
Entanglement bootstrap
and 
spurious topological 
entanglement entropy

Kohtaro Kato (Nagoya University)

ICMAT QIT workshop, 3/17/2023



Topologically ordered phases (2D bosonic)

✓ No local order parameter

✓ Topology-dependent degeneracy of ground states

✓ Anyonic excitations

✓ Protected gapless edge modes (if chiral) 𝑒𝑖𝜃

Non-trivial gapped quantum phases with the following properties:



Topologically ordered phases (2D bosonic)

✓ No local order parameter

✓ Topology-dependent degeneracy of ground states

✓ Anyonic excitations

✓ Protected gapless edge modes (if chiral)

• Different topological orders are distinguished by algebraic theory of anyons

𝑒𝑖𝜃

Non-trivial gapped quantum phases with the following properties:



Topologically ordered phases (2D bosonic)

✓ No local order parameter
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✓ Protected gapless edge modes (if chiral)

• Different topological orders are distinguished by algebraic theory of anyons

Unitary Modular Tensor Category (UMTC)

𝑒𝑖𝜃
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Anyon theory (UMTC)

ℒ = 1, 𝑎, 𝑏, 𝑐, … ,
➢Charges (Superselection sectors)

possible types of quasiparticles (anyons)

➢Fusion rules

possible total charge of two charges

➢𝑭 and 𝑹 matrices

specify braiding statistics

𝑎 × 𝑏 =

𝑐

𝑁𝑎𝑏
𝑐 𝑐, 𝑁𝑎𝑏

𝑐 ∈ ℤ≥0
cf. fusion of SU(2)-spins  

1

2
×

1

2
= 0 + 1

ℒ < ∞
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Chiral central charge

Chiral topological systems have gapless edge modes characterized by 
chiral central charge 𝑐−

The gapless edge modes are topologically protected and described by CFT.

[Kane & Fisher, ‘97],…: Edge energy current 𝐼𝐸 satisfies

𝐼𝐸 =
𝜋

12
𝑐−𝑇

2.

𝒄− is another important topological data in addition to UMTC.
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Entanglement bootstrap [Shi, Kato, Kim, ‘19]
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Entanglement bootstrap [Shi, Kato, Kim, ‘19]

• An “axiomatic” approach for (finite) gapped spin systems.

• Reproduces anyon theory from simple entanglement properties. 
• Charges, Fusion rules, S-matrix [Shi,’20], Topological EE,…

• Allow to show some nice properties of the modular commutator 
(cf. Victor’s talk yesterday)

Problem: 

an axiom does not hold in some 2D gapped systems 

(discussed in the second half of this talk)
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Setting

Λ: a finite set of sites defined on a closed 2D manifold

ℋ =ໆ

𝑖∈Λ

ℋ𝑖 , dimℋ𝑖 < ∞.

• Assume a triangular spin lattice for the simplicity.

ℋ𝑖
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We call such 𝜌 a reference state.
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Area law

The axioms are motivated by area law of entanglement in gapped systems.

Area law (general form)

𝑆 𝑋 𝜌 = 𝑂 𝜕𝑋

➢ Proven for 1D gapped systems [Hastings, ‘07].

➢ Proven for 2D systems under various additional assumptions 
[Masanes ’09], [Beaudrap, Osborne, Eisert, ’10], [Anshu, Arad, Gosset, ’21],…

𝑆 𝑋 𝜌 = 𝛼 𝜕𝑋 − 𝛾 + 𝑜(1)Observations: 𝛾: topological entanglement 
entropy
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Two axioms and area law

𝑆 𝐴 𝐵 𝜌 + 𝑆 𝐴 𝜌 = 0

𝑆 𝐴 𝐵 𝜌 + 𝑆 𝐴|𝐶 𝜌 = 0

Axiom A0

Axiom A1

no 𝑜(1) correction

𝑆 𝑋 𝜌 = 𝛼 𝜕𝑋 − 𝛾
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For a region Ω ⊂ Λ,we define Ω+ as a “thickened” region by a thickness 𝜇 = 𝑂 1 .

Ω
Ω+

𝜇

𝑏

Ω ⊂ Ω+ ⊂ Λ

𝜇

෨Σ(Ω+) ≔ 𝜎Ω+ | 𝜎𝑏 = 𝜌𝑏 ∀ 𝑏: 𝜇 − ball ⊂ Ω+

states that are indistinguishable from 𝜌 on any 
ball ⊂ Ω+

Information convex set [Kim,`15][Shi, KK, Kim ‘20]:

Σ Ω ≔ 𝜎Ω = TrΩ+∖Ω𝜎Ω+ 𝜎Ω+ ∈
෨Σ Ω+

Tracing out 𝛀+ ∖ 𝛀
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Theorem (informal)

Isomorphism theorem

How does the structure of Σ Ω depend on Ω?

If Ω0 and Ω1 are connected by local deformations
Ω𝑡 ,there is a bijective CPTP-map 

Φ Ω𝑡 : Σ Ω0 → Σ Ω1

• The isomorphism preserves the entropy difference

𝑆 𝜎 − 𝑆 𝜔 = 𝑆 Φ 𝜎 − 𝑆 Φ 𝜔 ∀𝜌, 𝜎 ∈ Σ Ω

Ω0
Ω1

Ω Ω′Ω Ω′ 𝜇



Key idea : quantum Markov states

𝐼 𝐴: 𝐶 𝐵 𝜌 ≔ 𝑆 𝐴𝐵 𝜌 + 𝑆 𝐵𝐶 𝜌 − 𝑆 𝐵 𝜌 − 𝑆 𝐴𝐵𝐶 𝜌 ≥ 0.

Conditional mutual information

A tripartite state 𝜌𝐴𝐵𝐶 is called a quantum Markov state (QMS) if

𝐼 𝐴: 𝐶 𝐵 𝜌 = 0.
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Axiom A1 and quantum Markov states

𝜌𝐴𝐵𝐷 , 𝜌𝐴𝐶𝐷 are QMS
𝑆 𝐴 𝐵 𝜌 + 𝑆 𝐴|𝐶 𝜌 = 0

Axiom A1

𝐼 𝐴: 𝐷 𝐵 𝜌 = 𝐼 𝐴:𝐷|𝐶 𝜌 = 0
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Proof sketch (isomorphism theorem)

A1 implies 𝐼 𝐴: 𝐶 𝐵 𝜎 = 𝐼 𝐵: 𝐷 𝐶 𝜌 = 0.

𝜎Ω ∈ Σ(Ω)

𝜌𝐵𝐶𝐷: the reference state

→ ∃𝜏𝐴𝐵𝐶𝐷 𝜏𝐴𝐵𝐶 = 𝜎𝐴𝐵𝐶

Ω Ω′

𝜏𝐵𝐶𝐷 = 𝜌𝐵𝐶𝐷



Proof sketch (isomorphism theorem)

A1 implies 𝐼 𝐴: 𝐶 𝐵 𝜎 = 𝐼 𝐵: 𝐷 𝐶 𝜌 = 0.

𝜎Ω ∈ Σ(Ω)

𝜌𝐵𝐶𝐷: the reference state

→ ∃𝜏𝐴𝐵𝐶𝐷 𝜏𝐴𝐵𝐶 = 𝜎𝐴𝐵𝐶

Ω Ω′

→ ⋯ → 𝜏𝐴𝐵𝐶𝐷∈ Σ Ω𝐷

𝜏𝐵𝐶𝐷 = 𝜌𝐵𝐶𝐷
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Structure of Σ(Ω) : disk

The structure of Σ(Ω) only depends on the topology of Ω (if not winding).

Ω

[Kim, ‘15]: For any disk-like region Ω, Σ Ω = 𝜌Ω .

Only the reference state is allowed. 

(cf. TQO condition[Bravyi, Hastings ‘11]...)
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The structure of Σ(Ω) only depends on the topology of Ω (if not winding).

Ω
Theorem

If Ω is an annulus, 

𝜎Ω =ໄ

𝑎

𝑝𝑎𝜌Ω
𝑎 , ∀𝜎Ω ∈ Σ Ω . 𝑎 ത𝑎

𝜌Ω
𝑎

➢ Intuitively, each 𝜌Ω
𝑎 corresponds to the reduced state of an excited state with a fixed 

charge pair.

➢ The reference state 𝜌Ω is an extreme point, defined as the “vacuum” 𝜌Ω
1≡ 𝜌Ω ∈ 𝜌Ω

𝑎 .

We define the labels of the extreme points ℒ = {𝑎, 𝑏, 𝑐 … } as the anyon charges.

Each 𝜌Ω
𝑎 is some state independent of 𝜎Ω.
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Σ𝑎𝑏
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𝑎 𝑏

𝑐
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Σ𝑎𝑏
𝑐 Ω ≔ 𝜎Ω

𝑎,𝑏,𝑐
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Σ𝑎𝑏
𝑐 Ω ≅ a state space on a finite-dim. Hilbert space.

Structure of Σ(Ω): 2-hole disk
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𝑐

𝑎 𝑏

𝑐



Theorem

B1 B2

𝐶

𝝈𝛀
(𝒂,𝒃,𝒄)

: 𝜎𝐵1
(𝑎,𝑏,𝑐)

= 𝜌𝐵1
𝑎 , 𝜎𝐵2

(𝑎,𝑏,𝑐)
= 𝜌𝐵2

𝑏 , 𝜎𝐶
(𝑎,𝑏,𝑐)

= 𝜌𝐶
𝑐 .

To define fusion rules, we consider a 2-hole disk Ω.

If Ω is a 2-hole disk, subregions 𝐵1, 𝐵2, 𝐶 are annuli.

Σ𝑎𝑏
𝑐 Ω ≔ 𝜎Ω

𝑎,𝑏,𝑐
⊂ Σ Ω .

Σ𝑎𝑏
𝑐 Ω ≅ a state space on a finite-dim. Hilbert space.

We define the fusion multiplicity by 𝑁𝑎𝑏
𝑐 ≔ dim𝑉𝑎𝑏

𝑐 𝑎 × 𝑏 =

𝑐∈ℒ

𝑁𝑎𝑏
𝑐 𝑐

Structure of Σ(Ω): 2-hole disk

=: 𝑉𝑎𝑏
𝑐

𝑎 𝑏

𝑐



Consistency with UMTC

1. 𝑁𝑎𝑏
𝑐 = 𝑁𝑏𝑎

𝑐 : commutativity of fusion rules

2. 𝑁𝑎1
𝑐 = 𝛿𝑎,𝑐: vacuum 

3. 𝑁𝑎𝑏
1 = 𝛿𝑏, ത𝑎: anticharge

4. 𝑁𝑎𝑏
𝑐 = 𝑁ത𝑎 ത𝑏

ҧ𝑐 : charge-anticharge duality

5. σ𝑖𝑁𝑎𝑏
𝑖 𝑁𝑖𝑐

𝑑 = σ𝑗𝑁𝑎𝑗
𝑑 𝑁𝑏𝑐

𝑗
: associativity

In the anyon theory, the fusion multiplicities 𝑁𝑎𝑏
𝑐 must satisfy the following 

rules. 
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𝑖 𝑁𝑖𝑐

𝑑 = σ𝑗𝑁𝑎𝑗
𝑑 𝑁𝑏𝑐

𝑗
: associativity

𝑁𝑎𝑏
𝑐 in our definition satisfies all the properties.

In the anyon theory, the fusion multiplicities 𝑁𝑎𝑏
𝑐 must satisfy the following 

rules. 
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Ex.)𝑁𝑎1
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How to prove axioms of UMTC (sketch)

Ex.)𝑁𝑎1
𝑐 = 𝛿𝑎,𝑐

𝑎𝑐

Consider a 2-hole disk with 𝑎, 1, 𝑐 .

1

One can merge the vacuum hole with a disk 𝐷.

𝜎Ω
𝑎,1,𝑐

∈ Σa1
c Ω

𝜎Ω
𝑎,1,𝑐

, 𝜌𝐷 → 𝜏Ω′ 𝜏Ω′ ∈ Σ Ω′

Ω′ = Ω ∪ 𝐷

Ω

Ω′ is an annulus and 𝜏Ω′ must be in 𝑎 −sector. 

𝜏Ω′ = 𝜌Ω′
𝑎 → 𝑐 = 𝑎.
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𝛾: topological entanglement entropy (TEE)
[Kitaev, Preskill, ’06] [Levin, Wen ‘06]
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𝑑𝑎𝑑𝑏 =

𝑐∈ℒ

𝑁𝑎𝑏
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𝐵
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𝑆topo = 𝛾 𝑆topo = 2𝛾

[Kitaev Preskill ‘06][Levin Wen ‘06]

KP partition LW partition

𝛾 = log𝒟, 𝒟 ≔ σ𝑎∈ℒ 𝑑𝑎
2 .

quantum dimension
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The value of TEE in entanglement bootstrap

𝑑𝑎𝑑𝑏 =

𝑐∈ℒ

𝑁𝑎𝑏
𝑐 𝑑𝑐 , 𝑑𝑎 ∈ ℝ≥1

𝐵A

𝐶

𝐵

A

𝐶

𝐵

𝑆topo = 𝛾 𝑆topo = 2𝛾

[Kitaev Preskill ‘06][Levin Wen ‘06]

𝑆topo = log𝒟 for KP partition, 𝑆topo = log𝒟2 for LW partition.

KP partition LW partition

𝛾 = log𝒟, 𝒟 ≔ σ𝑎∈ℒ 𝑑𝑎
2 .

quantum dimension
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𝐽 𝐴, 𝐵, 𝐶 𝜌∗ = −𝐽 𝐴, 𝐵, 𝐶 𝜌 Chirality!

Entanglement bootstrap assumption implies

1. The modular Hamiltonian 𝐻mod ≔– ln𝜌 is local.

2. 𝐽 𝐴, 𝐵, 𝐶 𝜌 is a topological invariant (independent of the details of the shape).

[Shi, Kim, Kato, Albert, ‘22]
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Modular commutator :

𝐽 𝐴, 𝐵, 𝐶 𝜌∗ = −𝐽 𝐴, 𝐵, 𝐶 𝜌 Chirality!

Entanglement bootstrap assumption implies

1. The modular Hamiltonian 𝐻mod ≔– ln𝜌 is local.

2. 𝐽 𝐴, 𝐵, 𝐶 𝜌 is a topological invariant (independent of the details of the shape).

Conjecture: For 2D gapped ground states,

𝐽 𝐴, 𝐵, 𝐶 𝜌 =
𝜋

3
𝑐− .

[Shi, Kim, Kato, Albert, ‘22]

𝐼𝐸 =
𝜋

12
𝑐−𝑇

2

cf. Kane & Fisher
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bosonic Laughlin state [Nielsen, Cirac, Sierra, ‘12]

Ψ 𝑁, 𝑧𝑗 =

𝑠𝑖

𝑐 𝑠𝑖 𝑠1, 𝑠2, … , 𝑠𝑁 , 𝑐 𝑠𝑖 = 𝛿σ 𝑠𝑖,0 ෑ

𝑛<𝑚

𝑁

𝑧𝑛 − 𝑧𝑚
1
2𝑠𝑛𝑠𝑚 .

→
𝜋

3
𝑐− ≈ 1.047

Calculate 𝐽 𝐴, 𝐵, 𝐶 𝜌 and extrapolate 𝑁 → ∞ value. 

𝐽 𝐴, 𝐵, 𝐶 𝜌 ≈ 1.054 .

Up to 𝑁 = 26, this method provides

The conjectured formula also holds for free fermion 
models (p+ip SC). [Fuji, private communication]
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Obstacle for a stability proof

Problem: A1 is not true in some cases (even approximately)!

States with spurious topological entanglement entropy

𝑆 𝐴 𝐵 𝜌 + 𝑆 𝐴 𝜌 = 0 𝑆 𝐴 𝐵 𝜌 + 𝑆 𝐴|𝐶 𝜌 = 0

Axiom A0 Axiom A1

𝜇 = 𝑂(1) 𝜇 = 𝑂(1)
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[Bravyi ‘08]: 
There exists a ground state which is not topo. ordered (𝓓 = 𝟏), but 

𝑆topo = 𝑰 𝑨: 𝑪 𝑩 𝝆 > 𝟎 for particular 𝐴𝐵𝐶.
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Spurious TEE

𝐴 𝐶

𝐵

𝐵

[Bravyi ‘08]: 
There exists a ground state which is not topo. ordered (𝓓 = 𝟏), but 

𝑆topo = 𝑰 𝑨: 𝑪 𝑩 𝝆 > 𝟎 for particular 𝐴𝐵𝐶.

Ex) 1D cluster state embedded in a 2D lattice
(1D ℤ2 × ℤ2 SPT phase)

[Williamson, Dua, Cheng, ‘19]: 
homogeneous 2D model in subsystem SPT phases (2D cluster state)

spurious topological entanglement entropy

𝑆 𝑋 𝜌 = 𝛼 𝜕𝑋 − 𝛾 − 𝑐 + 𝑜(1)



Subsystem Symmetry-Protected Topological phase

Symmetry-Protected Topological (SPT) phase

• Ground state is unique and constructed by a const.-depth circuit (no topo. order)

• Ground state cannot be constructed in const.-depth by a symmetry respecting circuit



Subsystem Symmetry-Protected Topological phase

Subsystem symmetry

generators of the symmetry act on lower-dimensional subsystems (lines, planes, fractals)

Symmetry-Protected Topological (SPT) phase

• Ground state is unique and constructed by a const.-depth circuit (no topo. order)

• Ground state cannot be constructed in const.-depth by a symmetry respecting circuit
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Subsystem SPT = SPT phases under subsystem symmetries

“weak” subsystem SPT = a pile of lower-dimensional SPT phases

“strong” subsystem SPT ≠ a pile of lower-dimensional SPT phases

1D SPT

Bravyi’s example shows

[Zou, Haah ‘16] [Devakul, Williamson, You, ‘18] [Williamson, Dua, Cheng ‘19]
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trivial as a 2D SPT (global symmetry) but non-trivial as a 2D subsystem SPT
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strong subsystem SPT => spurious TEE 



Subsystem Symmetry-Protected Topological phase

Subsystem SPT = SPT phases under subsystem symmetries

“weak” subsystem SPT = a pile of lower-dimensional SPT phases

“strong” subsystem SPT ≠ a pile of lower-dimensional SPT phases

1D SPT

Bravyi’s example shows

[Zou, Haah ‘16] [Devakul, Williamson, You, ‘18] [Williamson, Dua, Cheng ‘19]

ex) 2D cluster state:  
trivial as a 2D SPT (global symmetry) but non-trivial as a 2D subsystem SPT

weak subsystem SPT => spurious TEE

strong subsystem SPT => spurious TEE Converse?
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SSPT vs spurious TEE

2D subsystem SPT
(strong or weak along 

the cut)

⋯𝑇 𝑇 𝑇 𝑇 𝑇

𝑋

Spurious TEE occurs [Zou, Haah ‘16] 

[Devakul, Williamson, You, ‘18]
the boundary MPS is in a non-trivial 𝐺1 × 𝐺2 1D SPT phase

𝑆 𝑋 𝜌 = 𝛼 𝜕𝑋 + 𝑐 + 𝑜(1)
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𝑑
Σ𝑖|𝑖𝑖⟩

𝑉: AC → 𝐵𝐸
𝑉†𝑉 = 𝐼

Theorem [Kato, Brandão, ‘19]

If |𝜓𝑛⟩ is a stabilizer state, then
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Stabilizer boundary states

Consider an isometric MPS |𝜓𝑛⟩ at the boundary

Φ𝑑 =
1

𝑑
Σ𝑖|𝑖𝑖⟩

𝑉: AC → 𝐵𝐸
𝑉†𝑉 = 𝐼

Theorem [Kato, Brandão, ‘19]

If |𝜓𝑛⟩ is a stabilizer state, then

|𝜓𝑛⟩ is in a non-trivial 𝐺1 × 𝐺2 1D SPT phase  ⇔ spurious TEE >0

Non-trivial task: find the symmetry from given |𝜓𝑛⟩ with spurious TEE 

𝑉𝐴
𝐵

𝐶
𝐸

𝑇 ≅



MPS in a 1D SPT phase

𝑇

𝑈(𝑔1)

= 𝑇𝑉(𝑔1) 𝑉†(𝑔1)

𝑇

𝑈(𝑔2)

= 𝑇𝑊(𝑔2) 𝑊†(𝑔2)

∃ 𝑔1, 𝑔2 ∈ 𝐺, 𝑉 𝑔1 ,𝑊 𝑔2 ≠ 0.

𝐺 = 𝐺1 × 𝐺2



Symmetry condition as logical operators
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Symmetry condition as logical operators

𝑉
𝐴

𝐵

𝐶 ⇒ ℰ

𝐵 𝐶

ℰ𝑐

𝐸 𝐶𝐸

𝐴 𝐴

𝑇 =



Symmetry condition as logical operators

𝑉
𝐴

𝐵

𝐶 ⇒ ℰ

𝐵 𝐶

ℰ𝑐

𝐸 𝐶𝐸

𝐴 𝐴

𝑇 =

⇔ ℰ

𝑈 𝑔1 ⊗𝑉(𝑔1)

𝑉 𝑔1
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Symmetry condition as logical operators

𝑉
𝐴

𝐵

𝐶 ⇒ ℰ

𝐵 𝐶

ℰ𝑐

𝐸 𝐶𝐸

𝐴 𝐴

𝑇 =

⇔ ℰ

𝑈 𝑔1 ⊗𝑉(𝑔1)

𝑉 𝑔1

ℰ=

Point: 𝑈 𝑔1 ⊗𝑉(𝑔1) is a tensor-product logical operator of 𝑉 𝑔1

acting on the correctable algebra of ℰ.



Correctable algebra

For a 𝐶∗-algebra 𝒜 ⊂ ℬ ℋ , a CPTP-map ℰ is correctable if
there exists a CPTP-map ℛ s.t.,

𝑋 = ℛ ∘ ℰ †(𝑋), ∀𝑋 ∈ 𝒜,∀𝜌.

Operator-Algebra Quantum Error Correction [Beny, Kempf, Kribs, ‘07]

ℰ preserves all information in subalgebra 𝒜



Correctable algebra

For a 𝐶∗-algebra 𝒜 ⊂ ℬ ℋ , a CPTP-map ℰ is correctable if
there exists a CPTP-map ℛ s.t.,

𝑋 = ℛ ∘ ℰ †(𝑋), ∀𝑋 ∈ 𝒜,∀𝜌.

Operator-Algebra Quantum Error Correction [Beny, Kempf, Kribs, ‘07]

ℰ preserves all information in subalgebra 𝒜

Correctable algebra 𝒜ℰ: the maximal subalgebra such that ℰ is correctable.

𝒜ℰ = 𝐴𝑙𝑔 𝐸𝑏
†𝐸𝑎

′
, ℰ ⋅ =

𝑎

𝐸𝑎 ⋅ 𝐸𝑎
† .

“Maximum information” exactly preserved by ℰ
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[Pastawski, Preskill, ‘17]
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𝑉
𝐴

𝐵

𝐶 ⇒ ℰ

𝐵 𝐶
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𝐴 𝐴
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′

→ 𝒜𝐵 = ℬ𝐸𝐶 ′ , ℬ𝐸 = 𝒜𝐵𝐶 ′

Simply denote 𝒜𝐵𝐶 , ℬ𝐸𝐶 by (𝒜,ℬ)

(satisfied for stabilizer states)

Complementarity recovery condition + constant spurious TEE> 𝟎

→ 𝒜𝐵𝐶 = 𝒜 ⊋ ℬ′ = 𝒜𝐵 .

[Pastawski, Preskill, ‘17]
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ℰ

𝐵 𝐶

𝐴

𝒢𝐵𝐶: The set of tensor product logical unitary operators on BC 

𝒞𝐵: The logical unitary operators on B 

𝐺1 ≅ 𝒢𝐵𝐶/𝒞𝐵
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Beyond stabilizers

Q. Is there any 1D MPS which is not in any 𝐺1 × 𝐺2 SPT but has non-zero   

spurious TEE?

Find non-trivial OAQEC without any tensor-product logical operator 

⇔ ℰ

𝑈 𝑔1 ⊗𝑉†(𝑔1)

𝑉 𝑔1
𝑇

ℰ=

Recall that
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𝑃 ⊗ 𝑃

𝑃

𝑃: any Pauli

ℂ2

ℂ2

Corresponding MPS is a stabilizer SPT state

• Tensor product logical operators = Pauli operators

𝒫 = 5-qubit code[[5,1,3]]
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⋯

𝑆𝑡𝑜𝑝𝑜 = 2 > 2𝛾 = 0.

𝐵

𝐸



Open problems

Entanglement bootstrap
• What happen if the axioms are approximately satisfied?

• More general axiom replacing axiom A1?

• Higher-order central charge?

Spurious TEE
• What is the exact condition for the spurious TEE ?

• How can we distinguish different correlations? 
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