

Entanglement bootstrap and spurious topological entanglement entropy

Kohtaro Kato (Nagoya University)

ICMAT QIT workshop, 3/17/2023

Topologically ordered phases (2D bosonic)

Non-trivial gapped quantum phases with the following properties:

- ✓ No local order parameter
- ✓ Topology-dependent degeneracy of ground states
- ✓ Anyonic excitations
- ✓ Protected gapless edge modes (if chiral)

Topologically ordered phases (2D bosonic)

Non-trivial gapped quantum phases with the following properties:

- ✓ No local order parameter
- ✓ Topology-dependent degeneracy of ground states
- ✓ Anyonic excitations
- ✓ Protected gapless edge modes (if chiral)

• Different topological orders are distinguished by algebraic theory of anyons

Topologically ordered phases (2D bosonic)

Non-trivial gapped quantum phases with the following properties:

- ✓ No local order parameter
- ✓ Topology-dependent degeneracy of ground states
- ✓ Anyonic excitations
- ✓ Protected gapless edge modes (if chiral)

• Different topological orders are distinguished by algebraic theory of anyons

Unitary Modular Tensor Category (UMTC)

Anyon theory (UMTC)

Charges (Superselection sectors) possible types of quasiparticles (anyons)

$$\mathcal{L} = \{1, a, b, c, \dots\}, \quad |\mathcal{L}| < \infty$$

Fusion rules

possible total charge of two charges cf. fusion of SU(2)-spins $\frac{1}{2} \times \frac{1}{2} = 0 + 1$

$$a \times b = \sum_{c} N_{ab}^{c} c, \quad N_{ab}^{c} \in \mathbb{Z}_{\geq 0}$$

> F and R matrices

specify braiding statistics

Chiral central charge

Chiral topological systems have gapless edge modes characterized by chiral central charge c_{-}

Chiral central charge

Chiral topological systems have gapless edge modes characterized by chiral central charge *c*_

The gapless edge modes are **topologically protected** and described by CFT.

[Kane & Fisher, '97],...: Edge energy current I_E satisfies $I_E = \frac{\pi}{12} c_- T^2$.

Chiral central charge

Chiral topological systems have gapless edge modes characterized by chiral central charge *c*_

The gapless edge modes are topologically protected and described by CFT.

[Kane & Fisher, '97],...: Edge energy current I_E satisfies $I_E = \frac{\pi}{12} c_- T^2$.

c^{_} is another important topological data in addition to UMTC.

Common belief: 2D bosonic topological orders are classified by (*UMTC*, *c*_)

Common belief: 2D bosonic topological orders are classified by (*UMTC*, *c*_)

"So the topological order is a property of ground state wave function."

An Introduction of Topological Orders, Xiao-Gang Wen

Common belief: 2D bosonic topological orders are classified by (*UMTC*, *c*_)

"So the topological order is a property of ground state wave function."

An Introduction of Topological Orders, Xiao-Gang Wen

Common belief: 2D bosonic topological orders are classified by (*UMTC*, *c*_)

"So the topological order is a property of ground state wave function."

An Introduction of Topological Orders, Xiao-Gang Wen

Q. Is all the topological data (*UMTC*, *c*_) encoded in a GS?

[Shi, Kato, Kim `20]:

(a part of) Extracting UMTC from a bulk GS satisfying some entanglement properties.

[Kim, Shi, Kato, Albert `22]: Extracting *c*_ from a bulk GS satisfying some entanglement properties.

Common belief: 2D bosonic topological orders are classified by (*UMTC*, *c*_)

"So the topological order is a property of ground state wave function."

An Introduction of Topological Orders, Xiao-Gang Wen

Q. Is all the topological data (*UMTC*, *c*_) encoded in a GS?

[Shi, Kato, Kim `20]: (a part of) Extracting UMTC from a bulk GS satisfying some entanglement properties.

[Kim, Shi, Kato, Albert `22]: Extracting *c*_ from **a bulk GS** satisfying some entanglement properties.

Entanglement bootstrap [Shi, Kato, Kim, '19]

- An "axiomatic" approach for (finite) gapped spin systems.
- Reproduces anyon theory from simple entanglement properties.
 - Charges, Fusion rules, S-matrix [Shi,'20], Topological EE,...
- Allow to show some nice properties of the modular commutator (cf. Victor's talk yesterday)

Entanglement bootstrap [Shi, Kato, Kim, '19]

- An "axiomatic" approach for (finite) gapped spin systems.
- Reproduces anyon theory from simple entanglement properties.
 - Charges, Fusion rules, S-matrix [Shi,'20], Topological EE,...
- Allow to show some nice properties of the modular commutator (cf. Victor's talk yesterday)

Problem:

an axiom does not hold in some 2D gapped systems (discussed in the second half of this talk)

 Λ : a finite set of sites defined on a closed 2D manifold

$$\mathcal{H} = \bigotimes_{i \in \Lambda} \mathcal{H}_i, \quad \dim \mathcal{H}_i < \infty.$$

Setting

 Λ : a finite set of sites defined on a closed 2D manifold

$$S(A)_{\rho} \coloneqq -\mathrm{tr}\rho_{A}\mathrm{log}\rho_{A} \qquad S(A|B)_{\rho} \coloneqq S(AB)_{\rho} - S(B)_{\rho}$$

$$S(A)_{\rho} \coloneqq -\mathrm{tr}\rho_{A}\mathrm{log}\rho_{A} \qquad S(A|B)_{\rho} \coloneqq S(AB)_{\rho} - S(B)_{\rho}$$

$$S(A)_{\rho} \coloneqq -\mathrm{tr}\rho_{A}\mathrm{log}\rho_{A} \qquad S(A|B)_{\rho} \coloneqq S(AB)_{\rho} - S(B)_{\rho}$$

$$S(A)_{\rho} \coloneqq -\mathrm{tr}\rho_{A}\mathrm{log}\rho_{A} \qquad S(A|B)_{\rho} \coloneqq S(AB)_{\rho} - S(B)_{\rho}$$

Consider a state ρ on Λ satisfying the following two "axioms" everywhere.

$$S(A)_{\rho} \coloneqq -\mathrm{tr}\rho_{A}\mathrm{log}\rho_{A} \qquad S(A|B)_{\rho} \coloneqq S(AB)_{\rho} - S(B)_{\rho}$$

 $S(A|B)_{\rho} + S(A)_{\rho} = 0.$

Consider a state ρ on Λ satisfying the following two "axioms" everywhere.

$$S(A)_{\rho} \coloneqq -\mathrm{tr}\rho_{A}\mathrm{log}\rho_{A} \qquad S(A|B)_{\rho} \coloneqq S(AB)_{\rho} - S(B)_{\rho}$$


```
S(A|B)_{\rho} + S(A)_{\rho} = 0.
```


 $S(A|B)_{\rho} + S(A|C)_{\rho} = 0.$

Consider a state ρ on Λ satisfying the following two "axioms" everywhere.

$$S(A)_{\rho} \coloneqq -\mathrm{tr}\rho_{A}\mathrm{log}\rho_{A} \qquad S(A|B)_{\rho} \coloneqq S(AB)_{\rho} - S(B)_{\rho}$$

 $S(A|B)_{\rho} + S(A)_{\rho} = 0.$

 $S(A|B)_{\rho} + S(A|C)_{\rho} = 0.$

We call such ρ **a reference state**.

The axioms are motivated by area law of entanglement in gapped systems.

Area law (general form)

$$S(X)_{\rho} = O(|\partial X|)$$

Area law

The axioms are motivated by area law of entanglement in gapped systems.

Area law (general form)

$$S(X)_{\rho} = O(|\partial X|)$$

- Proven for 1D gapped systems [Hastings, '07].
- Proven for 2D systems under various additional assumptions [Masanes '09], [Beaudrap, Osborne, Eisert, '10], [Anshu, Arad, Gosset, '21],…

Area law

The axioms are motivated by area law of entanglement in gapped systems.

Area law (general form)

$$S(X)_{\rho} = O(|\partial X|)$$

- Proven for 1D gapped systems [Hastings, '07].
- Proven for 2D systems under various additional assumptions [Masanes '09], [Beaudrap, Osborne, Eisert, '10], [Anshu, Arad, Gosset, '21],…

Observations: $S(X)_{\rho} = \alpha |\partial X| - \gamma + o(1)$

Area law

The axioms are motivated by area law of entanglement in gapped systems.

Area law (general form)

$$S(X)_{\rho} = O(|\partial X|)$$

Proven for 1D gapped systems [Hastings, '07].

Proven for 2D systems under various additional assumptions [Masanes '09], [Beaudrap, Osborne, Eisert, '10], [Anshu, Arad, Gosset, '21],…

Observations: $S(X)_{\rho} = \alpha |\partial X| - \gamma + o(1)$

γ: topological entanglement entropy

Two axioms and area law

$$S(X)_{\rho} = \alpha |\partial X| - \gamma$$

no o(1) correction

Two axioms and area law

Information convex set

For a region $\Omega \subset \Lambda$, we define Ω_+ as a "thickened" region by a thickness $\mu = O(1)$.

$$\widetilde{\Sigma}(\Omega_+) \coloneqq \left\{ \sigma_{\Omega_+} \mid \sigma_b = \rho_b \,\forall \, b \colon \mu - \text{ball} \subset \Omega_+ \right\}$$

$$\widetilde{\Sigma}(\Omega_+) \coloneqq \left\{ \sigma_{\Omega_+} \mid \sigma_b = \rho_b \,\forall \, b \colon \mu - \text{ball} \subset \Omega_+ \right\}$$

$$\widetilde{\Sigma}(\Omega_+) \coloneqq \{ \sigma_{\Omega_+} \mid \sigma_b = \rho_b \forall b \colon \mu - \text{ball} \subset \Omega_+ \}$$

states that are indistinguishable from ρ on any ball $\subset \Omega_+$

$$\widetilde{\Sigma}(\Omega_+) \coloneqq \{ \sigma_{\Omega_+} \mid \sigma_b = \rho_b \forall b \colon \mu - \text{ball} \subset \Omega_+ \}$$

states that are indistinguishable from ρ on any ball $\subset \Omega_+$

For Tracing out $\Omega_+ \setminus \Omega$

$$\tilde{\Sigma}(\Omega_{+}) \coloneqq \{\sigma_{\Omega_{+}} \mid \sigma_{b} = \rho_{b} \forall b \colon \mu - \text{ball} \subset \Omega_{+} \}$$
states that are indistinguishable from ρ on any ball $\subset \Omega_{+}$
Tracing out $\Omega_{+} \setminus \Omega$

Information convex set [Kim, `15][Shi, KK, Kim '20]: $\Sigma(\Omega) \coloneqq \left\{ \sigma_{\Omega} = \operatorname{Tr}_{\Omega_{+} \setminus \Omega} \sigma_{\Omega_{+}} \mid \sigma_{\Omega_{+}} \in \widetilde{\Sigma}(\Omega_{+}) \right\}$

How does the structure of $\Sigma(\Omega)$ depend on Ω ?

```
Theorem (informal)
```

If Ω^0 and Ω^1 are connected by *local deformations* $\{\Omega^t\}$, there is a bijective CPTP-map

 $\Phi_{\{\Omega^t\}}: \Sigma(\Omega^0) \to \Sigma(\Omega^1)$

How does the structure of $\Sigma(\Omega)$ depend on Ω ?

```
Theorem (informal)
```

If Ω^0 and Ω^1 are connected by *local deformations* $\{\Omega^t\}$, there is a bijective CPTP-map

 $\Phi_{\{\Omega^t\}}: \Sigma(\Omega^0) \to \Sigma(\Omega^1)$

How does the structure of $\Sigma(\Omega)$ depend on Ω ?

```
Theorem (informal)
```

If Ω^0 and Ω^1 are connected by *local deformations* $\{\Omega^t\}$, there is a bijective CPTP-map

 $\Phi_{\{\Omega^t\}}: \Sigma(\Omega^0) \to \Sigma(\Omega^1)$

How does the structure of $\Sigma(\Omega)$ depend on Ω ?

```
Theorem (informal)
```

If Ω^0 and Ω^1 are connected by *local deformations* $\{\Omega^t\}$, there is a bijective CPTP-map

 $\Phi_{\{\Omega^t\}}: \Sigma(\Omega^0) \to \Sigma(\Omega^1)$

• The isomorphism preserves the entropy difference

$$S(\sigma) - S(\omega) = S(\Phi(\sigma)) - S(\Phi(\omega)) \quad \forall \rho, \sigma \in \Sigma(\Omega)$$

A tripartite state ρ_{ABC} is called a **quantum Markov state (QMS)** if

 $I(A:C|B)_{\rho}=0.$

Conditional mutual information

$$I(A:C|B)_{\rho} \coloneqq S(AB)_{\rho} + S(BC)_{\rho} - S(B)_{\rho} - S(ABC)_{\rho} \ge 0.$$

A tripartite state ρ_{ABC} is called a **quantum Markov state (QMS)** if

 $I(A:C|B)_{\rho}=0.$

Conditional mutual information

$$I(A:C|B)_{\rho} \coloneqq S(AB)_{\rho} + S(BC)_{\rho} - S(B)_{\rho} - S(ABC)_{\rho} \ge 0.$$

Local recoverability of QMS [Hayden et al., '04]: ρ_{ABC} is a QMS iff there is a CPTP-map $\mathcal{R}_{B \to BC}$ s.t. $\operatorname{id}_A \otimes \mathcal{R}_{B \to BC}(\rho_{AB}) = \rho_{ABC}.$

A tripartite state ρ_{ABC} is called a **quantum Markov state (QMS)** if

 $I(A:C|B)_{\rho}=0.$

Conditional mutual information

$$I(A:C|B)_{\rho} \coloneqq S(AB)_{\rho} + S(BC)_{\rho} - S(B)_{\rho} - S(ABC)_{\rho} \ge 0.$$

Local recoverability of QMS [Hayden et al., '04]: ρ_{ABC} is a QMS iff there is a CPTP-map $\mathcal{R}_{B \to BC}$ s.t. $id_A \otimes \mathcal{R}_{B \to BC}(\rho_{AB}) = \rho_{ABC}$.

A tripartite state ρ_{ABC} is called a **quantum Markov state (QMS)** if

 $I(A:C|B)_{\rho}=0.$

Conditional mutual information

$$I(A:C|B)_{\rho} \coloneqq S(AB)_{\rho} + S(BC)_{\rho} - S(B)_{\rho} - S(ABC)_{\rho} \ge 0.$$

Local recoverability of QMS [Hayden et al., '04]: ρ_{ABC} is a QMS iff there is a CPTP-map $\mathcal{R}_{B \to BC}$ s.t. $id_A \otimes \mathcal{R}_{B \to BC}(\rho_{AB}) = \rho_{ABC}$.

$$S(A|B)_{\rho} + S(A|C)_{\rho} = 0$$

$$S(A|B)_{\rho} + S(A|C)_{\rho} = 0$$

Two compatible quantum Markov states can be "merged" as a longer QMS !

Two compatible quantum Markov states can be "merged" as a longer QMS !

Merging lemma [KK, Furrer, Murao '16][Shi, KK, Kim '20]:

Consider a set of states $S = \{\rho_{ABC}\}$ and σ_{BCD} such that $\rho_{BC} = \sigma_{BC}$ and $I(A: C|B)_{\rho} = I(B: D|C)_{\sigma} = 0, \forall \rho \in S.$ Then, there exists a unique set of states $\{\tau_{ABCD}^{\rho}\}$ which satisfy

1.
$$\tau^{\rho}_{ABC} = \rho_{ABC}, \ \tau^{\rho}_{BCD} = \sigma_{BCD}.$$

3.
$$S(\tau_{ABCD}^{\rho}) - S(\tau_{ABCD}^{\rho'}) = S(\rho_{ABC}) - S(\rho'_{ABC})$$

Two compatible quantum Markov states can be "merged" as a longer QMS !

Merging lemma [KK, Furrer, Murao '16][Shi, KK, Kim '20]:

Consider a set of states $S = \{\rho_{ABC}\}$ and σ_{BCD} such that $\rho_{BC} = \sigma_{BC}$ and $I(A:C|B)_{\rho} = I(B:D|C)_{\sigma} = 0, \forall \rho \in S.$ Then, there exists a unique set of states $\{\tau^{\rho}\}$ which satisfy

Then, there exists a unique set of states $\{\tau^{\rho}_{ABCD}\}$ which satisfy

1.
$$\tau^{\rho}_{ABC} = \rho_{ABC}, \ \tau^{\rho}_{BCD} = \sigma_{BCD}$$

3.
$$S(\tau_{ABCD}^{\rho}) - S(\tau_{ABCD}^{\rho'}) = S(\rho_{ABC}) - S(\rho'_{ABC})$$
.

Two compatible quantum Markov states can be "merged" as a longer QMS !

Merging lemma [KK, Furrer, Murao '16][Shi, KK, Kim '20]:

Consider a set of states $S = \{\rho_{ABC}\}$ and σ_{BCD} such that $\rho_{BC} = \sigma_{BC}$ and $I(A:C|B)_{\rho} = I(B:D|C)_{\sigma} = 0, \forall \rho \in S.$ Then, there exists a unique set of states $\{\sigma^{\rho}, \dots\}$ which satisfy

Then, there exists a unique set of states $\{\tau^{\rho}_{ABCD}\}$ which satisfy

1.
$$\tau^{\rho}_{ABC} = \rho_{ABC}, \ \tau^{\rho}_{BCD} = \sigma_{BCD}$$

3.
$$S(\tau_{ABCD}^{\rho}) - S(\tau_{ABCD}^{\rho'}) = S(\rho_{ABC}) - S(\rho'_{ABC})$$
.

Two compatible quantum Markov states can be "merged" as a longer QMS !

Merging lemma [KK, Furrer, Murao '16][Shi, KK, Kim '20]:

Consider a set of states $S = \{\rho_{ABC}\}$ and σ_{BCD} such that $\rho_{BC} = \sigma_{BC}$ and $I(A:C|B)_{\rho} = I(B:D|C)_{\sigma} = 0, \forall \rho \in S.$ Then, there exists a unique set of states $\{\sigma^{\rho}\}$, which satisfy

Then, there exists a unique set of states $\{\tau^{\rho}_{ABCD}\}$ which satisfy

1.
$$\tau^{\rho}_{ABC} = \rho_{ABC}, \ \tau^{\rho}_{BCD} = \sigma_{BCD}$$

3.
$$S(\tau_{ABCD}^{\rho}) - S(\tau_{ABCD}^{\rho'}) = S(\rho_{ABC}) - S(\rho'_{ABC})$$
.

σ_Ω ∈ Σ(Ω) ρ_{BCD}: the reference state

 $\sigma_\Omega \in \Sigma(\Omega)$

 ρ_{BCD} : the reference state

 $\sigma_\Omega \in \Sigma(\Omega)$

 ρ_{BCD} : the reference state

 $\sigma_\Omega\in\Sigma(\Omega)$

 ρ_{BCD} : the reference state

A1 implies $I(A:C|B)_{\sigma} = I(B:D|C)_{\rho} = 0.$

 $\sigma_\Omega\in\Sigma(\Omega)$

 ρ_{BCD} : the reference state

A1 implies $I(A:C|B)_{\sigma} = I(B:D|C)_{\rho} = 0.$

 $\rightarrow \cdots \rightarrow \tau_{ABCD} \in \Sigma(\Omega D)$

Structure of $\Sigma(\Omega)$: disk

The structure of $\Sigma(\Omega)$ only depends on the **topology** of Ω (if not winding).

Structure of $\Sigma(\Omega)$: disk

The structure of $\Sigma(\Omega)$ only depends on the **topology** of Ω (if not winding).

[Kim, '15]: For any disk-like region Ω , $\Sigma(\Omega) = \{\rho_{\Omega}\}$.

Structure of $\Sigma(\Omega)$: disk

The structure of $\Sigma(\Omega)$ only depends on the **topology** of Ω (if not winding).

[Kim, '15]: For any disk-like region Ω , $\Sigma(\Omega) = \{\rho_{\Omega}\}$.

Only the reference state is allowed. (cf. TQO condition[Bravyi, Hastings '11]...) Ω

The structure of $\Sigma(\Omega)$ only depends on the **topology** of Ω (if not winding).

The structure of $\Sigma(\Omega)$ only depends on the **topology** of Ω (if not winding).

We *define* the labels of the extreme points $\mathcal{L} = \{a, b, c ...\}$ as the anyon charges.

The structure of $\Sigma(\Omega)$ only depends on the **topology** of Ω (if not winding).

We *define* the labels of the extreme points $\mathcal{L} = \{a, b, c ...\}$ as the anyon charges.

> Intuitively, each ρ_{Ω}^{a} corresponds to the reduced state of an excited state with a fixed charge pair.

The structure of $\Sigma(\Omega)$ only depends on the **topology** of Ω (if not winding).

We *define* the labels of the extreme points $\mathcal{L} = \{a, b, c ...\}$ as the anyon charges.

- > Intuitively, each ρ_{Ω}^{a} corresponds to the reduced state of an excited state with a fixed charge pair.
- > The reference state ρ_{Ω} is an extreme point, defined as the "vacuum" $\rho_{\Omega}^1 \equiv \rho_{\Omega} \in \{\rho_{\Omega}^a\}$.

To define fusion rules, we consider a 2-hole disk Ω .

To define fusion rules, we consider a 2-hole disk Ω .

If Ω is a 2-hole disk, subregions B_1, B_2, C are annuli.

To define fusion rules, we consider a 2-hole disk Ω .

If Ω is a 2-hole disk, subregions B_1, B_2, C are annuli.

To define fusion rules, we consider a 2-hole disk Ω .

If Ω is a 2-hole disk, subregions B_1, B_2, C are annuli.

$$\Sigma_{ab}^{c}(\Omega) \coloneqq \left\{ \sigma_{\Omega}^{(a,b,c)} \right\} \subset \Sigma(\Omega).$$

$$\sigma_{\Omega}^{(a,b,c)}: \sigma_{B_1}^{(a,b,c)} = \rho_{B_1}^a, \ \sigma_{B_2}^{(a,b,c)} = \rho_{B_2}^b, \sigma_{C}^{(a,b,c)} = \rho_{C}^c.$$

To define fusion rules, we consider a 2-hole disk Ω .

If Ω is a 2-hole disk, subregions B_1, B_2, C are annuli.

$$\Sigma_{ab}^{c}(\Omega) \coloneqq \left\{ \sigma_{\Omega}^{(a,b,c)} \right\} \subset \Sigma(\Omega).$$

$$\sigma_{\Omega}^{(a,b,c)}: \sigma_{B_1}^{(a,b,c)} = \rho_{B_1}^a, \ \sigma_{B_2}^{(a,b,c)} = \rho_{B_2}^b, \sigma_{C}^{(a,b,c)} = \rho_{C}^c.$$

Theorem

 $\Sigma_{ab}^{c}(\Omega) \cong$ a state space on a finite-dim. Hilbert space.

To define fusion rules, we consider a 2-hole disk Ω .

If Ω is a 2-hole disk, subregions B_1, B_2, C are annuli.

$$\Sigma_{ab}^{c}(\Omega) \coloneqq \left\{ \sigma_{\Omega}^{(a,b,c)} \right\} \subset \Sigma(\Omega).$$

$$\sigma_{\Omega}^{(a,b,c)}: \sigma_{B_1}^{(a,b,c)} = \rho_{B_1}^a, \ \sigma_{B_2}^{(a,b,c)} = \rho_{B_2}^b, \sigma_{C}^{(a,b,c)} = \rho_{C}^c.$$

Theorem

 $\Sigma_{ab}^{c}(\Omega) \cong$ a state space on a finite-dim. Hilbert space. =: V_{ab}^{c}
Structure of $\Sigma(\Omega)$: 2-hole disk

To define fusion rules, we consider a 2-hole disk Ω .

If Ω is a 2-hole disk, subregions B_1, B_2, C are annuli.

$$\Sigma^{c}_{ab}(\Omega) \coloneqq \left\{ \sigma^{(a,b,c)}_{\Omega} \right\} \subset \Sigma(\Omega).$$

$$\sigma_{\Omega}^{(a,b,c)}: \sigma_{B_1}^{(a,b,c)} = \rho_{B_1}^a, \ \sigma_{B_2}^{(a,b,c)} = \rho_{B_2}^b, \sigma_{C}^{(a,b,c)} = \rho_{C}^c.$$

Theorem

 $\Sigma_{ab}^{c}(\Omega) \cong$ a state space on a finite-dim. Hilbert space. =: V_{ab}^{c}

We define the fusion multiplicity by $N_{ab}^c \coloneqq \dim V_{ab}^c$

$$a \times b = \sum_{c \in \mathcal{L}} N_{ab}^c c$$

Consistency with UMTC

In the anyon theory, the fusion multiplicities N_{ab}^c must satisfy the following rules.

- 1. $N_{ab}^{c} = N_{ba}^{c}$: commutativity of fusion rules
- 2. $N_{a1}^c = \delta_{a,c}$: vacuum
- *3.* $N_{ab}^1 = \delta_{b,\bar{a}}$: anticharge
- 4. $N_{ab}^{c} = N_{\bar{a}\bar{b}}^{\bar{c}}$: charge-anticharge duality
- 5. $\sum_{i} N_{ab}^{i} N_{ic}^{d} = \sum_{j} N_{aj}^{d} N_{bc}^{j}$: associativity

Consistency with UMTC

In the anyon theory, the fusion multiplicities N_{ab}^c must satisfy the following rules.

1.
$$N_{ab}^{c} = N_{ba}^{c}$$
: commutativity of fusion rules

2.
$$N_{a1}^c = \delta_{a,c}$$
: vacuum

3.
$$N_{ab}^1 = \delta_{b,\bar{a}}$$
: anticharge

4.
$$N_{ab}^{c} = N_{\bar{a}\bar{b}}^{\bar{c}}$$
: charge-anticharge duality

5.
$$\sum_{i} N_{ab}^{i} N_{ic}^{d} = \sum_{j} N_{aj}^{d} N_{bc}^{j}$$
: associativity

Theorem

 N_{ab}^{c} in our definition satisfies all the properties.

Ex.) $N_{a1}^c = \delta_{a,c}$

Consider a 2-hole disk with (*a*, 1, *c*).

 $\sigma_{\Omega}^{(a,1,c)} \in \Sigma_{a1}^{c}(\Omega)$

Ex.) $N_{a1}^c = \delta_{a,c}$

Consider a 2-hole disk with (*a*, 1, *c*).

 $\sigma^{(a,1,c)}_{\Omega} \in \Sigma^{\mathsf{c}}_{\mathsf{a}1}(\Omega)$

One can merge the vacuum hole with a disk D.

Ex.) $N_{a1}^c = \delta_{a,c}$

Consider a 2-hole disk with (*a*, 1, *c*).

$$\sigma^{(a,1,c)}_{\Omega} \in \Sigma^{\rm c}_{\rm a1}(\Omega)$$

One can merge the vacuum hole with a disk D.

 $\sigma_{\Omega}^{(a,1,c)}, \rho_D \to \tau_{\Omega'} \qquad \tau_{\Omega'} \in \Sigma(\Omega')$

Ex.) $N_{a1}^c = \delta_{a,c}$

Consider a 2-hole disk with (*a*, 1, *c*).

$$\sigma^{(a,1,c)}_{\Omega} \in \Sigma^{\rm c}_{\rm a1}(\Omega)$$

One can merge the vacuum hole with a disk D.

 $\sigma_{\Omega}^{(a,1,c)}, \rho_D \to \tau_{\Omega'}, \quad \tau_{\Omega'} \in \Sigma(\Omega')$ c α 1 $\rho_D \to \tau_{\Omega'} = \Omega \cup D$ c α

Ex.) $N_{a1}^c = \delta_{a,c}$

Consider a 2-hole disk with (*a*, 1, *c*).

$$\sigma_{\Omega}^{(a,1,c)} \in \Sigma_{a1}^{c}(\Omega)$$

One can merge the vacuum hole with a disk D.

$$\sigma_{\Omega}^{(a,1,c)}, \rho_D \to \tau_{\Omega'} \qquad \tau_{\Omega'} \in \Sigma(\Omega')$$

 Ω' is an annulus and $\tau_{\Omega'}$ must be in *a* –sector.

$$\tau_{\Omega'} = \rho^a_{\Omega'} \to c = a.$$

The area law states that

$$S(A)_{\rho} = \alpha |\partial A| - \gamma$$
.

γ: topological entanglement entropy (TEE) [Kitaev, Preskill, '06] [Levin, Wen '06]

The area law states that

$$S(A)_{\rho} = \alpha |\partial A| - \gamma$$
.

γ: topological entanglement entropy (TEE) [Kitaev, Preskill, '06] [Levin, Wen '06]

What's the value of γ ?

The area law states that

$$S(A)_{\rho} = \alpha |\partial A| - \gamma$$
.

γ: topological entanglement entropy (TEE) [Kitaev, Preskill, '06] [Levin, Wen '06]

What's the value of γ ?

$$S_{\text{topo}} \coloneqq S(AB)_{\rho} + S(BC)_{\rho} + S(CA)_{\rho} - S(A)_{\rho} - S(B)_{\rho} - S(C)_{\rho} - S(ABC)_{\rho}$$

The area law states that

$$S(A)_{\rho} = \alpha |\partial A| - \gamma$$
.

γ: topological entanglement entropy (TEE) [Kitaev, Preskill, '06] [Levin, Wen '06]

What's the value of γ ?

$$S_{\text{topo}} \coloneqq S(AB)_{\rho} + S(BC)_{\rho} + S(CA)_{\rho} - S(A)_{\rho} - S(B)_{\rho} - S(C)_{\rho} - S(ABC)_{\rho}$$

$$S_{\text{topo}} = 2\gamma$$

[Kitaev Preskill '06][Levin Wen '06]

$$\gamma = \log \mathcal{D}, \ \mathcal{D} \coloneqq \sqrt{\sum_{a \in \mathcal{L}} d_a^2}.$$

$$d_a d_b = \sum_{c \in \mathcal{L}} N_{ab}^c d_c , \qquad d_a \in \mathbb{R}_{\geq 1}$$

[Kitaev Preskill '06][Levin Wen '06]

$$\gamma = \log \mathcal{D}, \ \mathcal{D} \coloneqq \sqrt{\sum_{a \in \mathcal{L}} d_a^2}.$$
 $d_a d_b = \sum_{c \in \mathcal{L}} N_{ab}^c d_c, \quad d_a \in \mathbb{R}_{\geq 1}$

Theorem

 $S_{\text{topo}} = \log \mathcal{D}$ for KP partition, $S_{\text{topo}} = \log \mathcal{D}^2$ for LW partition.

[Shi, Kim, Kato, Albert, '22]

Modular commutator :

 $J(A, B, C)_{\rho} \coloneqq i \operatorname{Tr}(\rho_{ABC}[\log \rho_{AB}, \log \rho_{BC}])$

[Shi, Kim, Kato, Albert, '22]

Modular commutator : $J(A, B, C)_{\rho} \coloneqq i \operatorname{Tr}(\rho_{ABC}[\log \rho_{AB}, \log \rho_{BC}])$ $J(A, B, C)_{\rho^{*}} = -J(A, B, C)_{\rho} \quad \text{Chirality!}$

[Shi, Kim, Kato, Albert, '22]

Modular commutator : $J(A, B, C)_{\rho} \coloneqq i \operatorname{Tr}(\rho_{ABC}[\log \rho_{AB}, \log \rho_{BC}])$ $J(A, B, C)_{\rho^{*}} = -J(A, B, C)_{\rho} \quad \text{Chirality!}$

Entanglement bootstrap assumption implies

- 1. The modular Hamiltonian $H^{\text{mod}} \coloneqq -\ln \rho$ is local.
- 2. $J(A, B, C)_{\rho}$ is a topological invariant (independent of the details of the shape).

[Shi, Kim, Kato, Albert, '22]

Modular commutator : $J(A, B, C)_{\rho} \coloneqq i \operatorname{Tr}(\rho_{ABC}[\log \rho_{AB}, \log \rho_{BC}])$ $J(A, B, C)_{\rho^{*}} = -J(A, B, C)_{\rho} \quad \text{Chirality!}$

Entanglement bootstrap assumption implies

- 1. The modular Hamiltonian $H^{\text{mod}} \coloneqq -\ln \rho$ is local.
- 2. $J(A, B, C)_{\rho}$ is a topological invariant (independent of the details of the shape).

Conjecture: For 2D gapped ground states,

$$V(A,B,C)_{\rho} = \frac{\pi}{3}c_{-}$$

cf. Kane & Fisher

$$I_E = \frac{\pi}{12} c_- T^2$$

Discretized $v = \frac{1}{2}$ bosonic Laughlin state [Nielsen, Cirac, Sierra, '12]

$$|\Psi(N, \{z_j\})\rangle = \sum_{\{s_i\}} c(\{s_i\})|s_1, s_2, \dots, s_N\rangle, \qquad c(\{s_i\}) = \delta_{\sum s_i, 0} \prod_{n < m}^{N} (z_n - z_m)^{\frac{1}{2}s_n s_m}.$$

This state has $c_{-} = 1$

Discretized $v = \frac{1}{2}$ bosonic Laughlin state [Nielsen, Cirac, Sierra, '12]

$$|\Psi(N, \{z_j\})\rangle = \sum_{\{s_i\}} c(\{s_i\})|s_1, s_2, \dots, s_N\rangle, \qquad c(\{s_i\}) = \delta_{\sum s_i, 0} \prod_{n < m}^N (z_n - z_m)^{\frac{1}{2}s_n s_m}.$$

This state has
$$c_{-} = 1 \rightarrow \frac{\pi}{3}c_{-} \approx 1.047$$

Discretized $v = \frac{1}{2}$ bosonic Laughlin state [Nielsen, Cirac, Sierra, '12]

$$|\Psi(N, \{z_j\})\rangle = \sum_{\{s_i\}} c(\{s_i\})|s_1, s_2, \dots, s_N\rangle, \qquad c(\{s_i\}) = \delta_{\sum s_i, 0} \prod_{n < m}^{N} (z_n - z_m)^{\frac{1}{2}s_n s_m}.$$

This state has
$$c_{-} = 1 \rightarrow \frac{\pi}{3}c_{-} \approx 1.047$$

Calculate $J(A, B, C)_{\rho}$ and extrapolate $N \rightarrow \infty$ value.

Discretized $v = \frac{1}{2}$ bosonic Laughlin state [Nielsen, Cirac, Sierra, '12]

$$|\Psi(N, \{z_j\})\rangle = \sum_{\{s_i\}} c(\{s_i\})|s_1, s_2, \dots, s_N\rangle, \qquad c(\{s_i\}) = \delta_{\sum s_i, 0} \prod_{n < m}^N (z_n - z_m)^{\frac{1}{2}s_n s_m}$$

This state has
$$c_{-} = 1 \rightarrow \frac{\pi}{3} c_{-} \approx 1.047$$

Calculate $J(A, B, C)_{\rho}$ and extrapolate $N \to \infty$ value.

Up to N = 26, this method provides

 $J(A, B, C)_{\rho} \approx 1.054$.

Discretized $v = \frac{1}{2}$ bosonic Laughlin state [Nielsen, Cirac, Sierra, '12]

$$\Psi(N, \{z_j\}) \rangle = \sum_{\{s_i\}} c(\{s_i\}) | s_1, s_2, \dots, s_N \rangle, \qquad c(\{s_i\}) = \delta_{\sum s_i, 0} \prod_{n < m}^{N} (z_n - z_m)^{\frac{1}{2} s_n s_m}$$

This state has
$$c_{-} = 1 \rightarrow \frac{\pi}{3}c_{-} \approx 1.047$$

Calculate $J(A, B, C)_{\rho}$ and extrapolate $N \rightarrow \infty$ value.

Up to N = 26, this method provides

NΙ

 $J(A, B, C)_{\rho} \approx 1.054$.

The conjectured formula also holds for free fermion models (p+ip SC). **[Fuji, private communication]**

Obstacle for a stability proof

$$S(A|B)_{\rho} + S(A)_{\rho} = 0$$

 $S(A|B)_{\rho} + S(A|C)_{\rho} = 0$

Obstacle for a stability proof

Problem: A1 is not true in some cases (even approximately)!

Obstacle for a stability proof

Problem: A1 is not true in some cases (even approximately)!

States with spurious topological entanglement entropy

[Bravyi '08]: There exists a ground state which is **not** topo. ordered $(\mathcal{D} = 1)$, but $S_{\text{topo}} = I(A: C|B)_{\rho} > 0$ for particular *ABC*.

[Bravyi '08]: There exists a ground state which is **not** topo. ordered $(\mathcal{D} = 1)$, but $S_{\text{topo}} = I(A: C|B)_{\rho} > 0$ for particular *ABC*.

Ex) 1D cluster state embedded in a 2D lattice (1D $\mathbb{Z}_2 \times \mathbb{Z}_2$ SPT phase)

[Bravyi '08]: There exists a ground state which is **not** topo. ordered $(\mathcal{D} = 1)$, but $S_{\text{topo}} = I(A: C|B)_{\rho} > 0$ for particular *ABC*.

Ex) 1D cluster state embedded in a 2D lattice (1D $\mathbb{Z}_2 \times \mathbb{Z}_2$ SPT phase)

spurious topological entanglement entropy $S(X)_{\rho} = \alpha |\partial X| - \gamma - c + o(1)$

[Bravyi '08]: There exists a ground state which is **not** topo. ordered $(\mathcal{D} = 1)$, but $S_{\text{topo}} = I(A: C|B)_{\rho} > 0$ for particular *ABC*.

Ex) 1D cluster state embedded in a 2D lattice (1D $\mathbb{Z}_2 \times \mathbb{Z}_2$ SPT phase)

spurious topological entanglement entropy $S(X)_{\rho} = \alpha |\partial X| - \gamma - c + o(1)$

[Williamson, Dua, Cheng, '19]:

homogeneous 2D model in subsystem SPT phases (2D cluster state)

Subsystem Symmetry-Protected Topological phase

Symmetry-Protected Topological (SPT) phase

- Ground state is unique and constructed by a const.-depth circuit (no topo. order)
- Ground state cannot be constructed in const.-depth by a symmetry respecting circuit

Subsystem Symmetry-Protected Topological phase

Symmetry-Protected Topological (SPT) phase

- Ground state is unique and constructed by a const.-depth circuit (no topo. order)
- Ground state cannot be constructed in const.-depth by a symmetry respecting circuit

Subsystem symmetry

generators of the symmetry act on lower-dimensional subsystems (lines, planes, fractals)

Subsystem Symmetry-Protected Topological phase

Subsystem SPT = SPT phases under subsystem symmetries

Subsystem SPT = SPT phases under subsystem symmetries

"weak" subsystem SPT = a pile of lower-dimensional SPT phases

"strong" subsystem SPT \neq a pile of lower-dimensional SPT phases

Subsystem SPT = SPT phases under subsystem symmetries

"weak" subsystem SPT = a pile of lower-dimensional SPT phases

"strong" subsystem SPT ≠ a pile of lower-dimensional SPT phases

"weak" subsystem SPT = a pile of lower-dimensional SPT phases

"strong" subsystem SPT ≠ a pile of lower-dimensional SPT phases (ex) 2D cluster state: trivial as a 2D SPT (global symmetry) but non-trivial as a 2D subsystem SPT

"weak" subsystem SPT = a pile of lower-dimensional SPT phases

"strong" subsystem SPT ≠ a pile of lower-dimensional SPT phases (ex) 2D cluster state: trivial as a 2D SPT (global symmetry) but non-trivial as a 2D subsystem SPT

Bravyi's example shows

weak subsystem SPT => spurious TEE

"weak" subsystem SPT = a pile of lower-dimensional SPT phases

"strong" subsystem SPT ≠ a pile of lower-dimensional SPT phases () (ex) 2D cluster state: trivial as a 2D SPT (global symmetry) but non-trivial as a 2D subsystem SPT

Bravyi's example shows

weak subsystem SPT => spurious TEE

[Zou, Haah '16] [Devakul, Williamson, You, '18] [Williamson, Dua, Cheng '19] strong subsystem SPT => spurious TEE

"weak" subsystem SPT = a pile of lower-dimensional SPT phases

"strong" subsystem SPT ≠ a pile of lower-dimensional SPT phases (ex) 2D cluster state: trivial as a 2D SPT (global symmetry) but non-trivial as a 2D subsystem SPT

Bravyi's example shows

weak subsystem SPT => spurious TEE

1D SPT

[Zou, Haah '16] [Devakul, Williamson, You, '18] [Williamson, Dua, Cheng '19] strong subsystem SPT => spurious TEE Converse?

The entanglement entropy S(X) is invariant under any unitary within X and X^c

The boundary state around ∂X can be modeled by a MPS.

SSPT vs spurious TEE

2D subsystem SPT (strong or weak along the cut)

SSPT vs spurious TEE

2D subsystem SPT (strong or weak along the cut)

> **[Devakul, Williamson, You, '18]** the boundary MPS is in a non-trivial $G_1 \times G_2$ 1D SPT phase

SSPT vs spurious TEE

2D subsystem SPT (strong or weak along the cut)

> **[Devakul, Williamson, You, '18]** the boundary MPS is in a non-trivial $G_1 \times G_2$ 1D SPT phase

$$- T - T - T - T - T - \cdots - T -$$

Spurious TEE occurs [Zou, Haah '16] $S(X)_{\rho} = \alpha |\partial X| + c + o(1)$

Stabilizer boundary states

Consider an isometric MPS $|\psi_n\rangle$ at the boundary

Stabilizer boundary states

Consider an isometric MPS $|\psi_n\rangle$ at the boundary

Theorem [Kato, Brandão, '19]

If $|\psi_n\rangle$ is a stabilizer state, then

 $|\psi_n\rangle$ is in a non-trivial $G_1 \times G_2$ 1D SPT phase \Leftrightarrow spurious TEE >0

Stabilizer boundary states

Consider an isometric MPS $|\psi_n\rangle$ at the boundary

Theorem [Kato, Brandão, '19]

If $|\psi_n\rangle$ is a stabilizer state, then

 $|\psi_n\rangle$ is in a non-trivial $G_1 \times G_2$ 1D SPT phase \Leftrightarrow spurious TEE >0

Non-trivial task: find the symmetry from given $|\psi^n\rangle$ with spurious TEE

MPS in a 1D SPT phase

 $G = G_1 \times G_2$ $U(g_1)$ $-T - T = V(g_1) - T - V^{\dagger}(g_1)$ $U(g_2)$ $-T - W(g_2) - T - W^{\dagger}(g_2)$

 $\exists (g_1, g_2) \in G, [V(g_1), W(g_2)] \neq 0.$

 $V(g_1)$

Point: $U(g_1) \otimes V(g_1)$ is a tensor-product *logical operator* of $V(g_1)$ acting on *the correctable algebra* of \mathcal{E} .

Correctable algebra

Operator-Algebra Quantum Error Correction [Beny, Kempf, Kribs, '07]

For a C^* -algebra $\mathcal{A} \subset \mathcal{B}(\mathcal{H})$, a CPTP-map \mathcal{E} is *correctable* if there exists a CPTP-map \mathcal{R} s.t., $X = (\mathcal{R} \circ \mathcal{E})^{\dagger}(X), \forall X \in \mathcal{A}, \forall \rho.$

E preserves all information in subalgebra A

Correctable algebra

Operator-Algebra Quantum Error Correction [Beny, Kempf, Kribs, '07]

For a C^* -algebra $\mathcal{A} \subset \mathcal{B}(\mathcal{H})$, a CPTP-map \mathcal{E} is *correctable* if there exists a CPTP-map \mathcal{R} s.t., $X = (\mathcal{R} \circ \mathcal{E})^{\dagger}(X), \forall X \in \mathcal{A}, \forall \rho.$

E preserves all information in subalgebra A

Correctable algebra $\mathcal{A}_{\mathcal{E}}$: the maximal subalgebra such that \mathcal{E} is correctable.

$$\mathcal{A}_{\mathcal{E}} = \left(Alg \{ E_b^{\dagger} E_a \} \right)', \qquad \mathcal{E}(\cdot) = \sum_a E_a \cdot E_a^{\dagger}.$$

"Maximum information" exactly preserved by E

Spurious TEE>0 => non-trivial OAQEC

[Pastawski, Preskill, '17]

Complementarity recovery condition: $\mathcal{A}_{\mathcal{E}^c} = \mathcal{A}'_{\mathcal{E}}$ (satisfied for stabilizer states)

Spurious TEE>0 => non-trivial OAQEC

Complementarity recovery condition: $\mathcal{A}_{\mathcal{E}}^{c} = \mathcal{A}_{\mathcal{E}}^{\prime}$ (satisfied for stabilizer states)

$$o \mathcal{A}^B = (\mathcal{B}^{EC})'$$
, $\mathcal{B}^E = (\mathcal{A}^{BC})'$

Simply denote $(\mathcal{A}^{BC}, \mathcal{B}^{EC})$ by $(\mathcal{A}, \mathcal{B})$

Spurious TEE>0 => non-trivial OAQEC

Complementarity recovery condition: $\mathcal{A}_{\mathcal{E}^c} = \mathcal{A}'_{\mathcal{E}}$ (satisfied for stabilizer states)

$$\rightarrow \mathcal{A}^{B} = (\mathcal{B}^{EC})'$$
, $\mathcal{B}^{E} = (\mathcal{A}^{BC})'$

Simply denote $(\mathcal{A}^{BC}, \mathcal{B}^{EC})$ by $(\mathcal{A}, \mathcal{B})$

Complementarity recovery condition + **constant spurious TEE**> 0

$$\rightarrow \mathcal{A}^{BC} = \mathcal{A} \supseteq \mathcal{B}' = \mathcal{A}^{B}$$

Theorem [Kato, Brandão, '19]

If $|\psi^n\rangle$ is a stabilizer state, then

 $|\psi^n\rangle$ is in a non-trivial $G_1 \times G_2$ 1D SPT phase \Leftrightarrow spurious TEE >0

 $\mathcal{A}^{BC} = \mathcal{A} \supseteq \mathcal{B}' = \mathcal{A}^{B}$

Theorem [Kato, Brandão, '19]

If $|\psi^n\rangle$ is a stabilizer state, then

 $|\psi^n\rangle$ is in a non-trivial $G_1 \times G_2$ 1D SPT phase \Leftrightarrow spurious TEE >0

 $\mathcal{A}^{BC} = \mathcal{A} \supseteq \mathcal{B}' = \mathcal{A}^{B}$ Stabilizer states: $Alg(\mathcal{G}_{BC}) = \mathcal{A}, Alg(\mathcal{C}_{B}) = \mathcal{B}'$ \mathcal{G}_{BC} : The set of tensor product logical unitary operators on BC \mathcal{C}_{B} : The logical unitary operators on B

Theorem [Kato, Brandão, '19]

If $|\psi^n\rangle$ is a stabilizer state, then

 $|\psi^n\rangle$ is in a non-trivial $G_1 \times G_2$ 1D SPT phase \Leftrightarrow spurious TEE >0

 $\mathcal{A}^{BC} = \mathcal{A} \supseteq \mathcal{B}' = \mathcal{A}^{B}$ Stabilizer states: $Alg(\mathcal{G}_{BC}) = \mathcal{A}, Alg(\mathcal{C}_{B}) = \mathcal{B}'$ \mathcal{G}_{BC} : The set of tensor product logical unitary operators on BC \mathcal{C}_{B} : The logical unitary operators on B $\mathcal{G}_{BC}/\mathcal{C}_{B} \text{ is a finite group (= Eastin-Knill theorem)}$

Theorem [Kato, Brandão, '19]

If $|\psi^n\rangle$ is a stabilizer state, then

 $|\psi^n\rangle$ is in a non-trivial $G_1 \times G_2$ 1D SPT phase \Leftrightarrow spurious TEE >0

 $\mathcal{A}^{BC} = \mathcal{A} \supseteq \mathcal{B}' = \mathcal{A}^{B}$ Stabilizer states: $Alg(\mathcal{G}_{BC}) = \mathcal{A}, Alg(\mathcal{C}_{B}) = \mathcal{B}'$ \mathcal{G}_{BC} : The set of tensor product logical unitary operators on BC \mathcal{C}_{B} : The logical unitary operators on B $\mathcal{G}_{BC}/\mathcal{C}_{B} \text{ is a finite group (} = \text{Eastin-Knill theorem)}$

$$G_1 \cong \mathcal{G}_{BC}/\mathcal{C}_B$$

Theorem [Kato, Brandão, '19]

If $|\psi^n\rangle$ is a stabilizer state, then

 $|\psi^n\rangle$ is in a non-trivial $G_1 \times G_2$ 1D SPT phase \Leftrightarrow spurious TEE >0

Theorem [Kato, Brandão, '19]

If $|\psi^n\rangle$ is a stabilizer state, then

 $|\psi^n\rangle$ is in a non-trivial $G_1 \times G_2$ 1D SPT phase \Leftrightarrow spurious TEE >0

$$\mathcal{G}_{BC} / \mathcal{C}_{B}$$
 is a finite group

A

В

Theorem [Kato, Brandão, '19]

If $|\psi^n\rangle$ is a stabilizer state, then

 $|\psi^n\rangle$ is in a non-trivial $G_1 \times G_2$ 1D SPT phase \Leftrightarrow spurious TEE >0

$$\mathcal{G}_{BC}/\mathcal{C}_{B}$$
 is a finite group \mathcal{E}

A

one can show $V(g_1) \mapsto \tilde{V}(g_1)$ is a permutation in G_1 .

Theorem [Kato, Brandão, '19]

If $|\psi^n\rangle$ is a stabilizer state, then

 $|\psi^n\rangle$ is in a non-trivial $G_1 \times G_2$ 1D SPT phase \Leftrightarrow spurious TEE >0

 $\mathcal{G}_{BC}/\mathcal{C}_B$ is a finite group

 $U_{1,\ldots,n}(g_1) \otimes V(g_1)$

one can show $V(g_1) \mapsto \tilde{V}(g_1)$ is a permutation in G_1 .

Theorem [Kato, Brandão, '19]

If $|\psi^n\rangle$ is a stabilizer state, then

 $|\psi^n\rangle$ is in a non-trivial $G_1 \times G_2$ 1D SPT phase \Leftrightarrow spurious TEE >0

Theorem [Kato, Brandão, '19]

If $|\psi^n\rangle$ is a stabilizer state, then

 $|\psi^n\rangle$ is in a non-trivial $G_1 \times G_2$ 1D SPT phase \Leftrightarrow spurious TEE >0

Spurious TEE>0

Theorem [Kato, Brandão, '19]

If $|\psi^n\rangle$ is a stabilizer state, then

 $|\psi^n\rangle$ is in a non-trivial $G_1 \times G_2$ 1D SPT phase \Leftrightarrow spurious TEE >0

Spurious TEE>0
Proof sketch(3/3)

Theorem **[Kato, Brandão, '19]** If $|\psi^n\rangle$ is a stabilizer state, then $|\psi^n\rangle$ is in a non-trivial $G_1 \times G_2$ 1D SPT phase \Leftrightarrow spurious TEE >0 $\stackrel{E}{\varepsilon^c} \qquad \mathcal{G}_{EC}/\mathcal{C}_E$ is also a finite group Spurious TEE>0

Spurious TEE>0 $\mathcal{A}^{BC} = \mathcal{A} \supseteq \mathcal{B}' = (\mathcal{A}^{EC})'$ $V(q_1) \in \mathcal{A}, \qquad W(q_2) \in \mathcal{B}$ $\exists (g_1, g_2) \in G, [V(g_1), W(g_2)] \neq 0.$ non-trivial $G_1 \times G_2$ 1D SPT

Beyond stabilizers

Q. Is there any 1D MPS which is **not** in any $G_1 \times G_2$ SPT but has non-zero spurious TEE?

Beyond stabilizers

Q. Is there any 1D MPS which is **not** in any $G_1 \times G_2$ SPT but has non-zero spurious TEE?

Recall that

Beyond stabilizers

Q. Is there any 1D MPS which is **not** in any $G_1 \times G_2$ SPT but has non-zero spurious TEE?

Recall that

Find non-trivial OAQEC without any tensor-product logical operator

$$-\frac{1}{T} - \frac{1}{P} = -\frac{\mathcal{P}}{\mathcal{P}} = 5-\text{qubit code}[[5,1,3]]$$

• Tensor product logical operators = Pauli operators

$$-\frac{1}{T} - = -\frac{1}{P} - \frac{\mathbb{C}^2}{\mathbb{P}^2} = 5 - \text{qubit code}[[5,1,3]]$$

• Tensor product logical operators = Pauli operators

P: any Pauli

$$///$$
 $P - \mathcal{P}$

$$-\frac{1}{T} - = -\frac{1}{P} - \frac{\mathbb{C}^2}{\mathbb{P}^2} = 5 - \text{qubit code}[[5,1,3]]$$

• Tensor product logical operators = Pauli operators

$$-\frac{1}{T} - = -\frac{\mathcal{P}}{\mathcal{P}} - \frac{\mathbb{C}^2}{\mathcal{P}} = 5 - \text{qubit code}[[5,1,3]]$$

• Tensor product logical operators = Pauli operators

Corresponding MPS is a stabilizer SPT state

Open problems

Entanglement bootstrap

- What happen if the axioms are approximately satisfied?
- More general axiom replacing axiom A1?
- Higher-order central charge?

Spurious TEE

- What is the exact condition for the spurious TEE ?
- How can we distinguish different correlations?

References

Entanglement bootstrap B. Shi, K. Kato, I. H. Kim arXiv:1906.09376, Annals of Physics 418 (2020).

Chiral central charge and modular commutator I. H. Kim, B. Shi, K. Kato, V. Albert arXiv:2110.06932, Phys. Rev. Lett. 128, 176402 (2022). arXiv:2110.10400, Phys. Rev. B 106, 075147 (2022).

Spurious TEE

K. Kato, F. Brandão arXiv:1911.09819, Phys. Rev. Research 2, 032005 (2020).

