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QUANTUM PHASES OF MATTER

» “For a large collection of similar particles, a phase is a region in some parameter space in
which the thermal equilibrium states possess some properties in common that can be
distinguishedfrom those in other phOSES." N. Read, Topological phases and quasiparticle braiding

» Consider a family of n-qubit geometrically local Hamiltonians. Their ground states are said to
be in a gapped phase if they retain an energy gap as n — oo (thermal limit).

» Phases of matter are robust to small perturbations throughout the geometry.
» Stability has been shown for all sorts of phases on Euclidean lattices (arxiv:2205.10460).

» Understanding QLDPC codes as phases of matter require other manifolds.
A. Lavasani, M. Gullans, VVA, M. Barkeshli, in prep.




ALL ABOUT LOCALITY

» Locality is defined w.r.t. a metric on the
underlying qubit manifold, e.g., Euclidean
distance. Manifold topology is fixed.

» An operator on a lattice is local if
1. (n = oo)itis finitely supported
2. (n — oo)itits support is independent
and small w.r.t. n.

» A family of finite-n-local operators is
geometrically local if their support is
contained in a ball of radius indep. of n.

» A quantum operation O is causal (a.k.a.
locality-preserving) if it maps local
operators to local operators.

v local/causal = quasi-local/causal

supp(4)| = 0(1)
supp(4) c Bally(y)(some center)



PHASE CLASSIFICATION

Phases are classified by behavior of their excitations. Excitations can occur:

...in the bulk of the manifold: S
> Anyon theories classified by I —_ -
braided fusion categories: SN
v Anyon types a
v" Exchange statistics 8(a)

v’ Fusion rules
E.g., see arXiv:2211.03798

...or on the boundary:

» Chiral central charge c_
counts difference between
right & left “movers” (p + p*)

» “Movers” can carry
“fractional” heat current.

» Unifying relation > exp (722—7Tc_> _ 1 ZQ(Q)

8 \/#anyons a

Kitaev, arXiv:cond-mat/0506438




CERTIFIED PHASE CLASSlFlCATlON
Problem: Given access . -l — - T T

to copies to a 2D gapped R - -7
phase |), determine - N T - \Q\ - T
the phase. ¢ < - - =

AE‘H MION ORDEF

Idea (preliminary): Extract phase data from (preferably polynomial) functions of

(preferably local) density matrices.
» These correspond to observables w.r.t. copies of |y): I

Tr (Ap®2) < poly (p,p*) of deg <2 =7 -7 >




OBSERVABLES A FROM BULK OF BOSONIC PHASES

system symmetry copies operator local proven? references

topological none 1 none work X 2106.12627



SINGLE-COPY OBSERVABLES DON'T WORK

BWOC, assume that there exists an observable 4
whose expectation value is close to +1 (—1) in all
representatives of the trivial (topological) phase.

States closest to 0 on both sides, by assumption, satisfy: Topological '

sup (P|Al¢) <0< inf (P[A)

YEtop. et
uh oh!
By averaging over single-qubit unitaries to get the trace,
we see that averages are the same for both phases:
TrA contradiction Tr A Tr A
oy o Al = —_— - <0< -

arXiv:2106.12627, Appx. |



OBSERVABLES A FROM BULK OF BOSONIC PHASES

system symmetry copies operator local proven? references
topological none 1 none work X 2106.12627
spin-one chains O(2) 1 Affleck-Lieb 1307.0716, 1804.04337

on-site twist operator



AFFLECK-LIEB TWIST OPERATOR

Local twist acts on £ < n sites and imparts phase on

site k that depends on k (cf. polarization):
Ay = —i2 S)
= X ew ( 2t
k,|k—3|<t+3

Its expectation value is close to +1 (—1) in all states in the trivial (SPT) phase:

v Twist imparts a global phase on GND v' Symmetry tells us expectation of twist

state in thermal limit (tedious part): is real, can only be +1 or —1:
const.

(WlAHAY ) — (W|H|v) < =, (VI Alw) = (¥|Acle)*

v Overlap between twisted and original v' Why does (sufficiently large but) finite
GND states is near unity: £ work? Expectation remains the

const. same as ¥ increases because twist is
[(V|AdY)] = 1 - oap x { continuous in £

arXiv:2106.12627, Appx. K; reformulation of arXiv:1804.04337 + book by Tasaki



OBSERVABLES A FROM BULK OF BOSONIC PHASES

system symmetry copies operator local proven? references
topological none 1 none work X 2106.12627
spin-one chains O(2) 1 Affleck-Lieb 1307.0716, 1804.04337
on-site twist operator
2D integer U(1) 1 Hall conductivity CMP 159, 399 (1994),
quantum Hall charge (needs Hamiltonian) 1306.1258, 1810.07351,

(QH)

2006.14151




HALL CONDUCTIVITY (NEEDS HAMILTONIAN)

H=YH
Given Hamiltonian H and U(1)-symmetry generator (“charge”) ;
Q, define currents J: ]
Jik =i [H;, Qu| — i [Hy, Q] 0=S"0
T J
Build currents K by “smearing” (i.e qua5| adlabatlcally evolving) J
the currents J: ja)(al (-) [b) (b
J => o

—1
Ky =H™ " (Jjk)
Hall conductivity is expectation value of a commutator between K:

A=i|Kyx, Ky —ZTTTT K K]

JEX keX €Y meY

arXiv:2006.14151




OBSERVABLES A FROM BULK OF BOSONIC PHASES

system symmetry copies operator local proven? references
topological none 1 none work X 2106.12627
spin-one chains O(2) 1 Affleck-Lieb 1307.0716, 1804.04337
on-site twist operator
2D integer U(1) 1 Hall conductivity CMP 159, 399 (1994),
quantum Hall charge (needs Hamiltonian) 1306.1258, 1810.07351,
(QH) 2006.14151
Chern insulator / U(1) 1 SWAP /twist X 2005.13677

2

fractional QH charge 2



CHERN NUMBER

by o /L
Given U(1)-symmetric state, can define Chern-number <> >
observable: 1‘ -
Z L .i_ S
A o WRl (@)Sl,‘%WRl (¢) VR1UR2 Ey Rl R2 R3
Ingredients similar to Tasaki’s formulation: -
< IJ:lc —_—

Wr(0) = H ! U(1) symmetry

(z.y)ER
21—|—_y ~
VR = H e T " similar to twist
(z.y)ER
S1 3 SWAP operator; relates

,Q

expectation value to TQFT
path integrals (don’t ask)

arXiv:2005.13677



OBSERVABLES A FROM BULK OF BOSONIC PHASES

system symmetry copies operator local proven? references
topological none 1 none work X 2106.12627
spin-one chains O(2) 1 Affleck-Lieb 1307.0716, 1804.04337
on-site twist operator
2D integer U(1) 1 Hall conductivity CMP 159, 399 (1994),
quantum Hall charge (needs Hamiltonian) 1306.1258, 1810.07351,
(QH) 2006.14151
Chern insulator / U(1) 1 SWAP /twist X 2005.13677
fractional QH charge 2 7 7
1D SPT on-site, 1 non-local order X 1201.4174, 1204.0704,
TRS par./procedure? 1307.0716, 1908.08621




OBSERVABLES A FROM BULK OF BOSONIC PHASES

system symmetry copies operator local proven? references
topological none 1 none work X 2106.12627
spin-one chains O(2) 1 Affleck-Lieb 1307.0716, 1804.04337
on-site twist operator
2D integer U(1) 1 Hall conductivity CMP 159, 399 (1994),
quantum Hall charge (needs Hamiltonian) 1306.1258, 1810.07351,
(QH) 2006.14151
Chern insulator / U(1) 1 SWAP /twist X 2005.13677
fractional QH charge 2 7 7
1D SPT on-site, 1 non-local order X 1201.4174, 1204.0704,
TRS par. /procedure? 1307.0716, 1908.08621
2D topological any 00 entanglement 0805.0332
spectrum
00 top. entanglement hep-th /0510092,
entropy cond-mat /0510613
00 modular 2110.06932

commutator




MODULAR COMMUTATOR -> CHIRAL CENTRAL CHARGE

Given Hamiltonian H, define energy currents J: ij = [I{J, Hk_ H = E H
] o J

But what if we only have state p = |)(y/| and not its Hamiltonian?
» Can use modular Hamiltonian instead:

Hmod - lIl pX Jmod 3 [HmOd Hmod]

For sufficiently coarse-grained system, expectation of modular commutator
yields chiral central charge c_: B

A — [Hmod Hmod] C A

First signature of chiral many-body entanglement:

WIAlY) = =WlAlY)  when ¢ — o7

arXiv:2110.06932, 2110.10400



OBSERVABLES A FROM BULK OF BOSONIC PHASES

system symmetry copies operator local proven? references
topological none 1 none work X 2106.12627
spin-one chains O(2) 1 Affleck-Lieb 1307.0716, 1804.04337
on-site twist operator
2D integer U(1) 1 Hall conductivity CMP 159, 399 (1994),
quantum Hall charge (needs Hamiltonian) 1306.1258, 1810.07351,
(QH) 2006.14151
Chern insulator / U(1) 1 SWAP /twist X 2005.13677
fractional QH charge 2 7 7
1D SPT on-site, 1 non-local order X 1201.4174, 1204.0704,
TRS par. /procedure? 1307.0716, 1908.08621
2D topological any 00 entanglement 0805.0332
spectrum
00 top. entanglement hep-th /0510092,
entropy cond-mat /0510613
00 modular 2110.06932

commutator




LOCAL INVARIANTS = ML ALGORITHMS DISTINGUISH PHASES

v Obtain classical shadows S (1)) --- efficient snapshots of some Y) = {SY)}
quantum state [1)). arXiv:2002.08953

v" Convert into feature vector v that linearizes all powers p of reduced density matrices on all
regions R for all supports w.

v[sw)]:@ (D~ D s

|
p= w=0 ¥ W: |[suppR|=w

Xp

v Any function of state that can be written as a
power series in reduced density matrices -
becomes a linear function in feature space! - - - =

f(p) = (f;v) N an

arXiv:2106.12627, Appx.J N, - _ ‘//



LOCAL INVARIANTS = ML ALGORITHMS DISTINGUISH PHASES

1. Inner product between features vectors can - ®p
be efficiently: 1 Sor (1))
R
» Shadows are tensor products, so p@) P! (@ Vw |Sup§§|

combinatorics of different regions ‘R .
simplifies during inner product. -
» Direct sums over all powers p and all
supports w each wrapped into
exponentials during inner product.

2. Separating hyperplanes naturally exist
between states in different phases in feature
space.
> If there exists a local invariant 4, then the

support-vector machine (SVM) algorithm
will find the corresponding hyperplane.

arXiv:2106.12627, Appx.J



LOCAL INVARIANTS = ML ALGORITHMS DISTINGUISH PHASES

(XiXiv1 +YiYipr +0ZiZi11) (d) Unsupervised ML at 6 = 3.0

1D SPT Cfoo;)(f)(f) p

N O n-loca I Orde r pa I Bond-alternating XXZ model
Topological

1 1 66660,
Trivial \__Sym. broken

|
N

2nd princ. comp.
o

A .. Topological Trivial Sym. broken

1 T T T T T -4 -2 0 2 4

0.0 0.5 1.0 1.5 2.0 2.5 .
J/J 1st principal component

@® Topological

Surface code :_’ va i s gi ! ‘ ;omvia.
- - =@

00 01 02 03 04 05 06 07 0.8 0.9

PCA

circuit depth / code distance

arXiv:2106.12627, Appx. D



DISCUSSION & CONCLUSION

» In the not-so-distant future, we should N

have access to devices that would allow
us to simulate phases of matter not
readily available in natural materials.

A\l
THIS SEMION ORDER2
> We neEd to deSIgn englneerlng system symmetry copies operator local proven? references
protocols to Verify that a state created topological none 1 none work X 2106.12627
. . . spin-one chains 0(2) 1 Affleck-Lieb 1307.0716, 1804.04337
on a device is a representative of a on-site bwist operator
. 2D integer U@ 1 Hall conductivit CMP 159, 399 (1994),
deSI red phase' quantumgHall charg)e (needs Hamiltonizi]n) 1306.1258, 1810.0735%,
(QH) 2006.14151
> Conve rt condensed-matter Chern .insulator/ U(1) 1 SWAP /twist X 2005.13677
Intuition into rigorous engineering. _ "actionlQH  charge i i
. 1D SPT on-site, 1 non-local order X 1201.4174, 1204.0704,
> Learn somethmg about quantum TRS par./procedure? 1307.0716, 1908.08621
phases along the Way 2D topological any 00 entanglement 0805.0332
* spectrum
00 top. eﬁltanglement hep-th /0510092,
entropy cond-mat /0510613
. . o0 modular 2110.06932
» We have made progress in this commutator
direction (see table), more systematic Tr (Ap) <> poly (p, p*) of deg <1

efforts would be useful. Tr (Ap®2) & poly (p, p*) of deg <2
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