Chiral de Rham complex of Calabi-Yau and Hyperkähler Manifolds

Andrew Linshaw

University of Denver

Based on joint work with Bailin Song

(ロ)、

1. Outline

- 1. Overview of vertex algebras
- 2. Chiral de Rham complex
- 3. Statement of main results
- 4. Step 1: Reduction to invariant theory of arc spaces

5. Step 2: Arc space analogue of fundamental theorem of invariant theory for SL_n and Sp_n

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Vertex operator algebras (VOAs) were studied by physicists in the 1980s and axiomatized by Borcherds (1986).

A VOA \mathcal{V} is a vector space which is linearly isomorphic to an algebra of formal power series in $\operatorname{End}(\mathcal{V})[[z, z^{-1}]]$.

$$a \leftrightarrow a(z) = \sum_{n \in \mathbb{Z}} a(n) z^{-n-1}, \quad a(n) \in \operatorname{End}(\mathcal{V}).$$

 ${\mathcal V}$ has Wick product : ab :, generally nonassociative, noncommutative.

Unit 1, derivation $\partial = \frac{d}{dz}$.

Conformal weight grading $\mathcal{V} = \bigoplus_{n>0} \mathcal{V}[n], n \in \mathbb{Z}$ or $\frac{1}{2}\mathbb{Z}$

Vertex operator algebras (VOAs) were studied by physicists in the 1980s and axiomatized by Borcherds (1986).

A VOA \mathcal{V} is a vector space which is linearly isomorphic to an algebra of formal power series in $\text{End}(\mathcal{V})[[z, z^{-1}]]$.

$$a \leftrightarrow a(z) = \sum_{n \in \mathbb{Z}} a(n) z^{-n-1}, \quad a(n) \in \operatorname{End}(\mathcal{V}).$$

 $\mathcal V$ has Wick product : *ab* :, generally nonassociative, noncommutative.

Unit 1, derivation $\partial = \frac{d}{dz}$.

Conformal weight grading $\mathcal{V} = \bigoplus_{n>0} \mathcal{V}[n]$, $n \in \mathbb{Z}$ or $\frac{1}{2}\mathbb{Z}$

Vertex operator algebras (VOAs) were studied by physicists in the 1980s and axiomatized by Borcherds (1986).

A VOA \mathcal{V} is a vector space which is linearly isomorphic to an algebra of formal power series in $\text{End}(\mathcal{V})[[z, z^{-1}]]$.

$$a \leftrightarrow a(z) = \sum_{n \in \mathbb{Z}} a(n) z^{-n-1}, \quad a(n) \in \operatorname{End}(\mathcal{V}).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $\mathcal V$ has Wick product : *ab* :, generally nonassociative, noncommutative.

Unit 1, derivation $\partial = \frac{d}{dz}$.

Conformal weight grading $\mathcal{V} = \bigoplus_{n>0} \mathcal{V}[n]$, $n \in \mathbb{Z}$ or $\frac{1}{2}\mathbb{Z}$

Vertex operator algebras (VOAs) were studied by physicists in the 1980s and axiomatized by Borcherds (1986).

A VOA \mathcal{V} is a vector space which is linearly isomorphic to an algebra of formal power series in $\operatorname{End}(\mathcal{V})[[z, z^{-1}]]$.

$$a \leftrightarrow a(z) = \sum_{n \in \mathbb{Z}} a(n) z^{-n-1}, \quad a(n) \in \operatorname{End}(\mathcal{V}).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $\mathcal V$ has Wick product : *ab* :, generally nonassociative, noncommutative.

Unit 1, derivation $\partial = \frac{d}{dz}$.

Conformal weight grading $\mathcal{V} = \bigoplus_{n \ge 0} \mathcal{V}[n]$, $n \in \mathbb{Z}$ or $\frac{1}{2}\mathbb{Z}$

Vertex operator algebras (VOAs) were studied by physicists in the 1980s and axiomatized by Borcherds (1986).

A VOA \mathcal{V} is a vector space which is linearly isomorphic to an algebra of formal power series in $\text{End}(\mathcal{V})[[z, z^{-1}]]$.

$$a \leftrightarrow a(z) = \sum_{n \in \mathbb{Z}} a(n) z^{-n-1}, \quad a(n) \in \operatorname{End}(\mathcal{V}).$$

 $\mathcal V$ has Wick product : *ab* :, generally nonassociative, noncommutative.

Unit 1, derivation $\partial = \frac{d}{dz}$.

Conformal weight grading $\mathcal{V} = \bigoplus_{n \ge 0} \mathcal{V}[n]$, $n \in \mathbb{Z}$ or $\frac{1}{2}\mathbb{Z}$

Let
$$\mathcal{V}$$
 be a VOA, $a, b \in \mathcal{V}$. Then

$$a(z)b(w) = \sum_{n \ge 0} (a_{(n)}b)(w)(z-w)^{-n-1} + : a(z)b(w) : .$$

Expansion of meromorphic function with poles along z = w, where 1. : a(z)b(w) : is regular part. 2. $(a_{(n)}b)(w)$ is polar part of order n + 1.

Defines bilinear products $(-_{(n)}-): \mathcal{V} \otimes \mathcal{V} \to \mathcal{V}$, where $(a, b) \mapsto a_{(n)}b$.

Also : a(z)b(w) : $|_{z=w}$ coincides with Wick product.

Often write

$$a(z)b(w) \sim \sum_{n\geq 0} (a_{(n)}b)(w)(z-w)^{-n-1},$$

where \sim means equal modulo regular part. $\langle a \rangle \langle a \rangle \langle a \rangle \langle a \rangle \langle a \rangle$

Let
$$\mathcal{V}$$
 be a VOA, $a, b \in \mathcal{V}$. Then

$$a(z)b(w) = \sum_{n \ge 0} (a_{(n)}b)(w)(z-w)^{-n-1} + : a(z)b(w) : .$$

Expansion of meromorphic function with poles along z = w, where 1. : a(z)b(w) : is regular part. 2. $(a_{(n)}b)(w)$ is polar part of order n + 1.

Defines bilinear products $(-_{(n)}-): \mathcal{V} \otimes \mathcal{V} \to \mathcal{V}$, where $(a, b) \mapsto a_{(n)}b$.

Also : a(z)b(w) : $|_{z=w}$ coincides with Wick product.

Often write

$$a(z)b(w) \sim \sum_{n\geq 0} (a_{(n)}b)(w)(z-w)^{-n-1},$$

Let
$$\mathcal{V}$$
 be a VOA, $a, b \in \mathcal{V}$. Then

$$a(z)b(w) = \sum_{n \ge 0} (a_{(n)}b)(w)(z-w)^{-n-1} + : a(z)b(w) : .$$

Expansion of meromorphic function with poles along z = w, where 1. : a(z)b(w) : is regular part. 2. $(a_{(n)}b)(w)$ is polar part of order n + 1.

Defines bilinear products $(-_{(n)}-): \mathcal{V} \otimes \mathcal{V} \to \mathcal{V}$, where $(a, b) \mapsto a_{(n)}b$.

Also : a(z)b(w) : $|_{z=w}$ coincides with Wick product.

Often write

$$a(z)b(w) \sim \sum_{n\geq 0} (a_{(n)}b)(w)(z-w)^{-n-1},$$

Let
$$\mathcal{V}$$
 be a VOA, $a, b \in \mathcal{V}$. Then

$$a(z)b(w) = \sum_{n \ge 0} (a_{(n)}b)(w)(z-w)^{-n-1} + : a(z)b(w) : .$$

Expansion of meromorphic function with poles along z = w, where 1. : a(z)b(w) : is regular part. 2. $(a_{(n)}b)(w)$ is polar part of order n + 1.

Defines bilinear products $(-_{(n)}-): \mathcal{V} \otimes \mathcal{V} \to \mathcal{V}$, where $(a, b) \mapsto a_{(n)}b$.

Also : a(z)b(w) : $|_{z=w}$ coincides with Wick product.

Often write

$$a(z)b(w) \sim \sum_{n\geq 0} (a_{(n)}b)(w)(z-w)^{-n-1},$$

Let
$$\mathcal{V}$$
 be a VOA, $a, b \in \mathcal{V}$. Then

$$a(z)b(w) = \sum_{n \ge 0} (a_{(n)}b)(w)(z-w)^{-n-1} + : a(z)b(w) : .$$

Expansion of meromorphic function with poles along z = w, where 1. : a(z)b(w) : is regular part. 2. $(a_{(n)}b)(w)$ is polar part of order n + 1.

Defines bilinear products $(-_{(n)}-): \mathcal{V} \otimes \mathcal{V} \to \mathcal{V}$, where $(a, b) \mapsto a_{(n)}b$.

Also : a(z)b(w) : $|_{z=w}$ coincides with Wick product.

Often write

$$a(z)b(w) \sim \sum_{n\geq 0} (a_{(n)}b)(w)(z-w)^{-n-1},$$

Let $V = \mathbb{C}^d$.

 $\beta\gamma$ -system S = S(V) has even generators $\beta^x, \gamma^{x'}$, linear in $x \in V$, $x' \in V^*$, which satisfy

$$\beta^{x}(z)\beta^{y}(w) \sim 0, \qquad \gamma^{x'}(z)\gamma^{y'}(w) \sim 0,$$

$$\beta^{x}(z)\gamma^{x'}(w) \sim \langle x', x \rangle \ (z-w)^{-1}.$$

Fix a basis x_1, \ldots, x_d for V, dual basis x'_1, \ldots, x'_d for V^* . Write $\beta^{x_i} = \beta^i$, $\gamma^{x'_i} = \gamma^i$.

Conformal vector $L^{S} = \sum_{i=1}^{d} : \beta^{i} \partial \gamma^{i} :$ of central charge 2*d*. β^{i}, γ^{i} primary of weights 1,0 respectively.

As vector spaces,

 $S \cong \operatorname{Sym} \bigoplus_{n \ge 0} (V_n \oplus V_n^*), \text{ where } V_n \cong V, \ V_n^* \cong V^*.$

Let $V = \mathbb{C}^d$.

 $\beta\gamma$ -system S = S(V) has even generators $\beta^x, \gamma^{x'}$, linear in $x \in V$, $x' \in V^*$, which satisfy

$$\beta^{x}(z)\beta^{y}(w) \sim 0, \qquad \gamma^{x'}(z)\gamma^{y'}(w) \sim 0,$$

$$\beta^{x}(z)\gamma^{x'}(w) \sim \langle x', x \rangle \ (z-w)^{-1}.$$

Fix a basis x_1, \ldots, x_d for V, dual basis x'_1, \ldots, x'_d for V^* . Write $\beta^{x_i} = \beta^i$, $\gamma^{x'_i} = \gamma^i$.

Conformal vector $L^{\mathcal{S}} = \sum_{i=1}^{d} : \beta^{i} \partial \gamma^{i} :$ of central charge 2*d*.

 β^i, γ^i primary of weights 1,0 respectively.

As vector spaces,

 $\mathcal{S} \cong \operatorname{Sym} \bigoplus_{n \ge 0} (V_n \oplus V_n^*), \text{ where } V_n \cong V, \ V_n^* \cong V^*.$

Let $V = \mathbb{C}^d$.

 $\beta\gamma$ -system S = S(V) has even generators $\beta^x, \gamma^{x'}$, linear in $x \in V$, $x' \in V^*$, which satisfy

$$\beta^{x}(z)\beta^{y}(w) \sim 0, \qquad \gamma^{x'}(z)\gamma^{y'}(w) \sim 0,$$

$$\beta^{x}(z)\gamma^{x'}(w) \sim \langle x', x \rangle \ (z-w)^{-1}.$$

Fix a basis x_1, \ldots, x_d for V, dual basis x'_1, \ldots, x'_d for V^* . Write $\beta^{x_i} = \beta^i$, $\gamma^{x'_i} = \gamma^i$.

Conformal vector $L^{S} = \sum_{i=1}^{d} : \beta^{i} \partial \gamma^{i} :$ of central charge 2*d*.

 β^i, γ^i primary of weights 1,0 respectively.

As vector spaces,

 $S \cong \operatorname{Sym} \bigoplus_{n \ge 0} (V_n \oplus V_n^*), \text{ where } V_n \cong V, \ V_n^* \cong V^*.$

Let $V = \mathbb{C}^d$.

 $\beta\gamma$ -system S = S(V) has even generators $\beta^x, \gamma^{x'}$, linear in $x \in V$, $x' \in V^*$, which satisfy

$$\beta^{x}(z)\beta^{y}(w) \sim 0, \qquad \gamma^{x'}(z)\gamma^{y'}(w) \sim 0,$$

$$\beta^{x}(z)\gamma^{x'}(w) \sim \langle x', x \rangle \ (z-w)^{-1}.$$

Fix a basis x_1, \ldots, x_d for V, dual basis x'_1, \ldots, x'_d for V^* . Write $\beta^{x_i} = \beta^i$, $\gamma^{x'_i} = \gamma^i$.

Conformal vector $L^{S} = \sum_{i=1}^{d} : \beta^{i} \partial \gamma^{i} :$ of central charge 2*d*.

 β^i, γ^i primary of weights 1,0 respectively.

As vector spaces,

 $S \cong \operatorname{Sym} \bigoplus_{n \ge 0} (V_n \oplus V_n^*), \text{ where } V_n \cong V, \ V_n^* \cong V^*.$

Let $V = \mathbb{C}^d$.

 $\beta\gamma$ -system S = S(V) has even generators $\beta^x, \gamma^{x'}$, linear in $x \in V$, $x' \in V^*$, which satisfy

$$\beta^{x}(z)\beta^{y}(w) \sim 0, \qquad \gamma^{x'}(z)\gamma^{y'}(w) \sim 0,$$

$$\beta^{x}(z)\gamma^{x'}(w) \sim \langle x', x \rangle \ (z-w)^{-1}.$$

Fix a basis x_1, \ldots, x_d for V, dual basis x'_1, \ldots, x'_d for V^* . Write $\beta^{x_i} = \beta^i$, $\gamma^{x'_i} = \gamma^i$.

Conformal vector $L^{S} = \sum_{i=1}^{d} : \beta^{i} \partial \gamma^{i} :$ of central charge 2*d*.

 eta^i, γ^i primary of weights 1,0 respectively.

As vector spaces,

 $S \cong \text{Sym} \bigoplus_{n \ge 0} (V_n \oplus V_n^*), \text{ where } V_n \cong V, \ V_n^* \cong V^*.$

Let $V = \mathbb{C}^d$.

 $\beta\gamma$ -system S = S(V) has even generators $\beta^x, \gamma^{x'}$, linear in $x \in V$, $x' \in V^*$, which satisfy

$$\beta^{x}(z)\beta^{y}(w) \sim 0, \qquad \gamma^{x'}(z)\gamma^{y'}(w) \sim 0,$$

$$\beta^{x}(z)\gamma^{x'}(w) \sim \langle x', x \rangle \ (z-w)^{-1}.$$

Fix a basis x_1, \ldots, x_d for V, dual basis x'_1, \ldots, x'_d for V^* . Write $\beta^{x_i} = \beta^i$, $\gamma^{x'_i} = \gamma^i$.

Conformal vector $L^{S} = \sum_{i=1}^{d} : \beta^{i} \partial \gamma^{i}$: of central charge 2*d*. β^{i}, γ^{i} primary of weights 1,0 respectively.

As vector spaces,

 $\mathcal{S} \cong \operatorname{Sym} \bigoplus_{n \ge 0} (V_n \oplus V_n^*), \text{ where } V_n \cong V, \ V_n^* \cong V^*.$

Let $V = \mathbb{C}^d$.

 $\beta\gamma$ -system S = S(V) has even generators $\beta^x, \gamma^{x'}$, linear in $x \in V$, $x' \in V^*$, which satisfy

$$\beta^{x}(z)\beta^{y}(w) \sim 0, \qquad \gamma^{x'}(z)\gamma^{y'}(w) \sim 0,$$

$$\beta^{x}(z)\gamma^{x'}(w) \sim \langle x', x \rangle \ (z-w)^{-1}.$$

Fix a basis x_1, \ldots, x_d for V, dual basis x'_1, \ldots, x'_d for V^* . Write $\beta^{x_i} = \beta^i$, $\gamma^{x'_i} = \gamma^i$.

Conformal vector $L^{S} = \sum_{i=1}^{d} : \beta^{i} \partial \gamma^{i}$: of central charge 2*d*. β^{i}, γ^{i} primary of weights 1,0 respectively.

As vector spaces,

$$\mathcal{S} \cong \operatorname{Sym} \bigoplus_{n \ge 0} (V_n \oplus V_n^*),$$
where $V_n \cong V, \ V_n^* \cong V^*.$

bc-system $\mathcal{E} = \mathcal{E}(V)$ has odd generators $b^x, c^{x'}$, linear in $x \in V$, $x' \in V^*$, which satisfy

$$b^{x}(z)b^{y}(w) \sim 0, \qquad c^{x'}(z)c^{y'}(w) \sim 0,$$

 $b^{x}(z)c^{x'}(w) \sim \langle x', x \rangle \ (z-w)^{-1}.$

As above, write $b^{x_i} = b^i$, $c^{x'_i} = c^i$.

Conformal vector $L^{\mathcal{E}} = -\sum_{i=1}^{d} : b^{i} \partial c^{i} :$ of central charge -2d.

 b^i, c^i primary of weights 1,0 respectively.

As vector spaces,

$$\mathcal{E} \cong \bigwedge \bigoplus_{n \ge 0} (V_n \oplus V_n^*), \text{ where } V_n \cong V, \ V_n^* \cong V^*.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

bc-system $\mathcal{E} = \mathcal{E}(V)$ has odd generators $b^x, c^{x'}$, linear in $x \in V$, $x' \in V^*$, which satisfy

$$b^{\mathrm{x}}(z)b^{\mathrm{y}}(w)\sim 0, \qquad c^{\mathrm{x}'}(z)c^{\mathrm{y}'}(w)\sim 0, \ b^{\mathrm{x}}(z)c^{\mathrm{x}'}(w)\sim \langle x',x
angle \ (z-w)^{-1}.$$

As above, write $b^{x_i} = b^i$, $c^{x'_i} = c^i$.

Conformal vector $L^{\mathcal{E}} = -\sum_{i=1}^{d} : b^{i} \partial c^{i} :$ of central charge -2d.

 b^i, c^i primary of weights 1,0 respectively.

As vector spaces,

$$\mathcal{E} \cong \bigwedge \bigoplus_{n \ge 0} (V_n \oplus V_n^*), \text{ where } V_n \cong V, \ V_n^* \cong V^*.$$

bc-system $\mathcal{E} = \mathcal{E}(V)$ has odd generators $b^x, c^{x'}$, linear in $x \in V$, $x' \in V^*$, which satisfy

$$b^{x}(z)b^{y}(w) \sim 0, \qquad c^{x'}(z)c^{y'}(w) \sim 0, \\ b^{x}(z)c^{x'}(w) \sim \langle x', x \rangle \ (z-w)^{-1}.$$

As above, write $b^{x_i} = b^i$, $c^{x'_i} = c^i$.

Conformal vector $L^{\mathcal{E}} = -\sum_{i=1}^{d} : b^{i} \partial c^{i} :$ of central charge -2d.

 b^i, c^i primary of weights 1,0 respectively.

As vector spaces,

$$\mathcal{E} \cong \bigwedge \bigoplus_{n \ge 0} (V_n \oplus V_n^*), \text{ where } V_n \cong V, \ V_n^* \cong V^*.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

bc-system $\mathcal{E} = \mathcal{E}(V)$ has odd generators $b^x, c^{x'}$, linear in $x \in V$, $x' \in V^*$, which satisfy

$$b^{x}(z)b^{y}(w) \sim 0, \qquad c^{x'}(z)c^{y'}(w) \sim 0, b^{x}(z)c^{x'}(w) \sim \langle x', x \rangle \ (z-w)^{-1}.$$

As above, write $b^{x_i} = b^i$, $c^{x'_i} = c^i$.

Conformal vector $L^{\mathcal{E}} = -\sum_{i=1}^{d} : b^{i} \partial c^{i} :$ of central charge -2d.

 b^i, c^i primary of weights 1,0 respectively.

As vector spaces,

$$\mathcal{E} \cong \bigwedge \bigoplus_{n \ge 0} (V_n \oplus V_n^*), \text{ where } V_n \cong V, \ V_n^* \cong V^*.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

bc-system $\mathcal{E} = \mathcal{E}(V)$ has odd generators $b^x, c^{x'}$, linear in $x \in V$, $x' \in V^*$, which satisfy

$$b^{x}(z)b^{y}(w) \sim 0, \qquad c^{x'}(z)c^{y'}(w) \sim 0, b^{x}(z)c^{x'}(w) \sim \langle x', x \rangle \ (z-w)^{-1}.$$

As above, write $b^{x_i} = b^i$, $c^{x'_i} = c^i$.

Conformal vector $L^{\mathcal{E}} = -\sum_{i=1}^{d} : b^{i} \partial c^{i} :$ of central charge -2d.

 b^i, c^i primary of weights 1,0 respectively.

As vector spaces,

$$\mathcal{E} \cong \bigwedge \bigoplus_{n \ge 0} (V_n \oplus V_n^*), \text{ where } V_n \cong V, \ V_n^* \cong V^*.$$

Let
$$\mathcal{W} = \mathcal{S}\otimes \mathcal{E}$$
. Conformal vector $L^{\mathcal{W}} = L^{\mathcal{S}}\otimes 1 + 1\otimes L^{\mathcal{E}}$

of central charge 0.

Interpretation:

- 1. γ^i corresponds to coordinate function $x'_i \in V^*$.
- 2. c^i corresponds to one-form $dx'_i \in \Omega^1(V)$.
- 3. β^i corresponds to vector field $\frac{d}{dx!} \in \operatorname{Vect}(V)$.
- 4. b^i corresponds to contraction operator ι_{d/dx'_i} .

Suppose U is a coordinate open set in some complex manifold M with local coordinates x'_1, \ldots, x'_d ,

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

We identify x'_1, \ldots, x'_d with $\gamma^1, \ldots, \gamma^d$, and define $\Omega^{ch}(U) = \mathcal{O}(U) \otimes_{\mathbb{C}[\gamma^1, \ldots, \gamma^d]} \mathcal{W}.$

Let $\mathcal{W} = S \otimes \mathcal{E}$. Conformal vector $L^{\mathcal{W}} = L^{S} \otimes 1 + 1 \otimes L^{\mathcal{E}}$

of central charge 0.

Interpretation:

- 1. γ^i corresponds to coordinate function $x'_i \in V^*$.
- 2. c^i corresponds to one-form $dx'_i \in \Omega^1(V)$.
- 3. β^i corresponds to vector field $\frac{d}{dx'_i} \in \text{Vect}(V)$.
- 4. b^i corresponds to contraction operator ι_{d/dx'_i} .

Suppose U is a coordinate open set in some complex manifold M with local coordinates x'_1, \ldots, x'_d ,

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

We identify x'_1, \ldots, x'_d with $\gamma^1, \ldots, \gamma^d$, and define $\Omega^{ch}(U) = \mathcal{O}(U) \otimes_{\mathbb{C}[\gamma^1, \ldots, \gamma^d]} \mathcal{W}.$

Let $\mathcal{W} = S \otimes \mathcal{E}$. Conformal vector $L^{\mathcal{W}} = L^{S} \otimes 1 + 1 \otimes L^{\mathcal{E}}$

of central charge 0.

Interpretation:

- 1. γ^i corresponds to coordinate function $x'_i \in V^*$.
- 2. c^i corresponds to one-form $dx'_i \in \Omega^1(V)$.
- 3. β^i corresponds to vector field $\frac{d}{dx'_i} \in \text{Vect}(V)$.
- 4. b^i corresponds to contraction operator ι_{d/dx'_i} .

Suppose U is a coordinate open set in some complex manifold M with local coordinates x'_1, \ldots, x'_d ,

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

We identify
$$x'_1, \ldots, x'_d$$
 with $\gamma^1, \ldots, \gamma^d$, and define
 $\Omega^{\mathsf{ch}}(U) = \mathcal{O}(U) \otimes_{\mathbb{C}[\gamma^1, \ldots, \gamma^d]} \mathcal{W}.$

Let $\mathcal{W} = S \otimes \mathcal{E}$. Conformal vector $L^{\mathcal{W}} = L^{S} \otimes 1 + 1 \otimes L^{\mathcal{E}}$

of central charge 0.

Interpretation:

- 1. γ^i corresponds to coordinate function $x'_i \in V^*$.
- 2. c^i corresponds to one-form $dx'_i \in \Omega^1(V)$.
- 3. β^i corresponds to vector field $\frac{d}{dx'_i} \in \text{Vect}(V)$.
- 4. b^i corresponds to contraction operator ι_{d/dx'_i} .

Suppose U is a coordinate open set in some complex manifold M with local coordinates x'_1, \ldots, x'_d ,

We identify x'_1, \ldots, x'_d with $\gamma^1, \ldots, \gamma^d$, and define $\Omega^{ch}(U) = \mathcal{O}(U) \otimes_{\mathbb{C}[\gamma^1, \ldots, \gamma^d]} \mathcal{W}.$

This has a natural vertex algebra structure where for each $f \in \mathcal{O}(U)$,

$$\partial f = \sum_{i=1}^{d} : \frac{\partial f}{\partial \gamma^{i}} \partial \gamma^{i} :, \qquad fg = : fg :.$$

We have

$$eta^i(z)f(w) \sim rac{\partial f}{\partial \gamma^i}(w)(z-w)^{-1},$$

 $b^i(z)f(w) \sim 0, \qquad c^i(z)f(w) \sim 0.$

Let $\tilde{\gamma}^1, \ldots, \tilde{\gamma}^d$ be another set of coordinates on U, so that

$$\tilde{\gamma}^i = f^i(\gamma^1, \dots, \gamma^d), \qquad \gamma^i = g^i(\tilde{\gamma}^1, \dots, \tilde{\gamma}^d).$$

This has a natural vertex algebra structure where for each $f \in \mathcal{O}(U)$,

$$\partial f = \sum_{i=1}^{d} : \frac{\partial f}{\partial \gamma^{i}} \partial \gamma^{i} :, \qquad fg = : fg :.$$

We have

$$eta^i(z)f(w)\sim rac{\partial f}{\partial \gamma^i}(w)(z-w)^{-1},$$

 $b^i(z)f(w)\sim 0, \qquad c^i(z)f(w)\sim 0.$

Let $\tilde{\gamma}^1, \ldots, \tilde{\gamma}^d$ be another set of coordinates on U, so that

$$\tilde{\gamma}^i = f^i(\gamma^1, \dots, \gamma^d), \qquad \gamma^i = g^i(\tilde{\gamma}^1, \dots, \tilde{\gamma}^d)$$

This has a natural vertex algebra structure where for each $f \in \mathcal{O}(U)$,

$$\partial f = \sum_{i=1}^{d} : \frac{\partial f}{\partial \gamma^{i}} \partial \gamma^{i} :, \qquad fg = : fg :.$$

We have

$$eta^i(z)f(w)\sim rac{\partial f}{\partial \gamma^i}(w)(z-w)^{-1},$$

 $b^i(z)f(w)\sim 0, \qquad c^i(z)f(w)\sim 0.$

Let $\tilde{\gamma}^1, \dots, \tilde{\gamma}^d$ be another set of coordinates on U, so that $\tilde{\gamma}^i = f^i(\gamma^1, \dots, \gamma^d), \qquad \gamma^i = g^i(\tilde{\gamma}^1, \dots, \tilde{\gamma}^d).$

We have following transformations:

$$\begin{split} \tilde{c}^{i} &= \sum_{j=1}^{d} : \frac{\partial f^{i}}{\partial \gamma^{j}}(z)c^{j} :, \\ \partial \tilde{\gamma}^{i} &= \sum_{j=1}^{d} : \frac{\partial f^{i}}{\partial \gamma^{j}}(z)\partial \gamma^{j} :, \\ \tilde{b}^{i} &= \sum_{j=1}^{d} : \frac{\partial g^{j}}{\partial \tilde{\gamma}^{i}}(f(\gamma))b^{j} : \\ \tilde{\beta}^{i} &= \sum_{j=1}^{d} : \frac{\partial g^{j}}{\partial \tilde{\gamma}^{i}}(f(\gamma))\beta^{j} :+ \sum_{j=1}^{d} \sum_{k=1}^{d} : \frac{\partial}{\partial \gamma^{k}} \left(\frac{\partial g^{j}}{\partial \tilde{\gamma}^{i}}(f(\gamma))\right)c^{k}b^{j} :. \end{split}$$

Thm: (Malikov, Schechtman, Vaintrob 1998) This defines a sheaf of vertex algebras on M.

Weight grading $\Omega_M^{ch} = \bigoplus_{n \ge 0} \Omega_M^{ch}[n]$, and $\Omega_M^{ch}[0] \cong \Omega_M^*$ ordinary de Rham sheaf.

Let \mathcal{O}_M denote the sheaf of holomorphic functions on M.

A subtlety: Ω_M^{ch} is not a sheaf of \mathcal{O}_M -modules.

For an open set U, given functions $f, g \in \mathcal{O}(U)$ and $\alpha \in \Omega^{ch}(U)$, typically : $f(: g\alpha :) : \neq : (fg)\alpha :$.

However, $\Omega_M^{\rm ch}$ has a filtration such that associated graded sheaf is sections of the bundle

$$\operatorname{Sym}\left(\bigoplus_{n=0}^{\infty}(TM_n\oplus T^*M_n)\right)\bigotimes \bigwedge \left(\bigoplus_{n=1}^{\infty}(TM_n\oplus T^*M_n)\right).$$

Thm: (Malikov, Schechtman, Vaintrob 1998) This defines a sheaf of vertex algebras on M.

Weight grading $\Omega_M^{ch} = \bigoplus_{n \ge 0} \Omega_M^{ch}[n]$, and $\Omega_M^{ch}[0] \cong \Omega_M^*$ ordinary de Rham sheaf.

Let \mathcal{O}_M denote the sheaf of holomorphic functions on M.

A subtlety: Ω_M^{ch} is not a sheaf of \mathcal{O}_M -modules.

For an open set U, given functions $f, g \in \mathcal{O}(U)$ and $\alpha \in \Omega^{ch}(U)$, typically : $f(: g\alpha :) : \neq : (fg)\alpha :$.

However, $\Omega_M^{\rm ch}$ has a filtration such that associated graded sheaf is sections of the bundle

$$\operatorname{Sym}\left(\bigoplus_{n=0}^{\infty}(TM_n\oplus T^*M_n)\right)\bigotimes \bigwedge \left(\bigoplus_{n=1}^{\infty}(TM_n\oplus T^*M_n)\right).$$

Thm: (Malikov, Schechtman, Vaintrob 1998) This defines a sheaf of vertex algebras on M.

Weight grading $\Omega_M^{ch} = \bigoplus_{n \ge 0} \Omega_M^{ch}[n]$, and $\Omega_M^{ch}[0] \cong \Omega_M^*$ ordinary de Rham sheaf.

Let \mathcal{O}_M denote the sheaf of holomorphic functions on M.

A subtlety: Ω_M^{ch} is not a sheaf of \mathcal{O}_M -modules.

For an open set U, given functions $f, g \in \mathcal{O}(U)$ and $\alpha \in \Omega^{ch}(U)$, typically : $f(: g\alpha :) : \neq : (fg)\alpha :$.

However, $\Omega^{\rm ch}_M$ has a filtration such that associated graded sheaf is sections of the bundle

$$\operatorname{Sym}\left(\bigoplus_{n=0}^{\infty}(TM_n\oplus T^*M_n)\right)\bigotimes \bigwedge \left(\bigoplus_{n=1}^{\infty}(TM_n\oplus T^*M_n)\right).$$

Thm: (Malikov, Schechtman, Vaintrob 1998) This defines a sheaf of vertex algebras on M.

Weight grading $\Omega_M^{ch} = \bigoplus_{n \ge 0} \Omega_M^{ch}[n]$, and $\Omega_M^{ch}[0] \cong \Omega_M^*$ ordinary de Rham sheaf.

Let \mathcal{O}_M denote the sheaf of holomorphic functions on M.

A subtlety: Ω_M^{ch} is not a sheaf of \mathcal{O}_M -modules.

For an open set U, given functions $f, g \in \mathcal{O}(U)$ and $\alpha \in \Omega^{ch}(U)$, typically : $f(: g\alpha :) : \neq : (fg)\alpha :$.

However, $\Omega^{\rm ch}_M$ has a filtration such that associated graded sheaf is sections of the bundle

$$\operatorname{Sym}\left(\bigoplus_{n=0}^{\infty}(TM_n\oplus T^*M_n)\right)\bigotimes \bigwedge \left(\bigoplus_{n=1}^{\infty}(TM_n\oplus T^*M_n)\right).$$
9. $\beta\gamma$ and *bc* systems

Thm: (Malikov, Schechtman, Vaintrob 1998) This defines a sheaf of vertex algebras on M.

Weight grading $\Omega_M^{ch} = \bigoplus_{n \ge 0} \Omega_M^{ch}[n]$, and $\Omega_M^{ch}[0] \cong \Omega_M^*$ ordinary de Rham sheaf.

Let \mathcal{O}_M denote the sheaf of holomorphic functions on M.

A subtlety: Ω_M^{ch} is not a sheaf of \mathcal{O}_M -modules.

For an open set U, given functions $f, g \in \mathcal{O}(U)$ and $\alpha \in \Omega^{ch}(U)$, typically : $f(: g\alpha :) : \neq : (fg)\alpha :$.

However, $\Omega_M^{\rm ch}$ has a filtration such that associated graded sheaf is sections of the bundle

$$\operatorname{Sym}\left(\bigoplus_{n=0}^{\infty}(TM_n\oplus T^*M_n)\right)\bigotimes \bigwedge \left(\bigoplus_{n=1}^{\infty}(TM_n\oplus T^*M_n)\right).$$

9. $\beta\gamma$ and *bc* systems

Thm: (Malikov, Schechtman, Vaintrob 1998) This defines a sheaf of vertex algebras on M.

Weight grading $\Omega_M^{ch} = \bigoplus_{n \ge 0} \Omega_M^{ch}[n]$, and $\Omega_M^{ch}[0] \cong \Omega_M^*$ ordinary de Rham sheaf.

Let \mathcal{O}_M denote the sheaf of holomorphic functions on M.

A subtlety: Ω_M^{ch} is not a sheaf of \mathcal{O}_M -modules.

For an open set U, given functions $f, g \in \mathcal{O}(U)$ and $\alpha \in \Omega^{ch}(U)$, typically : $f(: g\alpha :) : \neq : (fg)\alpha :$.

However, $\Omega_M^{\rm ch}$ has a filtration such that associated graded sheaf is sections of the bundle

$$\operatorname{Sym}\left(\bigoplus_{n=0}^{\infty}(TM_n\oplus T^*M_n)\right)\bigotimes \bigwedge \left(\bigoplus_{n=1}^{\infty}(TM_n\oplus T^*M_n)\right).$$

Consider the following fields given in local coordinates:

$$L = \sum_{i=1}^{d} : \beta^{i} \partial \gamma^{i} - : b^{i} \partial c^{i} :;$$

$$J = \sum_{i=1}^{d} : b^{i} c^{i} ::$$

$$Q = \sum_{i=1}^{d} : \beta^{i} c^{i} ::$$

$$G = \sum_{i=1}^{d} : b^{i} \partial \gamma^{i} :.$$

Under change of coordinates

$$\tilde{\gamma}^i = f^i(\gamma^1, \dots, \gamma^d), \qquad \gamma^i = g^i(\tilde{\gamma}^1, \dots, \tilde{\gamma}^d),$$

we write down same fields in new variables $\tilde{\beta}^i, \tilde{\gamma}^i, \tilde{c}^i, \tilde{b}^i$ and then rewrite them in terms of old variables.

We get

$$\begin{split} \tilde{L} &= L\\ \tilde{J} &= J + \partial \bigg(\mathrm{Tr} \log \frac{\partial f^{i}}{\partial \gamma^{j}} \bigg),\\ \tilde{Q} &= Q + \partial \bigg(\sum_{r=1}^{d} : \frac{\partial}{\partial \tilde{\gamma}^{r}} \bigg(\mathrm{Tr} \log \frac{\partial g^{i}}{\partial \tilde{\gamma}^{j}} \bigg) \tilde{c}^{r} : \bigg),\\ \tilde{G} &= G. \end{split}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Under change of coordinates

$$\tilde{\gamma}^i = f^i(\gamma^1, \dots, \gamma^d), \qquad \gamma^i = g^i(\tilde{\gamma}^1, \dots, \tilde{\gamma}^d),$$

we write down same fields in new variables $\tilde{\beta}^i, \tilde{\gamma}^i, \tilde{c}^i, \tilde{b}^i$ and then rewrite them in terms of old variables.

We get

$$\begin{split} \tilde{L} &= L\\ \tilde{J} &= J + \partial \bigg(\operatorname{Tr} \log \frac{\partial f^{i}}{\partial \gamma^{j}} \bigg),\\ \tilde{Q} &= Q + \partial \bigg(\sum_{r=1}^{d} : \frac{\partial}{\partial \tilde{\gamma}^{r}} \bigg(\operatorname{Tr} \log \frac{\partial g^{i}}{\partial \tilde{\gamma}^{j}} \bigg) \tilde{c}^{r} : \bigg),\\ \tilde{G} &= G. \end{split}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Conclusion:

- 1. L and G are globally defined.
- 2. J and Q are globally defined when $c_1(TM) = 0$.
- 3. Zero modes $J_{(0)}$ and $Q_{(0)}$ are always globally defined.

We have $[Q_{(0)}, G_{(1)}] = L_{(1)}$ and $Q_{(0)}|_{\Omega_M^*} = d$, so $(\Omega_M^*, d_{DR}) \hookrightarrow (\Omega_M^{ch}, Q_{(0)})$ is a quasi-isomorphism.

From now on we assume $c_1(TM) = 0$.

It is convenient to change variables: replace L with

$$T = L + \frac{1}{2}\partial J$$

which is a Virasoro field with c = 3d, where $d = \dim M$.

Note: b^i, c^i have weight $\frac{1}{2}$ with respect to T.

Conclusion:

- 1. L and G are globally defined.
- 2. J and Q are globally defined when $c_1(TM) = 0$.
- 3. Zero modes $J_{(0)}$ and $Q_{(0)}$ are always globally defined.

We have $[Q_{(0)}, G_{(1)}] = L_{(1)}$ and $Q_{(0)}|_{\Omega_M^*} = d$, so $(\Omega_M^*, d_{DR}) \hookrightarrow (\Omega_M^{ch}, Q_{(0)})$ is a quasi-isomorphism.

From now on we assume $c_1(TM) = 0$.

It is convenient to change variables: replace L with

$$T = L + \frac{1}{2}\partial J$$

which is a Virasoro field with c = 3d, where $d = \dim M$.

Note: b^i, c^i have weight $\frac{1}{2}$ with respect to T.

Conclusion:

- 1. L and G are globally defined.
- 2. J and Q are globally defined when $c_1(TM) = 0$.
- 3. Zero modes $J_{(0)}$ and $Q_{(0)}$ are always globally defined.

We have
$$[Q_{(0)}, G_{(1)}] = L_{(1)}$$
 and $Q_{(0)}|_{\Omega_M^*} = d$, so $(\Omega_M^*, d_{DR}) \hookrightarrow (\Omega_M^{ch}, Q_{(0)})$ is a quasi-isomorphism.

From now on we assume $c_1(TM) = 0$.

It is convenient to change variables: replace L with

$$T = L + \frac{1}{2}\partial J$$

which is a Virasoro field with c = 3d, where $d = \dim M$.

Note: b^i, c^i have weight $\frac{1}{2}$ with respect to T.

Conclusion:

- 1. L and G are globally defined.
- 2. J and Q are globally defined when $c_1(TM) = 0$.
- 3. Zero modes $J_{(0)}$ and $Q_{(0)}$ are always globally defined.

We have
$$[Q_{(0)}, G_{(1)}] = L_{(1)}$$
 and $Q_{(0)}|_{\Omega_M^*} = d$, so $(\Omega_M^*, d_{DR}) \hookrightarrow (\Omega_M^{ch}, Q_{(0)})$ is a quasi-isomorphism

From now on we assume $c_1(TM) = 0$.

It is convenient to change variables: replace L with

$$T=L+\frac{1}{2}\partial J$$

which is a Virasoro field with c = 3d, where $d = \dim M$.

Note: b^i , c^i have weight $\frac{1}{2}$ with respect to T.

Conclusion:

- 1. L and G are globally defined.
- 2. J and Q are globally defined when $c_1(TM) = 0$.
- 3. Zero modes $J_{(0)}$ and $Q_{(0)}$ are always globally defined.

We have
$$[Q_{(0)}, G_{(1)}] = L_{(1)}$$
 and $Q_{(0)}|_{\Omega_M^*} = d$, so $(\Omega_M^*, d_{DR}) \hookrightarrow (\Omega_M^{ch}, Q_{(0)})$ is a quasi-isomorphism.

From now on we assume $c_1(TM) = 0$.

It is convenient to change variables: replace L with

$$T=L+\frac{1}{2}\partial J$$

which is a Virasoro field with c = 3d, where $d = \dim M$.

Note: b^i, c^i have weight $\frac{1}{2}$ with respect to T.

Conclusion:

- 1. L and G are globally defined.
- 2. J and Q are globally defined when $c_1(TM) = 0$.
- 3. Zero modes $J_{(0)}$ and $Q_{(0)}$ are always globally defined.

We have
$$[Q_{(0)}, G_{(1)}] = L_{(1)}$$
 and $Q_{(0)}|_{\Omega_M^*} = d$, so $(\Omega_M^*, d_{DR}) \hookrightarrow (\Omega_M^{ch}, Q_{(0)})$ is a quasi-isomorphism

From now on we assume $c_1(TM) = 0$.

It is convenient to change variables: replace L with

$$T=L+\frac{1}{2}\partial J$$

which is a Virasoro field with c = 3d, where $d = \dim M$.

Note: b^i, c^i have weight $\frac{1}{2}$ with respect to T.

Suppose that M is a compact Calabi-Yau manifold, with holomorphic volume form ω_0 .

Choose a local coordinate system U with coordinates $\gamma^1,\ldots,\gamma^d,$ so that locally

$$\omega_0|_U = d\gamma^1 \wedge \cdots \wedge d\gamma^d.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Corresponding to ω_0 are the following additional fields:

1.
$$D = : b^1 \cdots b^d :,$$

2. $E = : c^1 \cdots c^d :,$
3. $B = Q_{(0)}D,$
4. $C = G_{(0)}E.$

Suppose that M is a compact Calabi-Yau manifold, with holomorphic volume form ω_0 .

Choose a local coordinate system U with coordinates $\gamma^1, \ldots, \gamma^d$, so that locally

$$\omega_0|_U = d\gamma^1 \wedge \cdots \wedge d\gamma^d.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Corresponding to ω_0 are the following additional fields:

1.
$$D = : b^1 \cdots b^d :,$$

2. $E = : c^1 \cdots c^d :,$
3. $B = Q_{(0)}D,$
4. $C = G_{(0)}E.$

Suppose that M is a compact Calabi-Yau manifold, with holomorphic volume form ω_0 .

Choose a local coordinate system U with coordinates $\gamma^1, \ldots, \gamma^d$, so that locally

$$\omega_0|_U = d\gamma^1 \wedge \cdots \wedge d\gamma^d.$$

Corresponding to ω_0 are the following additional fields:

1. $D = : b^1 \cdots b^d :$, 2. $E = : c^1 \cdots c^d :$, 3. $B = Q_{(0)}D$, 4. $C = G_{(0)}E$.

The eight fields T, J, Q, G, D, E, B, C close (nonlinearly) under OPE, and generate a vertex algebra V_0 .

D, E have weight $\frac{d}{2}$ and B, C have weight $\frac{d+1}{2}$.

 \mathcal{V}_0 was originally introduced by Odake in 1986.

Thm: (Heluani, Ekstrand, Kallen and Zabzine, 2013) T, J, Q, G, D, E, B, C give rise to global sections, so that $\Omega^{ch}(M)$ contains \mathcal{V}_0 .

Case d = 3 was studied in detail.

The eight fields T, J, Q, G, D, E, B, C close (nonlinearly) under OPE, and generate a vertex algebra \mathcal{V}_0 .

D, E have weight $\frac{d}{2}$ and B, C have weight $\frac{d+1}{2}$.

 \mathcal{V}_0 was originally introduced by Odake in 1986.

Thm: (Heluani, Ekstrand, Kallen and Zabzine, 2013) T, J, Q, G, D, E, B, C give rise to global sections, so that $\Omega^{ch}(M)$ contains \mathcal{V}_0 .

Case d = 3 was studied in detail.

The eight fields T, J, Q, G, D, E, B, C close (nonlinearly) under OPE, and generate a vertex algebra \mathcal{V}_0 .

D, E have weight $\frac{d}{2}$ and B, C have weight $\frac{d+1}{2}$.

\mathcal{V}_0 was originally introduced by Odake in 1986.

Thm: (Heluani, Ekstrand, Kallen and Zabzine, 2013) T, J, Q, G, D, E, B, C give rise to global sections, so that $\Omega^{ch}(M)$ contains \mathcal{V}_0 .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Case d = 3 was studied in detail.

The eight fields T, J, Q, G, D, E, B, C close (nonlinearly) under OPE, and generate a vertex algebra \mathcal{V}_0 .

D, E have weight $\frac{d}{2}$ and B, C have weight $\frac{d+1}{2}$.

 \mathcal{V}_0 was originally introduced by Odake in 1986.

Thm: (Heluani, Ekstrand, Kallen and Zabzine, 2013) T, J, Q, G, D, E, B, C give rise to global sections, so that $\Omega^{ch}(M)$ contains \mathcal{V}_0 .

Case d = 3 was studied in detail.

The eight fields T, J, Q, G, D, E, B, C close (nonlinearly) under OPE, and generate a vertex algebra \mathcal{V}_0 .

D, E have weight $\frac{d}{2}$ and B, C have weight $\frac{d+1}{2}$.

 \mathcal{V}_0 was originally introduced by Odake in 1986.

Thm: (Heluani, Ekstrand, Kallen and Zabzine, 2013) T, J, Q, G, D, E, B, C give rise to global sections, so that $\Omega^{ch}(M)$ contains \mathcal{V}_0 .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Case d = 3 was studied in detail.

The eight fields T, J, Q, G, D, E, B, C close (nonlinearly) under OPE, and generate a vertex algebra \mathcal{V}_0 .

D, E have weight $\frac{d}{2}$ and B, C have weight $\frac{d+1}{2}$.

 \mathcal{V}_0 was originally introduced by Odake in 1986.

Thm: (Heluani, Ekstrand, Kallen and Zabzine, 2013) T, J, Q, G, D, E, B, C give rise to global sections, so that $\Omega^{ch}(M)$ contains \mathcal{V}_0 .

Case d = 3 was studied in detail.

Suppose next that $d = 2\ell$ is even, and M is a hyperkähler manifold, with holomorphic symplectic form ω_1 .

Choose a local coordinate system U with coordinates γ^1,\ldots,γ^d , so

$$\omega_1|_U = \sum_{i=1}^{\ell} d\gamma^{2i-1} \wedge d\gamma^{2i}.$$

Corresponding to ω_1 are the following additional fields: 1. $D' = \sum_{i=1}^{\ell} : b^{2i-1}b^{2i}$; 2. $E' = \sum_{i=1}^{\ell} : c^{2i-1}c^{2i}$; 3. $B' = Q_{(0)}D'$, 4. $C' = G_{(0)}E'$.

T, J, Q, G, D', E', B', C' generate a vertex algebra \mathcal{V}_1 isomorphic the simple small $\mathcal{N} = 4$ superconformal algebra with c = 3d.

Thm: (Ben-Zvi, Heluani, Szczesny, 2008) $\Omega^{ch}(M)$, gontains, V_{1} .

Suppose next that $d = 2\ell$ is even, and M is a hyperkähler manifold, with holomorphic symplectic form ω_1 .

Choose a local coordinate system U with coordinates $\gamma^1, \ldots, \gamma^d$, so

$$\omega_1|_U = \sum_{i=1}^{\ell} d\gamma^{2i-1} \wedge d\gamma^{2i}.$$

Corresponding to ω_1 are the following additional fields: 1. $D' = \sum_{i=1}^{\ell} : b^{2i-1}b^{2i}$; 2. $E' = \sum_{i=1}^{\ell} : c^{2i-1}c^{2i}$; 3. $B' = Q_{(0)}D'$, 4. $C' = G_{(0)}E'$.

T, J, Q, G, D', E', B', C' generate a vertex algebra \mathcal{V}_1 isomorphic the simple small $\mathcal{N} = 4$ superconformal algebra with c = 3d.

Thm: (Ben-Zvi, Heluani, Szczesny, 2008) $\Omega^{ch}(M)$, gontains, V_{1} .

Suppose next that $d = 2\ell$ is even, and M is a hyperkähler manifold, with holomorphic symplectic form ω_1 .

Choose a local coordinate system U with coordinates γ^1,\ldots,γ^d , so

$$\omega_1|_U = \sum_{i=1}^{\ell} d\gamma^{2i-1} \wedge d\gamma^{2i}.$$

Corresponding to ω_1 are the following additional fields: 1. $D' = \sum_{i=1}^{\ell} : b^{2i-1}b^{2i} :,$ 2. $E' = \sum_{i=1}^{\ell} : c^{2i-1}c^{2i} :,$ 3. $B' = Q_{(0)}D',$

4.
$$C' = G_{(0)}E'$$
.
 $T, J, Q, G, D', E', B', C'$ generate a vertex algebra \mathcal{V}_1 isomorphic the simple small $\mathcal{N}_1 = 4$ superconformal algebra with $c = 3d$.

Thm: (Ben-Zvi, Heluani, Szczesny, 2008) $\Omega^{ch}(M)$ sontains V_{1}

Suppose next that $d = 2\ell$ is even, and M is a hyperkähler manifold, with holomorphic symplectic form ω_1 .

Choose a local coordinate system U with coordinates γ^1,\ldots,γ^d , so

$$\omega_1|_U = \sum_{i=1}^{\ell} d\gamma^{2i-1} \wedge d\gamma^{2i}.$$

Corresponding to ω_1 are the following additional fields:

1.
$$D' = \sum_{i=1}^{\ell} : b^{2i-1}b^{2i} :,$$

2. $E' = \sum_{i=1}^{\ell} : c^{2i-1}c^{2i} :,$
3. $B' = Q_{(0)}D',$
4. $C' = G_{(0)}E'.$

T, J, Q, G, D', E', B', C' generate a vertex algebra \mathcal{V}_1 isomorphic the simple small $\mathcal{N} = 4$ superconformal algebra with c = 3d.

Thm: (Ben-Zvi, Heluani, Szczesny, 2008) $\Omega^{ch}(M)$ sontains V_1 .

Suppose next that $d = 2\ell$ is even, and M is a hyperkähler manifold, with holomorphic symplectic form ω_1 .

Choose a local coordinate system U with coordinates γ^1,\ldots,γ^d , so

$$\omega_1|_U = \sum_{i=1}^{\ell} d\gamma^{2i-1} \wedge d\gamma^{2i}.$$

Corresponding to ω_1 are the following additional fields:

1.
$$D' = \sum_{i=1}^{\ell} : b^{2i-1}b^{2i} :,$$

2. $E' = \sum_{i=1}^{\ell} : c^{2i-1}c^{2i} :,$
3. $B' = Q_{(0)}D',$
4. $C' = G_{(0)}E'.$

T, J, Q, G, D', E', B', C' generate a vertex algebra \mathcal{V}_1 isomorphic the simple small $\mathcal{N} = 4$ superconformal algebra with c = 3d.

Thm: (Ben-Zvi, Heluani, Szczesny, 2008) $\Omega^{ch}(M)$ contains \mathcal{V}_1 .

16. Main result

Thm: (L., Song, 2021)

- 1. If *M* is a compact *d*-dimensional Calabi-Yau manifold with holonomy group SU_d , then the algebra of global sections $\Omega^{ch}(M) = \mathcal{V}_0$.
- 2. If *M* is a compact $d = 2\ell$ -dimensional hyperkähler manifold with holonomy group Sp_{ℓ} , then the algebra of global sections $\Omega^{ch}(M) = \mathcal{V}_1$.

In particular, $\Omega^{ch}(M)$ only depends on dim M and the holonomy group.

There are two steps to the proof.

- 1. $\Omega^{ch}(M)$ is isomorphic to the subalgebra of W which is invariant under a Lie algebra of Cartan type.
- This algebra can be described using the arc space analogue of Weyl's first fundamental theorem of invariant theory.

16. Main result

Thm: (L., Song, 2021)

- 1. If *M* is a compact *d*-dimensional Calabi-Yau manifold with holonomy group SU_d , then the algebra of global sections $\Omega^{ch}(M) = \mathcal{V}_0$.
- 2. If *M* is a compact $d = 2\ell$ -dimensional hyperkähler manifold with holonomy group Sp_{ℓ} , then the algebra of global sections $\Omega^{ch}(M) = \mathcal{V}_1$.

In particular, $\Omega^{ch}(M)$ only depends on dim M and the holonomy group.

There are two steps to the proof.

- 1. $\Omega^{ch}(M)$ is isomorphic to the subalgebra of W which is invariant under a Lie algebra of Cartan type.
- This algebra can be described using the arc space analogue of Weyl's first fundamental theorem of invariant theory.

16. Main result

Thm: (L., Song, 2021)

- 1. If *M* is a compact *d*-dimensional Calabi-Yau manifold with holonomy group SU_d , then the algebra of global sections $\Omega^{ch}(M) = \mathcal{V}_0$.
- 2. If *M* is a compact $d = 2\ell$ -dimensional hyperkähler manifold with holonomy group Sp_{ℓ} , then the algebra of global sections $\Omega^{ch}(M) = \mathcal{V}_1$.

In particular, $\Omega^{ch}(M)$ only depends on dim M and the holonomy group.

There are two steps to the proof.

- 1. $\Omega^{ch}(M)$ is isomorphic to the subalgebra of \mathcal{W} which is invariant under a Lie algebra of Cartan type.
- This algebra can be described using the arc space analogue of Weyl's first fundamental theorem of invariant theory.

Step 1 is carried out in the following paper:

B. Song, *The global sections of Chiral de Rham complexes on compact Ricci-flat Kähler manifolds*, Comm Math. Phys 382, 351-397 (2021).

Sheaf cohomology $H^*(M, \Omega_M^{ch})$ is called **chiral Hodge cohomology** of M, global section algebra $\Omega^{ch}(M)$ is just $H^0(M, \Omega_M^{ch})$.

Regarding M as a smooth 2*d*-dimensional real manifold, we have smooth chiral de Rham complex $\Omega_M^{ch, sm}$ which contains Ω_M^{ch} as a subsheaf, as well as complex conjugate.

Step 1 is carried out in the following paper:

B. Song, *The global sections of Chiral de Rham complexes on compact Ricci-flat Kähler manifolds*, Comm Math. Phys 382, 351-397 (2021).

Sheaf cohomology $H^*(M, \Omega_M^{ch})$ is called **chiral Hodge cohomology** of M, global section algebra $\Omega^{ch}(M)$ is just $H^0(M, \Omega_M^{ch})$.

Regarding M as a smooth 2*d*-dimensional real manifold, we have smooth chiral de Rham complex $\Omega_M^{ch, sm}$ which contains Ω_M^{ch} as a subsheaf, as well as complex conjugate.

Step 1 is carried out in the following paper:

B. Song, *The global sections of Chiral de Rham complexes on compact Ricci-flat Kähler manifolds*, Comm Math. Phys 382, 351-397 (2021).

Sheaf cohomology $H^*(M, \Omega_M^{ch})$ is called **chiral Hodge cohomology** of M, global section algebra $\Omega^{ch}(M)$ is just $H^0(M, \Omega_M^{ch})$.

Regarding M as a smooth 2*d*-dimensional real manifold, we have smooth chiral de Rham complex $\Omega_M^{ch, sm}$ which contains Ω_M^{ch} as a subsheaf, as well as complex conjugate.

Step 1 is carried out in the following paper:

B. Song, *The global sections of Chiral de Rham complexes on compact Ricci-flat Kähler manifolds*, Comm Math. Phys 382, 351-397 (2021).

Sheaf cohomology $H^*(M, \Omega_M^{ch})$ is called **chiral Hodge cohomology** of M, global section algebra $\Omega^{ch}(M)$ is just $H^0(M, \Omega_M^{ch})$.

Regarding *M* as a smooth 2*d*-dimensional real manifold, we have smooth chiral de Rham complex $\Omega_M^{ch, sm}$ which contains Ω_M^{ch} as a subsheaf, as well as complex conjugate.

We have antiholomorphic fields \overline{L} , \overline{G} , \overline{Q} , \overline{J} which commute with L, G, Q, J.

(日)((1))

Step 1 is carried out in the following paper:

B. Song, *The global sections of Chiral de Rham complexes on compact Ricci-flat Kähler manifolds*, Comm Math. Phys 382, 351-397 (2021).

Sheaf cohomology $H^*(M, \Omega_M^{ch})$ is called **chiral Hodge cohomology** of M, global section algebra $\Omega^{ch}(M)$ is just $H^0(M, \Omega_M^{ch})$.

Regarding *M* as a smooth 2*d*-dimensional real manifold, we have smooth chiral de Rham complex $\Omega_M^{ch, sm}$ which contains Ω_M^{ch} as a subsheaf, as well as complex conjugate.

Bigrading

$$\Omega^{\mathsf{ch,\,sm}}_{\mathcal{M}} = \bigoplus_{k \geq 0} \bigoplus_{\ell \in \mathbb{Z}} \Omega^{\mathsf{ch,\,sm}}_{\mathcal{M}}[k,\ell],$$

where $\overline{L}_{(1)}$ acts by $k \cdot \text{Id}$ and $\overline{J}_{(0)}$ acts by $\ell \cdot \text{Id}$ on $\Omega_M^{\text{ch, sm}}[k, \ell]$.

Define
$$\Omega_M^{\mathrm{ch},\ell} = \Omega_M^{\mathrm{ch}, \mathrm{sm}}[0,\ell]$$
 and $\Omega_M^{\mathrm{ch},*} = \bigoplus_{\ell=0}^d \Omega_M^{\mathrm{ch}, \mathrm{sm}}[0,\ell].$

Set $\bar{\partial} = \bar{Q}_{(0)}|_{\Omega_M^{ch,*}}$, so $(\Omega_M^{ch,*}, \bar{\partial}) \hookrightarrow (\Omega_M^{ch, sm}, \bar{Q}_{(0)})$ is a subcomplex.

We have

$$[\bar{Q}_{(0)},\,\bar{G}_{(1)}]=\bar{L}_{(1)},\,$$

so $ar{G}_{(1)}$ is a contracting homotopy for $ar{Q}_{(0)}$, and above inclusion is a quasi-isomorphism.

Thm: Cohomology of $(\Omega_M^{ch,*}, \bar{\partial})$ computes the chiral Hodge cohomology of M.

Bigrading

$$\Omega^{\mathsf{ch}, \, \mathsf{sm}}_{\mathcal{M}} = \bigoplus_{k \geq 0} \bigoplus_{\ell \in \mathbb{Z}} \Omega^{\mathsf{ch}, \, \mathsf{sm}}_{\mathcal{M}}[k, \ell],$$

where $\bar{L}_{(1)}$ acts by $k \cdot \text{Id}$ and $\bar{J}_{(0)}$ acts by $\ell \cdot \text{Id}$ on $\Omega_M^{\text{ch, sm}}[k, \ell]$. Define $\Omega_M^{\text{ch}, \ell} = \Omega_M^{\text{ch, sm}}[0, \ell]$ and $\Omega_M^{\text{ch, *}} = \bigoplus_{\ell=0}^d \Omega_M^{\text{ch, sm}}[0, \ell]$. Set $\bar{\partial} = \bar{Q}_{(0)}|_{\Omega_M^{\text{ch, *}}}$, so $(\Omega_M^{\text{ch, *}}, \bar{\partial}) \to (\Omega_M^{\text{ch, sm}}, \bar{Q}_{(0)})$ is a subcomplex We have

$$[\bar{Q}_{(0)},\bar{G}_{(1)}]=\bar{L}_{(1)},$$

so $ar{G}_{(1)}$ is a contracting homotopy for $ar{Q}_{(0)}$, and above inclusion is a quasi-isomorphism.

Thm: Cohomology of $(\Omega_M^{ch,*}, \bar{\partial})$ computes the chiral Hodge cohomology of M.

Bigrading

$$\Omega^{\mathsf{ch, sm}}_{\mathcal{M}} = \bigoplus_{k \geq 0} \bigoplus_{\ell \in \mathbb{Z}} \Omega^{\mathsf{ch, sm}}_{\mathcal{M}}[k, \ell],$$

where $\overline{L}_{(1)}$ acts by $k \cdot \text{Id}$ and $\overline{J}_{(0)}$ acts by $\ell \cdot \text{Id}$ on $\Omega_M^{\text{ch, sm}}[k, \ell]$.

Define
$$\Omega_M^{ch,\ell} = \Omega_M^{ch, \text{ sm}}[0,\ell]$$
 and $\Omega_M^{ch,*} = \bigoplus_{\ell=0}^d \Omega_M^{ch, \text{ sm}}[0,\ell]$.

Set $\bar{\partial} = \bar{Q}_{(0)}|_{\Omega^{ch,*}_{M}}$, so $(\Omega^{ch,*}_{M}, \bar{\partial}) \hookrightarrow (\Omega^{ch, sm}_{M}, \bar{Q}_{(0)})$ is a subcomplex.

We have

$$[\bar{Q}_{(0)},\,\bar{G}_{(1)}]=\bar{L}_{(1)},\,$$

so $ar{G}_{(1)}$ is a contracting homotopy for $ar{Q}_{(0)}$, and above inclusion is a quasi-isomorphism.

Thm: Cohomology of $(\Omega_M^{ch,*}, \bar{\partial})$ computes the chiral Hodge cohomology of M.
Bigrading

$$\Omega^{\mathsf{ch,\,sm}}_{M} = \bigoplus_{k \geq 0} \bigoplus_{\ell \in \mathbb{Z}} \Omega^{\mathsf{ch,\,sm}}_{M}[k,\ell],$$

where $\bar{L}_{(1)}$ acts by $k \cdot \text{Id}$ and $\bar{J}_{(0)}$ acts by $\ell \cdot \text{Id}$ on $\Omega_M^{ch, sm}[k, \ell]$.

Define
$$\Omega_M^{ch,\ell} = \Omega_M^{ch, \text{ sm}}[0,\ell]$$
 and $\Omega_M^{ch,*} = \bigoplus_{\ell=0}^d \Omega_M^{ch, \text{ sm}}[0,\ell]$.

Set $\bar{\partial} = \bar{Q}_{(0)}|_{\Omega^{ch,*}_{M}}$, so $(\Omega^{ch,*}_{M}, \bar{\partial}) \hookrightarrow (\Omega^{ch, sm}_{M}, \bar{Q}_{(0)})$ is a subcomplex.

We have

$$[\bar{Q}_{(0)}, \bar{G}_{(1)}] = \bar{L}_{(1)},$$

so $\bar{G}_{(1)}$ is a contracting homotopy for $\bar{Q}_{(0)}$, and above inclusion is a quasi-isomorphism.

Thm: Cohomology of $(\Omega_M^{ch,*}, \bar{\partial})$ computes the chiral Hodge cohomology of M.

Bigrading

$$\Omega^{\mathsf{ch,\,sm}}_{M} = \bigoplus_{k \geq 0} \bigoplus_{\ell \in \mathbb{Z}} \Omega^{\mathsf{ch,\,sm}}_{M}[k,\ell],$$

where $\overline{L}_{(1)}$ acts by $k \cdot \text{Id}$ and $\overline{J}_{(0)}$ acts by $\ell \cdot \text{Id}$ on $\Omega_M^{\text{ch, sm}}[k, \ell]$.

Define
$$\Omega_M^{ch,\ell} = \Omega_M^{ch, \text{ sm}}[0,\ell]$$
 and $\Omega_M^{ch,*} = \bigoplus_{\ell=0}^d \Omega_M^{ch, \text{ sm}}[0,\ell]$.

Set $\bar{\partial} = \bar{Q}_{(0)}|_{\Omega^{ch,*}_{M}}$, so $(\Omega^{ch,*}_{M}, \bar{\partial}) \hookrightarrow (\Omega^{ch, sm}_{M}, \bar{Q}_{(0)})$ is a subcomplex.

We have

$$[\bar{Q}_{(0)}, \bar{G}_{(1)}] = \bar{L}_{(1)},$$

so $\bar{G}_{(1)}$ is a contracting homotopy for $\bar{Q}_{(0)}$, and above inclusion is a quasi-isomorphism.

Thm: Cohomology of $(\Omega_M^{ch,*}, \bar{\partial})$ computes the chiral Hodge cohomology of M.

Given a vector space $V = \mathbb{C}^d$, let Vect(V) be the Lie algebra of algebraic vector fields $\sum_{i=1}^d P_i \frac{\partial}{\partial x_i^i}$, where P_i is a polynomial in linear functions x'_1, \ldots, x'_d on V.

Given a k-form $\omega \in \wedge^k V^*$, we have Lie subalgebra $\operatorname{Vect}(V, \omega)$ annihilating ω .

Given a global section $\alpha \in H^0(M, \Omega^{ch}_M)$ and a point $x \in M$, one can restrict α to x, obtaining an element of $\mathcal{W} = \mathcal{W}(T_x M)$ the $bc\beta\gamma$ -system of rank d.

- 1. If M is a compact d-dimensional Calabi-Yau manifold with holonomy group SU_d , then $H^0(M, \Omega_M^{ch}) \cong \mathcal{W}^{\operatorname{Vect}(\mathcal{T}_x M, \omega_0|_x)}$.
- 2. If *M* is a compact $d = 2\ell$ -dimensional hyperkähler manifold with holonomy group Sp_ℓ , then $H^0(M, \Omega^{ch}_M) \cong \mathcal{W}^{\operatorname{Vect}(T_x M, \omega_1|_x)}$.

Given a vector space $V = \mathbb{C}^d$, let Vect(V) be the Lie algebra of algebraic vector fields $\sum_{i=1}^d P_i \frac{\partial}{\partial x_i^i}$, where P_i is a polynomial in linear functions x'_1, \ldots, x'_d on V.

Given a k-form $\omega \in \wedge^k V^*$, we have Lie subalgebra $\operatorname{Vect}(V, \omega)$ annihilating ω .

Given a global section $\alpha \in H^0(M, \Omega^{ch}_M)$ and a point $x \in M$, one can restrict α to x, obtaining an element of $\mathcal{W} = \mathcal{W}(T_x M)$ the $bc\beta\gamma$ -system of rank d.

- 1. If *M* is a compact *d*-dimensional Calabi-Yau manifold with holonomy group SU_d , then $H^0(M, \Omega_M^{ch}) \cong \mathcal{W}^{\operatorname{Vect}(T_xM,\omega_0|_x)}$.
- 2. If *M* is a compact $d = 2\ell$ -dimensional hyperkähler manifold with holonomy group Sp_ℓ , then $H^0(M, \Omega^{ch}_M) \cong \mathcal{W}^{\operatorname{Vect}(T_x M, \omega_1|_x)}$.

Given a vector space $V = \mathbb{C}^d$, let Vect(V) be the Lie algebra of algebraic vector fields $\sum_{i=1}^d P_i \frac{\partial}{\partial x_i^i}$, where P_i is a polynomial in linear functions x'_1, \ldots, x'_d on V.

Given a k-form $\omega \in \wedge^k V^*$, we have Lie subalgebra $Vect(V, \omega)$ annihilating ω .

Given a global section $\alpha \in H^0(M, \Omega_M^{ch})$ and a point $x \in M$, one can restrict α to x, obtaining an element of $\mathcal{W} = \mathcal{W}(\mathcal{T}_x M)$ the $bc\beta\gamma$ -system of rank d.

- 1. If M is a compact d-dimensional Calabi-Yau manifold with holonomy group SU_d , then $H^0(M, \Omega_M^{ch}) \cong \mathcal{W}^{\operatorname{Vect}(T_xM,\omega_0|_x)}$.
- 2. If *M* is a compact $d = 2\ell$ -dimensional hyperkähler manifold with holonomy group Sp_ℓ , then $H^0(M, \Omega^{ch}_M) \cong \mathcal{W}^{\operatorname{Vect}(T_x M, \omega_1|_x)}$.

Given a vector space $V = \mathbb{C}^d$, let Vect(V) be the Lie algebra of algebraic vector fields $\sum_{i=1}^d P_i \frac{\partial}{\partial x_i^i}$, where P_i is a polynomial in linear functions x'_1, \ldots, x'_d on V.

Given a k-form $\omega \in \wedge^k V^*$, we have Lie subalgebra $\operatorname{Vect}(V, \omega)$ annihilating ω .

Given a global section $\alpha \in H^0(M, \Omega^{ch}_M)$ and a point $x \in M$, one can restrict α to x, obtaining an element of $\mathcal{W} = \mathcal{W}(T_x M)$ the $bc\beta\gamma$ -system of rank d.

- 1. If *M* is a compact *d*-dimensional Calabi-Yau manifold with holonomy group SU_d , then $H^0(M, \Omega_M^{ch}) \cong \mathcal{W}^{\operatorname{Vect}(\mathcal{T}_x M, \omega_0|_x)}$.
- 2. If M is a compact $d = 2\ell$ -dimensional hyperkähler manifold with holonomy group Sp_ℓ , then $H^0(M, \Omega_M^{ch}) \cong \mathcal{W}^{\operatorname{Vect}(T_x M, \omega_1|_x)}$.

 $\mathcal{W}^{\operatorname{Vect}(\mathcal{T}_{x}M,\omega_{0}|_{x})}$ and $\mathcal{W}^{\operatorname{Vect}(\mathcal{T}_{x}M,\omega_{0}|_{x})}$ are contained in the subalgebra \mathcal{W}_{+} generated by $\beta^{i}, \partial\gamma^{i}, b^{i}, c^{i}$.

Vect $(T_{\mathsf{x}}M, \omega_0|_{\mathsf{x}})$ contains Lie subalgebra $\mathfrak{sl}_d[t]$, and $\mathcal{W}^{\operatorname{Vect}(T_{\mathsf{x}}M, \omega_0|_{\mathsf{x}})} \cong (\mathcal{W}_+)^{\mathfrak{sl}_d[t]}$.

Vect $(T_x M, \omega_1|_x)$ contains Lie subalgebra $\mathfrak{sp}_{\ell}[t]$, and $\mathcal{W}^{\operatorname{Vect}(T_x M, \omega_0|_x)} \cong (\mathcal{W}_+)^{\mathfrak{sp}_{\ell}[t]}$.

Associated graded algebra

$$\operatorname{gr}(\mathcal{W}_+) \cong \operatorname{Sym}\left(\bigoplus_{n\geq 0} \mathbb{C}_n^d \oplus (\mathbb{C}_n^d)^*\right) \bigotimes \bigwedge \left(\bigoplus_{n\geq 0} \mathbb{C}_n^d \oplus (\mathbb{C}_n^d)^*\right).$$

This has natural action of arc space G_{∞} where $G = SL_d$ or Sp_{ℓ} , and invariants under G_{∞} are same as invariants under $\mathfrak{g}[t]$.

 $\mathcal{W}^{\operatorname{Vect}(\mathcal{T}_{x}M,\omega_{0}|_{x})}$ and $\mathcal{W}^{\operatorname{Vect}(\mathcal{T}_{x}M,\omega_{0}|_{x})}$ are contained in the subalgebra \mathcal{W}_{+} generated by $\beta^{i}, \partial\gamma^{i}, b^{i}, c^{i}$.

Vect $(T_x M, \omega_0|_x)$ contains Lie subalgebra $\mathfrak{sl}_d[t]$, and $\mathcal{W}^{\operatorname{Vect}(T_x M, \omega_0|_x)} \cong (\mathcal{W}_+)^{\mathfrak{sl}_d[t]}$.

Vect $(T_x M, \omega_1|_x)$ contains Lie subalgebra $\mathfrak{sp}_{\ell}[t]$, and $\mathcal{W}^{\operatorname{Vect}(T_x M, \omega_0|_x)} \cong (\mathcal{W}_+)^{\mathfrak{sp}_{\ell}[t]}$.

Associated graded algebra

$$\operatorname{gr}(\mathcal{W}_+) \cong \operatorname{Sym}\left(\bigoplus_{n\geq 0} \mathbb{C}_n^d \oplus (\mathbb{C}_n^d)^*\right) \bigotimes \bigwedge \left(\bigoplus_{n\geq 0} \mathbb{C}_n^d \oplus (\mathbb{C}_n^d)^*\right).$$

This has natural action of arc space G_{∞} where $G = SL_d$ or Sp_{ℓ} , and invariants under G_{∞} are same as invariants under $\mathfrak{g}[t]$.

 $\mathcal{W}^{\operatorname{Vect}(\mathcal{T}_{x}M,\omega_{0}|_{x})}$ and $\mathcal{W}^{\operatorname{Vect}(\mathcal{T}_{x}M,\omega_{0}|_{x})}$ are contained in the subalgebra \mathcal{W}_{+} generated by $\beta^{i}, \partial\gamma^{i}, b^{i}, c^{i}$.

Vect $(T_x M, \omega_0|_x)$ contains Lie subalgebra $\mathfrak{sl}_d[t]$, and $\mathcal{W}^{\operatorname{Vect}(T_x M, \omega_0|_x)} \cong (\mathcal{W}_+)^{\mathfrak{sl}_d[t]}$.

 $\begin{array}{l} \operatorname{Vect}(T_{\mathsf{x}}M,\omega_{1}|_{\mathsf{x}}) \text{ contains Lie subalgebra } \mathfrak{sp}_{\ell}[t], \text{ and} \\ \mathcal{W}^{\operatorname{Vect}(T_{\mathsf{x}}M,\omega_{0}|_{\mathsf{x}})} \cong (\mathcal{W}_{+})^{\mathfrak{sp}_{\ell}[t]}. \end{array}$

Associated graded algebra

$$\operatorname{gr}(\mathcal{W}_+) \cong \operatorname{Sym}\left(\bigoplus_{n\geq 0} \mathbb{C}_n^d \oplus (\mathbb{C}_n^d)^*\right) \bigotimes \bigwedge \left(\bigoplus_{n\geq 0} \mathbb{C}_n^d \oplus (\mathbb{C}_n^d)^*\right).$$

This has natural action of arc space G_{∞} where $G = SL_d$ or Sp_{ℓ} , and invariants under G_{∞} are same as invariants under $\mathfrak{g}[t]$.

 $\mathcal{W}^{\operatorname{Vect}(\mathcal{T}_{x}M,\omega_{0}|_{x})}$ and $\mathcal{W}^{\operatorname{Vect}(\mathcal{T}_{x}M,\omega_{0}|_{x})}$ are contained in the subalgebra \mathcal{W}_{+} generated by $\beta^{i}, \partial\gamma^{i}, b^{i}, c^{i}$.

Vect $(T_x M, \omega_0|_x)$ contains Lie subalgebra $\mathfrak{sl}_d[t]$, and $\mathcal{W}^{\operatorname{Vect}(T_x M, \omega_0|_x)} \cong (\mathcal{W}_+)^{\mathfrak{sl}_d[t]}$.

Vect $(T_x M, \omega_1|_x)$ contains Lie subalgebra $\mathfrak{sp}_{\ell}[t]$, and $\mathcal{W}^{\operatorname{Vect}(T_x M, \omega_0|_x)} \cong (\mathcal{W}_+)^{\mathfrak{sp}_{\ell}[t]}$.

Associated graded algebra

$$\mathsf{gr}(\mathcal{W}_+) \cong \mathsf{Sym}\bigg(\bigoplus_{n\geq 0} \mathbb{C}_n^d \oplus (\mathbb{C}_n^d)^*\bigg) \bigotimes \bigwedge \bigg(\bigoplus_{n\geq 0} \mathbb{C}_n^d \oplus (\mathbb{C}_n^d)^*\bigg).$$

This has natural action of arc space G_{∞} where $G = SL_d$ or Sp_ℓ , and invariants under G_{∞} are same as invariants under $\mathfrak{g}[t]$.

 $\mathcal{W}^{\operatorname{Vect}(\mathcal{T}_{x}M,\omega_{0}|_{x})}$ and $\mathcal{W}^{\operatorname{Vect}(\mathcal{T}_{x}M,\omega_{0}|_{x})}$ are contained in the subalgebra \mathcal{W}_{+} generated by $\beta^{i}, \partial\gamma^{i}, b^{i}, c^{i}$.

Vect $(T_x M, \omega_0|_x)$ contains Lie subalgebra $\mathfrak{sl}_d[t]$, and $\mathcal{W}^{\operatorname{Vect}(T_x M, \omega_0|_x)} \cong (\mathcal{W}_+)^{\mathfrak{sl}_d[t]}$.

Vect $(T_x M, \omega_1|_x)$ contains Lie subalgebra $\mathfrak{sp}_{\ell}[t]$, and $\mathcal{W}^{\operatorname{Vect}(T_x M, \omega_0|_x)} \cong (\mathcal{W}_+)^{\mathfrak{sp}_{\ell}[t]}$.

Associated graded algebra

$$\mathsf{gr}(\mathcal{W}_+) \cong \mathsf{Sym}\bigg(\bigoplus_{n\geq 0} \mathbb{C}_n^d \oplus (\mathbb{C}_n^d)^*\bigg) \bigotimes \bigwedge \bigg(\bigoplus_{n\geq 0} \mathbb{C}_n^d \oplus (\mathbb{C}_n^d)^*\bigg).$$

This has natural action of arc space G_{∞} where $G = SL_d$ or Sp_ℓ , and invariants under G_{∞} are same as invariants under $\mathfrak{g}[t]$.

Let X be a scheme of finite type over \mathbb{C} .

There is another scheme X_{∞} called the **arc space** of X.

It is characterized by its functor of points.

For a commutative ring A, the A-valued points of X_{∞} are in bijection with the A[[t]]-valued points of X.

In other words,

Hom(Spec A, X_{∞}) \cong Hom(Spec A[[t]], X).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let X be a scheme of finite type over \mathbb{C} .

There is another scheme X_{∞} called the **arc space** of X.

It is characterized by its functor of points.

For a commutative ring A, the A-valued points of X_{∞} are in bijection with the A[[t]]-valued points of X.

In other words,

Hom(Spec A, X_{∞}) \cong Hom(Spec A[[t]], X).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let X be a scheme of finite type over \mathbb{C} .

There is another scheme X_{∞} called the **arc space** of X.

It is characterized by its functor of points.

For a commutative ring A, the A-valued points of X_{∞} are in bijection with the A[[t]]-valued points of X.

In other words,

Hom(Spec A, X_{∞}) \cong Hom(Spec A[[t]], X).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let X be a scheme of finite type over \mathbb{C} .

There is another scheme X_{∞} called the **arc space** of X.

It is characterized by its functor of points.

For a commutative ring A, the A-valued points of X_{∞} are in bijection with the A[[t]]-valued points of X.

In other words,

Hom(Spec A, X_{∞}) \cong Hom(Spec A[[t]], X).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

A morphism f: X o Y induces $f_\infty: X_\infty o Y_\infty$.

Let X be a scheme of finite type over \mathbb{C} .

There is another scheme X_{∞} called the **arc space** of X.

It is characterized by its functor of points.

For a commutative ring A, the A-valued points of X_{∞} are in bijection with the A[[t]]-valued points of X.

In other words,

Hom(Spec A, X_{∞}) \cong Hom(Spec A[[t]], X).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let X be a scheme of finite type over \mathbb{C} .

There is another scheme X_{∞} called the **arc space** of X.

It is characterized by its functor of points.

For a commutative ring A, the A-valued points of X_{∞} are in bijection with the A[[t]]-valued points of X.

In other words,

Hom(Spec A, X_{∞}) \cong Hom(Spec A[[t]], X).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Suppose $X = \operatorname{Spec} R$ for $R = \mathbb{C}[x_1, \dots, x_n]/\langle f_1, \dots, f_k \rangle.$

 \mathbb{C} -valued points of $X_{\infty} \leftrightarrow \mathbb{C}[[t]]$ -valued points of X.

Morphism Spec $\mathbb{C}[[t]] \to \text{Spec } \mathbb{C}[x_1, \dots, x_n]/\langle f_1, \dots, f_k \rangle$ corresponds to a ring homomorphism

$$\phi: \mathbb{C}[x_1,\ldots,x_n]/\langle f_1,\ldots,f_k\rangle \to \mathbb{C}[[t]].$$

 ϕ is determined by its **values on the generators** x_1, \ldots, x_n . We write

$$\phi(x_i) = x_i^{(0)} + x_i^{(1)}t + x_i^{(2)}t^2 + \cdots, \qquad i = 1, \dots, n.$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Suppose X = Spec R for $R = \mathbb{C}[x_1, \dots, x_n]/\langle f_1, \dots, f_k \rangle.$

\mathbb{C} -valued points of $X_{\infty} \leftrightarrow \mathbb{C}[[t]]$ -valued points of X.

Morphism Spec $\mathbb{C}[[t]] \to \text{Spec } \mathbb{C}[x_1, \dots, x_n]/\langle f_1, \dots, f_k \rangle$ corresponds to a ring homomorphism

$$\phi: \mathbb{C}[x_1,\ldots,x_n]/\langle f_1,\ldots,f_k\rangle \to \mathbb{C}[[t]].$$

 ϕ is determined by its **values on the generators** x_1, \ldots, x_n . We write

$$\phi(x_i) = x_i^{(0)} + x_i^{(1)}t + x_i^{(2)}t^2 + \cdots, \qquad i = 1, \dots, n.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Suppose $X = \operatorname{Spec} R$ for $R = \mathbb{C}[x_1, \dots, x_n]/\langle f_1, \dots, f_k \rangle.$

 \mathbb{C} -valued points of $X_{\infty} \leftrightarrow \mathbb{C}[[t]]$ -valued points of X.

Morphism Spec $\mathbb{C}[[t]] \to \text{Spec } \mathbb{C}[x_1, \dots, x_n]/\langle f_1, \dots, f_k \rangle$ corresponds to a ring homomorphism

$$\phi: \mathbb{C}[x_1,\ldots,x_n]/\langle f_1,\ldots,f_k\rangle \to \mathbb{C}[[t]].$$

 ϕ is determined by its **values on the generators** x_1, \ldots, x_n . We write

$$\phi(x_i) = x_i^{(0)} + x_i^{(1)}t + x_i^{(2)}t^2 + \cdots, \qquad i = 1, \dots, n.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Suppose $X = \operatorname{Spec} R$ for $R = \mathbb{C}[x_1, \dots, x_n]/\langle f_1, \dots, f_k \rangle.$

 \mathbb{C} -valued points of $X_{\infty} \leftrightarrow \mathbb{C}[[t]]$ -valued points of X.

Morphism Spec $\mathbb{C}[[t]] \to \text{Spec } \mathbb{C}[x_1, \dots, x_n]/\langle f_1, \dots, f_k \rangle$ corresponds to a ring homomorphism

$$\phi: \mathbb{C}[x_1,\ldots,x_n]/\langle f_1,\ldots,f_k\rangle \to \mathbb{C}[[t]].$$

 ϕ is determined by its values on the generators x_1, \ldots, x_n .

We write

$$\phi(x_i) = x_i^{(0)} + x_i^{(1)}t + x_i^{(2)}t^2 + \cdots, \qquad i = 1, \dots, n.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Suppose $X = \operatorname{Spec} R$ for $R = \mathbb{C}[x_1, \dots, x_n]/\langle f_1, \dots, f_k \rangle.$

 \mathbb{C} -valued points of $X_{\infty} \leftrightarrow \mathbb{C}[[t]]$ -valued points of X.

Morphism Spec $\mathbb{C}[[t]] \to \text{Spec } \mathbb{C}[x_1, \dots, x_n]/\langle f_1, \dots, f_k \rangle$ corresponds to a ring homomorphism

$$\phi: \mathbb{C}[x_1,\ldots,x_n]/\langle f_1,\ldots,f_k\rangle \to \mathbb{C}[[t]].$$

 ϕ is determined by its **values on the generators** x_1, \ldots, x_n . We write

$$\phi(x_i) = x_i^{(0)} + x_i^{(1)}t + x_i^{(2)}t^2 + \cdots, \qquad i = 1, \dots, n.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Since ϕ is a ring homomorphism, for each $\ell = 1, ..., k$ we have $f_{\ell}(\phi(x_1), ..., \phi(x_n))$ $= f_{\ell}\left((x_1^{(0)} + x_1^{(1)}t + x_1^{(2)}t^2 + \cdots), ..., (x_n^{(0)} + x_n^{(1)}t + x_n^{(2)}t^2 + \cdots)\right)$ = 0.

We regard $x_i^{(j)}$ for j = 0, 1, 2, ..., as **coordinate functions** on X_{∞} .

Polynomial ring $\mathbb{C}[x_i^{(j)}]$ has a derivation *D* defined as follows:

1. $D(x_i^{(j)}) = x_i^{(j+1)}$.

2. Extend by the Leibniz rule to monomials.

3. Extend by \mathbb{C} -linearity to all of $\mathbb{C}[x_i^{(j)}]$

Since ϕ is a ring homomorphism, for each $\ell = 1, ..., k$ we have $f_{\ell}(\phi(x_1), ..., \phi(x_n))$ $= f_{\ell}\left((x_1^{(0)} + x_1^{(1)}t + x_1^{(2)}t^2 + \cdots), ..., (x_n^{(0)} + x_n^{(1)}t + x_n^{(2)}t^2 + \cdots)\right)$ = 0.

We regard $x_i^{(j)}$ for j = 0, 1, 2, ..., as **coordinate functions** on X_{∞} .

Polynomial ring $\mathbb{C}[x_i^{(j)}]$ has a derivation D defined as follows:

1.
$$D(x_i^{(j)}) = x_i^{(j+1)}$$
.

2. Extend by the Leibniz rule to monomials.

3. Extend by \mathbb{C} -linearity to all of $\mathbb{C}[x_i^{(j)}]$

Since ϕ is a ring homomorphism, for each $\ell = 1, ..., k$ we have $f_{\ell}(\phi(x_1), ..., \phi(x_n))$ $= f_{\ell}\left((x_1^{(0)} + x_1^{(1)}t + x_1^{(2)}t^2 + \cdots), ..., (x_n^{(0)} + x_n^{(1)}t + x_n^{(2)}t^2 + \cdots)\right)$ = 0.

We regard $x_i^{(j)}$ for j = 0, 1, 2, ..., as **coordinate functions** on X_{∞} .

Polynomial ring $\mathbb{C}[x_i^{(j)}]$ has a derivation D defined as follows:

D(x_i^(j)) = x_i^(j+1).
 Extend by the Leibniz rule to monomials.
 Extend by C-linearity to all of C[x_i^(j)]

Since ϕ is a ring homomorphism, for each $\ell = 1, ..., k$ we have $f_{\ell}(\phi(x_1), ..., \phi(x_n))$ $= f_{\ell}\left((x_1^{(0)} + x_1^{(1)}t + x_1^{(2)}t^2 + \cdots), ..., (x_n^{(0)} + x_n^{(1)}t + x_n^{(2)}t^2 + \cdots)\right)$ = 0.

We regard $x_i^{(j)}$ for j = 0, 1, 2, ..., as **coordinate functions** on X_{∞} .

Polynomial ring $\mathbb{C}[x_i^{(j)}]$ has a derivation D defined as follows:

1.
$$D(x_i^{(j)}) = x_i^{(j+1)}$$
.

2. Extend by the Leibniz rule to monomials.

3. Extend by \mathbb{C} -linearity to all of $\mathbb{C}[x_i^{(j)}]$

Ex:

$$D\left(x_1^{(3)}(x_2^{(4)})^3 + 2(x_3^{(5)})^7\right)$$

= $x_1^{(4)}(x_2^{(4)})^3 + x_1^{(3)}3(x_2^{(4)})^2x_2^{(5)} + 14(x_3^{(5)})^6x_3^{(6)}$.

In particular, $f_\ell^{(r)}=D^r(f_\ell)$ is a well-defined polynomial in $\mathbb{C}[x_i^{(j)}].$

The requirement

$$f_{\ell}(\phi(x_1),\ldots,\phi(x_n))=0, \text{ for all } \ell=1,\ldots,k$$

translates to the following condition:

For all $\ell = 1, ..., k$ and $r \ge 0$, $f_{\ell}^{(r)}(x_1^{(0)}, ..., x_n^{(0)}, x_1^{(1)}, ..., x_n^{(1)}, ..., x_1^{(r)}, ..., x_n^{(r)}) = 0.$

Ex:

$$D\left(x_1^{(3)}(x_2^{(4)})^3 + 2(x_3^{(5)})^7\right)$$

= $x_1^{(4)}(x_2^{(4)})^3 + x_1^{(3)}3(x_2^{(4)})^2x_2^{(5)} + 14(x_3^{(5)})^6x_3^{(6)}.$

In particular, $f_{\ell}^{(r)} = D^r(f_{\ell})$ is a well-defined polynomial in $\mathbb{C}[x_i^{(j)}]$.

The requirement

$$f_\ell(\phi(x_1),\ldots,\phi(x_n))=0, \text{ for all } \ell=1,\ldots,k$$

translates to the following condition:

For all $\ell = 1, ..., k$ and $r \ge 0$, $f_{\ell}^{(r)}(x_1^{(0)}, ..., x_n^{(0)}, x_1^{(1)}, ..., x_n^{(1)}, ..., x_1^{(r)}, ..., x_n^{(r)}) = 0.$

Ex:

$$D\left(x_1^{(3)}(x_2^{(4)})^3 + 2(x_3^{(5)})^7\right)$$

= $x_1^{(4)}(x_2^{(4)})^3 + x_1^{(3)}3(x_2^{(4)})^2x_2^{(5)} + 14(x_3^{(5)})^6x_3^{(6)}$

In particular, $f_{\ell}^{(r)} = D^r(f_{\ell})$ is a well-defined polynomial in $\mathbb{C}[x_i^{(j)}]$.

The requirement

$$f_\ell(\phi(x_1),\ldots,\phi(x_n))=0, ext{ for all } \ell=1,\ldots,k$$

translates to the following condition:

For all $\ell = 1, ..., k$ and $r \ge 0$, $f_{\ell}^{(r)}(x_1^{(0)}, ..., x_n^{(0)}, x_1^{(1)}, ..., x_n^{(1)}, ..., x_1^{(r)}, ..., x_n^{(r)}) = 0.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Ex:

$$D\left(x_1^{(3)}(x_2^{(4)})^3 + 2(x_3^{(5)})^7\right)$$

= $x_1^{(4)}(x_2^{(4)})^3 + x_1^{(3)}3(x_2^{(4)})^2x_2^{(5)} + 14(x_3^{(5)})^6x_3^{(6)}$

In particular, $f_{\ell}^{(r)} = D^r(f_{\ell})$ is a well-defined polynomial in $\mathbb{C}[x_i^{(j)}]$.

The requirement

$$f_\ell(\phi(x_1),\ldots,\phi(x_n))=0, ext{ for all } \ell=1,\ldots,k$$

translates to the following condition:

For all
$$\ell = 1, ..., k$$
 and $r \ge 0$,
 $f_{\ell}^{(r)}(x_1^{(0)}, ..., x_n^{(0)}, x_1^{(1)}, ..., x_n^{(1)}, ..., x_1^{(r)}, ..., x_n^{(r)}) = 0.$

Therefore $X_{\infty} = \operatorname{Spec} R_{\infty}$, where

$$R_{\infty} = \mathbb{C}[x_1^{(j)}, \ldots, x_n^{(j)} | j \ge 0] / \langle f_1^{(\ell)}, \ldots, f_k^{(\ell)} | \ell \ge 0 \rangle.$$

Identifying x_i with $x_i^{(0)}$, we have embedding $R \hookrightarrow R_{\infty}$.

By construction,

- 1. R generates R_{∞} as a differential algebra.
- 2. Ideal of relations among $x_i^{(j)}$ is a differential ideal, and is generated by relations in R.

 R_{∞} satisfies a **universal property**:

If S is any differential commutative ring containing R which is generated by R as a differential ring, then S is a quotient of \mathbb{R}_{∞} .

Therefore $X_{\infty} = \operatorname{Spec} R_{\infty}$, where

$$R_{\infty} = \mathbb{C}[x_1^{(j)}, \ldots, x_n^{(j)} | j \ge 0] / \langle f_1^{(\ell)}, \ldots, f_k^{(\ell)} | \ell \ge 0 \rangle.$$

Identifying x_i with $x_i^{(0)}$, we have embedding $R \hookrightarrow R_{\infty}$.

By construction,

- 1. R generates R_{∞} as a differential algebra.
- 2. Ideal of relations among $x_i^{(j)}$ is a differential ideal, and is generated by relations in R.

 R_{∞} satisfies a **universal property**:

If S is any differential commutative ring containing R which is generated by R as a differential ring, then S is a quotient of \mathbb{R}_{∞} .

Therefore $X_{\infty} = \operatorname{Spec} R_{\infty}$, where

$$R_{\infty} = \mathbb{C}[x_1^{(j)}, \ldots, x_n^{(j)} | j \ge 0] / \langle f_1^{(\ell)}, \ldots, f_k^{(\ell)} | \ell \ge 0 \rangle.$$

Identifying x_i with $x_i^{(0)}$, we have embedding $R \hookrightarrow R_{\infty}$.

By construction,

- 1. R generates R_{∞} as a differential algebra.
- 2. Ideal of relations among $x_i^{(j)}$ is a differential ideal, and is generated by relations in R.

 R_{∞} satisfies a **universal property**:

If S is any differential commutative ring containing R which is generated by R as a differential ring, then S is a quotient of \mathbb{R}_{∞} .

Therefore $X_{\infty} = \operatorname{Spec} R_{\infty}$, where

$$R_{\infty} = \mathbb{C}[x_1^{(j)}, \ldots, x_n^{(j)} | j \ge 0] / \langle f_1^{(\ell)}, \ldots, f_k^{(\ell)} | \ell \ge 0 \rangle.$$

Identifying x_i with $x_i^{(0)}$, we have embedding $R \hookrightarrow R_{\infty}$.

By construction,

- 1. R generates R_{∞} as a differential algebra.
- 2. Ideal of relations among $x_i^{(j)}$ is a differential ideal, and is generated by relations in R.

R_{∞} satisfies a **universal property**:

If S is any differential commutative ring containing R which is generated by R as a differential ring, then S is a quotient, of \mathbb{R}_{∞} .

Therefore $X_{\infty} = \operatorname{Spec} R_{\infty}$, where

$$R_{\infty} = \mathbb{C}[x_1^{(j)}, \ldots, x_n^{(j)} | j \ge 0] / \langle f_1^{(\ell)}, \ldots, f_k^{(\ell)} | \ell \ge 0 \rangle.$$

Identifying x_i with $x_i^{(0)}$, we have embedding $R \hookrightarrow R_{\infty}$.

By construction,

- 1. R generates R_{∞} as a differential algebra.
- 2. Ideal of relations among $x_i^{(j)}$ is a differential ideal, and is generated by relations in R.

R_{∞} satisfies a **universal property**:

If S is any differential commutative ring containing R which is generated by R as a differential ring, then S is a quotient of R_{∞} .

26. Invariant theory of arc spaces

G an algebraic group, V a finite-dimensional G-module.

Arc space G_∞ is an algebraic group, and G_∞ acts on V_∞ .

Consider categorical quotient $V /\!\!/ G = \operatorname{Spec} \mathbb{C}[V]^G$.

Quotient morphism $V \to V /\!\!/ G$ induces a morphism $V_{\infty} \to (V /\!\!/ G)_{\infty}$, so we have a morphism $V_{\infty} /\!\!/ G_{\infty} \to (V /\!\!/ G)_{\infty}$.

Induced ring homomorphism

$$\psi_{G,V}:\mathbb{C}[(V/\!\!/ G)_{\infty}]\to\mathbb{C}[V_{\infty}]^{G_{\infty}}.$$

In general, $\psi_{G,V}$ is neither injective nor surjective.
G an algebraic group, V a finite-dimensional G-module.

Arc space G_{∞} is an algebraic group, and G_{∞} acts on V_{∞} .

Consider categorical quotient $V /\!\!/ G = \operatorname{Spec} \mathbb{C}[V]^G$.

Quotient morphism $V \to V /\!\!/ G$ induces a morphism $V_{\infty} \to (V /\!\!/ G)_{\infty}$, so we have a morphism $V_{\infty} /\!\!/ G_{\infty} \to (V /\!\!/ G)_{\infty}$.

Induced ring homomorphism

$$\psi_{G,V}:\mathbb{C}[(V/\!\!/ G)_{\infty}]\to\mathbb{C}[V_{\infty}]^{G_{\infty}}$$

G an algebraic group, V a finite-dimensional G-module.

Arc space G_{∞} is an algebraic group, and G_{∞} acts on V_{∞} .

Consider categorical quotient $V/\!\!/ G = \operatorname{Spec} \mathbb{C}[V]^G$.

Quotient morphism $V \to V /\!\!/ G$ induces a morphism $V_{\infty} \to (V /\!\!/ G)_{\infty}$, so we have a morphism $V_{\infty} /\!\!/ G_{\infty} \to (V /\!\!/ G)_{\infty}$.

Induced ring homomorphism

$$\psi_{G,V}:\mathbb{C}[(V/\!\!/ G)_{\infty}]\to\mathbb{C}[V_{\infty}]^{G_{\infty}}$$

G an algebraic group, V a finite-dimensional G-module.

Arc space G_{∞} is an algebraic group, and G_{∞} acts on V_{∞} .

Consider categorical quotient $V /\!\!/ G = \operatorname{Spec} \mathbb{C}[V]^G$.

Quotient morphism $V \to V /\!\!/ G$ induces a morphism $V_{\infty} \to (V /\!\!/ G)_{\infty}$, so we have a morphism $V_{\infty} /\!\!/ G_{\infty} \to (V /\!\!/ G)_{\infty}$.

Induced ring homomorphism

$$\psi_{G,V}:\mathbb{C}[(V/\!\!/ G)_{\infty}]\to\mathbb{C}[V_{\infty}]^{G_{\infty}}$$

G an algebraic group, V a finite-dimensional G-module.

Arc space G_{∞} is an algebraic group, and G_{∞} acts on V_{∞} .

Consider categorical quotient $V/\!\!/ G = \operatorname{Spec} \mathbb{C}[V]^G$.

Quotient morphism $V \to V /\!\!/ G$ induces a morphism $V_{\infty} \to (V /\!\!/ G)_{\infty}$, so we have a morphism $V_{\infty} /\!\!/ G_{\infty} \to (V /\!\!/ G)_{\infty}$.

Induced ring homomorphism

$$\psi_{G,V}:\mathbb{C}[(V/\!\!/ G)_{\infty}]\to\mathbb{C}[V_{\infty}]^{G_{\infty}}.$$

G an algebraic group, V a finite-dimensional G-module.

Arc space G_{∞} is an algebraic group, and G_{∞} acts on V_{∞} .

Consider categorical quotient $V /\!\!/ G = \operatorname{Spec} \mathbb{C}[V]^G$.

Quotient morphism $V \to V /\!\!/ G$ induces a morphism $V_{\infty} \to (V /\!\!/ G)_{\infty}$, so we have a morphism $V_{\infty} /\!\!/ G_{\infty} \to (V /\!\!/ G)_{\infty}$.

Induced ring homomorphism

$$\psi_{G,V}:\mathbb{C}[(V/\!\!/ G)_{\infty}]\to\mathbb{C}[V_{\infty}]^{G_{\infty}}.$$

Thm: (L., Song, 2021) For $n \ge 1$, let $G = GL_n$ and $W = \mathbb{C}^n$ be the standard representation.

Let $V = W^{\oplus p} \oplus (W^*)^{\oplus q}$ be the sum of p copies of W and q copies of the dual module W^* .

Then for all $p, q, \psi_{G,V}$ is an isomorphism.

Thm: (L., Song, 2021) For $n \ge 1$, let $G = Sp_n$ and $W = \mathbb{C}^{2n}$ be the standard representation.

Let $V = W^{\oplus p}$ be the sum of p copies of W. Then for all p, $\psi_{G,V}$ is an isomorphism.

Thm: (L., Song, 2021) For $n \ge 1$, let $G = GL_n$ and $W = \mathbb{C}^n$ be the standard representation.

Let $V = W^{\oplus p} \oplus (W^*)^{\oplus q}$ be the sum of p copies of W and q copies of the dual module W^* .

Then for all $p, q, \psi_{G,V}$ is an isomorphism.

Thm: (L., Song, 2021) For $n \ge 1$, let $G = Sp_n$ and $W = \mathbb{C}^{2n}$ be the standard representation.

Let $V = W^{\oplus p}$ be the sum of p copies of W. Then for all p, $\psi_{G,V}$ is an isomorphism.

Thm: (L., Song, 2021) For $n \ge 1$, let $G = GL_n$ and $W = \mathbb{C}^n$ be the standard representation.

Let $V = W^{\oplus p} \oplus (W^*)^{\oplus q}$ be the sum of p copies of W and q copies of the dual module W^* .

Then for all $p, q, \psi_{G,V}$ is an isomorphism.

Thm: (L., Song, 2021) For $n \ge 1$, let $G = Sp_n$ and $W = \mathbb{C}^{2n}$ be the standard representation.

Let $V = W^{\oplus p}$ be the sum of p copies of W. Then for all p, $\psi_{G,V}$ is an isomorphism.

Thm: (L., Song, 2021) For $n \ge 1$, let $G = GL_n$ and $W = \mathbb{C}^n$ be the standard representation.

Let $V = W^{\oplus p} \oplus (W^*)^{\oplus q}$ be the sum of p copies of W and q copies of the dual module W^* .

Then for all $p, q, \psi_{G,V}$ is an isomorphism.

Thm: (L., Song, 2021) For $n \ge 1$, let $G = Sp_n$ and $W = \mathbb{C}^{2n}$ be the standard representation.

Let $V = W^{\oplus p}$ be the sum of p copies of W. Then for all p, $\psi_{G,V}$ is an isomorphism.

Thm: (L., Song, 2021) For $n \ge 1$, let $G = GL_n$ and $W = \mathbb{C}^n$ be the standard representation.

Let $V = W^{\oplus p} \oplus (W^*)^{\oplus q}$ be the sum of p copies of W and q copies of the dual module W^* .

Then for all $p, q, \psi_{G,V}$ is an isomorphism.

Thm: (L., Song, 2021) For $n \ge 1$, let $G = Sp_n$ and $W = \mathbb{C}^{2n}$ be the standard representation.

Let $V = W^{\oplus p}$ be the sum of p copies of W. Then for all p, $\psi_{G,V}$ is an isomorphism.

Thm: (L., Song, 2021) For $n \ge 2$, let $G = SL_n$ and $W = \mathbb{C}^n$ be the standard representation.

Let $V = W^{\oplus p} \oplus (W^*)^{\oplus q}$ be the sum of p copies of W and q copies of the dual module W^* . Then

- 1. If $p,q \leq n+2$, $\psi_{G,V}$ is an isomorphism.
- 2. If max $\{p,q\} > n+2$, $\psi_{G,V}$ is surjective but not injective.
- 3. Its kernel coincides with the nilradical $\mathcal{N} \subseteq \mathbb{C}[(V/\!\!/ G)_{\infty}]$, finitely generated as a differential ideal.

Note: Similar results for the orthogonal groups are also expected but cannot be proven at the moment.

Thm: (L., Song, 2021) For $n \ge 2$, let $G = SL_n$ and $W = \mathbb{C}^n$ be the standard representation.

Let $V = W^{\oplus p} \oplus (W^*)^{\oplus q}$ be the sum of p copies of W and q copies of the dual module W^* . Then

- 1. If $p, q \leq n+2$, $\psi_{G,V}$ is an isomorphism.
- 2. If $\max\{p,q\} > n+2$, $\psi_{G,V}$ is surjective but not injective.
- 3. Its kernel coincides with the nilradical $\mathcal{N} \subseteq \mathbb{C}[(V/\!\!/ G)_{\infty}]$, finitely generated as a differential ideal.

Note: Similar results for the orthogonal groups are also expected but cannot be proven at the moment.

Thm: (L., Song, 2021) For $n \ge 2$, let $G = SL_n$ and $W = \mathbb{C}^n$ be the standard representation.

Let $V = W^{\oplus p} \oplus (W^*)^{\oplus q}$ be the sum of p copies of W and q copies of the dual module W^* . Then

- 1. If $p, q \leq n+2$, $\psi_{G,V}$ is an isomorphism.
- 2. If $\max\{p,q\} > n+2$, $\psi_{G,V}$ is surjective but not injective.
- 3. Its kernel coincides with the nilradical $\mathcal{N} \subseteq \mathbb{C}[(V/\!\!/ G)_{\infty}]$, finitely generated as a differential ideal.

Note: Similar results for the orthogonal groups are also expected but cannot be proven at the moment.

Suppose G is an algebraic group, \tilde{U} and U finite-dimensional G-modules.

For each $j \ge 0$, let $\tilde{U}_j \cong \tilde{U}^*$.

Fix a basis $\{x_{1,j}, \ldots, x_{m,j}\}$ for \tilde{U}_j .

Let $S^{\tilde{U}} = \mathbb{C}[\bigoplus_{j\geq 0} \tilde{U}_j]$, with differential D defined by $D(x_{i,j}) = x_{i,j+1}$.

The map $\mathbb{C}[\tilde{U}_{\infty}] \to S^{\tilde{U}}$ sending $x_i^{(j)} \mapsto x_{i,j}$ is an isomorphism of differential algebras.

Suppose G is an algebraic group, \tilde{U} and U finite-dimensional G-modules.

For each $j \ge 0$, let $\tilde{U}_j \cong \tilde{U}^*$.

Fix a basis $\{x_{1,j}, \ldots, x_{m,j}\}$ for \tilde{U}_j .

Let $S^{\tilde{U}} = \mathbb{C}[\bigoplus_{j\geq 0} \tilde{U}_j]$, with differential D defined by $D(x_{i,j}) = x_{i,j+1}$.

The map $\mathbb{C}[\tilde{U}_{\infty}] \to S^{\tilde{U}}$ sending $x_i^{(j)} \mapsto x_{i,j}$ is an isomorphism of differential algebras.

Suppose G is an algebraic group, \tilde{U} and U finite-dimensional G-modules.

For each $j \ge 0$, let $\tilde{U}_j \cong \tilde{U}^*$.

Fix a basis $\{x_{1,j}, \ldots, x_{m,j}\}$ for \tilde{U}_j .

Let $S^U = \mathbb{C}[\bigoplus_{j\geq 0} \tilde{U}_j]$, with differential D defined by $D(x_{i,j}) = x_{i,j+1}$.

The map $\mathbb{C}[\tilde{U}_{\infty}] \to S^{\tilde{U}}$ sending $x_i^{(j)} \mapsto x_{i,j}$ is an isomorphism of differential algebras.

Suppose G is an algebraic group, \tilde{U} and U finite-dimensional G-modules.

For each $j \ge 0$, let $\tilde{U}_j \cong \tilde{U}^*$.

Fix a basis $\{x_{1,j}, \ldots, x_{m,j}\}$ for \tilde{U}_j .

Let $S^{\tilde{U}} = \mathbb{C}[\bigoplus_{j \ge 0} \tilde{U}_j]$, with differential D defined by $D(x_{i,j}) = x_{i,j+1}$.

The map $\mathbb{C}[\tilde{U}_{\infty}] \to S^{\tilde{U}}$ sending $x_i^{(j)} \mapsto x_{i,j}$ is an isomorphism of differential algebras.

(日)((1))

Suppose G is an algebraic group, \tilde{U} and U finite-dimensional G-modules.

For each $j \ge 0$, let $\tilde{U}_j \cong \tilde{U}^*$.

Fix a basis $\{x_{1,j}, \ldots, x_{m,j}\}$ for \tilde{U}_j .

Let $S^{\tilde{U}} = \mathbb{C}[\bigoplus_{j \ge 0} \tilde{U}_j]$, with differential D defined by $D(x_{i,j}) = x_{i,j+1}$.

The map $\mathbb{C}[\tilde{U}_{\infty}] \to S^{\tilde{U}}$ sending $x_i^{(j)} \mapsto x_{i,j}$ is an isomorphism of differential algebras.

(日)((1))

For $j \ge 0$, let $U_j \cong U^*$ and let $L^U = \bigwedge \bigoplus_{j \ge 0} U_j$.

Fix a basis $\{y_{1,j}, \ldots, y_{n,j}\}$ for U_j .

Extend the differential on $S^{\tilde{U}}$ to an even differential D on $S^{\tilde{U}} \otimes L^{U}$, defined on generators by $D(y_{i,j}) = y_{i,j+1}$.

Then G_{∞} acts on $S^{\tilde{U}} \otimes L^{U}$, and we may consider the invariant ring $(S^{\tilde{U}} \otimes L^{U})^{G_{\infty}}$.

Let $S_0^{\tilde{U}} = \mathbb{C}[\tilde{U}_0] \subseteq S^{\tilde{U}}$ and $L_0^U = \bigwedge(\tilde{U}_0) \subseteq L$.

For $j \ge 0$, let $U_j \cong U^*$ and let $L^U = \bigwedge \bigoplus_{j\ge 0} U_j$. Fix a basis $\{y_{1,j}, \ldots, y_{n,j}\}$ for U_j .

Extend the differential on $S^{\tilde{U}}$ to an even differential D on $S^{\tilde{U}} \otimes L^{U}$, defined on generators by $D(y_{i,j}) = y_{i,j+1}$.

Then G_{∞} acts on $S^{\tilde{U}} \otimes L^{U}$, and we may consider the invariant ring $(S^{\tilde{U}} \otimes L^{U})^{G_{\infty}}$.

Let $S_0^{\tilde{U}} = \mathbb{C}[\tilde{U}_0] \subseteq S^{\tilde{U}}$ and $L_0^U = \bigwedge(\tilde{U}_0) \subseteq L$.

For
$$j \ge 0$$
, let $U_j \cong U^*$ and let $L^U = \bigwedge \bigoplus_{j \ge 0} U_j$.

Fix a basis $\{y_{1,j}, \ldots, y_{n,j}\}$ for U_j .

Extend the differential on $S^{\tilde{U}}$ to an even differential D on $S^{\tilde{U}} \otimes L^{U}$, defined on generators by $D(y_{i,j}) = y_{i,j+1}$.

Then G_{∞} acts on $S^{\tilde{U}} \otimes L^{U}$, and we may consider the invariant ring $(S^{\tilde{U}} \otimes L^{U})^{G_{\infty}}$.

(日)((1))

Let
$$S_0^{\tilde{U}} = \mathbb{C}[\tilde{U}_0] \subseteq S^{\tilde{U}}$$
 and $L_0^U = \bigwedge(\tilde{U}_0) \subseteq L$.

For
$$j \ge 0$$
, let $U_j \cong U^*$ and let $L^U = \bigwedge \bigoplus_{j \ge 0} U_j$.

Fix a basis $\{y_{1,j}, \ldots, y_{n,j}\}$ for U_j .

Extend the differential on $S^{\tilde{U}}$ to an even differential D on $S^{\tilde{U}} \otimes L^{U}$, defined on generators by $D(y_{i,j}) = y_{i,j+1}$.

Then G_{∞} acts on $S^{\tilde{U}} \otimes L^{U}$, and we may consider the invariant ring $(S^{\tilde{U}} \otimes L^{U})^{G_{\infty}}$.

Let $S_0^{\tilde{U}} = \mathbb{C}[\tilde{U}_0] \subseteq S^{\tilde{U}}$ and $L_0^U = \bigwedge(\tilde{U}_0) \subseteq L$.

For
$$j \ge 0$$
, let $U_j \cong U^*$ and let $L^U = \bigwedge \bigoplus_{j \ge 0} U_j$.

Fix a basis $\{y_{1,j}, \ldots, y_{n,j}\}$ for U_j .

Extend the differential on $S^{\tilde{U}}$ to an even differential D on $S^{\tilde{U}} \otimes L^{U}$, defined on generators by $D(y_{i,j}) = y_{i,j+1}$.

Then G_{∞} acts on $S^{\tilde{U}} \otimes L^{U}$, and we may consider the invariant ring $(S^{\tilde{U}} \otimes L^{U})^{G_{\infty}}$.

(日)((1))

Let
$$S_0^{\tilde{U}} = \mathbb{C}[\tilde{U}_0] \subseteq S^{\tilde{U}}$$
 and $L_0^U = \bigwedge(\tilde{U}_0) \subseteq L$.

For
$$j \ge 0$$
, let $U_j \cong U^*$ and let $L^U = \bigwedge \bigoplus_{j \ge 0} U_j$.

Fix a basis $\{y_{1,j}, \ldots, y_{n,j}\}$ for U_j .

Extend the differential on $S^{\tilde{U}}$ to an even differential D on $S^{\tilde{U}} \otimes L^{U}$, defined on generators by $D(y_{i,j}) = y_{i,j+1}$.

Then G_{∞} acts on $S^{\tilde{U}} \otimes L^{U}$, and we may consider the invariant ring $(S^{\tilde{U}} \otimes L^{U})^{G_{\infty}}$.

Let
$$S_0^{\tilde{U}} = \mathbb{C}[\tilde{U}_0] \subseteq S^{\tilde{U}}$$
 and $L_0^U = \bigwedge(\tilde{U}_0) \subseteq L$.

Since G acts on the direct sum $\tilde{U} \oplus U^{\oplus k}$, we have a map $\mathbb{C}[((\tilde{U} \oplus U^{\oplus k}) /\!\!/ G)_{\infty}] \to \mathbb{C}[(\tilde{U} \oplus U^{\oplus k})_{\infty}]^{G_{\infty}}.$ (1)

Thm: (L., Song, 2021). Suppose that (1) is surjective for all $k \ge 0$. Then $(S^{\tilde{U}} \otimes L^U)^{G_{\infty}} = \langle (S_0^{\tilde{U}} \otimes L_0^U)^G \rangle.$

In particular, if we fix a generating set $\{\alpha_1, \ldots, \alpha_k\}$ for $(S_0^{\tilde{U}} \otimes L_0^U)^G$, then $\{\alpha_1, \ldots, \alpha_k\}$ generates $(S^{\tilde{U}} \otimes L^U)^{G_{\infty}}$ as a differential algebra.

A D N A 目 N A E N A E N A B N A C N

Main result follows from cases

1.
$$G = SU_d$$
 and $U = \mathbb{C}^d = \tilde{U}$,
2. $G = Sp_\ell$ and $U = \mathbb{C}^{2\ell} = \tilde{U}$.

Since G acts on the direct sum $\tilde{U} \oplus U^{\oplus k}$, we have a map $\mathbb{C}[((\tilde{U} \oplus U^{\oplus k}) / \!/ G)_{\infty}] \to \mathbb{C}[(\tilde{U} \oplus U^{\oplus k})_{\infty}]^{G_{\infty}}.$ (1)

Thm: (L., Song, 2021). Suppose that (1) is surjective for all $k \ge 0$. Then $(S^{\tilde{U}} \otimes L^U)^{G_{\infty}} = \langle (S_0^{\tilde{U}} \otimes L_0^U)^G \rangle.$

In particular, if we fix a generating set $\{\alpha_1, \ldots, \alpha_k\}$ for $(S_0^{\tilde{U}} \otimes L_0^U)^G$, then $\{\alpha_1, \ldots, \alpha_k\}$ generates $(S^{\tilde{U}} \otimes L^U)^{G_{\infty}}$ as a differential algebra.

Main result follows from cases 1. $G = SU_d$ and $U = \mathbb{C}^d = \hat{U}$

2.
$$G=Sp_\ell$$
 and $U=\mathbb{C}^{2\ell}= ilde{U}.$

Since G acts on the direct sum $\tilde{U} \oplus U^{\oplus k}$, we have a map $\mathbb{C}[((\tilde{U} \oplus U^{\oplus k}) / \!/ G)_{\infty}] \to \mathbb{C}[(\tilde{U} \oplus U^{\oplus k})_{\infty}]^{G_{\infty}}.$ (1)

Thm: (L., Song, 2021). Suppose that (1) is surjective for all $k \ge 0$. Then $(S^{\tilde{U}} \otimes L^U)^{G_{\infty}} = \langle (S_0^{\tilde{U}} \otimes L_0^U)^G \rangle.$

In particular, if we fix a generating set $\{\alpha_1, \ldots, \alpha_k\}$ for $(S_0^{\tilde{U}} \otimes L_0^U)^G$, then $\{\alpha_1, \ldots, \alpha_k\}$ generates $(S^{\tilde{U}} \otimes L^U)^{G_{\infty}}$ as a differential algebra.

Main result follows from cases

1.
$$G = SU_d$$
 and $U = \mathbb{C}^d = \tilde{U}$,
2. $G = Sp_\ell$ and $U = \mathbb{C}^{2\ell} = \tilde{U}$.