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) = [ Wl

only depends on the conformal class
9] = {u?q | u: M S5 RT).
Measures deviation [¢g| from conformal flatness.

Basic problems: For given smooth compact M.

e Are there any critical points?
e If so, are they actually minima?

e What is the moduli space ot solutions?
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For M*,

W) = [ Wl

Euler-Lagrange equations B = 0 elliptic mod gauge.

Here |
By = (vcvd + §%Cd)Wa,cbd

called Bach tensor.
Solutions called Bach-flat metrics.

Bianchi = Any Einstein (1%, ¢) is Bach-flat.

Of course, conformally Einstein good enough!
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By contrast:

For M™
7 (g]) = / W, 2du,
M

has degenerate Euler-Lagrange equation
‘Wg‘(n—ﬁl)/?(vv.w 4o ) =0
when n > 4.

Einstein metrics are usually not critical points.
Clalabi-Yau x flat on K3 x T never critical

when ¢ > 0, because # o Vol(T*)!



Dimension Four is Exceptional



Dimension Four is Exceptional

The fact that 4-dimensional Einstein metrics



Dimension Four is Exceptional

The fact that 4-dimensional Einstein metrics are
Bach-flat



Dimension Four is Exceptional

The fact that 4-dimensional Einstein metrics are
Bach-flat can sometimes be used to construct them:



Dimension Four is Exceptional

The fact that 4-dimensional Einstein metrics are
Bach-flat can sometimes be used to construct them:

Theorem (Chen-L-Weber '08).



Dimension Four is Exceptional

The fact that 4-dimensional Einstein metrics are
Bach-flat can sometimes be used to construct them:

Theorem (Chen-L-Weber '08). Suppose that M
15 a smooth compact oriented 4-manifold



Dimension Four is Exceptional

The fact that 4-dimensional Einstein metrics are
Bach-flat can sometimes be used to construct them:

Theorem (Chen-L-Weber '08). Suppose that M
15 a smooth compact oriented 4-manifold which
admits a symplectic form w.



Dimension Four is Exceptional

The fact that 4-dimensional Einstein metrics are
Bach-flat can sometimes be used to construct them:

Theorem (Chen-L-Weber '08). Suppose that M
15 a smooth compact oriented 4-manifold which
admits a symplectic form w. Then M admits an
Einstein metric g with A > 0



Dimension Four is Exceptional

The fact that 4-dimensional Einstein metrics are
Bach-flat can sometimes be used to construct them:

Theorem (Chen-L-Weber '08). Suppose that M
15 a smooth compact oriented 4-manifold which
admits a symplectic form w. Then M admits an
Einstein metric g with A > 0

— M=



Dimension Four is Exceptional

The fact that 4-dimensional Einstein metrics are
Bach-flat can sometimes be used to construct them:

Theorem (Chen-L-Weber '08). Suppose that M
15 a smooth compact oriented 4-manifold which
admits a symplectic form w. Then M admits an
Einstein metric g with A > 0

CPy#kCP>,
— M~



Dimension Four is Exceptional

The fact that 4-dimensional Einstein metrics are
Bach-flat can sometimes be used to construct them:

Theorem (Chen-L-Weber '08). Suppose that M
15 a smooth compact oriented 4-manifold which
admits a symplectic form w. Then M admits an
Einstein metric g with A > 0

CPy#kCPy, 0<k <38,
— M=



Dimension Four is Exceptional

The fact that 4-dimensional Einstein metrics are
Bach-flat can sometimes be used to construct them:

Theorem (Chen-L-Weber '08). Suppose that M
15 a smooth compact oriented 4-manifold which
admits a symplectic form w. Then M admits an
Einstein metric g with A > 0

CPy#kCPy, 0<k <38,
— M~ or



Dimension Four is Exceptional

The fact that 4-dimensional Einstein metrics are
Bach-flat can sometimes be used to construct them:

Theorem (Chen-L-Weber '08). Suppose that M
15 a smooth compact oriented 4-manifold which
admits a symplectic form w. Then M admits an
Einstein metric g with A > 0

CPy#kCPy, 0<k <38,
— M=~ or
S2 % G2



Convention:

CP5y = reverse oriented CPs.



Convention:

CP5y = reverse oriented CPs.

Connected sum #:

C=> C=>



Convention:

CP5y = reverse oriented CPs.

Connected sum #:

=2 =>



Convention:

CP5y = reverse oriented CPs.

Connected sum #:



Convention:

CP5y = reverse oriented CPs.

Connected sum #:

=2 =>



Convention:

CP5y = reverse oriented CPs.

Connected sum #:

C=> C=>



Convention:

CP5y = reverse oriented CPs.

Connected sum #:

=2 =>



Convention:

CP5y = reverse oriented CPs.

Connected sum #:



Dimension Four is Exceptional

The fact that 4-dimensional Einstein metrics are
Bach-flat can sometimes be used to construct them:

Theorem (Chen-L-Weber '08). Suppose that M
15 a smooth compact oriented 4-manifold which
admits a symplectic form w. Then M admits an
Einstein metric g with A > 0

CPy#kCPy, 0<k <38,
— M=~ or
S2 % G2



Dimension Four is Exceptional

The fact that 4-dimensional Einstein metrics are
Bach-flat can sometimes be used to construct them:

Theorem (Chen-L-Weber '08). Suppose that M
15 a smooth compact oriented 4-manifold which
admits a symplectic form w. Then M admits an
Einstein metric g with A > 0

CPy#kCPy, 0<k <38,
— M=~ or
S2 % G2

Seiberg-Witten & Hitchin-Thorpe: Only candidates.



Dimension Four is Exceptional

The fact that 4-dimensional Einstein metrics are
Bach-flat can sometimes be used to construct them:

Theorem (Chen-L-Weber '08). Suppose that M
15 a smooth compact oriented 4-manifold which
admits a symplectic form w. Then M admits an
Einstein metric g with A > 0

CPy#kCPy, 0<k <38,
— M~ or
S2 % G2

Existence: conformally Kahler Einstein metrics.
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On oriented (M*, g),
A= AT @A™
where AT are (41)-eigenspaces of
%A% — A2,
w =1

AT self-dual 2-forms.
A7 anti-self-dual 2-forms.
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Riemann curvature of ¢
R: A% — A°
splits into 4 irreducible pieces:

AT* ATF

AT W_|_—|—1—52 r

where

s = scalar curvature
trace-free Riccl curvature

o
|

=
:
|

= self-dual Weyl curvature
W _ = anti-selt-dual Weyl curvature
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4-dimensional signature formula

] 2 y
(M) =5 [ (W2 = W) du
So
7([g)) = 2 /M W 2djiy — 1202 (M)

Thus # <= [ |W4|du.
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Kahler case:

AV = Ro @ AT
AT = Rw @ Re(AH)

VJ=0= R € End(AV) =

g2

Wol? ==
W4 o

Thus, on Kéhler metrics, # <= [ s2d .

Bach-flat Kahler = extremal Kahler
oviVs =0
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Action Function on Kahler Cone

When the manifold is toric, and the action A can be
directly computed from moment polygon. Formula
involves barycenters, moments of inertia.

L2

........... ]
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The fact that 4-dimensional Einstein metrics are
Bach-flat can sometimes be used to construct them:

Theorem (Chen-L-Weber '08). Suppose that M
15 a smooth compact oriented 4-manifold which
admits a symplectic form w. Then M admits an
Einstein metric g with A > 0
CPy#kCP>, 0<k <S8,
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These are the diffeotypes of the Del Pezzo surfaces.
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Del Pezzo surfaces:

(M*,.J) for which ¢; is a Kahler class [w].
Shorthand: “c; > 0.”

Blow-up of CPy at k£ distinct points, 0 < k <8,
in general position, or CIPy x CIPy.

Theorem. Each Del Pezzo (M?,.J) admits a com-
patible conformally Kahler Einstein metric, and
this metric is unique up to scale, automorphisms.

Existence: Tian, Odaka-Spotti-Sun, Chen-L-Weber. . .

Uniqueness: Bando-Mabuchi, L "12. ..
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Theorem (L '15). Let (M, g) be a smooth com-
pact oriented 4-dimensional Einstein manifold.
If there 1s a harmonic 2-form w such that

Wi(w,w) >0

everywhere on M, then g is conformally Kahler
and has Einstein constant A > 0. Moreover, M
1s diffeomorphic to a Del Pezzo surface.

Conversely, every conformally Kahler, Einstein
metric on a Del Pezzo surface satisfies this cri-
terion.

Condition W (w,w) > 0 is open in C? topology.

Einstein metrics satisfying this: connected.
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H*(M,R)={p e D(A°) | dp =0, d*p =0}
Since « is involution of RHS, =—

H*(M,R) =H} dH,,

where

Hy ={p € I(A\") | dp = 0}

self-dual & anti-self-dual harmonic forms.

Decomposition is conformally invariant, and

b+(M) = dimH.
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Moduli?

Theorem (L '15). Let (M, g) be a smooth com-
pact oriented 4-dimensional Einstein manifold.
If there 1s a harmonic 2-form w such that

Wi(w,w) >0

everywhere on M, then g is conformally Kahler
and has Einstein constant A > 0. Moreover, M
1s diffeomorphic to a Del Pezzo surface.

Conversely, every conformally Kahler, Einstein
metric on a Del Pezzo surface satisfies this cri-
terion.

Without loss of generality, w is self-dual.

Criterion = w # 0 everywhere.
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an almost-Kahler metric g iff it carries a self-
dual harmonic 2-form w that is # 0 everywhere.

Moreover, the set of conformal classes |g] on M
that carry such a harmonic form w s open in
the C? topology.

“Conformal classes of symplectic type”

Notice that when b4 = 1, w is unique up to scale.
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Minimizers?

Theorem (L. "15). Let M be a toric del Pezzo
surface, and let g be a conformally Kahler, Ein-
stein metric on M which 1s invariant under fived
torus action. Then the conformal class |g| mini-
mizes [, W |2dp among symplectic conformal
classes which are invariant under the torus ac-
tion. Moreover, up to diffeomorphism, |g] is the
unique such minimaizer.
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Thus, symplectic methods allow one to prove non-
trivial results in 4-dimensional conformal geometry.

What are the limitations of this method?

Another class of Bach-flat metrics is illuminating. . .
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For M* compact, the Weyl functional

) = [ (W W) d

measures the deviation from conformal flatness,
because (M*?, ) is locally conformally flat <=
its Weyl curvature W = W 4+ W _ vanishes.

But we've already noted that

a2 (M) = [ (IWal? = W- ) d

is a topological invariant.

In particular, metrics with W4 = 0 minimize #".

If g has W =0, it is said to be anti-self-dual.
(ASD)
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Twistor picture of anti-selt-duality condition:

Oriented (M?, g) e~ (Z,J).
7 =8S\Y, J.TZ—=>TZ, J*=—1

Theorem (Atiyah-Hitchin-Singer). (Z, J) is a com-
plex 3-manafold iff W = 0.

Motivates study ot ASD metrics, and
yields methods for constructing them.
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<= the scalar curvature s of ¢ is identically zero.

Scalar-flat Kahler surfaces:
special case of cscK manifolds,
and so of extremal Kahler manifolds.

Results proved about SFK in '90s foreshadowed
many more recent results about general case.
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A different link with complex geometry:

If (M*, g, .J) is a Kihler surface, then [g] is ASD

<= the scalar curvature s of ¢ is identically zero.
Scalar-flat Kahler surfaces:

Classification up to diffeomorphism:
e Ricci-flat case
e Non-Ricci-flat case
— CPo#kCP,, k > 10
—(T? x S?)#kCPy, k > 1
— Y x S? and ©x 52, genus Y > 2
— (2 x S?)#kCPy, k > 1
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Almost-Kahler ASD metrics sweep out an open set
in the ASD moduli space.
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M =H"x5*=8"- 35!

7T1(Z) — SO_|_(1,2) X SO(S) — SO_|_(1, 5)
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K =-1

Scalar-flat Kahler deformations: 12(g — 1) moduli
almost-Kéahler ASD deformatns: 30(g—1) moduli
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Almost-Kahler condition gives extra control on ASD
conformal geometry:.

[nyoung Kim '16: classification of almost-Kahler
ASD roughly the same as in scalar-flat Kahler case.

Does this say anything about general ASD metrics?

Almost-Kahler ASD metrics sweep out an open set
in the ASD moduli space.

[s this subset also closed?

Does one get entire connected components this way”?

Alas, No!
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where Y. compact Riemann surface of genus g4.

Then ¥ even g > 0, 3 family |g¢], t € [0,1], of
locally-conformally-flat classes on M, such that

e 1 scalar-flat Kdhler metric gg € |gol; but
o B almost-Kdihler metric g € [g1].

Same method simultaneously proves. ..
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We begin by revisiting hyperbolic metrics on ..
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Quasi-conformally conjugate to Fuchsian.
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Freedom: two points in Teichmiuller space.



X =H3/T

[' quasi-Fuchsian

X~»Y xR



X =H3/T

[' quasi-Fuchsian

X =~ ¥ x[0,1]



[' quasi-Fuchsian

X &~ x[0,1]

Tunnel-Vision function:

X —10,1]



[' quasi-Fuchsian

X &~ x[0,1]

Tunnel-Vision function:

X —10,1]

Af =0



Fuchsian quasi-Fuchsian



[' quasi-Fuchsian

X &~ x[0,1]

Tunnel-Vision function:

X —10,1]

Af =0



H3 /T



X =H3/T

Construction of conformally flat 4-manifolds:



X =H3/T

Construction of conformally flat 4-manifolds:

M =[X x 8"/~



X =H3/T

Construction of conformally flat 4-manifolds:

M =[X x 8"/~

~: crush 0X x St to 0X.



X =H3/T

Construction of conformally flat 4-manifolds:

M =[X x 8"/~



X =H3/T

Construction of conformally flat 4-manifolds:
M =[X x 8"/~

g = h+ dt?



X =H3/T

Construction of conformally flat 4-manifolds:

M =[X x 8"/~

g=f(1—f)[h+dt”]



X =H3T

Construction of conformally flat 4-manifolds:

M =X x S/ ~

g=f(1—f)[h+dt”]

Fuchsian case: 3 x S2 scalar-flat Kahler.
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Choose k points p1,...,pr € X

satistying Z?ﬂf (pj) € Z.

Can do if k£ # 1.
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Construction of ASD 4-manifolds:

Choose P — (X —{p1,...,pr}) circle bundle with
connection form 6 such that

df = xdV/ .
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Construction of ASD 4-manifolds:
g=Ff(1-Vh+ V¢
M:PU{ﬁl,...,ﬁk}Uay

Fuchsian case: (X x S?)#kCPy scalar-flat Kihler
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Ahlfors-Bers: Quasi-conformal mappings
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Theorem. Consider 4-manifolds M = ¥ x S,
where Y. compact Riemann surface of genus g4.

Then ¥ even g > 0, 3 family |g¢], t € [0,1], of
locally-conformally-flat classes on M, such that

e 1 scalar-flat Kdhler metric gg € |gol; but
o B almost-Kdihler metric g € [g1].
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