Solutions to exercises

Cédric Oms

December 11, 2019

1 Exercises

Exercise 1. Let $\varphi : (M, \omega_1) \to (N, \omega_2)$ then φ preserves the volume.

Solution 1. Denote the dimension of N by 2n. As φ is a symplectomorphism, it follows that $\varphi^*(\omega_2^n) = (\varphi^*\omega_2)^n = \omega_1^n$, hence φ is volume preserving.

Exercise 2. Prove that there is a volume preserving embedding $\varphi : B^{2n}(a) \to Z^{2n}(A)$ for A < a. Prove that this is not true for linear symplectomorphisms (for the standard symplectic structure of course).

Solution 2. For simpler notations, we work in dimension 4, although the proof is identical in higher dimension. Consider the diffeomorphism given by $\varphi(x_1, y_1, x_2, y_2) = (\epsilon x_1, \epsilon y_1, \frac{1}{\epsilon} x_2, \frac{1}{\epsilon} y_2)$. This is volume-preserving. For ϵ small this provides a suitable embedding. To check that this does not work for symplectomorphisms, notice that a general linear symplectomorphism writes down $\varphi(x_1, y_1, x_2, y_2) = (\epsilon x_1, \frac{1}{\epsilon} y_1, \delta x_2, \frac{1}{\delta} y_2)$. When a > A then ϵ needs to be smaller than 1 to embed the x_1 -coordinate in the cylinder. But then the y_1 -coordinate is not contained anymore in the cylinder.

Exercise 3. Check that $\omega_0(u, v) = g_0(J_0u, v)$ and that $g_0(J_0u, J_0v) = g(u, v)$ where ω_0 denotes the standard symplectic structure, J_0 the standard complex and g_0 the standard inner product on \mathbb{R}^{2n} . Check that if $\phi : \mathbb{R}^{2n} \to \mathbb{R}^{2n}$ preserves ω_0 and J_0 then φ also preserves g_0 .

Solution 3. This exercise if a matter of writing down the definitions.

Exercise 4. Prove that if S is a proper complex submanifold of $B^{2n}(r)$ (for the standard complex structure, and here the ball is the ball of radius r, in contrast to the ball that we saw in the lecture that had radius $\sqrt{r/\pi}$) passing through the origin, then $\pi r^2 \leq \operatorname{area}_{g_0}(S)$. To prove this follow the following hints:

1. Let $\Sigma(r) \subset B^{2n}(r) \subset \mathbb{C}^n$ an orientable surface whose boundary lies in $S^{2n-1}(r)$. Denote the symplectic area of Σ by $A_{\omega}(r)$ and the Riemannian length of $\partial \Sigma$ by L(r). Prove that the following inequalities hold:

$$\frac{d}{dr}A_{\omega}(r) \ge L(r) \ge \frac{2A_{\omega}(r)}{r}.$$

- 2. Prove that if a loop in $S^{2n-1}(r)$ has length strictly less than $2\pi r$ then it is contained in a hemisphere of $S^{2n-1}(r)$.
- 3. Conclude the exercise.
- **Solution 4.** 1. We prove the two inequalities separately. For the lower bound on L(r), we first use Stokes theorem: it follows that $A_{\omega}(r) = \int_{\Sigma(r)} \omega = \int_{\gamma(r)} \lambda$ where $\gamma(r)$ is the boundary of (r) and λ is the Liouville form $\lambda = \frac{1}{2} \sum_{i=1}^{n} (x_i dy_i y_i dx_i)$. Hence dividing by r we obtain

$$\frac{A(r)}{r} = \int_{\gamma(r)} \frac{1}{r} \lambda = \int_{\gamma(r)} \omega(\frac{1}{r} V_{\lambda}, \cdot) = \int_{[0, 2\pi]} \omega(\frac{1}{r} V_{\lambda}, \dot{\gamma}(r)) dt = \int_{[0, 2\pi]} \langle -J_0 \frac{1}{r} V_{\lambda}, \dot{\gamma}(r) \rangle dt \leq \frac{1}{2} L(r).$$

Here we denoted V_{λ} the Liouville vector field (i.e. $\mathcal{L}_{V_{\lambda}}\lambda = \lambda$)). In the last passage we used that the Liouville vector field is radially expanding from the origin of the disk. For the other inequality, we

would like to estimate $A(r + \epsilon) - A(r)$ from below. Take a tubular neighbourhood around $\gamma(r)$, being a local parametrization for $\Sigma(r)$ around $\gamma(r)$. We can assume it covers $\gamma(r + \epsilon)$ as well. Note that this tubular neighbourhood is trivial because the surface is orientable. Let us denote it by $\Sigma(\theta, t)$ where $\theta \in [0, 2\pi]$ is a parametrization for $\gamma(r)$ and t the normal direction. Let us compute the area of the shell $A(r + \epsilon) - A(r)$ using Fubini's theorem:

$$A(r+\epsilon) - A(r) = \int_{[0,2\pi] \times [0,1]} \Sigma(\theta,t) d\theta dt = \int_{[0,2\pi]} \int_{[0,1]} \Sigma(\theta,t) dt d\theta \ge L(r)\epsilon$$

where we used that for fixed θ , $\Sigma(\theta, [0, 1]) \ge \epsilon$. Now taking the limit $\epsilon \to 0$, we obtain that $\frac{d}{dr}A(r) \ge L(r)$.

- 2. After scaling, we may assume without loss of generality that we are on the unit sphere and that the closed curve has length less than 2π . Pick any point P on the curve, travel half way around the curve to the point Q, and let N, the north pole, be the point half-way between P and Q. N is uniquely defined because the distance between P and Q is less than π . N determines an equator and we are left to show that the curve lies entirely in the northern hermisphere. Assume by contradiction it does not, so let E be a point on the curve where it crosses the equator. We claim that $d(E, P) + d(E, Q) = \pi$. Indeed, if we had chosen P through the equatorial plane to P' on the other side, P' is antipodal to Q; hence, $d(E, P') + d(E, Q) = \pi$. However, for any point X on the curve, d(P, X) + d(X, Q) must be less than π , which is a contradiction.
- 3. As the surface is holomorphic, we saw in the lecture that the symplectic and the Riemannian area coincide. By construction, it passes through the origin, hence $L(r) \ge 2\pi r$ by the second point in the exercise. By the first point, we get $\frac{d}{dr}A(r) \ge 2\pi r$ and now integrate over [0, r] to obtain that $A(r) \ge \pi r^2$.

Exercise 5. Prove that if $J: V \to V$ is a complex structure on a vector space V, then dim V = 2n.

Solution 5. Compute the determinant of J^2 : On the one hand, $det(J^2) = det(-1) = (-1)^{dim(V)}$). On the other hand $det(J^2) = (det(J))^2$, hence dim(V) must be even.

Exercise 6. Let (M, ω) be a symplectic manifold and denote by $\mathcal{J}(M, \omega) = \{J \text{ almost complex structure compatible with } \omega$ Prove that \mathcal{J} is contractible following the following hints: Consider a symplectic vector space (V, Ω) of dimension 2n and a Lagrangian subspace L_0 , i.e. $\dim L_0 = n$ and $\Omega|_{L_0} = 0$. Denote by $\mathcal{L}(V, \Omega, L_0)$ the set of Lagrangian subspaces that are transverse to L_0 . Denote by G_0 the space of all positive inner products on L_0 . Consider the map

$$\Phi: \mathcal{J}(V,\Omega) \to \mathcal{L}(V,\Omega,L_0) \times \mathcal{G}(L_0)$$
$$J \mapsto (JL_0,G_J|_{L_0})$$

Show that

- 1. Φ is well-defined.
- 2. Φ is a bijection.
- 3. $\mathcal{L}(V, \Omega, L_0)$ and $\mathcal{G}(L_0)$ are contractible.
- **Solution 6.** 1. We need to check that $JL_0 \in \mathcal{L}(V, \Omega, L_0)$ and $G_J|_{L_0} \in \mathcal{G}(L_0)$. The latter one is trivial (restriction of inner product to any subspace is and inner product). To check the first one, observe that if $v \in L_0$ and $w \in L_0^{\omega} = L_0$, then $\omega(Jv, Jw) = \omega(v, w) = 0$, so $(JL_0)^{\omega} \subset JL_0$. As J is an automorphism of V, we have that dim $JL_0 = \dim L_0 = n$. To see that the intersection is transverse, it is sufficient to check that $L_0 \cap JL_0 = \{0\}$ as we have that dim $JL_0 = \dim L_0 = n$. Let $u \in L_0 \cap JL_0$. Then u = Jv for some $v \in L_0$. Compute $g_J(u, u) = \omega(u, Ju) = \omega(u, -v) = \omega(v, u) = 0$, hence u = 0.
 - 2. First, let us check that Φ is surjective. Take $(L, G) \in \mathcal{L}(V, \Omega, L_0) \times \mathcal{G}(L_0)$ and let us define a J. For $v \in L_0$ consider the orthogonal v^{\perp} which is a (n-1)-dimensional subspace of L_0 . Its symplectic orthogonal

is then (n + 1)-dimensional. It is easy to check that $(v^{\perp})^{\omega} \cap L$ is 1-dimensional. Let $Jv \in (v^{\perp})^{\omega} \cap L$ be the unique vector field such that $\omega(v, Jv) = 1$. Repeat this construction for a every $v_i, i = 1, \ldots, n$ where $\{v_i\}$ form a *G*-orthonormal basis of L_0 . It is clear that the Jv_i are linearly independent. We now left to check that the *J* that we defined satisfies that $\Phi(J) = (L, G)$. This follows from the construction. We now check that *Phi* is injective: suppose that $\Phi(J) = \Phi(J')$. Then $JL_0 = J'L_0 := L$ and $G_J|_{L_0} = G'_J|_{L_0} =: G$. Take an *G*-orthonormal basis v_1, \ldots, v_n of L_0 . Using the same notation as before we have $v_i \perp = \langle v_1, \ldots, v_{i-1}, v_{i+1}, \ldots, v_n \rangle$ and $(v_i^{\perp})^{\omega} = \langle v_1, \ldots, v_{i-1}, v_{i+1}, \ldots, v_n, u_i \rangle$ where $u_i \in L$. Since $Jv_i \in L$, $\omega(v_i, Jv_i) = 1$ and $G(v_j, Jv_i) = \omega(v_j, JJv_i) = -\omega(v_j, v_i) = 0$ for all $j \neq i$, it follows that Jv_i is the oly vector in $(v_i^{\perp})^{\omega} \cap L$ satisfying $\omega(v_i, Jv_i) = 1$, so J = J'.

3. $\mathcal{G}(L_0)$ is contractible since $tG_1 + (1-t)G_2$ is still an inner product on L_0 . To see that $\mathcal{L}(V, \omega, L_0)$ is contractible we identify it with the vector space of all symmetric $n \times n$ -matrices (which is convex, hence contractible). Fix a compatible almost complex structure J compatible with ω . Observe that if L is an n-dimensional subspace of V transverse to L_0 , we have that L is the graph of a linear map $S : JL_0 \to L_0$ where $L_0 = \langle v_1, \ldots, v_n \rangle$ and $L = \langle Jv_1 + SJv_1, \ldots, Jv_n + SJ_n \rangle$. In this basis, the linear map S is expressed as a symmetric $n \times n$ matrix that we denote by A. Indeed, we have that $A_{ij} = \omega(SJv_i, Jv_j)$. Then using that L_0 and L are Lagrangian we have that $0 = \omega(Jv_i + SJv_i, Jv_j + SJv_j) = \omega(Jv_i, Jv_j) + \omega(Jv_i, SJv_j) + \omega(SJv_j, Jv_j) + \omega(SJv_j, SJv_j) = -\omega(SJv_j, Jv_i) + \omega(SJv_i, Jv_j)$, so A is symmetric. Similarly, when A is symmetric than L is Lagrangian.

Exercise 7. Let (M, ω) be a symplectic manifold and J a compatible almost complex structure. Show that if $u : (\Sigma, j) \to (M, J)$ is a J-holomorphic curve that then $\partial_s u$ and $\partial_t u$ are orthogonal and have same length for the compatible metric. Prove that $Area_{g_J}(u) = \int_{\Sigma} u^* \omega$.

Solution 7. We did this during the lecture. Here is the computation. Take holomorphic coordinates on (Σ, j) given by z = s + it. Applying ∂_s to the equation $J \circ du = du \circ j$, we obtain $J(\partial_s u) = \partial_t u$. Then, using compatibility of J, we obtain

1.
$$g_J(\partial_s u, \partial_t u) = \omega(\partial_s u, J\partial_t u) = \omega(\partial_s u, -\partial_s u) = 0,$$

2.
$$g_J(\partial_s u, \partial_s u) = \omega(\partial_s u, J\partial_s u) = \omega(J\partial_t u, -\partial_t u) = g_J(\partial_t u, \partial_t u).$$

Hence the area is compute integrating $\|\partial_s u\| \|\partial_t u\| = \|\partial_s u\|^2 = \omega(\partial_s u, J\partial_s u) = \omega(\partial_s u, \partial_t u)$. Here the norm is of course the norm induced by the metric g_J .

Exercise 8. Let (Σ, j) be a Riemann surface and (M, ω) be symplectic equipped with a compatible almost complex structure. For a smooth map $u : \Sigma \to M$ the Dirichlet energy is defined to be

$$E(u) = \frac{1}{2} \int_{\Sigma} |du|_J^2 dvol_{\Sigma}.$$

Prove that

$$E(u) = \int_{\Sigma} |\overline{\partial}_J(u)|_J^2 dvol_{\Sigma} + \int_{\Sigma} u^* \omega$$

where $\overline{\partial}_J(u) = \frac{1}{2}(du + J \circ du \circ j).$

Solution 8. Take conformal coordinates z = s + it, we may assume without loss of generality that Σ is an open subset of \mathbb{C} . In this case

$$\frac{1}{2}|du|_{J}^{2}d\mathrm{vol}_{\Sigma} = \frac{1}{2}(|\partial_{s}u|_{J}^{2} + |\partial_{t}u|_{J}^{2})ds \wedge dt = \frac{1}{2}|\partial_{s}u + J\partial_{t}u|_{J}^{2}ds \wedge dt - \langle\partial_{s}u, J\partial_{t}u\rangle_{J}ds \wedge dt = |\overline{\partial}_{J}(u)|_{J}^{2}d\mathrm{vol}_{\Sigma} + \omega(\partial_{s}u, J\partial_{t}u)ds \wedge dt.$$