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@ Hartshorne amplitude of vector bundles can be defined by
requiring O(1) over P(E*) to be ample.
@ This definition leads to many analogous results.

@ Generalised a criterion of Schneider-Tancredi to recognise
ample bundles of rank-3 (with |. Biswas).

@ Several competing differentio-geometric notions including
Griffiths positivity. Griffiths conjecture.

@ Proved results in favour of it. Proved proof-of-concept results
for PDE-based approaches towards it (primarily due to
Demailly).
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embedding. Equivalent by Kodaira embedding.

o Nakai-Moizeshon (NM) criterion: L is ample iff c;(L)%.Y >0
for every k-dimensional subvariety Y.

@ For holomorphic vector bundles, Hartshorne defined ampleness
as O(1) over P(E*) being an ample line bundle. Proved
various consequences.

@ Shockingly enough, there can be no purely numerical NM-type
criteria for vector bundles! (Fulton, Inventiones, 1976).

@ Notwithstanding this negative result, Schneider and Tancredi
proved a partially numerical sufficient criterion for rank-2
bundles over surfaces (used by Demailly to study the
Green-Griffiths-Lang conjecture).
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Schneider-Tancredi

Theorem (Schneider and Tancredi, Manuscripta Mathematica,
1985)

Let E be a rank two holomorphic vector bundle over a compact
complex surface X. Assume that ci(E) > 0 and that E is

semistable with respect to det(E). Suppose E ‘ c Is ample for every
closed curve C C X, and

(ci(E)? —2c(E)).X > 0, «(E).X > 0.

Then E is ample.
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Liibke proved a differentio-geometric result related to
Schneider-Tancredi:

Theorem (Libke, Indagationes Mathematicae, 1991)

Let (E, h) be a holomorphic Hermitian rank r vector bundle over a
compact Kahler manifold (X, w). Suppose

FrAw'™1 = —/=1Aw", Where F, is the curvature of the Chern
connection of h and A > 0 is a constant. Assume that
r)\
E, h
a(E, h) = 5w

Suppose there exists a positive function 1 such that either of the
following holds:

Q@ n=2andc(E, h)— 2r(r=1) o (E, h) = yw?, or

r2—2r+2
1
@ r = 2and Z(E, h) — X251 &5(E, h) = yu?.
Then h is GP.
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A few words about the proof

@ Akin to Schneider-Tancredi, we used the NM criterion on
P(E*).

@ The proof follows theirs except for one key case:

e dim(Y)=2.

In this case, the intersection number is computed by choosing
a (actually, approximate) Hermitian-Einstein metric with
c1(F) being the considered Kahler form.

The variety Y is a branched cover of X.
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endomorphism of a Hermitian holomorphic rank-3 vector bundle
(E, he) at a point p on a surface. Take v € E,. Suppose w is a
Kahler form at p and ci(h.) = w. Moreover, assume that for
every €, there exists a tracefree endomorphism B, satisfying
((Be)l| < € foralli, j, and

1 B,
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Then

2
Gh) - gealh) < 5 ({5250 ) rarat.
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The Griffiths conjecture and “classical evidence”

@ A Hartshorne ample bundle admits a GP metric.

e Mori (Ann. Math. '79) proved that if TM is ample, then M is
biholomorphic to P" (Hartshorne's conjecture). Thus, if TM
is ample, it admits a GP metric.

@ Umemura (Nagoya '73) proved the conjecture for Riemann
surfaces using the concept of stability. Campana and Flenner
(Math. Ann. '90) gave a different proof.
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this would imply the algebraic Hopf conjecture for Kahler
manifolds.)

@ This conjecture was proven by Griffiths for ¢ for rank-2
bundles on general manifolds and general rank bundles on
surfaces.

@ Using pushforwards from P(E) and more general flag varieties,
several special cases are known (Guler '12, Finski '20,
Diverio-Fagioli '20, Fagioli '20, Li '20). In particular, this
conjecture is known for rank-2 bundles on surfaces (Guler '12).
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o If (E, h) is GP, then Demailly-Skoda ('80) proved that
E ® det(E) is NP. Berndtsson (Ann. Math. '09) proved that
if E is ample, then E ® det(E) admits a NP metric.

@ Liu-Sun-Yang (J. Alg. Geom. '13) extended these results to
show that if £ is ample, then SK(E) @ det(E) admits a metric
that is NP and dNP for k > 1. Moreover, if (E, h) is GP, then
the induced metric on SX(E) ® det(E) is NP and dNP.

@ We proved (P., Math. Z. '18) that if E on a surface is ample
and semi-stable (w.r.t some L), then there is a metric h such
that all the Schur polynomials ¢, ¢, C12 — Cp are positive.

@ Xiao (Sci. China. Math. '22) showed that if E is ample, the
(n—1,n— 1) Schur classes have positive representatives.
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Approaches towards the conjecture

@ Naumann ('17) proposed the relative Kahler-Ricci flow as
possible approach. This flow takes a metric on Og(1) and
flows it until it converges to an induced metric from E. The
challenge is to prove that positivity is preserved.

e Demailly (' 21) proposed a (actually, several) family of PDE
(depending on a parameter t) that has a solution for t >>1
and if it can be solved until t =0, then E admits a dNP
metric. Unfortunately, this cannot always be true.
Nonetheless, it could very well be the case that a solution
exists on (0,00). (The counterexample does not prohibit this
possibility.) The “best” t indicates when E ® det(E)* is dNP.
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Demailly’'s approach in detail

Demailly proposed several systems of PDE but originally hoped
that the following system could work:

(det ho))‘

1/r
T _ . — £ \=2T0) n
det (eht+(1 t)awo®IE) s O

TXQE*
V-1 1 (det ho)* hhy*

V=1Fy, — Y—trFp, |l ™t = — | 0 n

( he = e ) 0 “(dethy " \ det(hny )i ) O

(4)

where hg is a smooth background Hermitian metric, p, A > 0 are
fixed constants, o > 0 is a large enough constant so that ©p, + aw
is dual-Nakano positively curved, and f; > 0 are smooth positive
functions.
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Demailly proposed several systems of PDE but originally hoped
that the following system could work:

det hg)?
s @

V-1 1 (det ho)* hhy*
V=1Fp, — Y —trFy, |wl ' = — | 0 n
( he T T [ “(dethy " \ det(hny )i ) O

(4)

where hg is a smooth background Hermitian metric, p, A > 0 are
fixed constants, o > 0 is a large enough constant so that ©p, + aw
is dual-Nakano positively curved, and f; > 0 are smooth positive
functions. The second equation (the “cushioned/viscous
Hermitian-Einstein (HE) equation”) was inspired by the work of
Uhlenbeck-Yau.

1/r
-
1 I ) ~
ng%* (@ht +(1—t)awo ® Ig t
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The original approach might be too optimistic!
We prove (P., C.R.Acad. Sci. '21) the following theorem.

Let E be an wg-stable rank—r holomorphic bundle on X. Let Hy
be a Hermitian-Einstein metric on E with respect to wyg, that is,
V=1Fpwi™t = Mwf. Let h be a smooth metric on E solving the
following cushioned Hermitian-Einstein equation for given
parameters € > 0, u > 0.

e N G T A e
(\/—7th - tth> wg ~ = —€ (det h)# n det(hHg )1/ h
(5)

where h, Hy are matrices (any holomorphic trivialisation will do).
Then h = Hoe~ ' for some smooth function f.

=

Therefore,
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The following system might be more reasonable: Let hy = e~ fig,hg

where det(g:) = 1 and g; > 0. In this setting, the Demailly system
boils down to the following set of equations.

1/r (det ho)
V=1F,, + (1 — le-) =1, N
g, (V=TFh + (1~ Dowo @ fe-) tdethp 0 (©)
NES 1 (det hg)H hhyt
V=1Fy, — ~—trFp, w1t =— | n
( he P trip, | wy € (det ) n det(hhgl)l/’ Wo

(7)
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Let hy = e feg hg where det(g;) = 1 and g; > 0.

—1F
det (r +(1— t)ao) = eMa,
wo
1
VEIF = Jur(VE1F) = —e"" In guwo. (8)
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@ Choose ;4 =1 and M to be a Riemann surface. We arrive at
Let hy = e feg hg where det(g;) = 1 and g; > 0.

—1F
det (r +(1— t)ao) = eMa,
wo
1
VEIF = Jur(VE1F) = —e"" In guwo. (8)

@ Even in this special case, it seems hard to recover Umemura's
result.

e | (P., Calc. Var. PDE) reduced the problem to an a priori
estimate: If f > —C, then there is a solution for all 0 < t < 1.
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@ In the special case of a direct sum of ample line bundles, we
proved existence using Leray-Schauder degree theory.
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@ Choose ;4 =1 and M to be a Riemann surface. We arrive at
Let hy = e feg hg where det(g;) = 1 and g; > 0.

det <\/_71F

wo

+(1- t)ao) = eMa,

VIF — La(VIF) = e Ingu, (8)

@ Even in this special case, it seems hard to recover Umemura's
result.

e | (P., Calc. Var. PDE) reduced the problem to an a priori
estimate: If f > —C, then there is a solution for all 0 < t < 1.

@ In the special case of a direct sum of ample line bundles, we
proved existence using Leray-Schauder degree theory.

@ Recently, Mandal (arXiv: 2301.09076) proved that the
method of continuity works for the vortex ansatz.
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Thank you
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