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Main questions regarding gapped ground state phases

1. Existence of a gap for specific Hamiltonians.

2. Stability of the gap under perturbations (existence of a ‘phase’).

3. Classification of equivalence classes of gapped phases, for example,
those defined by gapped curves of Hamiltonians (Chen-Gu-Wen 2011).

Outline
1. AKLT chain

2. Ground state phase diagram

3. O(n) spin chains

4. Answer the question of the title
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Spin chains, Hamiltonians, ground states
Finite spin chain on [a, b] ⊂ Z, Hilbert space H[a,b] =

⊗b
x=a Cn, n ≥ 2,

spins or qdits of dimension n = 2J + 1.

Translation-invariant nearest neighbor interaction is given by
h = h∗ ∈ Mn(C)⊗Mn(C) = B(H[x,x+1]).

Hamiltonian: H[a,b] =
∑b−1

x=a hx,x+1. Interested in ground states.

Heisenberg model: hx,x+1 = Sx · Sx+1 = S1
x S

1
x+1 + S2

x S
2
x+1 + S3

x S
3
x+1,

where S i
x , i = 1, 2, 3, x ∈ [a, b], are n-dimensional spin matrices.

AKLT model, n = 3:
hx,x+1 = 1

2Sx · Sx+1 + 1
6 (Sx · Sx+1)2 + 1

31l = P
(2)
x,x+1.

Most general isotropic nearest neighbor interaction for n = 3:
hx,x+1 = cosφSx · Sx+1 + sinφ(Sx · Sx+1)2.
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Figure: Ground state phase diagram
for the S = 1 chain (n = 3) with
nearest-neighbor interactions
cosφSx · Sx+1 + sinφ(Sx · Sx+1)2.

I φ = 0: Heisenberg
antiferromagnet, Haldane phase
(Haldane, 1983)

I tanφ = 1/3, AKLT point
(Affleck-Kennedy-Lieb-Tasaki,

1987,1988), FF, MPS, gapped
I tanφ = 1, solvable, gapless,

SU(3) invariant, (Sutherland,

1975)
I φ ∈ [π/2, 3π/2], ferromagnetic,

FF, gapless
I φ = −π/2, solvable, SU(3)

invariant, Temperley-Lieb
algebra, dimerized, gapped
(Klümper; Affleck,1990)

I φ− = −π/4 gapless,
Bethe-ansatz, (Takhtajan;

Babujian, 1982)
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Dimerization
If a pair interaction favors a maximally entangled state (such as a spin
singlet), monogamy of entanglement sets up a competition between
pairings. In one dimension, this often leads to an instability and/or to
spontaneous breaking of translation symmetry. In the family of O(n)
chains here, translation symmetry breaking occurs, called dimerization.
For finite chains of 2` spins the ground states can be viewed as chain of
dimers:

-3-4 -2 -1 0 1 2 3 4 5

-3 -2 -1 0 2 3 4

` = 5, odd

` = 4, even
1

The actual ground states need not consist of maximally entangled pairs.
For the O(n) chains maximally entangled pairs dominate for large n.
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The AKLT chain
The AKLT chain (Affleck-Kennedy-Lieb-Tasaki 1987-88) is the spin-1 chain
with nearest neighbor interaction given by the projection onto the spin-2
states:

H[a,b] =
∑

x∈[a,b]

P
(2)
x,x+1, P

(2)
x,x+1 =

1

3
1l +

1

2
Sx · Sx+1 +

1

6
(Sx · Sx+1)2.

[a, b] ∈ Z, H[a,b] is the Hamiltonian, acts on
⊗

x∈[a,b] C3, self-adjoint.

Ground state space is 4-dimensional and given by kerH[a,b], for all
b > a ∈ Z. AKLT proved that the infinite chain has a unqiue ground
state with a spectral gap and exponential decay of correlations
(Haldane’s Conjecture).

I limn〈ψn,Aψn〉 = ω(A), independent of the sequence of unit vectors
ψn ∈ kerH[an,bn], an → −∞, bn →∞.

I There exists γ > 0 such that spec kerH[a,b] ⊂ {0} ∪ [γ,∞), for all
b > a ∈ Z.

I |ω(AxBy )| ≤ 4‖Ax‖‖By‖ 13
|x−y |

.

The exact ground state is a Matrix Product State (MPS)
(Fannes-N-Werner 1989-1992).
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AKLT settled Q1 (existence of the gap).

Q2 (stability) was first addressed by Yarotsky (2004), who proved that
translation-invariant, finite-range perturbations of the AKLT chain do not
close the gap for sufficiently small coupling constants.

H(s) =
∑
x

P
(2)
x,x+1 + s

∑
X⊂Z

Φ(X ).

Φ(X ) = Φ(X )∗ acts non-trivially only on spins at x ∈ X ⊂ Z. Finite
range R: Φ(X ) = 0 if diamX > R.

Other proofs and generalizations of stability for the AKLT chain by
Michalakis-Zwolak 2013, Szehr-Wolf 2015, Moon-N 2018, Sims-N-Young 2021,

and for other models by Bravyi-Hastings-Michalakis 2010-11, Sims-N-Young

2018, De Roeck-Salmhofer 2019, Hastings 2019, Fröhlich-Pizzo 2018-2020,

Del-Vecchio-Fröhlich-Pizzo-Rossi 2020-2022.
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Q3 (classification of phases)

One can construct a C 1-curve of projections P(s) such that P(1) = P(2)

and the model with nn interaction P(0) has a unique product ground
state (for the infinite chain) and prove a uniform positive lower bound for
the gap for s ∈ [0, 1] (Bachmann-N 2014).

This implies that the AKLT chain belongs to the same phase as the
model with a unique product ground state (the trivial phase).

In contrast, if we one restricts to interpolations P(s) that respect spin
rotation symmetry about 1 axis and an additional Z2 symmetry, an index
argument shows that any curve connecting the AKLT model with a
model in the trivial phase, must pass through a phase transition where
the gap closes (Tasaki 2018, Ogata 2019-20).

This implies that the AKLT chain belongs to a SPT phase distinct from
the trivial phase.
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Gapped ground state phases

Gapped phase
Def: two interactions, Φ0 and Φ1, with a (unique) gapped ground state
belong to the same gapped phase if there exists a (piecewise)
differentiable interpolation [0, 1] 3 s 7→ Φs , that is uniformly gapped
(Chen-Gu-Wen 2011).

Symmetry Protected / Enhanced gapped phase
Def: Given a symmetry G , defined as ‘gapped phase’ above, but with
G -symmetric Φs , for all s ∈ [0, 1] (Pollman-Turner-Berg-Oshikawa, 2010).

There are other definitions in the literature which, under suitable
conditions, are equivalent to those above.
See From Lieb-Robinson bounds to automorphic equivalence, in Rupert L.

Frank, Ari Laptev, Mathieu Lewin, and Robert Seiringer (eds), The Physics and

Mathematics of Elliott Lieb, vol. 2, pp. 79–92, European Mathematical Society

Press, 2022, arXiv:2205.10460.



10

O(n) chains and generalizations of the AKLT model
There is a local unitary change of basis in which the AKLT interaction is
given by

P(2) =
1

2
(T − 2Q + 1l),

where T is the swap operator and Q is the projection onto
1√
3

(e1 ⊗ e1 + e0 ⊗ e0 + e−1 ⊗ e−1).

This generalizes to n-dimensional spins and arbitrary coupling constants
as follows

uT + vQ, u, v ∈ R

where Q is the projection to

ψ =
1√
n

n∑
α=1

|α, α〉.

Both T and Q commute with the natural action of O(n) on the spins in
this basis. It is the general O(n) invariant nearest neighbor interaction for
n ≥ 2, which was studied by Tu & Zhang, 2008.
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Figure: Ground state phase diagram
for the chain with nearest-neighbor
interactions uT + vQ for n ≥ 3.

I v = −2nu/(n − 2), n ≥ 3, Bethe
ansatz point (Reshetikhin, 1983)

I v = −2u: frustration free point,
equivalent to ⊥ projection onto
symmetric vectors 	 one. Unique
g.s. if n odd; two 2-periodic g.s.
for even n; spectral gap in all
cases and stable phase
(N-Sims-Young, 2022).

I u = 0, v = −1. Equivalent to the
SU(n) −P(0) models aka
Temperley-Lieb chain; Affleck,

1990, Nepomechie-Pimenta 2016).
Dimerized for all n ≥ 3
(Aizenman, Duminil-Copin, Warzel,

2020). Proof of some stability for
large n
(Björnberg-Mühlbacher-N-Ueltschi,

2021).
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Two distinct gapped phases for all n ≥ 3
I MPS/FF point

I odd n: unique gapped ground state
I even n: two 2-periodic gapped ground states

I South Pole: two dimerized gapped ground states for all n ≥ 3.

All these MPS/FF gapped phase are fully stable (N-Sims-Young 2022).
The dimerized phase (South Pole) is also expected to be fully stable
under translation-invariant short-range perturbations, but only specific
stability has been proved (Björnberg-Mühlbacher-N-Ueltschi 2021).

New results (N-Ragone, in prep)

I the MPS/FF point and the South Pole always belong to distinct
phases.

I the two ground states for even n at the MPS/FF point have
identical entanglement properties



13

Phase structure of the MPS states (N-Ragone, in prep)
An equivalent parent Hamiltonian is given by

h =
1

2
(T + 1l)− Q,

which is the projection on the symmetric states in kerQ.

Case of odd n: up to a local unitary basis transformation this is the
following SU(2)-invariant interaction for a spin-J chain with 2J + 1 = n:

h = P(2) + P(4) + · · ·+ P(2J).

These spin chains have a unique gapped ground state.
The case n = 3 is the well-known Haldane SPT phase with string order
(den Nijs-Rommelse 1989), a hidden Z2 × Z2 symmetry (Kennedy-Tasaki

1992) and characterized by a non-trivial index
Pollmann-Berg-Turner-Oshikawa 2012, Tasaki 2018, Ogata 2020.

Tu-Zhang 2008 found this model has a unique matrix product state
ground state with several string order parameters and a hidden
(Z2 × Z2)J symmetry.
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Clifford MPS (Tu-Zhang 2008, Fannes-N-Werner, 2010 unpub notes)

Case of odd n:

The unique MPS ground states is given by

ψ(`)(B) =
n∑

i1,...,i`=1

(TrBγi` · · · γi1) |i1 . . . i`〉.

where the γi are an irrep of the Clifford algebra:

γiγj + γjγi = 2δij .

Up to unitary equivalence, there is a unique irrep given by n traceless
Hermitian 2(n−1)/2 × 2(n−1)/2 matrices.
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Case of even n:

The MPS ground states are also given by

ψ(`)(B) =
n∑

i1,...,i`=1

(TrBγi` · · · γi1) |i1 . . . i`〉.

where the γi are an irrep of the Clifford algebra:

γiγj + γjγi = 2δij .

Again, there is a unique irrep, now given by 2n/2 × 2n/2 matrices.

In contrast to the odd n case, the transfer matrix

E(B) :=
n∑

i=1

γiBγi

has an eigenvalue -1, and two projections P± ∈ M2n/2 such that
P+ + P− = 1l, and

E(P±) = P∓.

This implies the existence of two 2-periodic gapped ground states.
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Entanglement structures
For the infinite chain we have two pure ground states ω+ and ω−, in FCS
form given by

ω±(A1 ⊗ · · · ⊗ A`) =
2

n
TrEA1 ◦ EA2 ◦ EA3 ◦ · · · ◦ EA`−1

◦ EA`
(P±).

where, for A ∈ Mn, EA(B) =
∑

ij AijγiBγj . ω+ and ω− are selected by
different b.c.. Define automorphisms α on M2n/2 , and σ on Mn by

α(B) = γ1Bγ1, σ(A) = RAR,

with

R =


−1

1
. . .

1

 .

Then
α(EA(B)) = Eσ(A)(α(B)), α(P+) = P−.
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One finds two MPS states with primitive transfer matrices by defining

F(i)
A : P+M2n/2P+ → P+M2n/2P+, i = 1, 2, as follows:

F(1)
A = α ◦ Eσ(A), F(2)

A = α ◦ EA.

In terms of these, we have

ω+(A1 ⊗ · · · ⊗ A`) = 2
nTrF(2)

A1
◦ F(1)

A2
◦ F(2)

A3
◦ · · · ◦ F(2)

A`−1
◦ F(1)

A`
(P+)

ω−(A1 ⊗ · · · ⊗ A`) = 2
nTrF(1)

A1
◦ F(2)

A2
◦ F(1)

A3
◦ · · · ◦ F(1)

A`−1
◦ F(2)

A`
(P+).

This shows ω+ and ω− are translates of each other. But also

ω+(A1 ⊗ · · · ⊗ A`) = ω−(σ(A1)⊗ · · · ⊗ σ(A`)).

Hence, ω+ and ω− are related by a local unitary transformation and have
the same entanglement.
The two-fold degeneracy of the ground state turns out to be breaking of
this local symmetry of the Hamiltonian, R ∈ O(n). Since the O(n)
symmetry is fully preserved in the dimerized ground state of the South
Pole model, this suffices to show that the two 2-periodic phases are
distinct (N-Sims-Young 2022).
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Properties of the South Pole phase
Chain of n-dimensional spins with O(n)-invariant nearest neighbor
interaction h = uT + vQ, u, v ∈ R, T is the swap operator and Q
projects onto ψ = n−1/2

∑n
α=1 |α, α〉. South Pole means u = 0, v = −1.

Finite chains of 2` spins, with Hamiltonian: H` =
∑`−1

x=−`+1 hx,x+1.
Consider ground states as limits of Gibbs states:

〈A〉`,β,u =
TrAe−βH`

Tre−βH`
.

Basic observables: generators of O(n):

Lα,α
′

= |α〉〈α′| − |α′〉〈α|, 1 ≤ α < α′ ≤ n.

Theorem (Dimerization, Björnberg-Mühlbacher-N-Ueltschi 2021)
There exist constants n0, u0, c > 0 (independent of `) such that for
n > n0, v = −1, and |u| < u0, we have that for all 1 ≤ α < α′ ≤ n,

lim
β→∞

[
〈Lα,α

′

0 Lα,α
′

1 〉`,β,u − 〈Lα,α
′

−1 Lα,α
′

0 〉`,β,u
]

> c for ` odd;

lim
β→∞

[
〈Lα,α

′

0 Lα,α
′

1 〉`,β,u − 〈Lα,α
′

−1 Lα,α
′

0 〉`,β,u
]

< −c for ` even.
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Theorem (Exponential decay of correlations,
Björnberg-Mühlbacher-N-Ueltschi 2021)
There exist constants n0, u0, c1, c2,C > 0 (independent of `) such that
for n > n0, v = −1, and |u| < u0, we have

lim
β→∞

∣∣〈Lα,α′x etH`Lα,α
′

y e−tH`〉`,β,u
∣∣ ≤ Ce−c1|x−y |−c2|t|

for all ` ∈ N, all x , y ∈ {−`+ 1, . . . , `}, all 1 ≤ α < α′ ≤ n, and all
t ∈ R.

In fact, the decay of correlations between any two local observables is
bounded by an exponential with a fixed rate.
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Let E
(`)
0 < E

(`)
1 < . . . be the eigenvalues of H[−`+1,`], and define the

ground state gap ∆(`) by

∆(`) = E
(`)
1 − E

(`)
0 .

The gap is obviously positive but is there is a positive lower bound
independent of `?

Theorem (Spectral gap, Björnberg-Mühlbacher-N-Ueltschi 2021)
There exist constants n0, u0, c > 0 (independent of `) such that for
n > n0, v = −1, and |u| < u0, we have

(a) E
(`)
0 is non-degenerate.

(b) ∆(`) ≥ c for all `.

These results are proved using a ‘random’ loop representation of the
partition function and the Gibbs states (Toth 1993, Aizenman-N 1994,

Ueltschi 2013).
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Some corollaries of the previous results and the random loop
representation:
Consider the case (u, v) = (0,−1), and intervals of the form [−`+ 1, `]
(2` spins), and denote the Hamiltonian by H`, and let ψ` be a normalized
eigenvector of its smallest eigenvalue, which turn out to be simple. Then

|ψ`〉〈ψ`| = lim
β→∞

e−2βH`

Tre−2βH`
,

and therefore, with A = Lα,α
′

0 Lα,α
′

1 , or Qx,x+1, or any other observable,

〈ψ`,Aψ`〉 = Tr[|ψ`〉〈ψ`|A] = lim
β→∞

Tre−βH`Ae−βH`

Tre−2βH`
.

One can define weak limits over even and odd (sub-)sequences of `:

ωe(A) = lim
`,even

〈ψ`,Aψ`〉, ωo(A) = lim
`,odd
〈ψ`,Aψ`〉.
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ωo and ωe are the pure ground states with dimerization. For example:

ωo(Q0,1) > ωe(Q0,1)

and for any observable A:

ωo(A) = ωe(τ(A)) = ωo(τ 2(A)), τ is translation by one site.

-3-4 -2 -1 0 1 2 3 4 5

-3 -2 -1 0 2 3 4

` = 5, odd

` = 4, even
1

Both states are O(n) invariant.
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Conclusion
At and near the South Pole we have:

I ωe and ωo have full O(n) invariance.

I ωe and ωo are 2-period, distinct, and translates of each other.

I ωe and ωo are dimerized: 2-periodic nearest neighbor entanglement.

In contrast, at and near the MPS/FF point, for even n, we have a
2-periodic phase with

I In ω+ and ω− the O(n) symmetry is broken down to SO(n).

I ωe and ωo are 2-periodic, distinct, and are translates of each other.

I ωe and ωo have translation invariant nearest neighbor entanglement;
not dimerized.

Of the two 2-periodic gapped phases only the South Pole phase is
dimerized. Of course, but there may well be other dimerized phases...


