Rapid thermalization of spin chain commuting Hamiltonians

Modified logarithmic Sobolev inequalities for quantum many-body systems

Ángela Capel

(Universität Tübingen)

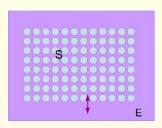
Joint work with I. Bardet, L. Gao, A. Lucia, D. Pérez-García, C. Rouzé PRL, 130, 060401 (2023) & arXiv:2112.00601

QIT - Quantum many body systems and quantum information, ICMAT Madrid
13 March 2023

MOTIVATION: OPEN QUANTUM MANY-BODY SYSTEMS

Open quantum many-body system.

No experiment can be executed at zero temperature or be completely shielded from noise.



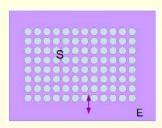
- Finite lattice $\Lambda \subset \mathbb{Z}^d$.
- Hilbert space associated to Λ is $\mathcal{H}_{\Lambda} = \bigotimes_{x \in \Lambda} \mathcal{H}_{x}$.
- Density matrices: $S_{\Lambda} := S(\mathcal{H}_{\Lambda}) = \{ \rho_{\Lambda} \in \mathcal{B}_{\Lambda} : \rho_{\Lambda} \geq 0 \text{ and } \operatorname{tr}[\rho_{\Lambda}] = 1 \}.$

- \bullet Dynamics of S is dissipative!
- The continuous-time evolution of a state on S is given by a q. Markov semigroup (Markovian approximation).

MOTIVATION: OPEN QUANTUM MANY-BODY SYSTEMS

Open quantum many-body system.

No experiment can be executed at zero temperature or be completely shielded from noise.



- Finite lattice $\Lambda \subset \mathbb{Z}^d$.
- Hilbert space associated to Λ is $\mathcal{H}_{\Lambda} = \bigotimes_{x \in \Lambda} \mathcal{H}_{x}$.
- Density matrices: $S_{\Lambda} := S(\mathcal{H}_{\Lambda}) = \{ \rho_{\Lambda} \in \mathcal{B}_{\Lambda} : \rho_{\Lambda} \geq 0 \text{ and } \operatorname{tr}[\rho_{\Lambda}] = 1 \}.$

- Dynamics of S is dissipative!
- The continuous-time evolution of a state on S is given by a q. Markov semigroup (Markovian approximation).

QUANTUM MARKOV SEMIGROUP

A quantum Markov semigroup is a 1-parameter continuous semigroup $\{\mathcal{T}_t\}_{t\geq 0}$ of completely positive, trace preserving (CPTP) maps (a.k.a. quantum channels) in \mathcal{S}_{Λ} .

Semigroup:

•
$$\mathcal{T}_t \circ \mathcal{T}_s = \mathcal{T}_{t+s}$$
.

•
$$\mathcal{T}_0 = 1$$
.

QUANTUM MARKOV SEMIGROUP

A quantum Markov semigroup is a 1-parameter continuous semigroup $\{\mathcal{T}_t\}_{t\geq 0}$ of completely positive, trace preserving (CPTP) maps (a.k.a. quantum channels) in \mathcal{S}_{Λ} .

Semigroup:

- $\mathcal{T}_t \circ \mathcal{T}_s = \mathcal{T}_{t+s}$.
- $\mathcal{T}_0 = 1$.

$$\frac{d}{dt}\mathcal{T}_t = \mathcal{T}_t \circ \mathcal{L}_{\Lambda} = \mathcal{L}_{\Lambda} \circ \mathcal{T}_t.$$

QMS GENERATOR

The infinitesimal generator \mathcal{L}_{Λ} of the previous semigroup of quantum channels is usually called **Liouvillian**, or **Lindbladian**.

$$\mathcal{T}_t = e^{t\mathcal{L}_{\Lambda}} \Leftrightarrow \mathcal{L}_{\Lambda} = \frac{d}{dt}\mathcal{T}_t \mid_{t=0}.$$

QUANTUM MARKOV SEMIGROUP

A quantum Markov semigroup is a 1-parameter continuous semigroup $\{\mathcal{T}_t\}_{t\geq 0}$ of completely positive, trace preserving (CPTP) maps (a.k.a. quantum channels) in \mathcal{S}_{Λ} .

Semigroup:

- $\mathcal{T}_t \circ \mathcal{T}_s = \mathcal{T}_{t+s}$.
- $\mathcal{T}_0 = 1$.

$$\frac{d}{dt}\mathcal{T}_t = \mathcal{T}_t \circ \mathcal{L}_{\Lambda} = \mathcal{L}_{\Lambda} \circ \mathcal{T}_t.$$

QMS GENERATOR

The infinitesimal generator \mathcal{L}_{Λ} of the previous semigroup of quantum channels is usually called **Liouvillian**, or **Lindbladian**.

$$\mathcal{T}_t = e^{t\mathcal{L}_{\Lambda}} \Leftrightarrow \mathcal{L}_{\Lambda} = \frac{d}{dt}\mathcal{T}_t \mid_{t=0}.$$

For
$$\rho_{\Lambda} \in \mathcal{S}_{\Lambda}$$
, $\mathcal{L}_{\Lambda}(\rho_{\Lambda}) = -i[H_{\Lambda}, \rho_{\Lambda}] + \sum_{k \in \Lambda} \widetilde{\mathcal{L}}_{k}(\rho_{\Lambda})$ **GKLS equation**.

QUANTUM MARKOV SEMIGROUP

A quantum Markov semigroup is a 1-parameter continuous semigroup $\{\mathcal{T}_t\}_{t\geq 0}$ of completely positive, trace preserving (CPTP) maps (a.k.a. quantum channels) in \mathcal{S}_{Λ} .

Semigroup:

- $\mathcal{T}_t \circ \mathcal{T}_s = \mathcal{T}_{t+s}$.
- $\mathcal{T}_0 = 1$.

$$\frac{d}{dt}\mathcal{T}_t = \mathcal{T}_t \circ \mathcal{L}_{\Lambda} = \mathcal{L}_{\Lambda} \circ \mathcal{T}_t.$$

QMS generator

The infinitesimal generator \mathcal{L}_{Λ} of the previous semigroup of quantum channels is usually called **Liouvillian**, or **Lindbladian**.

$$\mathcal{T}_t = e^{t\mathcal{L}_{\Lambda}} \Leftrightarrow \mathcal{L}_{\Lambda} = \frac{d}{dt}\mathcal{T}_t \mid_{t=0}.$$

For
$$\rho_{\Lambda} \in \mathcal{S}_{\Lambda}$$
, $\mathcal{L}_{\Lambda}(\rho_{\Lambda}) = -i[H_{\Lambda}, \rho_{\Lambda}] + \sum_{k \in \Lambda} \widetilde{\mathcal{L}}_{k}(\rho_{\Lambda})$ GKLS equation.

$\mathbf{Mixing} \; \Leftrightarrow \; \mathbf{Convergence}$

Primitive QMS

We assume that $\left\{\mathcal{T}_t\right\}_{t\geq 0}$ has a unique full-rank invariant state which we denote by σ_{Λ}

Mixing ⇔ Convergence

Primitive QMS

We assume that $\{\mathcal{T}_t\}_{t\geq 0}$ has a unique full-rank invariant state which we denote by σ_{Λ} .

Detailed balance condition

We also assume that the quantum Markov process studied is **reversible**, i.e., it satisfies the **detailed balance condition**:

$$\langle f, \mathcal{L}_{\Lambda}^*(g) \rangle_{\sigma} = \langle \mathcal{L}_{\Lambda}^*(f), g \rangle_{\sigma},$$

for every $f, g \in \mathcal{B}_{\Lambda}$ and Hermitian, where

$$\langle f, g \rangle_{\sigma} = \operatorname{tr} \left[f \, \sigma^{1/2} \, g \, \sigma^{1/2} \right]$$

$Mixing \Leftrightarrow Convergence$

Primitive QMS

We assume that $\{\mathcal{T}_t\}_{t\geq 0}$ has a unique full-rank invariant state which we denote by σ_{Λ} .

Detailed balance condition

We also assume that the quantum Markov process studied is **reversible**, i.e., it satisfies the **detailed balance condition**:

$$\langle f, \mathcal{L}_{\Lambda}^{*}(g) \rangle_{\sigma} = \langle \mathcal{L}_{\Lambda}^{*}(f), g \rangle_{\sigma},$$

for every $f, g \in \mathcal{B}_{\Lambda}$ and Hermitian, where

$$\langle f, g \rangle_{\sigma} = \operatorname{tr} \left[f \, \sigma^{1/2} \, g \, \sigma^{1/2} \right] \, .$$

Notation: $\rho_t := \mathcal{T}_t(\rho)$.

$$\rho_{\Lambda} \xrightarrow{t} \rho_{t} := \mathcal{T}_{t}(\rho_{\Lambda}) = e^{t\mathcal{L}_{\Lambda}}(\rho_{\Lambda}) \stackrel{t \to \infty}{\longrightarrow} \sigma_{\Lambda}$$

Mixing ⇔ Convergence

Primitive QMS

We assume that $\{\mathcal{T}_t\}_{t\geq 0}$ has a unique full-rank invariant state which we denote by σ_{Λ} .

Detailed balance condition

We also assume that the quantum Markov process studied is **reversible**, i.e., it satisfies the **detailed balance condition**:

$$\langle f, \mathcal{L}_{\Lambda}^{*}(g) \rangle_{\sigma} = \langle \mathcal{L}_{\Lambda}^{*}(f), g \rangle_{\sigma},$$

for every $f, g \in \mathcal{B}_{\Lambda}$ and Hermitian, where

$$\langle f, g \rangle_{\sigma} = \operatorname{tr} \left[f \, \sigma^{1/2} \, g \, \sigma^{1/2} \right] \, .$$

Notation: $\rho_t := \mathcal{T}_t(\rho)$.

$$\rho_{\Lambda} \xrightarrow{t} \rho_{t} := \mathcal{T}_{t}(\rho_{\Lambda}) = e^{t\mathcal{L}_{\Lambda}}(\rho_{\Lambda}) \stackrel{t \to \infty}{\longrightarrow} \sigma_{\Lambda}$$

MIXING TIME

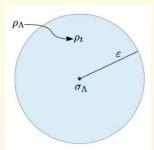
- Under the previous conditions, there is always convergence to σ_{Λ} .
- How fast does convergence happen?

Note $\mathcal{T}_{\infty}(\rho) := \sigma_{\Lambda}$ for every ρ .

MIXING TIME

We define the **mixing time** of $\{\mathcal{T}_t\}$ by

$$t_{\mathrm{mix}}(\varepsilon) = \min \bigg\{ t > 0 : \sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \| \mathcal{T}_{t}(\rho) - \mathcal{T}_{\infty}(\rho) \|_{1} \leq \varepsilon \bigg\}.$$



RAPID MIXING

MIXING TIME

We define the **mixing time** of $\{\mathcal{T}_t\}$ by

$$t_{\min}(\varepsilon) = \min \left\{ t > 0 : \sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \|\rho_{t} - \sigma_{\Lambda}\|_{1} \le \varepsilon \right\}.$$

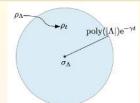
Recall: $\rho_t := \mathcal{T}_t(\rho), \ \sigma_{\Lambda} := \mathcal{T}_{\infty}(\rho).$

RAPID MIXING

We say that \mathcal{L}_{Λ} satisfies **rapid mixing** if

$$\sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \|\rho_t - \sigma_{\Lambda}\|_1 \le \operatorname{poly}(|\Lambda|) e^{-\gamma t}.$$

 $t_{\rm mix}(\varepsilon) \sim {\rm poly} \, \log(|\Lambda|).$



RAPID MIXING

MIXING TIME

We define the **mixing time** of $\{\mathcal{T}_t\}$ by

$$t_{\min}(\varepsilon) = \min \left\{ t > 0 : \sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \|\rho_{t} - \sigma_{\Lambda}\|_{1} \le \varepsilon \right\}.$$

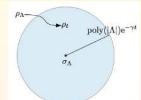
Recall: $\rho_t := \mathcal{T}_t(\rho), \ \sigma_{\Lambda} := \mathcal{T}_{\infty}(\rho).$

RAPID MIXING

We say that \mathcal{L}_{Λ} satisfies **rapid mixing** if

$$\sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \|\rho_t - \sigma_{\Lambda}\|_1 \le \text{poly}(|\Lambda|)e^{-\gamma t}.$$

 $t_{\text{mix}}(\varepsilon) \sim \text{poly log}(|\Lambda|).$



Applications to quantum information/quantum computing

What are the implications of rapid mixing?

$$\begin{split} & \underset{\rho \in \mathcal{S}(\mathcal{H}_{\Lambda})}{\operatorname{sup}} \|T_{t}(\rho) - \sigma\|_{1} \leq \operatorname{poly}(|\Lambda|) \mathrm{e}^{-\gamma t} \\ & \underset{\rho \in \mathcal{S}(\mathcal{H}_{\Lambda})}{\operatorname{Mixing time:}} \ \tau(\epsilon) = \mathcal{O}(\operatorname{polylog}(|\Lambda|)) \end{split}$$

"Negative" point of view:

• Quantum properties that hold in the ground state but not in the Gibbs state are suppressed too fast for them to be of any reasonable use.

"Positive" point of view:

- Thermal states with short mixing time can be **constructed efficiently** with a quantum device that simulates the effect of the thermal bath.
- This has important implications as a self-studying open problem as well as in optimization problems via simulated annealing type algorithms.

Applications to quantum information/quantum computing

If rapid mixing, no error correction:

W. 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			
Rapid mixing	Easy $t_{\rm mix} \sim \log(n)$	$t_{\mathrm{mix}} \sim \mathrm{poly}(n)$	$t_{ m mix} \sim \exp(n)$ Hard
$\begin{split} \sup_{\rho \in \mathcal{S}(\mathcal{H}_A)} \ T_t(\rho) - \sigma\ _1 &\leq \operatorname{poly}(\Lambda) \mathrm{e}^{-\gamma t} \\ Mixing time; \ r(\varepsilon) &= \mathcal{O}(\operatorname{polylog}(\Lambda)) \end{split}$	Efficient prediction	Error correction Topological order	Self-correction Quantum memories
Wiking time, 147 - 13 m/matinity	Speed-up for SDP solvers		

Main applications or consequences:

- Robust and efficient preparation of topologically ordered phases of matter via dissipation.
- Design of more efficient quantum error-correcting codes optimized for correlated Markovian noise models.
- Stability against local perturbations (Cubitt, Lucia, Michalakis, Pérez-García '15)
- Area law for mutual information (Brandao, Cubitt, Lucia, Michalakis, Pérez-García '15)
- Gaussian concentration inequalities (Lipschitz observables) (C., Rouzé, S. Franca '20)
- Finite blocklength refinement of quantum Stein lemma (C., Rouzé, Stilck Franca '20)
- Quantum annealers: Output an energy closed to that of the fixed point after short time (C., Rouzé, Stilck Franca '20)
- Preparation Gibbs states: Existence of local quantum circuits with logarithmic depth to prepare the Gibbs state (C., Rouzé, Stilck Franca '20)
- Establish the absence of dissipative phase transitions (Bardet, C., Gao, Lucia, Pérez-García, Rouzé '21)
- Examples of interacting **SPT phases** with decoherence time growing logarithmically with the system size for thermal noise (Bardet, C., Gao, Lucia, Pérez-García, Rouzé '21)

 And many more

Applications to quantum information/quantum computing

If rapid mixing, no error correction:

W. 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			
Rapid mixing	Easy $t_{\rm mix} \sim \log(n)$	$t_{\mathrm{mix}} \sim \mathrm{poly}(n)$	$t_{ m mix} \sim \exp(n)$ Hard
$\begin{split} \sup_{\rho \in \mathcal{S}(\mathcal{H}_A)} \ T_t(\rho) - \sigma\ _1 &\leq \operatorname{poly}(\Lambda) \mathrm{e}^{-\gamma t} \\ Mixing time; \ r(\varepsilon) &= \mathcal{O}(\operatorname{polylog}(\Lambda)) \end{split}$	Efficient prediction	Error correction Topological order	Self-correction Quantum memories
Wiking time, 147 - 13 m/matinity	Speed-up for SDP solvers		

Main applications or consequences:

- Robust and efficient preparation of topologically ordered phases of matter via dissipation.
- Design of more efficient quantum error-correcting codes optimized for correlated Markovian noise models.
- Stability against local perturbations (Cubitt, Lucia, Michalakis, Pérez-García '15)
- Area law for mutual information (Brandao, Cubitt, Lucia, Michalakis, Pérez-García '15)
- Gaussian concentration inequalities (Lipschitz observables) (C., Rouzé, S. Franca '20)
- Finite blocklength refinement of **quantum Stein lemma** (C., Rouzé, Stilck Franca '20)
- Quantum annealers: Output an energy closed to that of the fixed point after short time (C., Rouzé, Stilck Franca '20)
- Preparation Gibbs states: Existence of local quantum circuits with logarithmic depth to prepare the Gibbs state (C., Rouzé, Stilck Franca '20)
- Establish the absence of **dissipative phase transitions** (Bardet, C., Gao, Lucia, Pérez-García, Rouzé '21)
- Examples of interacting SPT phases with decoherence time growing logarithmically with the system size for thermal noise (Bardet, C., Gao, Lucia, Pérez-García, Rouzé '21)
- And many more...

Recall:
$$\rho_t := \mathcal{T}_t(\rho)$$
.

Master equation:

$$\partial_t \rho_t = \mathcal{L}_{\Lambda}(\rho_t).$$

MODIFIED LOGARITHMIC SOBOLEV INEQUALITY (MLSI)

Recall: $\rho_t := \mathcal{T}_t(\rho)$.

Master equation:

$$\partial_t \rho_t = \mathcal{L}_{\Lambda}(\rho_t).$$

Relative entropy of ρ_t and σ_{Λ} :

$$D(\rho_t || \sigma_{\Lambda}) = \operatorname{tr}[\rho_t(\log \rho_t - \log \sigma_{\Lambda})].$$

MODIFIED LOGARITHMIC SOBOLEV INEQUALITY (MLSI)

Recall: $\rho_t := \mathcal{T}_t(\rho)$.

Master equation:

$$\partial_t \rho_t = \mathcal{L}_{\Lambda}(\rho_t).$$

Relative entropy of ρ_t and σ_{Λ} :

$$D(\rho_t||\sigma_{\Lambda}) = \operatorname{tr}[\rho_t(\log \rho_t - \log \sigma_{\Lambda})].$$

Differentiating

$$\partial_t D(\rho_t || \sigma_{\Lambda}) = \operatorname{tr}[\mathcal{L}_{\Lambda}(\rho_t)(\log \rho_t - \log \sigma_{\Lambda})].$$

MODIFIED LOGARITHMIC SOBOLEV INEQUALITY (MLSI)

Recall: $\rho_t := \mathcal{T}_t(\rho)$.

Master equation:

$$\partial_t \rho_t = \mathcal{L}_{\Lambda}(\rho_t).$$

Relative entropy of ρ_t and σ_{Λ} :

$$D(\rho_t||\sigma_{\Lambda}) = \operatorname{tr}[\rho_t(\log \rho_t - \log \sigma_{\Lambda})].$$

Differentiating:

$$\partial_t D(\rho_t || \sigma_{\Lambda}) = \operatorname{tr}[\mathcal{L}_{\Lambda}(\rho_t)(\log \rho_t - \log \sigma_{\Lambda})].$$

Lower bound for the derivative of $D(\rho_t||\sigma_{\Lambda})$ in terms of itself:

$$2\alpha D(\rho_t || \sigma_{\Lambda}) < -\operatorname{tr}[\mathcal{L}_{\Lambda}(\rho_t)(\log \rho_t - \log \sigma_{\Lambda})]$$

Modified logarithmic Sobolev inequality

Recall: $\rho_t := \mathcal{T}_t(\rho)$.

Master equation:

$$\partial_t \rho_t = \mathcal{L}_{\Lambda}(\rho_t).$$

Relative entropy of ρ_t and σ_{Λ} :

$$D(\rho_t||\sigma_{\Lambda}) = \operatorname{tr}[\rho_t(\log \rho_t - \log \sigma_{\Lambda})].$$

Differentiating:

$$\partial_t D(\rho_t || \sigma_{\Lambda}) = \operatorname{tr}[\mathcal{L}_{\Lambda}(\rho_t)(\log \rho_t - \log \sigma_{\Lambda})].$$

Lower bound for the derivative of $D(\rho_t||\sigma_{\Lambda})$ in terms of itself:

$$2\alpha D(\rho_t||\sigma_{\Lambda}) \le -\operatorname{tr}[\mathcal{L}_{\Lambda}(\rho_t)(\log \rho_t - \log \sigma_{\Lambda})].$$

Modified logarithmic Sobolev inequality

MLSI CONSTANT

The MLSI constant of \mathcal{L}_{Λ} is defined as:

$$\alpha(\mathcal{L}_{\Lambda}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

If $\liminf_{\Lambda \to \mathbb{Z}^d} \alpha(\mathcal{L}_{\Lambda}) > 0$:

$$D(\rho_t||\sigma_{\Lambda}) \leq D(\rho_{\Lambda}||\sigma_{\Lambda})e^{-2\alpha(\mathcal{L}_{\Lambda})t}$$

MLSI CONSTANT

The MLSI constant of \mathcal{L}_{Λ} is defined as:

$$\alpha(\mathcal{L}_{\Lambda}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

If $\lim_{\Lambda \to \mathbb{Z}^d} \inf \alpha(\mathcal{L}_{\Lambda}) > 0$:

$$D(\rho_t||\sigma_{\Lambda}) \leq D(\rho_{\Lambda}||\sigma_{\Lambda})e^{-2\alpha(\mathcal{L}_{\Lambda})t},$$

and Pinsker's inequality
$$\left(\frac{1}{2}\|\rho - \sigma\|_1^2 \le D(\rho\|\sigma) \text{ for } \|A\|_1 := \text{tr}[|A|]\right)$$

 $\|\rho_t - \sigma_{\Lambda}\|_1 \le \sqrt{2D(\rho_{\Lambda}||\sigma_{\Lambda})} e^{-\alpha(\mathcal{L}_{\Lambda}) t} \le \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}_{\Lambda}) t}.$

MLSI CONSTANT

The MLSI constant of \mathcal{L}_{Λ} is defined as:

$$\alpha(\mathcal{L}_{\Lambda}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

If $\lim_{\Lambda \to \mathbb{Z}^d} \inf \alpha(\mathcal{L}_{\Lambda}) > 0$:

$$D(\rho_t || \sigma_{\Lambda}) \leq D(\rho_{\Lambda} || \sigma_{\Lambda}) e^{-2 \alpha(\mathcal{L}_{\Lambda}) t},$$

and Pinsker's inequality $\left(\frac{1}{2}\|\rho - \sigma\|_1^2 \le D(\rho\|\sigma) \text{ for } \|A\|_1 := \operatorname{tr}[|A|]\right)$

$$\|\rho_t - \sigma_{\Lambda}\|_1 \le \sqrt{2D(\rho_{\Lambda}||\sigma_{\Lambda})} e^{-\alpha(\mathcal{L}_{\Lambda}) t} \le \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}_{\Lambda}) t}.$$

For thermal states
$$\sigma_{\Lambda} = e^{-\beta H} / \text{tr}[e^{-\beta H}],$$

 $\sigma_{\min} \sim 1/\exp(|\Lambda|).$

Rapid mixing $\| \mathbf{r}_t - \sigma_{\Lambda} \|_1 \le \text{poly}(|\Lambda|) e^{-\gamma t}$

MLSI CONSTANT

The MLSI constant of \mathcal{L}_{Λ} is defined as:

$$\alpha(\mathcal{L}_{\Lambda}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

If $\lim \inf \alpha(\mathcal{L}_{\Lambda}) > 0$:

$$D(\rho_t||\sigma_{\Lambda}) \leq D(\rho_{\Lambda}||\sigma_{\Lambda})e^{-2\alpha(\mathcal{L}_{\Lambda})t},$$

and Pinsker's inequality $\left(\frac{1}{2}\|\rho - \sigma\|_1^2 \le D(\rho\|\sigma) \text{ for } \|A\|_1 := \operatorname{tr}[|A|]\right)$

$$\|\rho_t - \sigma_{\Lambda}\|_1 \le \sqrt{2D(\rho_{\Lambda}||\sigma_{\Lambda})} e^{-\alpha(\mathcal{L}_{\Lambda}) t} \le \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}_{\Lambda}) t}.$$

For thermal states $\sigma_{\Lambda} = e^{-\beta H} / \text{tr}[e^{-\beta H}],$ $\sigma_{\min} \sim 1/\exp(|\Lambda|)$.

Rapid mixing
$$\|\rho_t - \sigma_{\Lambda}\|_1 \leq \text{poly}(|\Lambda|)e^{-\gamma t}$$

MLSI CONSTANT

The MLSI constant of \mathcal{L}_{Λ} is defined as:

$$\alpha(\mathcal{L}_{\Lambda}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

If $\lim \inf \alpha(\mathcal{L}_{\Lambda}) > 0$:

$$D(\rho_t||\sigma_{\Lambda}) \leq D(\rho_{\Lambda}||\sigma_{\Lambda})e^{-2\alpha(\mathcal{L}_{\Lambda})t},$$

and Pinsker's inequality $\left(\frac{1}{2}\|\rho - \sigma\|_1^2 \le D(\rho\|\sigma) \text{ for } \|A\|_1 := \operatorname{tr}[|A|]\right)$

$$\left\|\rho_t - \sigma_\Lambda\right\|_1 \leq \sqrt{2D(\rho_\Lambda||\sigma_\Lambda)}\,e^{-\alpha(\mathcal{L}_\Lambda)\,t} \leq \sqrt{2\log(1/\sigma_{\min})}\,e^{-\alpha(\mathcal{L}_\Lambda)\,t}.$$

For thermal states $\sigma_{\Lambda} = e^{-\beta H} / \text{tr}[e^{-\beta H}],$ $\sigma_{\min} \sim 1/\exp(|\Lambda|)$.

Rapid mixing
$$\|\rho_t\!-\!\sigma_{\Lambda}\|_1\!\leq\!\operatorname{poly}(|\Lambda|)e^{-\gamma t}$$

 $MLSI \Rightarrow Rapid mixing.$

$$\|\rho_t - \sigma_{\Lambda}\|_1 \le \sqrt{1/\sigma_{\min}} e^{-\lambda(\mathcal{L}_{\Lambda}^*) t}$$

MLSI CONSTANT

The MLSI constant of \mathcal{L}_{Λ} is defined as:

$$\alpha(\mathcal{L}_{\Lambda}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

If $\lim \inf \alpha(\mathcal{L}_{\Lambda}) > 0$:

$$D(\rho_t||\sigma_{\Lambda}) \leq D(\rho_{\Lambda}||\sigma_{\Lambda})e^{-2\alpha(\mathcal{L}_{\Lambda})t},$$

and Pinsker's inequality $\left(\frac{1}{2}\|\rho - \sigma\|_1^2 \le D(\rho\|\sigma) \text{ for } \|A\|_1 := \operatorname{tr}[|A|]\right)$

$$\left\|\rho_t - \sigma_{\Lambda}\right\|_1 \leq \sqrt{2D(\rho_{\Lambda}||\sigma_{\Lambda})} \, e^{-\alpha(\mathcal{L}_{\Lambda}) \, t} \leq \sqrt{2\log(1/\sigma_{\min})} \, e^{-\alpha(\mathcal{L}_{\Lambda}) \, t}.$$

For thermal states
$$\sigma_{\Lambda} = e^{-\beta H} / tr[e^{-\beta H}],$$

 $\sigma_{\min} \sim 1/exp(|\Lambda|).$

Rapid mixing
$$\|\rho_t - \sigma_{\Lambda}\|_1 \leq \text{poly}(|\Lambda|)e^{-\gamma t}$$

 $MLSI \Rightarrow Rapid mixing.$

Using the spectral gap (Kastoryano-Temme '13):

$$\|\rho_t - \sigma_{\Lambda}\|_1 \le \sqrt{1/\sigma_{\min}} e^{-\lambda(\mathcal{L}_{\Lambda}^*) t}.$$

Rapid mixing

 $||T_t(\rho) - \sigma||_1 \le \text{poly}(|\Lambda|)e^{-\gamma t}$

Mixing time: $\tau(e) = \mathcal{O}(\text{polylog}(|\Lambda|))$

$$e^{t\mathcal{L}}(\rho) \stackrel{t \to \infty}{\longrightarrow} \sigma$$

Notation: $\Lambda \subset \mathbb{Z}^d$ lattice $\{T_i\}_{i\geq 0}$ Quantum Markov semigroup

$$\{T_i\}_{i\geq 0}$$
 Quantum Markov semigroup \mathcal{L} Inf. generator (Lindbladian)

Mixing time of the semigroup
$$\{T_i\}_{i\geq 0}$$

$$\tau(\varepsilon) = \min \left\{ t > 0 : \sup_{\rho \in \mathcal{S}(\mathcal{H}_{\Lambda})} \| T_t(\rho) - \sigma \|_1 \leq \varepsilon \right\}$$

Modified Logarithmic Sobolev Inequality (MLSI)

$$D(T_t(\rho)||\sigma) \le D(\rho||\sigma) e^{-2\alpha(\mathcal{L})}$$

Relative entropy: $D(\rho || \sigma) := \operatorname{tr}[\rho(\log \rho - \log \sigma)]$

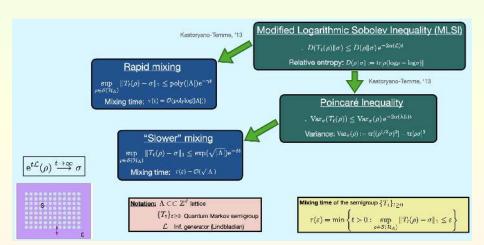
Notation: $\Lambda \subset \mathbb{Z}^d$ lattice.

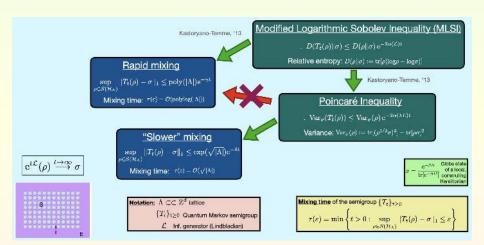
{T_i}_{i≥0} Quantum Markov semigroup

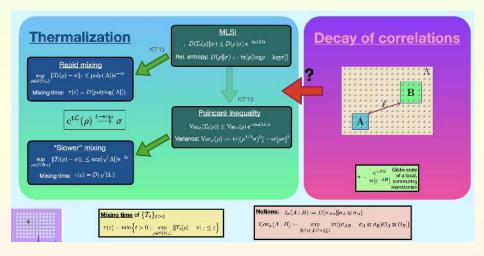
L Inf. generator (Lindbladian)

Mixing time of the semigroup $\{T_t\}_{t>0}$

$$\tau(\varepsilon) = \min \left\{ t > 0 : \sup_{\rho \in S(\mathcal{H}_{\delta})} |T_{t}(\rho) - \sigma|_{1} \le \varepsilon \right\}$$







DECAY OF CORRELATIONS ON GIBBS STATE

MOTIVATION

Describe the correlation properties of Gibbs states of local Hamiltonians.

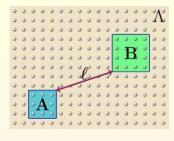
- Hamiltonian: $H_{\Lambda} = H_A + H_B + H_{(A \cup B)^c} + H_{\partial A} + H_{\partial B}$,
- Gibbs state: $\sigma_{\Lambda}(\beta) = e^{-\beta H_{\Lambda}} / \text{Tr}[e^{-\beta H_{\Lambda}}]$.

DECAY OF CORRELATIONS ON GIBBS STATE

MOTIVATION

Describe the correlation properties of Gibbs states of local Hamiltonians.

- Hamiltonian: $H_{\Lambda} = H_A + H_B + H_{(A \cup B)^c} + H_{\partial A} + H_{\partial B}$,
- Gibbs state: $\sigma_{\Lambda}(\beta) = e^{-\beta H_{\Lambda}} / \text{Tr}[e^{-\beta H_{\Lambda}}]$.



$$\ell := \operatorname{dist}(A, B)$$

Questions:

For non-commuting Hamiltonians:

$$e^{-\beta H_{A\cup B}} \approx e^{-\beta H_{A}} e^{-\beta H_{B}}$$
?

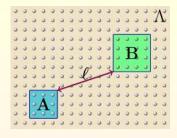
$$\operatorname{tr}_{A^c}[\sigma_{\Lambda}] \otimes \operatorname{tr}_{B^c}[\sigma_{\Lambda}] := (\sigma_{\Lambda})_A \otimes (\sigma_{\Lambda})_B \approx \operatorname{tr}_{(A \cup B)^c}[\sigma_{\Lambda}] := (\sigma_{\Lambda})_{A \cup B}$$
?

DECAY OF CORRELATIONS ON GIBBS STATE

MOTIVATION

Describe the correlation properties of Gibbs states of local Hamiltonians.

- Hamiltonian: $H_{\Lambda} = H_A + H_B + H_{(A \cup B)^c} + H_{\partial A} + H_{\partial B}$,
- Gibbs state: $\sigma_{\Lambda}(\beta) = e^{-\beta H_{\Lambda}} / \text{Tr}[e^{-\beta H_{\Lambda}}]$.



$$\ell := \operatorname{dist}(A, B)$$

Questions:

For non-commuting Hamiltonians:

$$e^{-\beta H_{A\cup B}} \approx e^{-\beta H_A} e^{-\beta H_B}$$
?

$$\begin{split} \operatorname{tr}_{A^c}[\sigma_{\Lambda}] \otimes \operatorname{tr}_{B^c}[\sigma_{\Lambda}] &:= \left(\sigma_{\Lambda}\right)_A \otimes \left(\sigma_{\Lambda}\right)_B \approx \\ \operatorname{tr}_{(A \cup B)^c}[\sigma_{\Lambda}] &:= \left(\sigma_{\Lambda}\right)_{A \cup B} ? \end{split}$$

DECAY OF CORRELATIONS ON GIBBS STATE

3 different forms of decay of correlations.

OPERATOR CORRELATION

$$\operatorname{Cov}_{\sigma}(A:B) := \sup_{\|O_A\| = \|O_B\| = 1} |\operatorname{tr}[O_A \otimes O_B(\sigma_{AB} - \sigma_A \otimes \sigma_B)]|$$

Mutual information

$$I_{\sigma}(A:B) := D(\sigma_{AB}||\sigma_A \otimes \sigma_B)$$

for
$$D(\rho||\sigma) = \text{Tr}[\rho(\log \rho - \log \sigma)]$$

DECAY OF CORRELATIONS ON GIBBS STATE

3 different forms of decay of correlations.

OPERATOR CORRELATION

$$\operatorname{Cov}_{\sigma}(A:B) := \sup_{\|O_A\| = \|O_B\| = 1} |\operatorname{tr}[O_A \otimes O_B(\sigma_{AB} - \sigma_A \otimes \sigma_B)]|$$

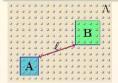
MUTUAL INFORMATION

$$I_{\sigma}(A:B) := D(\sigma_{AB}||\sigma_A \otimes \sigma_B)$$

for
$$D(\rho || \sigma) = \text{Tr}[\rho(\log \rho - \log \sigma)]$$

Mixing condition

$$\|h(\sigma_{AB})\|_{\infty} = \left\|\sigma_A^{-1/2} \otimes \sigma_B^{-1/2} \sigma_{AB} \sigma_A^{-1/2} \otimes \sigma_B^{-1/2} - \mathbb{1}_{AB}\right\|_{\infty}$$



Relation

$$\frac{1}{2}\operatorname{Cov}_{\sigma}(A:B)^{2} \leq I_{\sigma}(A:B)$$

$$\leq \left\| \sigma_{A}^{-1/2} \otimes \sigma_{B}^{-1/2} \sigma_{AB} \sigma_{A}^{-1/2} \otimes \sigma_{B}^{-1/2} - \mathbb{1}_{AB} \right\| .$$

DECAY OF CORRELATIONS ON GIBBS STATE

3 different forms of decay of correlations.

OPERATOR CORRELATION

$$\operatorname{Cov}_{\sigma}(A:B) := \sup_{\|O_A\| = \|O_B\| = 1} |\operatorname{tr}[O_A \otimes O_B(\sigma_{AB} - \sigma_A \otimes \sigma_B)]|$$

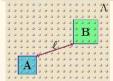
MUTUAL INFORMATION

$$I_{\sigma}(A:B) := D(\sigma_{AB}||\sigma_A \otimes \sigma_B)$$

for $D(\rho \| \sigma) = \text{Tr}[\rho(\log \rho - \log \sigma)]$

MIXING CONDITION

$$\left\|h(\sigma_{AB})\right\|_{\infty} = \left\|\sigma_A^{-1/2} \otimes \sigma_B^{-1/2} \sigma_{AB} \sigma_A^{-1/2} \otimes \sigma_B^{-1/2} - \mathbb{1}_{AB}\right\|_{\infty}$$

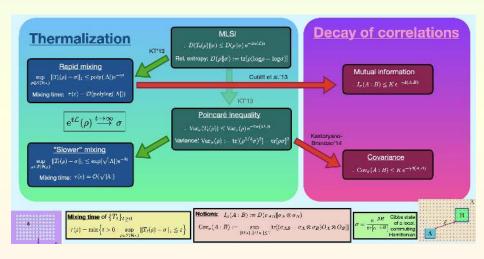


Relation:

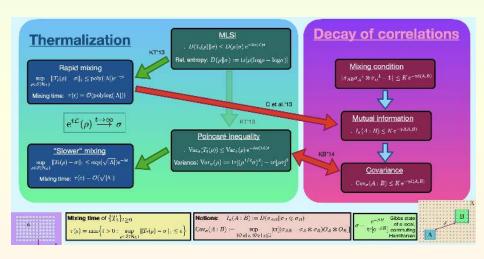
$$\frac{1}{2}\operatorname{Cov}_{\sigma}(A:B)^{2} \leq I_{\sigma}(A:B)$$

$$\leq \left\|\sigma_{A}^{-1/2} \otimes \sigma_{B}^{-1/2} \sigma_{AB} \sigma_{A}^{-1/2} \otimes \sigma_{B}^{-1/2} - \mathbb{1}_{AB}\right\| .$$

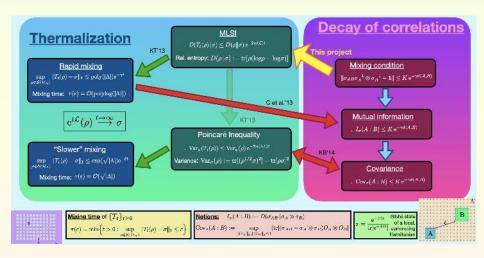
QUANTUM SPIN SYSTEMS



QUANTUM SPIN SYSTEMS



QUANTUM SPIN SYSTEMS



MLSI CONSTANT

$$\alpha(\mathcal{L}_{\Lambda}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

What do we want to prove?

$$\liminf_{\Lambda\nearrow\mathbb{Z}^d}\alpha(\mathcal{L}_\Lambda)\geq \Psi(|\Lambda|)>0.$$

MLSI CONSTANT

$$\alpha(\mathcal{L}_{\Lambda}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

What do we want to prove?

$$\liminf_{\Lambda\nearrow\mathbb{Z}^d}\alpha(\mathcal{L}_\Lambda)\geq \Psi(|\Lambda|)>0.$$

Can we prove something like

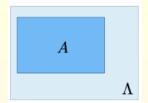
$$\alpha(\mathcal{L}_{\Lambda}) \geq \Psi(|A|) \ \alpha(\mathcal{L}_{A}) > 0 \ ?$$

MLSI CONSTANT

$$\alpha(\mathcal{L}_{\Lambda}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

What do we want to prove?

$$\lim_{\Lambda \nearrow \mathbb{Z}^d} \inf_{\alpha(\mathcal{L}_{\Lambda})} \ge \Psi(|\Lambda|) > 0.$$



Can we prove something like

$$\alpha(\mathcal{L}_{\Lambda}) \geq \Psi(|A|) \ \alpha(\mathcal{L}_{A}) > 0 \ ?$$

No, but we can prove

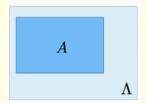
$$\alpha(\mathcal{L}_{\Lambda}) \geq \Psi(|A|) \ \alpha_{\Lambda}(\mathcal{L}_{A}) > 0 \ .$$

MLSI CONSTANT

$$\alpha(\mathcal{L}_{\Lambda}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

What do we want to prove?

$$\lim_{\Lambda\nearrow\mathbb{Z}^d}\inf\alpha(\mathcal{L}_\Lambda)\geq \Psi(|\Lambda|)>0.$$



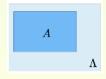
Can we prove something like

$$\alpha(\mathcal{L}_{\Lambda}) \geq \Psi(|A|) \ \alpha(\mathcal{L}_{A}) > 0 \ ?$$

No, but we can prove

$$\alpha(\mathcal{L}_{\Lambda}) \geq \Psi(|A|) \ \alpha_{\Lambda}(\mathcal{L}_{A}) > 0 \ .$$

CONDITIONAL MLSI CONSTANT



MLSI CONSTANT

The MLSI constant of $\mathcal{L}_{\Lambda} = \sum_{k \in \Lambda} \mathcal{L}_k$ is defined by

$$\alpha(\mathcal{L}_{\Lambda}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

Conditional MLSI constant

The **conditional MLSI constant** of \mathcal{L}_{Λ} on $A \subset \Lambda$ is defined by

$$\alpha_{\Lambda}(\mathcal{L}_{A}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{A}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D_{A}(\rho_{\Lambda}||\sigma_{\Lambda})}$$

CONDITIONAL MLSI CONSTANT

MLSI CONSTANT

The MLSI constant of $\mathcal{L}_{\Lambda} = \sum_{k \in \Lambda} \mathcal{L}_k$ is defined by

$$\alpha(\mathcal{L}_{\Lambda}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}$$

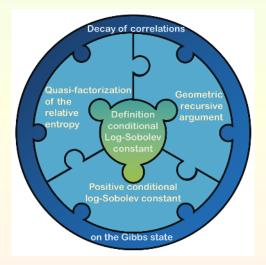
CONDITIONAL MLSI CONSTANT

The **conditional MLSI constant** of \mathcal{L}_{Λ} on $A \subset \Lambda$ is defined by

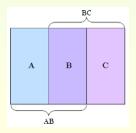
$$\alpha_{\Lambda}(\mathcal{L}_{A}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}[\mathcal{L}_{A}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2D_{A}(\rho_{\Lambda}||\sigma_{\Lambda})}$$

STRATEGY

Used in (C.-Lucia-Pérez García '18) and (Bardet-C.-Lucia-Pérez García-Rouzé, '19).



QUASI-FACTORIZATION OF THE RELATIVE ENTROPY



QUASI-FACTORIZATION OF THE RELATIVE ENTROPY

Given $\Lambda = ABC$, it is an inequality of the form:

$$D(\rho_{\Lambda} \| \sigma_{\Lambda}) \leq \xi(\sigma_{ABC}) \left[D_{AB}(\rho_{\Lambda} \| \sigma_{\Lambda}) + D_{BC}(\rho_{\Lambda} \| \sigma_{\Lambda}) \right],$$

for $\rho_{\Lambda}, \sigma_{\Lambda} \in \mathcal{S}(\mathcal{H}_{ABC})$, where $\xi(\sigma_{ABC})$ depends only on σ_{ABC} and measures how far σ_{AC} is from $\sigma_{A} \otimes \sigma_{C}$.

Example: Tensor product fixed point

(C.-Lucia-Pérez García '18) (Beigi-Datta-Rouzé '18)

$$egin{aligned} \mathcal{L}_{\Lambda}(
ho_{\Lambda}) &= \sum_{x \in \Lambda} \left(\sigma_x \otimes
ho_{x^c} -
ho_{\Lambda}
ight) \quad ext{heat-bath} \ D_x(
ho_{\Lambda} \| \sigma_{\Lambda}) &:= D(
ho_{\Lambda} \| \sigma_{\Lambda}) - D(
ho_{x^c} \| \sigma_{x^c}) \end{aligned}$$

$$\sigma_{\Lambda} = \bigotimes_{x \in \Lambda} \sigma_x,$$

$$D(\rho_{\Lambda}||\sigma_{\Lambda}) \leq$$

$$\leq \sum_{x \in \Lambda} D_x(\rho_{\Lambda}||\sigma_{\Lambda})$$

$$\leq \sum_{x \in \Lambda} \frac{-\operatorname{tr}[\mathcal{L}_x(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]}{2\alpha_{\Lambda}(\mathcal{L}_x)}$$

$$\leq \frac{1}{2\inf_{x \in \Lambda} \alpha_{\Lambda}(\mathcal{L}_x)} \sum_{x \in \Lambda} -\operatorname{tr}[\mathcal{L}_x(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]$$

$$= \frac{1}{2\inf_{\Lambda} \alpha_{\Lambda}(\mathcal{L}_{x})} \left(-\operatorname{tr}[\mathcal{L}_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})] \right)$$

$$\leq \left(-\operatorname{tr}[\mathcal{L}_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda})]\right).$$

Let $\sigma_{\Lambda} = \frac{e^{-\beta H_{\Lambda}}}{\text{tr}\left[e^{-\beta H_{\Lambda}}\right]}$ be the Gibbs state of finite-range, commuting Hamiltonian.

Heat-bath generator

The heat-bath generator is defined as:

$$\mathcal{L}_{\Lambda}^{H}(\rho_{\Lambda}) := \sum_{x \in \Lambda} \left(\sigma_{\Lambda}^{1/2} \sigma_{x^{c}}^{-1/2} \rho_{x^{c}} \sigma_{x^{c}}^{-1/2} \sigma_{\Lambda}^{1/2} - \rho_{\Lambda} \right)$$

Let $\sigma_{\Lambda} = \frac{\mathrm{e}^{-\beta H_{\Lambda}}}{\mathrm{tr}\left[\mathrm{e}^{-\beta H_{\Lambda}}\right]}$ be the Gibbs state of finite-range, commuting Hamiltonian.

HEAT-BATH GENERATOR

The **heat-bath generator** is defined as:

$$\mathcal{L}_{\Lambda}^{H}(\rho_{\Lambda}) := \sum_{x \in \Lambda} \left(\sigma_{\Lambda}^{1/2} \sigma_{x^{c}}^{-1/2} \rho_{x^{c}} \sigma_{x^{c}}^{-1/2} \sigma_{\Lambda}^{1/2} - \rho_{\Lambda} \right)$$

Davies generator

The Davies generator is given by:

$$\mathcal{L}_{\Lambda}^{D;*}(X) := i[H_{\Lambda}, X] + \sum_{x \in \Lambda} \widetilde{\mathcal{L}}_{x}^{D}(X),$$

where the \mathcal{L}_x^D are defined in terms of the Fourier coefficients of the correlation functions in the bath and the ones of the system couplings.

Let $\sigma_{\Lambda} = \frac{\mathrm{e}^{-\beta H_{\Lambda}}}{\mathrm{tr}\left[\mathrm{e}^{-\beta H_{\Lambda}}\right]}$ be the Gibbs state of finite-range, commuting Hamiltonian.

HEAT-BATH GENERATOR

The **heat-bath generator** is defined as:

$$\mathcal{L}_{\Lambda}^{H}(\rho_{\Lambda}) := \sum_{x \in \Lambda} \left(\sigma_{\Lambda}^{1/2} \sigma_{x^c}^{-1/2} \rho_{x^c} \sigma_{x^c}^{-1/2} \sigma_{\Lambda}^{1/2} - \rho_{\Lambda} \right)$$

Davies generator

The **Davies generator** is given by:

$$\mathcal{L}_{\Lambda}^{D,*}(X) := i[H_{\Lambda}, X] + \sum_{x \in \Lambda} \widetilde{\mathcal{L}}_{x}^{D}(X),$$

where the \mathcal{L}_x^D are defined in terms of the Fourier coefficients of the correlation functions in the bath and the ones of the system couplings.

SCHMIDT GENERATOR

The Schmidt generator (Bravyi-Vyalyi '05) can be written as:

$$\mathcal{L}_{\Lambda}^{S;*}(X) = \sum_{x \in \Lambda} \left(E_x^{S;*}(X) - X \right),$$

where the conditional expectations do not depend on system-bath couplings.

Let $\sigma_{\Lambda} = \frac{e^{-\beta H_{\Lambda}}}{\text{tr}\left[e^{-\beta H_{\Lambda}}\right]}$ be the Gibbs state of finite-range, commuting Hamiltonian.

Heat-bath generator

The **heat-bath generator** is defined as:

$$\mathcal{L}_{\Lambda}^{H}(\rho_{\Lambda}) := \sum_{x \in \Lambda} \left(\sigma_{\Lambda}^{1/2} \sigma_{x^c}^{-1/2} \rho_{x^c} \sigma_{x^c}^{-1/2} \sigma_{\Lambda}^{1/2} - \rho_{\Lambda} \right)$$

Davies generator

The **Davies generator** is given by:

$$\mathcal{L}_{\Lambda}^{D,*}(X) := i[H_{\Lambda}, X] + \sum_{x \in \Lambda} \widetilde{\mathcal{L}}_{x}^{D}(X),$$

where the \mathcal{L}_x^D are defined in terms of the Fourier coefficients of the correlation functions in the bath and the ones of the system couplings.

SCHMIDT GENERATOR

The **Schmidt generator** (Bravyi-Vyalyi '05) can be written as:

$$\mathcal{L}_{\Lambda}^{S,*}(X) = \sum_{x \in \Lambda} \left(E_x^{S,*}(X) - X \right),$$

where the conditional expectations do not depend on system-bath couplings.

Let us recall: For $\alpha(\mathcal{L}_{\Lambda})$ a MLSI constant,

$$\|\rho_t - \sigma_{\Lambda}\|_1 \le \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}_{\Lambda})t}.$$

Using the spectral gap $\lambda(\mathcal{L}_{\Lambda})$

$$\|\rho_t - \sigma_{\Lambda}\|_1 \le \sqrt{1/\sigma_{\min}} e^{-\lambda(\mathcal{L}_{\Lambda}) t}$$

Let us recall: For $\alpha(\mathcal{L}_{\Lambda})$ a MLSI constant,

$$\|\rho_t - \sigma_{\Lambda}\|_1 \le \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}_{\Lambda}) t}.$$

Using the spectral gap $\lambda(\mathcal{L}_{\Lambda})$:

$$\|\rho_t - \sigma_{\Lambda}\|_1 \le \sqrt{1/\sigma_{\min}} e^{-\lambda(\mathcal{L}_{\Lambda}) t}.$$

SPECTRAL GAP FOR DAVIES AND HEAT-BATH (Kastoryano-Brandao, '16)

Let $\mathcal{L}_{\Lambda}^{H,D}$ be the **heat-bath** or **Davies** generator in 1D. Then, $\mathcal{L}_{\Lambda}^{H,D}$ has a positive spectral gap that is independent of the system size, for every temperature.

Let us recall: For $\alpha(\mathcal{L}_{\Lambda})$ a MLSI constant,

$$\|\rho_t - \sigma_{\Lambda}\|_1 \le \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}_{\Lambda}) t}.$$

Using the spectral gap $\lambda(\mathcal{L}_{\Lambda})$:

$$\|\rho_t - \sigma_{\Lambda}\|_1 \le \sqrt{1/\sigma_{\min}} e^{-\lambda(\mathcal{L}_{\Lambda}) t}.$$

SPECTRAL GAP FOR DAVIES AND HEAT-BATH (Kastoryano-Brandao, '16)

Let $\mathcal{L}_{\Lambda}^{H,D}$ be the **heat-bath** or **Davies** generator in 1D. Then, $\mathcal{L}_{\Lambda}^{H,D}$ has a positive spectral gap that is independent of the system size, for every temperature.

MLSI FOR HEAT-BATH WITH TENSOR PRODUCT FIXED POINT (C.-Lucia-Pérez García Beigi-Datta-Rouzé '18)

Let $\mathcal{L}_{\Lambda}^{H}$ be the **heat-bath** generator with tensor product fixed point. Then, it has a positive MLSI constant.

Let us recall: For $\alpha(\mathcal{L}_{\Lambda})$ a MLSI constant,

$$\|\rho_t - \sigma_{\Lambda}\|_1 \le \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}_{\Lambda}) t}.$$

Using the spectral gap $\lambda(\mathcal{L}_{\Lambda})$:

$$\|\rho_t - \sigma_{\Lambda}\|_1 \le \sqrt{1/\sigma_{\min}} e^{-\lambda(\mathcal{L}_{\Lambda}) t}.$$

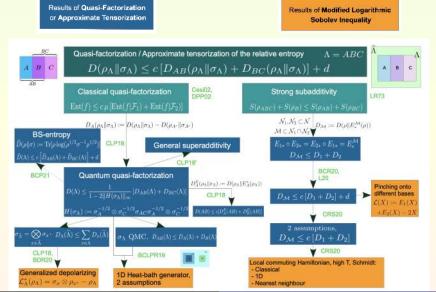
SPECTRAL GAP FOR DAVIES AND HEAT-BATH (Kastoryano-Brandao, '16)

Let $\mathcal{L}_{\Lambda}^{H,D}$ be the **heat-bath** or **Davies** generator in 1D. Then, $\mathcal{L}_{\Lambda}^{H,D}$ has a positive spectral gap that is independent of the system size, for every temperature.

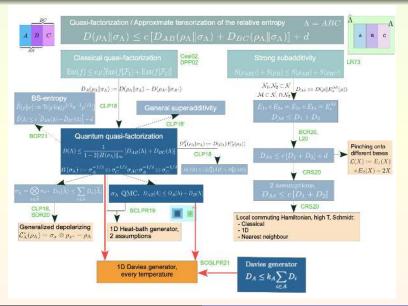
MLSI FOR HEAT-BATH WITH TENSOR PRODUCT FIXED POINT (C.-Lucia-Pérez García, Beigi-Datta-Rouzé '18)

Let $\mathcal{L}_{\Lambda}^{H}$ be the **heat-bath** generator with tensor product fixed point. Then, it has a positive MLSI constant.

QUASI-FACTORIZATION OF THE RELATIVE ENTROPY



QUASI-FACTORIZATION OF THE RELATIVE ENTROPY



MLSI FOR 1D DAVIES GENERATORS, (Bardet-C.-Gao-Lucia-Pérez García-Rouzé, '22)

Let $\mathcal{L}_{\Lambda}^{D}$ be a **Davies** generator with unique fixed point σ_{Λ} given by the Gibbs state of a commuting, finite-range, translation-invariant Hamiltonian at any temperature in 1D. Then, $\mathcal{L}_{\Lambda}^{D}$ satisfies a positive MLSI $\alpha(\mathcal{L}_{\Lambda}^{D}) = \Omega(\ln(|\Lambda|)^{-1})$.

(Kastoryano-Brandao, '16) $\mathcal{L}_{\Lambda}^{D}$ has a positive spectral gap that is independent of the system size, for every temperature.

MLSI FOR 1D DAVIES GENERATORS, (Bardet-C.-Gao-Lucia-Pérez García-Rouzé, '22)

Let $\mathcal{L}_{\Lambda}^{D}$ be a **Davies** generator with unique fixed point σ_{Λ} given by the Gibbs state of a commuting, finite-range, translation-invariant Hamiltonian at any temperature in 1D. Then, $\mathcal{L}_{\Lambda}^{D}$ satisfies a positive MLSI $\alpha(\mathcal{L}_{\Lambda}^{D}) = \Omega(\ln(|\Lambda|)^{-1})$.

(Kastoryano-Brandao, '16) $\mathcal{L}_{\Lambda}^{D}$ has a positive spectral gap that is independent of the system size, for every temperature.

Rapid mixing:

$$\sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \|\rho_t - \sigma_{\Lambda}\|_1 \le \operatorname{poly}(|\Lambda|) e^{-\gamma t}.$$

MLSI FOR 1D DAVIES GENERATORS, (Bardet-C.-Gao-Lucia-Pérez García-Rouzé, '22)

Let $\mathcal{L}_{\Lambda}^{D}$ be a **Davies** generator with unique fixed point σ_{Λ} given by the Gibbs state of a commuting, finite-range, translation-invariant Hamiltonian at any temperature in 1D. Then, $\mathcal{L}_{\Lambda}^{D}$ satisfies a positive MLSI $\alpha(\mathcal{L}_{\Lambda}^{D}) = \Omega(\ln(|\Lambda|)^{-1})$.

(Kastoryano-Brandao, '16) $\mathcal{L}_{\Lambda}^{D}$ has a positive spectral gap that is independent of the system size, for every temperature.

Rapid mixing:

$$\sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \|\rho_t - \sigma_{\Lambda}\|_1 \le \operatorname{poly}(|\Lambda|) e^{-\gamma t}.$$

For $\alpha(\mathcal{L}_{\Lambda})$ a MLSI constant:

$$\|\rho_t - \sigma_{\Lambda}\|_1 \le \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}_{\Lambda})t}.$$

MLSI FOR 1D DAVIES GENERATORS, (Bardet-C.-Gao-Lucia-Pérez García-Rouzé, '22)

Let $\mathcal{L}_{\Lambda}^{D}$ be a **Davies** generator with unique fixed point σ_{Λ} given by the Gibbs state of a commuting, finite-range, translation-invariant Hamiltonian at any temperature in 1D. Then, $\mathcal{L}_{\Lambda}^{D}$ satisfies a positive MLSI $\alpha(\mathcal{L}_{\Lambda}^{D}) = \Omega(\ln(|\Lambda|)^{-1})$.

(Kastoryano-Brandao, '16) $\mathcal{L}_{\Lambda}^{D}$ has a positive spectral gap that is independent of the system size, for every temperature.

Rapid mixing:

$$\sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \|\rho_t - \sigma_{\Lambda}\|_1 \le \operatorname{poly}(|\Lambda|) e^{-\gamma t}.$$

For $\alpha(\mathcal{L}_{\Lambda})$ a MLSI constant:

$$\|\rho_t - \sigma_{\Lambda}\|_1 \le \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}_{\Lambda})t}.$$

Rapid Mixing

In the setting above, $\mathcal{L}_{\Lambda}^{D}$ has rapid mixing

MLSI FOR 1D DAVIES GENERATORS, (Bardet-C.-Gao-Lucia-Pérez García-Rouzé, '22)

Let $\mathcal{L}_{\Lambda}^{D}$ be a **Davies** generator with unique fixed point σ_{Λ} given by the Gibbs state of a commuting, finite-range, translation-invariant Hamiltonian at any temperature in 1D. Then, $\mathcal{L}_{\Lambda}^{D}$ satisfies a positive MLSI $\alpha(\mathcal{L}_{\Lambda}^{D}) = \Omega(\ln(|\Lambda|)^{-1})$.

(Kastoryano-Brandao, '16) $\mathcal{L}_{\Lambda}^{D}$ has a positive spectral gap that is independent of the system size, for every temperature.

Rapid mixing:

$$\sup_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \|\rho_t - \sigma_{\Lambda}\|_1 \le \operatorname{poly}(|\Lambda|) e^{-\gamma t}.$$

For $\alpha(\mathcal{L}_{\Lambda})$ a MLSI constant:

$$\|\rho_t - \sigma_{\Lambda}\|_1 \leq \sqrt{2\log(1/\sigma_{\min})} e^{-\alpha(\mathcal{L}_{\Lambda}) t}.$$

Rapid mixing

In the setting above, $\mathcal{L}_{\Lambda}^{D}$ has rapid mixing.

SKETCH OF THE PROOF: QUASI-FACTORIZATION

$$\boxed{\alpha(\mathcal{L}_{\Lambda}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr} \big[\mathcal{L}_{\Lambda}(\rho_{\Lambda}) (\log \rho_{\Lambda} - \log \sigma_{\Lambda}) \big]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})} = \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{\operatorname{EP}_{\Lambda}(\rho_{\Lambda})}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}}$$

QUASI-FACTORIZATION

Let $A \cup B = \Lambda \subset \mathbb{Z}$ and $\rho_{\Lambda}, \sigma_{\Lambda} \in \mathcal{S}_{\Lambda}$. The following holds

$$D(\rho_{\Lambda}||\sigma_{\Lambda}) \leq \xi(\sigma_{A^c B^c}) \left[D_A(\rho_{\Lambda}||\sigma_{\Lambda}) + D_B(\rho_{\Lambda}||\sigma_{\Lambda}) \right],$$

where

$$\xi(\sigma_{A^cB^c}) = \left(1 - 2\left\|\sigma_{A^c}^{-1/2} \otimes \sigma_{B^c}^{-1/2} \sigma_{A^cB^c} \sigma_{A^c}^{-1/2} \otimes \sigma_{B^c}^{-1/2} - 1_{A^cB^c}\right\|_{\infty}\right)^{-1}.$$

$$(b) \begin{array}{c} D_{A_1}(\rho\|\sigma) & D_{A_2}(\rho\|\sigma) \\ \\ D_{B_1}(\rho\|\sigma) & D_{B_2}(\rho\|\sigma) \end{array} \\ \\ D_{B_2}(\rho\|\sigma) & D_{B_2}(\rho\|\sigma) \end{array}$$

Last step: Spectral gap $\stackrel{\mathcal{O}(\log n)}{\mapsto}$ MLSI.

SKETCH OF THE PROOF: QUASI-FACTORIZATION

$$\boxed{ \alpha(\mathcal{L}_{\Lambda}) := \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr} \big[\mathcal{L}_{\Lambda}(\rho_{\Lambda})(\log \rho_{\Lambda} - \log \sigma_{\Lambda}) \big]}{2D(\rho_{\Lambda}||\sigma_{\Lambda})} = \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{\operatorname{EP}_{\Lambda}(\rho_{\Lambda})}{2D(\rho_{\Lambda}||\sigma_{\Lambda})}}$$

QUASI-FACTORIZATION

Let $A \cup B = \Lambda \subset \mathbb{Z}$ and $\rho_{\Lambda}, \sigma_{\Lambda} \in \mathcal{S}_{\Lambda}$. The following holds

$$D(\rho_{\Lambda}||\sigma_{\Lambda}) \leq \xi(\sigma_{A^{c}B^{c}}) \left[D_{A}(\rho_{\Lambda}||\sigma_{\Lambda}) + D_{B}(\rho_{\Lambda}||\sigma_{\Lambda}) \right],$$

where

$$\xi(\sigma_{A^cB^c}) = \left(1 - 2\left\|\sigma_{A^c}^{-1/2} \otimes \sigma_{B^c}^{-1/2} \sigma_{A^cB^c} \sigma_{A^c}^{-1/2} \otimes \sigma_{B^c}^{-1/2} - \mathbf{1}_{A^cB^c}\right\|_{\infty}\right)^{-1}.$$

$$(b) \begin{array}{c} D_{A_1}(\rho\|\sigma) & D_{A_2}(\rho\|\sigma) \\ \vdots & \vdots & \vdots \\ D_{B_1}(\rho\|\sigma) & D_{B_2}(\rho\|\sigma) \end{array} \\ (c) \begin{array}{c} D_{B_1}(\rho\|\sigma) & D_{B_2}(\rho\|\sigma) \\ \vdots & \vdots & \vdots \\ D_{B_n}(\rho\|\sigma) & D_{B_n}(\rho\|\sigma) \end{array}$$

Last step: Spectral gap $\overset{\mathcal{O}(\log n)}{\mapsto}$ MLSI.

Proof: Conditional relative entropies + Quasi-factorization

Conditional relative entropies: $D_A(\rho_\Lambda\|\sigma_\Lambda) := D(\rho_\Lambda\|\sigma_\Lambda) - D(\rho_{A^c}\|\sigma_{A^c})$, $D_A^E(\rho_\Lambda\|\sigma_\Lambda) := D(\rho_\Lambda\|E_A(\rho_\Lambda))$.

Heat-bath cond. expectation: $E_A(\cdot) := \lim_{n \to \infty} \left(\sigma_{\Lambda}^{1/2} \sigma_{A^c}^{-1/2} \operatorname{tr}_A[\,\cdot\,] \, \sigma_{A^c}^{-1/2} \sigma_{\Lambda}^{1/2} \right)^n$.

Quasi-factorization (C.-Lucia-Pérez García '18'

Let \mathcal{H}_{ABC} and ρ_{ABC} , $\sigma_{ABC} \in \mathcal{S}_{ABC}$. The following holds

$$D(\rho_{ABC}||\sigma_{ABC}) \le \xi(\sigma_{AC}) \left[D_{AB}(\rho_{ABC}||\sigma_{ABC}) + D_{BC}(\rho_{ABC}||\sigma_{ABC}) \right],$$

where

$$\xi(\sigma_{AC}) = \frac{1}{1 - 2 \left\| \sigma_A^{-1/2} \otimes \sigma_C^{-1/2} \sigma_{AC} \sigma_A^{-1/2} \otimes \sigma_C^{-1/2} - \mathbb{1}_{AC} \right\|_{\infty}}.$$

Proof: Conditional relative entropies + Quasi-factorization

Conditional relative entropies: $D_A(\rho_\Lambda\|\sigma_\Lambda) := D(\rho_\Lambda\|\sigma_\Lambda) - D(\rho_{A^c}\|\sigma_{A^c})$, $D_A^E(\rho_\Lambda\|\sigma_\Lambda) := D(\rho_\Lambda\|E_A(\rho_\Lambda))$.

 $\textbf{Heat-bath cond. expectation:} \ \ E_A(\cdot) := \lim_{n \to \infty} \left(\sigma_{\Lambda}^{1/2} \sigma_{A^c}^{-1/2} \operatorname{tr}_A[\,\cdot\,] \, \sigma_{A^c}^{-1/2} \sigma_{\Lambda}^{1/2} \right)^n \ .$

Quasi-factorization (C.-Lucia-Pérez García '18)

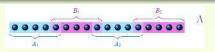
Let \mathcal{H}_{ABC} and ρ_{ABC} , $\sigma_{ABC} \in \mathcal{S}_{ABC}$. The following holds

$$D(\rho_{ABC}||\sigma_{ABC}) \le \xi(\sigma_{AC}) \left[D_{AB}(\rho_{ABC}||\sigma_{ABC}) + D_{BC}(\rho_{ABC}||\sigma_{ABC}) \right],$$

where

$$\xi(\sigma_{AC}) = \frac{1}{1 - 2 \left\| \sigma_A^{-1/2} \otimes \sigma_C^{-1/2} \sigma_{AC} \sigma_A^{-1/2} \otimes \sigma_C^{-1/2} - \mathbb{1}_{AC} \right\|_{L^2}}.$$

PROOF: QUASI-FACTORIZATION



 $\sigma_{\Lambda} = \frac{e^{-\beta H_{\Lambda}}}{\operatorname{tr}(e^{-\beta H_{\Lambda}})}$ is the Gibbs state of a k-local, commuting Hamiltonian H_{Λ} .

Quasi-factorization

Let $A \cup B = \Lambda \subset \mathbb{Z}$ and $\rho_{\Lambda}, \sigma_{\Lambda} \in \mathcal{S}_{\Lambda}$. The following holds

$$D(\rho_{\Lambda}||\sigma_{\Lambda}) \leq \xi(\sigma_{A^cB^c}) \left[D_A(\rho_{\Lambda}||\sigma_{\Lambda}) + D_B(\rho_{\Lambda}||\sigma_{\Lambda}) \right],$$

where

$$\xi(\sigma_{A^cB^c}) = \frac{1}{1 - 2 \left\| \sigma_{A^c}^{-1/2} \otimes \sigma_{B^c}^{-1/2} \sigma_{A^cB^c} \sigma_{A^c}^{-1/2} \otimes \sigma_{B^c}^{-1/2} - \mathbb{1}_{A^cB^c} \right\|_{\infty}}.$$

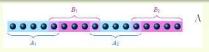
 ${
m QUASI ext{-}FACTORIZATION}$ FOR ${
m QUANTUM}$ ${
m MARKOV}$ CHAINS (${
m Bardet ext{-}C. ext{-}Lucia ext{-}P\'erez}$ ${
m Garc\'ia ext{-}Rouz\'e'1}$

Since σ_{Λ} is a QMC between $A_i \leftrightarrow \partial(A_i) \leftrightarrow (A_i \cup \partial A_i)^c$, then

$$D_A(\rho_{\Lambda}||\sigma_{\Lambda}) \leq \sum_i D_{A_i}(\rho_{\Lambda}||\sigma_{\Lambda}).$$

$$\sigma_{\Lambda} = \bigoplus_{i \in J} \sigma_{A_i(\partial a_i)_j^L} \otimes \sigma_{(\partial a_i)_j^R(A_i \cup \partial A_i)^c}$$

PROOF: QUASI-FACTORIZATION



 $\sigma_{\Lambda} = \frac{e^{-\beta H_{\Lambda}}}{\operatorname{tr}(e^{-\beta H_{\Lambda}})}$ is the Gibbs state of a k-local, commuting Hamiltonian H_{Λ} .

Quasi-factorization

Let $A \cup B = \Lambda \subset \mathbb{Z}$ and $\rho_{\Lambda}, \sigma_{\Lambda} \in \mathcal{S}_{\Lambda}$. The following holds

$$D(\rho_{\Lambda}||\sigma_{\Lambda}) \leq \xi(\sigma_{A^cB^c}) \left[D_A(\rho_{\Lambda}||\sigma_{\Lambda}) + D_B(\rho_{\Lambda}||\sigma_{\Lambda}) \right],$$

where

$$\xi(\sigma_{A^cB^c}) = \frac{1}{1 - 2 \left\| \sigma_{A^c}^{-1/2} \otimes \sigma_{B^c}^{-1/2} \sigma_{A^cB^c} \sigma_{A^c}^{-1/2} \otimes \sigma_{B^c}^{-1/2} - \mathbb{1}_{A^cB^c} \right\|_{\infty}}.$$

 $Quasi-factorization \ for \ quantum \ Markov \ Chains \ (Bardet-C.-Lucia-P\'erez \ Garc\'ia-Rouz\'e'19)$

Since σ_{Λ} is a QMC between $A_i \leftrightarrow \partial(A_i) \leftrightarrow (A_i \cup \partial A_i)^c$, then:

$$D_A(\rho_{\Lambda}||\sigma_{\Lambda}) \leq \sum_i D_{A_i}(\rho_{\Lambda}||\sigma_{\Lambda}).$$

$$\sigma_{\Lambda} = \bigoplus_{j \in J} \sigma_{A_i(\partial a_i)_j^L} \otimes \sigma_{(\partial a_i)_j^R(A_i \cup \partial A_i)^c}$$

PROOF: DECAY OF CORRELATIONS

QUASI-FACTORIZATION

Let $A \cup B = \Lambda \subset \mathbb{Z}$ and $\rho_{\Lambda}, \sigma_{\Lambda} \in \mathcal{S}_{\Lambda}$. The following holds

$$D(\rho_{\Lambda}||\sigma_{\Lambda}) \leq \xi(\sigma_{A^cB^c}) \sum_i \left[D_{A_i}(\rho_{\Lambda}||\sigma_{\Lambda}) + D_{B_i}(\rho_{\Lambda}||\sigma_{\Lambda}) \right],$$

where

$$\xi(\sigma_{A^cB^c}) = \frac{1}{1 - 2 \left\| \sigma_{A^c}^{-1/2} \otimes \sigma_{B^c}^{-1/2} \sigma_{A^cB^c} \sigma_{A^c}^{-1/2} \otimes \sigma_{B^c}^{-1/2} - \mathbb{1}_{A^cB^c} \right\|_{\infty}}.$$

Λ

DECAY OF CORRELATIONS, (Bluhm-C.-Pérez Hernández, '21)

Let σ_{XYZ} be the Gibbs state of a finite-range, translation-invariant Hamiltonian. There is $\ell \mapsto \delta(\ell)$ with exponential decay such that:

$$\left\| \sigma_X^{-1} \otimes \sigma_Z^{-1} \sigma_{XZ} - \mathbb{1}_{XZ} \right\|_{\infty} \le \delta(|Y|).$$

Proof: Decay of Correlations

QUASI-FACTORIZATION

Let $A \cup B = \Lambda \subset \mathbb{Z}$ and $\rho_{\Lambda}, \sigma_{\Lambda} \in \mathcal{S}_{\Lambda}$. The following holds

$$D(\rho_{\Lambda}||\sigma_{\Lambda}) \leq \xi(\sigma_{A^cB^c}) \sum_i \left[D_{A_i}(\rho_{\Lambda}||\sigma_{\Lambda}) + D_{B_i}(\rho_{\Lambda}||\sigma_{\Lambda}) \right],$$

where

$$\xi(\sigma_{A^cB^c}) = \frac{1}{1 - 2 \left\| \sigma_{A^c}^{-1/2} \otimes \sigma_{B^c}^{-1/2} \sigma_{A^cB^c} \sigma_{A^c}^{-1/2} \otimes \sigma_{B^c}^{-1/2} - \mathbb{1}_{A^cB^c} \right\|_{\infty}}.$$

Λ

DECAY OF CORRELATIONS, (Bluhm-C.-Pérez Hernández, '21)

Let σ_{XYZ} be the Gibbs state of a finite-range, translation-invariant Hamiltonian. There is $\ell \mapsto \delta(\ell)$ with exponential decay such that:

$$\left\|\sigma_X^{-1} \otimes \sigma_Z^{-1} \sigma_{XZ} - \mathbb{1}_{XZ}\right\|_{\infty} \le \delta(|Y|).$$

As a consequence, $\xi(\sigma_{A^cB^c})$ is uniformly bounded as long as # segments $= \mathcal{O}(|\Lambda|/\ln|\Lambda|)$.

PROOF: DECAY OF CORRELATIONS

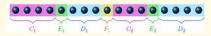
QUASI-FACTORIZATION

Let $A \cup B = \Lambda \subset \mathbb{Z}$ and $\rho_{\Lambda}, \sigma_{\Lambda} \in \mathcal{S}_{\Lambda}$. The following holds

$$D(\rho_{\Lambda}||\sigma_{\Lambda}) \leq \xi(\sigma_{A^cB^c}) \sum_i \left[D_{A_i}(\rho_{\Lambda}||\sigma_{\Lambda}) + D_{B_i}(\rho_{\Lambda}||\sigma_{\Lambda}) \right],$$

where

$$\xi(\sigma_{A^cB^c}) = \frac{1}{1 - 2 \left\| \sigma_{A^c}^{-1/2} \otimes \sigma_{B^c}^{-1/2} \sigma_{A^cB^c} \sigma_{A^c}^{-1/2} \otimes \sigma_{B^c}^{-1/2} - \mathbb{1}_{A^cB^c} \right\|_{\infty}}.$$



Λ

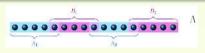
DECAY OF CORRELATIONS, (Bluhm-C.-Pérez Hernández, '21)

Let σ_{XYZ} be the Gibbs state of a finite-range, translation-invariant Hamiltonian. There is $\ell \mapsto \delta(\ell)$ with exponential decay such that:

$$\left\| \sigma_X^{-1} \otimes \sigma_Z^{-1} \sigma_{XZ} - \mathbb{1}_{XZ} \right\|_{\infty} \le \delta(|Y|).$$

As a consequence, $\xi(\sigma_{A^cB^c})$ is uniformly bounded as long as # segments $= \mathcal{O}(|\Lambda|/\ln|\Lambda|)$.

PROOF: GEOMETRIC RECURSIVE ARGUMENT



Let us recall: $D_A(\rho_{\Lambda} \| \sigma_{\Lambda}) := D(\rho_{\Lambda} \| \sigma_{\Lambda}) - D(\rho_{A^c} \| \sigma_{A^c})$, $D_A^B(\rho_{\Lambda} \| \sigma_{\Lambda}) := D(\rho_{\Lambda} \| E_A(\rho_{\Lambda}))$.

Comparison conditional Rel. ent. (Bardet-C.-Rouzé, '20)

$$D_A(\rho_{\Lambda} \| \sigma_{\Lambda}) \le D_A^E(\rho_{\Lambda} \| \sigma_{\Lambda})$$

, we have

$$D(\rho_{\Lambda}||\sigma_{\Lambda}) \leq \xi(\sigma_{A^cB^c}) \sum_{i} \left[D_{A_i}^E(\rho_{\Lambda}||\sigma_{\Lambda}) + D_{B_i}^E(\rho_{\Lambda}||\sigma_{\Lambda}) \right],$$

and thu

$$\alpha(\mathcal{L}_{\Lambda}^{H}) \ge \frac{K}{\xi(\sigma_{A^{c}B^{c}})} \min \left\{ \alpha_{A_{i}}(\mathcal{L}_{\Lambda}^{H}), \alpha_{B_{i}}(\mathcal{L}_{\Lambda}^{H}) \right\},$$

for

$$\alpha_{A_i}(\mathcal{L}_{\Lambda}^H) = \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}\left[\mathcal{L}_{A_i}^H(\rho_{\Lambda})(\ln \rho_{\Lambda} - \ln \sigma_{\Lambda})\right]}{D(\rho_{\Lambda} \|E_{A_i}^*(\rho_{\Lambda}))}$$

PROOF: GEOMETRIC RECURSIVE ARGUMENT

Let us recall: $D_A(\rho_{\Lambda} || \sigma_{\Lambda}) := D(\rho_{\Lambda} || \sigma_{\Lambda}) - D(\rho_{A^c} || \sigma_{A^c})$, $D_A^E(\rho_\Lambda \| \sigma_\Lambda) := D(\rho_\Lambda \| E_A(\rho_\Lambda))$.

Comparison conditional rel. ent. (Bardet-C.-Rouzé, '20)

$$D_A(\rho_{\Lambda} \| \sigma_{\Lambda}) \le D_A^E(\rho_{\Lambda} \| \sigma_{\Lambda})$$

Therefore, by this and

$$D(\rho_{\Lambda}||\sigma_{\Lambda}) \leq \xi(\sigma_{A^cB^c}) \sum_{i} \left[D_{A_i}^E(\rho_{\Lambda}||\sigma_{\Lambda}) + D_{B_i}^E(\rho_{\Lambda}||\sigma_{\Lambda}) \right],$$

and thus

$$\alpha(\mathcal{L}_{\Lambda}^{H}) \geq \frac{K}{\xi(\sigma_{A^{c}B^{c}})} \min \left\{ \alpha_{A_{i}}(\mathcal{L}_{\Lambda}^{H}), \alpha_{B_{i}}(\mathcal{L}_{\Lambda}^{H}) \right\},$$

for

$$\alpha_{A_i}(\mathcal{L}_{\Lambda}^H) = \inf_{\rho_{\Lambda} \in \mathcal{S}_{\Lambda}} \frac{-\operatorname{tr}\left[\mathcal{L}_{A_i}^H(\rho_{\Lambda})(\ln \rho_{\Lambda} - \ln \sigma_{\Lambda})\right]}{D(\rho_{\Lambda} || \mathcal{E}_{A_i}^*(\rho_{\Lambda}))} \; .$$

REDUCTION OF COND. RELATIVE ENTROPIES (Gao-Rouzé, '21)

$$D(\rho_{\Lambda} || E_{A_i}(\rho_{\Lambda})) \le 4k_{A_i} \sum_{j \in A_i} D(\rho_{\Lambda} || E_j(\rho_{\Lambda}))$$

REDUCTION FROM CMLSI TO GAP

$$k_{A_i} \propto \frac{1}{\ln \lambda}$$
,

where $\lambda < 1$ is a constant related to the spectral gap by the detectability lemma.

REDUCTION OF COND. RELATIVE ENTROPIES (Gao-Rouzé, '21)

$$D(\rho_{\Lambda} || E_{A_i}(\rho_{\Lambda})) \le 4k_{A_i} \sum_{j \in A_i} D(\rho_{\Lambda} || E_j(\rho_{\Lambda}))$$

REDUCTION FROM CMLSI TO GAP

$$k_{A_i} \propto \frac{1}{\ln \lambda}$$
,

where $\lambda < 1$ is a constant related to the spectral gap by the detectability lemma.

As a consequence of the non-closure of the spectral gap proved for 1D commuting Gibbs samplers (Kastoryano-Brando '16), $k_{A_i} = \mathcal{O}(\ln |\Lambda|)$ for $A_i = \mathcal{O}(\ln |\Lambda|)$.

REDUCTION OF COND. RELATIVE ENTROPIES (Gao-Rouzé, '21)

$$D(\rho_{\Lambda} || E_{A_i}(\rho_{\Lambda})) \le 4k_{A_i} \sum_{j \in A_i} D(\rho_{\Lambda} || E_j(\rho_{\Lambda}))$$

REDUCTION FROM CMLSI TO GAP

$$k_{A_i} \propto \frac{1}{\ln \lambda}$$
,

where $\lambda < 1$ is a constant related to the spectral gap by the detectability lemma.

As a consequence of the non-closure of the spectral gap proved for 1D commuting Gibbs samplers (Kastoryano-Brando '16), $k_{A_i} = \mathcal{O}(\ln |\Lambda|)$ for $A_i = \mathcal{O}(\ln |\Lambda|)$.

CMLSI (Gao-Rouzé, '21

The CMLSI of the local generators is positive

$$\alpha_c(\mathcal{L}_j^D) := \inf_{k \in \mathbb{N}} \alpha(\mathcal{L}_j^D \otimes \mathrm{Id}_k) > 0$$

REDUCTION OF COND. RELATIVE ENTROPIES (Gao-Rouzé, '21)

$$D(\rho_{\Lambda} || E_{A_i}(\rho_{\Lambda})) \le 4k_{A_i} \sum_{j \in A_i} D(\rho_{\Lambda} || E_j(\rho_{\Lambda}))$$

REDUCTION FROM CMLSI TO GAP

$$k_{A_i} \propto \frac{1}{\ln \lambda}$$
,

where $\lambda < 1$ is a constant related to the spectral gap by the detectability lemma.

As a consequence of the non-closure of the spectral gap proved for 1D commuting Gibbs samplers (Kastoryano-Brando '16), $k_{A_i} = \mathcal{O}(\ln |\Lambda|)$ for $A_i = \mathcal{O}(\ln |\Lambda|)$.

CMLSI (Gao-Rouzé, '21)

The CMLSI of the local generators is positive:

$$\alpha_c(\mathcal{L}_j^D) := \inf_{k \in \mathbb{N}} \alpha(\mathcal{L}_j^D \otimes \mathrm{Id}_k) > 0.$$

$$\begin{array}{l} \textbf{Heat-bath cond. expectation:} \ E_A^H(\cdot) := \lim_{n \to \infty} \left(\sigma_{\Lambda}^{1/2} \sigma_{A^c}^{-1/2} \operatorname{tr}_A[\,\cdot\,] \, \sigma_{A^c}^{-1/2} \sigma_{\Lambda}^{1/2} \right)^n \ . \\ \textbf{Davies cond. expectation:} \ E_A^D(\cdot) := \lim_{n \to \infty} \operatorname{e}^{t\mathcal{L}_A^D}(\cdot) \ . \end{array}$$

Davies and heat-bath dynamics (Bardet-C.-Rouzé, '20)

The conditional expectations associated to Davies and heat-bath dynamics coincide.

$$\begin{array}{l} \textbf{Heat-bath cond. expectation:} \ E_A^H(\cdot) := \lim_{n \to \infty} \left(\sigma_{\Lambda}^{1/2} \sigma_{A^c}^{-1/2} \operatorname{tr}_A[\,\cdot\,] \, \sigma_{A^c}^{-1/2} \sigma_{\Lambda}^{1/2} \right)^n \,. \\ \textbf{Davies cond. expectation:} \ E_A^D(\cdot) := \lim_{n \to \infty} \mathrm{e}^{t\mathcal{L}_A^D}(\cdot) \;. \end{array}$$

Davies and heat-bath dynamics (Bardet-C.-Rouzé, '20)

The conditional expectations associated to Davies and heat-bath dynamics coincide.

Conclusion

For $\mathcal{L}_{\Lambda}^{D}$, there is a positive MLSI constant $\alpha(\mathcal{L}_{\Lambda}^{D}) = \Omega(\ln |\Lambda|^{-1})$. Therefore, $\mathcal{L}_{\Lambda}^{D}$ has rapid mixing.

$$\begin{array}{l} \textbf{Heat-bath cond. expectation:} \ E_A^H(\cdot) := \lim_{n \to \infty} \left(\sigma_{\Lambda}^{1/2} \sigma_{A^c}^{-1/2} \operatorname{tr}_A[\,\cdot\,] \, \sigma_{A^c}^{-1/2} \sigma_{\Lambda}^{1/2} \right)^n \,. \\ \textbf{Davies cond. expectation:} \ E_A^D(\cdot) := \lim_{n \to \infty} \operatorname{e}^{t\mathcal{L}_A^D}(\cdot) \,. \end{array}$$

Davies and heat-bath dynamics (Bardet-C.-Rouzé, '20)

The conditional expectations associated to Davies and heat-bath dynamics coincide.

Conclusion

For $\mathcal{L}_{\Lambda}^{D}$, there is a positive MLSI constant $\alpha(\mathcal{L}_{\Lambda}^{D}) = \Omega(\ln |\Lambda|^{-1})$. Therefore, $\mathcal{L}_{\Lambda}^{D}$ has rapid mixing.

$$\begin{array}{l} \textbf{Heat-bath cond. expectation:} \ E_A^H(\cdot) := \lim_{n \to \infty} \left(\sigma_{\Lambda}^{1/2} \sigma_{A^c}^{-1/2} \operatorname{tr}_A[\,\cdot\,] \, \sigma_{A^c}^{-1/2} \sigma_{\Lambda}^{1/2} \right)^n \,. \\ \textbf{Davies cond. expectation:} \ E_A^D(\cdot) := \lim_{n \to \infty} \operatorname{e}^{t\mathcal{L}_A^D}(\cdot) \,. \end{array}$$

Davies and heat-bath dynamics (Bardet-C.-Rouzé, '20)

The conditional expectations associated to Davies and heat-bath dynamics coincide.

Conclusion

For $\mathcal{L}_{\Lambda}^{D}$, there is a positive MLSI constant $\alpha(\mathcal{L}_{\Lambda}^{D}) = \Omega(\ln |\Lambda|^{-1})$. Therefore, $\mathcal{L}_{\Lambda}^{D}$ has rapid mixing.

Consequences of this result:

The Davies generator converging to the Gibbs state of a local, commuting, translation-invariant Hamiltonian in 1D has rapid mixing for every $\beta > 0$.

Consequences of this result:

The Davies generator converging to the Gibbs state of a local, commuting, translation-invariant Hamiltonian in 1D has rapid mixing for every $\beta > 0$.

• Dissipative phase transitions: Absence of dissipative phase transitions in 1D for Davies evolutions over translation-invariant spin chains.

Consequences of this result:

The Davies generator converging to the Gibbs state of a local, commuting, translation-invariant Hamiltonian in 1D has rapid mixing for every $\beta > 0$.

- Dissipative phase transitions: Absence of dissipative phase transitions in 1D for Davies evolutions over translation-invariant spin chains.
- Symmetry Protected Topological phases: Example of a non-trivial interacting SPT phase with decoherence time of $O(\log |\Lambda|)$.

Consequences of this result:

The Davies generator converging to the Gibbs state of a local, commuting, translation-invariant Hamiltonian in 1D has rapid mixing for every $\beta > 0$.

- Dissipative phase transitions: Absence of dissipative phase transitions in 1D for Davies evolutions over translation-invariant spin chains.
- Symmetry Protected Topological phases: Example of a non-trivial interacting SPT phase with decoherence time of $O(\log |\Lambda|)$.

Corollary for SPT phases

For every $\beta > 0$, 1D SPT phases thermalize in time logarithmic in $|\Lambda|$, even when the thermal bath is chosen to be weakly symmetric.

Consequences of this result:

The Davies generator converging to the Gibbs state of a local, commuting, translation-invariant Hamiltonian in 1D has rapid mixing for every $\beta > 0$.

- Dissipative phase transitions: Absence of dissipative phase transitions in 1D for Davies evolutions over translation-invariant spin chains.
- Symmetry Protected Topological phases: Example of a non-trivial interacting SPT phase with decoherence time of $O(\log |\Lambda|)$.

Corollary for SPT phases

For every $\beta > 0$, 1D SPT phases thermalize in time logarithmic in $|\Lambda|$, even when the thermal bath is chosen to be weakly symmetric.

Example: 1D Cluster state. Unique ground state of a Hamiltonian with 3-local interactions given by $Z \otimes X \otimes Z$ (and p.b.c.).

Consequences of this result:

The Davies generator converging to the Gibbs state of a local, commuting, translation-invariant Hamiltonian in 1D has rapid mixing for every $\beta > 0$.

- Dissipative phase transitions: Absence of dissipative phase transitions in 1D for Davies evolutions over translation-invariant spin chains.
- Symmetry Protected Topological phases: Example of a non-trivial interacting SPT phase with decoherence time of $O(\log |\Lambda|)$.

Corollary for SPT phases

For every $\beta > 0$, 1D SPT phases thermalize in time logarithmic in $|\Lambda|$, even when the thermal bath is chosen to be weakly symmetric.

Example: 1D Cluster state. Unique ground state of a Hamiltonian with 3-local interactions given by $Z \otimes X \otimes Z$ (and p.b.c.).

Important: Our result does not apply in the presence of a strong symmetry.

Consequences of this result:

The Davies generator converging to the Gibbs state of a local, commuting, translation-invariant Hamiltonian in 1D has rapid mixing for every $\beta > 0$.

- Dissipative phase transitions: Absence of dissipative phase transitions in 1D for Davies evolutions over translation-invariant spin chains.
- Symmetry Protected Topological phases: Example of a non-trivial interacting SPT phase with decoherence time of $O(\log |\Lambda|)$.

Corollary for SPT phases

For every $\beta > 0$, 1D SPT phases thermalize in time logarithmic in $|\Lambda|$, even when the thermal bath is chosen to be weakly symmetric.

Example: 1D Cluster state. Unique ground state of a Hamiltonian with 3-local interactions given by $Z \otimes X \otimes Z$ (and p.b.c.).

Important: Our result does not apply in the presence of a strong symmetry.

Conclusions

In this talk:

 We have discussed dissipative evolutions of quantum many-body systems and their mixing time.

CONCLUSIONS

In this talk:

- We have discussed dissipative evolutions of quantum many-body systems and their mixing time.
- We have reviewed modified logarithmic Sobolev constants as a tool to prove rapid mixing.

Conclusions

In this talk:

- We have discussed dissipative evolutions of quantum many-body systems and their mixing time.
- We have reviewed modified logarithmic Sobolev constants as a tool to prove rapid mixing.
- We have shown that some results of quasi-factorization and decay of correlations imply positivity of MLSI constants.

Conclusions

In this talk:

- We have discussed dissipative evolutions of quantum many-body systems and their mixing time.
- We have reviewed modified logarithmic Sobolev constants as a tool to prove rapid mixing.
- We have shown that some results of quasi-factorization and decay of correlations imply positivity of MLSI constants.

Open problems:

• In the last result, can the MLSI be independent of the system size?

- In the last result, can the MLSI be independent of the system size?
- Extension to more dimensions.
 - 2D, quantum double models (positive spectral gap recently proven in (Lucia-Perez Garcia-Perez Hernandez, '21)).

- In the last result, can the MLSI be independent of the system size?
- Extension to more dimensions.
 - 2D, quantum double models (positive spectral gap recently proven in (Lucia-Perez Garcia-Perez Hernandez, '21)).
- Improve results of quasi-factorization for the relative entropy: More systems?

- In the last result, can the MLSI be independent of the system size?
- Extension to more dimensions.
 - 2D, quantum double models (positive spectral gap recently proven in (Lucia-Perez Garcia-Perez Hernandez, '21)).
- Improve results of quasi-factorization for the relative entropy: More systems?
- New functional inequalities for different quantities, such as the Belaykin-Staszewski relative entropy:

$$D_{\rm BS}(\rho \| \sigma) = \operatorname{tr} \left[\rho \log \left(\rho^{1/2} \sigma^{-1} \rho^{1/2} \right) \right].$$

- In the last result, can the MLSI be independent of the system size?
- Extension to more dimensions.
 - 2D, quantum double models (positive spectral gap recently proven in (Lucia-Perez Garcia-Perez Hernandez, '21)).
- Improve results of quasi-factorization for the relative entropy: More systems?
- New functional inequalities for different quantities, such as the Belavkin-Staszewski relative entropy:

$$D_{\rm BS}(\rho \| \sigma) = \operatorname{tr} \left[\rho \log \left(\rho^{1/2} \sigma^{-1} \rho^{1/2} \right) \right] \, .$$

Thank you for your attention! Do you have any questions?

David Pérez-García U. Complutense Madrid

Daniel Stilck Franca ENS Lyon

Angelo Lucia U. Complutense Madrid

Antonio Pérez-Hernández UNED Madrid

Cambyse Rouzé T. U. Munich

Andreas Bluhm U. Grenoble

Ivan Bardet Inria Paris

Li Gao U. Houston