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DALL-E: “entangled many-body quantum state”



➢ “For a large collection of similar particles, a phase is a region in some parameter space in
which the thermal equilibrium states possess some properties in common that can be
distinguished from those in other phases.”

➢ Consider a family of 𝑛-qubit geometrically local Hamiltonians. Their ground states are said to 
be in a gapped phase if they retain an energy gap as 𝑛 → ∞ (thermal limit).

➢ Phases of matter are robust to small perturbations throughout the geometry.
➢ Stability has been shown for all sorts of phases on Euclidean lattices (arXiv:2205.10460).
➢ Understanding QLDPC codes as phases of matter require other manifolds.

N. Read, Topological phases and quasiparticle braiding

A. Lavasani, M. Gullans, VVA, M. Barkeshli, in prep.
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➢ Locality is defined w.r.t. a metric on the 
underlying qubit manifold, e.g., Euclidean 
distance. Manifold topology is fixed.

➢ An operator on a lattice is local if
1. (𝑛 = ∞) it is finitely supported
2. (𝑛 → ∞) it its support is independent

and small w.r.t. 𝑛.

➢ A family of finite-𝑛-local operators is 
geometrically local if their support is 
contained in a ball of radius indep. of 𝑛.

➢ A quantum operation 𝒪 is causal (a.k.a. 
locality-preserving) if it maps local 
operators to local operators.
✓ local/causal → quasi-local/causal
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|supp 𝐴 | = 𝑂(1)
supp 𝐴 ⊂ Ball𝑂 1 (some center)
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Phases are classified by behavior of their excitations. Excitations can occur: 

…in the bulk of the manifold:
➢ Anyon theories classified by 

braided fusion categories:
✓ Anyon types 𝑎
✓ Exchange statistics 𝜃(𝑎)
✓ Fusion rules

…or on the boundary:
➢ Chiral central charge 𝑐−

counts difference between 
right & left “movers” (𝜌 ≠ 𝜌⋆)

➢ “Movers” can carry 
“fractional” heat current.

➢ Unifying relation          →

E.g., see arXiv:2211.03798

Kitaev, arXiv:cond-mat/0506438



Idea (preliminary): Extract phase data from (preferably polynomial) functions of 
(preferably local) density matrices. 
➢ These correspond to observables w.r.t. copies of 𝜓 :

Problem: Given access 
to copies to a 2D gapped 
phase 𝜓 , determine
the phase.

𝜌





BWOC, assume that there exists an observable 𝐴
whose expectation value is close to +1 (−1) in all 
representatives of the trivial (topological) phase.

Topological TrivialStates closest to 0 on both sides, by assumption, satisfy:

By averaging over single-qubit unitaries to get the trace, 
we see that averages are the same for both phases:

uh oh!

contradiction

arXiv:2106.12627, Appx. I





Local twist acts on ℓ ≪ 𝑛 sites and imparts phase on 
site 𝑘 that depends on 𝑘 (cf. polarization):

arXiv:2106.12627, Appx. K; reformulation of arXiv:1804.04337 + book by Tasaki

Its expectation value is close to +1 (−1) in all states in the trivial (SPT) phase:

✓ Twist imparts a global phase on GND 
state in thermal limit (tedious part):

✓ Overlap between twisted and original 
GND states is near unity:

✓ Symmetry tells us expectation of twist 
is real, can only be +1 or −1:

✓ Why does (sufficiently large but) finite 
ℓ work? Expectation remains the 
same as ℓ increases because twist is 
continuous in ℓ!





arXiv:2006.14151

Hall conductivity is expectation value of a commutator between 𝐾:

Y

ഥY

X ഥ X

Given Hamiltonian 𝐻 and 𝑈(1)-symmetry generator (“charge”) 
𝑄, define currents 𝐽:

Build currents 𝐾 by “smearing” (i.e., quasi-adiabatically evolving) 
the currents 𝐽:





arXiv:2005.13677

similar to twist

𝑈(1) symmetry

Ingredients similar to Tasaki’s formulation:

SWAP operator; relates 
expectation value to TQFT 
path integrals (don’t ask)

Given U(1)-symmetric state, can define Chern-number 
observable:







For sufficiently coarse-grained system, expectation of modular commutator
yields chiral central charge 𝑐−:

arXiv:2110.06932, 2110.10400

Given Hamiltonian 𝐻, define energy currents 𝐽:

But what if we only have state 𝜌 = |𝜓⟩⟨𝜓| and not its Hamiltonian? 
➢ Can use modular Hamiltonian instead:

First signature of chiral many-body entanglement:





arXiv:2106.12627, Appx. J

ℜ

𝜓 → {𝑆(𝜓)}✓ Obtain classical shadows 𝑆(𝜓) --- efficient snapshots of some 
quantum state |𝜓⟩. arXiv:2002.08953

✓ Convert into feature vector 𝐯 that linearizes all powers 𝑝 of reduced density matrices on all 
regions ℜ for all supports 𝑤.

✓ Any function of state that can be written as a 
power series in reduced density matrices 
becomes a linear function in feature space!



1. Inner product between features vectors can 
be efficiently:
➢ Shadows are tensor products, so 

combinatorics of different regions ℜ
simplifies during inner product.

➢ Direct sums over all powers 𝑝 and all 
supports 𝑤 each wrapped into 
exponentials during inner product.

2. Separating hyperplanes naturally exist 
between states in different phases in feature 
space.
➢ If there exists a local invariant 𝐴, then the 

support-vector machine (SVM) algorithm 
will find the corresponding hyperplane.

arXiv:2106.12627, Appx. J



arXiv:2106.12627, Appx. D

circuit depth / code distance
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Non-local order par.

Surface code



➢ In the not-so-distant future, we should 
have access to devices that would allow 
us to simulate phases of matter not 
readily available in natural materials.

➢ We need to design engineering 
protocols to verify that a state created 
on a device is a representative of a 
desired phase.
➢ Convert condensed-matter 

intuition into rigorous engineering.
➢ Learn something about quantum 

phases along the way.

➢ We have made progress in this 
direction (see table), more systematic 
efforts would be useful.



Eight Nine quantum centers
~50 theory faculty

~50 experimentalists

Provably efficient machine learning 
for quantum many-body problems 

arXiv:2106.12627
Hsin-Yuan (Robert) 

Huang
Richard Kueng Giacomo Torlai John Preskill

Chiral central charge from a single bulk wave function 
arXiv:2110.06932

Isaac Kim Bowen Shi Kohtaro Kato

Modular commutator in gapped quantum 
many-body systems

arXiv:2110.10400 
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