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Complexity of many-body systems

Many-body systems in nature have local interactions.
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Interactions between particles
(qubits, bosons, fermions, ....)

How hard is it to compute their physical properties?
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Ground energy problems are intractable optimization problems

Computing the ground energy of classical locally interacting systems is an NP-
hard (intractable) optimization problem

e.g. 3-SAT H = 2 C(z)|z){z] C(z) = Number of clauses violated by z
z€{0,1}"

e.g. 2D Ising with H = z ]ijZiZj + h;Z; 1 |
magnetic field .
[Barahona 1982] (L.))€E(G) I
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Quantum Cook-Levin theorem (informal):

Computing the ground energy of an n particle quantum system
with local interactions to precision 1/poly(n) is an
Intractable quantum optimization problem.
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The local Hamiltonian problem

Input: An n-qubit local Hamiltonian H, a number a €R, a precision € = 1/n“

Output: ( ) The ground energy of His < a a+ e

(NO) The ground energy of His>a + €
a

(promised one of these conditions is satisfied)
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The local Hamiltonian problem

Input: An n-qubit local Hamiltonian H, a number a €R, a precision € = 1/n“

Output: ( ) The ground energy of His < a a+ e

(NO) The ground energy of His>a + €
a

(promised one of these conditions is satisfied)

Theorem (Kitaev 1999)
The local Hamiltonian problem is QMA-complete.<—

\

The local Hamiltonian problem remains QMA-complete even for systems
with 2-qubit interactions
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More examples of systems with QMA-complete ground energy problems:

n 2-local Hamiltonian on a 2D grid
Lj [Oliveira Terhal 2008]
Hiiv1 2-local Hamiltonian on a line with qudits
. . . . . [Aharonov et. al 2009] [Gottesman Irani 2009]
B; / ® Hubbard model on a 2D grid with site-dependent magnetic field
@ [Schuch Verstraete 2009].
@
@ @

There is also an important class of ground energy problems associated with stoquastic
Hamiltonians that lies in between NP and QMA.... [Bravyi Divincenzo Oliveira Terhal 2006]
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Three flavours of intractable optimization problems

H = 2 h(i, j)

Ising model

h(i,j) = a;jZiZ;

LH problem

NP-complete

\
>
[ransverse-field

Ising model
\
s

h(i,j) = a;jXiX; — viZi — VjZ;

StogMA-complete

[Bravyi, Hastings 2014]

XY model

A

h(i,j) = a;;(X;X; + V;Y))

QMA-complete
[Cubitt Montanaro 2013]

(Stoquastic)

(Quantum)



Three flavours of intractable optimization problems

H = 2 h(i, j)

i LH problem
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- .
leing model 1D = ayX ~1Zi=1Z; | | (S000A50C)
N
R h(i,j) = a;;(XiX; + YY) [%ﬁl&giﬂf:gm] (Quantum)

A

These examples illustrate all nontrivial possibilities within the framework of [Cubitt
Montanaro 2013])



Three flavours of intractable optimization problems

H = 2 h(i, j)

i LH problem
: Ising model hi,j) = @i Z:Z; NP-complete
- .
leing model 1D = ayX ~1Zi=1Z; | | (S000A50C)
N
R h(i,j) = a;;(XiX; + YY) %ﬁﬁfﬂﬂfﬁm] (Quantum)

A

These examples illustrate all nontrivial possibilities within the framework of [Cubitt
Montanaro 2013])

There are also some very special examples where local Hamiltonian problems are easy.



Beyond ground energy

How hard is it to compute physical properties in thermal equilibrium?

T'[K] A
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(disordered)
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ordered

QCP
0 10 20 30 40 50 60

Transverse magnetic field [kOe]

Figure 2. Magnetic phase diagram of LiHoF, (after [5]). The ordered phase breaks
a Z» symmetry of the Hamiltonian and is bounded by a line of finite-temperature
phase transitions. This line terminates in the quantum critical point (QCP), where
ferromagnetic order is destroyed solely by quantum fluctuations.

Vojta M. Quantum phase transitions. Reports on Progress in Physics. 2003 Nov 3;66(12):2069.
Bitko, D., T. F. Rosenbaum, and G. Aeppli. PRL 77.5 (1996): 940.



Beyond ground energy

How hard is it to compute physical properties in thermal equilibrium?
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Beyond ground energy

How hard is it to compute physical properties in thermal equilibrium?

t s N
7 — Tr[e‘ﬁH] Partition function
N J
- N
F = —B tog(2) Free energy
N J
- N
(0) = Tr[0e~FH] Thermal expected values
YA




Complexity of partition functions
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Complexity of partition functions

7 — Tr[e‘ﬁH] Partition function

Exact computation as hard as #P
e.g., can count the number of solutions to a 3-SAT formula

We are interested in relative-error approximation...
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Defines a robust class of computational problems that are equivalent under
polynomial-time reductions.
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Why relative-error approximation?

@ _ R
QPF problem: Given H, and § > 0, compute an estimate Z satisfying

(1—-8)Tr[e PH1 <7 < (1 + 6)Tr[e FH]
" Y,

Defines a robust class of computational problems that are equivalent under
polynomial-time reductions.

WIOG may take precision parameter to be a constant. In particular

21 § = 0.25 is equivalent to the general case with § = LI
poly(n)

Why? Partition function of L noninteracting copies of H is (Tr[e=#"])"
Compute this to constant error and then take the Lth root.

memerarsenaliy
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QPF problem: Given H,3 and 6 > 0, compute an estimate Z satisfying
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polynomial-time reductions.



Why relative-error approximation?

g _ N
QPF problem: Given H, and § > 0, compute an estimate Z satisfying

(1—-8)Tr[e PH]1 <7 < (1 + 8)Tr[e PH]
: /

Defines a robust class of computational problems that are equivalent under
polynomial-time reductions.

General case Is equivalent to special case with 2-local Hamiltonians

i T.S. Cubitt, A. Montanaro, and S. Piddock, “Universal qguantum Hamiltonians” PNAS 115, no.
38, pp. 9497-9502, 2018.
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Why relative-error approximation?

/ ~
QPF problem: Given H,3 and 6 > 0, compute an estimate Z satisfying

(1-8)Tr[e PH] < Z < (1 + 8)Tr[e PH]

-

Defines a robust class of computational problems that are equivalent under
polynomial-time reductions.

Estimating thermal mean values (additive error)

Estimating density of states of a local Hamiltonian (relative error)

Quantum approximate counting



Why relative-error approximation?

g _
QPF problem: Given H, and § > 0, compute an estimate Z satisfying

(1—8)Tr[e~PH] < 7 < (1 + 8)Tr[e FH]

N

QPF is polynomial time equivalent to:

@stimating thermal mean values (additive error)
Given H, 3, € > 0, and a Pauli operator P, compute an estimate u satisfying

Tr[Pe=FH|
- Z

U <€

o
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-

-

QPF problem: Given H, and § > 0, compute an estimate Z satisfying

(1—-8)Tr[e PH1 <7 < (1 + 6)Tr[e FH]
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Why relative-error approximation?

g _
QPF problem: Given H, and § > 0, compute an estimate Z satisfying

(1—8)Tr[e~PH] < 7 < (1 + 8)Tr[e FH]

"

QPF is polynomial time equivalent to:

Let m, ) be the number of eigenvalues of H in an interval [a, b]

e
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Why relative-error approximation?

/ ~
QPF problem: Given H, and § > 0, compute an estimate Z satisfying

(1—-8)Tr[e PH1 <7 < (1 + 6)Tr[e FH]

-

Let m, ) be the number of eigenvalues of H in an interval [a, b]

/Estimating density of states (relative error) )

Given H and two thresholds a < b and precision parameters €, § output
an estimate m satisfying

(1- 5)m[a,b]3 m<(1+ 5)m[a—e,b+e]

" v

e
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g _ N
QPF problem: Given H, and § > 0, compute an estimate Z satisfying

(1—-8)Tr[e PH]1 <7 < (1 + 8)Tr[e PH]
. /

Its complexity is largely a mystery...

QMA-hard

At least as hard as the local Hamiltonian problem (compute free energy with g =
0(ne™1) is enough)

Not harder than #P
This captures the complexity of exactly computing the partition function.

...which is directly related to our lack of understanding of guantum approximate
counting more generally...



Counting : classical, guantum, exact, approximate
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Classical counting problems
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Classical counting problems

Consider a classical (NP) verifier circuit

y € {0’1} Accept if
output bit
isl

o OO

gu—

oz €{0,1}"

“Wwitness”

—

- D
#P is the class of problems (functions) of the form:

Given a verifier circuit, count the number of accepting witnesses.
\ Y

Can also think of #P as describing those mathematical quantities which admit a
combinatorial interpretation: counting a set where membership is efficiently
checkable.
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Consider a classical (NP) verifier circuit

y € {0’1} Accept if
output bit
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- D
#P is the class of problems (functions) of the form:

Given a verifier circuit, count the number of accepting witnesses.
\ Y

Examples:
Permanent of a {0,1} matrix (counts perfect matchings)
Output probability of a randomized classical circuit (counts computational paths)




Classical counting problems

Consider a classical (NP) verifier circuit

0 y € {()’1} Accept if
0 output bit
0 isl
Input
“witness” < € {0,1}”-
- R
#P is the class of problems (functions) of the form:
Given a verifier circuit, count the number of accepting witnesses.
N Y

A related class gapP captures certain “signed” counting problems...
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Consider a classical (NP) verifier circuit
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Classical counting problems

Consider a classical (NP) verifier circuit

is1

o OO

gu—

oz €{0,1}"

“Wwitness”

—

y € {0’1} Accept if

output bit

p
#P is the class of problems (functions) of the form:

Given a verifier circuit, count the number of accepting witnesses.
\_ (Example: output probability of randomized classical circuit)

-

gapP is the class of functions that can be expressed as the difference of two
functions in #P. (Example: output probability of qguantum circuit)

-

AN
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#P versus gapP

x o om Computing a #P function is just as hard as computing a gapP function.
NS L . ,
Both tasks are as powerful as the polynomial hierarchy [Toda’s theorem].
z;/ \Hg So why do we care about the difference between #P and gapP?
N
NP =X / 2\HP_ NP

Computer Science perspective:
There Is a vast difference in the complexity of relative-error
approximation...
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#P versus gapP

Functions in gapP can be just as hard to approximate as they are to compute exactly.
e.g, output probabilities of quantum circuits are #P-hard to approximate

Functions in #P are vastly easier* to approximate! *unless PH collapses

Stockmeyer’s approximate counting theorem [Stockmeyer 1983]
All functions in #P can be approximated by an efficient randomized algorithm with access to an NP

oracle.

Proof idea:
Random function If 2% < |S| then there is a

collision.
l Conversely if 2% > |S| then
there is no collision w.h.p.

You can find a collision by
asking the NP oracle.

S c{0,1}"

Membership can be verified efficiently

Goal: approximate |S]|



Classical counting

Function contained in...

#P

Approximation task upper bound...

FBPPN?

Signed counting

gapP

#P-hard



Quantum counting problems [Brown Flammia Schuch 2010][Shi Zhang 2009]
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Quantum Counting problems [Brown Flammia Schuch 2010][Shi Zhang 2009]

Consider a guantum (QMA) verifier circuit

Accept/reject

0)8na

gu—

Input |l/))..

“Wwithess”

—

Does it make sense to count the number of accepting withesses?

Easy special case: If circuit implements a projective measurement. Then we
can count the rank of the projector associated with “accept” outcome.
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More generally: Look at measurement operator A corresponding to accept outcome.



Quantum Counting problems [Brown Flammia Schuch 2010][Shi Zhang 2009]

Consider a guantum (QMA) verifier circuit

| O)®na Accept/reject
- Pr [|Y)is accepted] = (Y |A|Y)
Input |l/)> +
“witness” R A={Q(0")CT[IN1|CU & [0)™=)

—

Does it make sense to count the number of accepting withesses?

More generally: Look at measurement operator A corresponding to accept outcome.
Count the dimension of the vector space spanned by its eigenvectors with
eigenvalues close to 1.
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Quantum Counting problems [Brown Flammia Schuch 2010][Shi Zhang 2009]

Consider a guantum (QMA) verifier circuit

| O)®na Accept/reject
- Pr [|Y)is accepted] = (Y |A|Y)
Input |l/)>
“witness” B A= (1 Q(0"|CT1K1|CU ® |0)"a)

—

Issue: Awitness may be accepted with probability p € (0,1). How do we decide which
ones to count? Mediocre witnesses

can miscount these

Bad witnesses (don’t count) 1 Good witnesses (count)

AN

p=0 b a p=1
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Consider a guantum (QMA) verifier circuit

| O)®na Accept/reject
- Pr [|Y)is accepted] = (Y |A|Y)
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—

Let N,, be the number of eigenvalues of A with eigenvalue at least .

C#BQP IS the class of problems of the form

Input: verifier circuit, two thresholds 0 < b <a <1
Output: Anumber M suchthat N, < M < N,
N /




Quantum Counting problems [Brown Flammia Schuch 2010][Shi Zhang 2009]

Consider a guantum (QMA) verifier circuit

| O>®na Accept/reject

Pr [|y)is accepted] = (Y|A|)
A= (I ® (0" ])CHINL|CU @ |0)e)

Input

“witness” |1/)>—

—

Let N,, be the number of eigenvalues of A with eigenvalue at least .

/#BQP IS the class of problems of the form A
Input: verifier circuit, two thresholds 0 < b <a <1 -
KOutput: A number M suchthat N, <M < N, p=0 p a p=1 g

Theorem[Brown Flammia Schuch 2010][Shi Zhang 2009]
#BQP functions are polynomial-time equivalent to #P functions.




Quantum approximate counting

/#BQP IS the class of problems of the form

Input: verifier circuit, two thresholds 0 < b <a <1
Output: Anumber M suchthat N, <M < N,

N

/QXC IS the class of problems of the form

Input: verifier circuit, § € (0,1), two thresholds0 < b <a <1
Output: Anumber M such that (1 —§)N, <M < N, (1 + 6)
N
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Possibly controversial statement: QXC is the reason to care about #BQP!



Quantum approximate counting

G#BQP IS the class of problems of the form

Input: verifier circuit, two thresholds 0 < b <a <1
Output: Anumber M suchthat N, <M < N,

-

/QXC IS the class of problems of the form

Input: verifier circuit, § € (0,1), two thresholds0 < b <a <1
Output: Anumber M such that (1 —6)N, < M < Np(1 + 9)
N

Possibly controversial statement: QXC is the reason to care about #BQP!

There is no known quantum version of Stockmeyer approximate counting and so
complexity of QXC is poorly understood
(cf. lack of quantum Valiant Vazirani theorem [Aharonov Ben-Or Brandao Sattath 2008])
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Classical counting #P FBPPNP
Quantum counting #BQP OXC
Signed counting #P-hard
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Function contained in... Approximation task upper bound...
Classical counting #P FBPPNP
Quantum counting #BQP OXC
Signed counting gapP #P-hard

Theorem [Bravyi Chowdhury DG Wocjan 2022]
QPF is QXC-complete.




Function contained in...

Approximation task upper bound...

Classical counting #P FBPPNP
Quantum counting #BQP OXC
Signed counting gapP #P-hard

[Th eorem [Bravyi Chowdhury DG Wocjan 2022]

QPF is QXC-complete.

Proof ideas (to reduce QXC to 2-local QPF):

Marriott-Watrous error reduction for QMA [Marriott Watrous 2005
2-local Circuit-to-Hamiltonian mapping [Kempe Kitaev Regev 2004]
Number of QMA witnesses ~number of low energy states



7 = Tr[e FH]

Exact

Approximate

#P-hard FBPPNP
Classical local Hamiltonian
Z = Tr[e PFH] #P-hard OXC
Quantum local Hamiltonian
Z = Tr[e™'PH] #P-hard #P-hard

Local Hamiltonian,
imaginary temperature




Exact Approximate
Z = Tr[e™P1] #P-hard FBPPNP
Classical local Hamiltonian
7/ = Tr[e_ﬁH] #P-hard QXC
Quantum local Hamiltonian
Z = Tr[e~'FH] #P-hard #P-hard

Local Hamiltonian,
imaginary temperature

Challenging question: how does QXC relate to other known complexity classes?



Exact Approximate
Z = Tr[e™P1] #P-hard FBPPNP
Classical local Hamiltonian
7/ = Tr[e_ﬁH] #P-hard QXC
Quantum local Hamiltonian
Z = Tr[e~'FH] #P-hard #P-hard

Local Hamiltonian,
imaginary temperature

Challenging question: how does QXC relate to other known complexity classes?
Easier: can we find other interesting problems in QXC?...



Kronecker coefficients

Kronecker coefficients = Clebsch-Gordan coefficients for the symmetric group

Recall that irreps of S,, are labeled by partitions of n or equivalently Young diagrams.
For any three partitions u,v, 1 + n, there is a Kronecker coefficient g,,,,; defined as:

a )
Pu X py =D 9uvaiPa

Tensor product of two
\_ irreps Multiplicities y
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Recall that irreps of S,, are labeled by partitions of n or equivalently Young diagrams.
For any three partitions u,v, 1 + n, there is a Kronecker coefficient g,,,,; defined as:

a )
Pu X py =D 9uvaiPa

Tensor product of two
\_ irreps Multiplicities y

Old question: Do the Kronecker coefficients have a combinatorial interpretation?
[Murnaghan 1938] [Stanley 1999]
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Kronecker coefficients = Clebsch-Gordan coefficients for the symmetric group

Recall that irreps of S,, are labeled by partitions of n or equivalently Young diagrams.
For any three partitions u,v, 1 + n, there is a Kronecker coefficient g,,,,; defined as:

a )
Pu X py =D 9uvaiPa

Tensor product of two
\_ irreps Multiplicities y

Old question: Do the Kronecker coefficients have a combinatorial interpretation?
[Murnaghan 1938] [Stanley 1999]

Modern rephrasing: Do the Kronecker coefficients admit a #P formula?

e.g. [Burgisser Ikenmeyer 2008]
[Pak Panova 2014]
[Ikenmeyer Mulmuley Walter 2017]...



Kronecker coefficients

Kronecker coefficients = Clebsch-Gordan coefficients for the symmetric group

Recall that irreps of S,, are labeled by partitions of n or equivalently Young diagrams.
For any three partitions u,v, 1 + n, there is a Kronecker coefficient g,,,,; defined as:

a )
Pu X py =D 9uvaiPa

Tensor product of two
\_ irreps Multiplicities y

Old question: Do the Kronecker coefficients have a combinatorial interpretation?
[Murnaghan 1938] [Stanley 1999]

Modern rephrasing: Do the Kronecker coefficients admit a #P formula?

e.g. [Burgisser Ikenmeyer 2008] They admit a gapP formula
[Pak Panova 2014]



Kronecker coefficients are a guantum counting problem

ﬁ:lal N [Bravyi, Anirban Chowdhury, DG, Vojtech Havlicek, Guanyu Zhu 2022] \
For any u,v, A + n, there is a quantum circuit of size poly(n) that measures a

projector with rank
| du dv dﬂ]g UVA

|
\ Efficiently computable prefactor /




Kronecker coefficients are a quantum counting problem

/Clal N [Bravyi, Anirban Chowdhury, DG, Vojtech Havlicek, Guanyu Zhu 2022]

projector with rank

| du dv dﬂ]g UVA

\ Efficiently computable prefactor

For any u,v, A  n, there is a quantum circuit of size poly(n) that measures a

~

/

In other words: g,,, Is proportional to a #BQP functio

n Alsoin unpub. work by:
[Christandl, Harrow, Walter]
[Kuperberg, Pak, Panova]



Kronecker coefficients are a guantum counting problem

/Clal M [Bravyi, Anirban Chowdhury, DG, Vojtech Havlicek, Guanyu Zhu 2022] \
For any u,v, A + n, there is a quantum circuit of size poly(n) that measures a
projector with rank

| du dv dﬂ]g UVA
|

\ Efficiently computable prefactor /
In other words: Also in unpub. work by:

[Christandl, Harrow, Walter]
[Kuperberg, Pak, Panova]
4 )

Corollary
The problem of approximating g, to within a given relative error is in QXC.

N /




Kronecker coefficients are a guantum counting problem

/Clal M [Bravyi, Anirban Chowdhury, DG, Vojtech Havlicek, Guanyu Zhu 2022] \
For any u,v, A + n, there is a quantum circuit of size poly(n) that measures a
projector with rank

| du dv dﬂ]g UVA
|
\ Efficiently computable prefactor /

Proof sketch

For any representation p of §,, we can define a projective qguantum measurement
with outcomes labeled by partitions A - n :

dj
H/l = F z )(A(g)p(g) Projector for outcome A
. gESn



Kronecker coefficients are a guantum counting problem

/Clal N [Bravyi, Anirban Chowdhury, DG, Vojtech Havlicek, Guanyu Zhu 2022]
For any u,v, A + n, there is a quantum circuit of size poly(n) that measures a

projector with rank
du dv d)l Juva

\ Efficiently computable prefactor

~

/

Proof sketch

For any representation p of §,, we can define a projective qguantum measurement

with outcomes labeled by partitions A - n :

dj
I = F z )(;[(g)p(g) Projector for outcome A
. gESn

This projective measurement can be implemented in time poly(n) on a quantum

computer using Beals’ quantum Fourier transform over the symmetric group.

[Beals 1997] via generalized phase estimation [Harrow 2005]



Kronecker coefficients are a guantum counting problem

élal N [Bravyi, Anirban Chowdhury, DG, Vojtech Havlicek, Guanyu Zhu 2022] \

For any u,v, A + n, there is a quantum circuit of size poly(n) that measures a
projector with rank

I du dv dﬂ]g UVA
\ Efficiently com|!>utable prefactor /

Proof sketch

It is not hard to show that

1
dudydrgyon = Tr(IL,@ T, ® IL,P) P=— g®g®g
N
Defined as on previous slide This projector can also be measured

with p = left regular representation efficiently on a quantum computer



Kronecker coefficients are a guantum counting problem

/Clal M [Bravyi, Anirban Chowdhury, DG, Vojtech Havlicek, Guanyu Zhu 2022] \
For any u,v, A + n, there is a quantum circuit of size poly(n) that measures a
projector with rank

| du dv dﬂ]g UVA
|
\ Efficiently computable prefactor /
Proof sketch
It is not hard to show that
1
d,d,d; g =Tr(1,Q I, @ I, P) P== 2 IR¥IRg

9ESn

The quantum circuit first measures I, ® II,, ® II; and then measures P, and
accepts iff both outcomes are +1.



Row sums of the character table
[Bravyi, Anirban Chowdhury, DG, Vojtech Havlicek, Guanyu Zhu 2022]

There Is a similar story for the row sums of the character table of the symmetric group,
for which a combinatorial representation is also an open question [Stanley 1999]

a )
Ry = z xa ()
J

=)

N

These can also be expressed as multiplicities and can be shown to be
proportional to a #BQP function, and therefore approximable in QXC.



Summary so far

The computational complexity of relative-error approximation of quantum partition
functions or equivalently guantum approximate counting is a fascinating mystery.

Some mathematical quantities that are not known to admit combinatorial interpretations
may in fact be guantum counting problems. In that case the related approximation tasks
are no harder than approximating the partition function of 2-local Hamiltonians.



Can we find efficient algorithms for QPF In special cases?

Mean field theory via convex optimization (but worse approximation guarantee)
Dense Hamiltonians, ground energy problems [Brandao Harrow 2013]

Dense classical Ising partition functions [Risteski 2016]

Dense quantum partition functions [Sergey Bravyi, Anirban Chowdhury, DG, Pawel Wocjan 2022]

Rigorous Monte Carlo methods

Classical ferromagnetic Ising model [Jerrum Sinclair 1993]

Quantum transverse Ising ferromagnet [Bravyi 2014]

Broader class of quantum ferromagnets (e.g. XY model) [Bravyi DG 2017]

High temperature expansion
General local Hamiltonians above a critical temperature [Harrow Mehraban Soleimanifar 2020]



Can we find efficient algorithms for QPF In special cases?

Mean field theory via convex optimization (but worse approximation guarantee)
Dense Hamiltonians, ground energy problems [Brandao Harrow 2013]

Dense classical Ising partition functions [Risteski 2016]

Dense quantum partition functions [Sergey Bravyi, Anirban Chowdhury, DG, Pawel Wocjan 2022]

Rigorous Monte Carlo methods
Classical ferromagnetic Ising model [Jerrum Sinclair 1993]
Quantum transverse Ising ferromagnet [Bravyi 2014]
{Broader class of qguantum ferromagnets (e.g. XY model) [Bravyi DG 2017] }

High temperature expansion
General local Hamiltonians above a critical temperature [Harrow Mehraban Soleimanifar 2020]



Quantum Monte Carlo: a powerful suite of probabilistic classical simulation
algorithms for quantum many-body systems.

Can simulate systems orders of magnitude larger than with exact diagonalization...



What’s the catch?

Quantum Monte Carlo can only be used to study stoquastic Hamiltonians

Stoquastic
i.e., “sign-problem free”

. GlHER  GlH<0 x#y

Examples:



What’s the catch?

Quantum Monte Carlo can only be used to study stoquastic Hamiltonians

[ » J Stoquastic
(x|H|[x) € R (y[H|x) < 0 X=Y L.e., “sign-problem free”
Examples:
p?
Particle in a potential / H = om + V(x)
. . . |"‘_ H=— Ta. Ta)+V(n
Hopping and interacting bosons (a;a; +a;a;) +V(n)
+ <ij>

Quantum annealing Hamiltonians § * \\ H=—-(1-5) z X;+sV (2 )
[



How does it work?
Quantum Monte Carlo is based on a probabilistic representation of the Gibbs state

e PH

= Z(B) = Tr(e FH)
P72

A collection of samples from a certain probability distribution associated with p
are sufficient to evaluate expectation values of observables.



How does it work?
Quantum Monte Carlo is based on a probabilistic representation of the Gibbs state

e PH

= Z(B) = Tr(e FH)
PP

A collection of samples from a certain probability distribution associated with p
are sufficient to evaluate expectation values of observables.

Clever choice of probabilistic representation and sampling method is key.



Can we identify cases where Quantum Monte Carlo is provably efficient?

H = z h(i, j)

1<i<jsn
Approximate Approximate
Ground energy Partition Function
Ferromagnetic o L In BPP
[Ising model M) = —laijlZiZ; Trivial [Jerrum ,Sinclair 1989]
>
Ferromagnetic In BPP In BPP
Transverse-field h(l;]) — _laij |Xin — }/iZi — )/ij [Bravyi 2015] [Bravyi 2015]
Ising model
>
Ferromagnetic .. In BPP In BPP
XY model h(i,j) = —|ai;|(XiX; + YY)

[Bravyi DG 2017]
N

[Bravyi DG 2017]




The Hamiltonians we consider

n

1<J =1

Coefficients must satisfy

|bijl,|cijl, [di | <1 (sets energy scale)

|Cij| < bij (ensures stoquasticity)



The Hamiltonians we consider

n
<j | oi=1
|
0 0 0 _bij_Cij
0 0 Cij_bij 0
0 Cij—bij 0 0
—b;j — cyj 0 0 0

|Cij| < bij (ensures stoquasticity)



The Hamiltonians we consider

i<j | | i=1

|
pi; (VY — XiX;) + qi; (V.Y — X, X)) Pij»qij = 0

n




The Hamiltonians we consider

n
H = Z —bl]XlX] + Cl]YlY] + Z dl(I + Zl)

1<J =1
Special cases:
di=0 ¢;=0 Classical Ferromagnetic Ising model
c;j=0 Ferromagnetic transverse-field Ising model
bij=1 ¢y ==1 " Eerromagnetic XY model

by =1 ¢j=1 (hame?)



Efficient algorithm for the partition function

ﬂl’ heorem [Bravyi DG 2017]
There exists a classical randomized algorithm which, given H, 8, and a precision

~

parameter ¢ € (0,1) outputs an estimate satisfying Z =€ Z(f) with high probability.

The runtime of the algorithm is poly(n, B,e™1)

"

/
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ﬂl’ heorem [Bravyi DG 2017] \
There exists a classical randomized algorithm which, given H, 8, and a precision
parameter ¢ € (0,1) outputs an estimate satisfying Z =€ Z(f) with high probability.

The runtime of the algorithm is poly(n, B,e™1)

" /

As a corollary we obtain an efficient algorithm to approximate the free energy, the
ground energy, and thermal expected values to a given additive error.
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ﬁl’ heorem [Bravyi DG 2017] \
There exists a classical randomized algorithm which, given H, 8, and a precision
parameter ¢ € (0,1) outputs an estimate satisfying Z =€ Z(f) with high probability.

The runtime of the algorithm is poly(n, 5,71 ) = 0(n*>(1 + p*)e=2%).

" /

As a corollary we obtain an efficient algorithm to approximate the free energy, the
ground energy, and thermal expected values to a given additive error.

The algorithm is not practical.



Efficient algorithm for the partition function

ﬁl’ heorem [Bravyi DG 2017] \
There exists a classical randomized algorithm which, given H, 8, and a precision
parameter ¢ € (0,1) outputs an estimate satisfying Z =€ Z(f) with high probability.

The runtime of the algorithm is poly(n, 5,71 ) = 0(n*>(1 + p*)e=2%).

" /

As a corollary we obtain an efficient algorithm to approximate the free energy, the
ground energy, and thermal expected values to a given additive error.

The algorithm is not practical.

The proof is based on a reduction to counting perfect matchings...



A perfect matching of a graph ¢ = (V,E) is a subset of edges M € E such that
every vertex Is incident to exactly one edge in M

Example:




Now suppose the graph has edge weights {w,}.cg. Each perfect matching M is
assigned weight
| v

eeEM
Perfect matching sum:

[PerfMatch(G) = z 1_[ W, }

Perfect matchings M eeM




Now suppose the graph has edge weights {w,}.cg. Each perfect matching M is
assigned weight
| ]

eeEM
Perfect matching sum:

[PerfMatch(G) = z 1_[ W, }

Perfect matchings M eeM

Example: a
O @

PerfMatch(G) =
d b erfMatch(G) = ac + bd




A nearly perfect matching of a graph ¢ = (V,E) is a subset of edges M € E such

that every vertex is incident to exactly one edge in M, except for 2 vertices which
are untouched.

Nearly perfect matching sum:

N
NearPerfMatch(G) = z 1_[ W,

Nearly eeEM
\_ Perfect matchings M )

-




Suppose G is agraph with nonnegative edge weights.

Exactly compute

e-approximation

PerfMatch(G) to PerfMatch(G)
. In P InP
Planar grap hs: Fisher, Kasteleyn, Temperley algorithm
Bipartite graphs: #P-hard In BPP

(permanent of
nonnegative matrix)

[Valiant 1979]

[Jerrum, Sinclair, Vigoda 2004]

General graphs:

#P-hard

[Jerrum Sinclair 1989]
Algorithm with runtime

poly(|V], & R)

_ NearPerfMatch(G)
~ PerfMatch(G)




These partition functions reduce to perfect matchings

Theorem [Bravyi DG 2017]

There Is an (efficiently computable) graph ¢ with positive edge weights, such
that

Z(B) =€ PerfMatch(G)
and

NearPerfMatch(G)
K PerfMatch(G)

= O(poly(B,n,e™1))

We then use [Jerrum, Sinclair 1989] which gives an efficient algorithm for
approximating the perfect matching sum.



These partition functions reduce to perfect matchings

Theorem [Bravyi DG 2017]
There Is an (efficiently computable) graph ¢ with positive edge weights, such
that

Z(B) =€ PerfMatch(G)
and

NearPerfMatch(G) 0(poly(B,n, e=1))
\ PerfMatch(G) — PP /

We then use [Jerrum, Sinclair 1989] which gives an efficient algorithm for
approximating the perfect matching sum.

The spin model can be defined on any graph! The graph G obtained from the reduction
always has the desired feature that makes [Jerrum Sinclair 1989] efficient.



Proof sketch:

Start with a Trotter-Suzuki style approximation

Tr(e‘BH) ~¢ Tr(G; ... G, Gq) J = poly(n,B,e™ 1)
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Tr(e P") =€ Tr(G; ... G,G;) J = poly(n, B,¢™1)

Each G satisfies

Gj — e—Sh+0(SZ) s> 0

where h Is one of the terms In the Hamiltonian



Proof sketch:
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Tr(e‘BH) ~¢ Tr(G; ... G, Gq) J = poly(n,B,e™ 1)

Each G satisfies

Gj — e—sh+0(sz) s> 0

where h Is one of the terms In the Hamiltonian

h =YY, — XX, or  h=-=YY —X;X; or h==x+U+1Z;)



Proof sketch:

Start with a Trotter-Suzuki style approximation

Tr(e‘BH) ~¢ Tr(G; ... G, Gq) J = poly(n,B,e™ 1)

Each G satisfies

Gj — e—sh+0(52) s> 0

where h Is one of the terms In the Hamiltonian

h=YY,—X;X;, o h=-YY,—-XX, o h=zxU+Z)

The resulting G; are very special gates...



Proof sketch:

Start with a Trotter-Suzuki style approximation

Tr(e P") =€ Tr(G; ... G,G;) J = poly(n, B,¢™1)

Each ¢, is from the gate set containing 1-qubit gates

0 1 t 0 t>0

(1 o) (o 1)
and two qubit gates “Matchgates”
>

1+t2 0 0 t

0 1 0 0 t>0
0 0 1 0
0 0 1

t




Let I' be a a weighted graph with special input and output edges (k of each, say)

We say I' implements a k-qubit operator G if

ny = remove input edges with x; = 0 and output edges

with y; = 0. Require that a perfect matching includes the
remaining external edges.

[ (y|G|x) = PerfMatch(ny)J

Example
_____ -@ o-—-—-—=—==
t t
_____ . ¢o---=-=-

Input edges Output edges



Let I' be a a weighted graph with special input and output edges (k of each, say)

We say I' implements a k-qubit operator G if

ny = remove input edges with x; = 0 and output edges

with y; = 0. Require that a perfect matching includes the
remaining external edges.

[ (y|G|x) = PerfMatch(ny)J

Example
_____ P ®— — — — — x=00,y=11
o | T
_____ @ & — - ———

Input edges Output edges (11/6]00) = ¢



Let I' be a a weighted graph with special input and output edges (k of each, say)

We say I' implements a k-qubit operator G if

ny = remove input edges with x; = 0 and output edges

with y; = 0. Require that a perfect matching includes the
remaining external edges.

[ (y|G|x) = PerfMatch(ny)J

Example
_____ _‘ ._____
1+t2 0 0 ¢t
_ 0 1 0 O
t t G = 0 O 1 0
_____ o o - — - t 0 0 1

Input edges Output edges



Matchgates compose nicely

_____ @_____ Implements a 2 qubit gate G
@ @ Implements G*




Matchgates compose nicely

_____ @_____ Implements a 2 qubit gate G

@ Implements 612623



Matchgates compose nicely

_____ @_____ Implements a 2 qubit gate G

Implements Tr(G)




Proof sketch:

Start with a Trotter-Suzuki style approximation

Tr(e P") =€ Tr(G; ... G,G;) J = poly(n, B,¢™1)

Each G, is a matchgate.
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Each G, is a matchgate. and n output edges
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Each G, is a matchgate. and n output edges

Trace is a matchgate with no external edges,
l.e., a perfect matching sum.
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Each G, is a matchgate. and n output edges

Trace is a matchgate with no external edges,
l.e., a perfect matching sum.
(nonplanar and nonbipartite)



Proof sketch:

Start with a Trotter-Suzuki style approximation

TT(B_BH) ~€ TI‘(\G] G2G1)) ] — po]y(n’ﬁ, 6_1)
|

Matchgate implementable with n input edges
Each G, is a matchgate. and n output edges

Trace is a matchgate with no external edges,
l.e., a perfect matching sum.
(nonplanar and nonbipartite)

This gives first part of theorem:

Z(B) =€ PerfMatch(G)



Bounding NearPerfMatch(G)

4 )

NearPerfMatch(G) 0 (poly( 4
PerfMatch(c) 0 Poy(Bmem)
- /

We need to show:

Recall that a nearly perfect matching is like a perfect matching but with 2
vertices unmatched.



Bounding NearPerfMatch(G)

e )
NearPerfMatch(G) 0 (poly( -1y
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Recall that a nearly perfect matching is like a perfect matching but with 2
vertices unmatched.

We need to show:

NearPerfMatch(G) = Z 0 Q,, = sum of nearly perfect matchings with
_ u,v ,

U, v unmatched.
u,veaG



Bounding NearPerfMatch(G)

e )
NearPerfMatch(G) 0 (poly( -1y

PerfMatch(G) (poly(f,m, e75)

\_ J

Recall that a nearly perfect matching is like a perfect matching but with 2
vertices unmatched.

We need to show:

NearPerfMatch(G) = Z 0 Q,, = sum of nearly perfect matchings with
_ u,v ,

U, v unmatched.
u,veaG

To complete the proof we show that

Qusy Tr(GyGy_q - GjOGj_1Gj_3 ... GiPGi_1Gy_3 ... G5 Gy )
PerfMatch(G) Tr(G, ... G,G,)

\ /
|

Imaginary time spin-spin correlation function

=0(1)




Bounding NearPerfMatch(G)

e )
NearPerfMatch(G) 0 (poly( -1y

PerfMatch(G) (poly(f,m, e75)

\_ J

Recall that a nearly perfect matching is like a perfect matching but with 2
vertices unmatched.

We need to show:

NearPerfMatch(G) = Z 0 Q,, = sum of nearly perfect matchings with
_ u,v ,

U, v unmatched.
u,veaG

To complete the proof we show that

Qusy Tr(GyGy_q - GjOGj_1Gj_3 ... GiPGi_1Gy_3 ... G5 Gy )
PerfMatch(G) Tr(G, ... G,G,)

\ /
|

Imaginary time spin-spin correlation function

=0(1)




Summary

The computational complexity of relative-error approximation of quantum partition
functions or equivalently guantum approximate counting is a fascinating mystery.

Some mathematical quantities that are not known to admit combinatorial interpretations
may in fact be gquantum counting problems. In that case the related approximation tasks
are no harder than approximating the partition function of 2-local Hamiltonians.

Efficient algorithms reveal exploitable structure and more should be found...
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