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DUALITY



e Higgs bundle fibration p: M — B

e generic fibre abelian variety A

e — complex torus + positive line bundle H

e SYZ mirror symmetry ~ replace A by its dual AY

— moduli space of degree zero holomorphic line bundles on A



x €A, Ly(y) =24y

translation action L, : A — A

L:H @ H-1 degree zero line bundle

A — AV surjective, finite kernel

A = Jac(S) isomorphism (A principally polarized)



e spectral curve w: 5 — >

o degmiL =degV =0 if L=Un*K("1)/2 degU =0

o A"V trivial if Nm(U) = 0

e Jac(S) ~ linear equivalence of divisors

Nm(xq1+...+z) =7n(xy) + ...+ 7(xr)



e spectral curve w: 5 — >

o degmiL =degV =0 if L=Un*K("1)/2 degU =0

o A"V trivial if Nm(U) = 0

e Jac(S) ~ linear equivalence of divisors

Nm(xq1+...+z) =7n(xy) + ...+ 7(xr)

o ker Nm defn P(S,>X) = Prym variety



THE GROUP SU(n)



U e P(S,X) = A"V trivial

structure group SU(n)

®c HO(Z,sl(n) @ K) = a1 =0 € H(Z, K)

generic fibre for SU(n) Higgs bundles = Prym variety



e Nm : Jac(S) — Jac(X) is dual to «* : Jac(X) — Jac(S)

e so P(S,X)Y £ Jac(S)/=* Jac(X)



e Nm : Jac(S) — Jac(X) is dual to «* : Jac(X) — Jac(S)

e so P(S,X)Y £ Jac(S)/=* Jac(X)

e Jac(S)/Jac(x) =P(S,2)/(P(S,X)Nn*Jac(X))

o NMmn*xr = nx =

P(S, X))V 2 P(S,X)/m*HN(Z,Z,)



THE GROUP Sp(m)



E rank 2m symplectic vector bundle

®ec HY(Z,g® K) = HO(Z,S2E @ K)

eigenvalues +\;

spectral curve S C |K| :

0 =det(z — ) = 2™ 4 aoz2™ 2 4 .. 4 ao,

involution o(z) = —=x



TS — >
E:TF*L

z. L > LRn*K and ® = myx

. where L = Un*K™1/2 and @



p:S—S=2S/o

c*U 2 U* < U € P(S,S)

abelian variety = Prym P(S, S)

dual P(S,5)Y 2 P(S,5)/p*H(S,Z>)



LANGLANDS DUALITY
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e M(G) Higgs bundle moduli space

e hyperkahler

e holomorphic Lagrangian fibration

o ....its mirror is M(¥G@) where LG is the Langlands dual group

R.Donagi & T.Pantev, Langlands duality for Hitchin systems,
Invent. math. 189 (2012), 653—735.



G and L@ are Langlands dual groups if..

. their root systems are dual

roots <+ coroots, characters < 1-parameter subgroups

Lu(n) =U(n)
Lsu(n) = PSU(n) = SU(n)/Zn

LSp(m) = SO(2m + 1)



o@) :@ Jac(S)Y £ Jac(S)




0@) :@ Jac(S)Y £ Jac(S)
o @ = PSU(n))= SU(n)/Zn

e Z, action (V,®) — (V®L,P) where L" is trivial

H1(x,Z,) quotient of SU(n)-moduli space, PSU(n)-Higgs bundles

o P(S, )V 2 P(S,5)/m*HI (X, Zy)



Sp(2m,C) AND SO(2m + 1,C)



Sp(2m, C)
E rank 2m symplectic vector bundle

®ec HI(Z,g® K) = HY(Z,S?E ® K)

eigenvalues +\;

spectral curve S C |K| :

0 =det(x — ®) = 22 + aox?™ 2 + ... +an,,

involution o(x) = —x



SO2m+1,C)
e V rank (2m + 1) orthogonal vector bundle

e dPc HIZ, g K) = HO(Z,A\2V ® K)

N

e cigenvalues 0 £ \;




SO(2m + 1,C)

e V rank (2m + 1) orthogonal vector bundle

e dPc HIZ, g K) = HO(Z,A\2V ® K)

N

e cigenvalues 0 £ \;

o kernel ~ PM c AN2MYy @ KM 2V @ K™

e reducible spectral curve S

'

0 = det(z — ®) = x(z?™ + apz?™ 2 + - ..

+ a2m)



o V = m.L Where ...

e on 2™ + qox?™m 24 ...+ a5, =0

L=Ur*K™ and U € P(S,5)

eONz=0=% L=Km™

2™ + aox?™ 2 + .-+ ao,;, =0



e r = 0 fixed point set of o

o o*U =2 U* = trivialization of U2 on z = 0

o KM =UK™ = 41 choice




e r = 0 fixed point set of o

o o*U =2 U* = trivialization of U2 on z = 0

o KM =UK™ = 41 choice

e t =0 ay,,(z) =0: 4m(g — 1) points

o 24m(9—1) covering of P(S,S)



e overall =1

_|_

SO(2m + 1)-bundle spin/non-spin

o 24m(g—1)=2 covering of P(S,3)

o = P(S, g)/p*Hl(S’, Z>)

= dual of P(S,S)




BRANES



e symplectic geometry

A-brane = Lagrangian submanifold + flat vector bundle

e holomorphic geometry

B-brane = complex submanifold 4+ holomorphic bundle

e ... Or generalizations, sheaves etc.



SYZ MIRROR SYMMETRY

e Calabi-Yau manifold M™: w symplectic form,

€2 = real part of a holomorphic n-form

e special Lagrangian fibration: p: M — B

(w, € vanish on fibres)

e fibre M, IS a torus

e Mirror = fibration by dual torus =

moduli space of flat U(1)-bundles over M,



W C T,M Lagrangian subspace

suppose W =V S H CTrM ®p*T'B = p*(1T*B®TB)

Lagrangian = V = HO (annihilator)

then VO H = H @ iH complex



hyperkahler: complex structures I, J, K

symplectic forms wi,wo, w3

BAA-brane = holomorphic Lagrangian submanifold wrt I +
flat connection

BBB-brane = hyperkahler submanifold 4+ hyperholomorphic
bundle



hyperkahler: complex structures I, J, K

symplectic forms wi,wo, w3

BAA-brane = holomorphic Lagrangian submanifold wrt I +
flat connection

BBB-brane = hyperkahler submanifold 4+ hyperholomorphic
bundle

mirror symmetry is supposed to interchange these



BBB-BRANES

e hyperkahler submanifold

e strong condition

e Kahler = second fundamental form S complex linear

S(IX,JY) =IS(X,JY)=1JS(X,Y)=JIS(X,Y) =0

e — totally geodesic



—XAMPLE

points, whole manifold

Higgs bundles for subgroup H C GG

pull-back of Higgs bundles from a map f: 2 — C

fixed point set of a triholomorphic automorphism of M
e.d.
i) induced action of finite group holomorphic action on X

i) Vi—V ®L where L™ trivial.



BAA BRANES

N C M = moduli space of stable bundles (V,0)

torus fibres of the integrable system

T*N C M open embedding ....

. closure of conormal bundle of submanifold of N/



BAA BRANES
N C M = moduli space of stable bundles (V,0)
torus fibres of the integrable system
T*N C M open embedding ....

. closure of conormal bundle of submanifold of N/



SYZ MIRROR SYMMETRY

e p. M — B integrable system

L C M complex Lagrangian submanifold

e p: L — p(L) suppose generically p(L) C B9

LNACA compact subvariety of abelian variety

e Define (LN A)9 ¢ AV = line bundles on A trivial on LN A




SYZ MIRROR SYMMETRY

e p. M — B integrable system

L C M complex Lagrangian submanifold

e p: L — p(L) suppose generically p(L) C B9

LNACA compact subvariety of abelian variety

e Define (LN A)9 ¢ AV = line bundles on A trivial on LN A

e .... — support of a BBB-brane?



—XAMPL

L = a single fibre A

p(L) a point a € B

(LNA)=A=(LNAY=0

= BBB-brane is a single point




EXAMPL

L = (closure of) a cotangent fibre of T*N

(LN A) finite set = (LN A)0 = AV

= BBB-brane is the whole manifold

How general is this?



C*-INVARIANT LAGRANGIANS



C*-action (V,®) — (V, \P)

generated by holomorphic vector field X

on T*N scales cotangent fibres

IN general preserves conormal bundles

moves generic fibres (0 € B only fixed point)



Suppose L is a C*-invariant complex Lagrangian

ix (wo + iw3z) = i yw vanishes on L

ixyw nonzero on A

(variation of Lagrangian A in the direction X)

ixw holomorphic 1-form on A which vanishes on LN A



THE ALBANESE VARIETY
e M algebraic variety, HO(M,T*) = holomorphic 1-forms
e integration over 1-cycle: H{(M,Z) — HO(M,T*)*
e quotient = Alb(M) the Albanese variety, an abelian variety

e for a curve Alb(C) = Jac(C)

e Universal property: a map M — A factors through

the Albanese variety M — Alb(M) — A

I
M — Alb(M) :13!—)/ o
(&



ixw|4 holomorphic 1-form on A which vanishes on LN A

= vanishes on B = image of Alb(L N A).

Hl(B,Z) C Hl(A, Z)

over rationals extend a basis

1 xw® vanishes on B =- periods vanish

= p(L) satisfies 2dimc B = 2k real constraints

1 =3 = =w;, =0



e k constraints = dimp(L) <dmM/2 —k

e LNACB=dm(LNA)<Ek



e k constraints = dimp(L) <dmM/2 —k

e LNACB=dm(LNA)<Ek

e L. Lagrangian =

dim M/2 = dim L = dim(LNA)+dimp(L) < k+(dim M/2—k)



e k constraints = dimp(L) <dmM/2 —k

e LNACB=dm(LNA)<Ek

e L. Lagrangian =

dim M/2 = dim L = dim(LNA)+dimp(L) < k+(dim M/2—k)

e =>dim(LNA)=dmB

= each component of LN A is an abelian subvariety



e linear constraints have rational coefficients

= |locally constant

e p(L) is locally defined by linear functions



linear constraints have rational coefficients

= |locally constant

p(L) is locally defined by linear functions

SYZ mirror is fibred over p(L) by abelian subvarieties BO

holomorphic symplectic, integrable system ...



e linear constraints have rational coefficients

= locally constant

e p(L) is locally defined by linear functions

e SYZ mirror is fibred over p(L) by abelian subvarieties B°

e holomorphic symplectic, integrable system ...

e but is it a hyperkahler submanifold?



ABELIAN SUBVARIETIES



= XAMPL

B = w*Jac(X) C Jac(S)

6 € HO(S, K) annihilates B if ay =0

det(x — d) = azn—l—alaf;n_l + ...+ an

Lagrangian L = Jac(X) x HY(Z,K?) @ ---@ HO(Z, K")

BY = P(S,X) = mirror is SU(n) moduli space

— hyperkahler submanifold



B C Jac(S) abelian subvariety

S C Jac(S),f: S — Jac(S)/B

image curve, f factors through normalization C and Alb(C)

f:5—-0C



e iyw vanishes on B

e = ixyw“pulled back from A/B

e = 0= f*p for a 1-form ¢ on C



EXAMPLE SU(2)

spectral curve z2 4+ a» = 0, involution z — —x

n*Jac(X) C B C Jac(S), involution on Jac(S)/B
= involution on C

= (' is a spectral curve for a curve >, h: >~ — >

pull-back gives a hyperkahler submanifold.



