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Simple, natural problem:
(M™, g) complete non-compact Riemannian n-manifold.

Suppose 3K C M compact

and an isometry M — K — R"™ — D™, (Euclidean)

[f M has scalar curvature > 0, is it flat? Yes!
“Positive Mass Theorem”

Get result even with appropriate fall-off to Euclidean. . .



Definition. A complete, non-compact Rieman-
nian n-manifold (M", g)

@




Definition. A complete, non-compact Rieman-
nian n-manifold (M", g)




Definition. A complete, non-compact Rieman-
nian n-manifold (M™, g) is called asymptotically
Euclidean




Definition. A complete, non-compact Rieman-

nian n-manifold (M™, g) is called asymptotically
Euclidean (AFE)




Definition. A complete, non-compact Rieman-
nian n-manifold (M™, g) is called asymptotically
Fuclidean (AFE) if there is a compact set K C M

—




Definition. A complete, non-compact Rieman-
nian n-manifold (M™, g) is called asymptotically
Fuclidean (AFE) if there is a compact set K C M

such that M — K s diffeo-
morphic to R"™ — D"

BN

TN

= :




Definition. A complete, non-compact Rieman-
nian n-manifold (M™, g) is called asymptotically
Fuclidean (AFE) if there is a compact set K C M
such that M — K s diffeo-
morphic to R"™ — D™ in such a manner that

/i\

= :

N N

gjr =0+ O(|z) 727°)



Definition. A complete, non-compact Rieman-
nian n-manifold (M™, g) is called asymptotically
Fuclidean (AFE) if there is a compact set K C M
such that M — K s diffeo-
morphic to R"™ — D™ in such a manner that

/i\

= :

N N

gk =0+ O(|z[17279)
Gk = O(|z| 7275



Definition. A complete, non-compact Rieman-
nian n-manifold (M™, g) is called asymptotically
Fuclidean (AFE) if there is a compact set K C M
such that M — K s diffeo-
morphic to R"™ — D™ in such a manner that

////f\\\\\

= :

N N

1_n_
9k = 05+ O(|z|27°)
gjre=O0(z]727%), selLl



Definition. A complete, non-compact Rieman-
nian n-manifold (M™, g) is called asymptotically
Fuclidean (AFE) if there is a compact set K C M
such that M — K s diffeo-
morphic to R"™ — D™ in such a manner that

/////’f\\\\\\\

= :

N N

gk =61 + O(|z' 7279

_n_, 1
Gkt = O(|lxz|"27°), scalar curvature € L



Definition. A complete, non-compact Rieman-
nian n-manifold (M™, g) is called asymptotically
Fuclidean (AFE) if there is a compact set K C M
such that M — K s diffeo-
morphic to R"™ — D™ in such a manner that

////f\\\\\

= :

N N

1_n_
9k = 05+ O(|z|27°)
gjre=O0(z]727%), selLl



Definition. A complete, non-compact Rieman-
nian n-manifold (M™, g) is called asymptotically
Fuclidean (AFE) if there is a compact set K C M
such that each component of M — K 1s diffeo-
morphic to R"™ — D™ in such a manner that

N
= 0
N N

1_n_
9k = 05+ O(|z|27°)
gjre=O0(z]727%), selLl



Definition. A complete, non-compact Rieman-
nian n-manifold (M™, g) is called asymptotically
Fuclidean (AFE) if there is a compact set K C M
such that each component of M — K 1s diffeo-
morphic to R"™ — D™ in such a manner that

SN
= 0

N N

1_n_
9k = 05+ O(|z|27°)
gjre=O0(z]727%), selLl



Definition. A complete, non-compact Rieman-
nian n-manifold (M™, g) is called asymptotically
Fuclidean (AFE) if there is a compact set K C M
such that each component of M — K 1s diffeo-
morphic to R"™ — D™ in such a manner that

TN
= s

N N

N

1_n_
9k = 05 + O(|z|27°)
gjre=O0(z]727%), selLl



Definition. A complete, non-compact Rieman-
nian n-manifold (M™, g) is called asymptotically
Fuclidean (AFE) if there is a compact set K C M
such that each component of M — K 1s diffeo-
morphic to R"™ — D™ in such a manner that

SN
= 0

N N

1_n_
9k = 05+ O(|z|27°)
gjre=O0(z]727%), selLl



Definition. A complete, non-compact Rieman-
nian n-manifold (M™, g) is called asymptotically
Fuclidean (AFE) if there is a compact set K C M
such that each component of M — K 1s diffeo-
morphic to R"™ — D™ in such a manner that

TN
= s

N N

N

1_n_
9k = 05 + O(|z|27°)
gjre=O0(z]727%), selLl



Definition. A complete, non-compact Rieman-
nian n-manifold (M™, g) is called asymptotically
Fuclidean (AFE) if there is a compact set K C M
such that each  “end” 15 diffeo-

morphic to R"™ — D™ in such a manner that

TN
= s

N N

N

1_n_
9k = 05 + O(|z|27°)
gjre=O0(z]727%), selLl



Definition. The mass (at a given end) of an AE
n-manifold is defined to be

m(M, g) = Yiii — Giij)



Definition. The mass (at a given end) of an AE
n-manifold is defined to be

m(M, g) = 9ij.i — 9iij) v



Definition. The mass (at a given end) of an AE
n-manifold is defined to be

m(M,g) = / (G55 — gii.j) Vg
(o)



Definition. The mass (at a given end) of an AE
n-manifold is defined to be

m(M,g) = lim / (G55 — gii.5) Vg
(o)

0—> 00



Definition. The mass (at a given end) of an AE
n-manifold is defined to be

INEY .
m(M,g) = lim 2 / i — g i | V)
T L Iy P P




Definition. The mass (at a given end) of an AE
n-manifold is defined to be

INEY .
m(M,g) = lim 2 / i — g i | V)
T L Iy P P

where



Definition. The mass (at a given end) of an AE
n-manifold is defined to be

INEY .
m(M,g) = lim 2 / i — g i | V)
T L Iy P P

where
oY (p) ~ 51



Definition. The mass (at a given end) of an AE
n-manifold is defined to be

INEY .
m(M,g) = lim 2 / i — g i | V)
T L Iy P P

where

e X(0) ~ S" ! is given by |Z| = o;



Definition. The mass (at a given end) of an AE
n-manifold is defined to be

INEY .
m(M,g) = lim 2 / i — g i | V)
T L Iy P P

where
e X(0) ~ S" ! is given by |Z| = o;

e v is the outpointing Euclidean unit normal,;



Definition. The mass (at a given end) of an AE
n-manifold is defined to be

INEY .
m(M,g) = lim 2 / i — g i | V)
T L Iy P P

where
e X(0) ~ S" ! is given by |Z| = o;

e v is the outpointing Euclidean unit normal,;
and

e oy is the volume (n — 1)-form induced by the
Fuclidean metric.



Definition. The mass (at a given end) of an AE
n-manifold is defined to be

INEY .
m(M,g) = lim 2 / i — g i | V)
T L Iy P P

where
e X(0) ~ S" ! is given by |Z| = o;

e v is the outpointing Euclidean unit normal,;
and

e oy is the volume (n — 1)-form induced by the
Fuclidean metric.

Seems to depend on choice of coordinates!



Definition. The mass (at a given end) of an AE
n-manifold is defined to be

INEY .
m(M,g) = lim 2 / i — g i | V)
T L Iy P P

where
e X(0) ~ S" ! is given by |Z| = o;

e v is the outpointing Euclidean unit normal,;
and

e oy is the volume (n — 1)-form induced by the
Fuclidean metric.



Definition. The mass (at a given end) of an AE
n-manifold is defined to be

— S R
m(M, g) ngm i(n — 1>7Tn/2 /Z(Q) [92],7, gl’&,j} v oEp

where
e X(0) ~ S" ! is given by |Z| = o;

e v is the outpointing Euclidean unit normal,;
and

e oy is the volume (n — 1)-form induced by the
Fuclidean metric.

Bartnik /Chrusciel (1986):



Definition. The mass (at a given end) of an AE
n-manifold is defined to be

N T ARSI R
m(M, g) : ngm i(n — 1)7Tn/2 /Z(Q) [92],7, gl’&,j} vrap

where
e X(0) ~ S" ! is given by |Z| = o;

e v is the outpointing Euclidean unit normal,;
and

e oy is the volume (n — 1)-form induced by the
Fuclidean metric.

Bartnik /Chrusciel (1986): With weak fall-off
conditions,



Definition. The mass (at a given end) of an AE
n-manifold is defined to be

INEY .
m(M,g) = lim 2 / i — g i | V)
T L Iy P P

where
e X(0) ~ S" ! is given by |Z| = o;

e v is the outpointing Euclidean unit normal,;
and

e oy is the volume (n — 1)-form induced by the
Fuclidean metric.

1_n_
9k = 05+ O(|lz|27°)
gipe=O0(z]727%), selLl



Definition. The mass (at a given end) of an AE
n-manifold is defined to be

N T ARSI R
m(M, g) : ngm i(n — 1)7Tn/2 /Z(Q) [92],7, gl’&,j} vrap

where
e X(0) ~ S" ! is given by |Z| = o;

e v is the outpointing Euclidean unit normal,;
and

e oy is the volume (n — 1)-form induced by the
Fuclidean metric.

Bartnik /Chrusciel (1986): With weak fall-off
conditions, the mass is well-defined



Definition. The mass (at a given end) of an AE
n-manifold is defined to be

N T ARSI R
m(M, g) : ngm i(n — 1)7Tn/2 /Z(Q) [92],7, gl’&,j} vrap

where
e X(0) ~ S" ! is given by |Z| = o;

e v is the outpointing Euclidean unit normal,;
and

e oy is the volume (n — 1)-form induced by the
Fuclidean metric.

Bartnik /Chrusciel (1986): With weak fall-off
conditions, the mass is well-defined & coordinate
independent.
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Gravitational Instantons:

Bubbling modes for sequences of Einstein metrics.
ALE scalar-flat Kahler surfaces:

Bubbling modes for extremal Kahler metrics.

Theory used to construct compact Einstein 4-manifolds.

Will discuss some examples in next lecture.
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Mass still meaningful in this context. ..
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Any AE manifold with s > 0 has m > 0.

Schoen-Yau 1979:

Proved in dimension n < 7.

Witten 1981:

Proved for spin manifolds (implicitly, for any n).

Hawking-Pope 1978:

Conjectured true in ALE case, too.

L 1986:
ALE counter-examples.

Scalar-flat Kahler metrics

on line bundles L — CPPy of Chern-class < —3.
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Scalar-flat Kahler case”

Lemma. Any ALE Kahler manifold has only
one end.

Several different proofs are known.

Several are analytic:

each end is pseudo-convex at infinity:.

Another is more topological:

intersection form on H? of compactification.
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Mass of ALE Kahler manifolds?

Scalar-flat Kahler case”

Lemma. Any ALE Kahler manifold has only
one end.

Upshot:

Mass of an ALE Kahler manifold is unambiguous.

Does not depend on the choice of an end!
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e the smooth manifold M,
o the first Chern class ¢ci = c1(M,.J) € H?(M)

of the complex structure, and
o the Kihler class [w] € H*(M) of the metric.

In fact, we will see that there is an explicit formula
for the mass in terms of these datal
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The explicit formula reproduces the mass in cases
where it previously had been laboriously computed
from the definition. But it also allows one to quickly
read it off quite generally.

Corollary, suggested by Cristiano Spotti:

Theorem B. Let (M*,g,.J) be an ALE scalar-
flat Kdhler surface, and suppose that (M, .J) is

the minimal resolution of a surface singularity.
Then m(M, g) <0, with = iff g is Ricci-flat.

Note that minimality is essential here.

Non-minimal resolutions typically admit families of
such metrics for which the mass can be continuously
deformed from negative to positive.
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HZ(M) — Hjp(M)

1$ an 1somorphism.

Here
kerd: EF(M) = 55“(]\4)
del~ (M)

HE(M) -
where

EL(M) := {Smooth, compactly supported p-forms on M }.
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Lemma. Let (M, g) be any ALE manifold of real
dimension n > 4. Then the natural map

HZ(M) — Hjp(M)

1$ an 1somorphism.

Definition. If (M, g, J) is any ALE Kahler man-
ifold, we will use

2 2
& Hin(M)— HZ (M)
to denote the inverse of the natural map
HZ (M) = Hgp(M)

induced by the inclusion of compactly supported
smooth forms into all forms.
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where

e s = scalar curvature;

e (/1 = metric volume form;

oc; =c|(M,J)e H*(M) is first Chern class;

o [w] € HX(M) is Kdihler class of (g,J); and

o (. ) is pairing between H2(M) and H*™2(M).
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M

So the mass is a “boundary correction” to the topo-
logical formula for the total scalar curvature.
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So Theorem A is an immediate consequence!
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Proof actually shows something stronger!



Theorem E (Penrose Inequality).



Theorem E (Penrose Inequality). Let (M?™, g, J)



Theorem E (Penrose Inequality). Let (M?™, g, J)
be an AE Kahler manifold



Theorem E (Penrose Inequality). Let (M*™, g, J)
be an AE Kahler manifold with scalar curvature
s > 0.



Theorem E (Penrose Inequality). Let (M*™, g, J)

be an AE Kahler manifold with scalar curvature

s > 0. Then (M, J) carries a canonical divisor
D



Theorem E (Penrose Inequality). Let (M*™, g, J)

be an AE Kahler manifold with scalar curvature

s > 0. Then (M, J) carries a canonical divisor
D

canonical «~ holomorphic section of K = A"



Theorem E (Penrose Inequality). Let (M*™, g, J)

be an AE Kahler manifold with scalar curvature

s > 0. Then (M, J) carries a canonical divisor
D

canonical = Poincaré dual to —c;.



Theorem E (Penrose Inequality). Let (M*™, g, J)

be an AE Kahler manifold with scalar curvature

s > 0. Then (M, J) carries a canonical divisor
D



Theorem E (Penrose Inequality). Let (M*™, g, J)
be an AE Kahler manifold with scalar curvature
s > 0. Then (M, J) carries a canonical divisor
D that is expressed as a sum ) n;D,



Theorem E (Penrose Inequality). Let (M*™, g, J)
be an AE Kahler manifold with scalar curvature
s > 0. Then (M, J) carries a canonical divisor
D that is expressed as a sum Y in;D; of com-
pact complex hypersurfaces with positive integer

coefficients,



Theorem E (Penrose Inequality). Let (M*™, g, J)
be an AE Kahler manifold with scalar curvature
s > 0. Then (M, J) carries a canonical divisor
D that is expressed as a sum Y in;D; of com-
pact complex hypersurfaces with positive integer
coefficients, with the property that |J;D; # @
whenever (M, .J) # C".



Theorem E (Penrose Inequality). Let (M*™, g, J)
be an AE Kahler manifold with scalar curvature
s > 0. Then (M, J) carries a canonical divisor
D that is expressed as a sum Y in;D; of com-
pact complex hypersurfaces with positive integer
coefficients, with the property that |J;D; # @
whenever (M, .J) # C™. In terms of this divi-
sor,



Theorem E (Penrose Inequality). Let (M*™, g, J)
be an AE Kahler manifold with scalar curvature
s > 0. Then (M, J) carries a canonical divisor
D that is expressed as a sum Y in;D; of com-
pact complex hypersurfaces with positive integer
coefficients, with the property that |J;D; # @
whenever (M, .J) # C™. In terms of this divi-
sor, we then have

m(M,qg) > Y Vol(Dj)



Theorem E (Penrose Inequality). Let (M*™, g, J)
be an AE Kahler manifold with scalar curvature
s > 0. Then (M, J) carries a canonical divisor
D that is expressed as a sum Y in;D; of com-
pact complex hypersurfaces with positive integer
coefficients, with the property that |J;D; # @
whenever (M, .J) # C™. In terms of this divi-
sor, we then have

m(M, g) > » n;Vol(D;)



Theorem E (Penrose Inequality). Let (M*™, g, J)
be an AE Kahler manifold with scalar curvature
s > 0. Then (M, J) carries a canonical divisor
D that is expressed as a sum Y in;D; of com-
pact complex hypersurfaces with positive integer
coefficients, with the property that |J;D; # @
whenever (M, .J) # C™. In terms of this divi-
sor, we then hcwe

m(M,qg) > (2m gy _121& Vol (D




Theorem E (Penrose Inequality). Let (M*™, g, J)
be an AE Kahler manifold with scalar curvature
s > 0. Then (M, J) carries a canonical divisor
D that is expressed as a sum Y in;D; of com-
pact complex hypersurfaces with positive integer
coefficients, with the property that |J;D; # @
whenever (M, .J) # C™. In terms of this divi-
sor, we then hcwe

m(M,qg) > (2m gy _121& Vol (D

with = <—




Theorem E (Penrose Inequality). Let (M*™, g, J)
be an AE Kahler manifold with scalar curvature
s > 0. Then (M, J) carries a canonical divisor
D that is expressed as a sum Y in;D; of com-
pact complex hypersurfaces with positive integer
coefficients, with the property that |J;D; # @
whenever (M, .J) # C™. In terms of this divi-
sor, we then hcwe

m(M,qg) > (2m gy _121& Vol (D

with = <= (M, g, .J) is scalar-flat Kahler.




m<M79) — <

S(—c1), [w]™ 1)

(m —1)!

(2m — 1)xm—1

4(2m — 1)7m

/ Sqdlig
M



Theorem E (Penrose Inequality). Let (M*™, g, J)
be an AE Kahler manifold with scalar curvature
s > 0. Then (M, J) carries a canonical divisor
D that is expressed as a sum Y in;D; of com-
pact complex hypersurfaces with positive integer
coefficients, with the property that |J;D; # @
whenever (M, .J) # C™. In terms of this divi-
sor, we then hcwe

m(M,qg) > (2m gy _121& Vol (D

with = <= (M, g, .J) is scalar-flat Kahler.




Theorem E (Penrose Inequality). Let (M*™, g, J)
be an AE Kahler manifold with scalar curvature
s > 0. Then (M, J) carries a canonical divisor
D that is expressed as a sum Y in;D; of com-
pact complex hypersurfaces with positive integer
coefficients, with the property that |J;D; # @
whenever (M, .J) # C™. In terms of this divi-
sor, we then have

m(M, g) > (2m gy _121& Vol (D

with = <= (M, g, .J) is scalar-flat Kahler.

In complex dimension > 3,
only requires Chrusciel metric fall-off.



Theorem E (Penrose Inequality). Let (M*™, g, J)
be an AE Kahler manifold with scalar curvature
s > 0. Then (M, J) carries a canonical divisor
D that is expressed as a sum Y in;D; of com-
pact complex hypersurfaces with positive integer
coefficients, with the property that |J;D; # @
whenever (M, .J) # C™. In terms of this divi-
sor, we then have

m(M, g) > (2m gy _121& Vol (D

with = <= (M, g, .J) is scalar-flat Kahler.

In complex dimension > 3,
only requires Chrusciel metric fall-off.

gjp =i+ O(|z[7279)

gjke =Ollz|727%), seL!



Theorem E (Penrose Inequality). Let (M*™, g, J)
be an AE Kahler manifold with scalar curvature
s > 0. Then (M, J) carries a canonical divisor
D that is expressed as a sum Y in;D; of com-
pact complex hypersurfaces with positive integer
coefficients, with the property that |J;D; # @
whenever (M, .J) # C™. In terms of this divi-
sor, we then have

m(M, g) > (2m gy _121& Vol (D

with = <= (M, g, .J) is scalar-flat Kahler.

In complex dimension > 3,
only requires Chrusciel metric fall-off.



Theorem E (Penrose Inequality). Let (M*™, g, J)
be an AE Kahler manifold with scalar curvature
s > 0. Then (M, J) carries a canonical divisor
D that is expressed as a sum Y in;D; of com-
pact complex hypersurfaces with positive integer
coefficients, with the property that |J;D; # @
whenever (M, .J) # C™. In terms of this divi-
sor, we then have

m(M, g) > (2m gy _121& Vol (D

with = <= (M, g, .J) is scalar-flat Kahler.

In complex dimension > 3,
only requires Chrusciel metric fall-off.
In complex dimension 2, we needed stronger fall-oft
n— 2
2

2,Q0
gjk—dj]{GO_T, T >



Theorem E (Penrose Inequality). Let (M*™, g, J)
be an AE Kahler manifold with scalar curvature
s > 0. Then (M, J) carries a canonical divisor
D that is expressed as a sum Y in;D; of com-
pact complex hypersurfaces with positive integer
coefficients, with the property that |J;D; # @
whenever (M, .J) # C™. In terms of this divi-
sor, we then hcwe

m(M,qg) > (2m gy _121& Vol (D

with = <= (M, g, .J) is scalar-flat Kahler.

But new proof in today’s ArXiv posting only
requires Chrusciel fall-off in any dimension.



Theorem E (Penrose Inequality). Let (M*™, g, J)
be an AE Kahler manifold with scalar curvature
s > 0. Then (M, J) carries a canonical divisor
D that is expressed as a sum Y in;D; of com-
pact complex hypersurfaces with positive integer
coefficients, with the property that |J;D; # @
whenever (M, .J) £ C"™. In terms of this divisor,
we then have

m(M, g) > (m

!
2 — 1)7T>m_1 an Vol (Dj)

with = <= (M, g,.J) is scalar-flat Kdhler.

But new proof in today’s ArXiv posting only
requires Chrusciel fall-off in any dimension.

gjr =i+ O(|z[7279)

gipe=O(z[7279), se L



(d(c), [ (m—1)!

M, qg) = — d
(M, g) (2m — 1)pm—1 +4(2m — 1)x™m /M "9




(d(c), [ (m—1)!

M, qg) = — d
(M, g) (2m — 1)gm—1 +4(2m — 1)x™m /M "9




(d(c), [ (m—1)!

M, qg) = — d
(M, g) (2m — 1)pm—1 +4(2m — 1)x™m /M "9




(d(c), [ (m—1)!

M, qg) = — d
(M, g) (2m — 1)gm—1 +4(2m — 1)x™m /M "9




End, Part 1



