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2. Vertex operator algebras

Vertex operator algebras (VOAs) were studied by physicists in the
1980s and axiomatized by Borcherds (1986).

A VOA V is a vector space which is linearly isomorphic to an
algebra of formal power series in End(V)[[z , z−1]].

a ↔ a(z) =
∑
n∈Z

a(n)z−n−1, a(n) ∈ End(V).

V has Wick product : ab :, generally nonassociative,
noncommutative.

Unit 1, derivation ∂ = d
dz .

Conformal weight grading V =
⊕

n≥0 V[n], n ∈ Z or 1
2Z
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3. Operator product expansion

Let V be a VOA, a, b ∈ V. Then

a(z)b(w) =
∑
n≥0

(a(n)b)(w)(z − w)−n−1+ : a(z)b(w) : .

Expansion of meromorphic function with poles along z = w , where

1. : a(z)b(w) : is regular part.

2. (a(n)b)(w) is polar part of order n + 1.

Defines bilinear products (−(n)−) : V ⊗ V → V, where
(a, b) 7→ a(n)b.

Also : a(z)b(w) : |z=w coincides with Wick product.

Often write

a(z)b(w) ∼
∑
n≥0

(a(n)b)(w)(z − w)−n−1,

where ∼ means equal modulo regular part.



3. Operator product expansion

Let V be a VOA, a, b ∈ V. Then

a(z)b(w) =
∑
n≥0

(a(n)b)(w)(z − w)−n−1+ : a(z)b(w) : .

Expansion of meromorphic function with poles along z = w , where

1. : a(z)b(w) : is regular part.

2. (a(n)b)(w) is polar part of order n + 1.

Defines bilinear products (−(n)−) : V ⊗ V → V, where
(a, b) 7→ a(n)b.

Also : a(z)b(w) : |z=w coincides with Wick product.

Often write

a(z)b(w) ∼
∑
n≥0

(a(n)b)(w)(z − w)−n−1,

where ∼ means equal modulo regular part.



3. Operator product expansion

Let V be a VOA, a, b ∈ V. Then

a(z)b(w) =
∑
n≥0

(a(n)b)(w)(z − w)−n−1+ : a(z)b(w) : .

Expansion of meromorphic function with poles along z = w , where

1. : a(z)b(w) : is regular part.

2. (a(n)b)(w) is polar part of order n + 1.

Defines bilinear products (−(n)−) : V ⊗ V → V, where
(a, b) 7→ a(n)b.

Also : a(z)b(w) : |z=w coincides with Wick product.

Often write

a(z)b(w) ∼
∑
n≥0

(a(n)b)(w)(z − w)−n−1,

where ∼ means equal modulo regular part.



3. Operator product expansion

Let V be a VOA, a, b ∈ V. Then

a(z)b(w) =
∑
n≥0

(a(n)b)(w)(z − w)−n−1+ : a(z)b(w) : .

Expansion of meromorphic function with poles along z = w , where

1. : a(z)b(w) : is regular part.

2. (a(n)b)(w) is polar part of order n + 1.

Defines bilinear products (−(n)−) : V ⊗ V → V, where
(a, b) 7→ a(n)b.

Also : a(z)b(w) : |z=w coincides with Wick product.

Often write

a(z)b(w) ∼
∑
n≥0

(a(n)b)(w)(z − w)−n−1,

where ∼ means equal modulo regular part.



3. Operator product expansion

Let V be a VOA, a, b ∈ V. Then

a(z)b(w) =
∑
n≥0

(a(n)b)(w)(z − w)−n−1+ : a(z)b(w) : .

Expansion of meromorphic function with poles along z = w , where

1. : a(z)b(w) : is regular part.

2. (a(n)b)(w) is polar part of order n + 1.

Defines bilinear products (−(n)−) : V ⊗ V → V, where
(a, b) 7→ a(n)b.

Also : a(z)b(w) : |z=w coincides with Wick product.

Often write

a(z)b(w) ∼
∑
n≥0

(a(n)b)(w)(z − w)−n−1,

where ∼ means equal modulo regular part.



4. βγ and bc systems

Let V = Cd .

βγ-system S = S(V ) has even generators βx , γx
′
, linear in x ∈ V ,

x ′ ∈ V ∗, which satisfy

βx(z)βy (w) ∼ 0, γx
′
(z)γy

′
(w) ∼ 0,

βx(z)γx
′
(w) ∼ ⟨x ′, x⟩ (z − w)−1.

Fix a basis x1, . . . , xd for V , dual basis x ′1, . . . , x
′
d for V ∗.

Write βxi = βi , γx
′
i = γ i .

Conformal vector LS =
∑d

i=1 : β
i∂γi : of central charge 2d .

βi , γi primary of weights 1, 0 respectively.

As vector spaces,

S ∼= Sym
⊕
n≥0

(Vn ⊕ V ∗
n ),where Vn

∼= V , V ∗
n
∼= V ∗.
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5. βγ and bc systems

bc-system E = E(V ) has odd generators bx , cx
′
, linear in x ∈ V ,

x ′ ∈ V ∗, which satisfy

bx(z)by (w) ∼ 0, cx
′
(z)cy

′
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6. βγ and bc systems

Let W = S ⊗ E . Conformal vector

LW = LS ⊗ 1 + 1⊗ LE

of central charge 0.

Interpretation:

1. γ i corresponds to coordinate function x ′i ∈ V ∗.

2. c i corresponds to one-form dx ′i ∈ Ω1(V ).

3. βi corresponds to vector field d
dx ′i

∈ Vect(V ).

4. bi corresponds to contraction operator ιd/dx ′i .

Suppose U is a coordinate open set in some complex manifold M
with local coordinates x ′1, . . . , x

′
d ,

We identify x ′1, . . . , x
′
d with γ1, . . . , γd , and define

Ωch(U) = O(U)⊗C[γ1,...,γd ] W.
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7. βγ and bc systems

This has a natural vertex algebra structure where for each
f ∈ O(U),

∂f =
d∑

i=1

:
∂f

∂γi
∂γi :, fg = : fg : .

We have

βi (z)f (w) ∼ ∂f

∂γi
(w)(z − w)−1,

bi (z)f (w) ∼ 0, c i (z)f (w) ∼ 0.

Let γ̃1, . . . , γ̃d be another set of coordinates on U, so that

γ̃ i = f i (γ1, . . . , γd), γi = g i (γ̃1, . . . , γ̃d).
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8. βγ and bc systems

We have following transformations:

c̃ i =
d∑

j=1

:
∂f i

∂γj
(z)c j :,

∂γ̃ i =
d∑

j=1

:
∂f i

∂γj
(z)∂γj :,

b̃i =
d∑

j=1

:
∂g j

∂γ̃ i
(f (γ))bj :

β̃i =
d∑

j=1

:
∂g j

∂γ̃ i
(f (γ))βj : +

d∑
j=1

d∑
k=1

:
∂

∂γk

(
∂g j

∂γ̃ i
(f (γ))

)
ckbj : .



9. βγ and bc systems

Thm: (Malikov, Schechtman, Vaintrob 1998) This defines a sheaf
of vertex algebras on M.

Weight grading Ωch
M =

⊕
n≥0Ω

ch
M [n], and Ωch

M [0] ∼= Ω∗
M ordinary de

Rham sheaf.

Let OM denote the sheaf of holomorphic functions on M.

A subtlety: Ωch
M is not a sheaf of OM -modules.

For an open set U, given functions f , g ∈ O(U) and α ∈ Ωch(U),
typically : f (: gα :) : ̸= : (fg)α :.

However, Ωch
M has a filtration such that associated graded sheaf is

sections of the bundle

Sym

( ∞⊕
n=0

(TMn ⊕ T ∗Mn)

)⊗∧( ∞⊕
n=1

(TMn ⊕ T ∗Mn)

)
.
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However, Ωch
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10. Some global sections

Consider the following fields given in local coordinates:

L =
d∑

i=1

: βi∂γi− : bi∂c i :,

J =
d∑

i=1

: bic i :

Q =
d∑

i=1

: βic i :

G =
d∑

i=1

: bi∂γi : .



11. Some global sections

Under change of coordinates

γ̃ i = f i (γ1, . . . , γd), γi = g i (γ̃1, . . . , γ̃d),

we write down same fields in new variables β̃i , γ̃ i , c̃ i , b̃i and then
rewrite them in terms of old variables.

We get

L̃ = L

J̃ = J + ∂

(
Tr log

∂f i

∂γj

)
,

Q̃ = Q + ∂

( d∑
r=1

:
∂

∂γ̃r

(
Tr log
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)
c̃ r :
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12. Some global sections

Conclusion:

1. L and G are globally defined.
2. J and Q are globally defined when c1(TM) = 0.
3. Zero modes J(0) and Q(0) are always globally defined.

We have [Q(0),G(1)] = L(1) and Q(0)|Ω∗
M
= d , so

(Ω∗
M , dDR) ↪→ (Ωch

M ,Q(0)) is a quasi-isomorphism.

From now on we assume c1(TM) = 0.

It is convenient to change variables: replace L with

T = L+
1

2
∂J

which is a Virasoro field with c = 3d , where d = dim M.

Note: bi , c i have weight 1
2 with respect to T .

T , J,Q,G generate simple N = 2 superconformal algebra with
c = 3d .
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13. Calabi-Yau manifolds

Suppose that M is a compact Calabi-Yau manifold, with
holomorphic volume form ω0.

Choose a local coordinate system U with coordinates γ1, . . . , γd ,
so that locally

ω0|U = dγ1 ∧ · · · ∧ dγd .

Corresponding to ω0 are the following additional fields:

1. D = : b1 · · · bd :,

2. E = : c1 · · · cd :,

3. B = Q(0)D,

4. C = G(0)E .
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14. Calabi-Yau manifolds

The eight fields T , J,Q,G ,D,E ,B,C close (nonlinearly) under
OPE, and generate a vertex algebra V0.

D,E have weight d
2 and B,C have weight d+1

2 .

V0 was originally introduced by Odake in 1986.

Thm: (Heluani, Ekstrand, Kallen and Zabzine, 2013)
T , J,Q,G ,D,E ,B,C give rise to global sections, so that Ωch(M)
contains V0.

Case d = 3 was studied in detail.

Thm: (Song, 2021) V0 is a simple vertex algebra.



14. Calabi-Yau manifolds

The eight fields T , J,Q,G ,D,E ,B,C close (nonlinearly) under
OPE, and generate a vertex algebra V0.

D,E have weight d
2 and B,C have weight d+1

2 .

V0 was originally introduced by Odake in 1986.

Thm: (Heluani, Ekstrand, Kallen and Zabzine, 2013)
T , J,Q,G ,D,E ,B,C give rise to global sections, so that Ωch(M)
contains V0.

Case d = 3 was studied in detail.

Thm: (Song, 2021) V0 is a simple vertex algebra.



14. Calabi-Yau manifolds

The eight fields T , J,Q,G ,D,E ,B,C close (nonlinearly) under
OPE, and generate a vertex algebra V0.

D,E have weight d
2 and B,C have weight d+1

2 .

V0 was originally introduced by Odake in 1986.

Thm: (Heluani, Ekstrand, Kallen and Zabzine, 2013)
T , J,Q,G ,D,E ,B,C give rise to global sections, so that Ωch(M)
contains V0.

Case d = 3 was studied in detail.

Thm: (Song, 2021) V0 is a simple vertex algebra.



14. Calabi-Yau manifolds

The eight fields T , J,Q,G ,D,E ,B,C close (nonlinearly) under
OPE, and generate a vertex algebra V0.

D,E have weight d
2 and B,C have weight d+1

2 .

V0 was originally introduced by Odake in 1986.

Thm: (Heluani, Ekstrand, Kallen and Zabzine, 2013)
T , J,Q,G ,D,E ,B,C give rise to global sections, so that Ωch(M)
contains V0.

Case d = 3 was studied in detail.

Thm: (Song, 2021) V0 is a simple vertex algebra.



14. Calabi-Yau manifolds

The eight fields T , J,Q,G ,D,E ,B,C close (nonlinearly) under
OPE, and generate a vertex algebra V0.

D,E have weight d
2 and B,C have weight d+1

2 .

V0 was originally introduced by Odake in 1986.

Thm: (Heluani, Ekstrand, Kallen and Zabzine, 2013)
T , J,Q,G ,D,E ,B,C give rise to global sections, so that Ωch(M)
contains V0.

Case d = 3 was studied in detail.

Thm: (Song, 2021) V0 is a simple vertex algebra.



14. Calabi-Yau manifolds

The eight fields T , J,Q,G ,D,E ,B,C close (nonlinearly) under
OPE, and generate a vertex algebra V0.

D,E have weight d
2 and B,C have weight d+1

2 .

V0 was originally introduced by Odake in 1986.

Thm: (Heluani, Ekstrand, Kallen and Zabzine, 2013)
T , J,Q,G ,D,E ,B,C give rise to global sections, so that Ωch(M)
contains V0.

Case d = 3 was studied in detail.

Thm: (Song, 2021) V0 is a simple vertex algebra.



15. Hyperkähler manifolds

Suppose next that d = 2ℓ is even, and M is a hyperkähler
manifold, with holomorphic symplectic form ω1.

Choose a local coordinate system U with coordinates γ1, . . . , γd , so

ω1|U =
ℓ∑

i=1

dγ2i−1 ∧ dγ2i .

Corresponding to ω1 are the following additional fields:

1. D ′ =
∑ℓ

i=1 : b
2i−1b2i :,

2. E ′ =
∑ℓ

i=1 : c
2i−1c2i :,

3. B ′ = Q(0)D
′,

4. C ′ = G(0)E
′.

T , J,Q,G ,D ′,E ′,B ′,C ′ generate a vertex algebra V1 isomorphic
the simple small N = 4 superconformal algebra with c = 3d .

Thm: (Ben-Zvi, Heluani, Szczesny, 2008) Ωch(M) contains V1.



15. Hyperkähler manifolds

Suppose next that d = 2ℓ is even, and M is a hyperkähler
manifold, with holomorphic symplectic form ω1.

Choose a local coordinate system U with coordinates γ1, . . . , γd , so

ω1|U =
ℓ∑

i=1

dγ2i−1 ∧ dγ2i .

Corresponding to ω1 are the following additional fields:

1. D ′ =
∑ℓ

i=1 : b
2i−1b2i :,

2. E ′ =
∑ℓ

i=1 : c
2i−1c2i :,

3. B ′ = Q(0)D
′,

4. C ′ = G(0)E
′.

T , J,Q,G ,D ′,E ′,B ′,C ′ generate a vertex algebra V1 isomorphic
the simple small N = 4 superconformal algebra with c = 3d .

Thm: (Ben-Zvi, Heluani, Szczesny, 2008) Ωch(M) contains V1.



15. Hyperkähler manifolds

Suppose next that d = 2ℓ is even, and M is a hyperkähler
manifold, with holomorphic symplectic form ω1.

Choose a local coordinate system U with coordinates γ1, . . . , γd , so

ω1|U =
ℓ∑

i=1

dγ2i−1 ∧ dγ2i .

Corresponding to ω1 are the following additional fields:

1. D ′ =
∑ℓ

i=1 : b
2i−1b2i :,

2. E ′ =
∑ℓ

i=1 : c
2i−1c2i :,

3. B ′ = Q(0)D
′,

4. C ′ = G(0)E
′.

T , J,Q,G ,D ′,E ′,B ′,C ′ generate a vertex algebra V1 isomorphic
the simple small N = 4 superconformal algebra with c = 3d .

Thm: (Ben-Zvi, Heluani, Szczesny, 2008) Ωch(M) contains V1.



15. Hyperkähler manifolds

Suppose next that d = 2ℓ is even, and M is a hyperkähler
manifold, with holomorphic symplectic form ω1.

Choose a local coordinate system U with coordinates γ1, . . . , γd , so

ω1|U =
ℓ∑

i=1

dγ2i−1 ∧ dγ2i .

Corresponding to ω1 are the following additional fields:

1. D ′ =
∑ℓ

i=1 : b
2i−1b2i :,

2. E ′ =
∑ℓ

i=1 : c
2i−1c2i :,

3. B ′ = Q(0)D
′,

4. C ′ = G(0)E
′.

T , J,Q,G ,D ′,E ′,B ′,C ′ generate a vertex algebra V1 isomorphic
the simple small N = 4 superconformal algebra with c = 3d .

Thm: (Ben-Zvi, Heluani, Szczesny, 2008) Ωch(M) contains V1.



15. Hyperkähler manifolds

Suppose next that d = 2ℓ is even, and M is a hyperkähler
manifold, with holomorphic symplectic form ω1.

Choose a local coordinate system U with coordinates γ1, . . . , γd , so

ω1|U =
ℓ∑

i=1

dγ2i−1 ∧ dγ2i .

Corresponding to ω1 are the following additional fields:

1. D ′ =
∑ℓ

i=1 : b
2i−1b2i :,

2. E ′ =
∑ℓ

i=1 : c
2i−1c2i :,

3. B ′ = Q(0)D
′,

4. C ′ = G(0)E
′.

T , J,Q,G ,D ′,E ′,B ′,C ′ generate a vertex algebra V1 isomorphic
the simple small N = 4 superconformal algebra with c = 3d .

Thm: (Ben-Zvi, Heluani, Szczesny, 2008) Ωch(M) contains V1.



16. Main result

Thm: (L., Song, 2021)

1. If M is a compact d-dimensional Calabi-Yau manifold with
holonomy group SUd , then the algebra of global sections
Ωch(M) = V0.

2. If M is a compact d = 2ℓ-dimensional hyperkähler manifold
with holonomy group Spℓ, then the algebra of global sections
Ωch(M) = V1.

In particular, Ωch(M) only depends on dim M and the holonomy
group.

There are two steps to the proof.

1. Ωch(M) is isomorphic to the subalgebra of W which is
invariant under a Lie algebra of Cartan type.

2. This algebra can be described using the arc space analogue of
Weyl’s first fundamental theorem of invariant theory.
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17. Step 1

Step 1 is carried out in the following paper:

B. Song, The global sections of Chiral de Rham complexes on
compact Ricci-flat Kähler manifolds, Comm Math. Phys 382,
351-397 (2021).

Sheaf cohomology H∗(M,Ωch
M) is called chiral Hodge

cohomology of M, global section algebra Ωch(M) is just
H0(M,Ωch

M).

Regarding M as a smooth 2d-dimensional real manifold, we have
smooth chiral de Rham complex Ωch, sm

M which contains Ωch
M as a

subsheaf, as well as complex conjugate.

We have antiholomorphic fields L̄, Ḡ , Q̄, J̄ which commute with
L,G ,Q, J.
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L,G ,Q, J.



17. Step 1

Step 1 is carried out in the following paper:

B. Song, The global sections of Chiral de Rham complexes on
compact Ricci-flat Kähler manifolds, Comm Math. Phys 382,
351-397 (2021).

Sheaf cohomology H∗(M,Ωch
M) is called chiral Hodge

cohomology of M, global section algebra Ωch(M) is just
H0(M,Ωch

M).

Regarding M as a smooth 2d-dimensional real manifold, we have
smooth chiral de Rham complex Ωch, sm

M which contains Ωch
M as a

subsheaf, as well as complex conjugate.

We have antiholomorphic fields L̄, Ḡ , Q̄, J̄ which commute with
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18. Step 1

Bigrading

Ωch, sm
M =

⊕
k≥0

⊕
ℓ∈Z

Ωch, sm
M [k , ℓ],

where L̄(1) acts by k · Id and J̄(0) acts by ℓ · Id on Ωch, sm
M [k , ℓ].

Define Ωch,ℓ
M = Ωch, sm

M [0, ℓ] and Ωch,∗
M =

⊕d
ℓ=0Ω

ch, sm
M [0, ℓ].

Set ∂̄ = Q̄(0)|Ωch,∗
M

, so (Ωch,∗
M , ∂̄) ↪→ (Ωch, sm

M , Q̄(0)) is a subcomplex.

We have
[Q̄(0), Ḡ(1)] = L̄(1),

so Ḡ(1) is a contracting homotopy for Q̄(0), and above inclusion is
a quasi-isomorphism.

Thm: Cohomology of (Ωch,∗
M , ∂̄) computes the chiral Hodge

cohomology of M.
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19. Step 1

Given a vector space V = Cd , let Vect(V ) be the Lie algebra of
algebraic vector fields

∑d
i=1 Pi

∂
∂x ′i

, where Pi is a polynomial in

linear functions x ′1, . . . , x
′
d on V .

Given a k-form ω ∈ ∧kV ∗, we have Lie subalgebra Vect(V , ω)
annihilating ω.

Given a global section α ∈ H0(M,Ωch
M) and a point x ∈ M, one

can restrict α to x , obtaining an element of W = W(TxM) the
bcβγ-system of rank d .

Thm:

1. If M is a compact d-dimensional Calabi-Yau manifold with
holonomy group SUd , then H0(M,Ωch

M) ∼= WVect(TxM,ω0|x ).

2. If M is a compact d = 2ℓ-dimensional hyperkähler manifold
with holonomy group Spℓ, then
H0(M,Ωch

M) ∼= WVect(TxM,ω1|x ).
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20. Step 2

WVect(TxM,ω0|x ) and WVect(TxM,ω0|x ) are contained in the
subalgebra W+ generated by βi , ∂γ i , bi , c i .

Vect(TxM, ω0|x) contains Lie subalgebra sld [t], and
WVect(TxM,ω0|x ) ∼= (W+)

sld [t].

Vect(TxM, ω1|x) contains Lie subalgebra spℓ[t], and
WVect(TxM,ω0|x ) ∼= (W+)

spℓ[t].

Associated graded algebra

gr(W+) ∼= Sym

(⊕
n≥0

Cd
n ⊕ (Cd

n)
∗
)⊗∧(⊕

n≥0

Cd
n ⊕ (Cd

n)
∗
)
.

This has natural action of arc space G∞ where G = SLd or Spℓ,
and invariants under G∞ are same as invariants under g[t].
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21. Arc spaces

Let X be a scheme of finite type over C.

There is another scheme X∞ called the arc space of X .

It is characterized by its functor of points.

For a commutative ring A, the A-valued points of X∞ are in
bijection with the A[[t]]-valued points of X .

In other words,

Hom(Spec A,X∞) ∼= Hom(Spec A[[t]],X ).

A morphism f : X → Y induces f∞ : X∞ → Y∞.
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22. Arc spaces

Suppose X = Spec R for

R = C[x1, . . . , xn]/⟨f1, . . . , fk⟩.

C-valued points of X∞ ↔ C[[t]]-valued points of X .

Morphism Spec C[[t]] → Spec C[x1, . . . , xn]/⟨f1, . . . , fk⟩
corresponds to a ring homomorphism

ϕ : C[x1, . . . , xn]/⟨f1, . . . , fk⟩ → C[[t]].

ϕ is determined by its values on the generators x1, . . . , xn.

We write

ϕ(xi ) = x
(0)
i + x

(1)
i t + x

(2)
i t2 + · · · , i = 1, . . . , n.
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23. Arc spaces

Since ϕ is a ring homomorphism, for each ℓ = 1, . . . , k we have

fℓ
(
ϕ(x1), . . . , ϕ(xn)

)
= fℓ

(
(x

(0)
1 + x

(1)
1 t + x

(2)
1 t2 + · · · ), . . . , (x (0)n + x

(1)
n t + x

(2)
n t2 + · · · )

)
= 0.

We regard x
(j)
i for j = 0, 1, 2, . . . , as coordinate functions on X∞.

Polynomial ring C[x (j)i ] has a derivation D defined as follows:

1. D(x
(j)
i ) = x

(j+1)
i .

2. Extend by the Leibniz rule to monomials.

3. Extend by C-linearity to all of C[x (j)i ]
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24. Arc spaces

Ex:

D

(
x
(3)
1 (x

(4)
2 )3 + 2(x

(5)
3 )7

)
= x

(4)
1 (x

(4)
2 )3 + x

(3)
1 3(x

(4)
2 )2x

(5)
2 + 14(x

(5)
3 )6x

(6)
3 .

In particular, f
(r)
ℓ = Dr (fℓ) is a well-defined polynomial in C[x (j)i ].

The requirement

fℓ(ϕ(x1), . . . , ϕ(xn)) = 0, for all ℓ = 1, . . . , k

translates to the following condition:

For all ℓ = 1, . . . , k and r ≥ 0,

f
(r)
ℓ (x

(0)
1 , . . . , x

(0)
n , x

(1)
1 , . . . , x

(1)
n , . . . , x

(r)
1 , . . . , x

(r)
n ) = 0.
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25. Arc spaces

Therefore X∞ = Spec R∞, where

R∞ = C[x (j)1 , . . . , x
(j)
n | j ≥ 0]/⟨f (ℓ)1 , . . . , f

(ℓ)
k | ℓ ≥ 0⟩.

Identifying xi with x
(0)
i , we have embedding R ↪→ R∞.

By construction,

1. R generates R∞ as a differential algebra.

2. Ideal of relations among x
(j)
i is a differential ideal, and is

generated by relations in R.

R∞ satisfies a universal property:

If S is any differential commutative ring containing R which is
generated by R as a differential ring, then S is a quotient of R∞.
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26. Invariant theory of arc spaces

G an algebraic group, V a finite-dimensional G -module.

Arc space G∞ is an algebraic group, and G∞ acts on V∞.

Consider categorical quotient V //G = Spec C[V ]G .

Quotient morphism V → V //G induces a morphism
V∞ → (V //G )∞, so we have a morphism V∞//G∞ → (V //G )∞.

Induced ring homomorphism

ψG ,V : C[(V //G )∞] → C[V∞]G∞ .

In general, ψG ,V is neither injective nor surjective.
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27. Invariant theory of arc spaces

Thm: (L., Song, 2021) For n ≥ 1, let G = GLn and W = Cn be
the standard representation.

Let V = W⊕p ⊕ (W ∗)⊕q be the sum of p copies of W and q
copies of the dual module W ∗.

Then for all p, q, ψG ,V is an isomorphism.

Thm: (L., Song, 2021) For n ≥ 1, let G = Spn and W = C2n be
the standard representation.

Let V = W⊕p be the sum of p copies of W . Then for all p, ψG ,V

is an isomorphism.
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28. Invariant theory of arc spaces

Thm: (L., Song, 2021) For n ≥ 2, let G = SLn and W = Cn be
the standard representation.

Let V = W⊕p ⊕ (W ∗)⊕q be the sum of p copies of W and q
copies of the dual module W ∗. Then

1. If p, q ≤ n + 2, ψG ,V is an isomorphism.

2. If max{p, q} > n + 2, ψG ,V is surjective but not injective.

3. Its kernel coincides with the nilradical N ⊆ C[(V //G )∞],
finitely generated as a differential ideal.

Note: Similar results for the orthogonal groups are also expected
but cannot be proven at the moment.
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29. Extension to odd variables

Suppose G is an algebraic group, Ũ and U finite-dimensional
G -modules.

For each j ≥ 0, let Ũj
∼= Ũ∗.

Fix a basis {x1,j , . . . , xm,j} for Ũj .

Let S Ũ = C[
⊕

j≥0 Ũj ], with differential D defined by
D(xi ,j) = xi ,j+1.

The map C[Ũ∞] → S Ũ sending x
(j)
i 7→ xi ,j is an isomorphism of

differential algebras.
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30. Extension to odd variables

For j ≥ 0, let Uj
∼= U∗ and let LU =

∧⊕
j≥0 Uj .

Fix a basis {y1,j , . . . , yn,j} for Uj .

Extend the differential on S Ũ to an even differential D on
S Ũ ⊗ LU , defined on generators by D(yi ,j) = yi ,j+1.

Then G∞ acts on S Ũ ⊗ LU , and we may consider the invariant ring
(S Ũ ⊗ LU)G∞ .

Let S Ũ
0 = C[Ũ0] ⊆ S Ũ and LU0 =

∧
(Ũ0) ⊆ L.

Let ⟨(S Ũ
0 ⊗ LU0 )

G ⟩ be the differential algebra generated by

(S Ũ
0 ⊗ LU0 )

G , which lies in (S Ũ ⊗ LU)G∞ .
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(Ũ0) ⊆ L.

Let ⟨(S Ũ
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∧
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31. Extension to odd variables

Since G acts on the direct sum Ũ ⊕ U⊕k , we have a map

C[((Ũ ⊕ U⊕k)//G )∞] → C[(Ũ ⊕ U⊕k)∞]G∞ . (1)

Thm: (L., Song, 2021). Suppose that (1) is surjective for all
k ≥ 0. Then

(S Ũ ⊗ LU)G∞ = ⟨(S Ũ
0 ⊗ LU0 )

G ⟩.

In particular, if we fix a generating set {α1, . . . , αk} for

(S Ũ
0 ⊗ LU0 )

G , then {α1, . . . , αk} generates (S Ũ ⊗ LU)G∞ as a
differential algebra.

Main result follows from cases

1. G = SUd and U = Cd = Ũ,

2. G = Spℓ and U = C2ℓ = Ũ.
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