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motivation

ground state problem in quantum many-body physics
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motivation

Motivating numerics: 2D Heisenberg model (n = 25, m = 40)
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motivation

High-level vision

Hio: = Zj H tr (Op(x))
= direct computation
P(X) = Vinin(X) Vimin (%) 1110007001000
}'{ Parameters describing (expensive: D = 2")

Classical representation

a physical Hamiltonian f th d stat
O € ground state
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motivation

High-level vision
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motivation

High-level vision
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motivation

High-level vision
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motivation

High-level vision

spoiler: assumptions on H(x), O ensure

E 1] |tr (Optrain(x)) — tI‘(Op(X))‘Z <e

(MSE < €) with poly(m) = poly(n) scaling in
o training data size

o runtime 4+ memory

(.

X € [_1’ 1]’" unif
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motivation

High-level vision

spoiler: assumptions on H(x), O ensure
E 1 o 111 (Optsn(x)) — tr (Op(x)) < c
(MSE § €) with poly(m) =
o training data size (improvement to polylog(n))
(

= poly(n) scaling in

o runtime + memory (Lewis et al. 2301.13169)

(.

X € [_1’ 1]’" unif
Xe, X ~ m rain
Hiot(x) = Zj H(x) (xe, p( é))‘U’Xe [—1,1] tr (O ptrain(X))
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w—neural-tangent-kernel 1110007961000
o :a’::;?::lr;::mj:ii;g i+ Lp-Dirichlet kernel Classical representation

of the ground state
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motivation

Data format: classical shadows

ML insight: compression s.t. &(ap1) + 86(p2) = 6(ap1 + Bp2)
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Data format: classical shadows

ML insight: compression s.t. &(ap1) + 86(p2) = 6(ap1 + Bp2)
our solution : Monte Carlo sampling with quantum architectures
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motivation

Data format: classical shadows

ML insight: compression s.t. 6(ap1) + $6(p2) = 6(ap1 + Bp2) g O

our solution : Monte Carlo sampling with quantum architectures 2 -
— Monte Carlo paradigm ensures tractable approximations = ~ %Z :
E :

E t _( )_

& O

p € H? 6=Q", 6

(4" fpn's) (2.6n bits)

tr (O1p) = % Z;l tr (O107¢)

tr(Op) ~ + XL, tr(Or0e)
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motivation

Data format: classical shadows

ML insight: compression s.t. &(ap1) + 86(p2) = 6(ap1 + Bp2) 5 O
. . . . +
our solution : Monte Carlo sampling with quantum architectures Q -
. L @ 1 .
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. . 3 -
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Few rounds of randomized measurements of the quantum system .

tr(Op) ~ + XL, tr(Or0e)
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motivation

Data format: classical shadows

ML insight: compression s.t. &(ap1) + 86(p2) = 6(ap1 + Bp2) 5 O
our solution : Monte Carlo sampling with quantum architectures g -

— Monte Carlo paradigm ensures tractable approximations z ~ %Z
— sampling process outsourced to quantum simulator *;: t —O—
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KO o Ty
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| Qusmtm Syt Measurements 1110007001000 1T
@ Classical representation ~T Zt:l tr (Olat)
Few rounds of randomized measurements of the quantum system .

o combination of quantum software and conventional software tr (0, p) ~ + Z;l tr(Opoy)
o simple quantum software, conventional memory & runtime is also cheap
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motivation

Data format: classical shadows

ML insight: compression s.t. &(ap1) + 86(p2) = 6(ap1 + Bp2) 5 O
our solution : Monte Carlo sampling with quantum architectures g -

— Monte Carlo paradigm ensures tractable approximations z ~ %Z
— sampling process outsourced to quantum simulator *;: t —O—
[ | 1010012000111 s _Q_
T 7 \ B ~ -
KO o Ty

% s 0103 01
| Qusmtm Syt Measurements 1110007001000 1T
@ Classical representation ~T Zt:l tr (Olat)
Few rounds of randomized measurements of the quantum system .

o combination of quantum software and conventional software tr (0, p) ~ + Z;l tr(Opoy)
o simple quantum software, conventional memory & runtime is also cheap

o works for every state, but only efficient for local observables = locality assumption
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motivation

main result

Theorem 1 {Learning to predict ground state representations; informal). For any smooth family of Hamilio-
nians {H{x) : o € [=1,1]"} in a finite spatial dimension with o constant spectral gap, the classical machine
learning algorithm can learn to predict a classical representation of the ground state p(x) of H(x) that approz-
imates few-body reduced density matrices up to a constant error € when averaged over x. The reguired fraining
data size N and computation time are polynomial in m and linear in the system size n.

H.Y. Huang, R. Kueng, G. Torlai, V.A. Albert, J. Preskill. Provably efficient ML for many-body problems.
Science 377, eabk3333 (2022) (and https://arxiv.org/abs/2106.12627)
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proof of the main result
three steps: (i) signal processing, (ii) bridge to ground
state problem, (iii) classical shadows
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proof of the main result

Proof part 1: signal processing

Theorem

Consider a function f : [-1,1]" — R (think: f(x) = tr (Op(x))) that obeys
(i) Ex‘ﬂ'f[ i fo(x)H; < C (controlled average gradient size)

(i) |f(x)| < B almost surely (bounded magnitude).

Use N = B2m©(C/) uniform samples (x¢, f(x;)) with x; "X/ [=1,1]™ to construct
N

~ 1 .
_ = : _ im{k,x—y) -
f(x)= N ZHA(X,Xg)f(Xg) with  Ka(x, x¢) = Z e 1o N=0O(C/e).
=1 kezm
lkll2 < A
Then, E 1 |F(x) - f(x)‘ < ¢ (MSE < ¢) with high probability.
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proof of the main result

Proof part 1: signal processing

f(x) = F71Ff(x) <+ Fourier series plays nicely with MSE
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proof of the main result

Proof part 1: signal processing

f(x) = F‘lFf(x) <+ Fourier series plays nicely with MSE
= F_lT/\Ff(X) +F! (Id — Ta) Ff(x)
~ F 1T\Ff(x) < truncation in frequency domain

(use By ||V, F(x)]3 < C)
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proof of the main result

Proof part 1: signal processing

f(x) = F71Ff(x) <+ Fourier series plays nicely with MSE
= FITAFf(x)+ F~1(Id — Tp) Ff(x)
~ F 1T\Ff(x) < truncation in frequency domain
= 3 &m0 L [ e dTye TR f(y) (use B, ||V, F(x)]2 < C)

l[kll2<A
= 2% f[fl,l]’" (ZHkHzS/\ e”r<k’x’y>> f(y)d™y < (p-Dirichlet kernel emerges
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proof of the main result

Proof part 1: signal processing

f(x) = F71Ff(x) < Fourier series plays nicely with MSE
= FITAFf(x)+ F~1(Id — Tp) Ff(x)
~ F~1 T,\Ff(x) < truncation in frequency domain
= 2 e i dTye TEG) (use B VLA ()3 < ©)

l[kll2<A
= 2% f[fl,l]’" (ZHkHzS/\ el "’X’y>> f(y)d™y < (p-Dirichlet kernel emerges

= if[ 11]ml-£/\(x y) f(y)dmy
NN ZZ 1 Ka(X, xe)f(xe) with xg ‘iv'"f[ 1,1]™ <« Monte Carlo approximation,
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proof of the main result

Proof part 2: bridge to ground state problem

Theorem (streamlined insight from sampling theory)

Uniform sampling efficiently interpolates functions f : [-1,1]™ — R that obey
(VE sy o IV f(x)|5 < C and (ii) |f(x)| < B.

now, we set f(x) = tr (Op(x)) with p(x) ground state of H(x) and O sum of local terms
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proof of the main result

Proof part 2: bridge to ground state problem

Theorem (streamlined insight from sampling theory)

Uniform sampling efficiently interpolates functions f : [-1,1]™ — R that obey
(VE sy o IV f(x)|5 < C and (ii) |f(x)| < B.

(Op(x)) with p(x) ground state of H(x) and O sum of local terms

now, we set f(x) = tr
[FC)] = [tr (0p(x))] < [0l p(X)]ly = [10], < B

condition (ii):
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proof of the main result

Proof part 2: bridge to ground state problem

Theorem (streamlined insight from sampling theory)

Uniform sampling efficiently interpolates functions f : [-1,1]™ — R that obey
(VE sy o IV f(x)|5 < C and (ii) |f(x)| < B.

now, we set f(x) = tr (Op(x)) with p(x) ground state of H(x) and O sum of local terms
condition (ii): |£(x)| = [t (Op(x))| < O]l llp()l, = O] < B

condition (i) follows ground state properties of ‘nice’ Hamiltonians and locality
quasi-adiabatic continuation and Lieb-Robinson bounds imply
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proof of the main result

Proof part 2: bridge to ground state problem

Theorem (streamlined insight from sampling theory)

Uniform sampling efficiently interpolates functions f : [-1,1]™ — R that obey
(VE sy o IV f(x)|5 < C and (ii) |f(x)| < B.

now, we set f(x) = tr (Op(x)) with p(x) ground state of H(x) and O sum of local terms
condition (ii): [F(x)| = [tr (0p(x)| < O]l ()l = |O].. < B

condition (i) follows ground state properties of ‘nice’ Hamiltonians and locality
quasi-adiabatic continuation and Lieb-Robinson bounds imply

Proposition: SPECTRALGAP(H(x)) > ~v = Q(1) for all x € [-1,1]"
ensures ||V, tr (Op(x))|3 < C, (32, 1|0]|..)° = C,B? everywhere.
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proof of the main result

Proof part 2: bridge to ground state problem

Corollary (many-body restatement of main sampling theorem)
Let H(x) = >_; Hj(x) with x € [-1,1]™ be a parametrized family of ‘geometrically local’
n-qubit Hamiltonians with a constant spectral gap throughout and let O = Zj O; be a sum of
local observables such that 3=, || Ol < B. Then, a total of N = B2m©(B"/<) Jabeled ground
states (xg, p(x¢)) with x, ”r'iif[—l, 1]™ allows us to interpolate to new ground states:
N
Ptrain(X) = /ilézlm\(&w)p(xe) with  ra(x, x¢) = Z elmkx=xe) "\ = O(B?/e).

keZm: || k|l2<A

ltr (0p(x)) — tr (Op(x))]* < e (MSE < ).

With high probability, Ex“ﬂf[—l 1
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proof of the main result

Proof part 2: bridge to ground state problem

Corollary (many-body restatement of main sampling theorem)
Let H(x) = >_; Hj(x) with x € [-1,1]™ be a parametrized family of ‘geometrically local’
n-qubit Hamiltonians with a constant spectral gap throughout and let O = Zj O; be a sum of
local observables such that 3=, || Ol < B. Then, a total of N = B2m®(B°/) Jabeled ground
states (xg, p(x¢)) with x, ”r'iif[—l, 1]™ allows us to interpolate to new ground states:
N
Ptrain(X) = /tlezlm\(x7Xg)p(xe) with  ra(x, x¢) = Z elmkx=xe) "\ = O(B?/e).

keZm: || k|l2<A

ltr (0p(x)) — tr (Op(x))]* < e (MSE < ).

With high probability, Ex“ﬂf[—l 1

m for B = const and € = const, N = poly(m)= polylog(D) (efficient training size)
m constant spectral gap is strong physical assumption (‘deep within a phase’)
m procedure is not (yet) efficient: training data p(x;) € Hp is gigantic (D = 2")
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Proof part 3: data compression with classical shadows

o take-home message from previous slide:
N
P(X) 2 Pirain(x) = % 201 BA(X, xe) p(xe)

Richard Kueng learning to predict ground state properties. March 6th, 2023 10 / 15



proof of the main result

Proof part 3: data compression with classical shadows

o take-home message from previous slide: =[] Randomized Collect
M Measurements Bit-strings

N
p(X) ~ ptrain(X) = % Eé:l li/\(X,Xg)p(Xg) P
o linear data compression (sketching) ensures =

Lo (p(X)) NG (ptrain(x)) = % 221:1 "f/\(xy Xé)a'(P(Xe)) P

prepare p(x¢)

|

{

Lo Construct i
Batch Shadows: $ ‘

6(x) = {SW, ... s

st 75‘1“] .o Sy
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proof of the main result

Proof part 3: data compression with classical shadows

o take-home message from previous slide: o T smandeimhesd collect
P(X) = purain(x) = § 0L mn(x, x0) () AR o = Wewsmpor
o linear data compression (sketching) ensures >‘\_ £ TERS
& (p(x)) & & (Prrain(x)) = & 01 kal(x. x0)6 (p(x)) =
o classical shadows (Monte Carlo) accumulate samples a1 e
if o(x¢) contains T shots, then Gtpain(x) contrains NT > g (} 5 001110....000111
@i—' 101001.
(i/‘— Construct é ‘ i
BatchShadows: 1 =
&(x) = {SW,...,s(M}

st 75‘1“] .o Sy
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proof of the main result

Proof part 3: data compression with classical shadows

o take-home message from previous slide: f}— il collect
N e Measurements Bit-strings
P(X) & purain(x) = Xg—y (%, x0)p(xe) = | =
o linear data compression (sketching) ensures >-\— 2 :
n A 1 N n (ThH < 100
& (p(x)) = 6 (Perain(x)) = 3 2opeq Kalx, x0) 8 (p(x¢)) =2
o classical shadows (Monte Carlo) accumulate samples A s
. . R . e .
if o(x¢) contains T shots, then Gtpain(x) contrains NT > g '\_} s 111
C’—' 101001.
oys . .. . . _ I(;': T
Proposition: minimal classical shadows with 7 =1 already | (T H om0 @D
ensure MSE ¢; moreover STORAGE(G(x;)) = 2.6bits "““'ls(""";""' {ls(l)- s
C . O\X¢) = PR
= cheap data acquisition, storage + processing , , ‘
s — Sk/‘ L 5[‘7“"
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proof of the main result

Theorem (Learning to predict ground state properties with classical shadows)

Let H(x) = >_; Hj(x) with x € [~1,1]™ be a parametrized family of ‘geometrically local’
n-qubit Hamiltonians with a constant spectral gap throughout and let O = Zj O; be a sum of

local observables such that 3. [|Oj|lsc < B. Then, a total of N = B2m®(B*/9) Jabeled ground

- . ) if
state sketches (x;, o (x¢)) (minimal classical shadows) with x, ‘' [—=1,1]™ allows us to
interpolate to new ground state sketches:

N
G (x) = %Z ka(x, xe)o (p(xe))  with  ka(x,x¢) = Z elmtkx=xe) "N — O(B?/e).
=1

keZ™: ||k|l2<A
With high probability, this interpolation obeys Ex“ﬂ‘[q n |tr (06 (x)) — tr (Op(x))|° < e
(MSE < ¢). Moreover, all computational resources (data compression, storage, training,

prediction) are bounded by O <n82 mO(BQ/‘)).
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proof of the main result

Theorem (Learning to predict ground state properties with classical shadows)

Let H(x) = >_; Hj(x) with x € [~1,1]™ be a parametrized family of ‘geometrically local’
n-qubit Hamiltonians with a constant spectral gap throughout and let O = Zj O; be a sum of

local observables such that 3. ||Oj|lc < B. Then, a total of N = B2m®(B*/9) Jabeled ground

- . ) if
state sketches (x;, o (x¢)) (minimal classical shadows) with x, ‘' [—=1,1]™ allows us to
interpolate to new ground state sketches:

N
G (x) = %Z ka(x, xe)o (p(xe))  with  ka(x,x¢) = Z elmtkx=xe) "N — O(B?/e).
=1

keZ™: ||k|l2<A
With high probability, this interpolation obeys EXW[% n |tr (06 (x)) — tr (Op(x))|° < e
(MSE < ¢). Moreover, all computational resources (data compression, storage, training,

prediction) are bounded by O (nB2 mO(BQ/‘)).

m analysis extends to infinite-width neural networks (neural tangent kernel)
m for ¢, B = const, O(nBsz(BZ/E)) = poly(n)= polylog(D) (efficient cost throughout)
m remaining question: where does training data (x;, o(x¢)) come from?

numerical simulation gquantum compute quantum-to-classical conversion)
March 6th, 2023 11 /15
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numerical experiments
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numerical experiments

Numerics: 1D chain of n = 51 Rydberg atoms

-y v S (=B ) v —Phases
(a) = Z - o ZA)\' N ;SZ <a\z *.7\) A\’)\]Two level system Disordered (b)
' ' = = 000000
Rydberg . a a a i. a . [0) @ Z2-ordered =
v.v.v. - ©
atom array ~
a: atom separatation ground Rydberg . @ . @ . @ Q?
state state Z3-ordered ~
)
rrls X = laotrl + rail. Zo=load -l @@ () @@ (@) 2
©
—_—— o
c
8
Classical ML ° o Classical ML % Classical ML ’(C‘j
- o 1 00 00,00 ~ 1 3
Z 0 e sanstniinat 8 0 ¢ 07%0%%%% 5 o g
o -1.9 -1 =
5 10 15 5 10 15 5 10 15
; Nearest training data Nearest training data Nearest training data
100 _ 188 )
X 0* N o 0 0000000000000 N o W Detuning (A/Q)
1 Lheitcimeiio. T 1 ¢ -1
5 10 15 5 10 15 5 10 15 O O : Training data (a total of 20)
Rydberg atoms (1D array) Rydberg atoms (1D array) Rydberg atoms (1D array) *0' : Testing point (predict ground state)

*Solid lines in the six line plots indicate exact values from DMRG
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numerical experiments

Numerics: 2D Heisenberg model with n = 25 spins

(@ 2o anti-ferromagnetic (b) Exact values from DMRG ML predictions
random Heisenberg model ! ! 10
H="J,(X;X; + VY, + Z:2;) % i
(23) : : | o5
OO0 :
b i
OO0 £ T oo
“ 3% 75 '
00000 | :
19 19
@ --05
© © s :
25 25
*The random J considered in (c) I o eroo o aocnor oo o L 10
(ﬁg;nj ﬁﬁﬁﬁﬁ sasead ﬁvg';nﬁl ((((( sassad Correlation
function
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numerical experiments

Numerics: 2D Heisenberg model with different ML models

0 L d e 0 | I [
- 05 - 05
e e «uor weowo - e
kS - 00 AW WS u I
aa es @ -wes--nm 2 v a
.... ~ 05 = —0.5
DD~ vl | -
o 2 4 L]
Spin i o
+ PW.GNN ¥ FC-GNN ¥ NTK2 ¥ NTKS & MLP -- fit
4 E | = = T T
0008 ~Fng 003 - = w0 * ;
0.007 = e - ¥ n .
i : 3 [} I
4 0005 = & e bl ¥ [ L. S "
W - 5 02— : x
£ 0003 - e i - I
& % L] ﬁ -
* LB = ooz - % -
= 00— x : N i - P
0.001 — i b * = =+ g x
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10 20 &0 BD 180 320 20 25 30 35 20 25 30 35
Ny system size n systerm size 0

comparison between

o NKT (green,red)

o MLP (purple)

o GNN (blue, orange)
collaboration with Caltech
and Hochreiter group (JKU)
[Tran et al, NeurlPS workshop 22]
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Synopsis

o ambition: provide rigorous theory support for efficient fruitful between
quantum computing/experiments (data generation) and classical ML (generalization)
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synopsis

Synopsis
o ambition: provide rigorous theory support for efficient fruitful between
quantum computing/experiments (data generation) and classical ML (generalization)
o concrete objective: learn to predict properties of parametrized many-body ground states
o result: strong assumptions (constant spectral gap & locality) = quasi-polynomial guarantees

o our constructive proof combines three ingredients (each of which is easy for experts)
(i) harmonic analysis: approximate slow-varying and bounded function by uniform sampling
(i) many-body physics: locality & constant spectral gap ensure slow variation + boundedness
(iii) classical shadows allow efficient + linear data compression (‘sketching’)
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quantum computing/experiments (data generation) and classical ML (generalization)

o

concrete objective: learn to predict properties of parametrized many-body ground states

o

result: strong assumptions (constant spectral gap & locality) = quasi-polynomial guarantees

o

our constructive proof combines three ingredients (each of which is easy for experts)
(i) harmonic analysis: approximate slow-varying and bounded function by uniform sampling
(i) many-body physics: locality & constant spectral gap ensure slow variation + boundedness
(iii) classical shadows allow efficient + linear data compression (‘sketching’)

o

refined proof technique improves training data bound (almost) exponentially [Lewis et al, 2023]

o

numerical experiments highlight that practical performance is even better [Tran et al, 2023]

o

complexity-theoretic bottlenecks for approaches that don't use training data
reduction from rectilinear 3-SAT and integer FACTORIZATION
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H-Y. Huang : G. Torlai V. Albert J. Preskill

Provably efficient machine learning for quantum many-body problems.
Science 377, eabk3333 (2022) (and https://arxiv.org/abs/2106.12627)

Thank you!
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H-Y. Huang : R. Kﬁeng G. Torlai V. Albert J. Preskill
Provably efficient machine learning for quantum many-body problems.

Science 377, eabk3333 (2022) (and https://arxiv.org/abs/2106.12627)

Thank you!

Also, | am building up a team in Linz — PhD and postdoc positions are available.
Please help me spread the word.

Richard Kueng
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Backup slide 1: spectral & locality control avg. gradient size

o Hamiltonian Hio(x) has spectral gap ‘)\I(Htot(x)) — )\;(Htot(x))‘ >y =Q(1) Vx € [-1,1]"
o observable O;ot = Zj O; is sum of ‘local’ terms, e.g. O; = 0, ® 18(n—0)
o quasi-adiabatic continuation: W, (t) is fast-decaying weight function around 0 and

(9/98) p(x) = [Da, p(x)] with Dy = [, W, (£)eiHer() ((9/08) Hyop(x)) e eHhs (1
= [Vt (0p(x) |, = 1t ([0, Ds] p(x))] < IO, Dyl o)l
< Z.il,jz fR Wv(t) H [OjlveithOt ((6/8[’) Hf2) e_itht] Hoo

o locality implies that most Oj, and H;, act nontrivially on very distant regions (tensor factors)
o Lieb-Robinson bounds ensure that the matrix exponentials don't change this too much

= almost all matrices in (1) commute approximately = small gradient size ¥x € [-1,1]™
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Backup slide 2: reduction from rectilinear 3-SAT

E Two-body term on a path

[m Three-body term for each clause

ST

Qubit Hamiltonian on 2D grid
March 6th, 2023 15 / 15

Planar rectilinear 3SAT Problem
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Backup slide 3: truncation in Fourier domain

Lemma (truncation)

Let f: [-1,1]" = R and fa(x) = F X TAFF(x)= >, con oon @™ “F(K). Then,

1
E . ‘f(X) - f/\(X)‘ < -5E %if[

2
x =11 A2 x HVXf(X)Hz-

—1,1m

= e-error requires cutoff A = O (C/e) with C > E, ||V, f(x)||3
o in words: average gradient size controls cutoff
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Backup slide 3: truncation in Fourier domain

Lemma (truncation)

Let f: [-1,1]" = R and fa(x) = F X TAFF(x)= >, con oon @™ “F(K). Then,

1
E F(x) — A(x)| < —E V()5

x~[—1,1]m 71-2/\2 X‘Tff[,L]_]m

= e-error requires cutoff A = O (C/e) with C > E, ||V, f(x)||3
o in words: average gradient size controls cutoff

proof sketch: (standard Fourier argument with Parseval's identity)

2 2
2 m : im(k,x) £ z
E ity yo IVAFOOIE = 3 [y o @7 [ Srezm imke™ 0 £ = 72 5, cpm 1K1 ()|

N 2
L ()
Richard Kueng learning to predict ground state properties. March 6th, 2023 15 / 15
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Backup slide 4: sampling approximation

Lemma (sampling rate for MSE approximation)
Let faA(x) be a band-limited function with |fa(x)| < B a.s. Then, with high (constant) prob:

~ . unif i —X
A(x) = & o0ty w0 xe)F(xe) with xp ‘2 [=1,1™ and kn(x, %) = 3 pezm: puasn €76

obeys: ) .
' 2 Exuﬂf[ﬂ 1m fa(x) — f/\(X)’ < B2mC™)/N.

in words: bounded function value implies bounded (uniform) sampling rate N

Richard Kueng learning to predict ground state properties. March 6th, 2023 15 / 15



synopsis

Backup slide 4: sampling approximation

Lemma (sampling rate for MSE approximation)
Let faA(x) be a band-limited function with |fa(x)| < B a.s. Then, with high (constant) prob:

= . unif : —x
A(x) = & o0ty w0 xe)F(xe) with xp ‘2 [=1,1™ and kn(x, %) = 3 pezm: puasn €76

obeys: 2 2
Y a=E i) — )| < B2,

BRI

in words: bounded function value implies bounded (uniform) sampling rate N
proof sketch: (polynomial bound on lattice size + Hoeffding)

. 2
o e d” X‘Zukn an @ (35 (e () *]Exzz[e*‘"“’x”f(v)]))’
= ZkeZm l[klla<A ’ LS (e7 k) f(xg) — By, [em ™0 £ (x0)])
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~ . unif i —X
fin(x) = § 221:1 KA xe)f (xe) with xg ~ [=1,1]™ and kn(x, xe) = 3 yezm. k|,<n el {kx—xe)

obeys: 2 2
Y a=E i) — )| < BmOW/,

BRI

in words: bounded function value implies bounded (uniform) sampling rate N
proof sketch: (polynomial bound on lattice size + Hoeffding)

. 2
2 Joayp @7 X‘Zuku an e (L0 (emim e () *Exlz[e*‘"“’x“f(v)]))’
= Zkezm lilea |7 Sty (7 ””f( ) EXZ e f (x,)])

. . 2
SHkeZ™: k|2 < A} max,<a |3 (e_1”<k’x’5>f(Xg) - E,, [e_‘”<k’xf>f(><g)])‘
2m + )N = mO*) tail bound (Hoeffding)
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