi} \frac{1}{3!} \epsilon^{\dagger} \gamma_{m}{}^{n_{1}...n_{3}} \epsilon dH^{a}{}_{n_{1}...n_{3}}$$
$$\partial_{\lambda}\varphi = \alpha_{3} e^{2\varphi} \epsilon^{\dagger} dH \epsilon$$

Flow of the G_2 form

$$\partial_{\lambda}\phi = e^{2\varphi} \left(12\alpha_2 \mathbb{P}_1 + (8\alpha_1 - 6\alpha_2)\mathbb{P}_7 - 2\alpha_2 \mathbb{P}_{27}\right) \star dH$$

In particular

$$\partial_{\lambda} \left(e^{-2\varphi} \star \phi \right) = \left((16\alpha_2 - 14\alpha_3) \mathbb{P}_1 + (8\alpha_1 - 6\alpha_2) \mathbb{P}_7 + 2\alpha_2 \mathbb{P}_{27} \right) \mathrm{d}H$$

Heterotic compactifications	Anomaly flows	Anomaly flow functional	α' corrections 0000000	G ₂ and Spin(7) ○○○●○○○○○
G_2 heterotic flow				

Define a flow for the supergravity fields — inspired by anomaly flows — as

$$\partial_{\lambda}\epsilon = \alpha_{1} e^{2\varphi} (I - \epsilon \epsilon^{\dagger}) dH \epsilon$$
$$\partial_{\lambda}e_{m}{}^{a} = \alpha_{2} e^{2\varphi} \frac{1}{3!} \epsilon^{\dagger} \gamma_{m}{}^{n_{1}...n_{3}} \epsilon dH^{a}{}_{n_{1}...n_{3}}$$
$$\partial_{\lambda}\varphi = \alpha_{3} e^{2\varphi} \epsilon^{\dagger} dH \epsilon$$

Flow of the G_2 form

$$\partial_{\lambda}\phi = e^{2\varphi} \left(12\alpha_2 \mathbb{P}_1 + (8\alpha_1 - 6\alpha_2)\mathbb{P}_7 - 2\alpha_2 \mathbb{P}_{27}\right) \star dH$$

In particular

$$\partial_{\lambda} \left(e^{-2\varphi} \star \phi \right) = \left((16\alpha_2 - 14\alpha_3) \mathbb{P}_1 + (8\alpha_1 - 6\alpha_2) \mathbb{P}_7 + 2\alpha_2 \mathbb{P}_{27} \right) \mathrm{d}H$$

Heterotic compactifications	Anomaly flows	Anomaly flow functional	α' corrections 0000000	G ₂ and Spin(7) ○○○●○○○○○
G_2 heterotic flow				

Define a flow for the supergravity fields — inspired by anomaly flows — as

$$\partial_{\lambda}\epsilon = \alpha_{1} e^{2\varphi} (I - \epsilon \epsilon^{\dagger}) dH \epsilon$$
$$\partial_{\lambda}e_{m}^{\ a} = \alpha_{2} e^{2\varphi} \frac{1}{3!} \epsilon^{\dagger} \gamma_{m}^{\ n_{1}...n_{3}} \epsilon dH^{a}_{\ n_{1}...n_{3}}$$
$$\partial_{\lambda}\varphi = \alpha_{3} e^{2\varphi} \epsilon^{\dagger} dH \epsilon$$

Flow of the G_2 form

$$\partial_{\lambda}\phi = e^{2\varphi} \left(12\alpha_2 \mathbb{P}_1 + (8\alpha_1 - 6\alpha_2)\mathbb{P}_7 - 2\alpha_2 \mathbb{P}_{27}\right) \star dH$$

In particular

$$\partial_{\lambda} \left(e^{-2\varphi} \star \phi \right) = \left((16\alpha_2 - 14\alpha_3) \mathbb{P}_1 + (8\alpha_1 - 6\alpha_2) \mathbb{P}_7 + 2\alpha_2 \mathbb{P}_{27} \right) dH$$
$$= \boxed{2\alpha_1 dH} \quad \text{for } \alpha_1 = \alpha_2 = \alpha_3$$

Heterotic compactifications	Anomaly flows 000000	Anomaly flow functional	α' corrections 0000000	G ₂ and Spin(7) 0000●0000

G_2 heterotic flow

G_2 version of anomaly flows

$$\partial_{\lambda} \left(e^{-2\varphi} \star \phi \right) = -\frac{1}{2} \left(dH + \frac{\alpha'}{4} \left(\operatorname{tr} \mathcal{F} \wedge \mathcal{F} - \operatorname{tr} \mathcal{R}_{+} \wedge \mathcal{R}_{+} \right) \right)$$

- preserves the supersymmetry condition $d\left(e^{-2\varphi}\star\phi\right)=0$
- · fixed points solve Bianchi identity
- reproduces SU(3) anomaly flow on $X_7 = X_6 \times S^1$
- gradient flow formulation with

$$\mathcal{I} = \int_{X} (\widetilde{B} + e^{-2\varphi} \phi) \wedge \left(dH + \frac{\alpha'}{4} \left(\operatorname{tr} \mathcal{F} \wedge \mathcal{F} - \operatorname{tr} \mathcal{R}_{+} \wedge \mathcal{R}_{+} \right) \right)$$

Open questions

- supersymmetry condition $\phi \wedge d\phi = 0$ not generically preserved (study torsion classes and G₂ cohomology?)
- flow of the gauge bundle?
- weak parabolicity?

$\operatorname{Spin}(7)$ heterotic flow

$\operatorname{Spin}(7)$ structure manifolds

- Spin(7) structure defined from a nowhere vanishing spinor in eight dimensions
- Cayley four-form Φ (self-dual)

$$\Phi_{m_1...m_4} = \epsilon^{\dagger} \gamma_{m_1...m_4} \epsilon$$

Supersymmetric geometries

• supersymmetry conditions for Minkowski D = 2 compactifications

$$\Phi\wedge\star\mathrm{d}\Phi=12\star\mathrm{d}\varphi$$

with *H*-flux is defined as $H = \star e^{2\varphi} d\left(e^{-2\varphi}\Phi\right)$

• dual four-form field
$$\widetilde{B} = -e^{-2\varphi}\Phi$$

Heterotic compactifications	Anomaly flows 000000	Anomaly flow functional	α' corrections 0000000	G ₂ and Spin(7) ○○○○○○●○○

$\operatorname{Spin}(7)$ heterotic flow

Similarly

$$\begin{split} \partial_{\lambda} \epsilon &= \alpha_1 \, \mathrm{e}^{2\varphi} (I - \epsilon \epsilon^{\dagger}) \mathrm{d} /\!\!\!/ \mathrm{d} \epsilon \\ \partial_{\lambda} e_m{}^a &= \alpha_2 \, \mathrm{e}^{2\varphi} \frac{1}{3!} \epsilon_m{}^{n_1 \dots n_3} \mathrm{d} H^a{}_{n_1 \dots n_3} \\ \partial_{\lambda} \varphi &= \alpha_3 \, \mathrm{e}^{2\varphi} \epsilon^{\dagger} \mathrm{d} /\!\!/ \epsilon \end{split}$$

Flow of the $\operatorname{Spin}(7)$ form

$$\partial_{\lambda} \Phi = \frac{1}{3} e^{2\varphi} \left(84\alpha_2 \mathbb{P}_1 + 48(\alpha_1 - \alpha_2) \mathbb{P}_7 + 12\alpha_2 \mathbb{P}_{35} \right) \star dH$$

simplifies for $\alpha_1 = \alpha_2 = \alpha_3 = \frac{1}{4}$ $\partial_\lambda \left(e^{-2\varphi} \Phi \right) = -\frac{1}{2} (I - \star) dH$

Spin(7) heterotic flow

$\operatorname{Spin}(7)$ version of anomaly flows

$$\partial_{\lambda} \left(e^{-2\varphi} \Phi \right) = -\frac{1}{2} (I - \star) \left(dH + \frac{\alpha'}{4} \left(\operatorname{tr} \mathcal{F} \wedge \mathcal{F} - \operatorname{tr} \mathcal{R}_{+} \wedge \mathcal{R}_{+} \right) \right)$$

- fixed points solve Bianchi identity
- reproduces $\begin{cases} SU(3) \text{ anomaly flows on } X_8 = X_6 \times T^2 \\ G_2 \text{ anomaly flows on } X_8 = X_7 \times S^1 \end{cases}$
- gradient flow formulation with

$$\mathcal{I} = \int_X (\tilde{B} + e^{-2\varphi} \Phi) \wedge \left(dH + \frac{\alpha'}{4} \left(\operatorname{tr} \mathcal{F} \wedge \mathcal{F} - \operatorname{tr} \mathcal{R}_+ \wedge \mathcal{R}_+ \right) \right)$$

Open questions: supersymmetry conditions? gauge bundle?

Summary and outlook

Conclusions

Anomaly flows from a heterotic perspective

- reframing of the flow equations as the heterotic equations of motion
- gradient flow formulation, $\mathcal{I} \sim$ heterotic action restricted to a susy locus
- generalization to manifolds with parallel spinors, e.g. ${\rm G_2}/{\rm Spin}(7)$

Outlook

- understand Yang-Mills part of the flow
 - \rightarrow SU(3): no gradient flow description
 - $\rightarrow ~{
 m G}_2/{
 m Spin}(7)$: canonical flow to couple to anomaly flows?
- study stability (and relate to α' corrections?)

[Bedulli–Vezzoni 2020]

- embed the flow in generalized geometry?
- numerical implementation?
- relate to other geometric flows, e.g. spinor flows with flux [Collins-Phong 2021]

Summary and outlook

Conclusions

Anomaly flows from a heterotic perspective

- reframing of the flow equations as the heterotic equations of motion
- gradient flow formulation, $\mathcal{I} \sim$ heterotic action restricted to a susy locus
- generalization to manifolds with parallel spinors, e.g. $G_2/Spin(7)$

Outlook

- understand Yang-Mills part of the flow
 - $\rightarrow~{\rm SU}(3):$ no gradient flow description
 - $\rightarrow~G_2/Spin(7):$ canonical flow to couple to anomaly flows?
- study stability (and relate to α' corrections?)

[Bedulli-Vezzoni 2020]

- embed the flow in generalized geometry?
- numerical implementation?
- relate to other geometric flows, e.g. spinor flows with flux [Collins-Phong 2021]

Summary and outlook

Conclusions

Anomaly flows from a heterotic perspective

- · reframing of the flow equations as the heterotic equations of motion
- gradient flow formulation, $\mathcal{I} \sim$ heterotic action restricted to a susy locus
- generalization to manifolds with parallel spinors, e.g. ${\rm G_2}/{\rm Spin}(7)$

Outlook

- understand Yang-Mills part of the flow
 - \rightarrow SU(3): no gradient flow description
 - $\rightarrow~G_2/Spin(7):$ canonical flow to couple to anomaly flows?
- study stability (and relate to α' corrections?)

[Bedulli-Vezzoni 2020]

- embed the flow in generalized geometry?
- numerical implementation?
- relate to other geometric flows, e.g. spinor flows with flux [Collins-Phong 2021]

Thank you!

A little more on anomaly flows...

SU(3) flows on T^2 fibrations over K3

 ${\sf Consider \ a \ Fu-Yau \ background} \quad T^2 \hookrightarrow X \to {\rm K3}$

- SU(2) structure of K3 $\frac{1}{2}j \wedge j = \frac{1}{4}\omega \wedge \omega = \text{vol}_{\text{K3}}$
- one-forms $\Theta^I = d\theta^I + A^I$ associated to $U(1)^2$ isometries \rightarrow complexified to $\Theta = \Theta^2 + i\Theta^1$ and $F = F^2 + iF^1$

$$\mathrm{d}\Theta^{I}=F^{I}$$

• SU(3) structure

$$J = e^{2\varphi} j + \frac{i}{2} a \Theta \wedge \bar{\Theta}$$
$$\Omega = e^{2\varphi} \sqrt{a} \omega \wedge \Theta$$

• supersymmetry conditions require $F^{(0,2)} = 0$

 $\mathop{\rm SU}(3)$ flow

$$\partial_{\lambda} e^{2\varphi} = \frac{1}{2} \Delta_{\mathrm{K3}} e^{2\varphi} - \mu[\varphi]$$
$$\partial_{\lambda} A = \star_{\mathrm{K3}} \mathrm{d} F_{(2,0)}$$

with

$$\mu[\varphi] \operatorname{vol}_{\mathrm{K3}} = \frac{1}{2} a \left(F_{(1,1)} \wedge \bar{F}_{(1,1)} - F_{(2,0)} \wedge \bar{F}_{(0,2)} \right) + \frac{\alpha'}{8} \left(\operatorname{tr} \mathcal{F} \wedge \mathcal{F} - \operatorname{tr} \mathcal{R}^+ \wedge \mathcal{R}^+ \right)$$

G_2 flows on T^3 fibrations over K3

Consider a Fu–Yau like background $T^3 \hookrightarrow X \to K3$

- hyper-Kähler structure of K3 $\frac{1}{2}j_I \wedge j_J = \delta_{IJ} \text{vol}_{K3}$
- one-forms $\Theta^I = d\theta^I + A^I$ associated to $U(1)^3$ isometries $d\Theta^I = F^I$

• G₂ structure

$$\phi = a^{1/2} e^{2\varphi} j_I \wedge \Theta^I - \frac{1}{6} a^{3/2} \varepsilon_{IJK} \Theta^I \wedge \Theta^J \wedge \Theta^K$$

$$\star \phi = \frac{1}{2} a e^{2\varphi} \epsilon_{IJK} j^I \wedge \Theta^J \wedge \Theta^K - e^{4\varphi} vol_{K3}$$

• supersymmetry conditions require $F^{I} = f^{I} + \frac{1}{2}\lambda^{IJ}j_{J}$ (f^{I} anti-self dual, λ^{IJ} symmetric)

G_2 flow

$$\begin{aligned} \partial_{\lambda} e^{2\varphi} &= \frac{1}{2} \Delta_{\mathrm{K3}} e^{2\varphi} + \frac{1}{4} a \,\lambda^{IJ} \lambda_{IJ} - \mu[\varphi] \\ \partial_{\lambda} A^{I} &= \frac{1}{2} \star_{\mathrm{K3}} \left(\mathrm{d} \lambda^{IJ} \wedge j_{J} \right) \end{aligned}$$

with $\mu[\varphi] \operatorname{vol}_{\mathrm{K3}} = \frac{1}{2} a f^I \wedge f_I + \frac{\alpha'}{8} \left(\operatorname{tr} \mathcal{F} \wedge \mathcal{F} - \operatorname{tr} \mathcal{R}^+ \wedge \mathcal{R}^+ \right)$

G_2 flow and anti-de Sitter compactifications

Supersymmetric D = 3 AdS compactifications allowed with external *H*-flux given by $\frac{2}{\ell} \operatorname{vol}_{AdS_3}$ (ℓ : AdS radius)

Supersymmetric geometries

• supersymmetry conditions for AdS₃ backgrounds

$$\mathbf{d}\left(\mathbf{e}^{-2\varphi}\star\phi\right) = 0 \qquad \phi \wedge \mathbf{d}\phi = -\frac{12}{7\ell}\phi \wedge \star\phi$$

with *H*-flux is defined as $H = -e^{2\varphi} \star d(e^{-2\varphi}\phi) - \frac{2}{\ell}\phi$ (Minkowski limit $\ell \to \infty$)

• G₂ flow takes the same form

$$\partial_{\lambda} \left(e^{-2\varphi} \star \phi \right) = -\frac{1}{2} \left(dH + \frac{\alpha'}{4} \left(\operatorname{tr} \mathcal{F} \wedge \mathcal{F} - \operatorname{tr} \mathcal{R}_{+} \wedge \mathcal{R}_{+} \right) \right)$$

$\ensuremath{\mathrm{G}}_2$ flow and anti-de Sitter compactifications

Example: flow on $K3 \times S^3$

$$g_X = \mathrm{e}^{2\varphi} g_{\mathrm{K3}} + \tfrac{1}{4} \ell^2 g_{S^3}$$

- hyper-Kähler structure of K3 $\frac{1}{2}j_I \wedge j_J = \delta_{IJ} \mathrm{vol}_{\mathrm{K3}}$
- Maurer–Cartan triplet $d\vartheta^I + \frac{1}{2}\varepsilon_{IJK}\vartheta^J \wedge \vartheta^K = 0$
- G₂ structure

$$\phi = \frac{1}{2} e^{2\varphi} \ell j_I \wedge \vartheta^I - \frac{1}{8} \ell^3 \operatorname{vol}_{S^3} \qquad \star \phi = \frac{1}{8} e^{2\varphi} \ell^2 \varepsilon_{IJK} j^I \wedge \vartheta^J \wedge \vartheta^K - e^{4\varphi} \operatorname{vol}_{K3}$$

As $dH = \Delta_{K3} e^{2\varphi} \operatorname{vol}_{K3}$, the G_2 flow becomes a flow for the warp factor

$$\partial_{\lambda}e^{2\varphi} = \frac{1}{2}\Delta_{\mathrm{K3}}e^{2\varphi} - \mu[\varphi]$$

with $\mu[\varphi] \operatorname{vol}_{\mathrm{K3}} = \frac{\alpha'}{8} \left(\operatorname{tr} \mathcal{F} \wedge \mathcal{F} - \operatorname{tr} \mathcal{R} \wedge \mathcal{R} \right)$