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1 Exercises

Exercise 1. Let ϕ : (M,ω1)→ (N,ω2) then ϕ preserves the volume.

Solution 1. Denote the dimenion of N by 2n. As ϕ is a symplectomorphism, it follows that ϕ∗(ωn2 ) =
(ϕ∗ω2)n = ωn1 , hence ϕ is volume preserving.

Exercise 2. Prove that there is a volume preserving embedding ϕ : B2n(a)→ Z2n(A) for A < a. Prove that
this is not true for linear symplectomorphisms (for the standard symplectic structure of course).

Solution 2. For simpler notations, we work in dimension 4, although the proof is identical in higher dimen-
sion. Consider the diffeomorphism given by ϕ(x1, y1, x2, y2) = (εx1, εy1,

1
εx2,

1
ε y2). This is volume-preserving.

For ε small this provides a suitable embedding. To check that this does not work for symplectomorphisms,
notice that a general linear symplectomorphism writes down ϕ(x1, y1, x2, y2) = (εx1,

1
ε y1, δx2,

1
δ y2). When

a > A then ε needs to be smaller than 1 to embed the x1-coordinate in the cylinder. But then the y1-
coordinate is not contained anymore in the cylinder.

Exercise 3. Check that ω0(u, v) = g0(J0u, v) and that g0(J0u, J0v) = g(u, v) where ω0 denotes the standard
symplectic structure, J0 the standard complex and g0 the standard inner product on R2n. Check that if
φ : R2n → R2n preserves ω0 and J0 then ϕ also preserves g0.

Solution 3. This exercise if a matter of writing down the definitions.

Exercise 4. Prove that if S is a proper complex submanifold of B2n(r) (for the standard complex structure,
and here the ball is the ball of radius r, in contrast to the ball that we saw in the lecture that had radius√
r/π) passing through the origin, then πr2 ≤ areag0(S). To prove this follow the following hints:

1. Let Σ(r) ⊂ B2n(r) ⊂ Cn an orientable surface whose boundary lies in S2n−1(r). Denote the symplectic
area of Σ by Aω(r) and the Riemannian length of ∂Σ by L(r). Prove that the following inequalities
hold:

d

dr
Aω(r) ≥ L(r) ≥ 2Aω(r)

r
.

2. Prove that if a loop in S2n−1(r) has length strictly less than 2πr then it is contained in a hemisphere
of S2n−1(r).

3. Conclude the exercise.

Solution 4. 1. We prove the two inequalities seperately. For the lower bound on L(r), we first use
Stokes theorem: it follows that Aω(r) =

∫
Σ(r)

ω =
∫
γ(r)

λ where γ(r) is the boundary of (r) and λ is

the Liouville form λ = 1
2

∑n
i=1(xidyi − yidxi). Hence dividing by r we obtain

A(r)

r
=

∫
γ(r)

1

r
λ =

∫
γ(r)

ω(
1

r
Vλ, ·) =

∫
[0,2π]

ω(
1

r
Vλ, γ̇(r))dt =

∫
[0,2π]

〈−J0
1

r
Vλ, γ̇(r)〉dt ≤ 1

2
L(r).

Here we denoted Vλ the Liouville vector field (i.e. LVλλ = λ)). In the last passage we used that the
Liouville vector field is radially expanding from the origin of the disk. For the other inequality, we
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would like to estimate A(r + ε)−A(r) from below. Take a tubular neighbourhood around γ(r), being
a local parametrization for Σ(r) around γ(r). We can assume it covers γ(r+ ε) as well. Note that this
tubular neighbourhood is trivial because the surface is orientable. Let us denote it by Σ(θ, t) where
θ ∈ [0, 2π] is a parametrization for γ(r) and t the normal direction. Let us compute the area of the
shell A(r + ε)−A(r) using Fubini’s theorem:

A(r + ε)−A(r) =

∫
[0,2π]×[0,1]

Σ(θ, t)dθdt =

∫
[0,2π]

∫
[0,1]

Σ(θ, t)dtdθ ≥ L(r)ε

where we used that for fixed θ, Σ(θ, [0, 1]) ≥ ε. Now taking the limit ε→ 0, we obtain that d
drA(r) ≥

L(r).

2. After scaling, we may assume without loss of generality that we are on the unit sphere and that the
closed curve has length less than 2π. Pick any point P on the curve, travel half way around the curve
to the point Q, and let N , the north pole, be the point half-way between P and Q. N is uniquely
defined because the distance between P and Q is less than π. N determines an equator and we are left
to show that the curve lies entirely in the northern hermisphere. Assume by contradiction it does not,
so let E be a point on the curve where it crosses the equator. We claim that d(E,P ) + d(E,Q) = π.
Indeed, if we had chosen P through the equatorial plane to P ′ on the other side, P ′ is antipodal to Q;
hence, d(E,P ′) + d(E,Q) = π. However, for any point X on the curve, d(P,X) + d(X,Q) must be less
than π, which is a contradiction.

3. As the surface is holomorphic, we saw in the lecture that the symplectic and the Riemannian area
coincide. By construction, it passes through the origin, hence L(r) ≥ 2πr by the second point in
the exercise. By the first point, we get d

drA(r) ≥ 2πr and now integrate over [0, r] to obtain that
A(r) ≥ πr2.

Exercise 5. Prove that if J : V → V is a complex structure on a vector space V , then dimV = 2n.

Solution 5. Compute the determinant of J2: On the one hand, det(J2) = det(−1) = (−1)dim(V )). On the
other hand det(J2) = (det(J))2, hence dim(V ) must be even.

Exercise 6. Let (M,ω) be a symplectic manifold and denote by J (M,ω) = {J almost complex structure compatible with ω}.
Prove that J is contractible following the following hints: Consider a symplectic vector space (V,Ω) of di-
mension 2n and a Lagrangian subspace L0, i.e. dimL0 = n and Ω|L0 = 0. Denote by L(V,Ω, L0) the set of
Lagrangian subspaces that are transverse to L0. Denote by G0 the space of all positive inner products on L0.
Consider the map

Φ : J (V,Ω)→ L(V,Ω, L0)× G(L0)

J 7→ (JL0, GJ |L0
)

Show that

1. Φ is well-defined.

2. Φ is a bijection.

3. L(V,Ω, L0) and G(L0) are contractible.

Solution 6. 1. We need to check that JL0 ∈ L(V,Ω, L0) and GJ |L0
∈ G(L0). The latter one is trivial

(restriction of inner product to any subspace is and inner product). To check the first one, observe
that if v ∈ L0 and w ∈ Lω0 = L0, then ω(Jv, Jw) = ω(v, w) = 0, so (JL0)ω ⊂ JL0. As J is an
automorphism of V , we have that dim JL0 = dimL0 = n. To see that the intersection is transverse, it
is sufficient to check that L0 ∩ JL0 = {0} as we have that dim JL0 = dimL0 = n. Let u ∈ L0 ∩ JL0.
Then u = Jv for some v ∈ L0. Compute gJ(u, u) = ω(u, Ju) = ω(u,−v) = ω(v, u) = 0, hence u = 0.

2. First, let us check that Φ is surjective. Take (L,G) ∈ L(V,Ω, L0)×G(L0) and let us define a J . For v ∈
L0 consider the orthogonal v⊥ which is a (n−1)-dimensional subspace of L0. Its symplectic orthogonal
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is then (n + 1)-dimensional. It is easy to check that (v⊥)ω ∩ L is 1-dimensional. Let Jv ∈ (v⊥)ω ∩ L
be the unique vector field such that ω(v, Jv) = 1. Repeat this construction for a every vi, i = 1, . . . , n
where {vi} form a G-orthonormal basis of L0. It is clear that the Jvi are linearly independent. We
now left to check that the J that we defined satisfies that Φ(J) = (L,G). This follows from the
construction. We now check that Phi is injective: suppose that Φ(J) = Φ(J ′). Then JL0 = J ′L0 := L
and GJ |L0 = G′J |L0 =: G. Take an G-orthonormal basis v1, . . . , vn of L0. Using the same notation
as before we have vi ⊥= 〈v1, . . . , vi−1, vi+1, . . . , vn〉 and (v⊥i )ω = 〈v1, . . . , vi−1, vi+1, . . . , vn, ui〉 where
ui ∈ L. Since Jvi ∈ L, ω(vi, Jvi) = 1 and G(vj , Jvi) = ω(vj , JJvi) = −ω(vj , vi) = 0 for all j 6= i, it
follows that Jvi is the oly vector in (v⊥i )ω ∩ L satisfying ω(vi, Jvi) = 1, so J = J ′.

3. G(L0) is contractible since tG1 + (1 − t)G2 is still an inner product on L0. To see that L(V, ω, L0)
is contractible we identify it with the vector space of all symmetric n × n-matrices (which is convex,
hence contractible). Fix a compatible almost complex structure J compatible with ω. Observe that
if L is an n-dimensional subspace of V transverse to L0, we have that L is the graph of a linear map
S : JL0 → L0 where L0 = 〈v1, . . . , vn〉 and L = 〈Jv1 + SJv1, . . . , Jvn + SJn〉. In this basis, the
linear map S is expressed as a symmetric n × n matrix that we denote by A. Indeed, we have that
Aij = ω(SJvi, Jvj). Then using that L0 and L are Lagrangian we have that 0 = ω(Jvi + SJvi, Jvj +
SJvj) = ω(Jvi, Jvj) +ω(Jvi, SJvj) +ω(SJvj , Jvj) +ω(SJvi, SJvj) = −ω(SJvj , Jvi) +ω(SJvi, Jvj),
so A is symmetric. Similarily, when A is symmetric than L is Lagrangian.

Exercise 7. Let (M,ω) be a symplectic manifold and J a compatible almost complex structure. Show that
if u : (Σ, j)→ (M,J) is a J-holomorphic curve that then ∂su and ∂tu are orthogonal and have same length
for the compatible metric. Prove that AreagJ (u) =

∫
Σ
u∗ω.

Solution 7. We did this during the lecture. Here is the computation. Take holomorphic coordinates on
(Σ, j) given by z = s+ it. Applying ∂s to the equation J ◦ du = du ◦ j, we obtain J(∂su) = ∂tu. Then, using
compatibility of J , we obtain

1. gJ(∂su, ∂tu) = ω(∂su, J∂tu) = ω(∂su,−∂su) = 0,

2. gJ(∂su, ∂su) = ω(∂su, J∂su) = ω(J∂tu,−∂tu) = gJ(∂tu, ∂tu).

Hence the area is compute integrating ‖∂su‖‖∂tu‖ = ‖∂su‖2 = ω(∂su, J∂su) = ω(∂su, ∂tu). Here the norm
is of course the norm induced by the metric gJ .

Exercise 8. Let (Σ, j) be a Riemann surface and (M,ω) be symplectic equipped with a compatible almost
complex structure. For a smooth map u : Σ→M the Dirichlet energy is defined to be

E(u) =
1

2

∫
Σ

|du|2JdvolΣ.

Prove that

E(u) =

∫
Σ

|∂J(u)|2JdvolΣ +

∫
Σ

u∗ω

where ∂J(u) = 1
2 (du+ J ◦ du ◦ j).

Solution 8. Take conformal coordinates z = s+ it, we may assume without loss of generality that Σ is an
open subset of C. In this case

1

2
|du|2JdvolΣ =

1

2
(|∂su|2J+|∂tu|2J)ds∧dt =

1

2
|∂su+J∂tu|2Jds∧dt−〈∂su, J∂tu〉Jds∧dt = |∂J(u)|2JdvolΣ+ω(∂su, J∂tu)ds∧dt.
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