Entanglement in operator-algebraic quantum field theory

Gandalf Lechner

ICMAT week on Functional Analysis and Quantum Information March 22, 2023 Setting for this talk: "algebraic quantum field theory" (AQFT):

- maths: operator-algebraic approach (von Neumann algebras, (normal) states)
- **physics:** relativistic quantum systems describing elementary particles

Setting for this talk: "algebraic quantum field theory" (AQFT):

- maths: operator-algebraic approach (von Neumann algebras, (normal) states)
- **physics:** relativistic quantum systems describing elementary particles

Many entanglement questions arise in this context.

Setting for this talk: "algebraic quantum field theory" (AQFT):

- maths: operator-algebraic approach (von Neumann algebras, (normal) states)
- **physics:** relativistic quantum systems describing elementary particles

Many entanglement questions arise in this context.

Plan/purpose of this talk:

- sketch the setup of AQFT
- entanglement properties of the vacuum state
- quantifying entanglement in QFT
- examples

- Hilbert space \mathcal{H} (with $\dim \mathcal{H} = \infty$)
- **②** Unitary representation U of Poincaré group on \mathcal{H} , including in particular a representation of \mathbb{R}^d (translations) such that

AQFT

- Hilbert space \mathcal{H} (with $\dim \mathcal{H} = \infty$)
- ⁽²⁾ Unitary representation U of Poincaré group on \mathcal{H} , including in particular a representation of \mathbb{R}^d (translations) such that
 - Generator P_0 of $U(x_0, 0, ..., 0)$ is positive (positive energy), P_0 =Hamiltonian.

- Hilbert space \mathcal{H} (with $\dim \mathcal{H} = \infty$)
- ⁽²⁾ Unitary representation U of Poincaré group on \mathcal{H} , including in particular a representation of \mathbb{R}^d (translations) such that
 - Generator P_0 of $U(x_0, 0, ..., 0)$ is positive (positive energy), P_0 =Hamiltonian.
 - there exists a unique vector $\Omega \in \mathcal{H}$ with $U(x)\Omega = \Omega$ vacuum.

Basic setting for QFT on Minkowski space $\mathbb{R}^d \ni (x_0, x_1, \dots, x_{d-1})$ (with d = spacetime dimension $\ge 1 + 1$)

- Hilbert space \mathcal{H} (with $\dim \mathcal{H} = \infty$)
- ⁽²⁾ Unitary representation U of Poincaré group on \mathcal{H} , including in particular a representation of \mathbb{R}^d (translations) such that
 - Generator P_0 of $U(x_0, 0, ..., 0)$ is positive (positive energy), P_0 =Hamiltonian.
 - there exists a unique vector $\Omega \in \mathcal{H}$ with $U(x)\Omega = \Omega$ vacuum.
- **③** Local observable algebras: For every open region $\mathcal{O} ⊂ \mathbb{R}^d$, have a von Neumann algebra

$$\mathcal{A}(\mathcal{O}) \subset \mathcal{B}(\mathcal{H}).$$

Idea: $A \in \mathcal{A}(\mathcal{O})$ is an observable measurable in \mathcal{O} , e.g. in

$$\mathcal{O} = \mathsf{today} \times \mathsf{Madrid}.$$

•
$$\mathcal{O}_1 \subset \mathcal{O}_2 \implies \mathcal{A}(\mathcal{O}_1) \subset \mathcal{A}(\mathcal{O}_2)$$

- $U(x)\mathcal{A}(\mathcal{O})U(-x) = \mathcal{A}(\mathcal{O} + x)$ covariance
- $\mathcal{A}(\mathcal{O}_1)$ and $\mathcal{A}(\mathcal{O}_2)$ commute when \mathcal{O}_1 and \mathcal{O}_2 are spacelike separated (locality)

- $\mathcal{O}_1 \subset \mathcal{O}_2 \implies \mathcal{A}(\mathcal{O}_1) \subset \mathcal{A}(\mathcal{O}_2)$
- $U(x)\mathcal{A}(\mathcal{O})U(-x) = \mathcal{A}(\mathcal{O} + x)$ covariance
- $\mathcal{A}(\mathcal{O}_1)$ and $\mathcal{A}(\mathcal{O}_2)$ commute when \mathcal{O}_1 and \mathcal{O}_2 are spacelike separated (locality)

- $\mathcal{O}_1 \subset \mathcal{O}_2 \implies \mathcal{A}(\mathcal{O}_1) \subset \mathcal{A}(\mathcal{O}_2)$
- $U(x)\mathcal{A}(\mathcal{O})U(-x) = \mathcal{A}(\mathcal{O} + x)$ covariance
- $\mathcal{A}(\mathcal{O}_1)$ and $\mathcal{A}(\mathcal{O}_2)$ commute when \mathcal{O}_1 and \mathcal{O}_2 are spacelike separated (locality)

Physically natural axioms on the family of algebras $\mathcal{A}(\mathcal{O})$:

- $\mathcal{O}_1 \subset \mathcal{O}_2 \implies \mathcal{A}(\mathcal{O}_1) \subset \mathcal{A}(\mathcal{O}_2)$
- $U(x)\mathcal{A}(\mathcal{O})U(-x) = \mathcal{A}(\mathcal{O}+x)$ covariance
- $\mathcal{A}(\mathcal{O}_1)$ and $\mathcal{A}(\mathcal{O}_2)$ commute when \mathcal{O}_1 and \mathcal{O}_2 are spacelike separated (locality)

• Vacuum Ω is cyclic for all $\mathcal{A}(\mathcal{O})$ (Reeh-Schlieder property)

Physically natural axioms on the family of algebras $\mathcal{A}(\mathcal{O})$:

- $\mathcal{O}_1 \subset \mathcal{O}_2 \implies \mathcal{A}(\mathcal{O}_1) \subset \mathcal{A}(\mathcal{O}_2)$
- $U(x)\mathcal{A}(\mathcal{O})U(-x) = \mathcal{A}(\mathcal{O}+x)$ covariance
- $\mathcal{A}(\mathcal{O}_1)$ and $\mathcal{A}(\mathcal{O}_2)$ commute when \mathcal{O}_1 and \mathcal{O}_2 are spacelike separated (locality)

• Vacuum Ω is cyclic for all $\mathcal{A}(\mathcal{O})$ (Reeh-Schlieder property)

State of prime interest: vacuum state $\omega = \langle \Omega, \cdot \Omega \rangle$ on bipartite systems of the form $\mathcal{A}(\mathcal{O}_1) \vee \mathcal{A}(\mathcal{O}_2)$ with \mathcal{O}_1 spacelike to \mathcal{O}_2 .

Let \mathcal{O}_1 , \mathcal{O}_2 be two spacelike separated regions.

 ω is not a product state on $\mathcal{A}(\mathcal{O}_1) \vee \mathcal{A}(\mathcal{O}_2)$.

Let \mathcal{O}_1 , \mathcal{O}_2 be two spacelike separated regions.

 ω is not a product state on $\mathcal{A}(\mathcal{O}_1) \vee \mathcal{A}(\mathcal{O}_2)$.

Proof:

Let \mathcal{O}_1 , \mathcal{O}_2 be two spacelike separated regions.

 ω is not a product state on $\mathcal{A}(\mathcal{O}_1) \vee \mathcal{A}(\mathcal{O}_2)$.

Proof:

 $\langle \Omega, AB\Omega\rangle = \langle \Omega, A\Omega\rangle \langle \Omega, B\Omega\rangle$

Let \mathcal{O}_1 , \mathcal{O}_2 be two spacelike separated regions.

 ω is not a product state on $\mathcal{A}(\mathcal{O}_1) \vee \mathcal{A}(\mathcal{O}_2)$.

Proof:

 $\langle \Omega, U(x) A U(-x) B \Omega \rangle = \langle \Omega, U(x) A U(-x) \Omega \rangle \langle \Omega, B \Omega \rangle$

Let \mathcal{O}_1 , \mathcal{O}_2 be two spacelike separated regions.

 ω is not a product state on $\mathcal{A}(\mathcal{O}_1) \vee \mathcal{A}(\mathcal{O}_2)$.

Proof:

 $\langle A^*\Omega, U(-x)B\Omega\rangle = \langle A^*\Omega, \Omega\rangle \langle \Omega, B\Omega\rangle$

Let \mathcal{O}_1 , \mathcal{O}_2 be two spacelike separated regions.

 ω is not a product state on $\mathcal{A}(\mathcal{O}_1) \vee \mathcal{A}(\mathcal{O}_2)$.

Proof:

$$\begin{split} \langle A^*\Omega, U(-x)B\Omega \rangle &= \langle A^*\Omega, \Omega \rangle \langle \Omega, B\Omega \rangle \\ &\Rightarrow U(-x) = |\Omega \rangle \langle \Omega|. \end{split}$$

Let \mathcal{O}_1 , \mathcal{O}_2 be two spacelike separated regions.

 ω is not a product state on $\mathcal{A}(\mathcal{O}_1) \vee \mathcal{A}(\mathcal{O}_2)$.

Let \mathcal{O}_1 , \mathcal{O}_2 be two spacelike separated regions.

 ω is not a product state on $\mathcal{A}(\mathcal{O}_1) \vee \mathcal{A}(\mathcal{O}_2)$.

Under further physically natural assumptions (that are valid in models) one can show:

For every (causally convex) bounded open region \mathcal{O} , the von Neumann algebra $\mathcal{A}(\mathcal{O})$ is isomorphic to the unique hyperfinite type III₁ factor. [Buchholz/D'Antoni/Fredenhagen '87]

Let \mathcal{O}_1 , \mathcal{O}_2 be two spacelike separated regions.

 ω is not a product state on $\mathcal{A}(\mathcal{O}_1) \vee \mathcal{A}(\mathcal{O}_2)$.

Under further physically natural assumptions (that are valid in models) one can show:

For every (causally convex) bounded open region \mathcal{O} , the von Neumann algebra $\mathcal{A}(\mathcal{O})$ is isomorphic to the unique hyperfinite type III₁ factor. [Buchholz/D'Antoni/Fredenhagen '87]

Consequences:

• There exists no tracial state on $\mathcal{A}(\mathcal{O})$.

Let \mathcal{O}_1 , \mathcal{O}_2 be two spacelike separated regions.

 ω is not a product state on $\mathcal{A}(\mathcal{O}_1) \vee \mathcal{A}(\mathcal{O}_2)$.

Under further physically natural assumptions (that are valid in models) one can show:

For every (causally convex) bounded open region \mathcal{O} , the von Neumann algebra $\mathcal{A}(\mathcal{O})$ is isomorphic to the unique hyperfinite type III₁ factor. [Buchholz/D'Antoni/Fredenhagen '87]

Consequences:

- There exists no tracial state on $\mathcal{A}(\mathcal{O})$.
- The local algebras have no normal pure states, in particular ω is not pure on A(O).

Let \mathcal{O}_1 , \mathcal{O}_2 be two spacelike separated regions.

 ω is not a product state on $\mathcal{A}(\mathcal{O}_1) \vee \mathcal{A}(\mathcal{O}_2)$.

Under further physically natural assumptions (that are valid in models) one can show:

For every (causally convex) bounded open region \mathcal{O} , the von Neumann algebra $\mathcal{A}(\mathcal{O})$ is isomorphic to the unique hyperfinite type III₁ factor. [Buchholz/D'Antoni/Fredenhagen '87]

Consequences:

- There exists no tracial state on $\mathcal{A}(\mathcal{O})$.
- The local algebras have no normal pure states, in particular ω is not pure on A(O).
- Despite describing the "zero particle state", the vacuum is a complicated and strongly correlated state.

Let \mathcal{O}_1 , \mathcal{O}_2 be two spacelike separated regions.

 ω is not a product state on $\mathcal{A}(\mathcal{O}_1) \vee \mathcal{A}(\mathcal{O}_2)$.

Under further physically natural assumptions (that are valid in models) one can show:

For every (causally convex) bounded open region \mathcal{O} , the von Neumann algebra $\mathcal{A}(\mathcal{O})$ is isomorphic to the unique hyperfinite type III₁ factor. [Buchholz/D'Antoni/Fredenhagen '87]

Consequences:

- There exists no tracial state on $\mathcal{A}(\mathcal{O})$.
- The local algebras have no normal pure states, in particular ω is not pure on A(O).
- Despite describing the "zero particle state", the vacuum is a complicated and strongly correlated state.
- What about entanglement properties?

For "touching" regions (zero spatial distance) entanglement is extreme:

For "touching" regions (zero spatial distance) entanglement is extreme:

▶ For two complementary wedges W, W', Bell's inequalities are maximally violated:

$$\mathsf{Bell}(\varphi, \mathcal{A}(W), \mathcal{A}(W')) = \sqrt{2}$$

for any normal state φ on $\mathcal{A}(W) \lor \mathcal{A}(W')$ [Summers/Werner 80s]

For "touching" regions (zero spatial distance) entanglement is extreme:

▶ For two complementary wedges W, W', Bell's inequalities are maximally violated:

$$\mathsf{Bell}(\varphi,\mathcal{A}(W),\mathcal{A}(W'))=\sqrt{2}$$

for any normal state φ on $\mathcal{A}(W) \lor \mathcal{A}(W')$ [Summers/Werner 80s]

▶ Consider two regions \mathcal{O}_1 and \mathcal{O}_2 that "touch". Then

 $\mathsf{Bell}(\varphi,\mathcal{A}(\mathcal{O}_1),\mathcal{A}(\mathcal{O}_2))=\sqrt{2}$

for any normal state φ on $\mathcal{A}(\mathcal{O}_1) \lor \mathcal{A}(\mathcal{O}_2)$ in a family of models (free field theories, $P\phi_2$, Yukawa) [Summers/Werner 80s]

For "touching" regions (zero spatial distance) entanglement is extreme:

▶ For two complementary wedges W, W', Bell's inequalities are maximally violated:

$$\mathsf{Bell}(\varphi, \mathcal{A}(W), \mathcal{A}(W')) = \sqrt{2}$$

for any normal state φ on $\mathcal{A}(W) \lor \mathcal{A}(W')$ [Summers/Werner 80s]

• Consider two regions \mathcal{O}_1 and \mathcal{O}_2 that "touch". Then

$$\mathsf{Bell}(\varphi, \mathcal{A}(\mathcal{O}_1), \mathcal{A}(\mathcal{O}_2)) = \sqrt{2}$$

for any normal state φ on $\mathcal{A}(\mathcal{O}_1) \lor \mathcal{A}(\mathcal{O}_2)$ in a family of models (free field theories, $P\phi_2$, Yukawa) [Summers/Werner 80s]

Consider two regions O₁ and O₂ that "touch". Then A(O₁) ∨ A(O₂) does not have any normal separable state [Hollands/Sanders 18]

For separated regions, the cluster property of the vacuum enters.

Assume:

- $\mathcal{O}_1, \mathcal{O}_2$ are spacelike separated regions.
- The spectrum of the Hamiltonian satisfies $\sigma(P_0) \subset \{0\} \cup [m, \infty)$, m > 0 ("massive theory").

Then for any $A \in \mathcal{A}(\mathcal{O}_1)$, $B \in \mathcal{A}(\mathcal{O}_2)$ [Fredenhagen 85]

 $|\omega(AB) - \omega(A)\omega(B)| \le e^{-md(\mathcal{O}_1, \mathcal{O}_2)} \cdot \sqrt{\|A\Omega\| \|A^*\Omega\| \|B\Omega\| \|B^*\Omega\|}.$

For separated regions, the cluster property of the vacuum enters.

Assume:

- $\mathcal{O}_1, \mathcal{O}_2$ are spacelike separated regions.
- The spectrum of the Hamiltonian satisfies $\sigma(P_0) \subset \{0\} \cup [m, \infty)$, m > 0 ("massive theory").

Then for any $A \in \mathcal{A}(\mathcal{O}_1)$, $B \in \mathcal{A}(\mathcal{O}_2)$ [Fredenhagen 85]

 $|\omega(AB) - \omega(A)\omega(B)| \le e^{-md(\mathcal{O}_1, \mathcal{O}_2)} \cdot \sqrt{\|A\Omega\| \|A^*\Omega\| \|B\Omega\| \|B^*\Omega\|}.$

Consequence: For widely separated regions \mathcal{O}_1 and \mathcal{O}_2 , the vacuum on $\mathcal{A}(\mathcal{O}_1) \lor \mathcal{A}(\mathcal{O}_2)$ looks "almost like a product state".

For separated regions, the cluster property of the vacuum enters.

Assume:

- $\mathcal{O}_1, \mathcal{O}_2$ are spacelike separated regions.
- The spectrum of the Hamiltonian satisfies $\sigma(P_0) \subset \{0\} \cup [m, \infty)$, m > 0 ("massive theory").

Then for any $A \in \mathcal{A}(\mathcal{O}_1)$, $B \in \mathcal{A}(\mathcal{O}_2)$ [Fredenhagen 85]

 $|\omega(AB) - \omega(A)\omega(B)| \le e^{-md(\mathcal{O}_1, \mathcal{O}_2)} \cdot \sqrt{\|A\Omega\| \|A^*\Omega\| \|B\Omega\| \|B^*\Omega\|}.$

Consequence: For widely separated regions \mathcal{O}_1 and \mathcal{O}_2 , the vacuum on $\mathcal{A}(\mathcal{O}_1) \lor \mathcal{A}(\mathcal{O}_2)$ looks "almost like a product state".

 $\mathsf{Bell}(\omega, \mathcal{A}(\mathcal{O}_1), \mathcal{A}(\mathcal{O}_2)) \le 1 + 2e^{-md(\mathcal{O}_1, \mathcal{O}_2)} \qquad [\mathsf{Summers}/\mathsf{Werner}]$

For separated regions, the cluster property of the vacuum enters.

Assume:

- $\mathcal{O}_1, \mathcal{O}_2$ are spacelike separated regions.
- The spectrum of the Hamiltonian satisfies $\sigma(P_0) \subset \{0\} \cup [m, \infty)$, m > 0 ("massive theory").

Then for any $A \in \mathcal{A}(\mathcal{O}_1)$, $B \in \mathcal{A}(\mathcal{O}_2)$ [Fredenhagen 85]

 $|\omega(AB) - \omega(A)\omega(B)| \le e^{-md(\mathcal{O}_1, \mathcal{O}_2)} \cdot \sqrt{\|A\Omega\| \|A^*\Omega\| \|B\Omega\| \|B^*\Omega\|}.$

Consequence: For widely separated regions \mathcal{O}_1 and \mathcal{O}_2 , the vacuum on $\mathcal{A}(\mathcal{O}_1) \lor \mathcal{A}(\mathcal{O}_2)$ looks "almost like a product state".

 $\mathsf{Bell}(\omega, \mathcal{A}(\mathcal{O}_1), \mathcal{A}(\mathcal{O}_2)) \le 1 + 2e^{-md(\mathcal{O}_1, \mathcal{O}_2)} \qquad [\mathsf{Summers/Werner}]$

Nonetheless, it is still entangled!

If \mathcal{N}, \mathcal{M} are commuting nonabelian von Neumann algebras on a Hilbert space \mathcal{H} and $\Omega \in \mathcal{H}$ a unit vector cyclic for \mathcal{N} , then $\omega = \langle \Omega, \cdot \Omega \rangle$ is entangled on $\mathcal{N} \vee \mathcal{M}$. [Halvorson/Clifton 00]

The split property

Definition

Two von Neumann algebras $\mathcal{N} \subset \mathcal{M}$ are called split if there exists a type I factor \mathcal{F} such that $\mathcal{N} \subset \mathcal{F} \subset \mathcal{M}$.

Definition

Two von Neumann algebras $\mathcal{N} \subset \mathcal{M}$ are called split if there exists a type I factor \mathcal{F} such that $\mathcal{N} \subset \mathcal{F} \subset \mathcal{M}$.

 $\mathcal{N} \subset \mathcal{M}$ is split if and only if there is an isomorphism

 $\mathcal{N} \lor \mathcal{M}' \to \mathcal{N} \otimes \mathcal{M}', \qquad AB \mapsto A \otimes B.$

[Doplicher/Longo 84]

Definition

Two von Neumann algebras $\mathcal{N} \subset \mathcal{M}$ are called split if there exists a type I factor \mathcal{F} such that $\mathcal{N} \subset \mathcal{F} \subset \mathcal{M}$.

 $\mathcal{N} \subset \mathcal{M}$ is split if and only if there is an isomorphism

 $\mathcal{N} \lor \mathcal{M}' \to \mathcal{N} \otimes \mathcal{M}', \qquad AB \mapsto A \otimes B.$

[Doplicher/Longo 84]

Clearly, $\mathcal{N} \lor \mathcal{M}'$ has lots of product states when $\mathcal{N} \subset \mathcal{M}$ is split.

Definition

Two von Neumann algebras $\mathcal{N} \subset \mathcal{M}$ are called split if there exists a type I factor \mathcal{F} such that $\mathcal{N} \subset \mathcal{F} \subset \mathcal{M}$.

 $\mathcal{N} \subset \mathcal{M}$ is split if and only if there is an isomorphism

$$\mathcal{N} \lor \mathcal{M}' \to \mathcal{N} \otimes \mathcal{M}', \qquad AB \mapsto A \otimes B.$$

[Doplicher/Longo 84]

Clearly, $\mathcal{N} \lor \mathcal{M}'$ has lots of product states when $\mathcal{N} \subset \mathcal{M}$ is split. QFT situation:

- It is expected (and follows from additional assumptions) that for bounded O ⊂ Õ with a finite distance, A(O) ⊂ A(Õ) is split.
- ► This implies A(O₁) ∨ A(O₂) ≅ A(O₁) ⊗ A(O₂) for spacelike separated (with finite distance) bounded regions O₁, O₂.

Definition

Two von Neumann algebras $\mathcal{N} \subset \mathcal{M}$ are called split if there exists a type I factor \mathcal{F} such that $\mathcal{N} \subset \mathcal{F} \subset \mathcal{M}$.

 $\mathcal{N} \subset \mathcal{M}$ is split if and only if there is an isomorphism

$$\mathcal{N} \lor \mathcal{M}' \to \mathcal{N} \otimes \mathcal{M}', \qquad AB \mapsto A \otimes B.$$

[Doplicher/Longo 84]

Clearly, $\mathcal{N} \lor \mathcal{M}'$ has lots of product states when $\mathcal{N} \subset \mathcal{M}$ is split. QFT situation:

- It is expected (and follows from additional assumptions) that for bounded O ⊂ Õ with a finite distance, A(O) ⊂ A(Õ) is split.
- ► This implies A(O₁) ∨ A(O₂) ≅ A(O₁) ⊗ A(O₂) for spacelike separated (with finite distance) bounded regions O₁, O₂.

Definition

Two von Neumann algebras $\mathcal{N} \subset \mathcal{M}$ are called split if there exists a type I factor \mathcal{F} such that $\mathcal{N} \subset \mathcal{F} \subset \mathcal{M}$.

 $\mathcal{N} \subset \mathcal{M}$ is split if and only if there is an isomorphism

$$\mathcal{N} \lor \mathcal{M}' \to \mathcal{N} \otimes \mathcal{M}', \qquad AB \mapsto A \otimes B.$$

[Doplicher/Longo 84]

Clearly, $\mathcal{N} \lor \mathcal{M}'$ has lots of product states when $\mathcal{N} \subset \mathcal{M}$ is split.

QFT situation:

- ▶ It is expected (and follows from additional assumptions) that for bounded $\mathcal{O} \subset \tilde{\mathcal{O}}$ with a finite distance, $\mathcal{A}(\mathcal{O}) \subset \mathcal{A}(\tilde{\mathcal{O}})$ is split.
- ► This implies A(O₁) ∨ A(O₂) ≅ A(O₁) ⊗ A(O₂) for spacelike separated (with finite distance) bounded regions O₁, O₂.

At finite separation, some of the familiar structure of bipartite systems of $\ensuremath{\mathsf{QI}}$ reappears.

▶ So far, only considered Bell correlations or qualitative statements.

- ▶ So far, only considered Bell correlations or qualitative statements.
- Bell correlations are no good quantification of entanglement because entangled states with Bell = 1 exist.

- ▶ So far, only considered Bell correlations or qualitative statements.
- Bell correlations are no good quantification of entanglement because entangled states with Bell = 1 exist.
- ▶ The relative entanglement entropy

 $E(\rho) \coloneqq \inf_{\sigma \text{ separable}} H(\rho, \sigma), \qquad H(\rho, \sigma) = \mathsf{Tr}(\rho \log \rho - \rho \log \sigma)$

is a good ent. measure for density matrices [Vedral/Plenio 98]

- ▶ So far, only considered Bell correlations or qualitative statements.
- Bell correlations are no good quantification of entanglement because entangled states with Bell = 1 exist.
- ▶ The relative entanglement entropy

 $E(\rho) \coloneqq \inf_{\sigma \text{ separable}} H(\rho, \sigma), \qquad H(\rho, \sigma) = \mathsf{Tr}(\rho \log \rho - \rho \log \sigma)$

is a good ent. measure for density matrices [Vedral/Plenio 98]

QFT situation with split: $\mathcal{A}(\mathcal{O}_1) \lor \mathcal{A}(\mathcal{O}_2) \cong \mathcal{A}(\mathcal{O}_1) \otimes \mathcal{A}(\mathcal{O}_2)$

• many separable normal states exist, but **no trace** (type III algebras).

- ▶ So far, only considered Bell correlations or qualitative statements.
- Bell correlations are no good quantification of entanglement because entangled states with Bell = 1 exist.
- ▶ The relative entanglement entropy

 $E(\rho) \coloneqq \inf_{\sigma \text{ separable}} H(\rho, \sigma), \qquad H(\rho, \sigma) = \mathsf{Tr}(\rho \log \rho - \rho \log \sigma)$

is a good ent. measure for density matrices [Vedral/Plenio 98]

QFT situation with split: $\mathcal{A}(\mathcal{O}_1) \lor \mathcal{A}(\mathcal{O}_2) \cong \mathcal{A}(\mathcal{O}_1) \otimes \mathcal{A}(\mathcal{O}_2)$

• many separable normal states exist, but **no trace** (type III algebras).

Araki found a generalisation of relative entropy to arbitrary von Neumann algebras with arbitrary normal states ω, ω' ,

 $H(\omega,\omega') = \langle \Omega, \log \Delta_{\omega,\omega'} \Omega \rangle.$

Relative entanglement entropy

Araki's relative entropy has many good properties, including

$$H(\omega,\omega')=0\iff \omega=\omega'.$$

Define relative entanglement entropy of ω on $\mathcal{A}(\mathcal{O}_1) \lor \mathcal{A}(\mathcal{O}_2)$ as

 $E(\omega, \mathcal{O}_1, \mathcal{O}_2) = \inf\{H(\omega, \sigma) : \sigma \text{ normal and separable}\} \in [0, \infty].$

[Hollands/Sanders 18].

This is a good entanglement measure that works in QFT. In particular, ω is entangled on $\mathcal{A}(\mathcal{O}_1) \vee \mathcal{A}(\mathcal{O}_2)$ if and only if $E(\omega, \mathcal{O}_1, \mathcal{O}_2) > 0$.

Relative entanglement entropy

Araki's relative entropy has many good properties, including

$$H(\omega,\omega')=0\iff \omega=\omega'.$$

Define relative entanglement entropy of ω on $\mathcal{A}(\mathcal{O}_1) \lor \mathcal{A}(\mathcal{O}_2)$ as

 $E(\omega, \mathcal{O}_1, \mathcal{O}_2) = \inf\{H(\omega, \sigma) : \sigma \text{ normal and separable}\} \in [0, \infty].$

[Hollands/Sanders 18].

This is a good entanglement measure that works in QFT. In particular, ω is entangled on $\mathcal{A}(\mathcal{O}_1) \vee \mathcal{A}(\mathcal{O}_2)$ if and only if $E(\omega, \mathcal{O}_1, \mathcal{O}_2) > 0$.

 $E(\omega, \mathcal{O}_1, \mathcal{O}_2)$ is very difficult to compute in concrete situations.

Relative entanglement entropy

Araki's relative entropy has many good properties, including

$$H(\omega,\omega')=0\iff \omega=\omega'.$$

Define relative entanglement entropy of ω on $\mathcal{A}(\mathcal{O}_1) \lor \mathcal{A}(\mathcal{O}_2)$ as

 $E(\omega, \mathcal{O}_1, \mathcal{O}_2) = \inf\{H(\omega, \sigma) : \sigma \text{ normal and separable}\} \in [0, \infty].$

[Hollands/Sanders 18].

This is a good entanglement measure that works in QFT. In particular, ω is entangled on $\mathcal{A}(\mathcal{O}_1) \vee \mathcal{A}(\mathcal{O}_2)$ if and only if $E(\omega, \mathcal{O}_1, \mathcal{O}_2) > 0$.

 $E(\omega, \mathcal{O}_1, \mathcal{O}_2)$ is very difficult to compute in concrete situations.

One usually has to estimate it (from above/below).

An upper bound on the entanglement entropy is given by modular theory.

Let $\mathcal{N} \subset \mathcal{M} \subset \mathcal{B}(\mathcal{H})$ be an inclusion of factors with joint cyclic and separating vector Ω on Hilbert space \mathcal{H} . Consider the (linear, bnd) map

$$\Xi: \mathcal{N} \to \mathcal{H}, \qquad \Xi(A) \coloneqq \Delta_{\mathcal{M}}^{1/4} A \Omega,$$

where $\Delta_{\mathcal{M}}$ is the modular operator of (\mathcal{M}, Ω) .

An upper bound on the entanglement entropy is given by modular theory.

Let $\mathcal{N} \subset \mathcal{M} \subset \mathcal{B}(\mathcal{H})$ be an inclusion of factors with joint cyclic and separating vector Ω on Hilbert space \mathcal{H} . Consider the (linear, bnd) map

$$\Xi: \mathcal{N} \to \mathcal{H}, \qquad \Xi(A) \coloneqq \Delta_{\mathcal{M}}^{1/4} A\Omega,$$

where $\Delta_{\mathcal{M}}$ is the modular operator of (\mathcal{M}, Ω) .

Theorem: If Ξ is nuclear (can be approximated well by finite rank maps), then N ⊂ M is split [Buchholz/D'Antoni/Longo 90].

An upper bound on the entanglement entropy is given by modular theory.

Let $\mathcal{N} \subset \mathcal{M} \subset \mathcal{B}(\mathcal{H})$ be an inclusion of factors with joint cyclic and separating vector Ω on Hilbert space \mathcal{H} . Consider the (linear, bnd) map

$$\Xi: \mathcal{N} \to \mathcal{H}, \qquad \Xi(A) \coloneqq \Delta_{\mathcal{M}}^{1/4} A\Omega,$$

where $\Delta_{\mathcal{M}}$ is the modular operator of (\mathcal{M}, Ω) .

- Theorem: If Ξ is nuclear (can be approximated well by finite rank maps), then N ⊂ M is split [Buchholz/D'Antoni/Longo 90].
- This "modular nuclearity condition" was originally motivated by thermodynamical considerations. The nuclear norm ∥Ξ∥₁ can be viewed as a "modular partition function" [Buchholz].

An upper bound on the entanglement entropy is given by modular theory.

Let $\mathcal{N} \subset \mathcal{M} \subset \mathcal{B}(\mathcal{H})$ be an inclusion of factors with joint cyclic and separating vector Ω on Hilbert space \mathcal{H} . Consider the (linear, bnd) map

$$\Xi: \mathcal{N} \to \mathcal{H}, \qquad \Xi(A) \coloneqq \Delta_{\mathcal{M}}^{1/4} A\Omega,$$

where $\Delta_{\mathcal{M}}$ is the modular operator of (\mathcal{M}, Ω) .

- Theorem: If Ξ is nuclear (can be approximated well by finite rank maps), then N ⊂ M is split [Buchholz/D'Antoni/Longo 90].
- This "modular nuclearity condition" was originally motivated by thermodynamical considerations. The nuclear norm ∥Ξ∥₁ can be viewed as a "modular partition function" [Buchholz].
- ► Theorem: [Hollands/Sanders 18]

 $E(\omega) \leq \log \|\Xi\|_1.$

An upper bound on the entanglement entropy is given by modular theory.

Let $\mathcal{N} \subset \mathcal{M} \subset \mathcal{B}(\mathcal{H})$ be an inclusion of factors with joint cyclic and separating vector Ω on Hilbert space \mathcal{H} . Consider the (linear, bnd) map

$$\Xi: \mathcal{N} \to \mathcal{H}, \qquad \Xi(A) \coloneqq \Delta_{\mathcal{M}}^{1/4} A\Omega,$$

where $\Delta_{\mathcal{M}}$ is the modular operator of (\mathcal{M}, Ω) .

- Theorem: If Ξ is nuclear (can be approximated well by finite rank maps), then N ⊂ M is split [Buchholz/D'Antoni/Longo 90].
- This "modular nuclearity condition" was originally motivated by thermodynamical considerations. The nuclear norm ∥Ξ∥₁ can be viewed as a "modular partition function" [Buchholz].
- ► Theorem: [Hollands/Sanders 18]

$$E(\omega) \le \log \|\Xi\|_1.$$

This is a useful tool for estimates from above because for special regions (wedges), Δ has a simple form.

In the last years, relative entropies and entanglement entropies have been investigated a lot in QFT [Casini, Faulkner, Hollands, Longo, Witten, Xu ...]

- In the last years, relative entropies and entanglement entropies have been investigated a lot in QFT [Casini, Faulkner, Hollands, Longo, Witten, Xu ...]
- There are various results in conformal field theory, free field theory, and in model-independent (axiomatic) settings.

- In the last years, relative entropies and entanglement entropies have been investigated a lot in QFT [Casini, Faulkner, Hollands, Longo, Witten, Xu ...]
- There are various results in conformal field theory, free field theory, and in model-independent (axiomatic) settings.

Open questions:

• How do the entanglement properties of the vacuum depend on the model / interaction?

- In the last years, relative entropies and entanglement entropies have been investigated a lot in QFT [Casini, Faulkner, Hollands, Longo, Witten, Xu ...]
- There are various results in conformal field theory, free field theory, and in model-independent (axiomatic) settings.

Open questions:

- How do the entanglement properties of the vacuum depend on the model / interaction?
- Do entanglement properties between various regions determine a model? [Casini]
- Can we make contact with (non-rigorous) approaches from theoretical physics literature?

Ongoing work

• There exists a family of QFTs on \mathbb{R}^2 parametrized by pairs (U,T),

- U irreducible positive energy rep of Poincaré group on a one-particle space \mathcal{H}_1
- T a selfadjoint operator on $\mathcal{H}_1 \otimes \mathcal{H}_1$

built directly from modular theory [Buchholz/L 04, L 08, Bischoff/Tanimoto 15, Alazzawi/L 17, Correa da Silva/L 22].

Ongoing work

- There exists a family of QFTs on \mathbb{R}^2 parametrized by pairs (U,T),
 - U irreducible positive energy rep of Poincaré group on a one-particle space \mathcal{H}_1
 - T a selfadjoint operator on $\mathcal{H}_1 \otimes \mathcal{H}_1$

built directly from modular theory [Buchholz/L 04, L 08, Bischoff/Tanimoto 15, Alazzawi/L 17, Correa da Silva/L 22].

- ▶ The construction works by estimating the modular partition function $\|\Xi\|_1$ for wedges.
- ▶ Opens up the possibility to study the dependence of entanglement properties on interaction (*T*).

Ongoing work

- There exists a family of QFTs on \mathbb{R}^2 parametrized by pairs (U,T),
 - U irreducible positive energy rep of Poincaré group on a one-particle space \mathcal{H}_1
 - T a selfadjoint operator on $\mathcal{H}_1 \otimes \mathcal{H}_1$

built directly from modular theory [Buchholz/L 04, L 08, Bischoff/Tanimoto 15, Alazzawi/L 17, Correa da Silva/L 22].

- ▶ The construction works by estimating the modular partition function $\|\Xi\|_1$ for wedges.
- ▶ Opens up the possibility to study the dependence of entanglement properties on interaction (*T*).
- ▶ The Ising model is included [calculations with Ian Koot yesterday]:

$$E(\omega, W + x, W') \le c \frac{e^{-mx}}{\sqrt{mx}} \left(1 + \frac{1}{2mx}\right)$$

already close to predictions of theoretical physics.

Outlook

- Entanglement is ubiquituous in QFT, in particular in the vacuum state across spacelike separated regions.
- Good but abstract entanglement measures exist that work in this setting (type III algebras)
- ▶ We still need better **lower** bounds on entanglement entropies.
- Investigation of entanglement entropies in interacting models in progress – does this characterize the interaction / the QFT?