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Complexity of many-body systems

How hard is it to compute their physical properties?
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hard (intractable) optimization problem 

Ground energy problems are intractable optimization problems

𝐻 = ෍

𝑖,𝑗 ∈𝐸(𝐺)

𝐽𝑖𝑗𝑍𝑖𝑍𝑗 + ℎ𝑖𝑍𝑖e.g. 2D Ising with 

magnetic field 

[Barahona 1982]

e.g. 3-SAT 𝐻 = ෍

𝑧∈ 0,1 𝑛

𝐶 𝑧 |𝑧⟩⟨𝑧| 𝐶 𝑧 = Number of clauses violated by 𝑧



Quantum Cook-Levin theorem (informal): 

Computing the ground energy of an 𝑛 particle quantum system 

with local interactions to precision 1/poly(𝑛) is an 

intractable quantum optimization problem.
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Input:    An 𝑛-qubit local Hamiltonian 𝐻, a number 𝑎 ∈ℝ,  a precision 𝜖 = 1/𝑛𝛼

Output:  (YES) The ground energy of 𝐻 is ≤ 𝑎
(NO) The ground energy of 𝐻 is ≥ 𝑎 + 𝜖

(promised one of these conditions is satisfied)

𝑎

𝑎 + 𝜖

Theorem (Kitaev 1999)

The local Hamiltonian problem is  QMA-complete. Quantum 

analogue of NP

The local Hamiltonian problem remains QMA-complete even for systems 

with 2-qubit interactions [Kempe Kitaev Regev 2004]
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𝐻𝑖,𝑖+1

𝐵𝑖

2-local Hamiltonian on a 2D grid

[Oliveira Terhal 2008]

2-local Hamiltonian on a line with qudits

[Aharonov et. al 2009] [Gottesman Irani 2009] 

Hubbard model on a 2D grid with site-dependent magnetic field 

[Schuch Verstraete 2009].

More examples of systems with QMA-complete ground energy problems:

There is also an important class of ground energy problems associated with stoquastic

Hamiltonians that lies in between NP and QMA…  [Bravyi Divincenzo Oliveira Terhal 2006]
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These examples illustrate all nontrivial possibilities within the framework of [Cubitt 
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There are also some very special examples where local Hamiltonian problems are easy.



Beyond ground energy

How hard is it to compute physical properties in thermal equilibrium?

Vojta M. Quantum phase transitions. Reports on Progress in Physics. 2003 Nov 3;66(12):2069.
Bitko, D., T. F. Rosenbaum, and G. Aeppli. PRL 77.5 (1996): 940.
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𝑍
Thermal expected values



Beyond ground energy

𝑍 = Tr[𝑒−𝛽𝐻]

𝐹 = −𝛽−1log(𝑍)

How hard is it to compute physical properties in thermal equilibrium?

Partition function

Free energy

𝑂 =
Tr[𝑂𝑒−𝛽𝐻]

𝑍
Thermal expected values

𝛽 = 0



Complexity of partition functions

𝑍 = Tr[𝑒−𝛽𝐻] Partition function

Exact computation as hard as #P 

e.g.,  can count the number of solutions to a 3-SAT formula



𝑍 = Tr[𝑒−𝛽𝐻] Partition function

We are interested in relative-error approximation…

Exact computation as hard as #P

e.g.,  can count the number of solutions to a 3-SAT formula

Complexity of partition functions



Why relative-error approximation?
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Defines a robust class of computational problems that are equivalent under 

polynomial-time reductions. 
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1 − 𝛿 Tr[𝑒−𝛽𝐻] ≤ ෩𝑍 ≤ 1 + 𝛿 Tr[𝑒−𝛽𝐻]

QPF problem: Given 𝐻, 𝛽 and 𝛿 > 0, compute an estimate ෩𝑍 satisfying

Defines a robust class of computational problems that are equivalent under 

polynomial-time reductions. 

WlOG may take precision parameter to be a constant. In particular

𝛿 = 0.25 is equivalent to the general case with 𝛿 =
1

𝑝𝑜𝑙𝑦 𝑛
.

Why? Partition function of L noninteracting copies of 𝐻 is 

Compute this to constant error and then take the Lth root.

Tr 𝑒−𝛽𝐻
𝐿
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Why relative-error approximation?

1 − 𝛿 Tr[𝑒−𝛽𝐻] ≤ ෩𝑍 ≤ 1 + 𝛿 Tr[𝑒−𝛽𝐻]

QPF problem: Given 𝐻, 𝛽 and 𝛿 > 0, compute an estimate ෩𝑍 satisfying

Defines a robust class of computational problems that are equivalent under 

polynomial-time reductions. 

General case is equivalent to special case with 2-local Hamiltonians

T. S. Cubitt, A. Montanaro, and S. Piddock, “Universal quantum Hamiltonians” PNAS 115, no. 
38, pp. 9497–9502, 2018.
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QPF problem: Given 𝐻, 𝛽 and 𝛿 > 0, compute an estimate ෩𝑍 satisfying

Defines a robust class of computational problems that are equivalent under 
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Estimating thermal mean values (additive error)

Estimating density of states of a local Hamiltonian (relative error)

Quantum approximate counting

…



Why relative-error approximation?

1 − 𝛿 Tr[𝑒−𝛽𝐻] ≤ ෩𝑍 ≤ 1 + 𝛿 Tr[𝑒−𝛽𝐻]

QPF problem: Given 𝐻, 𝛽 and 𝛿 > 0, compute an estimate ෩𝑍 satisfying

QPF is polynomial time equivalent to:

Estimating thermal mean values (additive error)

𝜇 −
Tr 𝑃𝑒−𝛽𝐻

𝑍
≤ 𝜖

Given 𝐻, 𝛽, 𝜖 > 0, and a Pauli operator 𝑃, compute an estimate 𝜇 satisfying



Why relative-error approximation?

1 − 𝛿 Tr[𝑒−𝛽𝐻] ≤ ෩𝑍 ≤ 1 + 𝛿 Tr[𝑒−𝛽𝐻]

QPF problem: Given 𝐻, 𝛽 and 𝛿 > 0, compute an estimate ෩𝑍 satisfying

Let 𝑚[𝑎,𝑏] be the number of eigenvalues of 𝐻 in an interval [𝑎, 𝑏]

𝑎
𝑏

QPF is polynomial time equivalent to:



Why relative-error approximation?

1 − 𝛿 Tr[𝑒−𝛽𝐻] ≤ ෩𝑍 ≤ 1 + 𝛿 Tr[𝑒−𝛽𝐻]

QPF problem: Given 𝐻, 𝛽 and 𝛿 > 0, compute an estimate ෩𝑍 satisfying

Let 𝑚[𝑎,𝑏] be the number of eigenvalues of 𝐻 in an interval [𝑎, 𝑏]

𝑎
𝑏

QPF is polynomial time equivalent to:

𝜖

𝜖



Why relative-error approximation?

1 − 𝛿 Tr[𝑒−𝛽𝐻] ≤ ෩𝑍 ≤ 1 + 𝛿 Tr[𝑒−𝛽𝐻]

QPF problem: Given 𝐻, 𝛽 and 𝛿 > 0, compute an estimate ෩𝑍 satisfying

Let 𝑚[𝑎,𝑏] be the number of eigenvalues of 𝐻 in an interval [𝑎, 𝑏]

Estimating density of states (relative error)

Given 𝐻 and two thresholds 𝑎 < 𝑏 and precision parameters 𝜖, 𝛿 output 

an estimate m satisfying

(1 − 𝛿)𝑚[𝑎,𝑏]≤ 𝑚 ≤ 1 + 𝛿 𝑚[𝑎−𝜖,𝑏+𝜖]

𝑎
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QPF is polynomial time equivalent to:
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QPF problem: Given 𝐻, 𝛽 and 𝛿 > 0, compute an estimate ෩𝑍 satisfying

QMA-hard

At least as hard as the local Hamiltonian problem (compute free energy with 𝛽 =
𝑂(𝑛𝜖−1) is enough)

This captures the complexity of exactly computing the partition function.

Not harder than #𝑷

Its complexity is largely a mystery…

…which is directly related to our lack of understanding of quantum approximate 

counting more generally…



Counting : classical, quantum, exact, approximate
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#P is the class of problems (functions) of the form:

Given a verifier circuit, count the number of accepting witnesses.

Can also think of #𝑃 as describing those mathematical quantities which admit a 

combinatorial interpretation: counting a set where membership is efficiently 

checkable.  
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output bit
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Consider a classical (NP) verifier circuit 

#P is the class of problems (functions) of the form:

Given a verifier circuit, count the number of accepting witnesses.

Examples: 

Permanent of a {0,1} matrix (counts perfect matchings)

Output probability of a randomized classical circuit (counts computational paths)



Classical counting problems

Classical circuit C

𝑧 ∈ {0,1}𝑛

0
0
0

Input 
“witness”

Accept if 
output bit
is 1

𝑦 ∈ {0,1}

Consider a classical (NP) verifier circuit 

#P is the class of problems (functions) of the form:

Given a verifier circuit, count the number of accepting witnesses.

A related class gapP captures certain “signed” counting problems…
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Classical counting problems

Classical circuit C

𝑧 ∈ {0,1}𝑛

0
0
0

Input 
“witness”

Accept if 
output bit
is 1

𝑦 ∈ {0,1}

Consider a classical (NP) verifier circuit 

#P is the class of problems (functions) of the form:

Given a verifier circuit, count the number of accepting witnesses.

(Example: output probability of randomized classical circuit)

gapP is the class of functions that can be expressed as the difference of two 

functions in #𝑃.  (Example: output probability of quantum circuit)
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Computing a #P function is just as hard as computing a gapP function. 

Both tasks are as powerful as the polynomial hierarchy [Toda’s theorem]. 

So why do we care about the difference between #P and gapP?

#P versus gapP

Math perspective: #P functions have combinatorial 

interpretations, while gapP functions may not.

𝑃𝑒𝑟(𝐴)



Computer Science perspective: 

There is a vast difference in the complexity of relative-error

approximation…

#P versus gapP

Larry Stockmeyer Michael Sipser

Computing a #P function is just as hard as computing a gapP function. 

Both tasks are as powerful as the polynomial hierarchy [Toda’s theorem]. 

So why do we care about the difference between #P and gapP?
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#P versus gapP

Stockmeyer’s approximate counting theorem [Stockmeyer 1983]

All functions in #P can be approximated by an efficient randomized algorithm with access to an NP 
oracle. 

*unless PH collapses

Proof idea:

𝑆 ⊆ 0,1 𝑛
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.

Functions in gapP can be just as hard to approximate as they are to compute exactly. 

e.g, output probabilities of quantum circuits are #P-hard to approximate

Functions in #P are vastly easier* to approximate! 

Random function



#P versus gapP

Stockmeyer’s approximate counting theorem [Stockmeyer 1983]

All functions in #P can be approximated by an efficient randomized algorithm with access to an NP 
oracle. 

*unless PH collapses

Proof idea:

𝑆 ⊆ 0,1 𝑛

Membership can be verified efficiently

Goal: approximate 𝑆

Random function

0,1 𝑘

If 2𝑘 < |𝑆| then there is a 
collision. 

Conversely if 2𝑘 ≫ |𝑆| then 
there is no collision w.h.p.

You can find a collision by 
asking the NP oracle.

Functions in gapP can be just as hard to approximate as they are to compute exactly. 

e.g, output probabilities of quantum circuits are #P-hard to approximate

Functions in #P are vastly easier* to approximate! 



Function contained in… Approximation task upper bound…

Classical counting #𝑃

gapP #𝑃-hard

𝑭𝑩𝑷𝑷𝑵𝑷

Signed counting



Quantum counting problems

Quantum circuit C

|𝜓〉

|0〉⊗𝑛𝑎

Input 
“witness”

Accept/reject

Consider a quantum (QMA) verifier circuit 

Does it make sense to count the number of accepting witnesses?

[Brown Flammia Schuch 2010][Shi Zhang 2009]
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Input 
“witness”

Accept/reject

Consider a quantum (QMA) verifier circuit 

Does it make sense to count the number of accepting witnesses?

Easy special case: If circuit implements a projective measurement. Then we 

can count the rank of the projector associated with “accept” outcome.

[Brown Flammia Schuch 2010][Shi Zhang 2009]



Quantum counting problems

Quantum circuit C

|𝜓〉

|0〉⊗𝑛𝑎

Input 
“witness”

Accept/reject

Consider a quantum (QMA) verifier circuit 

Does it make sense to count the number of accepting witnesses?

Pr [|𝜓⟩is accepted] = ⟨𝜓|𝐴|𝜓⟩

𝐴 = (𝐼 ⊗ ⟨0𝑛𝑎|)𝐶†|1⟩⟨1|𝐶 𝐼 ⊗ 0 𝑛𝑎)

More generally: Look at measurement operator A corresponding to accept outcome. 

[Brown Flammia Schuch 2010][Shi Zhang 2009]



Quantum counting problems

Quantum circuit C

|𝜓〉

|0〉⊗𝑛𝑎

Input 
“witness”

Accept/reject

Consider a quantum (QMA) verifier circuit 

Does it make sense to count the number of accepting witnesses?

Pr [|𝜓⟩is accepted] = ⟨𝜓|𝐴|𝜓⟩

𝐴 = (𝐼 ⊗ ⟨0𝑛𝑎|)𝐶†|1⟩⟨1|𝐶 𝐼 ⊗ 0 𝑛𝑎)

More generally: Look at measurement operator A corresponding to accept outcome. 

Count the dimension of the vector space spanned by its eigenvectors with 

eigenvalues close to 1.

[Brown Flammia Schuch 2010][Shi Zhang 2009]
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Quantum circuit C

|𝜓〉

|0〉⊗𝑛𝑎

Input 
“witness”

Accept/reject

Consider a quantum (QMA) verifier circuit 

Issue: A witness may be accepted with probability 𝑝 ∈ (0,1). How do we decide which 

ones to count?

𝑝 = 0 𝑝 = 1𝑎𝑏

Good witnesses (count)Bad witnesses (don’t count)

Mediocre witnesses
can miscount these 
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[Brown Flammia Schuch 2010][Shi Zhang 2009]
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Input 
“witness”

Accept/reject

Consider a quantum (QMA) verifier circuit 

Let 𝑁𝑦 be the number of eigenvalues of 𝐴 with eigenvalue at least 𝑦.

#BQP is the class of problems of the form

Input: verifier circuit, two thresholds 0 < 𝑏 < a ≤ 1
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Quantum counting problems

Quantum circuit C

|𝜓〉

|0〉⊗𝑛𝑎

Input 
“witness”

Accept/reject

Consider a quantum (QMA) verifier circuit 

Let 𝑁𝑦 be the number of eigenvalues of 𝐴 with eigenvalue at least 𝑦.

#BQP is the class of problems of the form

Input: verifier circuit, two thresholds 0 < 𝑏 < a ≤ 1
Output: A number 𝑀 such that 𝑁𝑎 ≤ 𝑀 ≤ 𝑁𝑏 𝑝 = 0 𝑝 = 1𝑎𝑏

Pr [|𝜓⟩is accepted] = ⟨𝜓|𝐴|𝜓⟩

𝐴 = (𝐼 ⊗ ⟨0𝑛𝑎|)𝐶†|1⟩⟨1|𝐶 𝐼 ⊗ 0 𝑛𝑎)

Theorem 

#BQP functions are polynomial-time equivalent to #P functions.

[Brown Flammia Schuch 2010][Shi Zhang 2009]

[Brown Flammia Schuch 2010][Shi Zhang 2009]



Quantum approximate counting

#BQP is the class of problems of the form

Input: verifier circuit, two thresholds 0 < 𝑏 < a ≤ 1
Output: A number 𝑀 such that 𝑁𝑎 ≤ 𝑀 ≤ 𝑁𝑏

QXC is the class of problems of the form

Input: verifier circuit, 𝛿 ∈ 0,1 , two thresholds 0 < 𝑏 < a ≤ 1
Output: A number 𝑀 such that 1 − 𝛿 𝑁𝑎 ≤ 𝑀 ≤ 𝑁𝑏(1 + 𝛿)
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Quantum approximate counting

#BQP is the class of problems of the form

Input: verifier circuit, two thresholds 0 < 𝑏 < a ≤ 1
Output: A number 𝑀 such that 𝑁𝑎 ≤ 𝑀 ≤ 𝑁𝑏

QXC is the class of problems of the form

Input: verifier circuit, 𝛿 ∈ 0,1 , two thresholds 0 < 𝑏 < a ≤ 1
Output: A number 𝑀 such that 1 − 𝛿 𝑁𝑎 ≤ 𝑀 ≤ 𝑁𝑏(1 + 𝛿)

Possibly controversial statement: QXC is the reason to care about #BQP!

There is no known quantum version of Stockmeyer approximate counting and so 

complexity of QXC is poorly understood

(cf. lack of quantum Valiant Vazirani theorem [Aharonov Ben-Or Brandao Sattath 2008])
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Function contained in…

Classical counting #𝑃

gapP #𝑃-hard

𝑭𝑩𝑷𝑷𝑵𝑷

#𝐵𝑄𝑃 𝑄𝑋𝐶Quantum counting

Signed counting

Approximation task upper bound…

Theorem [Bravyi Chowdhury DG Wocjan 2022]

QPF is QXC-complete.

Proof ideas (to reduce QXC to 2-local QPF):
Marriott-Watrous error reduction for QMA [Marriott Watrous 2005]
2-local Circuit-to-Hamiltonian mapping [Kempe Kitaev Regev 2004]
Number of QMA witnesses ∼number of low energy states
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Exact Approximate

𝑍 = Tr[𝑒−𝛽𝐻]

Classical local Hamiltonian

𝑍 = Tr[𝑒−𝑖𝛽𝐻]

Local Hamiltonian,
imaginary temperature

#𝑃-hard

#𝑃-hard #𝑃-hard

𝑭𝑩𝑷𝑷𝑵𝑷

𝑍 = Tr[𝑒−𝛽𝐻]

Quantum local Hamiltonian

#𝑃-hard 𝑄𝑋𝐶

Challenging question: how does QXC relate to other known complexity classes?

Easier: can we find other interesting problems in QXC?...



Kronecker coefficients

Kronecker coefficients = Clebsch-Gordan coefficients for the symmetric group

𝜌𝜇 ⊗𝜌𝜈 ≃⊕𝜆 𝑔𝜇𝜈𝜆𝜌𝜆

Recall that irreps of 𝑆𝑛 are labeled by partitions of n or equivalently Young diagrams. 

For any three partitions 𝜇, 𝜈, 𝜆 ⊢ 𝑛, there is a Kronecker coefficient 𝑔𝜇𝜈𝜆 defined as:

Tensor product of two 
irreps Multiplicities
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Kronecker coefficients

Kronecker coefficients = Clebsch-Gordan coefficients for the symmetric group

𝜌𝜇 ⊗𝜌𝜈 ≃⊕𝜆 𝑔𝜇𝜈𝜆𝜌𝜆

Recall that irreps of 𝑆𝑛 are labeled by partitions of n or equivalently Young diagrams. 

For any three partitions 𝜇, 𝜈, 𝜆 ⊢ 𝑛, there is a Kronecker coefficient 𝑔𝜇𝜈𝜆 defined as:

Tensor product of two 
irreps Multiplicities

Old question: Do the Kronecker coefficients have a combinatorial interpretation?

Modern rephrasing: Do the Kronecker coefficients admit a #𝑃 formula?

[Murnaghan 1938]

e.g. [Burgisser Ikenmeyer 2008]
[Pak Panova 2014]
[Ikenmeyer Mulmuley Walter 2017]

[Stanley 1999]

They are #P-hard to compute

They admit a gapP formula



Kronecker coefficients are a quantum counting problem

𝑑𝜇𝑑𝜈𝑑𝜆𝑔𝜇𝜈𝜆

Claim

For any 𝜇, 𝜈, 𝜆 ⊢ 𝑛, there is a quantum circuit of size 𝑝𝑜𝑙𝑦 𝑛 that measures a 

projector with rank

Efficiently computable prefactor

[Bravyi, Anirban Chowdhury, DG, Vojtech Havlicek, Guanyu Zhu 2022]
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Kronecker coefficients are a quantum counting problem

𝑑𝜇𝑑𝜈𝑑𝜆𝑔𝜇𝜈𝜆

Claim

For any 𝜇, 𝜈, 𝜆 ⊢ 𝑛, there is a quantum circuit of size 𝑝𝑜𝑙𝑦 𝑛 that measures a 

projector with rank

Efficiently computable prefactor

In other words: 𝑔𝜇𝜈𝜆 is proportional to a #BQP function

Corollary

The problem of approximating  𝑔𝜇𝜈𝜆 to within a given relative error is in QXC.

[Bravyi, Anirban Chowdhury, DG, Vojtech Havlicek, Guanyu Zhu 2022]

Also in unpub. work by:
[Christandl, Harrow, Walter]
[Kuperberg, Pak, Panova]



Kronecker coefficients are a quantum counting problem

𝑑𝜇𝑑𝜈𝑑𝜆𝑔𝜇𝜈𝜆

Claim

For any 𝜇, 𝜈, 𝜆 ⊢ 𝑛, there is a quantum circuit of size 𝑝𝑜𝑙𝑦 𝑛 that measures a 

projector with rank

Efficiently computable prefactor

Proof sketch

Π𝜆 =
𝑑𝜆
𝑛!

෍

𝑔∈𝑆𝑛

𝜒𝜆 𝑔 𝜌(𝑔)

For any representation 𝜌 of 𝑆𝑛 we can define a projective quantum measurement 

with outcomes labeled by partitions 𝜆 ⊢ 𝑛 :

Projector for outcome 𝜆

[Bravyi, Anirban Chowdhury, DG, Vojtech Havlicek, Guanyu Zhu 2022]



Kronecker coefficients are a quantum counting problem

𝑑𝜇𝑑𝜈𝑑𝜆𝑔𝜇𝜈𝜆

Claim

For any 𝜇, 𝜈, 𝜆 ⊢ 𝑛, there is a quantum circuit of size 𝑝𝑜𝑙𝑦 𝑛 that measures a 

projector with rank

Efficiently computable prefactor

Proof sketch

Π𝜆 =
𝑑𝜆
𝑛!

෍

𝑔∈𝑆𝑛

𝜒𝜆 𝑔 𝜌(𝑔)

For any representation 𝜌 of 𝑆𝑛 we can define a projective quantum measurement 

with outcomes labeled by partitions 𝜆 ⊢ 𝑛 :

Projector for outcome 𝜆

This projective measurement can be implemented in time 𝑝𝑜𝑙𝑦(𝑛) on a quantum 

computer using Beals’ quantum Fourier transform over the symmetric group.

[Beals 1997] via generalized phase estimation [Harrow 2005]

[Bravyi, Anirban Chowdhury, DG, Vojtech Havlicek, Guanyu Zhu 2022]



Kronecker coefficients are a quantum counting problem

𝑑𝜇𝑑𝜈𝑑𝜆𝑔𝜇𝜈𝜆

Claim

For any 𝜇, 𝜈, 𝜆 ⊢ 𝑛, there is a quantum circuit of size 𝑝𝑜𝑙𝑦 𝑛 that measures a 

projector with rank

Efficiently computable prefactor

Proof sketch

𝑑𝜇𝑑𝜈𝑑𝜆𝑔𝜇𝜈𝜆 = 𝑇𝑟(Π𝜇⊗Π𝜈 ⊗Π𝜆𝑃)

It is not hard to show that

𝑃 =
1

𝑛!
෍

𝑔∈𝑆𝑛

𝑔⊗ 𝑔⊗ 𝑔

Defined as on previous slide
with 𝜌 = left regular representation

This projector can also be measured
efficiently on a quantum computer

[Bravyi, Anirban Chowdhury, DG, Vojtech Havlicek, Guanyu Zhu 2022]



Kronecker coefficients are a quantum counting problem

𝑑𝜇𝑑𝜈𝑑𝜆𝑔𝜇𝜈𝜆

Claim

For any 𝜇, 𝜈, 𝜆 ⊢ 𝑛, there is a quantum circuit of size 𝑝𝑜𝑙𝑦 𝑛 that measures a 

projector with rank

Efficiently computable prefactor

Proof sketch

𝑑𝜇𝑑𝜈𝑑𝜆𝑔𝜇𝜈𝜆 = 𝑇𝑟(Π𝜇⊗Π𝜈 ⊗Π𝜆𝑃)

It is not hard to show that

𝑃 =
1

𝑛!
෍

𝑔∈𝑆𝑛

𝑔⊗ 𝑔⊗ 𝑔

The quantum circuit first measures Π𝜇 ⊗Π𝜈 ⊗Π𝜆 and then measures 𝑃, and

accepts iff both outcomes are +1. 

[Bravyi, Anirban Chowdhury, DG, Vojtech Havlicek, Guanyu Zhu 2022]



There is a similar story for the row sums of the character table of the symmetric group, 

for which a combinatorial representation is also an open question [Stanley 1999]

𝑅𝜆 = ෍

𝜇⊢𝑛

𝜒𝜆(𝜇)

These can also be expressed as multiplicities and can be shown to be 

proportional to a #BQP function, and therefore approximable in QXC.

Row sums of the character table
[Bravyi, Anirban Chowdhury, DG, Vojtech Havlicek, Guanyu Zhu 2022]



Summary so far

The computational complexity of relative-error approximation of quantum partition 

functions or equivalently quantum approximate counting is a fascinating mystery.

Some mathematical quantities that are not known to admit combinatorial interpretations 

may in fact be quantum counting problems. In that case the related approximation tasks 

are no harder than approximating the partition function of 2-local Hamiltonians.



Mean field theory via convex optimization (but worse approximation guarantee)

Dense Hamiltonians, ground energy problems [Brandao Harrow 2013]

Dense classical Ising partition functions [Risteski 2016]
Dense quantum partition functions [Sergey Bravyi, Anirban Chowdhury, DG, Pawel Wocjan 2022]

Rigorous Monte Carlo methods

Classical ferromagnetic Ising model [Jerrum Sinclair 1993]

Quantum transverse Ising ferromagnet [Bravyi 2014]

Broader class of quantum ferromagnets (e.g. XY model) [Bravyi DG 2017]

High temperature expansion

General local Hamiltonians above a critical temperature [Harrow Mehraban Soleimanifar 2020]

Can we find efficient algorithms for QPF in special cases?



Can we find efficient algorithms for QPF in special cases?

Mean field theory via convex optimization (but worse approximation guarantee)

Dense Hamiltonians, ground energy problems [Brandao Harrow 2013]

Dense classical Ising partition functions [Risteski 2016]
Dense quantum partition functions [Sergey Bravyi, Anirban Chowdhury, DG, Pawel Wocjan 2022]

Rigorous Monte Carlo methods

Classical ferromagnetic Ising model [Jerrum Sinclair 1993]

Quantum transverse Ising ferromagnet [Bravyi 2014]

Broader class of quantum ferromagnets (e.g. XY model) [Bravyi DG 2017]

High temperature expansion

General local Hamiltonians above a critical temperature [Harrow Mehraban Soleimanifar 2020]



Quantum Monte Carlo: a powerful suite of probabilistic classical simulation 

algorithms for quantum many-body systems. 

Can simulate systems orders of magnitude larger than with exact diagonalization…



What’s the catch?

Quantum Monte Carlo can only be used to study stoquastic Hamiltonians

Examples:

𝑦 𝐻 𝑥 ≤ 0 𝑥 ≠ 𝑦
Stoquastic

i.e., “sign-problem free”𝑥 𝐻 𝑥 ∈ ℝ



What’s the catch?

Quantum Monte Carlo can only be used to study stoquastic Hamiltonians

Examples:

𝑦 𝐻 𝑥 ≤ 0 𝑥 ≠ 𝑦
Stoquastic

i.e., “sign-problem free”𝑥 𝐻 𝑥 ∈ ℝ

Hopping and interacting bosons

𝐻 = −(1 − 𝑠)෍

𝑖

𝑋𝑖 + 𝑠𝑉 Ԧ𝑍

Particle in a potential 𝐻 =
𝑝2

2𝑚
+ 𝑉( Ԧ𝑥)

Quantum annealing Hamiltonians

𝐻 = − ෍

<𝑖𝑗>

(𝑎𝑖
†𝑎𝑗 + 𝑎𝑗

†𝑎𝑖) + 𝑉( 𝑛)



Quantum Monte Carlo is based on a probabilistic representation of the Gibbs state

𝜌 =
𝑒−𝛽𝐻

𝑍(𝛽)
𝑍 𝛽 = Tr(𝑒−𝛽𝐻)

A collection of samples from a certain probability distribution associated with 𝜌
are sufficient to evaluate expectation values of observables.

How does it work?



Quantum Monte Carlo is based on a probabilistic representation of the Gibbs state

𝜌 =
𝑒−𝛽𝐻

𝑍(𝛽)
𝑍 𝛽 = Tr(𝑒−𝛽𝐻)

A collection of samples from a certain probability distribution associated with 𝜌
are sufficient to evaluate expectation values of observables.

How does it work?

Clever choice of probabilistic representation and sampling method is key.



𝐻 = ෍

1≤𝑖<𝑗≤𝑛

ℎ(𝑖, 𝑗)

Ferromagnetic 

Transverse-field

Ising model

Ferromagnetic

XY model

ℎ 𝑖, 𝑗 = −|𝛼𝑖𝑗|𝑋𝑖𝑋𝑗 − 𝛾𝑖𝑍𝑖 − 𝛾𝑗𝑍𝑗

ℎ 𝑖, 𝑗 = −|𝛼𝑖𝑗|(𝑋𝑖𝑋𝑗 + 𝑌𝑖𝑌𝑗)

Ferromagnetic

Ising model
ℎ 𝑖, 𝑗 = −|𝛼𝑖𝑗|𝑍𝑖𝑍𝑗

Approximate

Ground energy

Trivial

In BPP
[Bravyi 2015]

In BPP
[Bravyi DG 2017]

Approximate 

Partition Function

In BPP
[Jerrum ,Sinclair 1989]

In BPP
[Bravyi 2015]

Can we identify cases where Quantum Monte Carlo is provably efficient?

In BPP
[Bravyi DG 2017]



𝐻 =෍

𝑖<𝑗

−𝑏𝑖𝑗𝑋𝑖𝑋𝑗 + 𝑐𝑖𝑗𝑌𝑖𝑌𝑗 +෍

𝑖=1

𝑛

𝑑𝑖(𝐼 + 𝑍𝑖)

The Hamiltonians we consider

|𝑏𝑖𝑗|, |𝑐𝑖𝑗|, |𝑑𝑖 | ≤ 1

|𝑐𝑖𝑗| ≤ 𝑏𝑖𝑗 (ensures stoquasticity)

Coefficients must satisfy 

(sets energy scale)



𝐻 =෍

𝑖<𝑗

−𝑏𝑖𝑗𝑋𝑖𝑋𝑗 + 𝑐𝑖𝑗𝑌𝑖𝑌𝑗 +෍

𝑖=1

𝑛

𝑑𝑖(𝐼 + 𝑍𝑖)

|𝑐𝑖𝑗| ≤ 𝑏𝑖𝑗

0 0 0 −𝑏𝑖𝑗 − 𝑐𝑖𝑗
0 0 𝑐𝑖𝑗 − 𝑏𝑖𝑗 0

0
−𝑏𝑖𝑗 − 𝑐𝑖𝑗

𝑐𝑖𝑗 − 𝑏𝑖𝑗
0

0
0

0
0

(ensures stoquasticity)

The Hamiltonians we consider



𝐻 =෍

𝑖<𝑗

−𝑏𝑖𝑗𝑋𝑖𝑋𝑗 + 𝑐𝑖𝑗𝑌𝑖𝑌𝑗 +෍

𝑖=1

𝑛

𝑑𝑖(𝐼 + 𝑍𝑖)

𝑝𝑖𝑗 𝑌𝑖𝑌𝑗 − 𝑋𝑖𝑋𝑗 + 𝑞𝑖𝑗(−𝑌𝑖𝑌𝑗 − 𝑋𝑖𝑋𝑗) 𝑝𝑖𝑗 , 𝑞𝑖𝑗 ≥ 0

The Hamiltonians we consider



𝐻 =෍

𝑖<𝑗

−𝑏𝑖𝑗𝑋𝑖𝑋𝑗 + 𝑐𝑖𝑗𝑌𝑖𝑌𝑗 +෍

𝑖=1

𝑛

𝑑𝑖(𝐼 + 𝑍𝑖)

Special cases:

Ferromagnetic transverse-field Ising model𝑐𝑖𝑗 = 0

𝑏𝑖𝑗 = 1 𝑐𝑖𝑗 = −1 Ferromagnetic XY model

𝑏𝑖𝑗 = 1 𝑐𝑖𝑗 = 1 (name?)

𝑐𝑖𝑗 = 0𝑑𝑖 = 0 Classical Ferromagnetic Ising model

The Hamiltonians we consider



Efficient algorithm for the partition function

Theorem [Bravyi DG 2017]

There exists a classical randomized algorithm which, given 𝐻, 𝛽, and a precision 

parameter 𝜖 ∈ (0,1) outputs an estimate satisfying  𝑍 ≈𝜖 𝑍 𝛽 with high probability.

The runtime of the algorithm is 𝑝𝑜𝑙𝑦 𝑛, 𝛽, 𝜖−1



Efficient algorithm for the partition function

Theorem [Bravyi DG 2017]

There exists a classical randomized algorithm which, given 𝐻, 𝛽, and a precision 

parameter 𝜖 ∈ (0,1) outputs an estimate satisfying  𝑍 ≈𝜖 𝑍 𝛽 with high probability.

The runtime of the algorithm is 𝑝𝑜𝑙𝑦 𝑛, 𝛽, 𝜖−1

As a corollary we obtain an efficient algorithm to approximate the free energy, the 

ground energy, and thermal expected values to a given additive error.
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parameter 𝜖 ∈ (0,1) outputs an estimate satisfying  𝑍 ≈𝜖 𝑍 𝛽 with high probability.
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Efficient algorithm for the partition function

Theorem [Bravyi DG 2017]

There exists a classical randomized algorithm which, given 𝐻, 𝛽, and a precision 

parameter 𝜖 ∈ (0,1) outputs an estimate satisfying  𝑍 ≈𝜖 𝑍 𝛽 with high probability.

The runtime of the algorithm is 𝑝𝑜𝑙𝑦 𝑛, 𝛽, 𝜖−1 = ෨𝑂 𝑛115(1 + 𝛽46 𝜖−25).

As a corollary we obtain an efficient algorithm to approximate the free energy, the 

ground energy, and thermal expected values to a given additive error.

The algorithm is not practical.

The proof is based on a reduction to counting perfect matchings…



A perfect matching of a graph 𝐺 = 𝑉, 𝐸 is a subset of edges 𝑀 ⊆ 𝐸 such that 

every vertex is incident to exactly one edge in 𝑀

Example:



Now suppose the graph has edge weights 𝑤𝑒 𝑒∈𝐸 . Each perfect matching 𝑀 is 

assigned weight

Perfect matching sum:

PerfMatch 𝐺 = ෍

Perfect matchings M

ෑ

𝑒∈𝑀

𝑤𝑒

ෑ

𝑒∈𝑀

𝑤𝑒



Now suppose the graph has edge weights 𝑤𝑒 𝑒∈𝐸 . Each perfect matching 𝑀 is 

assigned weight

Perfect matching sum:

PerfMatch 𝐺 = ෍

Perfect matchings M

ෑ

𝑒∈𝑀

𝑤𝑒

ෑ

𝑒∈𝑀

𝑤𝑒

Example:

𝑐

𝑎

𝑏𝑑 PerfMatch 𝐺 = 𝑎𝑐 + 𝑏𝑑



A nearly perfect matching of a graph 𝐺 = 𝑉, 𝐸 is a subset of edges 𝑀 ⊆ 𝐸 such 

that every vertex is incident to exactly one edge in 𝑀, except for 2 vertices which 

are untouched. 

NearPerfMatch 𝐺 = ෍

Nearly
Perfect matchings M

ෑ

𝑒∈𝑀

𝑤𝑒

Nearly perfect matching sum:



Suppose 𝑮 is a graph with nonnegative edge weights.

Planar graphs:

Bipartite graphs:

(permanent of

nonnegative matrix)

General graphs:

Exactly compute

PerfMatch(𝐺)
𝝐-approximation

to PerfMatch(𝐺)

In P
Fisher, Kasteleyn, Temperley algorithm 

In P 

#𝑷-hard

[Valiant 1979]
In BPP

[Jerrum, Sinclair, Vigoda 2004]

#𝑷-hard
[Jerrum Sinclair 1989]

Algorithm with runtime 

poly(|𝑉|, 𝜖,−1 𝑅)

𝑅 =
NearPerfMatch(𝐺)

PerfMatch(𝐺)



Theorem [Bravyi DG 2017]

There is an (efficiently computable) graph 𝐺 with positive edge weights, such 

that

and

𝑍 𝛽 ≈𝜖 PerfMatch(𝐺)

NearPerfMatch(𝐺)

PerfMatch(𝐺)
= 𝑂(poly 𝛽, 𝑛, 𝜖−1 )

We then use [Jerrum, Sinclair 1989] which gives an efficient algorithm for 

approximating the perfect matching sum.

These partition functions reduce to perfect matchings



Theorem [Bravyi DG 2017]

There is an (efficiently computable) graph 𝐺 with positive edge weights, such 

that

and

𝑍 𝛽 ≈𝜖 PerfMatch(𝐺)

NearPerfMatch(𝐺)

PerfMatch(𝐺)
= 𝑂(poly 𝛽, 𝑛, 𝜖−1 )

We then use [Jerrum, Sinclair 1989] which gives an efficient algorithm for 

approximating the perfect matching sum.

The spin model can be defined on any graph! The graph G obtained from the reduction

always has the desired feature that makes [Jerrum Sinclair 1989] efficient.

These partition functions reduce to perfect matchings



Tr 𝑒−𝛽𝐻 ≈𝜖 Tr(𝐺𝐽…𝐺2𝐺1) 𝐽 = poly(𝑛, 𝛽, 𝜖−1)

Start with a Trotter-Suzuki style approximation

Proof sketch:



Tr 𝑒−𝛽𝐻 ≈𝜖 Tr(𝐺𝐽…𝐺2𝐺1) 𝐽 = poly(𝑛, 𝛽, 𝜖−1)

Start with a Trotter-Suzuki style approximation

Each 𝐺𝑗 satisfies

𝐺𝑗 = 𝑒−𝑠ℎ+𝑂(𝑠
2) 𝑠 > 0

where ℎ is one of the terms in the Hamiltonian 

Proof sketch:



Tr 𝑒−𝛽𝐻 ≈𝜖 Tr(𝐺𝐽…𝐺2𝐺1) 𝐽 = poly(𝑛, 𝛽, 𝜖−1)

Start with a Trotter-Suzuki style approximation

Each 𝐺𝑗 satisfies

𝐺𝑗 = 𝑒−𝑠ℎ+𝑂(𝑠
2) 𝑠 > 0

where ℎ is one of the terms in the Hamiltonian 

ℎ = ±(𝐼 + 𝑍𝑖)ℎ = −𝑌𝑖𝑌𝑗 − 𝑋𝑖𝑋𝑗 ,ℎ = 𝑌𝑖𝑌𝑗 − 𝑋𝑖𝑋𝑗 , or or

Proof sketch:



Tr 𝑒−𝛽𝐻 ≈𝜖 Tr(𝐺𝐽…𝐺2𝐺1) 𝐽 = poly(𝑛, 𝛽, 𝜖−1)

Start with a Trotter-Suzuki style approximation

Each 𝐺𝑗 satisfies

𝐺𝑗 = 𝑒−𝑠ℎ+𝑂(𝑠
2) 𝑠 > 0

where ℎ is one of the terms in the Hamiltonian 

ℎ = ±(𝐼 + 𝑍𝑖)ℎ = −𝑌𝑖𝑌𝑗 − 𝑋𝑖𝑋𝑗 ,ℎ = 𝑌𝑖𝑌𝑗 − 𝑋𝑖𝑋𝑗 , or or

The resulting 𝑮𝒋 are very special gates…

Proof sketch:



𝐽 = poly(𝑛, 𝛽, 𝜖−1)

Each 𝐺𝐽 is from the gate set containing 1-qubit gates

1 + 𝑡2 0 0 𝑡
0 1 0 0
0
𝑡

0
0

1
0

0
1

0 1
1 0

𝑡 0
0 1

and two qubit gates

𝑡 > 0

𝑡 > 0

“Matchgates”

Tr 𝑒−𝛽𝐻 ≈𝜖 Tr(𝐺𝐽…𝐺2𝐺1)

Start with a Trotter-Suzuki style approximation

Proof sketch:



Input edges Output edges

𝑡 𝑡

Example:

Γ𝑥𝑦 = remove input edges with 𝑥𝑖 = 0 and output edges 

with 𝑦𝑖 = 0.  Require that a perfect matching includes the 

remaining external edges.

⟨𝑦|𝐺|𝑥⟩ = PerfMatch(Γ𝑥𝑦)

Let  Γ be a a weighted graph with special input and output edges (𝑘 of each, say)

We say 𝚪 implements a 𝒌-qubit operator 𝑮 if



Input edges Output edges

𝑡 𝑡

Example:

𝒙 = 𝟎𝟎, 𝒚 = 𝟏𝟏

𝑡 𝑡

⟨𝟏𝟏|𝑮|𝟎𝟎⟩ = 𝒕

Γ𝑥𝑦 = remove input edges with 𝑥𝑖 = 0 and output edges 

with 𝑦𝑖 = 0.  Require that a perfect matching includes the 

remaining external edges.

⟨𝑦|𝐺|𝑥⟩ = PerfMatch(Γ𝑥𝑦)

Let  Γ be a a weighted graph with special input and output edges (𝑘 of each, say)

We say 𝚪 implements a 𝒌-qubit operator 𝑮 if



Input edges Output edges

𝑡 𝑡

Example:

Γ𝑥𝑦 = remove input edges with 𝑥𝑖 = 0 and output edges 

with 𝑦𝑖 = 0.  Require that a perfect matching includes the 

remaining external edges.

⟨𝑦|𝐺|𝑥⟩ = PerfMatch(Γ𝑥𝑦)

Let  Γ be a a weighted graph with special input and output edges (𝑘 of each, say)

We say 𝚪 implements a 𝒌-qubit operator 𝑮 if

𝐺 =

1 + 𝑡2 0 0 𝑡
0 1 0 0
0
𝑡

0
0

1
0

0
1



Matchgates compose nicely

Γ Implements a 2 qubit gate 𝑮

Γ Γ Implements 𝑮𝟐



Γ

Γ Implements 𝑮𝟏𝟐𝑮𝟐𝟑

Γ

Matchgates compose nicely

Implements a 2 qubit gate 𝑮



Γ Implements a 2 qubit gate 𝑮

Implements 𝐓𝐫(𝑮)
Γ

Matchgates compose nicely



𝐽 = poly(𝑛, 𝛽, 𝜖−1)

Start with a Trotter-Suzuki style approximation

Proof sketch:

Each 𝐺𝐽 is a matchgate.

Tr 𝑒−𝛽𝐻 ≈𝜖 Tr(𝐺𝐽…𝐺2𝐺1)



𝐽 = poly(𝑛, 𝛽, 𝜖−1)

Start with a Trotter-Suzuki style approximation

Proof sketch:

Each 𝐺𝐽 is a matchgate.

Tr 𝑒−𝛽𝐻 ≈𝜖 Tr(𝐺𝐽…𝐺2𝐺1)

Matchgate implementable with 𝑛 input edges 

and 𝑛 output edges 



𝐽 = poly(𝑛, 𝛽, 𝜖−1)

Start with a Trotter-Suzuki style approximation

Proof sketch:

Each 𝐺𝐽 is a matchgate.

Tr 𝑒−𝛽𝐻 ≈𝜖 Tr(𝐺𝐽…𝐺2𝐺1)

Matchgate implementable with 𝑛 input edges 

and 𝑛 output edges 

Trace is a matchgate with no external edges, 

i.e., a perfect matching sum. 



𝐽 = poly(𝑛, 𝛽, 𝜖−1)

Start with a Trotter-Suzuki style approximation

Proof sketch:

Each 𝐺𝐽 is a matchgate.

Tr 𝑒−𝛽𝐻 ≈𝜖 Tr(𝐺𝐽…𝐺2𝐺1)

Matchgate implementable with 𝑛 input edges 

and 𝑛 output edges 

Trace is a matchgate with no external edges, 

i.e., a perfect matching sum. 

(nonplanar and nonbipartite)



𝐽 = poly(𝑛, 𝛽, 𝜖−1)

Start with a Trotter-Suzuki style approximation

Proof sketch:

Each 𝐺𝐽 is a matchgate.

Tr 𝑒−𝛽𝐻 ≈𝜖 Tr(𝐺𝐽…𝐺2𝐺1)

𝑍 𝛽 ≈𝜖 PerfMatch(𝐺)

This gives first part of theorem:

Matchgate implementable with 𝑛 input edges 

and 𝑛 output edges 

Trace is a matchgate with no external edges, 

i.e., a perfect matching sum. 

(nonplanar and nonbipartite)



NearPerfMatch(𝐺)

PerfMatch(𝐺)
= 𝑂(poly 𝛽, 𝑛, 𝜖−1 )We need to show:

Recall that a nearly perfect matching is like a perfect matching but with 2 

vertices unmatched.

Bounding NearPerfMatch(𝐺)
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vertices unmatched.

Ω𝑢,𝑣 =
sum of nearly perfect matchings with
𝑢, 𝑣 unmatched. 

NearPerfMatch 𝐺 = ෍

𝑢,𝑣∈𝐺

Ω𝑢,𝑣

Bounding NearPerfMatch(𝐺)



NearPerfMatch(𝐺)

PerfMatch(𝐺)
= 𝑂(poly 𝛽, 𝑛, 𝜖−1 )We need to show:

Recall that a nearly perfect matching is like a perfect matching but with 2 

vertices unmatched.

Ω𝑢,𝑣 =
sum of nearly perfect matchings with
𝑢, 𝑣 unmatched. 

NearPerfMatch 𝐺 = ෍

𝑢,𝑣∈𝐺

Ω𝑢,𝑣

To complete the proof we show that

Ω𝑢,𝑣
PerfMatch(𝐺)

≈
Tr 𝐺𝐽𝐺𝐽−1…𝐺𝑗𝑂𝐺𝑗−1𝐺𝑗−2…𝐺𝑖𝑃𝐺𝑖−1𝐺𝑖−2…𝐺2𝐺1

Tr 𝐺𝐽…𝐺2𝐺1
= 𝑂(1)

Imaginary time spin-spin correlation function

Bounding NearPerfMatch(𝐺)



NearPerfMatch(𝐺)

PerfMatch(𝐺)
= 𝑂(poly 𝛽, 𝑛, 𝜖−1 )We need to show:

Recall that a nearly perfect matching is like a perfect matching but with 2 

vertices unmatched.

Ω𝑢,𝑣 =
sum of nearly perfect matchings with
𝑢, 𝑣 unmatched. 

NearPerfMatch 𝐺 = ෍

𝑢,𝑣∈𝐺

Ω𝑢,𝑣

To complete the proof we show that

Ω𝑢,𝑣
PerfMatch(𝐺)

≈
Tr 𝐺𝐽𝐺𝐽−1…𝐺𝑗𝑂𝐺𝑗−1𝐺𝑗−2…𝐺𝑖𝑃𝐺𝑖−1𝐺𝑖−2…𝐺2𝐺1

Tr 𝐺𝐽…𝐺2𝐺1
= 𝑂(1)

Imaginary time spin-spin correlation function

Bounding NearPerfMatch(𝐺)



Summary

The computational complexity of relative-error approximation of quantum partition 

functions or equivalently quantum approximate counting is a fascinating mystery.

Some mathematical quantities that are not known to admit combinatorial interpretations 

may in fact be quantum counting problems. In that case the related approximation tasks 

are no harder than approximating the partition function of 2-local Hamiltonians.

Efficient algorithms reveal exploitable structure and more should be found…
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