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INTRODUCTION AND MOTIVATION

MOTIVATION: OPEN QUANTUM MANY-BODY SYSTEMS

Open quantum many-body system. J

No experiment can be executed at zero temperature or be completely
shielded from noise.

Angela Capel (Univ ingen) Rapid thermalization of spin chain comm. Hamiltonians



INTRODUCTION AND MOTIVATION

MOTIVATION: OPEN QUANTUM MANY-BODY SYSTEMS

Open quantum many-body system. J

No experiment can be executed at zero temperature or be completely
shielded from noise.

@ Finite lattice A CC Z%.

S . ; @ Hilbert space associated to A is
St = Pl HA:@meAHI'

: T @ Density matrices: Sp := S(Ha) =
- 1 == {pa € Ba : pa > 0 and tr[pa] = 1}.

E

@ Dynamics of S is dissipative!

@ The continuous-time evolution of a state on S is given by a q. Markov semigroup
(Markovian approximation).
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INTRODUCTION AND MOTIVATION

QUANTUM MARKOV SEMIGROUP / DISSIPATIVE QUANTUM EVOLUTION

QUANTUM MARKOV SEMIGROUP

A quantum Markov semigroup is a 1-parameter continuous semigroup {7:},-, of
completely positive, trace preserving (CPTP) maps (a.k.a. quantum channels) in Sa.
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INTRODUCTION AND MOTIVATION

QUANTUM MARKOV SEMIGROUP / DISSIPATIVE QUANTUM EVOLUTION

QUANTUM MARKOV SEMIGROUP

A quantum Markov semigroup is a 1-parameter continuous semigroup {7:},-, of
completely positive, trace preserving (CPTP) maps (a.k.a. quantum channels) in Sa.

Semigroup:
° TeoTs = Tits.
o To=1.

d
7; = €t£A = [:A = %7; |t=0-
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INTRODUCTION AND MOTIVATION

QUANTUM MARKOV SEMIGROUP / DISSIPATIVE QUANTUM EVOLUTION

QUANTUM MARKOV SEMIGROUP

A quantum Markov semigroup is a 1-parameter continuous semigroup {7:},-, of
completely positive, trace preserving (CPTP) maps (a.k.a. quantum channels) in Sa.

Semigroup:
° TeoTs = Tits.
o To=1.

d
E’E:'EO;CAZEAO'];

QMS GENERATOR

The infinitesimal generator £, of the previous semigroup of quantum channels is
usually called Liouvillian, or Lindbladian.

d
7; = etﬁA = [:A = aﬂ |t=0-
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INTRODUCTION AND MOTIVATION

QUANTUM MARKOV SEMIGROUP / DISSIPATIVE QUANTUM EVOLUTION

QUANTUM MARKOV SEMIGROUP

A quantum Markov semigroup is a 1-parameter continuous semigroup {7:},-, of
completely positive, trace preserving (CPTP) maps (a.k.a. quantum channels) in Sa.

Semigroup:
° TeoTs = Tits.
o To=1.

d
E’E:'EO;CAZEAO'];

QMS GENERATOR

The infinitesimal generator £, of the previous semigroup of quantum channels is
usually called Liouvillian, or Lindbladian.

d
7; = etﬁA = [:A = aﬂ |t=0-

For pa € Sa, La(pa) = —i[Ha,pa]l + > Ek(p/\) GKLS equation.
keA
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INTRODUCTION AND MOTIVATION

MIXING OF DISSIPATIVE QUANTUM SYSTEMS

Mixing < Convergence
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INTRODUCTION AND MOTIVATION

MIXING OF DISSIPATIVE QUANTUM SYSTEMS

Mixing < Convergence

PrRIMITIVE QMS

We assume that {7:},~, has a unique full-rank invariant state which we denote by ox.
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INTRODUCTION AND MOTIVATION

MIXING OF DISSIPATIVE QUANTUM SYSTEMS

Mixing < Convergence

PrRIMITIVE QMS

We assume that {7:},~, has a unique full-rank invariant state which we denote by ox.

DETAILED BALANCE CONDITION

We also assume that the quantum Markov process studied is reversible, i.e., it
satisfies the detailed balance condition:

(£, L6(9))s = (LA(F), 9)

for every f,g € Ba and Hermitian, where

(f9), = tx[f "2 goM?] .
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INTRODUCTION AND MOTIVATION

MIXING OF DISSIPATIVE QUANTUM SYSTEMS

Mixing < Convergence

PrRIMITIVE QMS

We assume that {7:},~, has a unique full-rank invariant state which we denote by ox.

DETAILED BALANCE CONDITION

We also assume that the quantum Markov process studied is reversible, i.e., it
satisfies the detailed balance condition:

(£, L6(9))s = (LA(F), 9)

for every f,g € Ba and Hermitian, where

(f9), = tx[f "2 goM?] .

Notation: p; := T¢(p).




INTRODUCTION AND MOTIVATION

MIXING TIME

@ Under the previous conditions, there is always convergence to oa.
o How fast does convergence happen?
Note T (p) := oa for every p.

We define the mixing time of {7;} by

toie(e) =minf > 03 sup |7i(s) = Tl < -

PAESA
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INTRODUCTION AND MOTIVATION

RAPID MIXING

We define the mixing time of {7;} by

tmix(€) =mind t > 0: sup |pt —oall; <e
PAESA

Recall: pt := Ti(p), oa = To(p).
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INTRODUCTION AND MOTIVATION

RAPID MIXING

We define the mixing time of {7;} by

tmix(e) =mind t > 0: sup ||pt —oall; <ep.
PAESA

Recall: pt := Ti(p), oa = To(p).

RAPID MIXING

We say that £ satisfies rapid mixing if

R lloe = oall; < poly(JA)e™7".
PAESA

tmix(€) ~ poly log(|A]).
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INTRODUCTION AND MOTIVATION

APPLICATIONS TO QUANTUM INFORMATION/QUANTUM COMPUTING

Rapid mixing

p | Tilp) — ol < poly(|A[Je™

What are the implications
of rapid mixing?

Mixing time: Hpolrlog(|A})

“Negative” point of view:

e Quantum properties that hold in the ground state but not in the Gibbs state are
suppressed too fast for them to be of any reasonable use.

“Positive” point of view:

o Thermal states with short mixing time can be constructed efficiently with a
quantum device that simulates the effect of the thermal bath.

o This has important implications as a self-studying open problem as well as in
optimization problems via simulated annealing type algorithms.
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INTRODUCTION AND MOTIVATION

APPLICATIONS TO QUANTUM INFORMATION/QUANTUM COMPUTING

If rapid mixing, no error correction:

Rapid mixing Easy tu ~ log{n) tui ~ poly(n) tui ~ expin) Harcl>
(7. Errar correction Self-correction
Mixing time; =lc] lifficient, prediction Topological order Cuantum memories

Speed-up for SDP solvers
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INTRODUCTION AND MOTIVATION

APPLICATIONS TO QUANTUM INFORMATION/QUANTUM COMPUTING

If rapid mixing, no error correction:

Rapid mixing Easy tu ~ log{n) tui ~ poly(n) tui ~ expin) Harcl>
Errar correction Self-correction
Mixing time; =lc] ylagtIALL lifficient, prediction Topological order Cuantum memories

Speed-up for SDP solvers
Main applications or consequences:
@ Robust and efficient preparation of topologically ordered phases of matter via
dissipation.
@ Design of more efficient quantum error-correcting codes optimized for correlated
Markovian noise models.

@ Stability against local perturbations (Cubitt, Lucia, Michalakis, Pérez-Garcia ‘15)

@ Area law for mutual information (Brandao, Cubitt, Lucia, Michalakis, Pérez-Garcia ’15)

@ Gaussian concentration inequalities (Lipschitz observables) (C., Rouzé, S. Franca ’20)

@ Finite blocklength refinement of quantum Stein lemma (C., Rouzé, Stilck Franca '20)

@ Quantum annealers: Output an energy closed to that of the fixed point after short
time (C., Rouzé, Stilck Franca ’20)

o Preparation Gibbs states: Existence of local quantum circuits with logarithmic

depth to prepare the Gibbs state (C., Rouzé, Stilck Franca ’20)
@ Establish the absence of dissipative phase transitions (Bardet, C., Gao, Lucia,
Pérez-Garcia, Rouzé '21)
@ Examples of interacting SPT phases with decoherence time growing logarithmically
with the system size for thermal noise (Bardet, C., Gao, Lucia, Pérez-Garcia, Rouzé '21)
And many more. ..
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MIXING TIME AND MODIFIED LOGARITHMIC SOBOLEV INEQUALITIES

i TIME, FUNCTIONAL INEQUALITIES AND CORRELATIONS DYHINT Gr s

MODIFIED LOGARITHMIC SOBOLEV INEQUALITY (MLSI)

Recall: p: := T:(p).




TIME AND MODIFIED LOGARITHMIC SOBOLEV INEQUALITIES

OF CORRELATIONS

i TIME, FUNCTIONAL INEQUALITIES AND CORRELATIONS

MODIFIED LOGARITHMIC SOBOLEV INEQUALITY (MLSI)

Recall: p: := T:(p).

Master equation:
Oepe = La(pt).

Rapid th ization of spin chain comm. Hamiltoni
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MIXING TIME, FUNCTIONAL INEQUALITIES AND CORRELATIONS e

MODIFIED LOGARITHMIC SOBOLEV INEQUALITY (MLSI)

Recall: p: := T:(p).

Master equation:
Oepe = La(pt).

Relative entropy of p; and ox:

D(ptlloa) = tr[pi(log pr — log oa)].

Angela Capel (Un ) : thermalization of spin in comm. Hamiltonia



TIME AND MODIFIED LOGARITHMIC SOBOLEV INEQUALITIES

CORRELATIONS

MIXING TIME, FUNCTIONAL INEQUALITIES AND CORRELATIONS

MODIFIED LOGARITHMIC SOBOLEV INEQUALITY (MLSI)

Recall: p: := T:(p).

Master equation:
Oepe = La(pt).

Relative entropy of p; and ox:

D(pt|loa) = tr[pt(log pr — log oa)].
Differentiating:

9:D(pel|oa) = tr[La(pt)(log pr — logoa)].

Angela Capel (Univ ingen) Rapid thermalization of spin chain comm. Hamiltonians



IE AND MODIFIED LOGARITHMIC SOBOLEV INEQUALITIES

MIXING TIME, FUNCTIONAL INEQUALITIES AND CORRELATIONS e

MODIFIED LOGARITHMIC SOBOLEV INEQUALITY (MLSI)

Recall: p: := T:(p).

Master equation:
Oepe = La(pt).

Relative entropy of p; and ox:

D(ptlloa) = tr[pi(log pr — log oa)].

Differentiating:

9:D(pel|oa) = tr[La(pt)(log pr — logoa)].

Lower bound for the derivative of D(pt||oa) in terms of
itself:

2aD(pellon) < —tr[La(pe)(log pr —logon)].

Modified logarithmic Sobolev inequality

Rapid thermalization of spin chain comm. Hamiltonians



MIXING TIME AND MODIFIED LOGARITHMIC SOBOLEV INEQUALITIES

i TIME, FUNCTIONAL INEQUALITIES AND CORRELATIONS Di ; e

MODIFIED LOGARITHMIC SOBOLEV INEQUALIT

The MLSI constant of £, is defined as:

o —tr[La(pa)(log pa —logon)]
Lp) = f
clta)i= i 2D(pallon)

Hamiltoni
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MIXING TIME, FUNCTIONAL INEQUALITIES AND CORRELATIONS DECAY. OF -

MODIFIED LOGARITHMIC SOBOLEV INEQUALITY

The MLSI constant of £, is defined as:

a(Ca) = inf —tr[La(pa)(log pa —logon)]
PAESA 2D(palloa)

If lim igf a(La) > 0:
ANZ
D(pi|loa) < D(palloa)e™>>E01,
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MIXING TIME, FUNCTIONAL INEQUALITIES AND CORRELATIONS DECAY. OF -

MODIFIED LOGARITHMIC SOBOLEV INEQUALITY

The MLSI constant of £, is defined as:

a(Ca) = inf —tr[La(pa)(log pa —logon)]
PAESA 2D(palloa)

If lim irdlf a(La) > 0:
ANZ
D(pi|loa) < D(palloa)e™>>E01,

and Pinsker’s inequality (%Hp — o2 < D(pllo) for || A, := tr[\AH)

llpe = oally < v/2D(palloa) e >N < \/21og(1/0min) e~ 5N,
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MIXING TIME AND MODIFIED LOGARITHMIC SOBOLEV INEQUALITIES

F CORRELATIONS

MIXING TIME, FUNCTIONAL INEQUALITIES AND CORRELATIONS DEcA

MODIFIED LOGARITHMIC SOBOLEV INEQUALITY

The MLSI constant of £, is defined as:
a(Ca) = inf —tr[La(pa)(log pa —logon)]
PAESA 2D(palloa)

If lim irdlf a(La) > 0:
ANZ
D(pi|loa) < D(palloa)e™>>E01,

and Pinsker’s inequality (%Hp — o2 < D(pllo) for || A, := tr[\AH)

llpe = oally < v/2D(palloa) e >N < \/21og(1/0min) e~ 5N,

76H]7 Rapid mixing
llpt—oally <poly(|A])e7*

For thermal states op = e ?# /trfe
Gumin ~ 1/exp(A])-
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F CORRELATIONS

MIXING TIME, FUNCTIONAL INEQUALITIES AND CORRELATIONS DEcA

MODIFIED LOGARITHMIC SOBOLEV INEQUALITY

The MLSI constant of £, is defined as:
a(Ca) = inf —tr[La(pa)(log pa —logon)]
PAESA 2D(palloa)

If lim irdlf a(La) > 0:
ANZ
D(pi|loa) < D(palloa)e™>>E01,

and Pinsker’s inequality (%Hp — o2 < D(pllo) for || A, := tr[\AH)

llpe = oally < v/2D(palloa) e N < \/210g(1/omin) e~ *EA)",

76H]7 Rapid mixing
llpt—oally <poly(|A])e7*

For thermal states op = e ?# /trfe
Gumin ~ 1/exp(A])-

MLSI = Rapid mixing. )
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MIXING TIME AND MODIFIED LOGARITHMIC SOBOLEV INEQUALITIES

F CORRELATIONS

MIXING TIME, FUNCTIONAL INEQUALITIES AND CORRELATIONS DEcA

MODIFIED LOGARITHMIC SOBOLEV INEQUALITY

The MLSI constant of £, is defined as:
a(Ca) = inf —tr[La(pa)(log pa —logon)]
PAESA 2D(palloa)

If lim irdlf a(La) > 0:
ANZ
D(pi|loa) < D(palloa)e™>>E01,

and Pinsker’s inequality (%Hp — o2 < D(pllo) for || A, := tr[\AH)

llpe = oally < v/2D(palloa) e N < \/210g(1/omin) e~ *EA)",

76H]7 Rapid mixing
llpt—oally <poly(|A])e7*

For thermal states op = e ?# /trfe
Gumin ~ 1/exp(A])-

MLSI = Rapid mixing. )

Using the spectral gap (Kastoryano-Temme ’13):

Hpt - 0A||1 S V 1/Umin eiA(ﬁx)t-

Rapid thermalization of spin chain comm. Hamiltonians




MIXING TIME AND MODIFIED LOGARITHMIC SOBOLEV INEQUALITIES

i TIME, FUNCTIONAL INEQUALITIES AND CORRELATIONS DECAY. OF e

QUANTUM SPIN SYSTEMS

{1 £3 } 0. Quanturn Markow semlgroup

s Notation; A i & tattice Mixdng ime af the semigroup 475 | .,
[ Tep) = el =

I' T Inf. gensrator [Li
E




G TIME AND MODIFIED LOGARITHMIC OLEV INEQUALITIES
ORRELATIONS

QUANTUM SPIN SY

Modified Logarithmic Sobolev Ineguality (MLSI

Mixing time:
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ORRELATIONS

QUANTUM SPIN SY
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DECAY OF CORRELATIONS

i TIME, FUNCTIONAL INEQUALITIES AND CORRELATIONS

UM SPIN SY

“Slower™ mixin

ally =

Gt stale

ol g locsl,
| cormmusting
Harmitaniar

Mixing tima:

il Motatian: A =C &7 fallice Mixing time of the ssmigroup | T, b,y
; {.Ii}lzu Cuantum Markov aamigroup

rle)=min{dt=0: ep  [Rip —o| =
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i TIME, FUNCTIONAL INEQUALITIES AND CORRELATIONS Di ; AT

QUANTUM SPIN §

DT
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M G TIME AND MODIFIED LOGAR

FUNCTIONAL INEQUALITIES AND CORRELATIONS
DECAY OF CORRELATIONS

DECAY OF CORRELATIONS ON GIBBS STATE

Describe the correlation properties of Gibbs states of local Hamiltonians.

Hamiltonian
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DECAY OF CORRELATIONS

FUNCTIONAL INEQUALITIES AND CORRELATIONS

DECAY OF CORRELATIONS ON GIBBS STATE

Describe the correlation properties of Gibbs states of local Hamiltonians.

@ Hamiltonian: Hy = H4 + Hg + Haupye + Hoa + Hop,
@ Gibbs state: o5 (3) = e #HA / Tr[e=PHA] .
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1 TIME, FUNCTIONAL INEQUALITIES AND CORRELATIONS
DE OF CORRELAT]

DECAY OF CORRELATIONS ON GIBBS STATE

Describe the correlation properties of Gibbs states of local Hamiltonians.

@ Hamiltonian: Hy = H4 + Hg + Haupye + Hoa + Hop,
@ Gibbs state: o5 (3) = e #HA / Tr[e=PHA] .
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MODIFIED LOGARITHMIC SOBOLEV

1 TIME, FUNCTIONAL INEQUALITIES AND CORRELATIONS
DE OF CORRELAT]

DECAY OF CORRELATIONS ON GIBBS STATE

Covg(A: B) := sup [tr[O4 ® Op(cap — o4 @ oB)]|
loal=l0Bll=1

Rapid th ization of spin chain comm. Hamiltoni



\Y TIME AND MODIFIED LOGAR
DEc )F CORRELATIONS

MIXING TIME, FUNCTIONAL INEQUALITIES AND CORRELATIONS

DECAY OF CORRELATIONS ON GIBBS S

3 different forms of decay of correlations.

OPERATOR CORRELATION

Covg(A: B) := sup [tr[O4 ® Op(cap — o4 @ oB)]|
loal=l0Bll=1

v,
MUTUAL INFORMATION

I;(A: B):=D(caBl|lca ® oB)
for D(pl||o) = Tr[p(logp — logo)]

.

N
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MIXING TIME, FUNCTIONAL INEQUALITIES AND CORRELATIONS

DECAY OF CORRELATIONS ON (GIBBS STATE

3 different forms of decay of correlations.

OPERATOR CORRELATION

Covg(A: B) := sup [tr[O4 ® Op(cap — o4 @ oB)]|
loal=l0Bll=1

MUTUAL INFORMATION

| \

I;(A: B):=D(caBl|lca ® oB)
for D(pl||o) = Tr[p(logp — logo)]

MIXING CONDITION

G
[un
M
.

1/2 1/2

Ih@aB)loe = 05"/ © 0520 anoy? © o2

*IlABH
oo

.

Relation:

1
> Covy (A : B)2 <I;(A:B)

< “021/2(80;1/201430 1/2 ®oy 1/2 _ILABHOO
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Decay of correlations

Mutual information
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QUANTUM SPIN SY

Thermalization N v Decay of correlations

Rapid mixing = - Mixing condition
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AND MODIFIED LOGARITHMIC SOBOLEV

MIXING TIME, FUNCTIONAL INEQUALITIES AND CORRELATIONS
CORRELATIONS

OBJECTIVE

o —tr[La(pa)(log pa —logon)]
L) := f
)= R 2D(pallon)
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MIXING TIME, FUNCTIONAL INEQUALITIES AND CORRELATIONS
OF CORRELATIONS

OBJECTIVE

.o —tr[La(pa)(log pa —logon)]
Lp) = f
ey e 2D(palloa)

‘What do we want to prove?

lim inf a(£a) > W(|A]) > 0.
A zd

Angela Capel (Uni ) id ther izati f spi in comm. Hamiltoni



TIME AND MODIFIED LOGAR

MIXING TIME, FUNCTIONAL INEQUALITIES AND CORRELATIONS
)F CORRELATIONS

OBJECTIVE

o —tr[La(pa)(log pa —logon)]
L) := f
)= R 2D(pallon)

‘What do we want to prove?

lim inf a(£a) > W(|A]) > 0.
A zd

A

Can we prove something like
a(Lna) > V(|A]) a(La)>07

Rapid thermalization of spin chain comm. Hamiltoniar



MIXING TIME AND MODIFIED LOGARITHMIC SOBOLEV

MIXING TIME, FUNCTIONAL INEQUALITIES AND CORRELATIONS .
DECAY OF CORRELATIONS

OBJECTIVE

o —tr[La(pa)(log pa —logon)]
L) := f
)= B 2D(pallon)

‘What do we want to prove?

lim inf a(£a) > W(|A]) > 0.
A zd

A
Can we prove something like
a(Lna) > V(|A]) a(La)>07

No, but we can prove
a(La) > V(JA|) ar(La) >0.

ibingen) Rapid thermalization of spin chain comm. Hamiltonians



RITHMIC SOBOLEV
MIXING TIME, FUNCTIONAL INEQUALITIES AND CORRELATIONS

CONDITIONAL MLSI CONSTANT

; 4

The MLSI constant of Lo = > L is defined by
kEA

.« —tr[La(pa)(log pa —logon)]
Lp) = f
clita)= 2D(pallon)
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~ ) LOGARITHMIC SOBOLEV N
MIXING TIME, FUNCTIONAL INEQUALITIES AND CORRELATIONS

CONDITIONAL MLSI CONSTANT

The MLSI constant of Lo = > L is defined by
kEA

.« —tr[La(pa)(log pa —logon)]
Lp) = f
clita)= 2D(pallon)

CONDITIONAL MLSI CONSTANT
The conditional MLSI constant of £, on A C A is defined by

—tr[La(pa)(log pa —logon)]
PAESA 2D a(palloa)

Rapid thermalization of spin chain comm. Hamiltonians



MIXING TIME, FUNCTIONAL INEQUALITIES AND CORRELATIONS

DECAY OF CORRELATIONS

STRATEGY

Used in (C.-Lucia-Pérez Garcia ’18) and (Bardet-C.-Lucia-Pérez Garcia-Rouzé, ’19).

Decay of correlations

Quasi-factorization Geometrid
of th_e recursive
relative Definition argument
entropy conditional

Log-Sobolev

- constant

Positive conditional
log-Sobolev constant

on the Gibbs state

Hamiltoni



MIXING TIME AND MODIFIED LOGARITHMIC SOBOLE\ QUALITIES

MIXING TIME, FUNCTIONAL INEQUALITIES AND CORRELATIONS -
DECAY OF CORRELATIONS

QUASI—FACTORIZATION OF THE RELATIVE ENTROPY

QUASI-FACTORIZATION OF THE RELATIVE ENTROPY

Given A = ABC, it is an inequality of the form:
D(palloa) < &(oasc) [Das(palloa) + Dec(palloa)] ,

for pa,on € S(Hapc), where £(capc) depends only on oapc and measures how far
oac is from 04 ® oc.

Angela Capel (Ur ) Rapid thermalization of spin chain comm. Hamiltonians



PRODUCT FIXED POINT

ExaAmPLES OF MLSI ERATORS 1D

ExXAMPLE: TENSOR PRODUCT FIXED POINT
(C.-Lucia-Pérez Garcia ’18) L (PA) = Z (03? & pae — PA) heat-bath

zEA
Dz (palloa) := D(palloa) — D(pa<lowe)

or= Q oq,

zEA

(Beigi-Datta-Rouzé ’18)

D(pallon)

IA

< > Dulpallon)
TEA
S B < ST tr[ﬁz(PAQ) (log 01— log oa)]
TEA aA( Z)
1
= 2inf aa(Ls) > —tr[La(pa)(log pa — logoa)]
zEA xEA
% 1 . 1 1
T 2inf ax (L) (= tr[La(pa)(log pa —logon)])
TEA
AT

&Y < (—tr[Ca(pa)(log pa — logoa)]) .

ibingen) Rapid thermalization of spin chain comm. Hamiltonians



OR PRODUCT FIXED POINT

N VILSI FOR DAVIES GENERATOF
ExamMPLES OF MLSI !

DyNAMICS

—BH
Let op = tifﬁ be the Gibbs state of finite-range, commuting Hamiltonian.
rfe

miltoniar



SOR PRODUCT FIXED POINT
VILSI For 1

XAMPLES OF MLSI

—BH
Let op = tifﬁ be the Gibbs state of finite-range, commuting Hamiltonian.
rfe

TH GENER R

The heat-bath generator is defined as:

1/2 —1/2 —1/2 1/2
chon) = 3 (04200 pucar 2okl — o)
xEA
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TENSOR PRODUCT FIXED POINT

SI FOR DA S GENERATOF

ExamMPLES OF MLSI

DyNAMICS

—BH
Let op = 7“@,5;/\}

be the Gibbs state of finite-range, commuting Hamiltonian.

HEAT-BATH GENERATOR

The heat-bath generator is defined as:

1/2 —1/2 —1/2 1/2
chon) = 3 (04200 pucar 2okl — o)
xEA

DAVIES GENERATOR

The Davies generator is given by:
LX) 1= i[Ha, X] + Y_L2(X),
zEA

where the £D are defined in terms of the Fourier coefficients of the correlation functions in
the bath and the ones of the system couplings.
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ExamMPLES OF MLSI

DyNAMICS

—BH
Let op = tifﬁ be the Gibbs state of finite-range, commuting Hamiltonian.
rfe !

HEAT-BATH GENERATOR

The heat-bath generator is defined as:

1/2 —1/2 —1/2 1/2
chon) = 3 (04200 pucar 2okl — o)
xEA

DAVIES GENERATOR

The Davies generator is given by:
LX) = ilHa, X] + Y L2 (X),
zEA

where the £D are defined in terms of the Fourier coefficients of the correlation functions in
the bath and the ones of the system couplings.

SCHMIDT GENERATOR

The Schmidt generator (Bravyi-Vyalyi ’05) can be written as:

e =3 (B0 - X),

zEA

where the conditional expectations do not depend on system-bath couplings.

lization of spin chain comm. Hamilton



ExamMPLES OF MLSI

PREVIOUS RESULTS

Let us recall: For a(£a) a MLSI constant,

loe — oally < v/Z108(1 o) €201,

Rapid th ization of spin chain comm. Hamiltoni



SOR PRODUCT FIXED POINT

- . VILSI FOR
XAMPLES OF MLSI

PREVIOUS RESULTS

Let us recall: For a(£a) a MLSI constant,

loe — oally < v/Z108(1 o) €201,

Using the spectral gap A(La):

loe = oally < v/Tomin e 2EDL,
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PRODUCT FIXED POINT

ExamMPLES OF MLSI

PREVIOUS RESULTS

Let us recall: For a(£a) a MLSI constant,

loe — oally < v/Z108(1 o) €201,

Using the spectral gap A(La):

ot = aally < v/Tomm e >EDE,

SPECTRAL GAP FOR DAVIES AND HEAT-BATH (Kastoryano-Brandao, '16)

Let Cf’D be the heat-bath or Davies generator in 1D. Then, L'f’D has a positive
spectral gap that is independent of the system size, for every temperature.
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OR PRODUCT FIXE
X § )R DAVIES (
ExamMPLES OF MLSI

PREVIOUS RESULTS

Let us recall: For a(£a) a MLSI constant,

loe — oally < v/Z108(1 o) €201,

Using the spectral gap A(La):

ot = aally < v/Tomm e >EDE,

SPECTRAL GAP FOR DAVIES AND HEAT-BATH (Kastoryano-Brandao, '16)

Let [lf’D be the heat-bath or Davies generator in 1D. Then, L'f’D has a positive
spectral gap that is independent of the system size, for every temperature.

MLSI FOR HEAT-BATH WITH TENSOR PRODUCT FIXED POINT (C.-Lucia-Pérez Garcia,
Beigi-Datta-Rouzé '18)

Let £ be the heat-bath generator with tensor product fixed point. Then, it has a
positive MLSI constant.

Angela Capel (Univ inge Rapid thermalization of spin chain comm. Hamiltonians



DR PRODUCT FIXED POINT
OR DAVIES ( ERAT

IPLES OF MLSI

QUASI—FACTORIZATION OF THE RELATIVE ENTROPY

Results of Quasi-Factorization
or Appraximate Tensorization

Classical quasi-factorization i Strong subadditivity
Ent{ ] < ope[Ent{ fFy) + Ent{ f|Fa) Slpasc)+ S(pe) < Span) +Sipsc)

BS-enirop

LX) = B (X))
[ kEalXy<ax]

ozt
|Generalized depolarizing
LAlpa) = 0 @ pae = pa

Hamiltoni



PRODUCT FIXED POINT
VILST FOR DAVIES ¢ ERATORS 1D

ExamMPLES OF MLSI

QUASI—FACTORIZATION OF THE REL

Quantum quasi-factorization

I i y Pincaing onin
Al F ‘g different bases

L Ei(X)
=2X

— P =

Y

Local commuting Hamiltcréan, high T, Schmidt:

i i - Clazsical
‘Generalized depolarizing 1D Heat-bath generator, = ma -
w : e A 2 assumplions - Naarest naighbour

Davies generator

miltoniar



TENSOR PRODUCT FIXED I T

R
S AVIES GENERATORS
EXAMPLES OF MLST MLSI FOR DAVIES GENERATORS IN 1D

MLSI FOR DAVIES GENERATORS IN 1D

MLSI FOR 1D DAVIES GENERATORS, (Bardet-C.-Gao-Lucia-Pérez Garcia-Rouzé, '22)

Let L% be a Davies generator with unique fixed point oa given by the Gibbs state of
a commuting, finite-range, translation-invariant Hamiltonian at any temperature in
1D. Then, LY satisfies a positive MLSI a((£X) = Q(In(|A]) ™).
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MLSI FOR DAVIES GENERATORS IN 1D

MLSI FOR 1D DAVIES GENERATORS, (Bardet-C.-Gao-Lucia-Pérez Garcia-Rouzé, '22)

Let L% be a Davies generator with unique fixed point oa given by the Gibbs state of
a commuting, finite-range, translation-invariant Hamiltonian at any temperature in
1D. Then, LY satisfies a positive MLSI a((£X) = Q(In(|A]) ™).

(Kastoryano-Brandao, '16) LP has a positive spectral gap that is independent of
the system size, for every temperature.
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EXAMPLES OF MLST MLSI FOR DAVIES GENERATORS IN 1D

MLSI FOR DAVIES GENERATORS IN 1D

MLSI FOR 1D DAVIES GENERATORS, (Bardet-C.-Gao-Lucia-Pérez Garcia-Rouzé, '22)

Let L% be a Davies generator with unique fixed point oa given by the Gibbs state of
a commuting, finite-range, translation-invariant Hamiltonian at any temperature in
1D. Then, LY satisfies a positive MLSI a((£X) = Q(In(|A]) ™).

(Kastoryano-Brandao, '16) LP has a positive spectral gap that is independent of
the system size, for every temperature.

Rapid mixing:

sup ||p: — oall; < poly(|A])e™".
PAESA
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MLSI FOR DAVIES GENERATORS IN 1D

MLSI FOR 1D DAVIES GENERATORS, (Bardet-C.-Gao-Lucia-Pérez Garcia-Rouzé, '22)

Let £LX be a Davies generator with unique fixed point oa given by the Gibbs state of
a commuting, finite-range, translation-invariant Hamiltonian at any temperature in
1D. Then, LY satisfies a positive MLSI a((£X) = Q(In(|A]) ™).

(Kastoryano-Brandao, '16) LP has a positive spectral gap that is independent of
the system size, for every temperature.

Rapid mixing:

o

sup |lpt — oall; < poly(|Af)e
PAESA

For a(L£x) a MLSI constant:

llor — oally < v/210g(1/min) e 540t
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MLSI FOR DAVIES GENERATORS IN 1D

MLSI FOR 1D DAVIES GENERATORS, (Bardet-C.-Gao-Lucia-Pérez Garcia-Rouzé, '22)

Let L% be a Davies generator with unique fixed point oa given by the Gibbs state of
a commuting, finite-range, translation-invariant Hamiltonian at any temperature in
1D. Then, LY satisfies a positive MLSI a((£X) = Q(In(|A]) ™).

(Kastoryano-Brandao, '16) LP has a positive spectral gap that is independent of
the system size, for every temperature.

Rapid mixing:

o

sup |[lpt —oall; < poly(|A])e
PAESA

For a(L£x) a MLSI constant:

llor — oally < v/210g(1/min) e 540t

RAPID MIXING

In the setting above, £ has rapid mixing.

Angela Capel (Univ i Rapid thermalization of spin chain comm. Hamiltonians



IXED POI

ZENERATORS IN 1D

SKETCH OF THE

EPA (pA)

“n) - —tr[LA(pp)(log pp — logap)]
a(Ly) = in = 1
PAESA 2D (ppllon) PAESA 2D (ppllop)
EPalp) L EP-lo)
4 aptale) | : = | ko Qm - Dip| Eulpl) Ke(log A R Dol E. i
2D(plle) | gy 201 pllr) & log A| (o) Eulp]] [ Flog 1A o p|| 7
y )

mEr

Essssssw |
e - [ELEE

Let AUB = A CZ and pp,on € Sa. The following holds
D(palloa) < E(O'ACBC) [Da(palloa) + Ds(palloa)],

—1/2 —1/2 —1/2
/®a aAchaAc/ ®UBC/ — 1 gcpge

W)

where  ¢(oepe) = (1 - 2”

Yn

{ i d} FEREREE] "SGBCE}CS

a)
‘ SRR
Dipfier)

Hamiltoni




[ENSOR PRODUCT FIXED POINT
MLST FOR DAVIES ¢ ATORS IN 1D

ExamMPLES OF MLSI

SKETCH OF THE PROOF: QUASI-FACTORIZATION

. _
PAESA 2D (ppllon) PAESA 2D (ppllop)

—tr[Lp(pp)(logpp — logop)] e _EPAlA)

o IF.P'\rﬂ__.‘ _ . %
20 plle) 2D(gla) Krilog \|J TER Df,(lll A e
o i

Let AUB = A CZ and pp,on € Sa. The following holds
D(palloa) < E(O'ACBC) [DA(ﬂAIIO'A) + Dp(palloa)l,

W)

where &(oacpe) = (1—2” 1/2®a aAch 0;§/2®a};é/2—]lAch

Dripfe)

Last step: Spectral gap oqign) MLSI.

. Hamiltonian:




['ENSOR PRODUCT ED POINT
MLST FOR DavI RATORS IN 1D

ExamMPLES OF MLSI

PROOF: CONDITIONAL RELATIVE ENTROPIES + QUASI-FACTORIZATION

N

Conditional relative entropies: Da(pa|loa) := D(palloa) — D(paclloac) ,

DX (palloa) :== D(pallEa(pa)) -

Heat-bath cond. expectation: E4(-) := lim (01/20;3./2 tral-] a;i/QUi/2)n .
n— 0o




T
ORS IN 1D

ExamMPLES OF MLSI

PROOF: CONDITIONAL RELATIVE ENTROPIES + QUASI-FACTORIZATION

Conditional relative entropies: Da(pa|loa) := D(palloa) — D(paclloac) ,

DX (palloa) :== D(pallEa(pa)) -

Heat-bath cond. expectation: E4(-) := lim (01/20;3./2 tral-] a;i/QUi/2)n .
n— 0o

QUASI-FACTORIZATION (C.-Lucia-Pérez Garcia ’18)

Let Hapc and papc,oasc € Sapc. The following holds
D(pagclloasc) < &(oac) [Das(pasclloapc) + Dec(papc|loasc)],

where

1
—1/2

§(oac) =
1—2"U21/2®051/20A0021/2®Oc —]lAcH

oo

TAme

¢ <&(@-d)

Rapid thermalization of spin chain comm. Hamiltonians




ExamMPLES OF MLSI

PROOF: QUASI-FACTORIZATION

E B

Ay Az

e~ BHA

oA = (PR is the Gibbs state of a k-local, commuting Hamiltonian H}y .

QUASI—FACTORIZATION

Let AUB = A CZ and pp,op € Sp. The following holds
D(pnlloa) < &(cacpe) [Dalpalloa) + Delpalloa)l,

where 1

&(oacpe) = =
®0’ 1/ AcBCO'AC/ ®

—1/2 —1/

— IlAch

=

o8 = D 04, (00,)F B (00, R(A;004:)°
JjeJ

in comm. Hamiltonia
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ExamMPLES OF MLSI

PROOF: QUASI-FACTORIZATION

E B

Ay Az

e~ BHA

oA = (PR is the Gibbs state of a k-local, commuting Hamiltonian H}y .

QUASI—FACTORIZATION

Let AUB = A CZ and pp,op € Sp. The following holds
D(pnlloa) < &(cacpe) [Dalpalloa) + Delpalloa)l,

where 1

&(oacpe) = =
®op 1/ GG GAC/ Q0

—1/2 —1/

— IlAch

=

QUASI-FACTORIZATION FOR QUANTUM MARKOV CHAINS (Bardet-C.-Lucia-Pérez Garcia-Rouzé’19)

Since op is a QMC between A; <> 9(A;) <> (A; U9DA;)¢, then:

Da(palloa) < D Da,(palloa).

A J%BJ A:(0ai)E © T (0a;)F(A;U04,) @000e00900

Angela Capel (Ur ) apid ther f spin chain comm. Hamiltonians



ExamMPLES OF MLSI

PROOF: DECAY OF CORRELATIONS

90000000000000000

i

Q RIZ
Let AUB = A CZ and pp,op € Sp. The following holds

D(ppllon) < &(gacBe) Z [Da,(palloa) + D, (palloa)]
where 1
£(oacpe) = 72

—1/2 —1 —1/2 —1/2
1—2H0Ac/ ®0ope o‘AchaAC/ ®0BC/ — T gcpe

2900000020000000000
I S —
' 3 E P 1y

20000000000
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ExamMPLES OF MLSI

PROOF: DECAY OF CORRELATIONS

i

Let AUB = A CZ and pp,op € Sp. The following holds

D(ppllon) < &(gacBe) Z [Da,(palloa) + D, (palloa)]

where

1
&(oacpe) = = = = —
1 —2H0Acl/2 ®oBi/2crAch GACI/Q ®0Bi/2 — 1 pcpe
20000000000000000 @ooed0000000000

“r ¥ “ » B .
o/ 3] . o £ N X

DECAY OF CORRELATIONS, (Bluhm-C.-Pérez Herndndez, ’21)

Let oxyz be the Gibbs state of a finite-range, translation-invariant Hamiltonian. There is
£ +— §(¢) with exponential decay such that:

HO';(1 ®U§10XZ — ﬂXZHoo < 6(|Y|)

Angela Capel (Univ ) Rapid thermalization of spin chain comm. Hamiltonians



ExamMPLES OF MLSI

PROOF: DECAY OF CORRELATIONS

Let AUB = A CZ and pp,op € Sp. The following holds
D(pallon) < &(oacpe) > [Da,(palloa) + D, (palloa)] ,
i
where 1
£(oacpe) = 72

—1/2

=1l 2
1—2HO'AC ®0’BC —IlAch

—1/2 —1
0 AcBe GAC/ ® UBC/

0000000000

2900000020000000000 Qo090
SRS S | —— S— -

3] . o £ N x

DECAY OF CORRELATIONS, (Bluhm-C.-Pérez Herndndez, ’21)

Let oxyz be the Gibbs state of a finite-range, translation-invariant Hamiltonian. There is
£ +— §(¢) with exponential decay such that:

HO';(1 ®U§10XZ — ﬂXZHoo < 6(|Y|)

As a consequence, (o gcpe) is uniformly bounded as long as # segments = O(|A|/1In |A]).

Angela Capel (Uni ) Rapid thermalization of spin chain comm. Hamiltonians




SOR PRODU

MLSI FOR DA

ExamMPLES OF MLSI

PROOF: GEOMETRIC RECURSIVE ARGUMENT

A n f- N .
== - s = A -f \\'I
2299929000202 00000 \ |
s . - b\ /4
WA

Let us recall: Da(palloa) := D(palloa) — D(paclloac) ,
DX (palloa) := D(pallEa(pa)) -

® B

Rapid thermalization of spin chain comm. Hamiltonians
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PROOF: GEOMETRIC RECURSIVE ARGUMENT

A n f- -\\\

s00e0 s0s - I@\I

2099092000000 0090009 \ |
s . - b\ /4
i NGy

Let us recall: Da(palloa) := D(palloa) — D(paclloac) ,
DX (palloa) := D(pallEa(pa)) -

COMPARISON CONDITIONAL REL. ENT. (Bardet-C.-Rouzé, '20)

Da(palloa) < DX (palloa)

Therefore, by this and + N , we have:

D(palloa) < 5(0ACBE)Z [Dfi (palloa) + D5, (PA||UA)} !

and thus

a(ﬁf) > mmin {OéAi(,Cf),aBi (Lf)} ,
for OCA,;(ACE) - 7tr[££1i(PA)(lnpA—]ng—A)]

PAESA D(PA”EIM (pa))

ibingen) Rapid thermalization of spin chain comm. Hamiltonians



ExamMPLES OF MLSI

Proor: PositivE CMLSI

D(pallEa;(pa)) < 4ka;, Y D(pall E;(pa))
JEA;

thermalization of spin in comm. Hamiltonia



PRODUCT FIXED F T
R DAVIES GENERATORS IN 1D

ExamMPLES OF MLSI

Proor: PositivE CMLSI

ION OF COND. RE E ENTROPIES (Gao-Rouzé,

D(pallEa;(pa)) < 4ka;, Y D(pall E;(pa))
JEA;

REDUCTION FROM CMLSI TO GAP

1

kAiOCm,

where A < 1 is a constant related to the spectral gap by the detectability lemma.
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ExamMPLES OF MLSI

Proor: PositivE CMLSI

REDUCTION OF COND. REL ENTROPIES (Gao-Rouzé, '21)

D(pallEa;(pa)) < 4ka;, Y D(pall E;(pa))

JEA;

REDUCTION FROM CMLSI TO GAP

1

kAiOCm,

where \ < 1 is a constant related to the spectral gap by the detectability lemma.

As a consequence of the non-closure of the spectral gap proved for 1D commuting
Gibbs samplers (Kastoryano-Brando ’16), ka, = O(In|A|) for 4; = O(In|A]).
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ExamMPLES OF MLSI

Proor: PositivE CMLSI

REDUCTION OF COND. RELATIVE ENTROPIES (Gao-Rouzé, '21)

D(pallEa;(pa)) < 4ka;, Y D(pall E;(pa))
JEA;

REDUCTION FROM CMLSI TO GAP

o« L
AT N

k

where \ < 1 is a constant related to the spectral gap by the detectability lemma.

As a consequence of the non-closure of the spectral gap proved for 1D commuting
Gibbs samplers (Kastoryano-Brando ’16), ka, = O(In|A|) for 4; = O(In|A]).

CMLSI (Gao-Rouzé, ’21)

The CMLSI of the local generators is positive:

(L) == grelga(ﬁjp ®Idg) > 0.

Rapid thermalization of spin chain comm. Hamiltonians



LAST STEP

Heat-bath cond. expectation: Ef () := lim (011\/2023/2 trA[~]a;3./2011X/2) .

n—o0o

Davies cond. expectation: Ef,)(«) = tlim ew/D*(-) .
— 00
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ExamMPLES OF MLSI

LAST STEP

Heat-bath cond. expectation: Ef () := lim (011\/2023/2 trA[~]a;3./2011X/2) .

n—o0o

Davies cond. expectation: Ef;)(«) = tlim ew/D*(-) .
— 00

DAVIES AND HEAT-BATH DYNAMICS (Bardet-C.-Rouzé, '20)

The conditional expectations associated to Davies and heat-bath dynamics coincide.

Rapid thermalization of spin chain comm. Hamiltoniar



LAST STEP

Heat-bath cond. expectation: Ef () := lim (011\/2023/2 trA[-]U;i/QU}X/Q) .
n—oo

Davies cond. expectation: EE(«) = tlim ewg(~) .
— 00

DAVIES AND HEAT-BATH DYNAMICS (Bardet-C.-Rouzé, '20)

The conditional expectations associated to Davies and heat-bath dynamics coincide.

For £, there is a positive MLSI constant a(£%) = Q(In |A|~1).
Therefore, £ has rapid mixing.
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LAST STEP

Heat-bath cond. expectation: Ef () := lim (011\/2023/2 trA[-]U;i/QU}X/Q) .
n—oo

Davies cond. expectation: EE(«) = tlim ewg(~) .
— 00

DAVIES AND HEAT-BATH DYNAMICS (Bardet-C.-Rouzé, '20)

The conditional expectations associated to Davies and heat-bath dynamics coincide.

For £, there is a positive MLSI constant a(£%) = Q(In |A|~1).
Therefore, £ has rapid mixing.

in comm. Hamilton
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Consequences of this result:
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CONSEQUENCES

Consequences of this result:

The Davies generator converging to the Gibbs state of a local, commuting,
translation-invariant Hamiltonian in 1D has rapid mixing for every g > 0.
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Consequences of this result:

The Davies generator converging to the Gibbs state of a local, commuting,
translation-invariant Hamiltonian in 1D has rapid mixing for every g > 0.

e Dissipative phase transitions: Absence of dissipative phase transitions in 1D
for Davies evolutions over translation-invariant spin chains.
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Consequences of this result:

The Davies generator converging to the Gibbs state of a local, commuting,
translation-invariant Hamiltonian in 1D has rapid mixing for every g > 0.

e Dissipative phase transitions: Absence of dissipative phase transitions in 1D
for Davies evolutions over translation-invariant spin chains.

o Symmetry Protected Topological phases: Example of a non-trivial
interacting SPT phase with decoherence time of O(log |A|).
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CONSEQUENCES

Consequences of this result:

The Davies generator converging to the Gibbs state of a local, commuting,
translation-invariant Hamiltonian in 1D has rapid mixing for every S > 0.

e Dissipative phase transitions: Absence of dissipative phase transitions in 1D
for Davies evolutions over translation-invariant spin chains.

o Symmetry Protected Topological phases: Example of a non-trivial
interacting SPT phase with decoherence time of O(log |A|).

Corollary for SPT phases

For every 8 > 0, 1D SPT phases thermalize in time logarithmic in |A|, even when the
thermal bath is chosen to be weakly symmetric.
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CONSEQUENCES

Consequences of this result:

The Davies generator converging to the Gibbs state of a local, commuting,
translation-invariant Hamiltonian in 1D has rapid mixing for every S > 0.

e Dissipative phase transitions: Absence of dissipative phase transitions in 1D
for Davies evolutions over translation-invariant spin chains.

o Symmetry Protected Topological phases: Example of a non-trivial
interacting SPT phase with decoherence time of O(log |A|).

Corollary for SPT phases

For every 8 > 0, 1D SPT phases thermalize in time logarithmic in |A|, even when the
thermal bath is chosen to be weakly symmetric.

Example: 1D Cluster state. Unique ground state of a Hamiltonian with 3-local
interactions given by Z ® X ® Z (and p.b.c.).

Angela Capel (Unive - T S Rapid thermalization of spin chain comm. Hamiltonians
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CONSEQUENCES

Consequences of this result:

The Davies generator converging to the Gibbs state of a local, commuting,
translation-invariant Hamiltonian in 1D has rapid mixing for every S > 0.

e Dissipative phase transitions: Absence of dissipative phase transitions in 1D
for Davies evolutions over translation-invariant spin chains.

o Symmetry Protected Topological phases: Example of a non-trivial
interacting SPT phase with decoherence time of O(log |A|).

Corollary for SPT phases

For every 8 > 0, 1D SPT phases thermalize in time logarithmic in |A|, even when the
thermal bath is chosen to be weakly symmetric.

Example: 1D Cluster state. Unique ground state of a Hamiltonian with 3-local
interactions given by Z ® X ® Z (and p.b.c.).

Important: Our result does not apply in the presence of a strong symmetry.
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In this talk:
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o We have reviewed modified logarithmic Sobolev constants as a tool to prove
rapid mixing.

Angela Capel (Uni ) id thermalizati f spi in comm. Hamiltoni



XAMPLES OF MLSI

CONCLUSIONS

In this talk:

o We have discussed dissipative evolutions of quantum many-body systems and
their mixing time.

o We have reviewed modified logarithmic Sobolev constants as a tool to prove
rapid mixing.

o We have shown that some results of quasi-factorization and decay of correlations
imply positivity of MLSI constants.
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OPEN PROBLEMS AND LINES OF RESEARCH

Open problems:
o In the last result, can the MLSI be independent of the system size?
e Extension to more dimensions.

e 2D, quantum double models (positive spectral gap recently proven in (Lucia-Perez
Garcia-Perez Hernandez, '21) ).
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o In the last result, can the MLSI be independent of the system size?
o Extension to more dimensions.
e 2D, quantum double models (positive spectral gap recently proven in (Lucia-Perez

Garcia-Perez Hernandez, '21) ).

e Improve results of quasi-factorization for the relative entropy: More systems?
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EXAMPLES OF MLSI MLSI FOR DAVIES GENERATORS IN 1D

OPEN PROBLEMS AND LINES OF RESEARCH

Open problems:
o In the last result, can the MLSI be independent of the system size?

o Extension to more dimensions.

e 2D, quantum double models (positive spectral gap recently proven in (Lucia-Perez
Garcia-Perez Hernandez, '21) ).

e Improve results of quasi-factorization for the relative entropy: More systems?

o New functional inequalities for different quantities, such as the
Belavkin-Staszewski relative entropy:

Dgs(pllo) = tr [plog(p1/20_1p1/2)] :
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Thank you for your attention!

Do you have any questions?

David Pérez-Garcia .
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—
Ivan Bardet
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