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The bottom line

The amplitude of line bundles plays a starring role in algebraic
geometry (Kodaira embedding, vanishing theorems, etc) and
differential geometry (Kähler metrics).

Hartshorne amplitude of vector bundles can be defined by
requiring O(1) over P(E ∗) to be ample.

This definition leads to many analogous results.

Generalised a criterion of Schneider-Tancredi to recognise
ample bundles of rank-3 (with I. Biswas).

Several competing differentio-geometric notions including
Griffiths positivity. Griffiths conjecture.

Proved results in favour of it. Proved proof-of-concept results
for PDE-based approaches towards it (primarily due to
Demailly).
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Ample bundles

A holomorphic line bundle is positive if it admits a positively
curved metric. Ample if Lk has enough sections for
embedding. Equivalent by Kodaira embedding.

Nakai-Moizeshon (NM) criterion: L is ample iff c1(L)k .Y > 0
for every k-dimensional subvariety Y .

For holomorphic vector bundles, Hartshorne defined ampleness
as O(1) over P(E ∗) being an ample line bundle. Proved
various consequences.

Shockingly enough, there can be no purely numerical NM-type
criteria for vector bundles! (Fulton, Inventiones, 1976).

Notwithstanding this negative result, Schneider and Tancredi
proved a partially numerical sufficient criterion for rank-2
bundles over surfaces (used by Demailly to study the
Green-Griffiths-Lang conjecture).
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no purely numerical NM-type
criteria for vector bundles! (Fulton, Inventiones, 1976).

Notwithstanding this negative result, Schneider and Tancredi
proved a partially numerical sufficient criterion for rank-2
bundles over surfaces (used by Demailly to study the
Green-Griffiths-Lang conjecture).
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Schneider-Tancredi

Theorem (Schneider and Tancredi, Manuscripta Mathematica,
1985)

Let E be a rank two holomorphic vector bundle over a compact
complex surface X . Assume that c1(E ) > 0 and that E is
semistable with respect to det(E ). Suppose E

∣∣
C
is ample for every

closed curve C ⊂ X , and

(c1(E )2 − 2c2(E )).X > 0, c2(E ).X > 0.

Then E is ample.
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Positivity notions for Hermitian holomorphic vector bundles
(E , h)

Unlike line bundles, there is no unique positivity notion for the
curvature F .

Griffiths Positivity (GP): 〈v ,
√
−1Fv〉 is a Kähler form

whenever v 6= 0 is a vector in E . Equivalent to saying that
the induced metric on O(1) over P(E ∗) is positively curved.

Nakano Positivity (NP): The form on TX ⊗ E induced by√
−1F is a positive bilinear form, i.e.,

√
−1Fi j̄αβ̄u

iαūjβ > 0 It
implies Griffiths positivity. Nakano vanishing: Hn,q(M,E ) = 0
for q ≥ 1.

Dual Nakano Positivity (DNP): The dual is Nakano negative.
Dual Nakano vanishing: Hp,0(M,E ) = 0 if p < n.

The Fubini-Study metric on TPn is GP but only Nakano
semipositive (but dual Nakano positive). TPn does not admit
a NP metric. Likewise for a compact ball quotient X , T ∗X
does not admit a dNP metric.
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Lübke’s result

Lübke proved a differentio-geometric result related to
Schneider-Tancredi:

Theorem (Lübke, Indagationes Mathematicae, 1991)

Let (E , h) be a holomorphic Hermitian rank r vector bundle over a
compact Kähler manifold (X , ω). Suppose
Fh ∧ ωn−1 = −

√
−1λωn, where Fh is the curvature of the Chern

connection of h and λ > 0 is a constant. Assume that

c1(E , h) =
rλ

2π
ω.

Suppose there exists a positive function ψ such that either of the
following holds:

1 n = 2 and c2
1 (E , h)− 2r(r−1)

r2−2r+2
c2(E , h) = ψω2, or

2 r = 2 and c2
1 (E , h)− 4(n−1)2

n2−2n+2
c2(E , h) = ψω2.

Then h is GP.
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Generalisation of Schneider-Tancredi

Theorem (Biswas-P, arXiv:2210.02763)

Let E be a holomorphic vector bundle of rank 3 over a compact
complex manifold X of dimension 2. Suppose c1(E ) > 0 and E is
semistable with respect to det(E ). Also assume that E restricted
to every codimension-one subvariety in X is ample. Assume that
(c2

1 − c2)(E ).X > 0. Then E is ample if
(c2

1 (E )− 12
5 c2(E )).X > 0.

Lübke’s Chern class inequality in this theorem cannot be dispensed
with for n = 2 (and arbitrary r) because of counterexamples.
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A few words about the proof

Akin to Schneider-Tancredi, we used the NM criterion on
P(E ∗).

The proof follows theirs except for one key case:

dim(Y ) = 2.

In this case, the intersection number is computed by choosing
a (actually, approximate) Hermitian-Einstein metric with
c1(F ) being the considered Kähler form.

The variety Y is a branched cover of X .
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A few words about the proof

The following lemma plays a key role.

Lemma

For every 1 > ε > 0 let Θε be a (normalised) Chern curvature
endomorphism of a Hermitian holomorphic rank-3 vector bundle
(E , hε) at a point p on a surface. Take v ∈ Ep. Suppose ω is a
Kähler form at p and c1(hε) = ω. Moreover, assume that for
every ε, there exists a tracefree endomorphism Bε satisfying∣∣(Bε)ji ∣∣ ≤ ε for all i , j , and

Θε ∧ ω =
1

3
ω2 +

Bε
2
ω2. (1)

Then

c2
1 (hε)−

12

5
c2(hε) ≤

9

2

(
〈v , Θεv〉hε
〈v , v〉hε

)2

+ 27εω2. (2)

Vamsi Pritham Pingali Ample vector bundles 9/18



A few words about the proof

The following lemma plays a key role.

Lemma

For every 1 > ε > 0 let Θε be a (normalised) Chern curvature
endomorphism of a Hermitian holomorphic rank-3 vector bundle
(E , hε) at a point p on a surface. Take v ∈ Ep. Suppose ω is a
Kähler form at p and c1(hε) = ω. Moreover, assume that for
every ε, there exists a tracefree endomorphism Bε satisfying∣∣(Bε)ji ∣∣ ≤ ε for all i , j , and

Θε ∧ ω =
1

3
ω2 +

Bε
2
ω2. (1)

Then

c2
1 (hε)−

12

5
c2(hε) ≤

9

2

(
〈v , Θεv〉hε
〈v , v〉hε

)2

+ 27εω2. (2)

Vamsi Pritham Pingali Ample vector bundles 9/18



A few words about the proof

The following lemma plays a key role.

Lemma

For every 1 > ε > 0 let Θε be a (normalised) Chern curvature
endomorphism

of a Hermitian holomorphic rank-3 vector bundle
(E , hε) at a point p on a surface. Take v ∈ Ep. Suppose ω is a
Kähler form at p and c1(hε) = ω. Moreover, assume that for
every ε, there exists a tracefree endomorphism Bε satisfying∣∣(Bε)ji ∣∣ ≤ ε for all i , j , and

Θε ∧ ω =
1

3
ω2 +

Bε
2
ω2. (1)

Then

c2
1 (hε)−

12

5
c2(hε) ≤

9

2

(
〈v , Θεv〉hε
〈v , v〉hε

)2

+ 27εω2. (2)

Vamsi Pritham Pingali Ample vector bundles 9/18



A few words about the proof

The following lemma plays a key role.

Lemma

For every 1 > ε > 0 let Θε be a (normalised) Chern curvature
endomorphism of a Hermitian holomorphic rank-3 vector bundle
(E , hε) at a point p on a surface.

Take v ∈ Ep. Suppose ω is a
Kähler form at p and c1(hε) = ω. Moreover, assume that for
every ε, there exists a tracefree endomorphism Bε satisfying∣∣(Bε)ji ∣∣ ≤ ε for all i , j , and

Θε ∧ ω =
1

3
ω2 +

Bε
2
ω2. (1)

Then

c2
1 (hε)−

12

5
c2(hε) ≤

9

2

(
〈v , Θεv〉hε
〈v , v〉hε

)2

+ 27εω2. (2)

Vamsi Pritham Pingali Ample vector bundles 9/18



A few words about the proof

The following lemma plays a key role.

Lemma

For every 1 > ε > 0 let Θε be a (normalised) Chern curvature
endomorphism of a Hermitian holomorphic rank-3 vector bundle
(E , hε) at a point p on a surface. Take v ∈ Ep.

Suppose ω is a
Kähler form at p and c1(hε) = ω. Moreover, assume that for
every ε, there exists a tracefree endomorphism Bε satisfying∣∣(Bε)ji ∣∣ ≤ ε for all i , j , and

Θε ∧ ω =
1

3
ω2 +

Bε
2
ω2. (1)

Then

c2
1 (hε)−

12

5
c2(hε) ≤

9

2

(
〈v , Θεv〉hε
〈v , v〉hε

)2

+ 27εω2. (2)

Vamsi Pritham Pingali Ample vector bundles 9/18



A few words about the proof

The following lemma plays a key role.

Lemma

For every 1 > ε > 0 let Θε be a (normalised) Chern curvature
endomorphism of a Hermitian holomorphic rank-3 vector bundle
(E , hε) at a point p on a surface. Take v ∈ Ep. Suppose ω is a
Kähler form at p and c1(hε) = ω.

Moreover, assume that for
every ε, there exists a tracefree endomorphism Bε satisfying∣∣(Bε)ji ∣∣ ≤ ε for all i , j , and

Θε ∧ ω =
1

3
ω2 +

Bε
2
ω2. (1)

Then

c2
1 (hε)−

12

5
c2(hε) ≤

9

2

(
〈v , Θεv〉hε
〈v , v〉hε

)2

+ 27εω2. (2)

Vamsi Pritham Pingali Ample vector bundles 9/18



A few words about the proof

The following lemma plays a key role.

Lemma

For every 1 > ε > 0 let Θε be a (normalised) Chern curvature
endomorphism of a Hermitian holomorphic rank-3 vector bundle
(E , hε) at a point p on a surface. Take v ∈ Ep. Suppose ω is a
Kähler form at p and c1(hε) = ω. Moreover, assume that for
every ε, there exists a tracefree endomorphism Bε satisfying∣∣(Bε)ji ∣∣ ≤ ε for all i , j , and

Θε ∧ ω =
1

3
ω2 +

Bε
2
ω2. (1)

Then

c2
1 (hε)−

12

5
c2(hε) ≤

9

2

(
〈v , Θεv〉hε
〈v , v〉hε

)2

+ 27εω2. (2)

Vamsi Pritham Pingali Ample vector bundles 9/18



A few words about the proof

The following lemma plays a key role.

Lemma

For every 1 > ε > 0 let Θε be a (normalised) Chern curvature
endomorphism of a Hermitian holomorphic rank-3 vector bundle
(E , hε) at a point p on a surface. Take v ∈ Ep. Suppose ω is a
Kähler form at p and c1(hε) = ω. Moreover, assume that for
every ε, there exists a tracefree endomorphism Bε satisfying∣∣(Bε)ji ∣∣ ≤ ε for all i , j , and

Θε ∧ ω =
1

3
ω2 +

Bε
2
ω2. (1)

Then

c2
1 (hε)−

12

5
c2(hε) ≤

9

2

(
〈v , Θεv〉hε
〈v , v〉hε

)2

+ 27εω2. (2)

Vamsi Pritham Pingali Ample vector bundles 9/18



A few words about the proof

The following lemma plays a key role.

Lemma

For every 1 > ε > 0 let Θε be a (normalised) Chern curvature
endomorphism of a Hermitian holomorphic rank-3 vector bundle
(E , hε) at a point p on a surface. Take v ∈ Ep. Suppose ω is a
Kähler form at p and c1(hε) = ω. Moreover, assume that for
every ε, there exists a tracefree endomorphism Bε satisfying∣∣(Bε)ji ∣∣ ≤ ε for all i , j , and

Θε ∧ ω =
1

3
ω2 +

Bε
2
ω2. (1)

Then

c2
1 (hε)−

12

5
c2(hε) ≤

9

2

(
〈v , Θεv〉hε
〈v , v〉hε

)2

+ 27εω2. (2)

Vamsi Pritham Pingali Ample vector bundles 9/18



The Griffiths conjecture and “classical evidence”

A Hartshorne ample bundle admits a GP metric.

Mori (Ann. Math. ’79) proved that if TM is ample, then M is
biholomorphic to Pn (Hartshorne’s conjecture). Thus, if TM
is ample, it admits a GP metric.

Umemura (Nagoya ’73) proved the conjecture for Riemann
surfaces using the concept of stability. Campana and Flenner
(Math. Ann. ’90) gave a different proof.
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A related conjecture

If Griffiths’ conjecture is true, then perhaps one can attempt
to find a purely differentio-geometric proof of the numerical
positivity of Schur classes: Another conjecture: If (E , h) is GP
then the Schur forms are (weakly) positive pointwise. (If true,
this would imply the algebraic Hopf conjecture for Kähler
manifolds.)

This conjecture was proven by Griffiths for c2 for rank-2
bundles on general manifolds and general rank bundles on
surfaces.

Using pushforwards from P(E ) and more general flag varieties,
several special cases are known (Guler ’12, Finski ’20,
Diverio-Fagioli ’20, Fagioli ’20, Li ’20). In particular, this
conjecture is known for rank-2 bundles on surfaces (Guler ’12).
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“Modern” evidence

If (E , h) is GP, then Demailly-Skoda (’80) proved that
E ⊗ det(E ) is NP. Berndtsson (Ann. Math. ’09) proved that
if E is ample, then E ⊗ det(E ) admits a NP metric.

Liu-Sun-Yang (J. Alg. Geom. ’13) extended these results to
show that if E is ample, then Sk(E )⊗ det(E ) admits a metric
that is NP and dNP for k ≥ 1. Moreover, if (E , h) is GP, then
the induced metric on Sk(E )⊗ det(E ) is NP and dNP.

We proved (P., Math. Z. ’18) that if E on a surface is ample
and semi-stable (w.r.t some L), then there is a metric h such
that all the Schur polynomials c1, c2, c

2
1 − c2 are positive.

Xiao (Sci. China. Math. ’22) showed that if E is ample, the
(n − 1, n − 1) Schur classes have positive representatives.
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Approaches towards the conjecture

Naumann (’17) proposed the relative Kähler-Ricci flow as
possible approach. This flow takes a metric on OE (1) and
flows it until it converges to an induced metric from E . The
challenge is to prove that positivity is preserved.

Demailly (’ 21) proposed a (actually, several) family of PDE
(depending on a parameter t) that has a solution for t >> 1
and if it can be solved until t = 0, then E admits a dNP
metric. Unfortunately, this cannot always be true.
Nonetheless, it could very well be the case that a solution
exists on (0,∞). (The counterexample does not prohibit this
possibility.) The “best” t indicates when E ⊗ det(E )t is dNP.
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Demailly’s approach in detail

Demailly proposed several systems of PDE but originally hoped
that the following system could work:

det
TX⊗E∗

(
ΘT

ht + (1− t)αω0 ⊗ IE∗

)1/r
= ft

(det h0)λ

(det ht)λ
ωn

0 , (3)(√
−1Fht −

√
−1

r
trFht

)
ωn−1

0 = −ε(det h0)µ

(det h)µ
ln

(
hh−1

0

det(hh−1
0 )1/r

)
ωn

0 ,

(4)

where h0 is a smooth background Hermitian metric, µ, λ ≥ 0 are
fixed constants, α > 0 is a large enough constant so that Θh0 +αω
is dual-Nakano positively curved, and ft > 0 are smooth positive
functions. The second equation (the “cushioned/viscous
Hermitian-Einstein (HE) equation”) was inspired by the work of
Uhlenbeck-Yau.
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The original approach might be too optimistic!

We prove (P., C.R.Acad. Sci. ’21) the following theorem.

Theorem

Let E be an ω0-stable rank−r holomorphic bundle on X . Let H0

be a Hermitian-Einstein metric on E with respect to ω0, that is,√
−1FH0ω

n−1
0 = λωn

0 . Let h be a smooth metric on E solving the
following cushioned Hermitian-Einstein equation for given
parameters ε ≥ 0, µ ≥ 0.(√
−1Fh −

√
−1

r
trFh

)
ωn−1

0 = −ε(detH0)µ

(det h)µ
ln

(
hH−1

0

det(hH−1
0 )1/r

)
ωn

0 ,

(5)

where h,H0 are matrices (any holomorphic trivialisation will do).
Then h = H0e

−f for some smooth function f .

Therefore,

without a restriction on the second Chern character,
Demailly’s original system might be too optimistic.
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A refinement

The following system

might be more reasonable: Let ht = e−ftgth0

where det(gt) = 1 and gt > 0. In this setting, the Demailly system
boils down to the following set of equations.

det
TX⊗E∗

(√
−1Fht + (1− t)αω0 ⊗ IE∗

)1/r
= ft

(det h0)λ

(det ht)λ
ωn

0 , (6)(√
−1Fht −

√
−1

r
trFht

)
ωn−1
t = −ε(det h0)µ

(det h)µ
ln

(
hh−1

0

det(hh−1
0 )1/r

)
ωn

0 .

(7)
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A proof-of-concept result

.

Choose µ = 1 and M to be a Riemann surface. We arrive at
Let ht = e−ftgth0 where det(gt) = 1 and gt > 0.

det

(√
−1F

ω0
+ (1− t)α0

)
= eλf at

√
−1F − 1

r
tr(
√
−1F ) = −eµf ln gω0. (8)

Even in this special case, it seems hard to recover Umemura’s
result.

I (P., Calc. Var. PDE) reduced the problem to an a priori
estimate: If f ≥ −C , then there is a solution for all 0 ≤ t ≤ 1.

In the special case of a direct sum of ample line bundles, we
proved existence using Leray-Schauder degree theory.

Recently, Mandal (arXiv: 2301.09076) proved that the
method of continuity works for the vortex ansatz.
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estimate: If f ≥ −C , then there is a solution for all 0 ≤ t ≤ 1.

In the special case of a direct sum of ample line bundles, we
proved existence using Leray-Schauder degree theory.

Recently, Mandal (arXiv: 2301.09076) proved that the
method of continuity works

for the vortex ansatz.
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Thank you
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