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Setting for this talk: “algebraic quantum field theory” (AQFT):

@ maths: operator-algebraic approach (von Neumann algebras,
(normal) states)

@ physics: relativistic quantum systems describing elementary
particles

Many entanglement questions arise in this context.

Plan/purpose of this talk:
» sketch the setup of AQFT
» entanglement properties of the vacuum state
» quantifying entanglement in QFT

» examples
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Basic setting for QFT on Minkowski space R 5 (xg, 21,...,Z4-1)
(with d = spacetime dimension > 1+ 1)

@ Hilbert space H (with dimH = o)

@ Unitary representation U of Poincaré group on H, including in
particular a representation of R (translations) such that

e Generator Py of U(xy,0,...,0) is positive (positive energy),
Py =Hamiltonian.
o there exists a unique vector Q € H with U(2)Q = Q vacuum.

© Local observable algebras: For every open region O c RY,
have a von Neumann algebra

A(O) c B(H).
Idea: A€ A(Q) is an observable measurable in O, e.g. in

O = today x Madrid.
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Physically natural axioms on the family of algebras A(O):
e 01 c Oy = A(01) c A(O7)
o U(x)A(O)U(-x) = A(O +x) covariance
o A(O1) and A(Oz2) commute when O; and O3 are spacelike

separated (locality)

@ Vacuum Q is cyclic for all A(O) (Reeh-Schlieder property)

State of prime interest: vacuum state w = (2, - ) on bipartite
systems of the form A(O;) v A(O2) with O; spacelike to Os.
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Let O1, Os be two spacelike separated regions.

w is not a product state on A(O;) v A(Oy).

® o

(A*Q,U(~2) BQ) = (A*Q, Q)(Q, BQ)
= U(-z) = |2)}{(Q].
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Let O1, Os be two spacelike separated regions.

w is not a product state on A(O1) v A(O3). O

Under further physically natural assumptions (that are valid in models)
one can show:

For every (causally convex) bounded open region O, the von Neumann
algebra A(O) is isomorphic to the unique hyperfinite type Ill; factor.
[Buchholz/D'Antoni/Fredenhagen '87]

Consequences:
» There exists no tracial state on A(O).

» The local algebras have no normal pure states, in particular w is not
pure on A(O).

» Despite describing the “zero particle state”, the vacuum is a
complicated and strongly correlated state.

» What about entanglement properties?
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Entanglement for touching regions

For “touching” regions (zero spatial distance) entanglement is extreme:

» For two complementary wedges W, W', Bell's inequalities are
maximally violated:

Bell(w, A(W), A(W')) =2
for any normal state ¢ on A(W) v A(W') [Summers/Werner 80s|
» Consider two regions @7 and O that “touch”. Then
Bell(p, A(O1), A(02)) = V3

for any normal state ¢ on A(O;) v.A(O3) in a family of models
(free field theories, P¢o, Yukawa) [Summers/Werner 80s]

» Consider two regions @7 and Oy that “touch”. Then
A(O1) v A(O2) does not have any normal separable state
[Hollands/Sanders 18]

6/14



Entanglement at finite separation
For separated regions, the cluster property of the vacuum enters.

Assume:

@ O01,0- are spacelike separated regions.

@ The spectrum of the Hamiltonian satisfies o(FPy) c {0} U [m, o),

m >0 (“massive theory”).

Then for any A € A(01), B € A(O3) [Fredenhagen 85]

w(AB) ~w(A)w(B)| < ™10 . \/]AQ[] A*Q[| BQ[ B*Q].-
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Entanglement at finite separation

For separated regions, the cluster property of the vacuum enters.

Assume:
@ O01,0- are spacelike separated regions.

@ The spectrum of the Hamiltonian satisfies o(FPy) c {0} U [m, o),
m >0 (“massive theory”).

Then for any A € A(O;), B € A(O2) [Fredenhagen 85]

w(AB) ~w(A)w(B)| < ™10 . \/]AQ[] A*Q[| BQ[ B*Q].-

Consequence: For widely separated regions @; and O3, the vacuum on
A(O1) v A(O3) looks “almost like a product state”.

Bell(w, A(01), A(02)) <1 +2e™01:02)  [Symmers/Werner]
Nonetheless, it is still entangled!

If N, M are commuting nonabelian von Neumann algebras on a Hilbert
space H and Q € H a unit vector cyclic for A, then w = (Q, - Q) is
entangled on N'v M. [Halvorson/Clifton 00] 7/14
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The split property

Definition

Two von Neumann algebras A/ ¢ M are called split if there exists a type |
factor F such that N/ c F c M.

N c M is split if and only if there is an isomorphism

NvM > Ne M, AB+— A® B.
[Doplicher/Longo 84|
Clearly, N'v M’ has lots of product states when N c M is split.

QFT situation:

» It is expected (and follows from additional assumptions) that for
bounded O c O with a finite distance, A(O) c A(O) is split.

» This implies A(O1) v A(O2) = A(O1) ® A(O3) for spacelike
separated (with finite distance) bounded regions Oy, Os.

At finite separation, some of the familiar structure of bipartite systems of

QI reappears.
8/14
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Quantifying entanglement

» So far, only considered Bell correlations or qualitative statements.

» Bell correlations are no good quantification of entanglement
because entangled states with Bell = 1 exist.

» The relative entanglement entropy

E(p):=__inf H(p,0),  H(p,0)=Tr(plogp-plogo)

o separable

is a good ent. measure for density matrices [Vedral /Plenio 98|
QFT situation with split: A(O;) v .A(O2) 2 A(0;1) ® A(O5)

@ many separable normal states exist, but no trace (type Il algebras).

Araki found a generalisation of relative entropy to arbitrary von Neumann
algebras with arbitrary normal states w,w’,

H(w,w") =(Q,log A, . /Q).
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Relative entanglement entropy

Araki's relative entropy has many good properties, including

Hw,w)=0 < w=u'"

Define relative entanglement entropy of w on A(O;) v A(O5) as
E(w,01,05) =inf{H(w,0) : o normal and separable} € [0, co].

[Hollands/Sanders 18].

This is a good entanglement measure that works in QFT. In particular, w
is entangled on A(O;) v A(O-) if and only if E(w,01,02) > 0.
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Hw,w)=0 < w=u'"

Define relative entanglement entropy of w on A(O;) v A(O5) as
E(w,01,05) =inf{H(w,0) : o normal and separable} € [0, co].

[Hollands/Sanders 18].

This is a good entanglement measure that works in QFT. In particular, w
is entangled on A(O;) v A(O-) if and only if E(w,01,02) > 0.

E(w,01,05) is very difficult to compute in concrete situations.

One usually has to estimate it (from above/below).
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The modular partition function

An upper bound on the entanglement entropy is given by modular theory.

Let N c M c B(H) be an inclusion of factors with joint cyclic and
separating vector €2 on Hilbert space H. Consider the (linear, bnd) map

SN H,  E(A):=AY A0,

where A4 is the modular operator of (M, Q).
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An upper bound on the entanglement entropy is given by modular theory.

Let N c M c B(H) be an inclusion of factors with joint cyclic and
separating vector €2 on Hilbert space H. Consider the (linear, bnd) map

SN H,  E(A):=AY A0,

where A4 is the modular operator of (M, Q).

» Theorem: If = is nuclear (can be approximated well by finite rank
maps), then N' ¢ M is split [Buchholz/D'Antoni/Longo 90].

@ This “modular nuclearity condition” was originally motivated by
thermodynamical considerations. The nuclear norm |Z|; can be
viewed as a “modular partition function” [Buchholz].

» Theorem: [Hollands/Sanders 18]
B(w) <log |Z]1.

This is a useful tool for estimates from above because for special regions
(wedges), A has a simple form.
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Examples

» In the last years, relative entropies and entanglement entropies have
been investigated a lot in QFT [Casini, Faulkner, Hollands, Longo,
Witten, Xu ... ]

» There are various results in conformal field theory, free field theory,
and in model-independent (axiomatic) settings.

Open questions:

@ How do the entanglement properties of the vacuum depend on the
model / interaction?

@ Do entanglement properties between various regions determine a
model? [Casini]

@ Can we make contact with (non-rigorous) approaches from
theoretical physics literature?
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Ongoing work

» There exists a family of QFTs on R? parametrized by pairs (U, T),

e U irreducible positive energy rep of Poincaré group on a
one-particle space H1
o T a selfadjoint operator on H1 ® H;

built directly from modular theory [Buchholz/L 04, L 08,
Bischoff/Tanimoto 15, Alazzawi/L 17, Correa da Silva/L 22].
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» There exists a family of QFTs on R? parametrized by pairs (U, T),

e U irreducible positive energy rep of Poincaré group on a
one-particle space H1
e T a selfadjoint operator on H; ® Hy

built directly from modular theory [Buchholz/L 04, L 08,
Bischoff/Tanimoto 15, Alazzawi/L 17, Correa da Silva/L 22].

» The construction works by estimating the modular partition function
|Z[1 for wedges.

» Opens up the possibility to study the dependence of entanglement
properties on interaction (7).

» The Ising model is included [calculations with lan Koot yesterday]:

—-mx 1
E N<el (1 7)
(w,W+x,W)_cM to—

already close to predictions of theoretical physics.

13/14



Outlook

>

Entanglement is ubiquituous in QFT, in particular in the
vacuum state across spacelike separated regions.

Good but abstract entanglement measures exist that work in
this setting (type Ill algebras)

We still need better lower bounds on entanglement entropies.

Investigation of entanglement entropies in interacting models
in progress — does this characterize the interaction / the QFT?
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