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Quantum phase outside of Landau theory 

No good definition known

ground space degeneracy

long range entanglement

anyonic excitations

Topological order

Wen, Int. J. Mod. Phys. B. 4,1990



Folklore

The anyonic quasi-particle excitations of a 
topologically ordered state are described by 
a modular tensor category.

Kitaev, Ann. Physics 321,2006
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Kitaev, Ann. Physics 303,2003

ℂ2

Bp

Hamiltonian:

H = − 3
s

As − 3
p

Bp

Ground state:

AsΩ = BpΩ = Ω

Remark:  on compact 

surface, degeneracy 

depends on genus!

As
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Modular tensor categories

Kitaev, Ann. Physics 303,2003

A careful analysis gives all algebraic properties of 
the anyons, leading to the MTC Rep %(ℤ2)

Only pairs of excitations: have to keep track

Analysis requires deep understanding of microscopic 

details

Have to consider geometry, boundary conditions

Drawbacks:



Problems:

How to get the MTC?

Is this an invariant?

LRE and trivial phases
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Consider 2D quantum spin systems, e.g. on :ℤ2

local algebras Λ ↦ )(Λ) ≅ ⊗x∈Λ Md(ℂ)

quasilocal algebra ) := ã)(Λ)
∥⋅∥

local Hamiltonians  describing dynamicsHΛ

gives time evolution  & ground states³t

if  a ground state, Hamiltonian  in GNS repn.Ë HË

Quantum spin systems



Sector theory
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Example: toric code

           is a single excitation stateω0 � ρ



Example: toric code

           is a single excitation stateω0 � ρ

describes 
observables in 

presence of 
background charge

π0 � ρ
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Localised and transportable morphisms

The endomorphism    has the following properties:

localised: 

transportable: for    there exists    localised 

and  

Can study all endomorphisms with these 
properties



Definition

A superselection sector is an equivalence 
class of representations     such that(
(
for all cones   .

π

Λ

π|A(Λc)
∼
= π0|A(Λc)

Image source: http://www.phy.anl.gov/theory/FritzFest/Fritz.html

http://www.phy.anl.gov/theory/FritzFest/Fritz.html
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Haag duality Ã0()(Λ))′ ′ 

Ã0()(Λc))′ ′ 

Haag duality (for cones): Ã0()(Λ))′ ′ = Ã0()(Λc))′ 



Theorem

Suppose Haag duality for cones hold. Then 
the set of representations satisfying the 
superselection criterion has the structure of 
a braided tensor C*-category.

Doplicher, Haag, Roberts, Commun. Math. Phys.  23 (1971)

Doplicher, Haag, Roberts, Commun. Math. Phys.  35 (1974) 

Buchholz, Fredenhagen, Commun. Math. Phys. 84 (1982)



Theorem (Fiedler, PN)

Let G be a finite abelian group and 
consider Kitaev’s quantum double model. 
Then Haag duality holds and the set of 
superselection sectors can be endowed 
with the structure of a modular tensor 
category. This category is equivalent to             
                 . RepD(G)

Rev. Math. Phys. 23 (2011)

J. Math. Phys. 54 (2013)

Rev. Math. Phys. 27 (2015)



Automorphic equivalence



Quantum phases of ground states

Two ground states     and     are said to be in the 
same phase if there is a continuous path
of gapped local Hamiltonians, such that      is a 
ground state of        .

(Chen, Gu, Wen, Phys. Rev. B 82, 2010)

See also: Nachtergaele, arXiv:2205.10460 (2022)



Quantum phases of ground states

Two ground states     and     are said to be in the 
same phase if there is a continuous path
of gapped local Hamiltonians, such that      is a 
ground state of        .

(Chen, Gu, Wen, Phys. Rev. B 82, 2010)

Alternative definition:  can be transformed into 

 with a finite depth local quantum circuit.

Ë0

Ë1

See also: Nachtergaele, arXiv:2205.10460 (2022)
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Classification of phases

Does the gap stay open under small perturbations?

How are the states related?

Bravyi & Hastings, J. Math. Phys. 51 (2010)

Michalakis & Zwolak, Commun. Math. Phys. 322 (2013)

Nachtergaele, Sims & Young, arXiv:2102.07209

and many others… 

Can we find invariants?

Hastings, Phys. Rev. B 69 (2004)

Hastings & Wen, Phys. Rev. B 72 (2005) 

Bachmann, Michalakis, Nachtergaele & Sims, Commun. Math. Phys. 309 (2012)

Nachtergaele, Sims & Young, J. Math. Phys. 60 (2019)

Moon & Ogata, J. Funct. Anal. 278 (2020)



Theorem (Bachmann, Michalakis, Nachtergaele, Sims)

Let  be a family of gapped 

Hamiltonians. Then there is a family  of 

automorphisms such that the weak-* limits of 
ground states (with open boundary conditions) 
are related via

s ↦ HΛ + Φ(s)
s ↦ ³s

Commun. Math. Phys. 309 (2012)



This is not enough to 

conclude stability of the 

superselection structure!
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First approach: replace selection 
criterion
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Almost localised endomorphisms

An endomorphism   of     is called almost 
localised in a cone      if 

where          is a non-increasing family of 
absolutely continuous functions which 
decay faster than any polynomial in n.

 Combine with transportability & asymptopia⇒

Buchholz, Doplicher, Morchio, Roberts & Strocchi. In: Rigorous quantum field theory (2007)



n

X

Yc + n



Theorem

Let G be a finite abelian group and 
consider the perturbed Kitaev’s quantum 
double model. Then for each s in the unit 
interval, the category             category is 
braided tensor equivalent to                 . RepD(G)

Cha, PN, Nachtergaele, Commun. Math. Phys. 373 (2020)
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Approximate localisation

Advantage:

Disadvantage:

Does not require Haag duality

Needs extra condition to show no new sectors 

are introduced



Second approach: replace Haag duality



Approximate Haag duality

For all  and cone , we have that 

there is a unitary  such that

      

(+ some technical approximation 
properties).

÷ > 0 Λ
UΛ,÷

Ã0()(Λc))′ ⊂ UΛ,÷ Ã0()(Λ÷))′ ′ U*
Λ,÷

Ogata, J. Math. Phys. 63 (2022) 



Theorem

Let  be the GNS representation of a 

gapped ground state, and suppose that 
approximate Haag duality for cones hold. 
Then the set of representations satisfying 
the superselection criterion has the 
structure of a braided tensor C*-category. 

This category is stable under applying 
approximately factorisable automorphisms.

Ã0

Ogata, J. Math. Phys. 63 (2022) 



Definition

Consider an inclusion  of 

cones. Then  is called quasi-

factorisable if:

for some unitary  and “local” 

automorphisms (see picture).

Γ1 ⊂ Λ ⊂ Γ2
³ ∈ Aut())

³ = Ad(u) ∘ Ξ ∘ (³Λ ⊗ ³Λc)
u ∈ )

PN & Y. Ogata, Commun. Math. Phys. 392, 921-950 (2022)



Γ1

Γ2

Λ
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Approximate localisation
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Approximate localisation

Advantage:

Disadvantage:

Does not change selection criterion

No extra conditions

Need to prove approximate Haag duality



The trivial phase



Long range entanglement

Bipartite system 

Product states  have only      

classical correlations

LRE:  is not quasi-equivalent  to a 

product state for any quasi-local automorphism

In 1D, gapped ground states are not LRE, in 

2D this can be different!

)Λ ⊗ )Λc

Ë = ËΛ ⊗ ËΛc

Ë ∘ ³



Folklore

Topological order (and in particular anyonic 
excitations) are due to long range 
entanglement



A new superselection criterion

We can relax the superselection criterion:

That is, quasi instead of unitary equivalence

Remark: can be constructed naturally in 
non-abelian theories using amplimorphisms!

Szlachányi &Vecsernyés, CMP 156, 1993

Ã |)Λc ∼qe ÃË |)Λc



Theorem

Let  be a pure state such that its GNS 

representation is quasi-equivalent to 
 for some cone . Then the 

corresponding superselection structure is 
trivial. This is also stable under quasi-
factorisable automorphisms.

Ë

ÃΛ ⊗ ÃΛc Λ

PN & Y. Ogata, Commun. Math. Phys 932:921-950



Some recent results



Theorem

Let  be the frustration free ground state of 

the quantum double model for an abelian 
group G. Then for any convex cone , the 

von Neumann algebra  is a 

factor of Type II .

Ë

Λ
ÃË()(Λ))′ ′ 

∞

Y. Ogata, arXiv:2212.09036



Toric code with boundary

Can consider models with a gapped boundary.

Kitaev & Kong, Comm. Math. Phys. 313:351– 373 (2012)

D. Wallick, arXiv:2212.01952 (2022)

Theorem

The fusion category of boundary excitations
—more precisely, the fusion category of 
superselection sectors localized in a fixed 
cone along the boundary—is a module 
tensor category over the category of 
sectors for the bulk toric code.



Open problems



More examples

Explicit results for small class of models.

Can we extend this to other models, in 
particular non-abelian models?

Work in Progress:

Hamdan & PN

Jones, PN, Penneys, Wallick
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What are generic features?

Many interesting properties can be proven in 
concrete models (and sometimes that they are 
stable). Are these generic?

Type of cone algebra

(Approximate) Haag duality

Approximate split property

Modularity of tensor category
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