Learning to predict ground state properties of gapped Hamiltonians

Provably efficient machine learning for quantum many-body problems

Richard Kueng

Department of Computer Science, Johannes Kepler University Linz, Austria

March 6th, 2023

joint work with H.Y. Huang, G. Torlai, V. Albert and J. Preskill

outline

1 motivation

- 2 proof of the main result
- 3 numerical experiments

motivation

ground state problem in quantum many-body physics

Motivating numerics: 2D Heisenberg model (n = 25, m = 40)

$$H_{tot} = \sum_{j} H$$

$$\bigoplus_{j \in I} H_{tot} \Rightarrow$$
Parameters describing
a physical Hamiltonian

direct computation $\rho(x) = \mathbf{v}_{\min}(x)\mathbf{v}_{\min}(x)^{\dagger}$ (expensive: $D = 2^{n}$) tr $(\mathbf{O}\rho(x))$

Classical representation of the ground state

$$x \in [-1, 1]^{m}$$

$$H_{tot}(x) = \sum_{j} H(x)$$

$$\bigoplus Parameters describing a physical Hamiltonian$$

 $(x_\ell, \boldsymbol{
ho}(x_\ell)) igcup_{x_\ell} \overset{unif}{\sim} [-1, 1]^m$

Classical representation of the ground state

$$x \in [-1, 1]^{m}$$

$$H_{tot}(x) = \sum_{j} H(x)$$

$$\bigoplus_{j \in \mathbb{N}} Parameters describing}$$

$$a physical Hamiltonian$$

$$(x_{\ell}, \rho(x_{\ell})) \biguplus x_{\ell} \overset{unif}{\sim} [-1, 1]^{m} \operatorname{tr} (\mathbf{O}\rho_{\operatorname{train}}(x))$$

$$\rho_{\operatorname{train}}(x) = \sum_{\ell=1}^{N} \kappa(x, x_{\ell}) \rho(x_{\ell})$$

$$\kappa : \text{ neural tangent kernel} \qquad \Rightarrow \begin{array}{c} 1010011000111\\10\\01\\01\\111000001000\\\text{Classical representation of the ground state} \end{array}$$

learning to predict ground state properties

011 00

101

Richard Kueng

: 0

$$x \in [-1, 1]^{m}$$

$$H_{tot}(x) = \sum_{j} H(x)$$

$$\bigoplus Parameters describing a physical Hamiltonian$$

$$\rho_{\text{train}}(x) = \sum_{\ell=1}^{N} \kappa(x, x_{\ell}) \rho(x_{\ell})$$

$$\stackrel{\text{with equation of the second states}}{\kappa : \ell_2 \text{-Dirichlet kernel}}$$

Classical representation of the ground state

spoiler: assumptions on H(x), O ensure $\mathbb{E}_{x \stackrel{\text{unif}}{\sim} [-1,1]^m} |\operatorname{tr} (O\rho_{\operatorname{train}}(x)) - \operatorname{tr} (O\rho(x))|^2 \le \epsilon$ $(\operatorname{MSE} \le \epsilon)$ with $\operatorname{poly}(m) = \operatorname{poly}(n)$ scaling in \circ training data size \circ runtime + memory

$$x \in [-1, 1]^{m}$$

$$H_{tot}(x) = \sum_{j} H(x)$$

$$\longleftrightarrow$$
Parameters describing
a physical Hamiltonian

$$(x_{\ell}, \rho(x_{\ell})) \biguplus x_{\ell} \overset{unif}{\sim} [-1, 1]^{m}$$

$$\rho_{\text{train}}(x) = \sum_{\ell=1}^{N} \kappa(x, x_{\ell}) \rho(x_{\ell})$$

$$\overset{\kappa: \text{ neural tangent kernel}}{\kappa: \ell_{2}\text{-Dirichlet kernel}}$$

tr $(O\rho_{\text{train}}(x))$ 1010011000111 100 011 11 00 01 1110001001000

Classical representation of the ground state

spoiler: assumptions on
$$H(x)$$
, O ensure

$$\mathbb{E}_{x \sim [-1,1]^m} |\operatorname{tr} (O\rho_{\operatorname{train}}(x)) - \operatorname{tr} (O\rho(x))|^2 \leq \epsilon$$
(MSE $\leq \epsilon$) with poly(m) = poly(n) scaling in
 \circ training data size (improvement to polylog(n))
 \circ runtime + memory (Lewis *et al.* 2301.13169)

$$x \in [-1, 1]^{m}$$

$$H_{tot}(x) = \sum_{j} H(x)$$

$$\longleftrightarrow$$
Parameters describing
a physical Hamiltonian

$$(x_{\ell}, \rho(x_{\ell})) \bigvee x_{\ell} \overset{unif}{\sim} [-1, 1]^{m}$$

$$\rho_{\text{train}}(x) = \sum_{\ell=1}^{N} \kappa(x, x_{\ell}) \rho(x_{\ell})$$

$$\frac{\kappa : \text{neural tangent kernel}}{\kappa : \ell_{2} \text{-Dirichlet kernel}}$$

1

Classical representation of the ground state

ML insight: compression s.t. $\hat{\sigma}(\alpha \rho_1) + \beta \hat{\sigma}(\rho_2) = \hat{\sigma}(\alpha \rho_1 + \beta \rho_2)$

ML insight: compression s.t. $\hat{\sigma}(\alpha \rho_1) + \beta \hat{\sigma}(\rho_2) = \hat{\sigma}(\alpha \rho_1 + \beta \rho_2)$ **our solution :** Monte Carlo sampling with quantum architectures

ML insight: compression s.t. $\hat{\sigma}(\alpha \rho_1) + \beta \hat{\sigma}(\rho_2) = \hat{\sigma}(\alpha \rho_1 + \beta \rho_2)$ **our solution :** Monte Carlo sampling with quantum architectures

- Monte Carlo paradigm ensures tractable approximations

ML insight: compression s.t. $\hat{\sigma}(\alpha \rho_1) + \beta \hat{\sigma}(\rho_2) = \hat{\sigma}(\alpha \rho_1 + \beta \rho_2)$ **our solution :** Monte Carlo sampling with quantum architectures

- Monte Carlo paradigm ensures tractable approximations
- sampling process outsourced to quantum simulator

 $\begin{array}{c} \vdots \\ \operatorname{tr}(\boldsymbol{O}_{L}\boldsymbol{\rho}) \approx \frac{1}{\tau} \sum_{t=1}^{T} \operatorname{tr}(\boldsymbol{O}_{L}\boldsymbol{\sigma}_{t}) \end{array} \end{array}$

ML insight: compression s.t. $\hat{\sigma}(\alpha \rho_1) + \beta \hat{\sigma}(\rho_2) = \hat{\sigma}(\alpha \rho_1 + \beta \rho_2)$ **our solution :** Monte Carlo sampling with quantum architectures

- Monte Carlo paradigm ensures tractable approximations
- sampling process outsourced to quantum simulator

• combination of quantum software and conventional software $\operatorname{tr}(\boldsymbol{O}_{L\boldsymbol{\rho}}) \approx \frac{1}{T} \sum_{t=1}^{T} \operatorname{tr}(\boldsymbol{O}_{L\boldsymbol{\sigma}_{t}})$

• simple quantum software, conventional memory & runtime is also cheap

ML insight: compression s.t. $\hat{\sigma}(\alpha \rho_1) + \beta \hat{\sigma}(\rho_2) = \hat{\sigma}(\alpha \rho_1 + \beta \rho_2)$ **our solution :** Monte Carlo sampling with quantum architectures

- Monte Carlo paradigm ensures tractable approximations
- sampling process outsourced to quantum simulator

- combination of quantum software and conventional software $\operatorname{tr}(O_L \rho) \approx \frac{1}{T} \sum_{t=1}^{T} \operatorname{tr}(O_L \sigma_t)$
- \circ simple quantum software, conventional memory & runtime is also cheap
- \circ works for every state, but only efficient for local observables \Rightarrow locality assumption

main result

Theorem 1 (Learning to predict ground state representations; informal). For any smooth family of Hamiltonians $\{H(x) : x \in [-1,1]^m\}$ in a finite spatial dimension with a constant spectral gap, the classical machine learning algorithm can learn to predict a classical representation of the ground state $\rho(x)$ of H(x) that approximates few-body reduced density matrices up to a constant error ϵ when averaged over x. The required training data size N and computation time are polynomial in m and linear in the system size n.

H.Y. Huang, R. Kueng, G. Torlai, V.A. Albert, J. Preskill. Provably efficient ML for many-body problems.

Science 377, eabk3333 (2022) (and https://arxiv.org/abs/2106.12627)

proof of the main result three steps: (i) signal processing, (ii) bridge to ground state problem, (iii) classical shadows

Theorem

Consider a function $f: [-1, 1]^m \to \mathbb{R}$ (think: $f(x) = \operatorname{tr} (\mathcal{O}\rho(x))$) that obeys (i) $\mathbb{E}_{x^{\operatorname{unif}}[-1,1]^m} \|\nabla_x f(x)\|_2^2 \leq C$ (controlled average gradient size) (ii) $|f(x)| \leq B$ almost surely (bounded magnitude). Use $N = B^2 m^{\mathcal{O}(C/\epsilon)}$ uniform samples $(x_\ell, f(x_\ell))$ with $x_\ell \overset{\operatorname{unif}}{\sim} [-1, 1]^m$ to construct $\tilde{f}(x) = \frac{1}{N} \sum_{\ell=1}^N \kappa_\Lambda(x, x_\ell) f(x_\ell)$ with $\kappa_\Lambda(x, x_\ell) = \sum_{\substack{k \in \mathbb{Z}^m \\ \|k\|_2 \leq \Lambda}} e^{i\pi \langle k, x - y \rangle}, \Lambda = \mathcal{O}(C/\epsilon).$ Then, $\mathbb{E}_{x^{\operatorname{unif}}[-1,1]^m} \left| \tilde{f}(x) - f(x) \right| \leq \epsilon$ (MSE $\leq \epsilon$) with high probability.

 $f(x) = \boldsymbol{F}^{-1} \boldsymbol{F} f(x)$

 $\leftarrow \text{ Fourier series plays nicely with MSE}$

$$f(x) = \mathbf{F}^{-1} \mathbf{F} f(x)$$

= $\mathbf{F}^{-1} \mathbf{T}_{\Lambda} \mathbf{F} f(x) + \mathbf{F}^{-1} (\operatorname{Id} - \mathbf{T}_{\Lambda}) \mathbf{F} f(x)$
 $\approx \mathbf{F}^{-1} \mathbf{T}_{\Lambda} \mathbf{F} f(x)$

 $\leftarrow \text{ Fourier series plays nicely with MSE}$

 $\leftarrow \text{ truncation in frequency domain} \\ (\text{use } \mathbb{E}_x \| \nabla_x f(x) \|_2^2 \leq C)$

$$\begin{split} f(x) &= \boldsymbol{F}^{-1} \boldsymbol{F} f(x) \\ &= \boldsymbol{F}^{-1} \boldsymbol{T}_{\Lambda} \boldsymbol{F} f(x) + \boldsymbol{F}^{-1} \left(\mathrm{Id} - \boldsymbol{T}_{\Lambda} \right) \boldsymbol{F} f(x) \\ &\approx \boldsymbol{F}^{-1} \boldsymbol{T}_{\Lambda} \boldsymbol{F} f(x) \\ &= \sum_{\||k\||_{2} \leq \Lambda} \mathrm{e}^{\mathrm{i} \pi \langle k, x \rangle} \frac{1}{2^{m}} \int_{[-1,1]^{m}} \mathrm{d}^{m} y \mathrm{e}^{-\mathrm{i} \pi \langle k, y \rangle} f(y) \\ &= \frac{1}{2^{m}} \int_{[-1,1]^{m}} \left(\sum_{\|k\|_{2} \leq \Lambda} \mathrm{e}^{\mathrm{i} \pi \langle k, x - y \rangle} \right) f(y) \mathrm{d}^{m} y \end{split}$$

 $\leftarrow \text{ Fourier series plays nicely with MSE}$

 $\leftarrow \text{ truncation in frequency domain} \\ (\text{use } \mathbb{E}_x \left\| \nabla_x f(x) \right\|_2^2 \leq C)$

 $y \leftarrow \ell_2$ -Dirichlet kernel emerges

Theorem (streamlined insight from sampling theory)

Uniform sampling efficiently interpolates functions $f : [-1,1]^m \to \mathbb{R}$ that obey (i) $\mathbb{E}_{x \stackrel{iid}{\sim} [-1,1]^m} \| \nabla_x f(x) \|_2^2 \leq C$ and (ii) $|f(x)| \leq B$.

now, we set $f(x) = tr(\mathbf{O}\rho(x))$ with $\rho(x)$ ground state of H(x) and \mathbf{O} sum of local terms

Theorem (streamlined insight from sampling theory)

Uniform sampling efficiently interpolates functions $f : [-1,1]^m \to \mathbb{R}$ that obey (i) $\mathbb{E}_{x \stackrel{iid}{\sim} [-1,1]^m} \| \nabla_x f(x) \|_2^2 \leq C$ and (ii) $|f(x)| \leq B$.

now, we set $f(x) = \operatorname{tr} (\boldsymbol{O} \rho(x))$ with $\rho(x)$ ground state of $\boldsymbol{H}(x)$ and \boldsymbol{O} sum of local terms condition (ii): $|f(x)| = |\operatorname{tr} (\boldsymbol{O} \rho(x))| \le \|\boldsymbol{O}\|_{\infty} \|\boldsymbol{\rho}(x)\|_1 = \|\boldsymbol{O}\|_{\infty} \le B$

Theorem (streamlined insight from sampling theory)

Uniform sampling efficiently interpolates functions $f : [-1,1]^m \to \mathbb{R}$ that obey (i) $\mathbb{E}_{x \stackrel{iid}{\sim} [-1,1]^m} \| \nabla_x f(x) \|_2^2 \leq C$ and (ii) $|f(x)| \leq B$.

now, we set $f(x) = \operatorname{tr}(O\rho(x))$ with $\rho(x)$ ground state of H(x) and O sum of local terms condition (ii): $|f(x)| = |\operatorname{tr}(O\rho(x))| \le ||O||_{\infty} ||\rho(x)||_1 = ||O||_{\infty} \le B$ condition (i) follows ground state properties of 'nice' Hamiltonians and locality quasi-adiabatic continuation and Lieb-Robinson bounds imply

Theorem (streamlined insight from sampling theory)

Uniform sampling efficiently interpolates functions $f : [-1,1]^m \to \mathbb{R}$ that obey (i) $\mathbb{E}_{x \stackrel{iid}{\sim} [-1,1]^m} \| \nabla_x f(x) \|_2^2 \leq C$ and (ii) $|f(x)| \leq B$.

now, we set $f(x) = \operatorname{tr} (O\rho(x))$ with $\rho(x)$ ground state of H(x) and O sum of local terms condition (ii): $|f(x)| = |\operatorname{tr} (O\rho(x))| \le ||O||_{\infty} ||\rho(x)||_1 = ||O||_{\infty} \le B$ condition (i) follows ground state properties of 'nice' Hamiltonians and locality quasi-adiabatic continuation and Lieb-Robinson bounds imply

Proposition: SPECTRALGAP($\boldsymbol{H}(x)$) $\geq \gamma = \Omega(1)$ for all $x \in [-1, 1]^m$ ensures $\|\nabla_x \operatorname{tr} (\boldsymbol{O} \boldsymbol{\rho}(x))\|_2^2 \leq C_\gamma (\sum_I \|\boldsymbol{O}_I\|_{\infty})^2 = C_\gamma B^2$ everywhere.

Corollary (many-body restatement of main sampling theorem)

Let $\mathbf{H}(x) = \sum_{j} \mathbf{H}_{j}(x)$ with $x \in [-1, 1]^{m}$ be a parametrized family of 'geometrically local' *n*-qubit Hamiltonians with a constant spectral gap throughout and let $\mathbf{O} = \sum_{j} \mathbf{O}_{j}$ be a sum of local observables such that $\sum_{j} \|\mathbf{O}_{j}\|_{\infty} \leq B$. Then, a total of $N = B^{2}m^{\mathcal{O}(B^{2}/\epsilon)}$ labeled ground states $(x_{\ell}, \rho(x_{\ell}))$ with $x_{\ell} \stackrel{unif}{\sim} [-1, 1]^{m}$ allows us to interpolate to new ground states: $\rho_{\text{train}}(x) = \frac{1}{N} \sum_{\ell=1}^{N} \kappa_{\Lambda}(x, x_{\ell}) \rho(x_{\ell})$ with $\kappa_{\Lambda}(x, x_{\ell}) = \sum_{k \in \mathbb{Z}^{m}: \|k\|_{2} \leq \Lambda} e^{i\pi \langle k, x - x_{\ell} \rangle}$, $\Lambda = \mathcal{O}(B^{2}/\epsilon)$. With high probability, $\mathbb{E}_{x_{i}^{unif}[-1,1]^{m}} |\operatorname{tr}(\mathbf{O}\tilde{\rho}(x)) - \operatorname{tr}(\mathbf{O}\rho(x))|^{2} \leq \epsilon \text{ (MSE } \leq \epsilon)$.

• for B = const and $\epsilon = \text{const}$, N = poly(m) = polylog(D) (efficient training size)

constant spectral gap is strong physical assumption ('deep within a phase')

• procedure is not (yet) efficient: training data $\rho(x_\ell) \in \mathbb{H}_D$ is gigantic $(D = 2^n)$

Corollary (many-body restatement of main sampling theorem)

Let $\mathbf{H}(x) = \sum_{j} \mathbf{H}_{j}(x)$ with $x \in [-1, 1]^{m}$ be a parametrized family of 'geometrically local' *n*-qubit Hamiltonians with a constant spectral gap throughout and let $\mathbf{O} = \sum_{j} \mathbf{O}_{j}$ be a sum of local observables such that $\sum_{j} \|\mathbf{O}_{j}\|_{\infty} \leq B$. Then, a total of $N = B^{2}m^{\mathcal{O}(B^{2}/\epsilon)}$ labeled ground states $(x_{\ell}, \rho(x_{\ell}))$ with $x_{\ell} \stackrel{unif}{\sim} [-1, 1]^{m}$ allows us to interpolate to new ground states: $\rho_{\text{train}}(x) = \frac{1}{N} \sum_{\ell=1}^{N} \kappa_{\Lambda}(x, x_{\ell}) \rho(x_{\ell})$ with $\kappa_{\Lambda}(x, x_{\ell}) = \sum_{k \in \mathbb{Z}^{m}: \|k\|_{2} \leq \Lambda} e^{i\pi \langle k, x - x_{\ell} \rangle}$, $\Lambda = \mathcal{O}(B^{2}/\epsilon)$. With high probability, $\mathbb{E}_{x_{i}^{unif}[-1,1]^{m}} |\operatorname{tr}(\mathbf{O}\tilde{\rho}(x)) - \operatorname{tr}(\mathbf{O}\rho(x))|^{2} \leq \epsilon \text{ (MSE } \leq \epsilon)$.

- for B = const and $\epsilon = \text{const}$, N = poly(m) = polylog(D) (efficient training size)
- constant spectral gap is *strong physical assumption* ('deep within a phase')
- procedure is not (yet) efficient: training data $\rho(x_{\ell}) \in \mathbb{H}_D$ is gigantic $(D = 2^n)$

 \circ take-home message from previous slide:

 $\rho(x) \approx {oldsymbol
ho}_{
m train}(x) = rac{1}{N} \sum_{\ell=1}^N \kappa_{\Lambda}(x,x_\ell) \rho(x_\ell)$

 \circ take-home message from previous slide:

 $ho(x) pprox
ho_{ ext{train}}(x) = rac{1}{N} \sum_{\ell=1}^N \kappa_{\Lambda}(x, x_\ell)
ho(x_\ell)$

o linear data compression (sketching) ensures

$$\hat{\sigma}\left(
ho(x)
ight) pprox \hat{\sigma}\left(
ho_{ ext{train}}(x)
ight) = rac{1}{N}\sum_{\ell=1}^{N}\kappa_{\Lambda}(x,x_{\ell})\hat{\sigma}(
ho(x_{\ell}))$$

 \circ take-home message from previous slide:

 $ho(x) pprox
ho_{ ext{train}}(x) = rac{1}{N} \sum_{\ell=1}^{N} \kappa_{\Lambda}(x, x_{\ell})
ho(x_{\ell})$

o linear data compression (sketching) ensures

$$\hat{\sigma}\left(
ho(x)
ight)pprox\hat{\sigma}\left(
ho_{ ext{train}}(x)
ight)=rac{1}{N}\sum_{\ell=1}^{N}\kappa_{\Lambda}(x,x_{\ell})\hat{\sigma}(
ho(x_{\ell}))$$

classical shadows (Monte Carlo) accumulate samples

if $\pmb{\sigma}(x_\ell)$ contains T shots, then $\hat{\sigma}_{ ext{train}}(x)$ contrains $NT \gg q$

 \circ take-home message from previous slide:

 $ho(x) pprox
ho_{ ext{train}}(x) = rac{1}{N} \sum_{\ell=1}^{N} \kappa_{\Lambda}(x, x_{\ell})
ho(x_{\ell})$

o linear data compression (sketching) ensures

$$\hat{\sigma}\left(
ho(x)
ight)pprox\hat{\sigma}\left(
ho_{ ext{train}}(x)
ight)=rac{1}{N}\sum_{\ell=1}^{N}\kappa_{\Lambda}(x,x_{\ell})\hat{\sigma}(
ho(x_{\ell}))$$

o classical shadows (Monte Carlo) accumulate samples

if $\pmb{\sigma}(x_\ell)$ contains T shots, then $\hat{\sigma}_{ ext{train}}(x)$ contrains $NT \gg q$

Proposition: minimal classical shadows with T = 1 already ensure MSE ϵ ; moreover STORAGE($\hat{\sigma}(x_{\ell})$) = 2.6bits \Rightarrow cheap data acquisition, storage + processing

Theorem (Learning to predict ground state properties with classical shadows)

Let $\mathbf{H}(x) = \sum_{j} \mathbf{H}_{j}(x)$ with $x \in [-1, 1]^{m}$ be a parametrized family of 'geometrically local' n-qubit Hamiltonians with a constant spectral gap throughout and let $\mathbf{O} = \sum_{j} \mathbf{O}_{j}$ be a sum of local observables such that $\sum_{j} ||\mathcal{O}_{j}||_{\infty} \leq B$. Then, a total of $N = B^{2}m^{\mathcal{O}(B^{2}/\epsilon)}$ labeled ground state sketches $(x_{\ell}, \sigma(x_{\ell}))$ (minimal classical shadows) with $x_{\ell} \stackrel{unif}{\sim} [-1, 1]^{m}$ allows us to interpolate to new ground state sketches:

$$\tilde{\boldsymbol{\sigma}}\left(x\right) = \frac{1}{N} \sum_{\ell=1}^{N} \kappa_{\Lambda}(x, x_{\ell}) \boldsymbol{\sigma}\left(\rho(x_{\ell})\right) \quad \text{with} \quad \kappa_{\Lambda}(x, x_{\ell}) = \sum_{k \in \mathbb{Z}^{m:} ||k||_{2} \leq \Lambda} e^{i\pi \langle k, x - x_{\ell} \rangle}, \ \Lambda = \mathcal{O}(B^{2}/\epsilon).$$

With high probability, this interpolation obeys $\mathbb{E}_{x \stackrel{\text{unif}}{\sim} [-1,1]^m} |\operatorname{tr} (O\tilde{\sigma}(x)) - \operatorname{tr} (O\rho(x))|^2 \leq \epsilon$ ($MSE \leq \epsilon$). Moreover, all computational resources (data compression, storage, training, prediction) are bounded by $\mathcal{O}\left(nB^2m^{\mathcal{O}(B^2/\epsilon)}\right)$.

analysis extends to infinite-width neural networks (neural tangent kernel)

■ for $\epsilon, B = \text{const}, \mathcal{O}(nB^2m^{\mathcal{O}(B^2/\epsilon)}) = \text{poly}(n) = \text{poly}(D)$ (efficient cost throughout)

remaining question: where does training data $(x_{\ell}, \sigma(x_{\ell}))$ come from?

(i) numerical simulations. (ii) quantum computers (quantum-to-classical conversion)

Theorem (Learning to predict ground state properties with classical shadows)

Let $\mathbf{H}(x) = \sum_{j} \mathbf{H}_{j}(x)$ with $x \in [-1, 1]^{m}$ be a parametrized family of 'geometrically local' n-qubit Hamiltonians with a constant spectral gap throughout and let $\mathbf{O} = \sum_{j} \mathbf{O}_{j}$ be a sum of local observables such that $\sum_{j} ||O_{j}||_{\infty} \leq B$. Then, a total of $N = B^{2}m^{\mathcal{O}(B^{2}/\epsilon)}$ labeled ground state sketches $(x_{\ell}, \sigma(x_{\ell}))$ (minimal classical shadows) with $x_{\ell} \stackrel{unif}{\sim} [-1, 1]^{m}$ allows us to interpolate to new ground state sketches:

$$\tilde{\boldsymbol{\sigma}}\left(x\right) = \frac{1}{N} \sum_{\ell=1}^{N} \kappa_{\Lambda}(x, x_{\ell}) \boldsymbol{\sigma}\left(\rho(x_{\ell})\right) \quad \text{with} \quad \kappa_{\Lambda}(x, x_{\ell}) = \sum_{k \in \mathbb{Z}^{m:} ||k||_{2} \leq \Lambda} e^{i\pi \langle k, x - x_{\ell} \rangle}, \ \Lambda = \mathcal{O}(B^{2}/\epsilon).$$

With high probability, this interpolation obeys $\mathbb{E}_{x \stackrel{\text{unif}}{\sim} [-1,1]^m} |\operatorname{tr} (O\tilde{\sigma}(x)) - \operatorname{tr} (O\rho(x))|^2 \leq \epsilon$ ($MSE \leq \epsilon$). Moreover, all computational resources (data compression, storage, training, prediction) are bounded by $\mathcal{O}\left(nB^2m^{\mathcal{O}(B^2/\epsilon)}\right)$.

analysis extends to infinite-width neural networks (neural tangent kernel)

• for $\epsilon, B = \text{const}, \mathcal{O}(nB^2m^{\mathcal{O}(B^2/\epsilon)}) = \text{poly}(n) = \text{polylog}(D)$ (efficient cost throughout)

11 / 15

• remaining question: where does training data $(x_{\ell}, \sigma(x_{\ell}))$ come from?

(i) numerical simulations. (ii) quantum computers (quantum-to-classical conversion) Richard Kueng Learning to predict ground state properties March 6th, 2023

numerical experiments

Numerics: 1D chain of n = 51 Rydberg atoms

Numerics: 2D Heisenberg model with n = 25 spins

Numerics: 2D Heisenberg model with different ML models

comparison between
NKT (green,red)
MLP (purple)
GNN (blue, orange)
collaboration with Caltech
and Hochreiter group (JKU)
[Tran *et al*, NeurIPS workshop 22]

Richard Kueng

synopsis

• **ambition:** provide rigorous theory support for efficient fruitful between quantum computing/experiments (data generation) and classical ML (generalization)

• **ambition:** provide rigorous theory support for efficient fruitful between quantum computing/experiments (data generation) and classical ML (generalization)

 \circ concrete objective: learn to predict properties of parametrized many-body ground states

- ambition: provide rigorous theory support for efficient fruitful between quantum computing/experiments (data generation) and classical ML (generalization)
- concrete objective: learn to predict properties of parametrized many-body ground states
- \circ result: strong assumptions (constant spectral gap & locality) \Rightarrow quasi-polynomial guarantees

- ambition: provide rigorous theory support for efficient fruitful between quantum computing/experiments (data generation) and classical ML (generalization)
- \circ concrete objective: learn to predict properties of parametrized many-body ground states
- \circ result: strong assumptions (constant spectral gap & locality) \Rightarrow quasi-polynomial guarantees
- our constructive proof combines three ingredients (each of which is easy for experts)

- **ambition:** provide rigorous theory support for efficient fruitful between quantum computing/experiments (data generation) and classical ML (generalization)
- concrete objective: learn to predict properties of parametrized many-body ground states
- \circ result: strong assumptions (constant spectral gap & locality) \Rightarrow quasi-polynomial guarantees
- o our constructive proof combines three ingredients (each of which is easy for experts)
 (i) harmonic analysis: approximate slow-varying and bounded function by uniform sampling
 (ii) many-body physics: locality & constant spectral gap ensure slow variation + boundedness
 (iii) classical shadows allow efficient + linear data compression ('sketching')

- ambition: provide rigorous theory support for efficient fruitful between quantum computing/experiments (data generation) and classical ML (generalization)
 concrete objective: learn to predict properties of parametrized many-body ground states
- \circ result: strong assumptions (constant spectral gap & locality) \Rightarrow quasi-polynomial guarantees
- o our constructive proof combines three ingredients (each of which is easy for experts)
 (i) harmonic analysis: approximate slow-varying and bounded function by uniform sampling
 (ii) many-body physics: locality & constant spectral gap ensure slow variation + boundedness
 (iii) classical shadows allow efficient + linear data compression ('sketching')

• refined proof technique improves training data bound (almost) exponentially [Lewis et al, 2023]

- ambition: provide rigorous theory support for efficient fruitful between quantum computing/experiments (data generation) and classical ML (generalization)
 concrete objective: learn to predict properties of parametrized many-body ground states
- \circ result: strong assumptions (constant spectral gap & locality) \Rightarrow quasi-polynomial guarantees
- o our constructive proof combines three ingredients (each of which is easy for experts)
 (i) harmonic analysis: approximate slow-varying and bounded function by uniform sampling
 (ii) many-body physics: locality & constant spectral gap ensure slow variation + boundedness
 (iii) classical shadows allow efficient + linear data compression ('sketching')
- refined proof technique improves training data bound (almost) exponentially [Lewis *et al*, 2023]
 numerical experiments highlight that practical performance is even better [Tran *et al*, 2023]

- **ambition:** provide rigorous theory support for efficient fruitful between quantum computing/experiments (data generation) and classical ML (generalization)
- \circ concrete objective: learn to predict properties of parametrized many-body ground states
- \circ result: strong assumptions (constant spectral gap & locality) \Rightarrow quasi-polynomial guarantees
- o our constructive proof combines three ingredients (each of which is easy for experts)
 (i) harmonic analysis: approximate slow-varying and bounded function by uniform sampling
 (ii) many-body physics: locality & constant spectral gap ensure slow variation + boundedness
 (iii) classical shadows allow efficient + linear data compression ('sketching')
- refined proof technique improves training data bound (almost) exponentially [Lewis *et al*, 2023]
 numerical experiments highlight that practical performance is even better [Tran *et al*, 2023]
- \circ complexity-theoretic bottlenecks for approaches that don't use training data reduction from rectilinear 3-SAT and integer <code>FACTORIZATION</code>

Provably efficient machine learning for quantum many-body problems.

Science 377, eabk3333 (2022) (and https://arxiv.org/abs/2106.12627)

Thank you!

Provably efficient machine learning for quantum many-body problems. Science 377, eabk3333 (2022) (and https://arxiv.org/abs/2106.12627)

Thank you!

Also, I am building up a team in Linz – PhD and postdoc positions are available. Please help me spread the word.

Backup slide 1: spectral & locality control avg. gradient size

• Hamiltonian $\boldsymbol{H}_{tot}(x)$ has spectral gap $\left|\lambda_1^{\uparrow}(\boldsymbol{H}_{tot}(x)) - \lambda_2^{\uparrow}(\boldsymbol{H}_{tot}(x))\right| \ge \gamma = \Omega(1) \ \forall x \in [-1,1]^m$ • observable $\boldsymbol{O}_{tot} = \sum_j \boldsymbol{O}_j$ is sum of 'local' terms, e.g. $\boldsymbol{O}_1 = \tilde{\boldsymbol{O}}_1 \otimes \mathbb{I}^{\otimes (n-o)}$

 \circ quasi-adiabatic continuation: $W_{\gamma}(t)$ is fast-decaying weight function around 0 and

$$(\partial/\partial \hat{u}) \, \boldsymbol{
ho}(x) = [\boldsymbol{D}_{\hat{u}}, \boldsymbol{
ho}(x)] \text{ with } \boldsymbol{D}_{\hat{u}} = \int_{\mathbb{R}} W_{\gamma}(t) \mathrm{e}^{\mathrm{i}t \boldsymbol{H}_{\mathrm{tot}}(x)} \left((\partial/\partial \hat{u}) \, \boldsymbol{H}_{\mathrm{tot}}(x)
ight) \mathrm{e}^{-\mathrm{i}t \boldsymbol{H}_{\mathrm{tot}}(x) \mathrm{d}t}$$

$$\Rightarrow \left\| \nabla_{x} \mathrm{tr} \left(\boldsymbol{O} \boldsymbol{\rho}(x) \right) \right\|_{2} = \left\| \mathrm{tr} \left(\left[\boldsymbol{O}, \boldsymbol{D}_{\hat{u}} \right] \boldsymbol{\rho}(x) \right) \right\| \leq \left\| \left[\boldsymbol{O}, \boldsymbol{D}_{\hat{u}} \right] \right\|_{\infty} \left\| \boldsymbol{\rho}(x) \right\|_{1}$$

$$\leq \sum_{j_1,j_2} \int_{\mathbb{R}} W_{\gamma}(t) \left\| \left[oldsymbol{O}_{j_1}, \mathrm{e}^{\mathrm{i} t oldsymbol{H}_{\mathrm{tot}}} \left((\partial/\partial \, \hat{u}) \, oldsymbol{H}_{j_2}
ight) \mathrm{e}^{-\mathrm{i} t oldsymbol{H}_{\mathrm{tot}}}
ight]
ight\|_{\infty}$$

• **locality** implies that most O_{j_1} and H_{j_2} act nontrivially on very distant regions (tensor factors) • **Lieb-Robinson bounds** ensure that the matrix exponentials don't change this too much \Rightarrow almost all matrices in (1) commute approximately \Rightarrow small gradient size $\forall x \in [-1, 1]^m$

Backup slide 2: reduction from rectilinear 3-SAT

Qubit Hamiltonian on 2D grid

Backup slide 3: truncation in Fourier domain

Lemma (truncation)

Let
$$f: [-1,1]^m \to \mathbb{R}$$
 and $f_{\Lambda}(x) = F^{-1} T_{\Lambda} F f(x) = \sum_{k \in \mathbb{Z}^m, \|k\|_2 \le \Lambda} e^{i\pi \langle k, x \rangle} \hat{f}(k)$. Then,

$$\mathbb{E}_{x\overset{\textit{unif}}{\sim} [-1,1]^m} \left| f(x) - f_{\Lambda}(x)
ight| \leq rac{1}{\pi^2 \Lambda^2} \mathbb{E}_{x\overset{\textit{unif}}{\sim} [-1,1]^m} \left\|
abla_x f(x)
ight\|_2^2.$$

 $\Rightarrow \epsilon$ -error requires cutoff $\Lambda = \mathcal{O}(C/\epsilon)$ with $C \ge \mathbb{E}_x \|\nabla_x f(x)\|_2^2$

 \circ in words: average gradient size controls cutoff

Backup slide 3: truncation in Fourier domain

Lemma (truncation)

Let
$$f: [-1,1]^m \to \mathbb{R}$$
 and $f_{\Lambda}(x) = F^{-1}T_{\Lambda}Ff(x) = \sum_{k \in \mathbb{Z}^m, \|k\|_2 \leq \Lambda} e^{i\pi \langle k, x \rangle} \hat{f}(k)$. Then,

$$\mathbb{E}_{x\overset{\textit{unif}}{\sim} [-1,1]^m} \left| f(x) - f_{\mathsf{A}}(x) \right| \leq \frac{1}{\pi^2 \mathsf{A}^2} \mathbb{E}_{x\overset{\textit{unif}}{\sim} [-1,1]^m} \left\| \nabla_x f(x) \right\|_2^2.$$

 $\Rightarrow \epsilon \text{-error requires cutoff } \Lambda = \mathcal{O}(C/\epsilon) \text{ with } C \ge \mathbb{E}_x \|\nabla_x f(x)\|_2^2$ $\circ \text{ in words: average gradient size controls cutoff }$

proof sketch: (standard Fourier argument with Parseval's identity)

$$\begin{split} & \mathbb{E}_{x \sim [-1,1]^{m}} \left\| \nabla_{x} f(x) \right\|_{2}^{2} = \frac{1}{2^{m}} \int_{[-1,1]^{m}} \mathrm{d}^{m} x \left\| \sum_{k \in \mathbb{Z}^{m}} \mathrm{i} \pi k \mathrm{e}^{\mathrm{i} \pi \langle k, x \rangle} \hat{f}(k) \right\|_{2}^{2} = \pi^{2} \sum_{k \in \mathbb{Z}^{m}} \left\| k \right\|_{2}^{2} \left| \hat{f}(k) \right|^{2} \\ & \mathbb{E}_{x \sim [-1,1]^{m}} \left| f(x) - f_{\Lambda}(x) \right| = \int_{[-1,1]^{m}} \mathrm{d}^{m} x \left| \sum_{\|k\|_{2} > \Lambda} \mathrm{e}^{\mathrm{i} \pi \langle k, x \rangle} \hat{f}(k) \right| = \sum_{\|k\|_{2} > \Lambda} \left| \hat{f}(k) \right|^{2} \end{split}$$

Backup slide 4: sampling approximation

Lemma (sampling rate for MSE approximation)

Let $f_{\Lambda}(x)$ be a band-limited function with $|f_{\Lambda}(x)| \leq B$ a.s. Then, with high (constant) prob: $\tilde{f}_{\Lambda}(x) = \frac{1}{N} \sum_{\ell=1}^{N} \kappa_{\Lambda}(x, x_{\ell}) f(x_{\ell})$ with $x_{\ell} \stackrel{unif}{\sim} [-1, 1]^m$ and $k_{\Lambda}(x, x_{\ell}) = \sum_{k \in \mathbb{Z}^m: ||k||_2 \leq \Lambda} e^{i\pi \langle k, x - x_{\ell} \rangle}$ obeys: $a = \mathbb{E}_{x^{unif}[-1, 1]^m} \left| \tilde{f}_{\Lambda}(x) - f_{\Lambda}(x) \right|^2 \leq B^2 m^{\mathcal{O}(\Lambda^2)} / N.$

in words: bounded function value implies bounded (uniform) sampling rate N

Backup slide 4: sampling approximation

Lemma (sampling rate for MSE approximation)

Let $f_{\Lambda}(x)$ be a band-limited function with $|f_{\Lambda}(x)| \leq B$ a.s. Then, with high (constant) prob: $\tilde{f}_{\Lambda}(x) = \frac{1}{N} \sum_{\ell=1}^{N} \kappa_{\Lambda}(x, x_{\ell}) f(x_{\ell})$ with $x_{\ell} \stackrel{unif}{\sim} [-1, 1]^m$ and $k_{\Lambda}(x, x_{\ell}) = \sum_{k \in \mathbb{Z}^m: ||k||_2 \leq \Lambda} e^{i\pi \langle k, x - x_{\ell} \rangle}$ obeys: $a = \mathbb{E}_{x^{unif}[-1, 1]^m} \left| \tilde{f}_{\Lambda}(x) - f_{\Lambda}(x) \right|^2 \leq B^2 m^{\mathcal{O}(\Lambda^2)} / N.$

in words: bounded function value implies bounded (uniform) sampling rate N proof sketch: (polynomial bound on lattice size + Hoeffding) $a = \frac{1}{2^m} \int_{[-1,1]^m} d^m x \left| \sum_{\|k\|_2 \le \Lambda} e^{i\pi \langle k, x \rangle} \left(\frac{1}{N} \sum_{\ell=1}^N \left(e^{-i\pi \langle k, x_\ell \rangle} f(x_\ell) - \mathbb{E}_{x_\ell} \left[e^{-i\pi \langle k, x_\ell \rangle} f(x_\ell) \right] \right) \right) \right|^2$ $= \sum_{k \in \mathbb{Z}^m: \|k\|_2 \le \Lambda} \left| \frac{1}{N} \sum_{\ell=1}^N \left(e^{-i\pi \langle k, x_\ell \rangle} f(x_\ell) - \mathbb{E}_{x_\ell} \left[e^{-i\pi \langle k, x_\ell \rangle} f(x_\ell) \right] \right) \right|^2$

Backup slide 4: sampling approximation

Lemma (sampling rate for MSE approximation)

Let $f_{\Lambda}(x)$ be a band-limited function with $|f_{\Lambda}(x)| \leq B$ a.s. Then, with high (constant) prob: $\tilde{f}_{\Lambda}(x) = \frac{1}{N} \sum_{\ell=1}^{N} \kappa_{\Lambda}(x, x_{\ell}) f(x_{\ell})$ with $x_{\ell} \stackrel{unif}{\sim} [-1, 1]^m$ and $k_{\Lambda}(x, x_{\ell}) = \sum_{k \in \mathbb{Z}^m: ||k||_2 \leq \Lambda} e^{i\pi \langle k, x - x_{\ell} \rangle}$ obeys: $a = \mathbb{E}_{x^{unif}[-1, 1]^m} \left| \tilde{f}_{\Lambda}(x) - f_{\Lambda}(x) \right|^2 \leq B^2 m^{\mathcal{O}(\Lambda^2)} / N.$

in words: bounded function value implies bounded (uniform) sampling rate Nproof sketch: (polynomial bound on lattice size + Hoeffding) $a = \frac{1}{2^m} \int_{[-1,1]^m} d^m x \left| \sum_{\|k\|_2 \le \Lambda} e^{i\pi \langle k, x \rangle} \left(\frac{1}{N} \sum_{\ell=1}^N \left(e^{-i\pi \langle k, x_\ell \rangle} f(x_\ell) - \mathbb{E}_{x_\ell} \left[e^{-i\pi \langle k, x_\ell \rangle} f(x_\ell) \right] \right) \right) \right|^2$ $= \sum_{k \in \mathbb{Z}^m: \|k\|_2 \le \Lambda} \left| \frac{1}{N} \sum_{\ell=1}^N \left(e^{-i\pi \langle k, x_\ell \rangle} f(x_\ell) - \mathbb{E}_{x_\ell} \left[e^{-i\pi \langle k, x_\ell \rangle} f(x_\ell) \right] \right) \right|^2$ $\leq |\{k \in \mathbb{Z}^m: \|k\|_2 \le \Lambda\}| \max_{\|k\|_2 \le \Lambda} \left| \frac{1}{N} \sum_{\ell=1}^N \left(e^{-i\pi \langle k, x_\ell \rangle} f(x_\ell) - \mathbb{E}_{x_\ell} \left[e^{-i\pi \langle k, x_\ell \rangle} f(x_\ell) \right] \right) \right|^2$ $(2m+1)^{\Lambda^2} = m^{\mathcal{O}(\Lambda^2)}$ tail bound (Hoeffding)