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Unitary Modular Tensor Category (UMTC)



Anyon theory (UMTC)

» Charges (Superselection sectors)
L={1,a,b,c, ..}, |L] <o

possible types of quasiparticles (anyons)
» Fusion rules
possible total charge of two charges

cf. fusion of SU(2)-spins %x % =0+1

> F and R matrices ,

specify braiding statistics
Z( abc - R
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Chiral central charge

Chiral topological systems have gapless edge modes characterized by
chiral central charge c_

LT

The gapless edge modes are topologically protected and described by CFT.

[Kane & Fisher, ‘97],...: Edge energy current I satisfies
T

IE —_ EC_TZ.

c_ Is another important topological data in addition to UMTC.
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“So the topological order is a property of ground state
wave function.”

An Introduction of Topological Orders, Xiao-Gang Wen

Q. Is all the topological data (UMTC, c_) encoded in a GS?
[Shi, Kato, Kim " 20]: | entanglement bootstrap |

(a part of) 7

Extracting UMTC from a bulk GS satisfying some entanglemeht properties.
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Extracting ¢ from a bulk GS satisfying some entanglement properties.




Entanglement bootstrap [Shi, Kato, Kim, ‘19]

« An “axiomatic” approach for (finite) gapped spin systems.

« Reproduces anyon theory from simple entanglement properties.
« Charges, Fusion rules, S-matrix [Shi,’20], Topological EE, -

« Allow to show some nice properties of the modular commutator
(cf. Victor’s talk yesterday)



Entanglement bootstrap [Shi, Kato, Kim, ‘19]

« An “axiomatic” approach for (finite) gapped spin systems.

« Reproduces anyon theory from simple entanglement properties.
« Charges, Fusion rules, S-matrix [Shi,’20], Topological EE, -

« Allow to show some nice properties of the modular commutator
(cf. Victor’s talk yesterday)

Problem:
an axiom does not hold in some 2D gapped systems
(discussed in the second half of this talk)
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A: a finite set of sites defined on a closed 2D manifold

}[=®7{i; dim#; < oo.

IEA

« Assume a triangular spin lattice for the simplici
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Consider a state p on A satisfying the following two “axioms” everywhere.
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TwoO axioms

Consider a state p on A satisfying the following two “axioms” everywhere.

S(4), = —trpslogps  S(AIB), = S(AB), — S(B),

Axiom A0 D Axiom A1
O u=0(1) 0(1)
S(A|B), + S(A), = 0. S(A|B), + S(A|C), = 0.

We call such p a reference state.
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» Proven for 1D gapped systems [Hastings, ‘07].

> Proven for 2D systems under various additional assumptions
[Masanes ‘09], [Beaudrap, Osborne, Eisert, '10], [Anshu, Arad, Gosset, '21],--

- . _ o y: topological entanglement
Observations: 5(X), = a|dX| —y + 0(1) ertropy
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Two axioms and area law

Axiom AO

S(AIB), +S(4), = 0

S(X)p = a|oX| -y

no o(1) correction s

D Axiom AT
@ S(AIB), + S(A|C), = 0
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Information convex set

For a region Q c A, we define Q. as a “thickened” region by a thickness u = 0(1).

(Q,) = {0Q+ | o, = pp V b:u — ball C Q+}

states that are indistinguishable from p on any

ball c Q.
‘ Tracing out Q. \ Q

Information convex set [Kim, 15][Shi, KK, Kim ‘20]:

2(Q) ={oq = Tro,\a0q, | 00, €2(Q}
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Isomorphism theorem

How does the structure of X(Q) depend on Q7

Theorem (informal)

If Q° and Q! are connected by /ocal deformations L
{Q'},there is a bijective CPTP-map @

(I){Qt}: >(QY) - =(hH)

@ @@

« The isomorphism preserves the entropy difference

S(o) — S(w) = S(®(0)) — S(P(w)) Vp,0 €Z(Q)
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Axiom Al and qguantum Markov states

Axiom Al

S(A|IB), + S(A|C), = 0

<

‘ I(A:D|B), =I(A:D|C), =0

PaBps Pacp are QMS
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Two compatible quantum Markov states can be “merged” as a longer QMS !

PABC
(e —)

o0 0
Opcp

Merging lemma [KK, Furrer, Murao ‘16][Shi, KK, Kim ‘20]:
Consider a set of states § = {p5.-} and op-p such that pg- = o, and
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Proof sketch (Isomorphism theorem)

:I1> pecp- the reference state

A1l implies 1(4: C|B), = I(B: D|C), = 0.

m — dTapcp {TABC = O4BC

Tepcp — PBCD

— ++ > Tupcp€ Z(QD)
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Structure of Z(Q) : disk

The structure of 2(Q) only depends on the topology of Q (if not winding).

[Kim, ‘15]: For any disk-like region Q, 2(Q) = {pq}.

Only the reference state is allowed.
(cf. TQO condition[Bravyi, Hastings ‘11]...)
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Structure of 2(Q): annulus

The structure of 2(Q) only depends on the topology of Q (if not winding).

Theorem
If Q is an annulus,

oq = 69 PaPo,  Voq € Z(Q). @ ©

a

Each pg is some state independent of agj.

We define the labels of the extreme points £ = {a,b,c ...} as the anyon charges.

> Intuitively, each pg corresponds to the reduced state of an excited state with a fixed
charge pair.

> The reference state pg is an extreme point, defined as the “vacuum” pd= pq € {pa}.
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Structure of Z(Q): 2-hole disk

To define fusion rules, we consider a 2-hole disk Q.

If Qis a 2-hole disk, subregions B4, B,,C are annuli.

¥, (Q) = {af{"b'c)} c ().

,b,c), ,b, ,b, ,b,
o5 o) = pf, o) = ph 07 = .
Theorem
Xgp () = a state space on a finite-dim. Hilbert space. =: cfb

We define the fusion multiplicity by N§, = dimV;, axb= z N{yc
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In the anyon theory, the fusion multiplicities N, must satisfy the following
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1. NS, = N§,: commutativity of fusion rules
2. Ngy = 841 Vacuum
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4. NS, = N&;:: charge-anticharge duality
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Consistency with UMTC

In the anyon theory, the fusion multiplicities N, must satisfy the following
rules.

1. NS, = N§,: commutativity of fusion rules
2. Ngy = 841 Vacuum
3. N}, = 8,5 anticharge

4. NS, = N&;:: charge-anticharge duality

5 YiNL,NE =% . NEN] : associativity

Theorem

NS, in our definition satisfies all the properties.
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How to prove axioms of UMTC (sketch)

EX.) N(i]_: Sa,c

Consider a 2-hole disk with (a, 1, ¢).

Ug(za'l'C) € X5, (Q)

One can merge the vacuum hole with a disk D.
Q' =QuUD

géa'l'c),pD - Tq  Tq €Z(Q") C

Q' is an annulus and 7o, must be in a —sector.

Tq) = Pgr = € = a.
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The value of TEE In entanglement bootstrap

The area law states that

S(A), = al|oA| —v.

y: topological entanglement entropy (TEE)
[Kitaev, Preskill, '06] [Levin, Wen ‘06]

What's the value of y?

Stopo = S(AB), + S(BC), + S(CA), — S(A), — S(B),, — S(C),, — S(ABC),

oy
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The value of TEE In entanglement bootstrap

Stopo =Y Stopo = 2y
[Kitaev Preskill ‘06][Levin Wen ‘06]
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The value of TEE iIn entfanglement booftstrap

Stopo =Y Stopo = 2y
[Kitaev Preskill ‘06][Levin Wen ‘06]

quantum dimension

Yy = lOgD, D = \/ZaEL dczl . dadb — ENcibdc' da € RZl

CEL

Theorem

Stopo = logD for KP partition, Si,p, = logD* for LW partition.
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Chiral central charge from the bulk ?

[Shi, Kim, Kato, Albert, ‘22]

Modular commutator :
J(4, B, C)p =1 Tr(papcllogpag, logppcl) o
J(A,B,C),« = —=J(A,B,C), Chirlity!
Entanglement bootstrap assumption implies
1. The modular Hamiltonian H™°4 :=—Inp is local.

2. J(A,B,C), is a topological invariant (independent of the details of the shape).



Chiral central charge from the bulk ?

[Shi, Kim, Kato, Albert, ‘22]

Modular commutator :
J(4, B, C)p =1 Tr(papcllogpag, logppcl) o
J(A,B,C),« = —=J(A,B,C), Chirlity!
Entanglement bootstrap assumption implies
1. The modular Hamiltonian H™°4 :=—Inp is local.

2. J(A,B,C), is a topological invariant (independent of the details of the shape).

Conjecture: For 2D gapped ground states, of Kane & Fisher

I = —=c_T?

A

§C_.
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Numerical test of the conjecture

Discretized v =% bosonic Laughlin state [Nielsen, Cirac, Sierra, ‘12]

N
WV, (5)) = Y clsDlsy o sa) ) =50 | [on = za)e™m

{s;} n<m

o

This statehasc_ =1 - %c_ ~ 1.047

Calculate j(4, B, (), and extrapolate N — o« value.

1.0 1

Up to N = 26, this method provides

0.9 14

0.8 1

— 103 e J(A,B,C), ~ 1.054.
" JIN)
The conjectured formula also holds for free fermion

®
...
0.4 - L)

models (p+ip SC). [Fuji, private communication]
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Axiom AO D Axiom Al
S u=0(1) 0(1)
S(AIB), + S(A), =0 S(AIB), + S(A|C), =0

Problem: Al is not true in some cases (even approximately)!
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Spurious TEE

[Bravyi ‘08]:
There exists a ground state which is not topo. ordered (D = 1), but
Stopo = I1(A: C|B), > 0 for particular ABC.

Ex) 1D cluster state embedded in a 2D lattice
(1D Z, x Z, SPT phase)

spurious topological entanglement entropy
S5X), =aloX| -y —c+o(1)

[Williamson, Dua, Cheng, ‘19]:
homogeneous 2D model in subsystem SPT phases (2D cluster state)
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Subsystem Symmetry-Protected Topological phase

Symmetry-Protected Topological (SPT) phase

« Ground state is unique and constructed by a const.-depth circuit (no topo. order)
« Ground state cannot be constructed in const.-depth by a symmetry respecting circuit

Subsystem symmetry

generators of the symmetry act on lower-dimensional subsystems (lines, planes, fractals)
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Subsystem Symmetry-Protected Topological phase

Subsystem SPT = SPT phases under subsystem symmetries

1D SPT
- /

“weak” subsystem SPT = a pile of lower-dimensional SPT phases

“strong” subsystem SPT # a pile of lower-dimensional SPT phases

\ex) 2D cluster state:
trivial as a 2D SPT (global symmetry) but non-trivial as a 2D subsystem SPT

Bravyi’s example shows
weak subsystem SPT => spurious TEE

[Zou, Haah ‘16] [Devakul, Williamson, You, ‘18] [Williamson, Dua, Cheng ‘19]

strong subsystem SPT => spurious TEE Converse?
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X

\/

\/

[Devakul, Williamson, You, ‘18]
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SSPT vs spurious TEE

2D subsystem SPT X

(strong or weak along
the cut)

[Devakul, Williamson, You, ‘18]
the boundary MPS is in a non-trivial ¢, x G, 1D SPT phase

\ / \/ \ [/ \ [/ \ /
- T =T =TT =T —

Spurious TEE occurs [Zou, Haah ‘18]
S5(X), = aldX| +c+0(1)
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Stabilizer boundary states

Consider an isometric MPS |y,,) at the boundary

\ / B E
~ A C V:AC - BE
— T — = V=1 ]
1
|¢d>:\/_azi|ii>

Theorem [Kato, Brandao, ‘19]
If |y,,) is a stabilizer state, then

|Y,) is in @ non-trivial G; X G, 1D SPT phase < spurious TEE >0

find the symmetry from given |¢™) with spurious TEE



MPS in a 1D SPT phase

G:G]_XGZ

U(g1)
\ [/ \ [/
=T — = V(g1 — T — VT(91)
U(9g2)
\ [/ \ [/
—T — = W(@)— T — Wi(g)

3(91,92) € G, [V(g1),W(g2)] # 0.
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\ il DA
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Symmetry condition as logical operators

\ / B E B C E C
4 | c | |
| T L — 1% — \8 \80
A A
U(91) U(g1) ®V(g1)
\J \ | |
T — =Vg)—T —Viq) & \5 = \‘9
V(g1)

Point: U(g,) ® V(g,) is a tensor-product logical operator of V(g,)
acting on the correctable algebra of E.
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€ preserves all information in subalgebra A



Correctable algebra

Operator-Algebra Quantum Error Correction [Beny, Kempf, Kribs, ‘07]

. For a C*-algebra A c B(#), a CPTP-map & is correctable if i
' there exists a CPTP-map R s.t., |
i X = (RoE)T(X),VX € A, Vp. i

€ preserves all information in subalgebra A

Correctable algebra A.: the maximal subalgebra such that € is correctable.
Ac = (Alg{ESE,}), €)= z E, E].
a

“Maximum information” exactly preserved by &
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Spurious TEE>0 => non-trivial OAQEC

B E B C E C
4 L | |/

Define 4 correctable algebras
v = £ e

| | ABC, AB, BEC BE c B(H,)
A A

[Pastawski, Preskill, ‘17]
Complementarity recovery condition: Agc = Ag (satisfied for stabilizer states)

N qu — (BEC), , BE — (cABC)’
Simply denote (AZ¢, BES) by (A, B)
Complementarity recovery condition + constant spurious TEE> 0

- ABC = A 2B = AP,
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Theorem [Kato, Brandao, ‘19]
If [Y™)is a stabilizer state, then

|¥™)is in a non-trivial G; X G, 1D SPT phase < spurious TEE >0

C

£

|

A

Stabilizer states: Alg(Ggc) = A, Alg(Cg) = B’
Ggc: The set of tensor product logical unitary operators on BC

Cg: The logical unitary operators on B

Ggc/Cg IS a finite group (= Eastin-Knill theorem)

G = Gpc/Cp



Proof sketch (2/3)

Theorem [Kato, Brandao, ‘19]
If [Y™)is a stabilizer state, then

|¥™)is in a non-trivial G; X G, 1D SPT phase < spurious TEE >0

7 2 Ggc/Cg is a finite group




Proof sketch (2/3)

Theorem [Kato, Brandao, ‘19]
If [Y™)is a stabilizer state, then

|¥™)is in a non-trivial G; X G, 1D SPT phase < spurious TEE >0

7 2 Ggc/Cg is a finite group

A U(g1|) ® V(g1) |
E = ‘
\ V(g1)




Proof sketch (2/3)

Theorem [Kato, Brandao, ‘19]
If [Y™)is a stabilizer state, then

|¥™)is in a non-trivial G; X G, 1D SPT phase < spurious TEE >0

fT 7 Ggc/Cg is a finite group

A U(g1|) ® V(g1) |
E = \
\ V(g1)

&

one can show V(g,) » V(g,) is a permutation in G;.



Proof sketch (2/3)

Theorem [Kato, Brandao, ‘19]
If [Y™)is a stabilizer state, then

|¥™)is in a non-trivial G; X G, 1D SPT phase < spurious TEE >0

fT 7 Ggc/Cg is a finite group

\ Up..n(g91) ®V(g1)

A U(g1|) ® V(g1) |g
=T

|74
(91) V(g:)

one can show V(g,) » V(g,) is a permutation in G;.
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Theorem [Kato, Brandao, ‘19]
If [Y™)is a stabilizer state, then

|¥™)is in a non-trivial G; X G, 1D SPT phase < spurious TEE >0

b L Gec/Cg is also a finite group Spurious TEE>0
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=T — = Vg)—=T — V(g

V(g1) € A, W(g,) €B

U(g2)
\ / \ |/
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Theorem [Kato, Brandao, ‘19]

If [Y™)is a stabilizer state, then

E

|¥™)is in a non-trivial G; X G, 1D SPT phase < spurious TEE >0

¢ Ggc/Cr is also a finite group

gC

|

A

—

U(g91)

\ /

T

U(g2)

\/

V(g1) —

— VT(91)

W(g2)—

— W+(92)

Spurious TEE>O0

G-
APC = A 2B = (A")
V(g1) € A, W(g,) €B
G-

3(91,92) € G,[V(g91), W(g2)] # 0.

non-trivial G; x G, 1D SPT |}
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Q. Is there any 1D MPS which is not in any G, x G, SPT but has non-zero
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Recall that
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\
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Beyond stabllizers

Q. Is there any 1D MPS which is not in any G, x G, SPT but has non-zero
spurious TEE?

Recall that
U(91) U(g) ®VT(g1)
\ / \ / | |
—T — = Vg)—T —Vi(g) & 3 = 3

| |

V(g)"

Find non-trivial OAQEC without any tensor-product logical operator
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Candidate: perfect tensor state

\

/

T

\\ //c?

:P

J:Z

P = 5-qubit code[[5,1,3]]

« Tensor product logical operators = Pauli operators

P: any Pauli

\\ //

P_

:P
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Candidate: perfect tensor state

\ [/ \\ //c
—T - = — P L

P = 5-qubit code[[5,1,3]]

« Tensor product logical operators = Pauli operators

PP PP
P: any Pauli \ // \\ // \\ //

p—P — = —P —P = —P —p

Corresponding MPS is a stabilizer SPT state
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U: non-Clifford, not diagonal in X or Z-basis

B E B E
Y foe Ao f
— P U= P -
L
B E °
\ J




Candidate: perfect tensor state

U: non-Clifford, not diagonal in X or Z-basis

B E B E
P: any Paulii"\'\'“'/'/‘““"““\‘\“"/'/";
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U: non-Clifford, not diagonal in X or Z-basis

no longer a Pauli
B E B E PQP
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PHP HU— P —= — P uUPU— P

___________________________________
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U: non-Clifford, not diagonal in X or Z-basis

B . B . p ® p no longer a Pauli
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___________________________________
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Candidate: perfect tensor state

U: non-Clifford, not diagonal in X or Z-basis

B . B . p ® p no longer a Pauli
p: any Paulip W\ \\ // | \ //

1P P nu iP—= P QuUTPU T P

___________________________________

’ T
B E ° PP
Vo \ // /]

] TU B = — :}) — U “]) not tensor-product

on BC
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Open problems

Entanglement bootstrap
« What happen if the axioms are approximately satisfied?

« More general axiom replacing axiom Al1?

« Higher-order central charge?

Spurious TEE
« What is the exact condition for the spurious TEE ?

« How can we distinguish different correlations?
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