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Complexity of many-body quantum physics

Many-body quantum states have exponentially large description:

|Ψð =
∑

i1,...,in

Ψi1,...,in |i1, . . . , inð

In practice, entanglement local ; compact description:

Start with local entangled pairs. . .

. . . and “glue” by applying local transformations:
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What is a tensor network?

Given a tensor

T =

∑

i,j,k

Tijk |ið |jð |kð

we represent it graphically as

Contraction of tensors is shown graphically as
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The tensor network tool box

Tensor network: define many-body

state by contracting “local” tensors
|Ψð =

∑

i1,...,in

Ψi1,...,in |i1, . . . , inð

e.g.

MPS [White, Fannes-Nachtergaele-Werner, . . . ]

PEPS [Verstraete-Cirac]

Numerical tool on classical and quantum computers

Analytical tool that provides “dual descriptions” of complex phenomena:

symmetries, topological phases, renormalization, . . .
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Innocent or not? First examples

▶ Long-range entanglement: If = |000ð+ |111ð then

= |00 · · · 00ð+ |11 · · · 11ð

▶ Quantum cellular automata:

Unitary, but not a quantum circuit!

▶ An example from TCS: =
∑

i,j,k AijBjkCki = tr(ABC)

and hence is the matrix multiplication tensor.
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1D: Matrix product states (MPS)

Consider 3-leg tensor M with bond dimension D and physical dimension d :

This determines a quantum state on any n sites:

Its coefficients are ïi1, . . . , in|Mnð = tr(M(i1)M(i2) · · ·M(in)), hence the name.
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Computing with tensor networks

Essentially all computations amount to tensor contractions:

Computational complexity: Easy in 1D. In principle, hard in 2D and higher.
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2D: Projected entangled pair states (PEPS)

Consider 5-leg tensor T with bond dimension D and physical dimension d :

This determines a quantum state on any n × m sites:
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Geometry vs. entanglement S(A) = − tr ρA log ρA

A

Area law: S(A) ⩽ |∂A| log D.

▶ Any tensor network satisfies an area law, determined by its geometry.

▶ In 1D, low-energy states of local gapped quantum systems satisfy

area law and have accurate MPS representations [Hastings].

▶ These can be found in polynomial time [Landau-Vazirani-Vidick, Arad et al].

▶ In 2D and higher conjecture, many examples, proof only in special

cases [Anshu-Arad-Gosset, . . . ]
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Fundamental theorems
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A fundamental question

Given two tensors, when do they generate the same tensor network state?

Easy to find such situations! MPS:

⇒

PEPS:

⇒

These gauge symmetries preserve the quantum state for any system size!
Moreover, can take limits of such symmetries. . .
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Fundamental theorem for MPS

vs.

In 1D, gauge symmetry and taking limits is the only redundancy. We can
efficiently pick canonical form. It is unique up to unitaries & satisfies:

Fundamental Theorem of MPS (Cirac–PG–Schuch, de las Cuevas)

Two tensors M and N give rise to the same quantum states |Mnð = |Nnð
for all system sizes n if and only if they have same canonical forms.

Many applications!
▶ Classification of symmetries and topological phases
▶ Classification of quantum cellular automata
▶ Better-behaved numerics

No such result known in higher dimensions (before our work)!
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Illustration: Classification of symmetries

Suppose M is tensor with global (on-site) symmetry for any system size n:

u⊗n |Mnð = |Mnð

 

99999

=

Fundamental theorem implies that there is unitary U such that

=

In this way, classification of SPT phases ; classification of projective
representations. [Chen-Gu-Wen, Schuch-Perez-Garcia-Cirac, Pollman et al].
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Computational complexity

In particular, “|Mnð = |Nnð for all n?” can be decided in polynomial time.

Bad news: For PEPS, “|Tm,nð = |Sm,nð for all m, n?” is undecidable!

Suggests in 2D and higher, no useful fundamental theorem should exist.
However, this is not so – need to change the perspective. . .
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Gauge symmetry in higher dimension

When two PEPS tensors are related by gauge symmetry, they determine
not only the same state on square grids. . .

⇒

Intuition: There are many inequivalent surfaces in 2D!

Summary of results: If one allows for arbitrary graphs, gauge symmetry

and taking limits is the only redundancy. Can again find canonical form

that satisfies all the same properties as before! Let’s see how this works. . .
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Our proposal: The minimal canonical form

Group action of G = GL(D)× GL(D):

S = (g , h)· T

Define minimal canonical form of PEPS tensor T by minimizing ℓ2-norm:

Tmin := argmin {∥S∥2 : S ∈ G · T }.

▶ Closure is needed so that minimum is attained, but also natural since
taking limits is allowed.

▶ First rigorous canonical form in 2D (+ similarly works in higher dim)!
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What does it characterize?

Recall the group action of G = GL(D)× GL(D):

S = (g , h)· T

We say T , T ′ are gauge equivalent if G · T and G · T ′ intersect. This
implies that they give the same many-body states!

Result (Canonical form)

1 The minimal canonical form exists and is unique up to U(D)× U(D).

2 Two tensors have the same minimal canonical forms if and only if
they are gauge equivalent.
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When are two tensors gauge equivalent?

Fundamental Theorem of PEPS

Two tensors T and T ′ give rise to the same tensor network state on any
admissible graph Γ

if and only if they are gauge equivalent, so if and only if they have the
same minimal canonical forms.

▶ In fact, eO(D2) vertices suffice to distinguish two PEPS tensors, and
eΩ(D) vertices are necessary. For MPS, we note Õ(D) vertices suffice.
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Decidability

In particular, “|TΓ ð = |T ′
Γ ð for all graphs Γ?” is decidable. ,

Intuition: Undecidability for |Tn,mð reduces to periodic tiling problem.
Its undecidability in turn relies on existence of aperiodic tile sets such as:

There exist T ̸= 0 such that all |Tn,mð = 0, but no algorithm can recognize them! [Scarpa et al]

However, if allow arbitrary graphs (topologies) this distinction collapses!
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How to characterize the canonical form?

We show that a tensor T

is in minimal canonical form if and only if

and

This means the state ρ = |T ðïT | satisfies ρright = ρleft & ρbottom = ρtop.
Physical interpretation?
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Why does it work? Geometric invariant theory (GIT)

A field of mathematics that studies equivalence for “nice” actions of
group G on vector space V . In our case:

G = GL(D) and V = MPS tensors of fixed format,

G = GL(D)× GL(D) and V = PEPS tensors of fixed format.

Notion of equivalence: G · v and G · v ′ intersect. , GIT tells us:
▶ Minimum norm vectors unique up to unitaries. [Kempf-Ness]

▶ Equivalent iff P(v) = P(v ′) for all G-invariant polynomials P. [Mumford]

What are the invariant polynomials in our case? Quantum states!

P(M) = ïi1, . . . , in|Mnð for n = Õ(D).
New perspective gives stronger results!
[Procesi-Razmyslov-Formanek, Derksen-Makam]

P(T ) = ïi1, . . . , in|TΓ ð for
arbitrary graphs Γ
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Algorithms for the minimal canonical form

Given a tensor T , how to compute Tmin? Nontrivial, even for MPS!

Result (Algorithms)

For fixed bond dimension D, can approximate Tmin in polynomial time.

Combines computer science ideas from the solution of Paulsen’s problem
with recent results on optimization on groups (operator, tensor scaling).

Key idea: g 7→ ∥g · v∥ is convex along geodesics of curved space arising
from noncommutative group. Accordingly, local algorithms can find
canonical form. Versatile framework, many applications. [Bürgisser-. . . -W-Wigderson]
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Summary and outlook

Tensor networks describe high-dimensional data succinctly.
Applications from physics to numerics to computer science.

Fundamental theorems and canonical forms are key tools.
We propose first rigorous general such tools beyond 1D.

To achieve this, we connect tensor networks to powerful

tools from geometric invariant theory and recent progress

on optimization algorithms in theoretical computer science.

Many exciting open questions: Faster algorithms for large bond dimension?

Flexible framework – how about other tensor networks? Connection to

topological order? Impact on numerics? Thank you for your attention!
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