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Proper cones

A set K ⊆ Rn that is

▶ closed under taking rays
x ∈ K , λ ∈ R≥0 =⇒ λx ∈ K

▶ convex
x , y ∈ K , λ ∈ [0, 1]

=⇒ λx + (1− λ)y ∈ K

▶ closed ∂K ⊆ K

▶ solid int(K ) ̸= ∅
▶ pointed x ,−x ∈ K =⇒ x = 0

is called a cone.
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Conic inequalities

Proper cones can
generalize linear inequalities!

α ≤ β ⇐⇒ β − α ∈ R≥0

⇐⇒ β ∈ R≥0 + {α}

x ⪯K y ⇐⇒ y − x ∈ K

⇐⇒ y ∈ K + {x}

▶ ⪯K is a partial order

▶ x ⪯K y is a convex constraint
(has a convex feasible region)

0

R≥0 + {α}
α β
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Conic programs

minimize
x

cT x

subject to Ax = b,

Gx ⪯K h

Ax = b ⇐⇒
[
+A
−A

]
x ⪯R2 dim b

≥0

(
+b
−b

)

(possibly K = K1 × · · · × Kℓ is a product cone)
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Convex conic = convex?

“We can write any convex optimization problem [. . . ] as a conic program[.]
The power of conic programming, however, lies in the fact that

we only need a few classes of convex cones
to express a wide variety of optimization problems.”

D. de Laat: “A ten page introduction to conic optimization” (2015)
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A few classes of convex cones
The nonnegative orthant

Rn
≥0 =


x1

...
xn


∣∣∣∣∣∣∣ xi ≥ 0 ∀i ≤ n



(
x1
x2

)
∈ R2

≥0
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A few classes of convex cones
The second order cone

Qn =

{(
τ
x

)
∈ Rn

∣∣∣∣ ∥x∥ ≤ τ

}

(
τ x1 x2

)T ∈ Q3

x1

x2

τ
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A few classes of convex cones
Least-norm approximation

min. ∥Ax − b∥
≡ min. τ s. t. ∥Ax − b∥ ≤ τ

≡ min. τ s. t.

(
τ

Ax − b

)
∈ Qn+1

≡ min.
(
1 0

)(τ
x

)
s. t.

[
−1 0
0 −A

](
τ
x

)
⪯Qn+1

(
0
b

)

Recall: Second order cone (SOC)

Qn =

{(
τ
x

)
∈ Rn

∣∣∣∣ ∥x∥ ≤ τ

}
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A few classes of convex cones
The rotated second order cone

Qn
r =


α
β
x

 ∈ Rn

∣∣∣∣∣∣ ∥x∥
2 ≤ 2αβ,

α, β ≥ 0



(
α β x1

)T ∈ Q3
r

β
x1

α
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A few classes of convex cones
Convex quadratic programming

min. xTQx + qT x + r where Q ∈ Sn+
≡ min. τ + qT x + r s. t. xTRTRx ≤ τ where Q = RTR

≡ min. τ + qT x + r s. t. ∥Rx∥2 ≤ τ

≡ min. τ + qT x + r s. t.

 1
2
τ
Rx

 ∈ Qn+2
r

Recall: Rotated second order cone

Qn
r =


α
β
x

 ∈ Rn

∣∣∣∣∣∣ ∥x∥2 ≤ 2αβ ∧ α, β ≥ 0
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A few classes of convex cones
Symmetric positive semidefinite matrices

Sn+ =
{
A ∈ Sn

∣∣∣xTAx ≥ 0 ∀x ∈ Rn
}

(non-negative quadratic form)

=
{
A ∈ Sn

∣∣∣λmin(A) ≥ 0
}

(non-negative eigenvalues)

=
{
A ∈ Sn

∣∣∣ det(AJ,J) ≥ 0 ∀J
}

(non-negative principal minors)

[
α γ
γ β

]
∈ S2+

0

1
−1 0 1

0

1

α
γ

β
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A few classes of convex cones
Hermitian positive semidefinite matrices

Hn
+ =

{
A ∈ Hn

∣∣∣x†Ax ≥ 0 ∀x ∈ Cn
}

(non-negative quadratic form)

=
{
A ∈ Hn

∣∣∣λmin(A) ≥ 0
}

(non-negative eigenvalues)

=
{
A ∈ Hn

∣∣∣ det(AJ,J) ≥ 0 ∀J
}

(non-negative principal minors)

[
α γ + δi

γ − δi β

]
∈ H2

+

(insert 4D sketch above)
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A few classes of convex cones
Eigenvalue bounds

λmax(X ) ≤ τ for X ∈ Sn

⇐⇒ sup
∥v∥=1

vTXv ≤ τ (X = QTDQ)

⇐⇒ sup
v∈Rn\{0}

vTXv

vT v
≤ τ

⇐⇒ vT (τ In − X )v ≥ 0 ∀v ∈ Rn

⇐⇒ τ In − X ∈ Sn+
⇐⇒ X ⪯ τ In (“linear matrix inequality”)

Similarly, λmin(X ) ≥ τ ⇐⇒ X ⪰ τ In.

Recall: Positive semidefinite cone

Sn+ =
{
A ∈ Sn

∣∣∣ xTAx ≥ 0 ∀x ∈ Rn
}
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Modeling languages

Conic programs

▶ extend linear programs

▶ express many convex objectives and constraints using few cones

▶ efficient numeric solution (using interior point methods)

Issues

▶ conic reformulation requires mathematical insights

▶ conic form can be cumbersome to write down

▶ resulting programs are hard to understand and update

Solution: optimization modeling languages, e.g.

▶ CVX, YALMIP in Matlab

▶ Convex.jl, JuMP in Julia

▶ CVXPY, PICOS, Pyomo in Python
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