

Mathematical Institute

Higgs bundles and mirror symmetry 2

ICMAT Minicourse November 12th-16th 2018

- Higgs bundle fibration $p: \mathcal{M} \to \mathcal{B}$
- ullet generic fibre abelian variety A
- \bullet = complex torus + positive line bundle H
- ullet SYZ mirror symmetry \sim replace A by its dual A^{\vee}
- = moduli space of degree zero holomorphic line bundles on A

•
$$x \in A$$
, $L_x(y) = x + y$

• translation action $L_x: A \to A$

• $L_x^*H\otimes H^{-1}$ degree zero line bundle

• $A \mapsto A^{\vee}$ surjective, finite kernel

• A = Jac(S) isomorphism (A principally polarized)

• spectral curve $\pi: S \to \Sigma$

•
$$\deg \pi_* L = \deg V = 0$$
 if $L = U \otimes \pi^* K^{(n-1)/2}$, $\deg U = 0$

- $\Lambda^n V$ trivial if Nm(U) = 0
- $Jac(S) \sim linear$ equivalence of divisors

$$Nm(x_1 + ... + x_k) = \pi(x_1) + ... + \pi(x_k)$$

• spectral curve $\pi: S \to \Sigma$

•
$$\deg \pi_* L = \deg V = 0$$
 if $L = U \otimes \pi^* K^{(n-1)/2}$, $\deg U = 0$

- $\Lambda^n V$ trivial if Nm(U) = 0
- Jac(S) \sim linear equivalence of divisors $\operatorname{Nm}(x_1 + \ldots + x_k) = \pi(x_1) + \ldots + \pi(x_k)$
- ker Nm $\stackrel{\text{defn}}{=}$ P(S, Σ) = Prym variety

THE GROUP SU(n)

• $U \in P(S, \Sigma) \Rightarrow \Lambda^n V$ trivial

• structure group SU(n)

•
$$\Phi \in H^0(\Sigma, \mathfrak{sl}(n) \otimes K) \Rightarrow a_1 = 0 \in H^0(\Sigma, K)$$

• generic fibre for SU(n) Higgs bundles \cong Prym variety

• Nm : $Jac(S) \to Jac(\Sigma)$ is dual to $\pi^* : Jac(\Sigma) \to Jac(S)$

• so $P(S, \Sigma)^{\vee} \cong Jac(S)/\pi^* Jac(\Sigma)$

• Nm : $Jac(S) \to Jac(\Sigma)$ is dual to $\pi^* : Jac(\Sigma) \to Jac(S)$

• so $P(S, \Sigma)^{\vee} \cong Jac(S)/\pi^* Jac(\Sigma)$

• $\operatorname{Jac}(S)/\operatorname{Jac}(\Sigma) \cong \operatorname{P}(S,\Sigma)/(\operatorname{P}(S,\Sigma) \cap \pi^*\operatorname{Jac}(\Sigma))$

• Nm $\pi^* x = nx \Rightarrow$

$$P(S, \Sigma)^{\vee} \cong P(S, \Sigma)/\pi^*H^1(\Sigma, \mathbf{Z}_n)$$

THE GROUP Sp(m)

ullet E rank 2m symplectic vector bundle

•
$$\Phi \in H^0(\Sigma, \mathfrak{g} \otimes K) = H^0(\Sigma, S^2E \otimes K)$$

ullet eigenvalues $\pm \lambda_i$

• spectral curve $S \subset |K|$:

$$0 = \det(x - \Phi) = x^{2m} + a_2 x^{2m-2} + \dots + a_{2m}$$

• involution $\sigma(x) = -x$

• $\pi: S \to \Sigma$

 \bullet $E = \pi_* L$

• $x: L \to L \otimes \pi^* K$ and $\Phi = \pi_* x$

 \bullet where $L=U\pi^*K^{m-1/2}$ and $\sigma^*U\cong U^*$

•
$$p: S \to \bar{S} = S/\sigma$$

•
$$\sigma^*U \cong U^* \Leftrightarrow U \in \mathsf{P}(S, \bar{S})$$

• abelian variety = Prym $P(S, \bar{S})$

• dual $P(S, \bar{S})^{\vee} \cong P(S, \bar{S})/p^*H^1(\bar{S}, \mathbf{Z}_2)$

LANGLANDS DUALITY

Invent. math. 153, 197–229 (2003) DOI: 10.1007/s00222-003-0286-7

Mirror symmetry, Langlands duality, and the Hitchin system

Tamás Hausel^{1,★}, Michael Thaddeus^{2,★★}

¹ Department of Mathematics, University of California, Berkeley, CA 94720, USA

² Department of Mathematics, Columbia University, New York, NY 10027, USA

Oblatum 12-VII-2002 & 2-XII-2002

Published online: 10 April 2003 – © Springer-Verlag 2003

Abstract. Among the major mathematical approaches to mirror symmetry are those of Batyrev-Borisov and Strominger-Yau-Zaslow (SYZ). The first is explicit and amenable to computation but is not clearly related to the physical motivation; the second is the opposite. Furthermore, it is far from obvious that mirror partners in one sense will also be mirror partners in the other. This paper concerns a class of examples that can be shown to satisfy

COMMUNICATIONS IN NUMBER THEORY AND PHYSICS Volume 1, Number 1, 1–236, 2007

Electric-Magnetic Duality And The Geometric Langlands Program

ANTON KAPUSTIN

Department of Physics, California Institute of Technology, Pasadena, CA 91125

and

EDWARD WITTEN

School of Natural Sciences, Institute for Advanced Study, Princeton, New Jersey 08540

- $\mathcal{M}(G)$ Higgs bundle moduli space
- hyperkähler
- holomorphic Lagrangian fibration
- ulletits mirror is $\mathcal{M}(^LG)$ where LG is the Langlands dual group

R.Donagi & T.Pantev, Langlands duality for Hitchin systems, Invent. math. 189 (2012), 653–735.

 \bullet $\,G$ and $^L G$ are Langlands dual groups if..

• ... their root systems are dual

ullet roots \leftrightarrow coroots, characters \leftrightarrow 1-parameter subgroups

•
$${}^{L}U(n) = U(n)$$

 ${}^{L}SU(n) = PSU(n) = SU(n)/\mathbf{Z}_{n}$
 ${}^{L}Sp(m) = SO(2m+1)$

•
$$(LU(n) = U(n))$$
. $Jac(S)^{\vee} \cong Jac(S)$

$$\bullet^{L}U(n) = U(n) : \operatorname{Jac}(S)^{\vee} \cong \operatorname{Jac}(S)$$

•
$$LSU(n) = PSU(n) = SU(n)/\mathbf{Z}_n$$

• \mathbf{Z}_n action $(V, \Phi) \mapsto (V \otimes L, \Phi)$ where L^n is trivial

 $H^1(\mathbf{\Sigma}, \mathbf{Z}_n)$ quotient of SU(n)-moduli space, PSU(n)-Higgs bundles

• $P(S, \Sigma)^{\vee} \cong P(S, \Sigma)/\pi^*H^1(\Sigma, \mathbf{Z}_n)$

Sp(2m, C) AND SO(2m + 1, C)

$$Sp(2m, \mathbb{C})$$

ullet E rank 2m symplectic vector bundle

•
$$\Phi \in H^0(\Sigma, \mathfrak{g} \otimes K) = H^0(\Sigma, S^2E \otimes K)$$

ullet eigenvalues $\pm \lambda_i$

• spectral curve $S \subset |K|$:

$$0 = \det(x - \Phi) = x^{2m} + a_2 x^{2m-2} + \dots + a_{2m}$$

• involution $\sigma(x) = -x$

$$SO(2m + 1, C)$$

• V rank (2m+1) orthogonal vector bundle

•
$$\Phi \in H^0(\Sigma, \mathfrak{g} \otimes K) = H^0(\Sigma, \Lambda^2 V \otimes K)$$

ullet eigenvalues $0\pm\lambda_i$

$$SO(2m+1, \mathbf{C})$$

• V rank (2m+1) orthogonal vector bundle

•
$$\Phi \in H^0(\Sigma, \mathfrak{g} \otimes K) = H^0(\Sigma, \Lambda^2 V \otimes K)$$

- ullet eigenvalues $0\pm\lambda_i$
- kernel $\sim \Phi^m \in \Lambda^{2m} V \otimes K^m \cong V \otimes K^m$
- reducible spectral curve $S \downarrow \\ 0 = \det(x \Phi) = x(x^{2m} + a_2x^{2m-2} + \cdots + a_{2m})$

• $V = \pi_* L$ where ...

• on
$$x^{2m} + a_2 x^{2m-2} + \dots + a_{2m} = 0$$

$$L = U \pi^* K^m \text{ and } U \in P(S, \bar{S})$$

• on $x = 0 \cong \Sigma$, $L = K^m$

$$x^{2m} + a_2 x^{2m-2} + \dots + a_{2m} = 0$$

• x = 0 fixed point set of σ

• $\sigma^*U \cong U^* \Rightarrow$ trivialization of U^2 on x=0

• $K^m \cong UK^m \Rightarrow \pm 1$ choice

• x = 0 fixed point set of σ

• $\sigma^*U \cong U^* \Rightarrow$ trivialization of U^2 on x=0

• $K^m \cong UK^m \Rightarrow \pm 1$ choice

• $x = 0 \Leftrightarrow a_{2m}(z) = 0$: 4m(g-1) points

• $2^{4m(g-1)}$ covering of $P(S, \bar{S})$

• overall ± 1

SO(2m + 1)-bundle spin/non-spin

• $2^{4m(g-1)-2}$ covering of $P(S, \bar{S})$

$$\bullet = P(S, \bar{S})/p^*H^1(\bar{S}, \mathbf{Z}_2)$$

= dual of $P(S, \overline{S})$

BRANES

• symplectic geometry

A-brane = Lagrangian submanifold + flat vector bundle

holomorphic geometry

B-brane = complex submanifold + holomorphic bundle

• ... or generalizations, sheaves etc.

SYZ MIRROR SYMMETRY

- Calabi-Yau manifold M^n : ω symplectic form, $\Omega=$ real part of a holomorphic n-form
- special Lagrangian fibration: $p:M\to B$ $(\omega,\ \Omega \ \text{vanish on fibres})$
- ullet fibre M_x is a torus
- ullet mirror = fibration by dual torus = moduli space of flat U(1)-bundles over M_x

• $W \subset T_xM$ Lagrangian subspace

• suppose $W = V \oplus H \subset T_FM \oplus p^*TB \cong p^*(T^*B \oplus TB)$

• Lagrangian $\Rightarrow V = H^0$ (annihilator)

• then $V^0 \oplus H \cong H \oplus iH$ complex

ullet hyperkähler: complex structures I,J,K

• symplectic forms $\omega_1, \omega_2, \omega_3$

ullet BAA-brane = holomorphic Lagrangian submanifold wrt I+ flat connection

 BBB-brane = hyperkähler submanifold + hyperholomorphic bundle ullet hyperkähler: complex structures I,J,K

• symplectic forms $\omega_1, \omega_2, \omega_3$

ullet BAA-brane = holomorphic Lagrangian submanifold wrt I+ flat connection

 BBB-brane = hyperkähler submanifold + hyperholomorphic bundle

mirror symmetry is supposed to interchange these

BBB-BRANES

hyperkähler submanifold

strong condition

• Kähler \Rightarrow second fundamental form S complex linear S(IX,JY)=IS(X,JY)=IJS(X,Y)=JIS(X,Y)=0

→ totally geodesic

EXAMPLES

- points, whole manifold
- ullet Higgs bundles for subgroup $H\subset G$
- ullet pull-back of Higgs bundles from a map $f: \Sigma \to C$
- \bullet fixed point set of a triholomorphic automorphism of ${\cal M}$ e.g.
 - i) induced action of finite group holomorphic action on Σ
 - ii) $V \mapsto V \otimes L$ where L^n trivial.

BAA BRANES

• $\mathcal{N} \subset \mathcal{M} = \text{moduli space of stable bundles } (V, 0)$

torus fibres of the integrable system

• $T^*\mathcal{N} \subset \mathcal{M}$ open embedding

ullet closure of conormal bundle of submanifold of ${\mathcal N}$

BAA BRANES

• $\mathcal{N} \subset \mathcal{M} = \text{moduli space of stable bundles } (V, 0)$

torus fibres of the integrable system

• $T^*\mathcal{N} \subset \mathcal{M}$ open embedding

ullet closure of conormal bundle of submanifold of ${\mathcal N}$

SYZ MIRROR SYMMETRY

- $p:\mathcal{M}\to\mathcal{B}$ integrable system $L\subset\mathcal{M} \text{ complex Lagrangian submanifold}$
- $p:L\to p(L)$ suppose generically $p(L)\subset \mathcal{B}^{\mathrm{reg}}$ $L\cap A\subset A \text{ compact subvariety of abelian variety}$
- **Define** $(L \cap A)^0 \subset A^{\vee} = \text{line bundles on } A \text{ trivial on } L \cap A$

SYZ MIRROR SYMMETRY

- $p:\mathcal{M}\to\mathcal{B}$ integrable system $L\subset\mathcal{M} \text{ complex Lagrangian submanifold}$
- $p:L\to p(L)$ suppose generically $p(L)\subset \mathcal{B}^{\text{reg}}$ $L\cap A\subset A \text{ compact subvariety of abelian variety}$
- **Define** $(L \cap A)^0 \subset A^{\vee} = \text{line bundles on } A \text{ trivial on } L \cap A$

• = support of a BBB-brane?

EXAMPLE

- L = a single fibre A
- p(L) a point $a \in \mathcal{B}$
- $(L \cap A) = A \Rightarrow (L \cap A)^0 = 0$
- → BBB-brane is a single point

EXAMPLE

• L =(closure of) a cotangent fibre of $T^*\mathcal{N}$

• $(L \cap A)$ finite set $\Rightarrow (L \cap A)^0 = A^{\vee}$

⇒ BBB-brane is the whole manifold

• How general is this?

C*-INVARIANT LAGRANGIANS

• C*-action $(V, \Phi) \mapsto (V, \lambda \Phi)$ generated by holomorphic vector field X

ullet on $T^*\mathcal{N}$ scales cotangent fibres

• in general preserves conormal bundles

• moves generic fibres ($0 \in \mathcal{B}$ only fixed point)

ullet Suppose L is a ${f C}^*$ -invariant complex Lagrangian

• $i_X(\omega_2 + i\omega_3) = i_X\omega^c$ vanishes on L

- $i_X\omega^c$ nonzero on A (variation of Lagrangian A in the direction X)
- $i_X\omega^c$ holomorphic 1-form on A which vanishes on $L\cap A$

THE ALBANESE VARIETY

- M algebraic variety, $H^0(M,T^*)$ = holomorphic 1-forms
- integration over 1-cycle: $H_1(M, \mathbf{Z}) \to H^0(M, T^*)^*$
- quotient = Alb(M) the **Albanese variety**, an abelian variety
- for a curve $Alb(C) \cong Jac(C)$
- \bullet Universal property: a map $M \to A$ factors through the Albanese variety $M \to \mathsf{Alb}(M) \to A$

$$M \to \mathsf{Alb}(M) \qquad x \mapsto \int_e^x \alpha$$

• $i_X\omega|_A$ holomorphic 1-form on A which vanishes on $L\cap A$

- $\bullet \Rightarrow$ vanishes on $B = \text{image of Alb}(L \cap A)$.
- $H_1(B, \mathbf{Z}) \subset H_1(A, \mathbf{Z})$ over rationals extend a basis
- $i_X \omega^c$ vanishes on $B \Rightarrow$ periods vanish
- $\Rightarrow p(L)$ satisfies $2 \dim_{\mathbf{C}} B = 2k$ real constraints $x_1 = x_2 = \dots = x_{2k} = 0$

• $k \text{ constraints} \Rightarrow \dim p(L) \leq \dim \mathcal{M}/2 - k$

• $L \cap A \subset B \Rightarrow \dim(L \cap A) \leq k$

• $k \text{ constraints} \Rightarrow \dim p(L) \leq \dim \mathcal{M}/2 - k$

•
$$L \cap A \subset B \Rightarrow \dim(L \cap A) \leq k$$

• L Lagrangian \Rightarrow

$$\dim \mathcal{M}/2 = \dim L = \dim(L \cap A) + \dim p(L) \le k + (\dim \mathcal{M}/2 - k)$$

• $k \text{ constraints} \Rightarrow \dim p(L) \leq \dim \mathcal{M}/2 - k$

•
$$L \cap A \subset B \Rightarrow \dim(L \cap A) \leq k$$

- L Lagrangian \Rightarrow $\dim \mathcal{M}/2 = \dim L = \dim(L\cap A) + \dim p(L) \leq k + (\dim \mathcal{M}/2 k)$
- $\bullet \Rightarrow \dim(L \cap A) = \dim B$

 \Rightarrow each component of $L \cap A$ is an abelian subvariety

- linear constraints have rational coefficients
 - \Rightarrow locally constant
- ullet p(L) is locally defined by linear functions

- linear constraints have rational coefficients
 - \Rightarrow locally constant
- ullet p(L) is locally defined by linear functions
- ullet SYZ mirror is fibred over p(L) by abelian subvarieties B^0
- holomorphic symplectic, integrable system ...

- linear constraints have rational coefficients
 - ⇒ locally constant
- ullet p(L) is locally defined by linear functions
- SYZ mirror is fibred over p(L) by abelian subvarieties B^0
- holomorphic symplectic, integrable system ...

• but is it a hyperkähler submanifold?

ABELIAN SUBVARIETIES

EXAMPLE

- $B = \pi^* \operatorname{Jac}(\Sigma) \subset \operatorname{Jac}(S)$
- $\theta \in H^0(S, K)$ annihilates B if $a_1 = 0$ $\det(x - \Phi) = x^n + a_1 x^{n-1} + \ldots + a_n$
- Lagrangian $L = \operatorname{Jac}(\Sigma) \times H^0(\Sigma, K^2) \oplus \cdots \oplus H^0(\Sigma, K^n)$
- $B^0 = P(S, \Sigma) \Rightarrow$ mirror is SU(n) moduli space = hyperkähler submanifold

• $B \subset \operatorname{Jac}(S)$ abelian subvariety

• $S \subset \operatorname{Jac}(S), f : S \to \operatorname{Jac}(S)/B$

ullet image curve, f factors through normalization C and $\mathsf{Alb}(C)$

 $\bullet \ f:S\to C$

• $i_X \omega^c$ vanishes on B

• $\Rightarrow i_X \omega^c$ pulled back from A/B

 $\bullet \ \Rightarrow \theta = f^* \varphi \text{ for a 1-form } \varphi \text{ on } C$

EXAMPLE SU(2)

• spectral curve $x^2 + a_2 = 0$, involution $x \mapsto -x$

- $\pi^* \operatorname{Jac}(\Sigma) \subset B \subset \operatorname{Jac}(S)$, involution on $\operatorname{Jac}(S)/B$
 - \Rightarrow involution on C
 - \Rightarrow C is a spectral curve for a curve $\bar{\Sigma}$, $h: \Sigma \to \bar{\Sigma}$

• pull-back gives a hyperkähler submanifold.