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Setting for this talk: “algebraic quantum field theory” (AQFT):
maths: operator-algebraic approach (von Neumann algebras,
(normal) states)
physics: relativistic quantum systems describing elementary
particles

Many entanglement questions arise in this context.

Plan/purpose of this talk:
▶ sketch the setup of AQFT
▶ entanglement properties of the vacuum state
▶ quantifying entanglement in QFT
▶ examples
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AQFT I
Basic setting for QFT on Minkowski space Rd ∋ (x0, x1, . . . , xd−1)
(with d = spacetime dimension ≥ 1 + 1)

1 Hilbert space H (with dimH =∞)
2 Unitary representation U of Poincaré group on H, including in

particular a representation of Rd (translations) such that
Generator P0 of U(x0,0, ..., 0) is positive (positive energy),
P0 =Hamiltonian.
there exists a unique vector Ω ∈H with U(x)Ω = Ω vacuum.

3 Local observable algebras: For every open region O ⊂ Rd,
have a von Neumann algebra

A(O) ⊂ B(H).

Idea: A ∈ A(O) is an observable measurable in O, e.g. in

O = today ×Madrid.
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AQFT II
Physically natural axioms on the family of algebras A(O):

O1 ⊂ O2 Ô⇒ A(O1) ⊂ A(O2)
U(x)A(O)U(−x) = A(O + x) covariance
A(O1) and A(O2) commute when O1 and O2 are spacelike
separated (locality)
Vacuum Ω is cyclic for all A(O) (Reeh-Schlieder property)

State of prime interest: vacuum state ω = ⟨Ω, ⋅Ω⟩ on bipartite
systems of the form A(O1) ∨A(O2) with O1 spacelike to O2.
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Elementary properties of the vacuum state ω

Let O1, O2 be two spacelike separated regions.

ω is not a product state on A(O1) ∨A(O2).

Under further physically natural assumptions (that are valid in models)
one can show:

For every (causally convex) bounded open region O, the von Neumann
algebra A(O) is isomorphic to the unique hyperfinite type III1 factor.
[Buchholz/D’Antoni/Fredenhagen ’87]

Consequences:
▶ There exists no tracial state on A(O).
▶ The local algebras have no normal pure states, in particular ω is not

pure on A(O).
▶ Despite describing the “zero particle state”, the vacuum is a

complicated and strongly correlated state.
▶ What about entanglement properties?
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Entanglement for touching regions
For “touching” regions (zero spatial distance) entanglement is extreme:

▶ For two complementary wedges W,W ′, Bell’s inequalities are
maximally violated:

Bell(φ,A(W ),A(W ′)) =
√
2

for any normal state φ on A(W ) ∨A(W ′) [Summers/Werner 80s]
▶ Consider two regions O1 and O2 that “touch”. Then

Bell(φ,A(O1),A(O2)) =
√
2

for any normal state φ on A(O1) ∨A(O2) in a family of models
(free field theories, Pϕ2, Yukawa) [Summers/Werner 80s]

▶ Consider two regions O1 and O2 that “touch”. Then
A(O1) ∨A(O2) does not have any normal separable state
[Hollands/Sanders 18]
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Entanglement at finite separation
For separated regions, the cluster property of the vacuum enters.

Assume:
O1,O2 are spacelike separated regions.
The spectrum of the Hamiltonian satisfies σ(P0) ⊂ {0} ∪ [m,∞),
m > 0 (“massive theory”).

Then for any A ∈ A(O1), B ∈ A(O2) [Fredenhagen 85]

∣ω(AB) − ω(A)ω(B)∣ ≤ e−md(O1,O2) ⋅
√
∥AΩ∥∥A∗Ω∥∥BΩ∥∥B∗Ω∥.

Consequence: For widely separated regions O1 and O2, the vacuum on
A(O1) ∨A(O2) looks “almost like a product state”.

Bell(ω,A(O1),A(O2)) ≤ 1 + 2 e−md(O1,O2) [Summers/Werner]

Nonetheless, it is still entangled!

If N ,M are commuting nonabelian von Neumann algebras on a Hilbert
space H and Ω ∈H a unit vector cyclic for N , then ω = ⟨Ω, ⋅ Ω⟩ is
entangled on N ∨M. [Halvorson/Clifton 00]
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The split property
Definition
Two von Neumann algebras N ⊂M are called split if there exists a type I
factor F such that N ⊂ F ⊂M.

N ⊂M is split if and only if there is an isomorphism

N ∨M′ →N ⊗M′, AB ↦ A⊗B.

[Doplicher/Longo 84]

Clearly, N ∨M′ has lots of product states when N ⊂M is split.
QFT situation:

▶ It is expected (and follows from additional assumptions) that for
bounded O ⊂ Õ with a finite distance, A(O) ⊂ A(Õ) is split.

▶ This implies A(O1) ∨A(O2) ≅ A(O1)⊗A(O2) for spacelike
separated (with finite distance) bounded regions O1,O2.
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▶ This implies A(O1) ∨A(O2) ≅ A(O1)⊗A(O2) for spacelike

separated (with finite distance) bounded regions O1,O2.
At finite separation, some of the familiar structure of bipartite systems of
QI reappears.
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Quantifying entanglement
▶ So far, only considered Bell correlations or qualitative statements.

▶ Bell correlations are no good quantification of entanglement
because entangled states with Bell = 1 exist.

▶ The relative entanglement entropy

E(ρ) ∶= inf
σ separable

H(ρ, σ), H(ρ, σ) = Tr(ρ log ρ − ρ logσ)

is a good ent. measure for density matrices [Vedral/Plenio 98]
QFT situation with split: A(O1) ∨A(O2) ≅ A(O1)⊗A(O2)

many separable normal states exist, but no trace (type III algebras).

Araki found a generalisation of relative entropy to arbitrary von Neumann
algebras with arbitrary normal states ω,ω′,

H(ω,ω′) = ⟨Ω, log∆ω,ω′Ω⟩.
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Relative entanglement entropy
Araki’s relative entropy has many good properties, including

H(ω,ω′) = 0 ⇐⇒ ω = ω′.

Define relative entanglement entropy of ω on A(O1) ∨A(O2) as

E(ω,O1,O2) = inf{H(ω,σ) ∶ σ normal and separable} ∈ [0,∞].

[Hollands/Sanders 18].
This is a good entanglement measure that works in QFT. In particular, ω
is entangled on A(O1) ∨A(O2) if and only if E(ω,O1,O2) > 0.

E(ω,O1,O2) is very difficult to compute in concrete situations.

One usually has to estimate it (from above/below).
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The modular partition function
An upper bound on the entanglement entropy is given by modular theory.
Let N ⊂M ⊂ B(H) be an inclusion of factors with joint cyclic and
separating vector Ω on Hilbert space H. Consider the (linear, bnd) map

Ξ ∶ N →H, Ξ(A) ∶=∆1/4
M AΩ,

where ∆M is the modular operator of (M,Ω).

▶ Theorem: If Ξ is nuclear (can be approximated well by finite rank
maps), then N ⊂M is split [Buchholz/D’Antoni/Longo 90].
This “modular nuclearity condition” was originally motivated by
thermodynamical considerations. The nuclear norm ∥Ξ∥1 can be
viewed as a “modular partition function” [Buchholz].

▶ Theorem: [Hollands/Sanders 18]

E(ω) ≤ log ∥Ξ∥1.

This is a useful tool for estimates from above because for special regions
(wedges), ∆ has a simple form.
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Examples
▶ In the last years, relative entropies and entanglement entropies have

been investigated a lot in QFT [Casini, Faulkner, Hollands, Longo,
Witten, Xu ... ]

▶ There are various results in conformal field theory, free field theory,
and in model-independent (axiomatic) settings.

Open questions:

How do the entanglement properties of the vacuum depend on the
model / interaction?
Do entanglement properties between various regions determine a
model? [Casini]
Can we make contact with (non-rigorous) approaches from
theoretical physics literature?
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Ongoing work
▶ There exists a family of QFTs on R2 parametrized by pairs (U,T ),

U irreducible positive energy rep of Poincaré group on a
one-particle space H1

T a selfadjoint operator on H1 ⊗H1

built directly from modular theory [Buchholz/L 04, L 08,
Bischoff/Tanimoto 15, Alazzawi/L 17, Correa da Silva/L 22].

▶ The construction works by estimating the modular partition function
∥Ξ∥1 for wedges.

▶ Opens up the possibility to study the dependence of entanglement
properties on interaction (T ).

▶ The Ising model is included [calculations with Ian Koot yesterday]:

E(ω,W + x,W ′) ≤ c e−mx

√
mx
(1 + 1

2mx
)

already close to predictions of theoretical physics.
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Outlook
▶ Entanglement is ubiquituous in QFT, in particular in the

vacuum state across spacelike separated regions.
▶ Good but abstract entanglement measures exist that work in

this setting (type III algebras)
▶ We still need better lower bounds on entanglement entropies.

▶ Investigation of entanglement entropies in interacting models
in progress – does this characterize the interaction / the QFT?
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