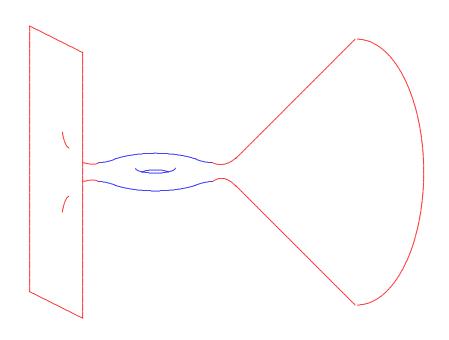
Mass, Scalar Curvature, &

Kähler Geometry, II

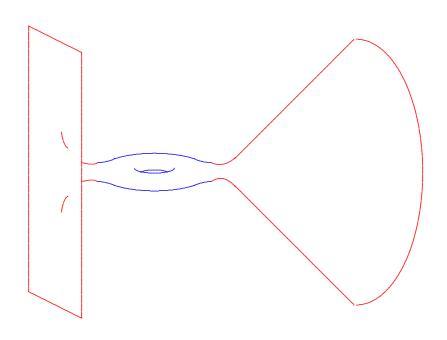
Claude LeBrun Stony Brook University

Seminario de Geometría ICMAT, November 5, 2018

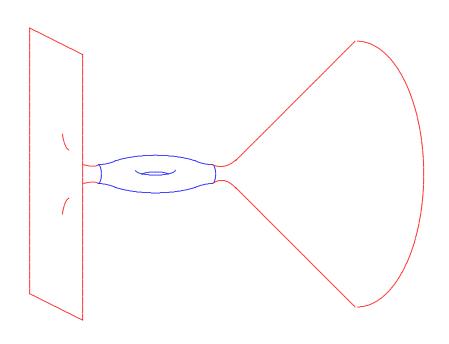
Definition. Complete, non-compact n-manifold (M^n, g) is asymptotically locally Euclidean



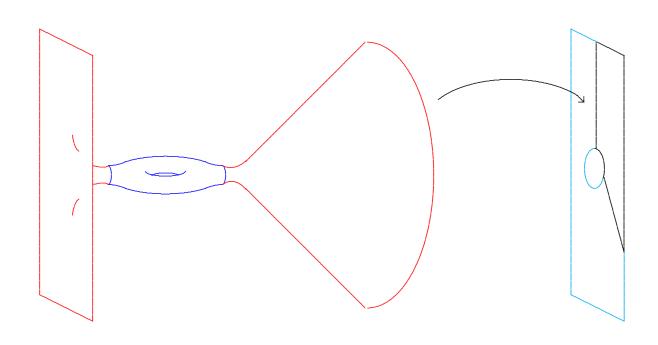
Definition. Complete, non-compact n-manifold (M^n, g) is asymptotically locally Euclidean (ALE)



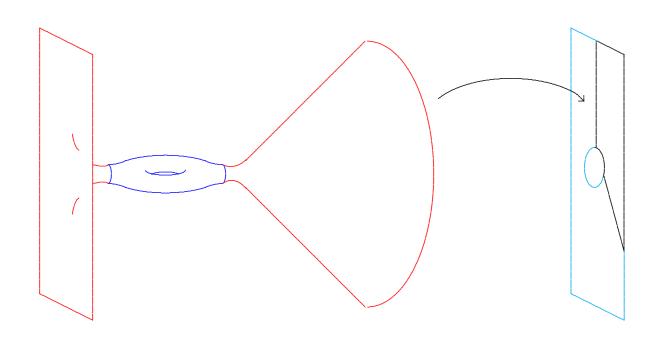
Definition. Complete, non-compact n-manifold (M^n, g) is asymptotically locally Euclidean (ALE) if \exists compact set $K \subset M$



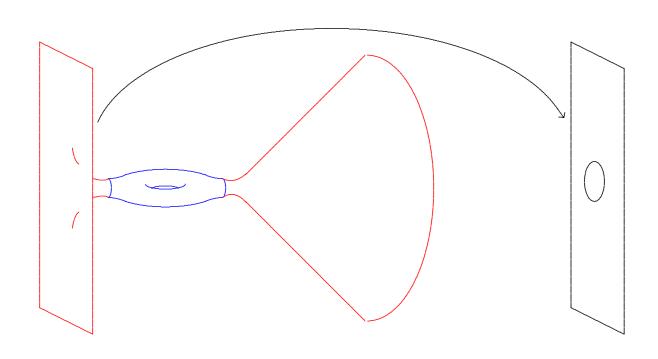
Definition. Complete, non-compact n-manifold (M^n, g) is asymptotically locally Euclidean (ALE) if \exists compact set $K \subset M$ such that $M - K \approx \coprod_i (\mathbb{R}^n - D^n)/\Gamma_i$,



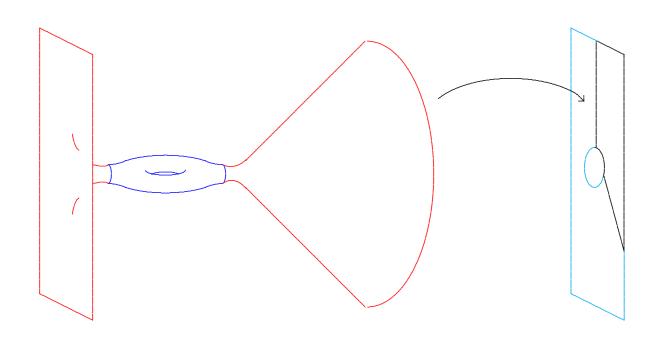
Definition. Complete, non-compact n-manifold (M^n, g) is asymptotically locally Euclidean (ALE) if \exists compact set $K \subset M$ such that $M - K \approx \coprod_i (\mathbb{R}^n - D^n)/\Gamma_i$, where $\Gamma_i \subset \mathbf{O}(\mathbf{n})$,



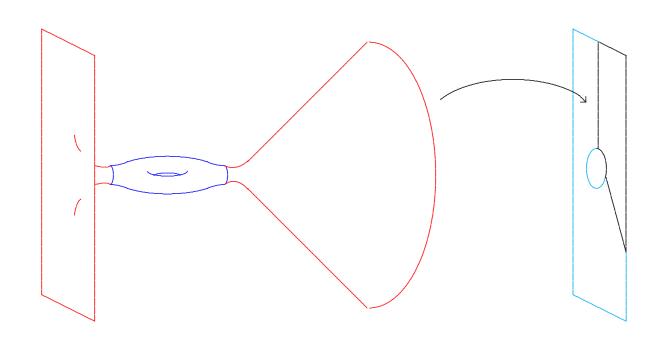
Definition. Complete, non-compact n-manifold (M^n, g) is asymptotically locally Euclidean (ALE) if \exists compact set $K \subset M$ such that $M - K \approx \coprod_i (\mathbb{R}^n - D^n)/\Gamma_i$, where $\Gamma_i \subset \mathbf{O}(\mathbf{n})$,



Definition. Complete, non-compact n-manifold (M^n, g) is asymptotically locally Euclidean (ALE) if \exists compact set $K \subset M$ such that $M - K \approx \coprod_i (\mathbb{R}^n - D^n)/\Gamma_i$, where $\Gamma_i \subset \mathbf{O}(\mathbf{n})$,



Definition. Complete, non-compact n-manifold (M^n, g) is asymptotically locally Euclidean (ALE) if \exists compact set $K \subset M$ such that $M - K \approx \coprod_i (\mathbb{R}^n - D^n)/\Gamma_i$, where $\Gamma_i \subset \mathbf{O}(\mathbf{n})$, such that



$$g_{jk} = \delta_{jk} + O(|x|^{1 - \frac{n}{2} - \varepsilon})$$
$$g_{jk,\ell} = O(|x|^{-\frac{n}{2} - \varepsilon}), \quad \mathbf{s} \in L^1$$

Why consider ALE spaces?

Term ALE coined by Gibbons & Hawking, 1979.

Term ALE coined by Gibbons & Hawking, 1979.

They wrote down various explicit Ricci-flat ALE 4-manifolds they called gravitational instantons.

•

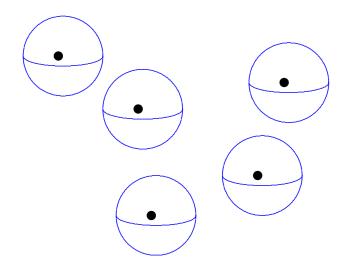
•

Data: ℓ points in \mathbb{R}^3 .

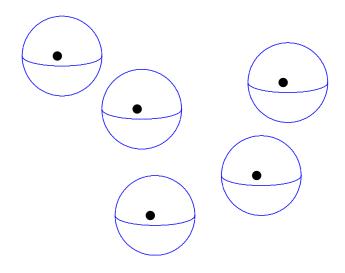
•

Data: ℓ points in \mathbb{R}^3 . $\Longrightarrow V$ with $\Delta V = 0$

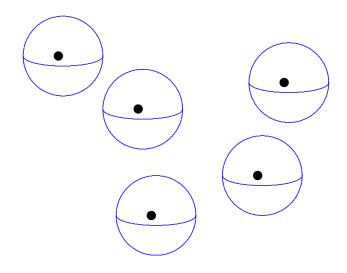
$$V = \sum_{j=1}^{\ell} \frac{1}{2\varrho_j}$$



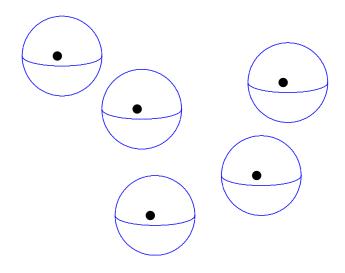
$$V = \sum_{j=1}^{\ell} \frac{1}{2\varrho_j}$$



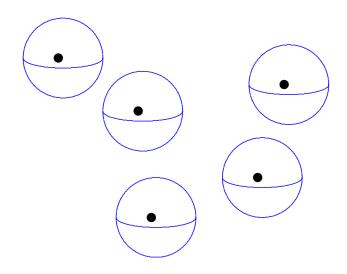
$$g = Vh + V^{-1}\theta^2$$



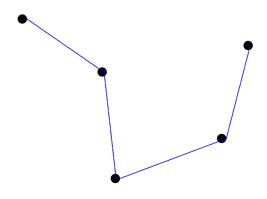
$$g = V(dx^2 + dy^2 + dz^2) + V^{-1}\theta^2$$



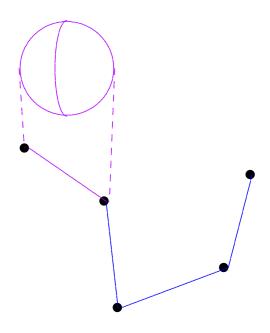
$$g = Vh + V^{-1}\theta^2$$



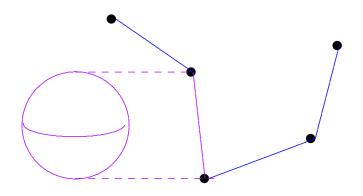
$$g = Vh + V^{-1}\theta^2$$



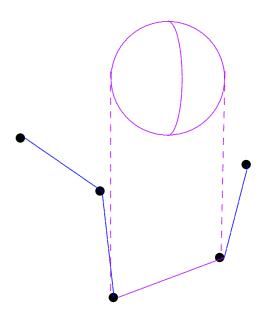
$$g = Vh + V^{-1}\theta^2$$



$$g = Vh + V^{-1}\theta^2$$



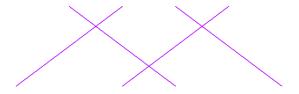
$$g = Vh + V^{-1}\theta^2$$

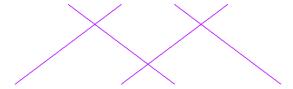


$$g = Vh + V^{-1}\theta^2$$

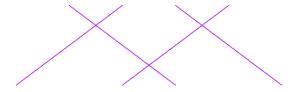
Deform retracts to $k = \ell - 1$ copies of S^2 ,

Deform retracts to $k = \ell - 1$ copies of S^2 , each with self-intersection -2,

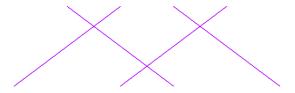




Configuration dual to Dynkin diagram A_k :

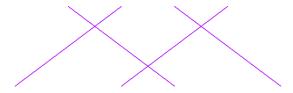


Configuration dual to Dynkin diagram A_k :



Configuration dual to Dynkin diagram A_k :

Diffeotype:



Configuration dual to Dynkin diagram A_k :

Diffeotype:

Plumb together k copies of T^*S^2 according to diagram.

Term ALE coined by Gibbons & Hawking, 1979.

They wrote down various explicit Ricci-flat ALE 4-manifolds they called gravitational instantons.

Term ALE coined by Gibbons & Hawking, 1979.

They wrote down various explicit Ricci-flat ALE 4-manifolds they called gravitational instantons.

Their examples have just one end, with

$$\Gamma \cong \mathbb{Z}_{\ell} \subset \mathbf{SU}(2) \subset \mathbf{O}(4).$$

Term ALE coined by Gibbons & Hawking, 1979.

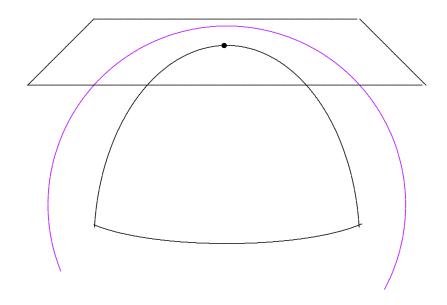
They wrote down various explicit Ricci-flat ALE 4-manifolds they called gravitational instantons.

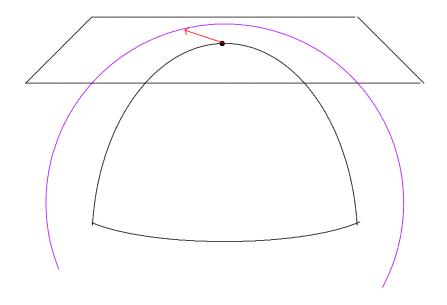
Their examples have just one end, with

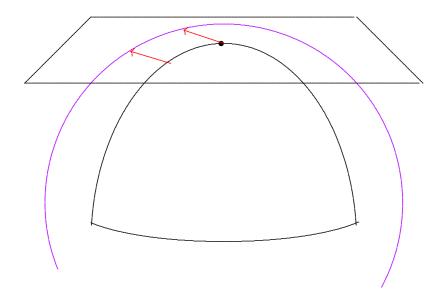
$$\Gamma \cong \mathbb{Z}_{\ell} \subset \mathbf{SU}(2) \subset \mathbf{O}(4).$$

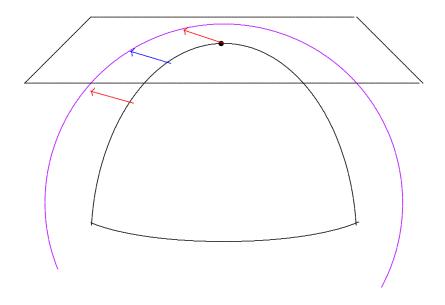
The G-H metrics are hyper-Kähler, and were soon independently rediscovered by Hitchin.

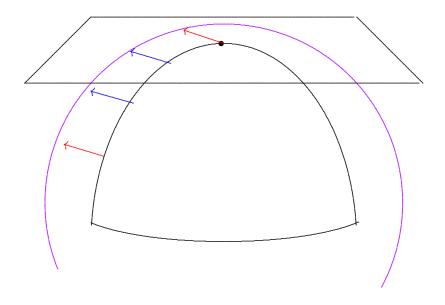
 (M^n, g) : holonomy

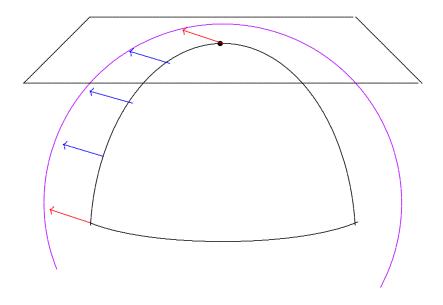


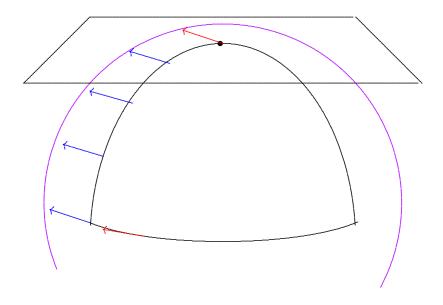


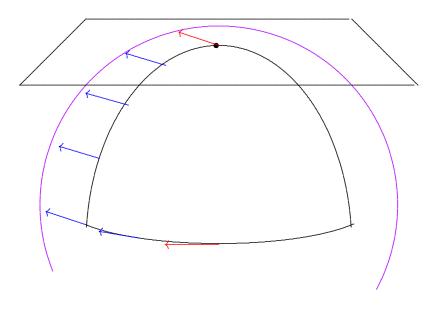


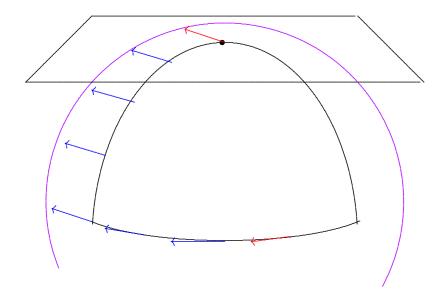


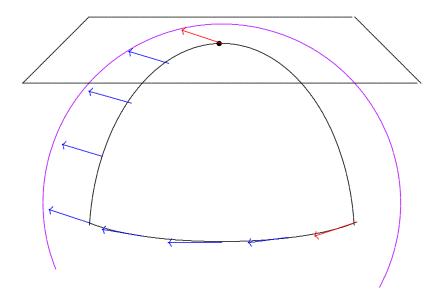


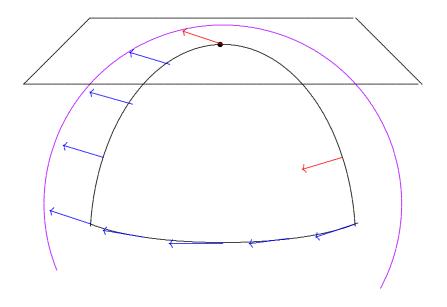


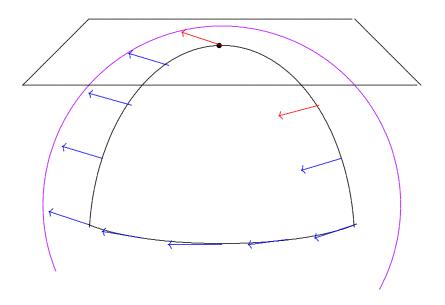


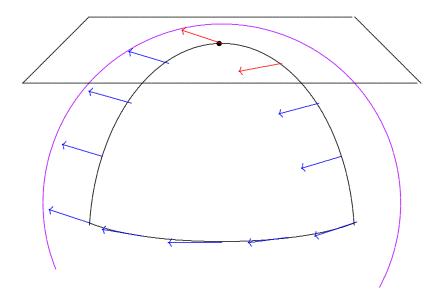


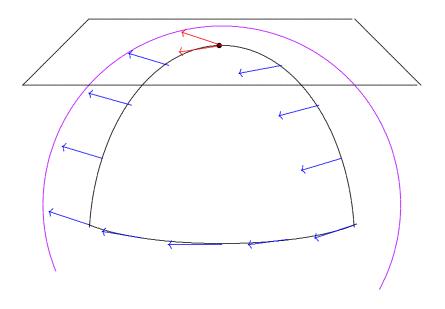


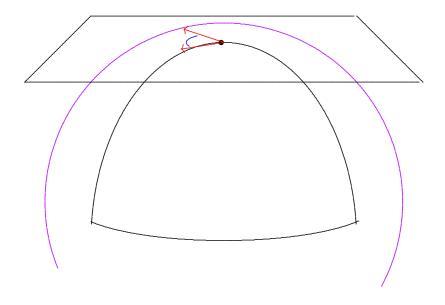




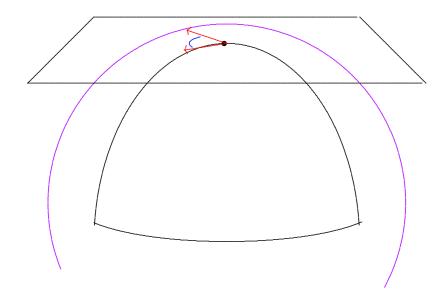




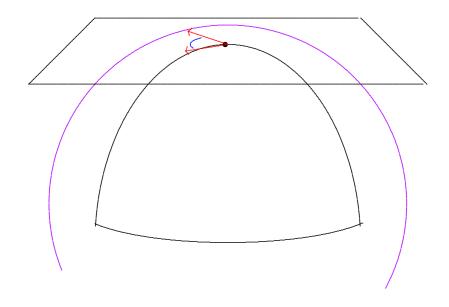




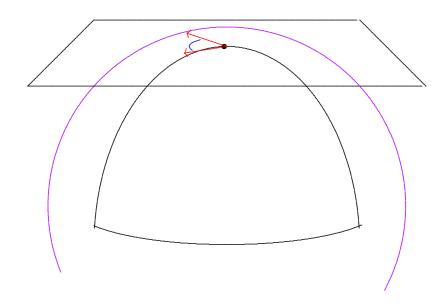
 (M^n, g) : holonomy $\subset \mathbf{O}(n)$



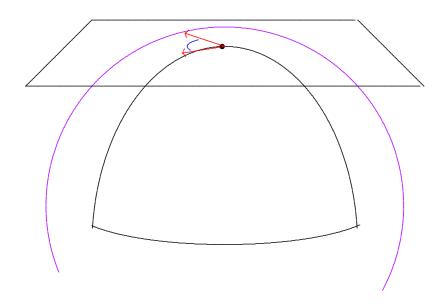
 (M^{2m}, g) : holonomy



 (M^{2m}, g) Kähler \iff holonomy $\subset \mathbf{U}(m)$

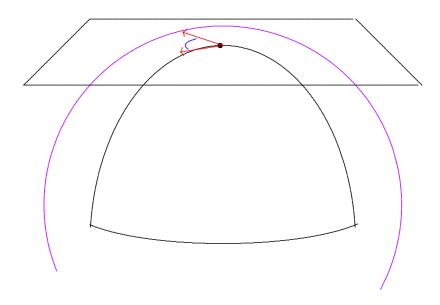


$$(M^{2m}, g)$$
 Kähler \iff holonomy $\subset \mathbf{U}(m)$



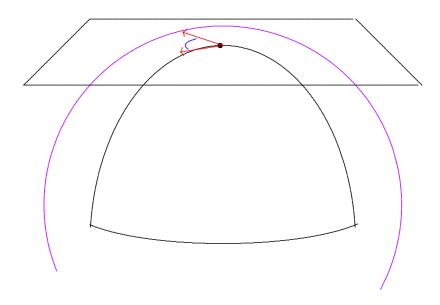
 $\mathbf{U}(m) := \mathbf{O}(2m) \cap \mathbf{GL}(m, \mathbb{C})$

$$(M^{2m}, g)$$
 Kähler \iff holonomy $\subset \mathbf{U}(m)$



Makes tangent space a complex vector space!

$$(M^{2m}, g)$$
 Kähler \iff holonomy $\subset \mathbf{U}(m)$

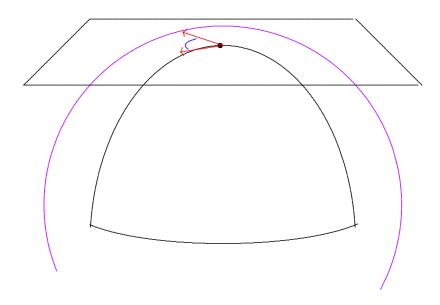


Makes tangent space a complex vector space!

$$J: TM \to TM$$
, $J^2 = -identity$

"almost-complex structure"

$$(M^{2m}, g)$$
 Kähler \iff holonomy $\subset \mathbf{U}(m)$



Makes tangent space a complex vector space!

Invariant under parallel transport!

 (M^{2m}, g) Kähler \iff holonomy $\subset \mathbf{U}(m)$

 $\iff \exists$ almost complex-structure J with $\nabla J = 0$ and $g(J\cdot, J\cdot) = g$.

 (M^{2m}, g) Kähler \iff holonomy $\subset \mathbf{U}(m)$

 $\iff \exists$ almost complex-structure J with $\nabla J = 0$ and $g(J\cdot, J\cdot) = g$.

 \iff (M^{2m}, g) is a complex manifold & \exists *J*-invariant closed 2-form ω such that $g = \omega(\cdot, J \cdot)$.

 (M^{2m}, g) Kähler \iff holonomy $\subset \mathbf{U}(m)$

 $\iff \exists$ almost complex-structure J with $\nabla J = 0$ and $g(J\cdot, J\cdot) = g$.

 \iff (M^{2m}, g) is a complex manifold & \exists *J*-invariant closed 2-form ω such that $g = \omega(\cdot, J \cdot)$.

$$d\omega = 0$$

$$(M^{2m}, g)$$
 Kähler \iff holonomy $\subset \mathbf{U}(m)$

 $\iff \exists$ almost complex-structure J with $\nabla J = 0$ and $g(J\cdot, J\cdot) = g$.

 \iff (M^{2m}, g) is a complex manifold & \exists *J*-invariant closed 2-form ω such that $g = \omega(\cdot, J \cdot)$.

$$[\omega] \in H^2(M)$$

"Kähler class"

 (M^{2m}, g) Kähler \iff holonomy $\subset \mathbf{U}(m)$

 $\iff \exists$ almost complex-structure J with $\nabla J = 0$ and $g(J\cdot, J\cdot) = g$.

 \iff (M^{2m}, g) is a complex manifold & \exists *J*-invariant closed 2-form ω such that $g = \omega(\cdot, J \cdot)$.

$$(M^{2m}, g)$$
 Kähler \iff holonomy $\subset \mathbf{U}(m)$

 $\iff \exists$ almost complex-structure J with $\nabla J = 0$ and $g(J\cdot, J\cdot) = g$.

 \iff (M^{2m}, g) is a complex manifold & $\exists J$ -invariant closed 2-form ω such that $g = \omega(\cdot, J \cdot)$.

 \iff In local complex coordinates (z^1, \ldots, z^m) ,

$$g = -\sum_{j,k=1}^{m} \frac{\partial^2 f}{\partial z^j \partial \bar{z}^k} \left[dz^j \otimes d\bar{z}^k + d\bar{z}^k \otimes dz^j \right]$$

$$(M^{2m}, g)$$
 Kähler \iff holonomy $\subset \mathbf{U}(m)$

 $\iff \exists$ almost complex-structure J with $\nabla J = 0$ and $g(J\cdot, J\cdot) = g$.

 \iff (M^{2m}, g) is a complex manifold & $\exists J$ -invariant closed 2-form ω such that $g = \omega(\cdot, J \cdot)$.

 \iff In local complex coordinates $(z^1, \ldots, z^m), \exists f(z)$

$$g = -\sum_{j,k=1}^{m} \frac{\partial^2 f}{\partial z^j \partial \overline{z}^k} \left[dz^j \otimes d\overline{z}^k + d\overline{z}^k \otimes dz^j \right]$$

$$(M^{2m}, g)$$
 Kähler \iff holonomy $\subset \mathbf{U}(m)$

 $\iff \exists$ almost complex-structure J with $\nabla J = 0$ and $g(J\cdot, J\cdot) = g$.

 \iff (M^{2m}, g) is a complex manifold & $\exists J$ -invariant closed 2-form ω such that $g = \omega(\cdot, J \cdot)$.

 \iff In local complex coordinates $(z^1, \ldots, z^m), \exists f(z)$

$$\omega = i \sum_{j,k=1}^{m} \frac{\partial^2 f}{\partial z^j \partial \bar{z}^k} dz^j \wedge d\bar{z}^k$$

$$(M^{2m}, g)$$
 Kähler \iff holonomy $\subset \mathbf{U}(m)$

 $\iff \exists$ almost complex-structure J with $\nabla J = 0$ and $g(J\cdot, J\cdot) = g$.

 \iff (M^{2m}, g) is a complex manifold & $\exists J$ -invariant closed 2-form ω such that $g = \omega(\cdot, J \cdot)$.

 \iff In local complex coordinates $(z^1, \ldots, z^m), \exists f(z)$

$$g = -\sum_{j,k=1}^{m} \frac{\partial^2 f}{\partial z^j \partial \overline{z}^k} \left[dz^j \otimes d\overline{z}^k + d\overline{z}^k \otimes dz^j \right]$$

$$(M^{2m}, g)$$
 Kähler \iff holonomy $\subset \mathbf{U}(m)$

 $\iff \exists$ almost complex-structure J with $\nabla J = 0$ and $g(J\cdot, J\cdot) = g$.

 \iff (M^{2m}, g) is a complex manifold & $\exists J$ -invariant closed 2-form ω such that $g = \omega(\cdot, J \cdot)$.

Kähler magic:

$$r = -\sum_{j,k=1}^{m} \frac{\partial^2}{\partial z^j \partial \bar{z}^k} \log \det[g_{p\bar{q}}] \left[dz^j \otimes d\bar{z}^k + d\bar{z}^k \otimes dz^j \right]$$

$$(M^{2m}, g)$$
 Kähler \iff holonomy $\subset \mathbf{U}(m)$

 $\iff \exists$ almost complex-structure J with $\nabla J = 0$ and $g(J\cdot, J\cdot) = g$.

 \iff (M^{2m}, g) is a complex manifold & \exists *J*-invariant closed 2-form ω such that $g = \omega(\cdot, J \cdot)$.

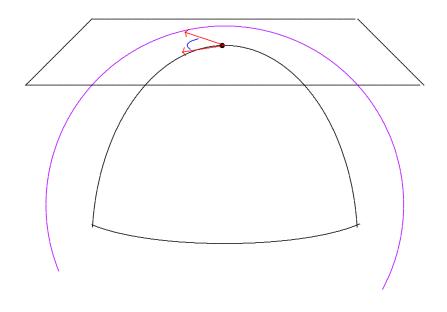
Kähler magic:

If we define the Ricci form by

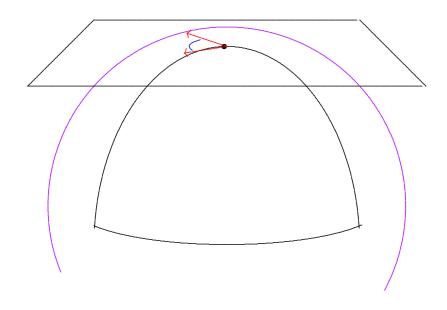
$$\rho = r(J \cdot, \cdot)$$

then $i\rho$ is curvature of canonical line bundle $\Lambda^{m,0}$.

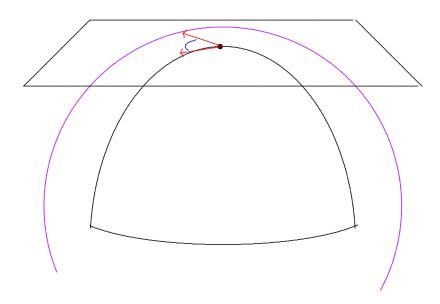
 (M^{2m}, g) : holonomy



 (M^{2m}, g) : Ricci-flat Kähler \iff holonomy $\subset \mathbf{SU}(m)$



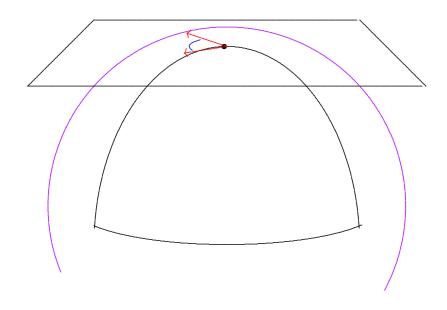
 (M^{2m}, g) : Ricci-flat Kähler \iff holonomy $\subset \mathbf{SU}(m)$



 $\mathbf{SU}(m) \subset \mathbf{U}(m) : \{A \mid \det A = 1\}$

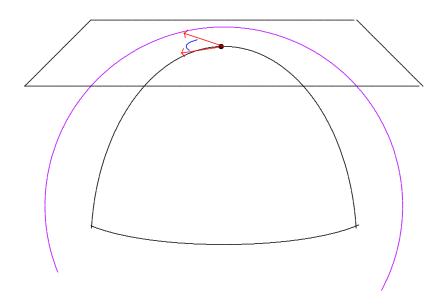
Kähler metrics:

 (M^{2m}, g) : Ricci-flat Kähler \iff holonomy $\subset \mathbf{SU}(m)$



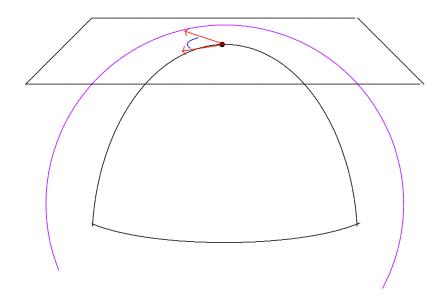
Kähler metrics:

 (M^{2m}, g) : Ricci-flat Kähler \iff holonomy $\subset \mathbf{SU}(m)$

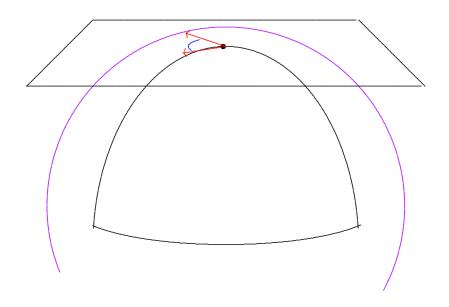


if M is simply connected.

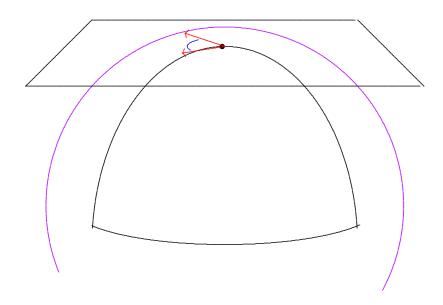
 $(M^{4\ell}, g)$ holonomy



 $(\mathbf{M}^{4\ell},g)$ hyper-Kähler \iff holonomy $\subset \mathbf{Sp}(\ell)$

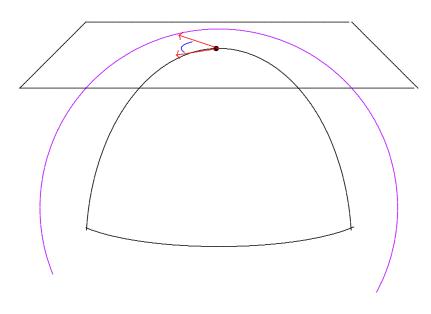


 $(\mathbf{M}^{4\ell}, g)$ hyper-Kähler \iff holonomy $\subset \mathbf{Sp}(\ell)$



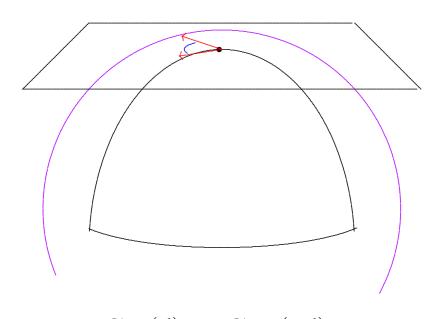
 $\mathbf{Sp}(\ell) := \mathbf{O}(4\ell) \cap \mathbf{GL}(\ell, \mathbb{H})$

 $(\mathbf{M}^{4\ell}, g)$ hyper-Kähler \iff holonomy $\subset \mathbf{Sp}(\ell)$



$$\mathbf{Sp}(\ell) \subset \mathbf{SU}(2\ell)$$

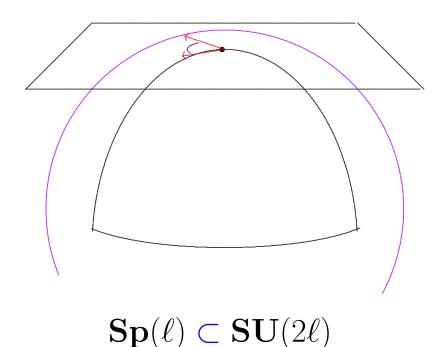
 $(\mathbf{M}^{4\ell}, g)$ hyper-Kähler \iff holonomy $\subset \mathbf{Sp}(\ell)$



 $\mathbf{Sp}(\ell) \subset \mathbf{SU}(2\ell)$

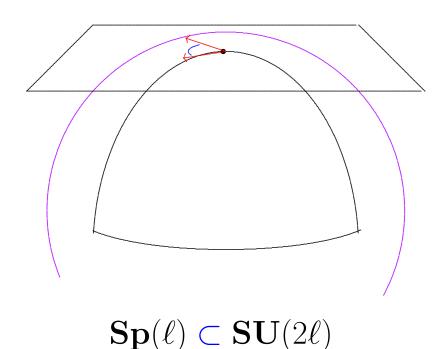
in many ways!

 $(\mathbf{M}^{4\ell}, g)$ hyper-Kähler \iff holonomy $\subset \mathbf{Sp}(\ell)$



in many ways! (For example, permute i, j, k...)

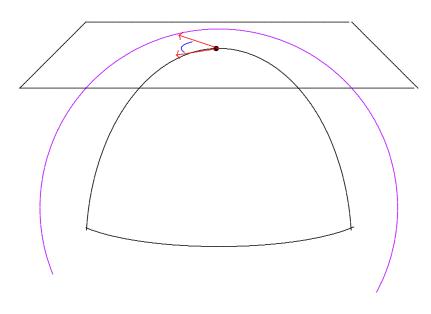
 $(\mathbf{M}^{4\ell}, g)$ hyper-Kähler \iff holonomy $\subset \mathbf{Sp}(\ell)$



Ricci-flat and Kähler,

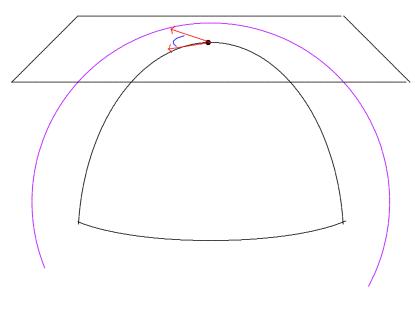
for many different complex structures!

 $(\mathbf{M}^{4\ell}, g)$ hyper-Kähler \iff holonomy $\subset \mathbf{Sp}(\ell)$



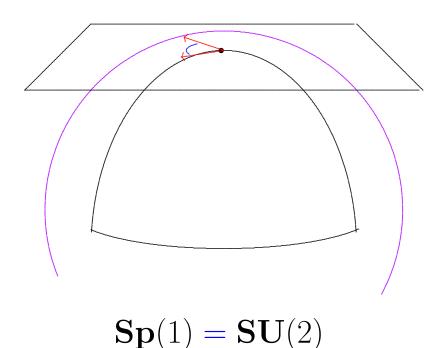
$$\mathbf{Sp}(\ell) \subset \mathbf{SU}(2\ell)$$

 (M^4, g) hyper-Kähler \iff holonomy $\subset \mathbf{Sp}(1)$



$$\mathbf{Sp}(1) = \mathbf{SU}(2)$$

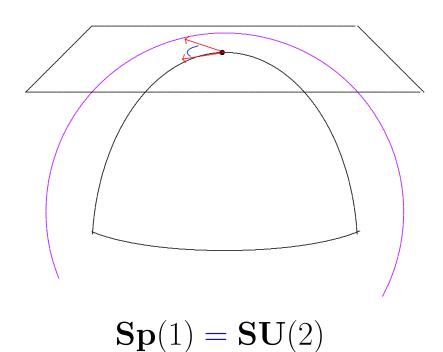
 (M^4, g) hyper-Kähler \iff holonomy $\subset \mathbf{Sp}(1)$



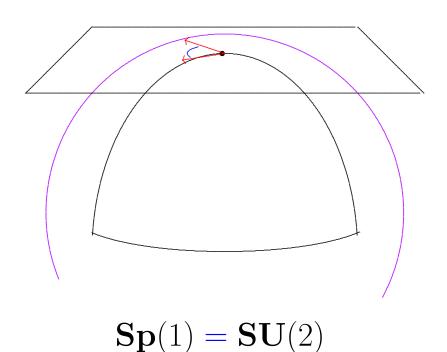
When (M^4, g) simply connected:

hyper-Kähler ← Ricci-flat Kähler.

 (M^4, g) hyper-Kähler \iff holonomy $\subset \mathbf{Sp}(1)$

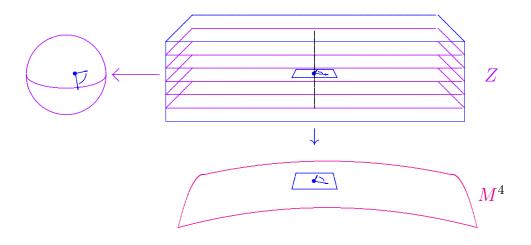


 (M^4, g) hyper-Kähler \iff holonomy $\subset \mathbf{Sp}(1)$

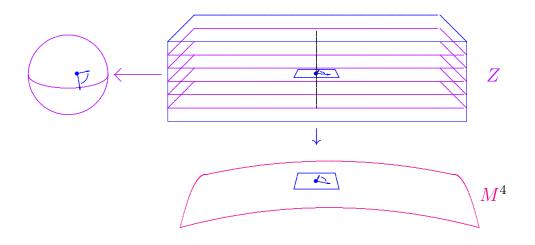


Ricci-flat and Kähler,

for many different complex structures!

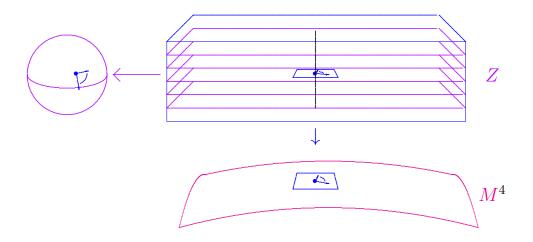


Penrose Twistor Space $(\mathbb{Z}^6, \mathbb{J})$,



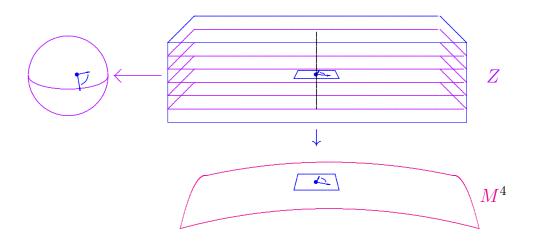
Penrose Twistor Space (Z^6, J) ,

which is a complex 3-manifold.



Penrose Twistor Space (Z^6, J) ,

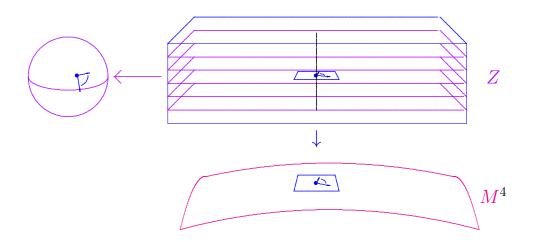
which is a complex 3-manifold.



Complex structure faithfully encodes the metric.

Penrose Twistor Space (Z^6, J) ,

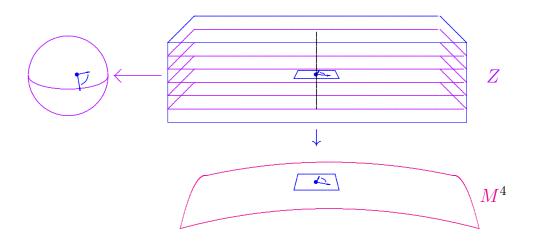
which is a complex 3-manifold.



Complex structure encodes metric mod homothety.

Penrose Twistor Space (Z^6, J) ,

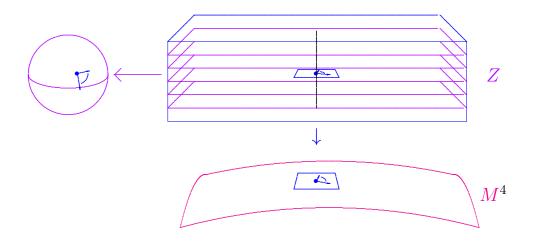
which is a complex 3-manifold.



Complex structure faithfully encodes the metric.

Penrose Twistor Space $(\mathbb{Z}^6, \mathbb{J})$,

which is a complex 3-manifold.



Complex structure faithfully encodes the metric.

Constructing twistor space suffices for existence.

$$H^0(\mathbb{CP}_1,\mathcal{O}(2))=\mathbb{C}^3$$

$$H^0(\mathbb{CP}_1, \mathcal{O}(2)) = \mathbb{C}^3 \supset \mathbb{R}^3.$$

$$H^0(\mathbb{CP}_1, \mathcal{O}(2)) = \mathbb{C}^3 \supset \mathbb{R}^3.$$

•

So ℓ points determine $P_1, \ldots, P_{\ell} \in H^0(\mathbb{CP}_1, \mathcal{O}(2))$.

$$H^0(\mathbb{CP}_1, \mathcal{O}(2)) = \mathbb{C}^3 \supset \mathbb{R}^3.$$

•

•

So ℓ points determine $P_1, \ldots, P_{\ell} \in H^0(\mathbb{CP}_1, \mathcal{O}(2))$.

$$\tilde{Z} \subset \mathcal{O}(\ell) \oplus \mathcal{O}(\ell) \oplus \mathcal{O}(2)$$

$$H^0(\mathbb{CP}_1, \mathcal{O}(2)) = \mathbb{C}^3 \supset \mathbb{R}^3.$$

•

•

So ℓ points determine $P_1, \ldots, P_{\ell} \in H^0(\mathbb{CP}_1, \mathcal{O}(2))$.

$$\tilde{Z} \subset \mathcal{O}(\ell) \oplus \mathcal{O}(\ell) \oplus \mathcal{O}(2)$$

$$xy = (z - P_1) \cdots (z - P_\ell)$$

$$H^0(\mathbb{CP}_1, \mathcal{O}(2)) = \mathbb{C}^3 \supset \mathbb{R}^3.$$

So ℓ points determine $P_1, \ldots, P_{\ell} \in H^0(\mathbb{CP}_1, \mathcal{O}(2))$.

Small resolution Z of $\tilde{Z} \subset \mathcal{O}(\ell) \oplus \mathcal{O}(\ell) \oplus \mathcal{O}(2)$

$$xy = (z - P_1) \cdots (z - P_\ell)$$

$$H^0(\mathbb{CP}_1, \mathcal{O}(2)) = \mathbb{C}^3 \supset \mathbb{R}^3.$$

•

So ℓ points determine $P_1, \ldots, P_{\ell} \in H^0(\mathbb{CP}_1, \mathcal{O}(2))$.

Small resolution Z of $\tilde{Z} \subset \mathcal{O}(\ell) \oplus \mathcal{O}(\ell) \oplus \mathcal{O}(2)$

$$xy = (z - P_1) \cdots (z - P_\ell)$$

is the twistor space of a Gibbons-Hawking metric.

Key examples:

Term ALE coined by Gibbons & Hawking, 1979.

They wrote down various explicit Ricci-flat ALE 4-manifolds they called gravitational instantons.

Their examples have just one end, with

$$\Gamma \cong \mathbb{Z}_{\ell} \subset \mathbf{SU}(2) \subset \mathbf{O}(4).$$

The G-H metrics are hyper-Kähler, and were soon independently rediscovered by Hitchin.

Key examples:

Term ALE coined by Gibbons & Hawking, 1979.

They wrote down various explicit Ricci-flat ALE 4-manifolds they called gravitational instantons.

Their examples have just one end, with

$$\Gamma \cong \mathbb{Z}_{\ell} \subset \mathbf{SU}(2) \subset \mathbf{O}(4)$$
.

The G-H metrics are hyper-Kähler, and were soon independently rediscovered by Hitchin.

Hitchin conjectured that similar metrics would exist for each finite $\Gamma \subset \mathbf{SU}(2)$.

Key examples:

Term ALE coined by Gibbons & Hawking, 1979.

They wrote down various explicit Ricci-flat ALE 4-manifolds they called gravitational instantons.

Their examples have just one end, with

$$\Gamma \cong \mathbb{Z}_{\ell} \subset \mathbf{SU}(2) \subset \mathbf{O}(4)$$
.

The G-H metrics are hyper-Kähler, and were soon independently rediscovered by Hitchin.

Hitchin conjectured that similar metrics would exist for each finite $\Gamma \subset \mathbf{SU}(2)$.

This conjecture was proved by Kronheimer, 1986.

Given $\Gamma \subset \mathbf{SU}(2)$

Given $\Gamma \subset \mathbf{SU}(2)$ finite subgroup,

Given $\Gamma \subset \mathbf{SU}(2)$ finite subgroup, the orbifold \mathbb{C}^2/Γ Given $\Gamma \subset \mathbf{SU}(2)$ finite subgroup, the orbifold \mathbb{C}^2/Γ can be viewed as singular complex surface

Example.
$$\begin{bmatrix} e^{2\pi i/m} \\ e^{-2\pi i/m} \end{bmatrix} \in \mathbf{SU}(2)$$

Example.
$$\begin{bmatrix} e^{2\pi i/m} \\ e^{-2\pi i/m} \end{bmatrix} \in \mathbf{SU}(2)$$
generates $\Gamma \cong \mathbb{Z}_m$.

Example.
$$\begin{bmatrix} e^{2\pi i/m} \\ e^{-2\pi i/m} \end{bmatrix} \in \mathbf{SU}(2)$$
generates $\Gamma \cong \mathbb{Z}_m$. Setting

$$u=z_1^m, \qquad v=z_2^m, \qquad y=z_1z_2,$$

Example.
$$\begin{bmatrix} e^{2\pi i/m} \\ e^{-2\pi i/m} \end{bmatrix} \in \mathbf{SU}(2)$$

generates $\Gamma \cong \mathbb{Z}_m$. Setting

$$u=z_1^m, \qquad v=z_2^m, \qquad y=z_1z_2,$$

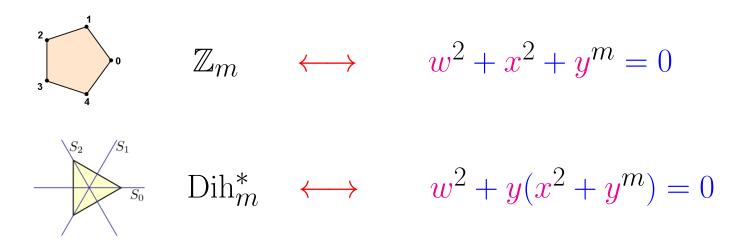
then identifies \mathbb{C}^2/Γ with

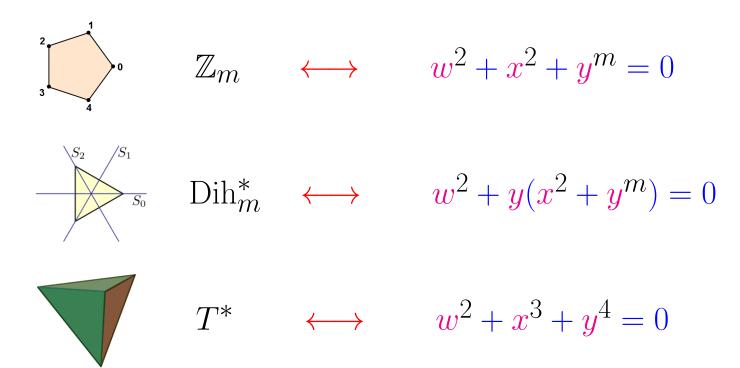
$$uv = y^m$$
.

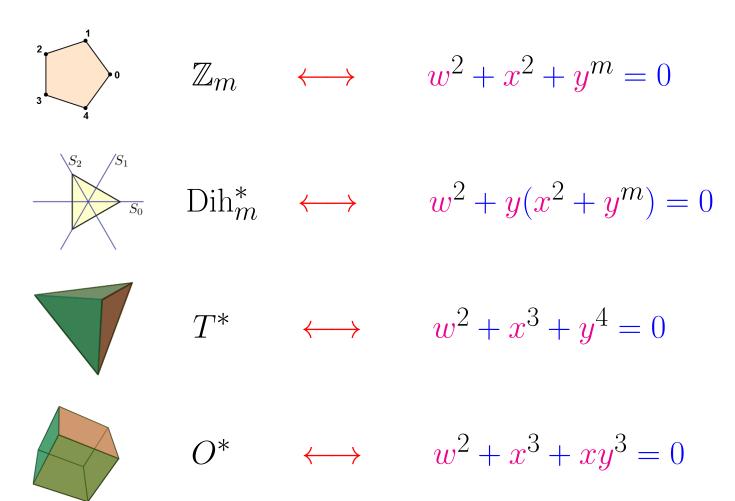
Example.
$$\begin{bmatrix} e^{2\pi i/m} \\ e^{-2\pi i/m} \end{bmatrix} \in \mathbf{SU}(2)$$
generates $\Gamma \cong \mathbb{Z}_m$. Setting

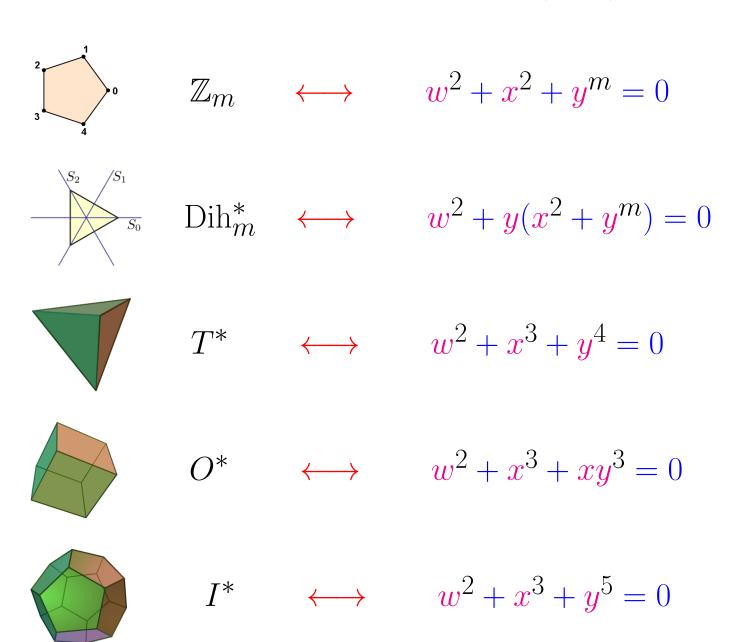
then identifies \mathbb{C}^2/Γ with

$$w^2 + x^2 + y^m = 0.$$









Prototypical Klein singularity:

$$w^2 + x^2 + y^2 = 0$$

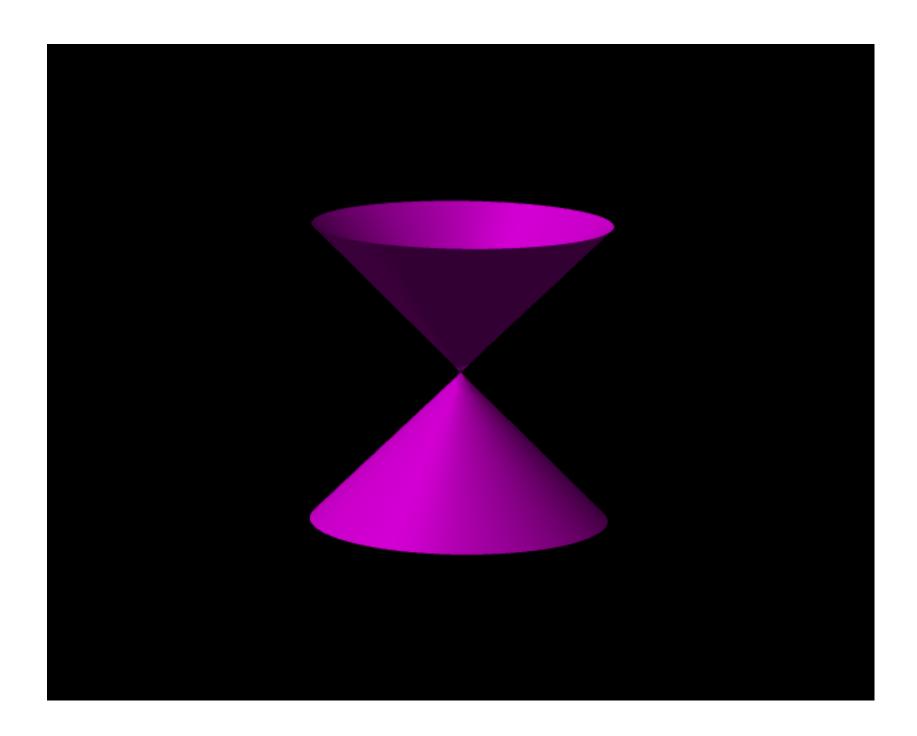
$$w^2 + x^2 + y^2 = 0$$

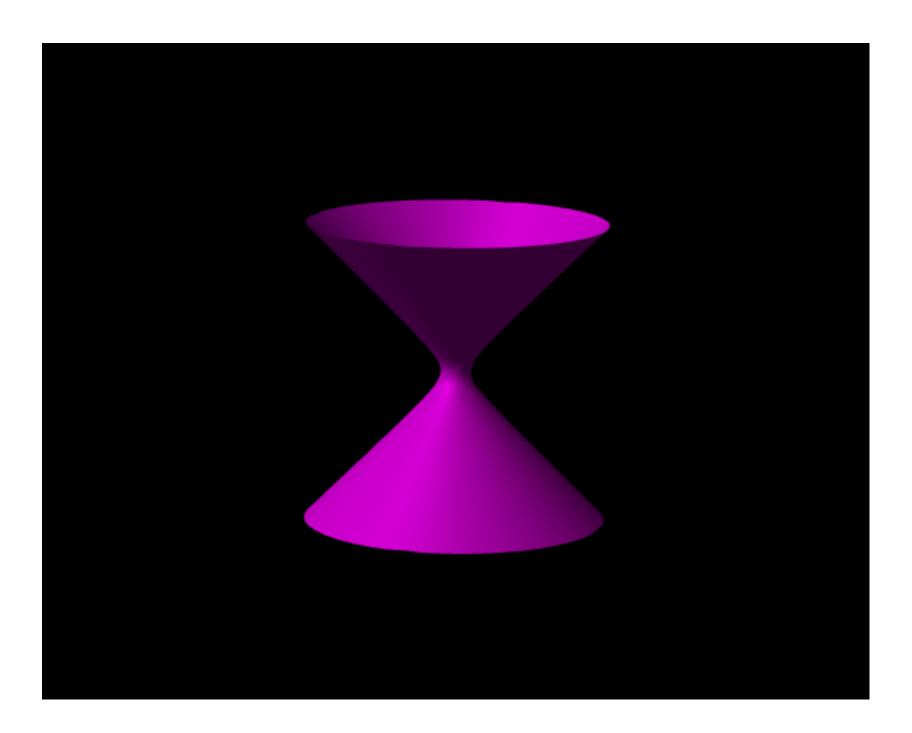
• Smooth it, by deformation:

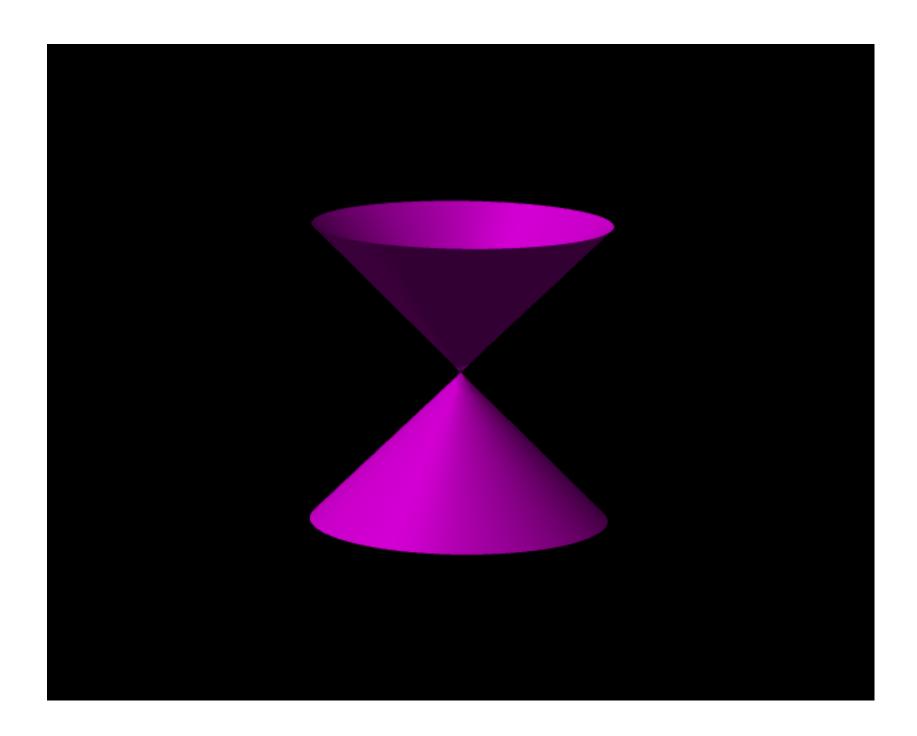
$$w^2 + x^2 + y^2 = 0$$

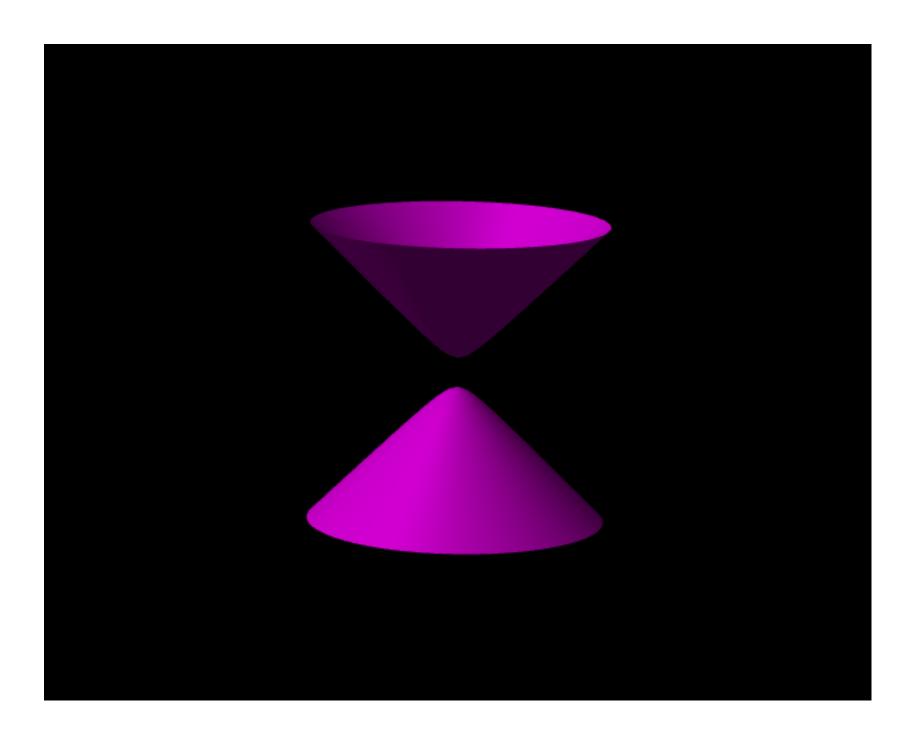
• Smooth it, by deformation:

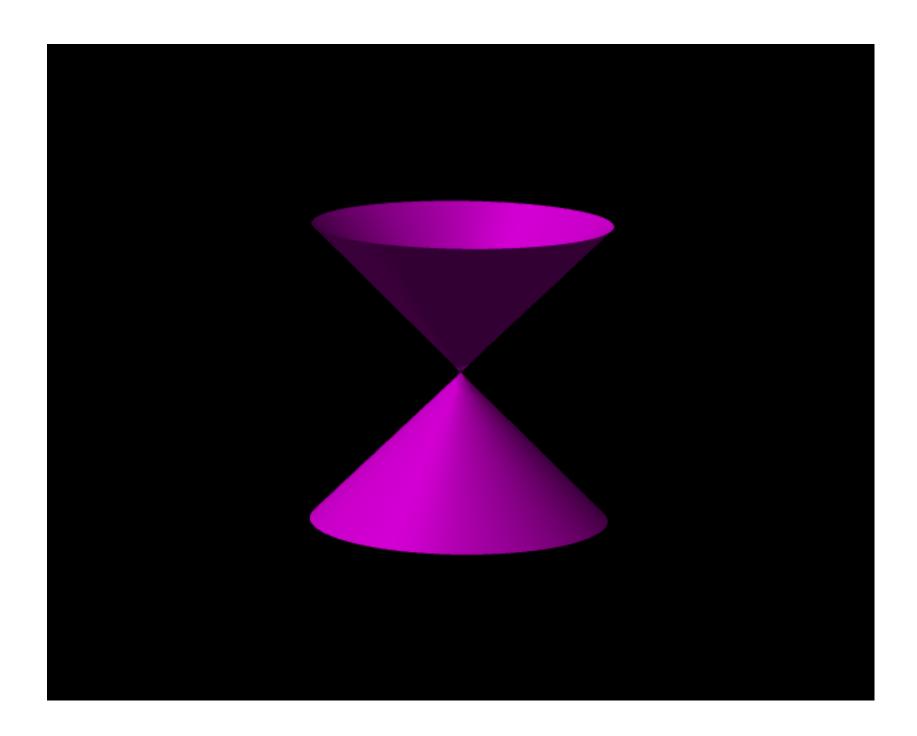
$$w^2 + x^2 + y^2 = \epsilon$$

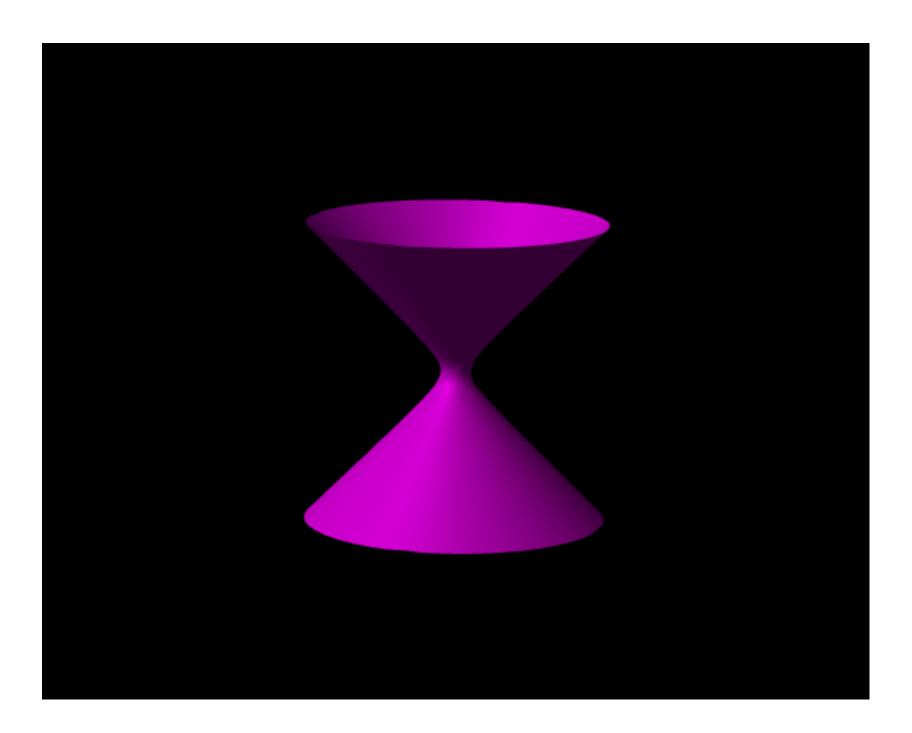












• Smooth it, by deformation:

$$w^2 + x^2 + y^2 = \epsilon$$

• Smooth it, by deformation:

$$w^2 + x^2 + y^2 = \epsilon$$

• Resolve it, by blowing up,

$$w^2 + x^2 + y^2 = 0$$

• Smooth it, by deformation:

$$w^2 + x^2 + y^2 = \epsilon$$

• Resolve it, by blowing up,

$$w^{2} + x^{2} + y^{2} = 0$$

$$\mathcal{O}(-1)$$

$$\downarrow$$

$$\mathbb{CP}_{2}$$

• Smooth it, by deformation:

$$w^2 + x^2 + y^2 = \epsilon$$

• Resolve it, by blowing up,

$$w^2 + x^2 + y^2 = 0$$

$$\begin{array}{ccc}
\mathcal{O}(-1) \\
\downarrow \\
\mathbb{CP}_1 & \hookrightarrow & \mathbb{CP}_2
\end{array}$$

• Smooth it, by deformation:

$$w^2 + x^2 + y^2 = \epsilon$$

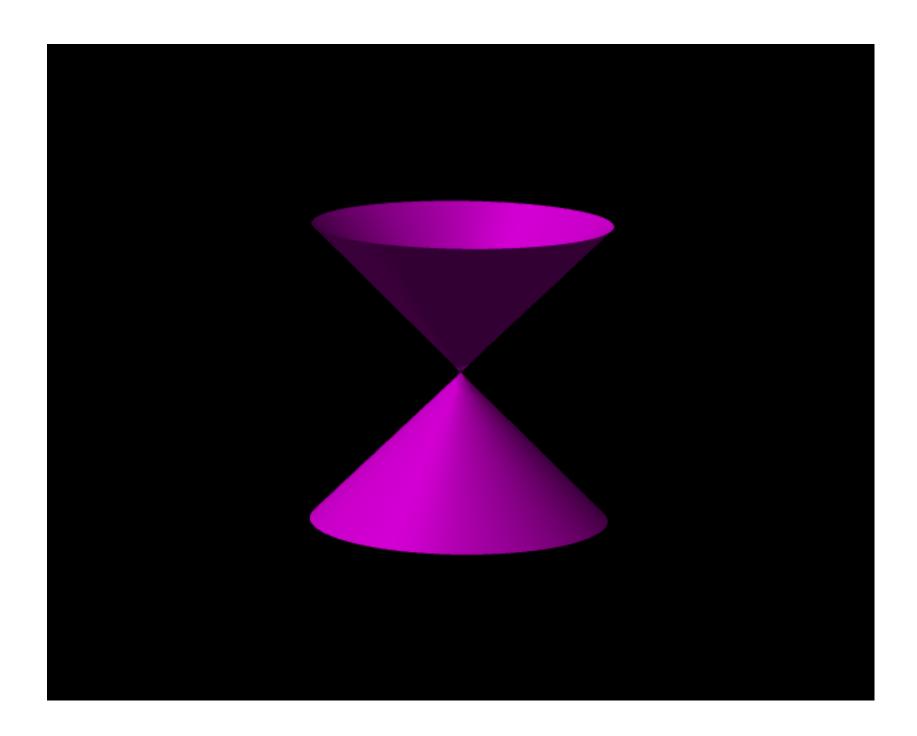
• Resolve it, by blowing up, iteratively:

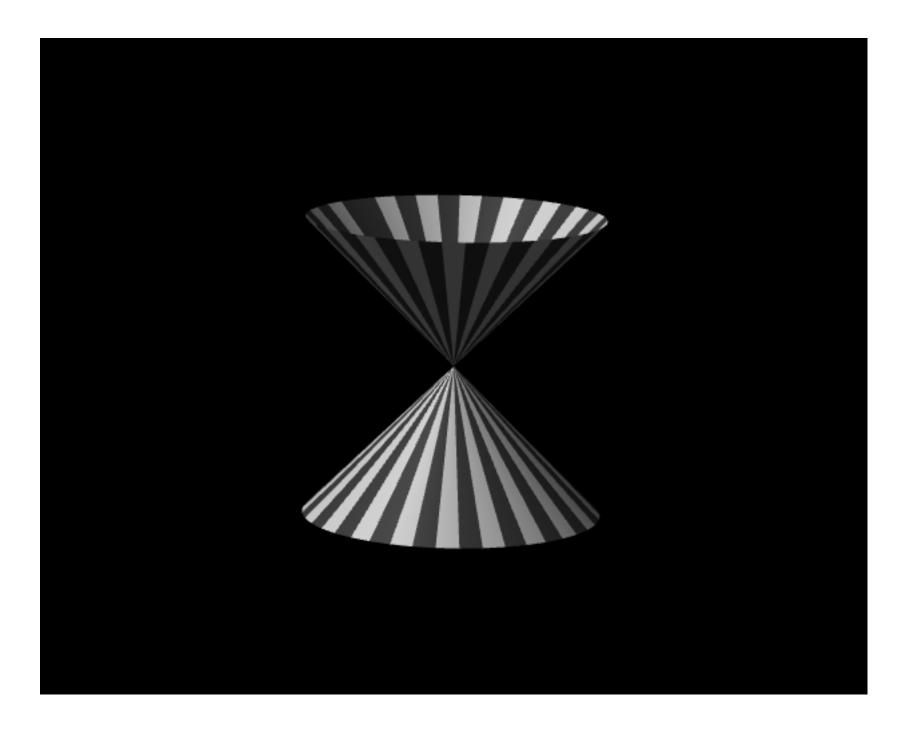
$$w^{2} + x^{2} + y^{2} = 0$$

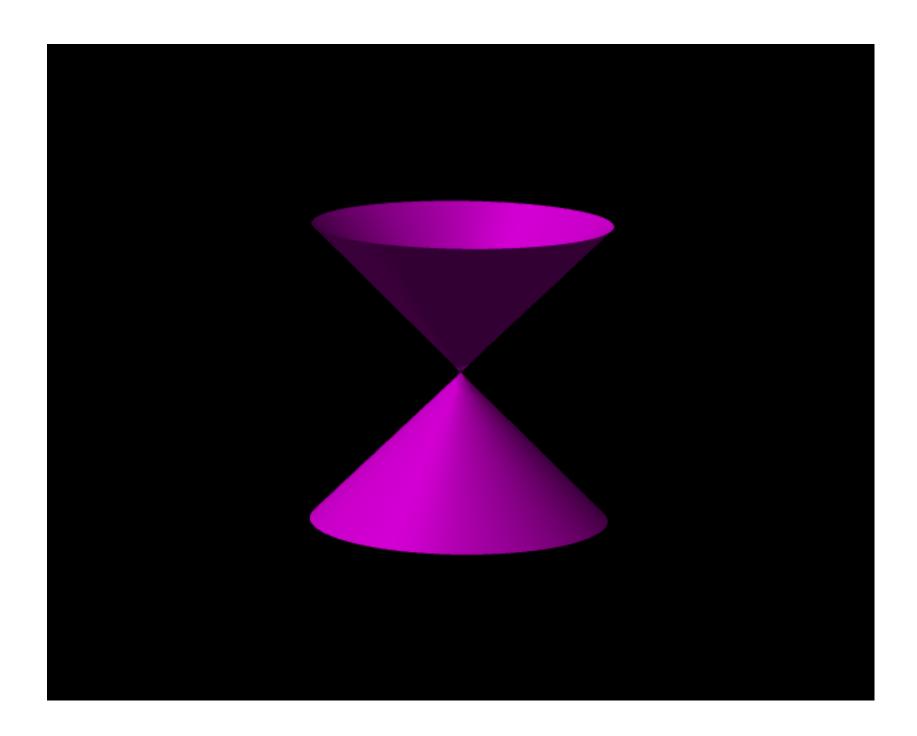
$$\mathcal{O}(-2) \to \mathcal{O}(-1)$$

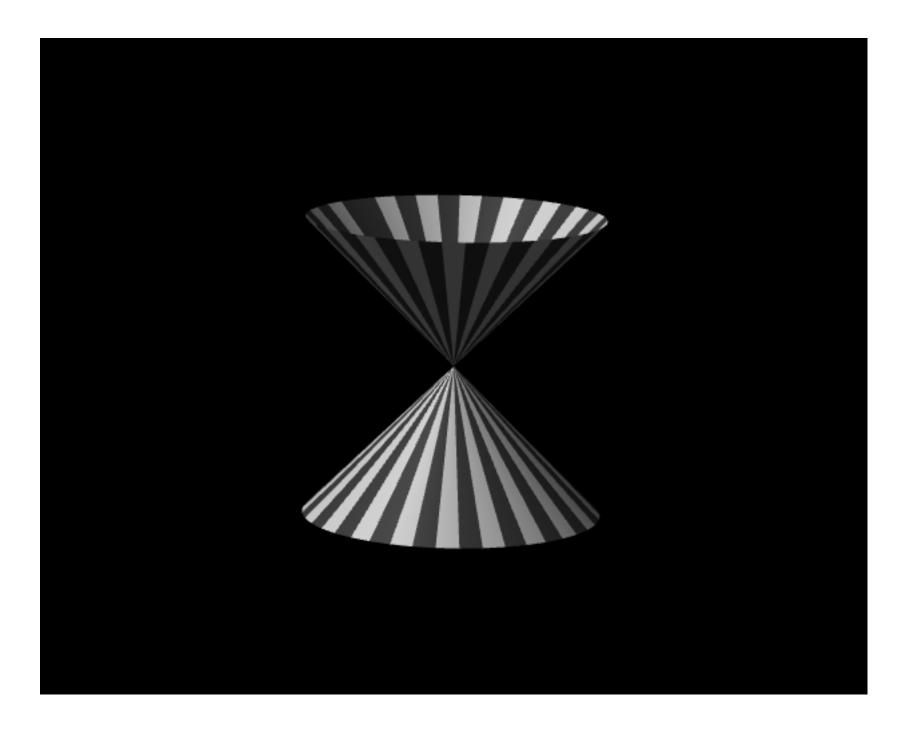
$$\downarrow \qquad \qquad \downarrow$$

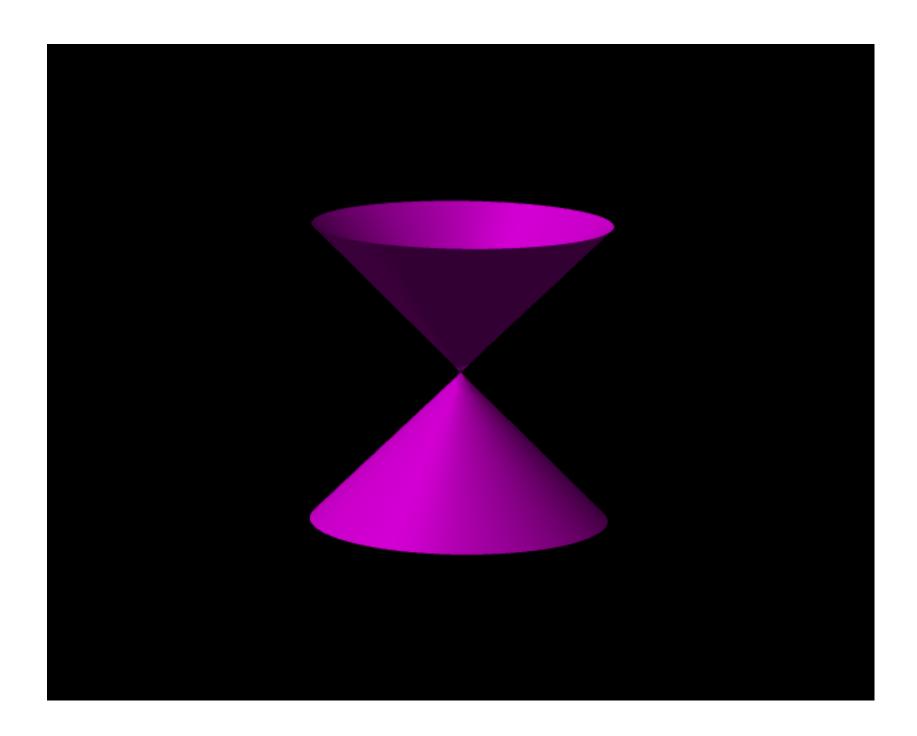
$$\mathbb{CP}_{1} \hookrightarrow \mathbb{CP}_{2}$$

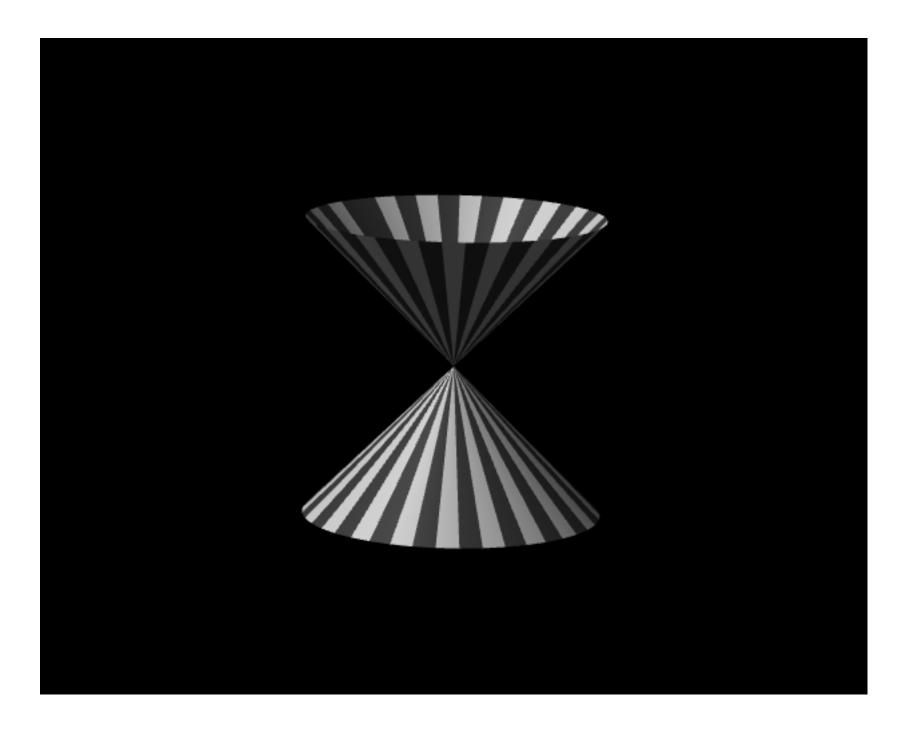












• Smooth it, by deformation:

$$w^2 + x^2 + y^2 = \epsilon$$

• Resolve it, by blowing up, iteratively:

$$w^{2} + x^{2} + y^{2} = 0$$

$$\mathcal{O}(-2) \to \mathcal{O}(-1)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathbb{CP}_{1} \hookrightarrow \mathbb{CP}_{2}$$

• Smooth it, by deformation:

$$w^2 + x^2 + y^2 = \epsilon$$

• Resolve it, by blowing up, iteratively:

$$w^{2} + x^{2} + y^{2} = 0$$

$$\mathcal{O}(-2) \to \mathcal{O}(-1)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathbb{CP}_{1} \hookrightarrow \mathbb{CP}_{2}$$

Usually these are topologically different.

Two ways to get rid of a singularity:

• Smooth it, by deformation:

$$w^2 + x^2 + y^2 = \epsilon$$

• Resolve it, by blowing up, iteratively:

$$w^{2} + x^{2} + y^{2} = 0$$

$$\mathcal{O}(-2) \to \mathcal{O}(-1)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathbb{CP}_{1} \hookrightarrow \mathbb{CP}_{2}$$

Usually these are topologically different.

But for Klein singularities, they are diffeomorphic!

Two ways to get rid of a singularity:

• Smooth it, by deformation:

$$w^2 + x^2 + y^2 = \epsilon$$

• Resolve it, by blowing up, iteratively:

$$w^{2} + x^{2} + y^{2} = 0$$

$$\mathcal{O}(-2) \to \mathcal{O}(-1)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathbb{CP}_{1} \hookrightarrow \mathbb{CP}_{2}$$

Usually these are topologically different.

But for Klein singularities, they are diffeomorphic!

Gorenstein singularities.

Two ways to get rid of a singularity:

• Smooth it, by deformation:

$$w^2 + x^2 + y^2 = \epsilon$$

• Resolve it, by blowing up, iteratively:

$$w^{2} + x^{2} + y^{2} = 0$$

$$\mathcal{O}(-2) \to \mathcal{O}(-1)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathbb{CP}_{1} \hookrightarrow \mathbb{CP}_{2}$$

Usually these are topologically different.

But for Klein singularities, they are diffeomorphic!

Gorenstein singularities. Crepant Resolutions.

 \forall Klein singularity $V \subset \mathbb{C}^3$,

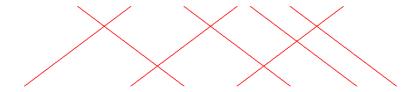
 \forall Klein singularity $V \subset \mathbb{C}^3$, $\exists !$ resolution $\hat{V} \to V$

 \forall Klein singularity $V\subset\mathbb{C}^3$, $\exists !$ resolution $\hat{V}\to V$ with $c_1(T^{1,0}\hat{V})=0.$

 \forall Klein singularity $V \subset \mathbb{C}^3$, $\exists !$ resolution $\hat{V} \to V$

with
$$c_1(T^{1,0}\hat{V}) = 0$$
.

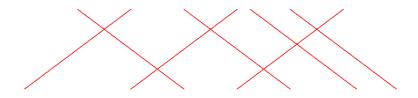
Replaces origin with a union of \mathbb{CP}_1 's,



 \forall Klein singularity $V \subset \mathbb{C}^3$, $\exists !$ resolution $\hat{V} \to V$

with
$$c_1(T^{1,0}\hat{V}) = 0$$
.

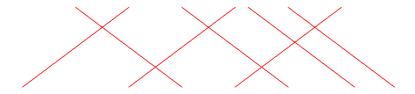
Replaces origin with a union of \mathbb{CP}_1 's, each with self-intersection -2,



 \forall Klein singularity $V \subset \mathbb{C}^3$, $\exists !$ resolution $\hat{V} \to V$

with
$$c_1(T^{1,0}\hat{V}) = 0$$
.

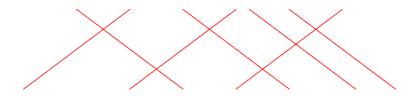
Replaces origin with a union of \mathbb{CP}_1 's, each with self-intersection -2, meeting transversely,



 \forall Klein singularity $V\subset\mathbb{C}^3,$ $\exists !$ resolution $\hat{V}\to V$

with
$$c_1(T^{1,0}\hat{V}) = 0$$
.

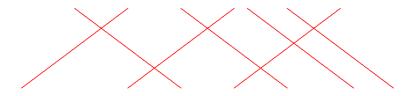
Replaces origin with a union of \mathbb{CP}_1 's, each with self-intersection -2, meeting transversely, & forming connected set:

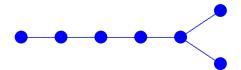


 \forall Klein singularity $V \subset \mathbb{C}^3$, $\exists !$ resolution $\hat{V} \to V$

with
$$c_1(T^{1,0}\hat{V}) = 0$$
.

Replaces origin with a union of \mathbb{CP}_1 's, each with self-intersection -2, meeting transversely, & forming connected set:

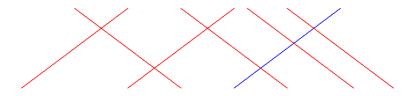


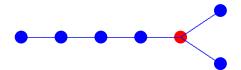


 \forall Klein singularity $V \subset \mathbb{C}^3$, $\exists !$ resolution $\hat{V} \to V$

with
$$c_1(T^{1,0}\hat{V}) = 0$$
.

Replaces origin with a union of \mathbb{CP}_1 's, each with self-intersection -2, meeting transversely, & forming connected set:

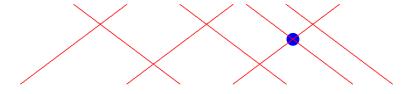


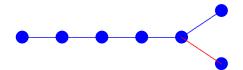


 \forall Klein singularity $V \subset \mathbb{C}^3$, $\exists !$ resolution $\hat{V} \to V$

with
$$c_1(T^{1,0}\hat{V}) = 0$$
.

Replaces origin with a union of \mathbb{CP}_1 's, each with self-intersection -2, meeting transversely, & forming connected set:

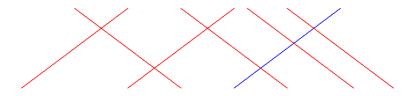


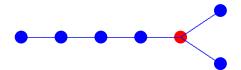


 \forall Klein singularity $V \subset \mathbb{C}^3$, $\exists !$ resolution $\hat{V} \to V$

with
$$c_1(T^{1,0}\hat{V}) = 0$$
.

Replaces origin with a union of \mathbb{CP}_1 's, each with self-intersection -2, meeting transversely, & forming connected set:

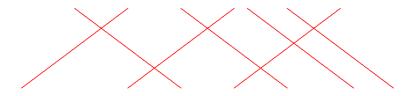


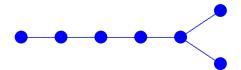


 \forall Klein singularity $V \subset \mathbb{C}^3$, $\exists !$ resolution $\hat{V} \to V$

with
$$c_1(T^{1,0}\hat{V}) = 0$$
.

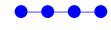
Replaces origin with a union of \mathbb{CP}_1 's, each with self-intersection -2, meeting transversely, & forming connected set:





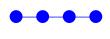
$$\mathbb{Z}_{k+1} \longleftrightarrow A_k$$

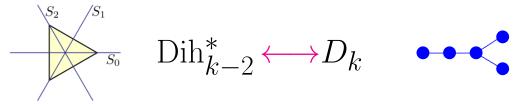
$$\mathbb{Z}_{k+1} \longleftrightarrow A_k$$



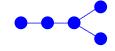
$$\mathbb{Z}_{k+1} \longleftrightarrow A_k$$

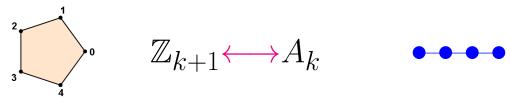
$$\mathbb{Z}_{k+1} \longleftrightarrow A_k$$



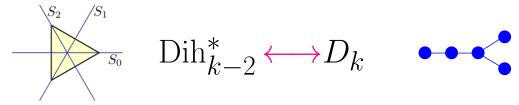


$$\operatorname{Dih}_{k-2}^* \longleftrightarrow D_k$$

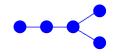


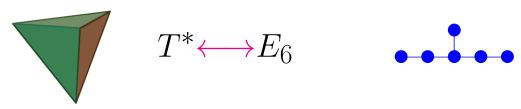


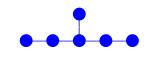
$$\mathbb{Z}_{k+1} \longleftrightarrow A_k$$

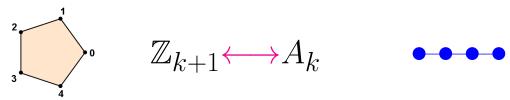


$$Dih_{k-2}^* \longleftrightarrow D_k$$

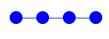


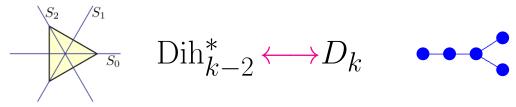




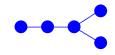


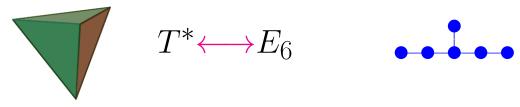
$$\mathbb{Z}_{k+1} \longleftrightarrow A_k$$



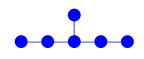


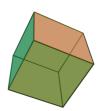
$$Dih_{k-2}^* \longleftrightarrow D_k$$



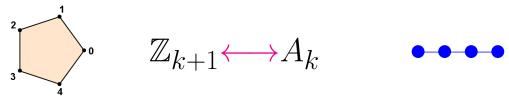


$$T^* \longleftrightarrow E_0$$

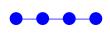


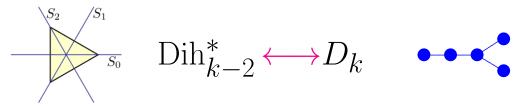


$$O^* \longleftrightarrow E_7$$

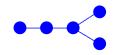


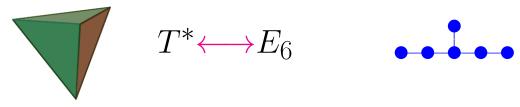
$$\mathbb{Z}_{k+1} \longleftrightarrow A_k$$

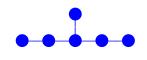


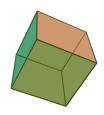


$$Dih_{k-2}^* \longleftrightarrow D_k$$



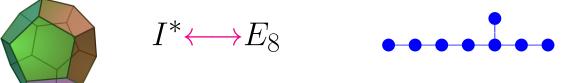






$$O^* \longleftrightarrow E_7$$

$$I^* \longleftrightarrow E_8$$



Key examples:

Term ALE coined by Gibbons & Hawking, 1979.

They wrote down various explicit Ricci-flat ALE 4-manifolds they called gravitational instantons.

Their examples have just one end, with

$$\Gamma \cong \mathbb{Z}_{\ell} \subset \mathbf{SU}(2) \subset \mathbf{O}(4)$$
.

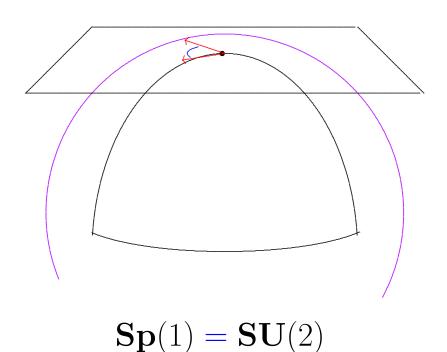
The G-H metrics are hyper-Kähler, and were soon independently rediscovered by Hitchin.

Hitchin conjectured that similar metrics would exist for each finite $\Gamma \subset \mathbf{SU}(2)$.

Proved by Kronheimer, who also showed (1989) this gives complete classification of ALE hyper-Kählers.

Hyper-Kähler metrics:

 (M^4, g) hyper-Kähler \iff holonomy $\subset \mathbf{Sp}(1)$



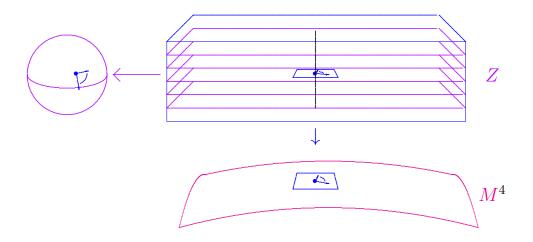
Ricci-flat and Kähler,

for many different complex structures!

All these complex structures can be repackaged as

Penrose Twistor Space (Z^6, J) ,

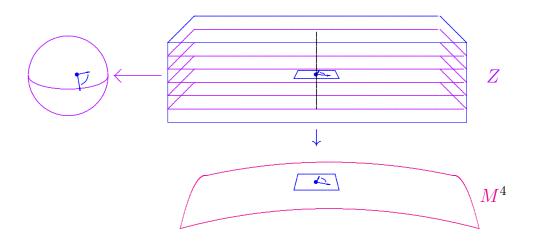
which is a complex 3-manifold.



All these complex structures can be repackaged as

Penrose Twistor Space (Z^6, J) ,

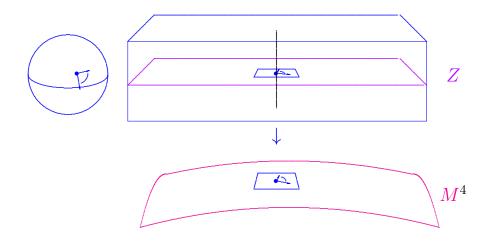
which is a complex 3-manifold.



But similar for scalar-flat Kähler surfaces $(M^4, g, J)!$

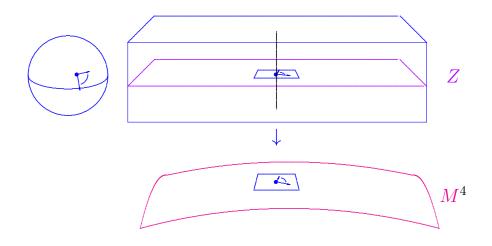
Penrose Twistor Space $(\mathbb{Z}^6, \mathbb{J})$,

which is once again a complex 3-manifold.



Penrose Twistor Space (Z^6, J) ,

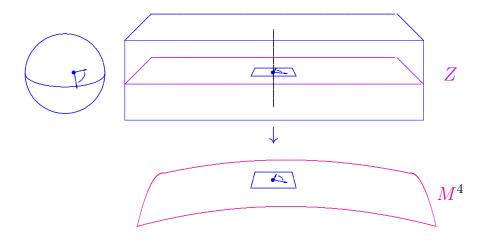
which is once again a complex 3-manifold.



Integrability condition for twistor space: $W_{+} \equiv 0$.

Penrose Twistor Space (Z^6, J) ,

which is once again a complex 3-manifold.

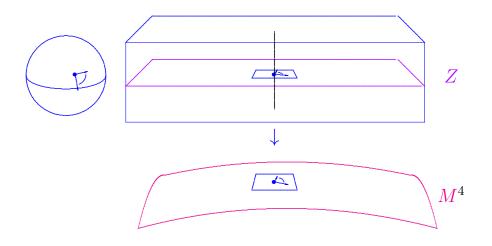


Integrability condition for twistor space: $W_{+} \equiv 0$.

For Kähler surfaces, $|W_{+}|^2 = s^2/24$.

Penrose Twistor Space (Z^6, J) ,

which is once again a complex 3-manifold.

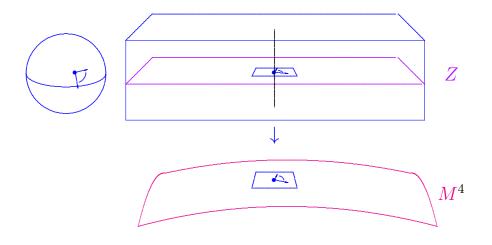


Integrability condition for twistor space: $W_{+} \equiv 0$.

For Kähler surfaces, integrable \iff scalar-flat!

Penrose Twistor Space (Z^6, J) ,

which is once again a complex 3-manifold.



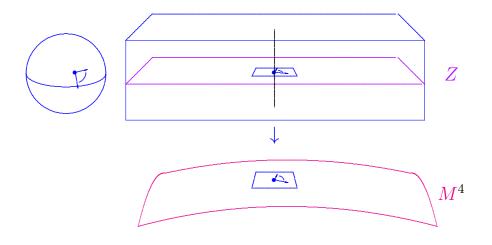
Integrability condition for twistor space: $W_{+} \equiv 0$.

For Kähler surfaces, integrable \iff scalar-flat!

Leads to constructions of explicit examples.

Penrose Twistor Space $(\mathbb{Z}^6, \mathbb{J})$,

which is once again a complex 3-manifold.

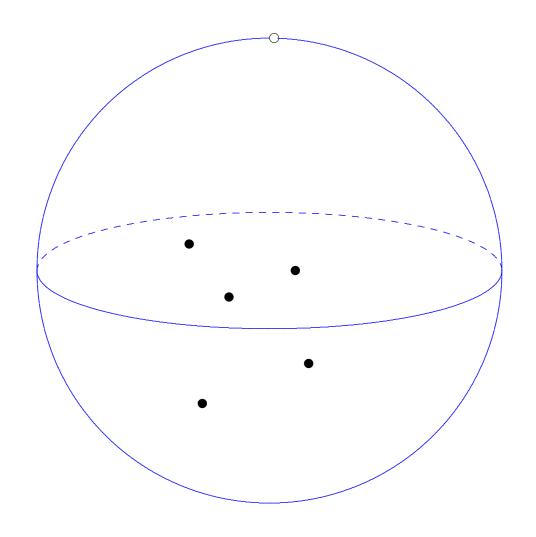


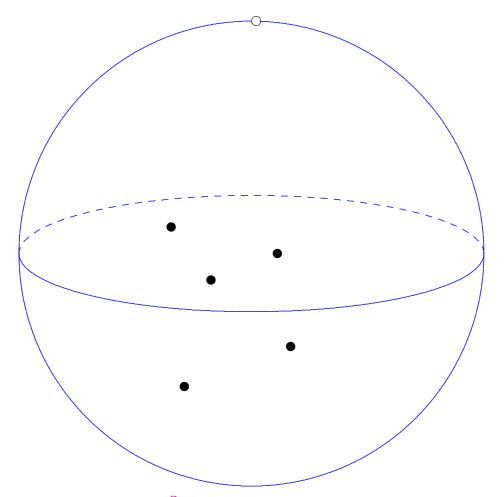
Integrability condition for twistor space: $W_{+} \equiv 0$.

For Kähler surfaces, integrable \iff scalar-flat!

Many simple examples are AE or ALE.

(L '91)





Data: k points in \mathcal{H}^3 and one point at infinity.

•
•
•

Data: k points in \mathcal{H}^3 = upper half-space model.

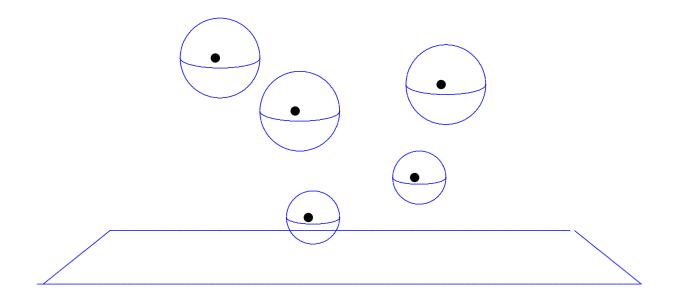
•
•

$$V = 1 + \sum_{j=1}^{k} G_j$$

$$V = 1 + \sum_{j=1}^{k} \frac{1}{e^{2\varrho_j} - 1}$$

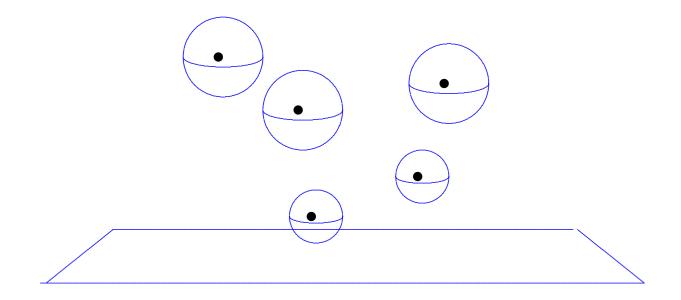
•
•

$$V = 1 + \sum_{j=1}^{k} G_j$$

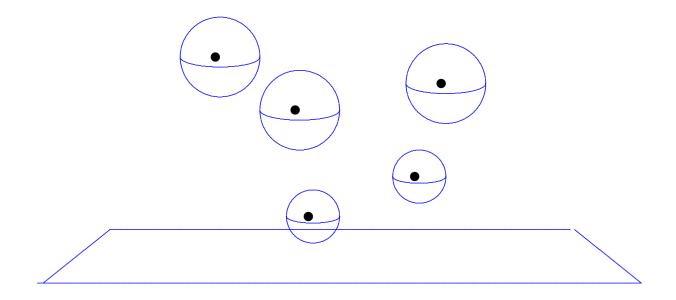


Data: k points in \mathcal{H}^3 . $\Longrightarrow V$ with $\Delta V = 0$

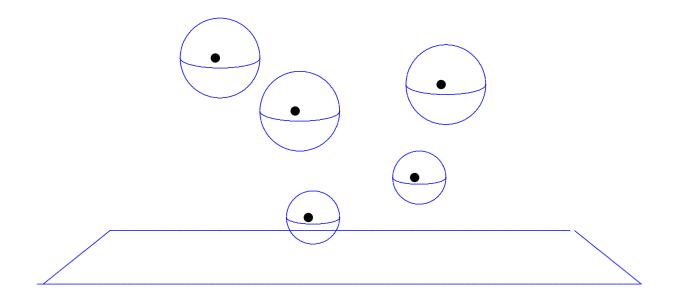
 $F = \star dV$ curvature θ on $P \to \mathcal{H}^3 - \{ pts \}$.



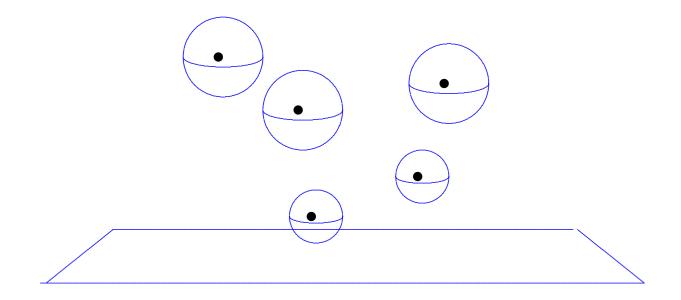
$$g = z^2 \left(Vh + V^{-1}\theta^2 \right)$$



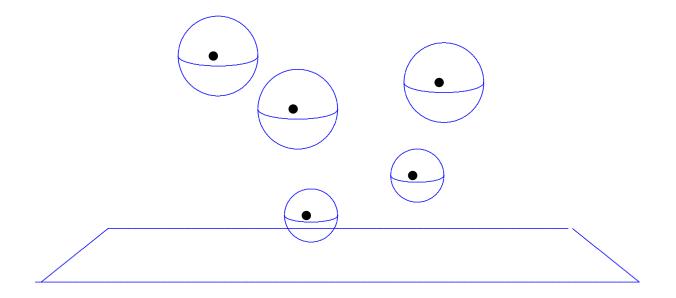
$$g = z^{2} \left(V \frac{dx^{2} + dy^{2} + dz^{2}}{z^{2}} + V^{-1} \theta^{2} \right)$$



$$g = V(dx^2 + dy^2 + dz^2) + z^2V^{-1}\theta^2$$

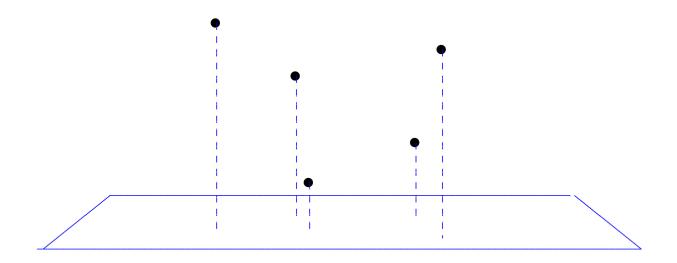


$$g = z^2 \left(Vh + V^{-1}\theta^2 \right)$$

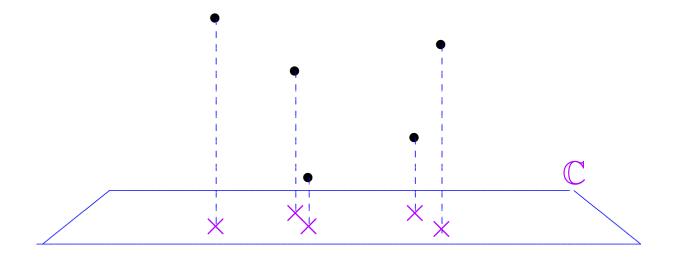


Riemannian completion is AE scalar-flat Kähler.

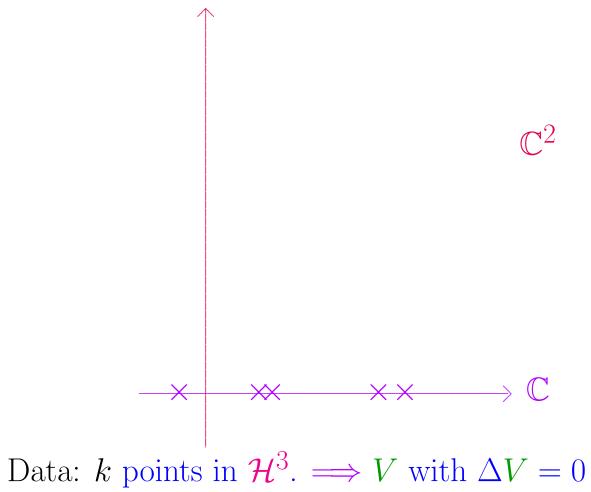
$$g = z^2 \left(Vh + V^{-1}\theta^2 \right)$$



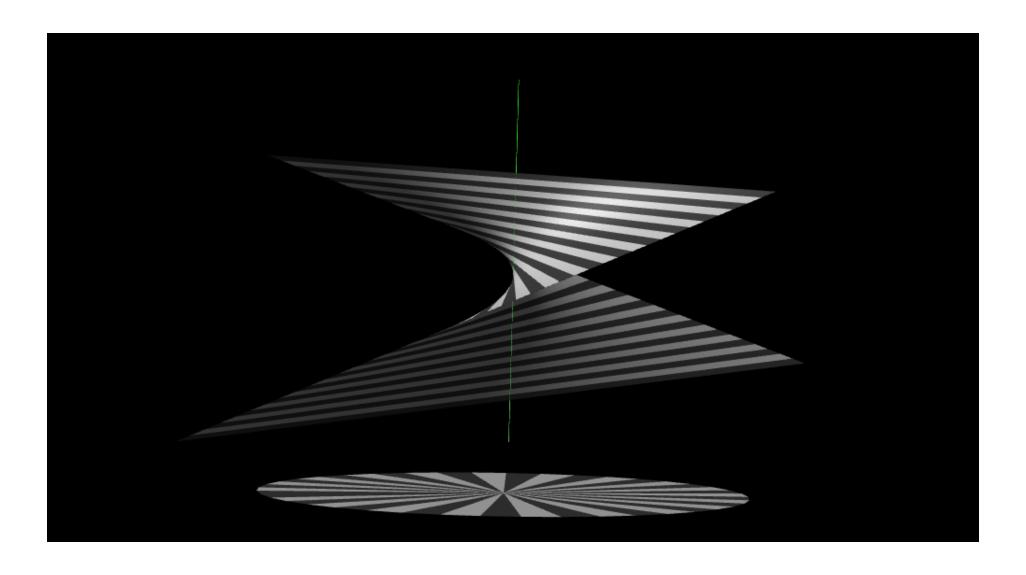
$$g = z^2 \left(Vh + V^{-1}\theta^2 \right)$$

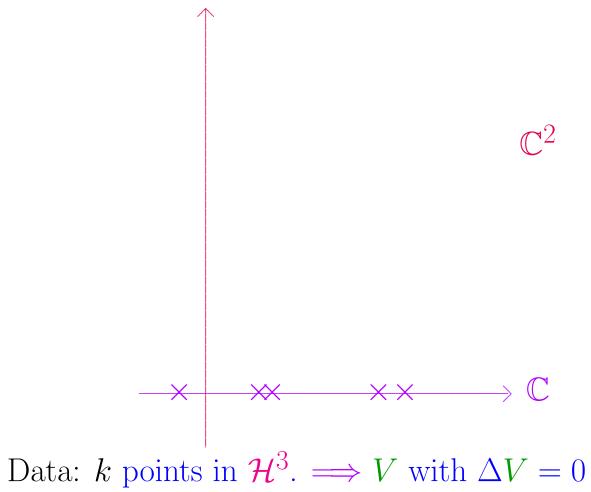


$$g = z^2 \left(Vh + V^{-1}\theta^2 \right)$$

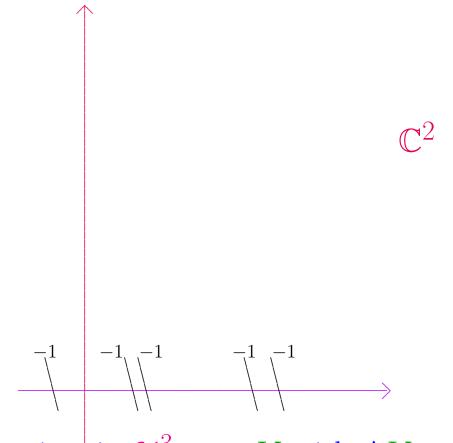


$$g = z^2 \left(Vh + V^{-1}\theta^2 \right)$$



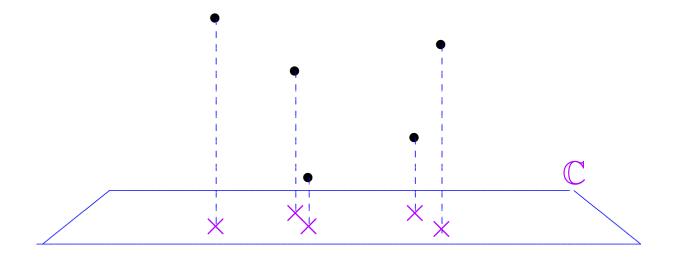


$$g = z^2 \left(Vh + V^{-1}\theta^2 \right)$$

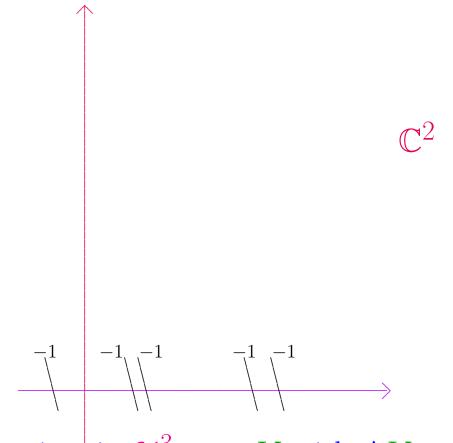


Data: $k \text{ points}' \text{ in } \mathcal{H}^3$. $\Longrightarrow V \text{ with } \Delta V = 0$

$$g = z^2 \left(Vh + V^{-1}\theta^2 \right)$$



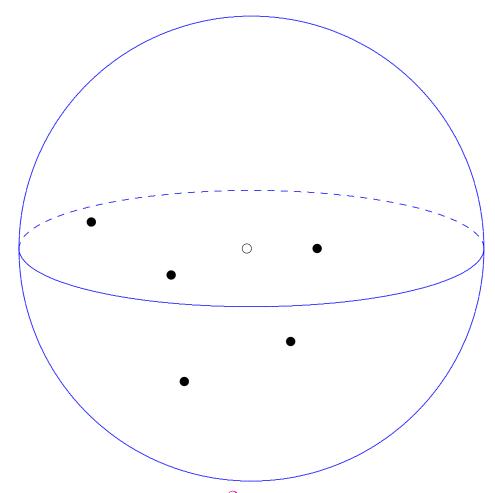
$$g = z^2 \left(Vh + V^{-1}\theta^2 \right)$$



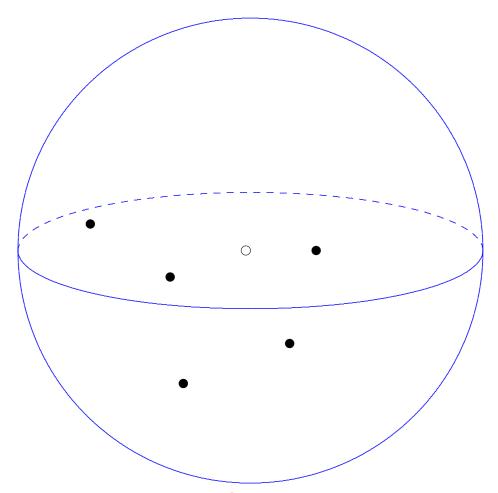
Data: $k \text{ points}' \text{ in } \mathcal{H}^3$. $\Longrightarrow V \text{ with } \Delta V = 0$

$$g = z^2 \left(Vh + V^{-1}\theta^2 \right)$$

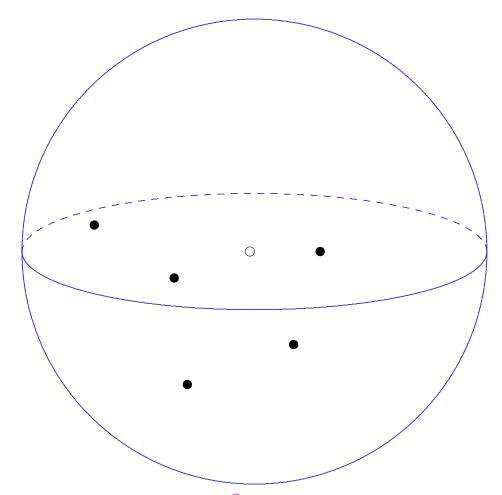
(L '91)



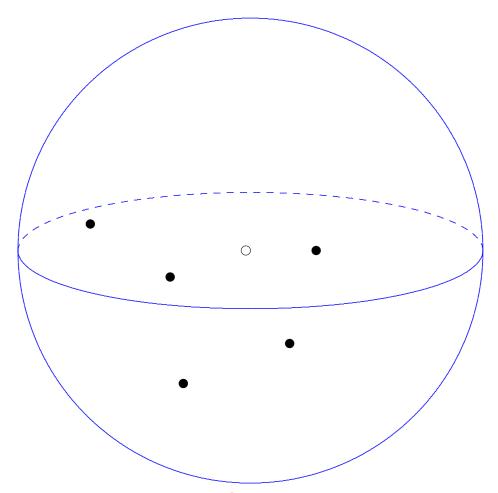
Data: k + 1 points in \mathcal{H}^3 .



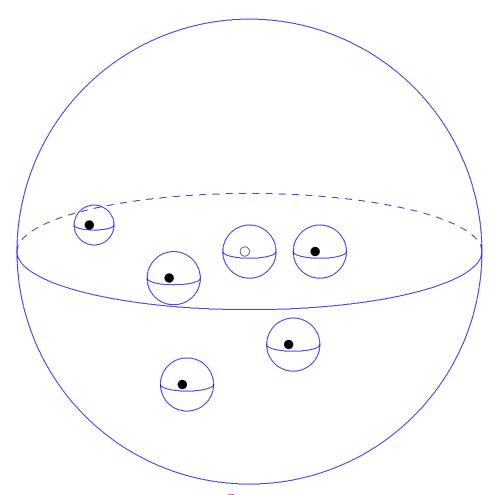
$$V = 1 + \ell G_0 + \sum_{j=1}^{k} G_j$$



$$V = 1 + \frac{\ell}{e^{2\varrho_0} - 1} + \sum_{j=1}^{k} \frac{1}{e^{2\varrho_j} - 1}$$

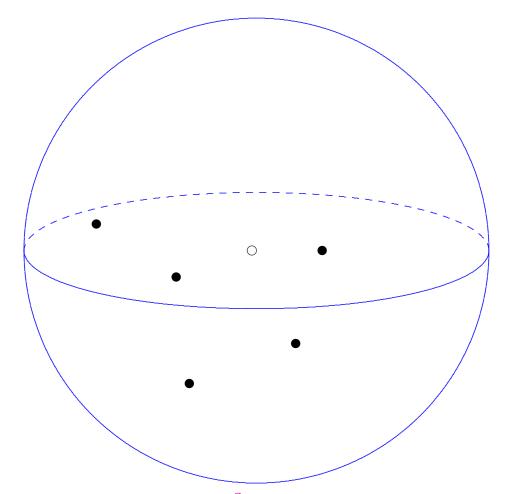


$$V = 1 + \ell G_0 + \sum_{j=1}^{k} G_j$$

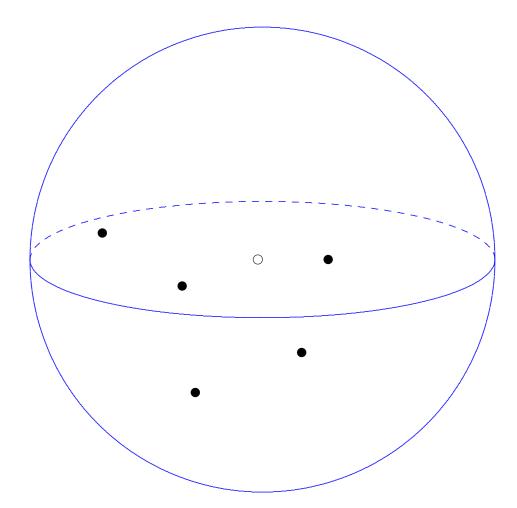


Data: k + 1 points in \mathcal{H}^3 . $\Longrightarrow V$ with $\Delta V = 0$

 $F = \star dV$ curvature θ on $P \to \mathcal{H}^3 - \{ pts \}$.

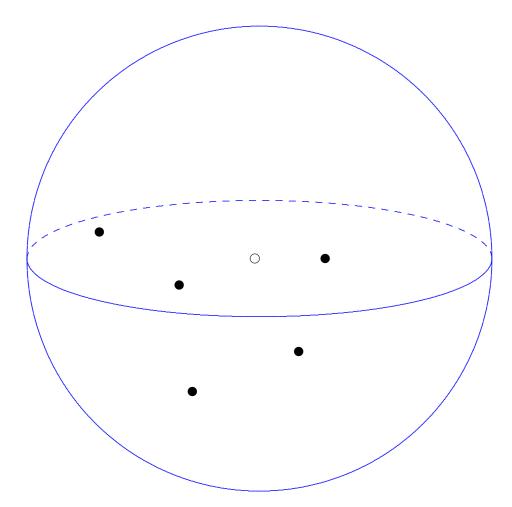


$$g = \frac{1}{4\sinh^2\varrho_0} \left(Vh + V^{-1}\theta^2 \right)$$

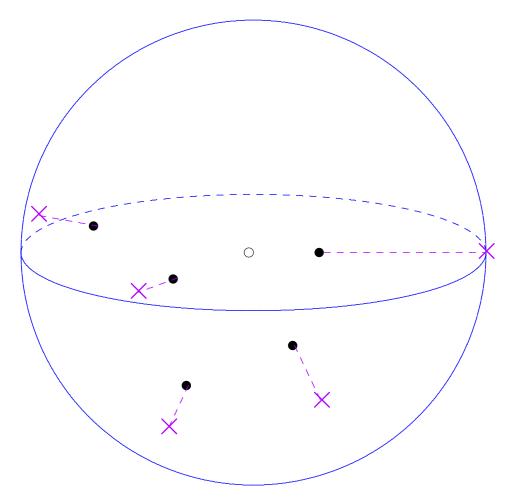


Riemannian completion is ALE scalar-flat Kähler.

$$g = \frac{1}{4\sinh^2\varrho_0} \left(Vh + V^{-1}\theta^2 \right)$$

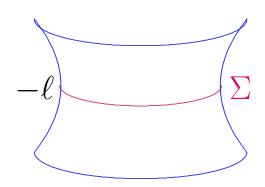


$$V = 1 + \frac{\ell}{e^{2\varrho_0} - 1} + \sum_{j=1}^{k} \frac{1}{e^{2\varrho_j} - 1}$$



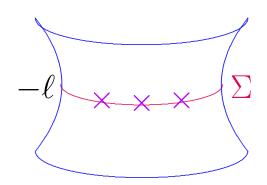
$$V = 1 + \frac{\ell}{e^{2\varrho_0} - 1} + \sum_{j=1}^{k} \frac{1}{e^{2\varrho_j} - 1}$$

Blow up of Chern-class $-\ell$ line bundle over \mathbb{CP}_1 at k points on zero section Σ .



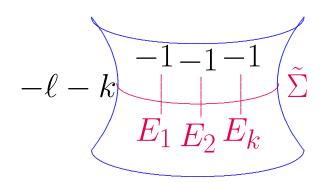
$$V = 1 + \frac{\ell}{e^{2\varrho_0} - 1} + \sum_{j=1}^{k} \frac{1}{e^{2\varrho_j} - 1}$$

Blow up of Chern-class $-\ell$ line bundle over \mathbb{CP}_1 at k points on zero section Σ .



$$V = 1 + \frac{\ell}{e^{2\varrho_0} - 1} + \sum_{j=1}^{k} \frac{1}{e^{2\varrho_j} - 1}$$

Blow up of Chern-class $-\ell$ line bundle over \mathbb{CP}_1 at k points on zero section Σ .

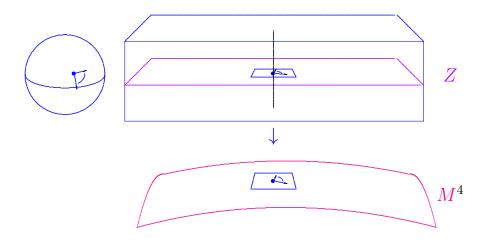


$$V = 1 + \frac{\ell}{e^{2\varrho_0} - 1} + \sum_{j=1}^{k} \frac{1}{e^{2\varrho_j} - 1}$$

Any scalar-flat Kähler surface (M^4, g, J) has a

Penrose Twistor Space (Z, J),

which is once again a complex 3-manifold.



Twistor Spaces for These Metrics:

$$H^0(\mathbb{CP}_1 \times \mathbb{CP}_1, \mathcal{O}(1,1)) = \mathbb{C}^4$$

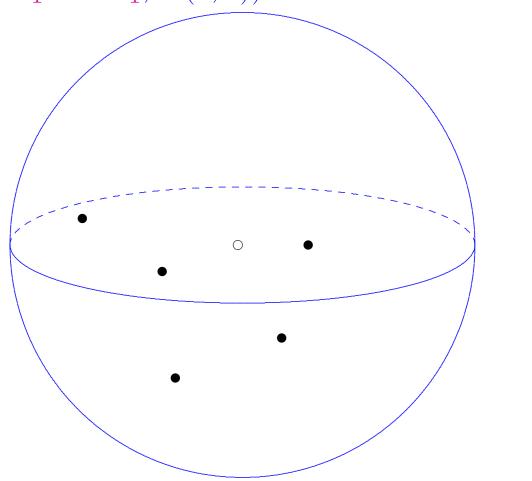
Twistor Spaces for These Metrics:

$$H^0(\mathbb{CP}_1 \times \mathbb{CP}_1, \mathcal{O}(1,1)) = \mathbb{C}^4 \supset \mathbb{R}^{1,3}$$

Twistor Spaces for These Metrics:

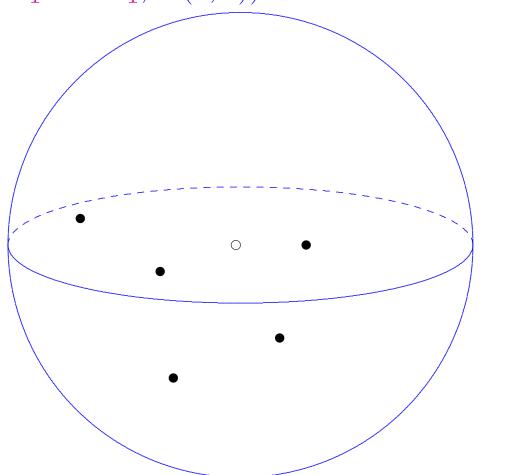
$$H^0(\mathbb{CP}_1 \times \mathbb{CP}_1, \mathcal{O}(1,1)) = \mathbb{C}^4 \supset \mathbb{R}^{1,3} \supset \mathcal{H}^3$$

 $H^0(\mathbb{CP}_1 \times \mathbb{CP}_1, \mathcal{O}(1,1)) = \mathbb{C}^4 \supset \mathbb{R}^{1,3} \supset \mathcal{H}^3$



So k+1 points in \mathcal{H}^3 give rise to

 $H^0(\mathbb{CP}_1 \times \mathbb{CP}_1, \mathcal{O}(1,1)) = \mathbb{C}^4 \supset \mathbb{R}^{1,3} \supset \mathcal{H}^3$



So k+1 points in \mathcal{H}^3 give rise to

$$P_0, P_1, \ldots, P_k \in H^0(\mathbb{CP}_1 \times \mathbb{CP}_1, \mathcal{O}(1, 1)).$$

$$H^0(\mathbb{CP}_1 \times \mathbb{CP}_1, \mathcal{O}(1,1)) = \mathbb{C}^4 \supset \mathbb{R}^{1,3} \supset \mathcal{H}^3$$

$$H^0(\mathbb{CP}_1 \times \mathbb{CP}_1, \mathcal{O}(1,1)) = \mathbb{C}^4 \supset \mathbb{R}^{1,3} \supset \mathcal{H}^3$$

In
$$\mathcal{O}(k+\ell-1,1)\oplus\mathcal{O}(1,k+\ell-1)\to\mathbb{CP}_1\times\mathbb{CP}_1$$
,

$$H^0(\mathbb{CP}_1 \times \mathbb{CP}_1, \mathcal{O}(1, 1)) = \mathbb{C}^4 \supset \mathbb{R}^{1,3} \supset \mathcal{H}^3$$

In $\mathcal{O}(k + \ell - 1, 1) \oplus \mathcal{O}(1, k + \ell - 1) \to \mathbb{CP}_1 \times \mathbb{CP}_1$, let \tilde{Z} be the hypersurface

$$xy = P_0^{\ell} P_1 \cdots P_k.$$

$$H^0(\mathbb{CP}_1 \times \mathbb{CP}_1, \mathcal{O}(1,1)) = \mathbb{C}^4 \supset \mathbb{R}^{1,3} \supset \mathcal{H}^3$$

In
$$\mathcal{O}(k+\ell-1,1)\oplus\mathcal{O}(1,k+\ell-1)\to\mathbb{CP}_1\times\mathbb{CP}_1$$
,

let \tilde{Z} be the hypersurface

$$xy = P_0^{\ell} P_1 \cdots P_k.$$

Then twistor space Z obtained from \tilde{Z} by

$$H^0(\mathbb{CP}_1 \times \mathbb{CP}_1, \mathcal{O}(1, 1)) = \mathbb{C}^4 \supset \mathbb{R}^{1,3} \supset \mathcal{H}^3$$

In $\mathcal{O}(k + \ell - 1, 1) \oplus \mathcal{O}(1, k + \ell - 1) \to \mathbb{CP}_1 \times \mathbb{CP}_1$, let \tilde{Z} be the hypersurface

$$xy = P_0^{\ell} P_1 \cdots P_k.$$

Then twistor space Z obtained from \tilde{Z} by

• removing curve in zero section cut out by P_0 ,

$$H^{0}(\mathbb{CP}_{1} \times \mathbb{CP}_{1}, \mathcal{O}(1, 1)) = \mathbb{C}^{4} \supset \mathbb{R}^{1,3} \supset \mathcal{H}^{3}$$

In $\mathcal{O}(k + \ell - 1, 1) \oplus \mathcal{O}(1, k + \ell - 1) \to \mathbb{CP}_{1} \times \mathbb{CP}_{1}$,

let \tilde{Z} be the hypersurface

$$xy = P_0^{\ell} P_1 \cdots P_k.$$

Then twistor space Z obtained from \tilde{Z} by

- removing curve in zero section cut out by P_0 ,
- adding two rational curves at infinity, and

$$H^0(\mathbb{CP}_1 \times \mathbb{CP}_1, \mathcal{O}(1,1)) = \mathbb{C}^4 \supset \mathbb{R}^{1,3} \supset \mathcal{H}^3$$

In
$$\mathcal{O}(k+\ell-1,1)\oplus\mathcal{O}(1,k+\ell-1)\to\mathbb{CP}_1\times\mathbb{CP}_1$$
,

let \tilde{Z} be the hypersurface

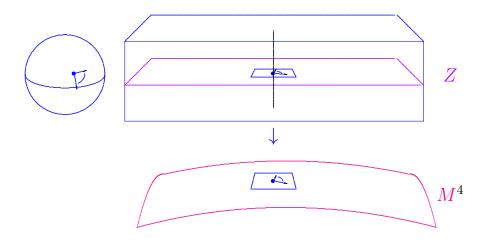
$$xy = P_0^{\ell} P_1 \cdots P_k.$$

Then twistor space Z obtained from \tilde{Z} by

- removing curve in zero section cut out by P_0 ,
- adding two rational curves at infinity, and
- making small resolutions of isolated singularities.

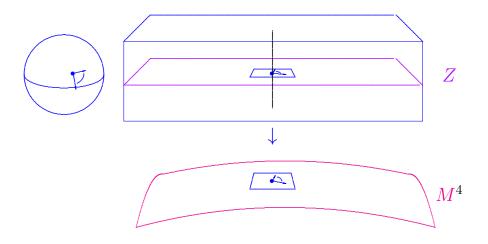
Penrose Twistor Space (Z, J),

which is once again a complex 3-manifold.



Penrose Twistor Space (Z, J),

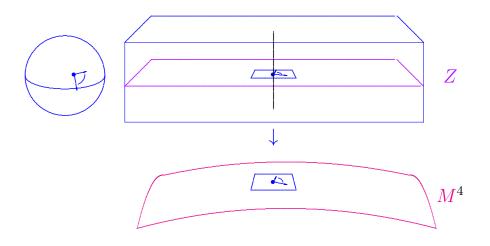
which is once again a complex 3-manifold.



Lots more ALE scalar-flat Kähler surfaces now known:

Penrose Twistor Space (Z, J),

which is once again a complex 3-manifold.

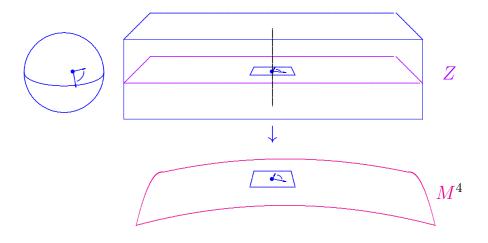


Lots more ALE scalar-flat Kähler surfaces now known:

Joyce, Calderbank-Singer, Lock-Viaclovsky...

Penrose Twistor Space (Z, J),

which is once again a complex 3-manifold.

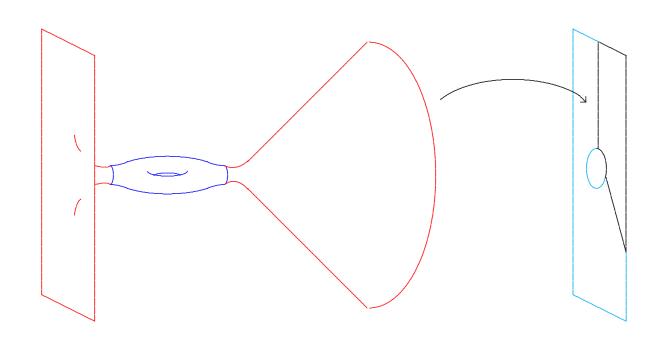


Lots more ALE scalar-flat Kähler surfaces now known:

Joyce, Calderbank-Singer, Lock-Viaclovsky...

But full classification remains an open problem.

Definition. Complete, non-compact n-manifold (M^n, g) is asymptotically locally Euclidean (ALE) if \exists compact set $K \subset M$ such that $M - K \approx \coprod_i (\mathbb{R}^n - D^n)/\Gamma_i$, where $\Gamma_i \subset \mathbf{O}(\mathbf{n})$, such that



$$g_{jk} = \delta_{jk} + O(|x|^{1 - \frac{n}{2} - \varepsilon})$$
$$g_{jk,\ell} = O(|x|^{-\frac{n}{2} - \varepsilon}), \quad \mathbf{s} \in L^1$$

$$m(M,g) := \left[g_{ij,i} - g_{ii,j} \right]$$

$$m(M,g) := [g_{ij,i} - g_{ii,j}] \nu^j$$

$$m(M,g) := \int_{\Sigma(\varrho)} \left[g_{ij,i} - g_{ii,j} \right] \nu^j \alpha_E$$

$$m(M,g) := \lim_{\varrho \to \infty} \int_{\Sigma(\varrho)} \left[g_{ij,i} - g_{ii,j} \right] \nu^j \alpha_E$$

$$\mathbf{m}(M,g) := \lim_{\varrho \to \infty} \frac{\Gamma(\frac{n}{2})}{4(n-1)\pi^{n/2}} \int_{\Sigma(\varrho)} \left[g_{ij,i} - g_{ii,j} \right] \nu^j \alpha_E$$

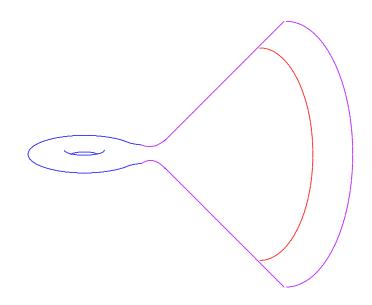
$$\mathbf{m}(M,g) := \lim_{\varrho \to \infty} \frac{\Gamma(\frac{n}{2})}{4(n-1)\pi^{n/2}} \int_{\Sigma(\varrho)} \left[g_{ij,i} - g_{ii,j} \right] \nu^j \alpha_E$$

where

$$m(M,g) := \lim_{\varrho \to \infty} \frac{\Gamma(\frac{n}{2})}{4(n-1)\pi^{n/2}} \int_{\Sigma(\varrho)} \left[g_{ij,i} - g_{ii,j} \right] \nu^j \alpha_E$$

where

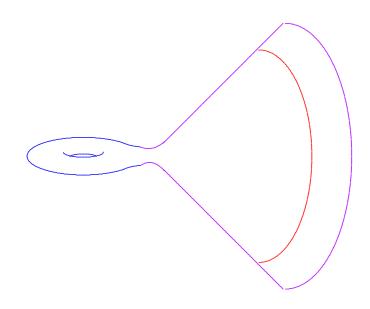
•
$$\Sigma(\varrho) \approx S^{n-1}/\Gamma_i$$



$$m(M,g) := \lim_{\varrho \to \infty} \frac{\Gamma(\frac{n}{2})}{4(n-1)\pi^{n/2}} \int_{\Sigma(\varrho)} \left[g_{ij,i} - g_{ii,j} \right] \nu^j \alpha_E$$

where

• $\Sigma(\varrho) \approx S^{n-1}/\Gamma_i$ is given by $|\vec{x}| = \varrho$;



$$m(M,g) := \lim_{\varrho \to \infty} \frac{\Gamma(\frac{n}{2})}{4(n-1)\pi^{n/2}} \int_{\Sigma(\varrho)} \left[g_{ij,i} - g_{ii,j} \right] \nu^j \alpha_E$$

where

- $\Sigma(\varrho) \approx S^{n-1}/\Gamma_i$ is given by $|\vec{x}| = \varrho$;
- $\bullet \nu$ is the outpointing Euclidean unit normal;

$$m(M,g) := \lim_{\varrho \to \infty} \frac{\Gamma(\frac{n}{2})}{4(n-1)\pi^{n/2}} \int_{\Sigma(\varrho)} \left[g_{ij,i} - g_{ii,j} \right] \nu^j \alpha_E$$

where

- $\Sigma(\varrho) \approx S^{n-1}/\Gamma_i$ is given by $|\vec{x}| = \varrho$;
- ullet u is the outpointing Euclidean unit normal; and
- α_E is the volume (n-1)-from induced by the Euclidean metric.

$$m(M,g) := \lim_{\varrho \to \infty} \frac{\Gamma(\frac{n}{2})}{4(n-1)\pi^{n/2}} \int_{\Sigma(\varrho)} \left[g_{ij,i} - g_{ii,j} \right] \nu^j \alpha_E$$

where

- $\Sigma(\varrho) \approx S^{n-1}/\Gamma_i$ is given by $|\vec{x}| = \varrho$;
- ullet u is the outpointing Euclidean unit normal; and
- α_E is the volume (n-1)-from induced by the Euclidean metric.

Bartnik/Chruściel (1986):

$$m(M,g) := \lim_{\varrho \to \infty} \frac{\Gamma(\frac{n}{2})}{4(n-1)\pi^{n/2}} \int_{\Sigma(\varrho)} \left[g_{ij,i} - g_{ii,j} \right] \nu^j \alpha_E$$

where

- $\Sigma(\varrho) \approx S^{n-1}/\Gamma_i$ is given by $|\vec{x}| = \varrho$;
- ullet u is the outpointing Euclidean unit normal; and
- α_E is the volume (n-1)-from induced by the Euclidean metric.

Bartnik/Chruściel (1986): With weak fall-off conditions,

$$m(M,g) := \lim_{\varrho \to \infty} \frac{\Gamma(\frac{n}{2})}{4(n-1)\pi^{n/2}} \int_{\Sigma(\varrho)} \left[g_{ij,i} - g_{ii,j} \right] \nu^j \alpha_E$$

where

- $\Sigma(\varrho) \approx S^{n-1}/\Gamma_i$ is given by $|\vec{x}| = \varrho$;
- ullet u is the outpointing Euclidean unit normal; and
- α_E is the volume (n-1)-from induced by the Euclidean metric.

$$g_{jk} = \delta_{jk} + O(|x|^{1 - \frac{n}{2} - \varepsilon})$$
$$g_{jk,\ell} = O(|x|^{-\frac{n}{2} - \varepsilon}), \quad s \in L^1$$

$$\mathbf{m}(M,g) := \lim_{\varrho \to \infty} \frac{\Gamma(\frac{n}{2})}{4(n-1)\pi^{n/2}} \int_{\Sigma(\varrho)} \left[g_{ij,i} - g_{ii,j} \right] \nu^j \alpha_E$$

where

- $\Sigma(\varrho) \approx S^{n-1}/\Gamma_i$ is given by $|\vec{x}| = \varrho$;
- ullet u is the outpointing Euclidean unit normal; and
- α_E is the volume (n-1)-from induced by the Euclidean metric.

Bartnik/Chruściel (1986): With weak fall-off conditions, the mass is well-defined

$$m(M,g) := \lim_{\varrho \to \infty} \frac{\Gamma(\frac{n}{2})}{4(n-1)\pi^{n/2}} \int_{\Sigma(\varrho)} \left[g_{ij,i} - g_{ii,j} \right] \nu^j \alpha_E$$

where

- $\Sigma(\varrho) \approx S^{n-1}/\Gamma_i$ is given by $|\vec{x}| = \varrho$;
- ullet u is the outpointing Euclidean unit normal; and
- α_E is the volume (n-1)-from induced by the Euclidean metric.

Bartnik/Chruściel (1986): With weak fall-off conditions, the mass is well-defined & coordinate independent.

$$m(M,g) := \lim_{\varrho \to \infty} \frac{\Gamma(\frac{n}{2})}{4(n-1)\pi^{n/2}} \int_{\Sigma(\varrho)} \left[g_{ij,i} - g_{ii,j} \right] \nu^j \alpha_E$$

where

- $\Sigma(\varrho) \approx S^{n-1}/\Gamma_i$ is given by $|\vec{x}| = \varrho$;
- ullet u is the outpointing Euclidean unit normal; and
- α_E is the volume (n-1)-from induced by the Euclidean metric.

Chruściel-type fall-off:

$$g_{jk} - \delta_{jk} \in C^1_{-\tau}, \quad \tau > \frac{n-2}{2}$$

$$m(M,g) := \lim_{\varrho \to \infty} \frac{\Gamma(\frac{n}{2})}{4(n-1)\pi^{n/2}} \int_{\Sigma(\varrho)} \left[g_{ij,i} - g_{ii,j} \right] \nu^j \alpha_E$$

where

- $\Sigma(\varrho) \approx S^{n-1}/\Gamma_i$ is given by $|\vec{x}| = \varrho$;
- ullet u is the outpointing Euclidean unit normal; and
- α_E is the volume (n-1)-from induced by the Euclidean metric.

Bartnik/Chruściel (1986): With weak fall-off conditions, the mass is well-defined & coordinate independent.

$$m(M,g) := \lim_{\varrho \to \infty} \frac{\Gamma(\frac{n}{2})}{4(n-1)\pi^{n/2}} \int_{\Sigma(\varrho)} \left[g_{ij,i} - g_{ii,j} \right] \nu^j \alpha_E$$

where

- $\Sigma(\varrho) \approx S^{n-1}/\Gamma_i$ is given by $|\vec{x}| = \varrho$;
- ullet u is the outpointing Euclidean unit normal; and
- α_E is the volume (n-1)-from induced by the Euclidean metric.

We'll see a new proof of this in the Kähler case.

Theorem C. Any ALE Kähler manifold (M, g, J) of complex dimension m has mass given by

$$m(M,g) = -\frac{\langle \mathbf{A}(\mathbf{c}_1), [\boldsymbol{\omega}]^{m-1} \rangle}{(2m-1)\pi^{m-1}} + \frac{(m-1)!}{4(2m-1)\pi^m} \int_{M} \mathbf{s}_g d\mu_g$$

Theorem C. Any ALE Kähler manifold (M, g, J) of complex dimension m has mass given by

$$m(M,g) = -\frac{\langle \mathbf{A}(\mathbf{c}_1), [\omega]^{m-1} \rangle}{(2m-1)\pi^{m-1}} + \frac{(m-1)!}{4(2m-1)\pi^m} \int_M \mathbf{s}_g d\mu_g$$
 where

- \bullet s = scalar curvature;
- $d\mu = metric\ volume\ form;$
- $c_1 = c_1(M, J) \in H^2(M)$ is first Chern class;
- $[\omega] \in H^2(M)$ is Kähler class of (g, J); and
- ullet $\langle \ , \ \rangle$ is pairing between $H_c^2(M)$ and $H^{2m-2}(M)$.

Theorem C. Any ALE Kähler manifold (M, g, J) of complex dimension m has mass given by

$$m(M,g) = -\frac{\langle \mathbf{A}(\mathbf{c}_1), [\omega]^{m-1} \rangle}{(2m-1)\pi^{m-1}} + \frac{(m-1)!}{4(2m-1)\pi^m} \int_M \mathbf{s}_g d\mu_g$$
 where

- \bullet s = scalar curvature;
- $d\mu = metric\ volume\ form;$
- $c_1 = c_1(M, J) \in H^2(M)$ is first Chern class;
- $[\omega] \in H^2(M)$ is Kähler class of (g, J); and
- $\langle \ , \ \rangle$ is pairing between $H_c^2(M)$ and $H^{2m-2}(M)$.
- $\clubsuit: H^2(M) \xrightarrow{\cong} H^2_c(M)$ inverse of natural map.

$$m(M,g) = -\frac{\langle \mathbf{A}(c_1), [\omega]^{m-1} \rangle}{(2m-1)\pi^{m-1}} + \frac{(m-1)!}{4(2m-1)\pi^m} \int_M s_g d\mu_g$$

Scalar-flat Kähler case:

$$m(M,g) = -\frac{\langle \mathbf{A}(\mathbf{c}_1), [\boldsymbol{\omega}]^{m-1} \rangle}{(2m-1)\pi^{m-1}}$$

$$m(M,g) = -\frac{1}{3\pi} \langle A(c_1), [\omega] \rangle$$

$$m(M,g) = -\frac{1}{3\pi} \langle \clubsuit(c_1), [\omega] \rangle$$

Today: What does this mean in practice?

$$m(M,g) = -\frac{1}{3\pi} \langle A(c_1), [\omega] \rangle$$

$$m(M,g) = -\frac{1}{3\pi} \langle A(c_1), [\omega] \rangle$$

$$m(M,g) = -\frac{1}{3\pi} \langle \clubsuit(c_1), [\omega] \rangle$$

Gravitational instantons?

$$m(M,g) = -\frac{1}{3\pi} \langle \clubsuit(c_1), [\omega] \rangle$$

Gravitational instantons?

Ricci flat!

$$m(M,g) = -\frac{1}{3\pi} \langle \clubsuit(c_1), [\omega] \rangle$$

Gravitational instantons?

Ricci flat! $\Longrightarrow c_1 = 0$.

$$m(M,g) = -\frac{1}{3\pi} \langle \clubsuit(c_1), [\omega] \rangle$$

Gravitational instantons?

Ricci flat!
$$\Longrightarrow c_1 = 0$$
.

Mass automatically vanishes!

$$m(M,g) = -\frac{1}{3\pi} \langle \mathbf{A}(\mathbf{c}_1), [\boldsymbol{\omega}] \rangle$$

Gravitational instantons?

Ricci flat! $\Longrightarrow c_1 = 0$.

Mass automatically vanishes!

Bartnik: Ricci-flat \Longrightarrow faster fall-off of metric!

$$m(M,g) = -\frac{1}{3\pi} \langle \mathbf{A}(\mathbf{c}_1), [\omega] \rangle$$

Gravitational instantons?

Ricci flat! $\Longrightarrow c_1 = 0$.

Mass automatically vanishes!

Bartnik: Ricci-flat \Longrightarrow mass vanishes!

$$m(M,g) = -\frac{1}{3\pi} \langle \clubsuit(c_1), [\omega] \rangle$$

What does this mean in practice?

$$m(M,g) = -\frac{1}{3\pi} \langle \clubsuit(c_1), [\omega] \rangle$$

Exploit Poincaré duality...

Proposition. Let (M, g, J) be an ALE scalar-flat Kähler surface.

Proposition. Let (M, g, J) be an ALE scalarflat Kähler surface. Let $E_1, \ldots E_\ell$ be a basis for $H_2(M, \mathbb{R})$, **Proposition.** Let (M, g, J) be an ALE scalarflat Kähler surface. Let $E_1, \ldots E_\ell$ be a basis for $H_2(M, \mathbb{R})$, and let $Q = [Q_{jk}] = [E_j \cdot E_k]$ be the corresponding intersection matrix. **Proposition.** Let (M, g, J) be an ALE scalarflat Kähler surface. Let $E_1, \ldots E_\ell$ be a basis for $H_2(M, \mathbb{R})$, and let $Q = [Q_{jk}] = [E_j \cdot E_k]$ be the corresponding intersection matrix. If we define a_1, \ldots, a_ℓ by **Proposition.** Let (M, g, J) be an ALE scalarflat Kähler surface. Let $E_1, \ldots E_\ell$ be a basis for $H_2(M, \mathbb{R})$, and let $Q = [Q_{jk}] = [E_j \cdot E_k]$ be the corresponding intersection matrix. If we define a_1, \ldots, a_ℓ by

$$\begin{bmatrix} a_1 \\ \vdots \\ a_\ell \end{bmatrix} = Q - 1 \begin{bmatrix} \int_{E_1} c_1 \\ \vdots \\ \int_{E_\ell} c_1 \end{bmatrix}$$

Proposition. Let (M, g, J) be an ALE scalarflat Kähler surface. Let $E_1, \ldots E_\ell$ be a basis for $H_2(M, \mathbb{R})$, and let $Q = [Q_{jk}] = [E_j \cdot E_k]$ be the corresponding intersection matrix. If we define a_1, \ldots, a_ℓ by

$$\begin{bmatrix} a_1 \\ \vdots \\ a_\ell \end{bmatrix} = Q - 1 \begin{bmatrix} \int_{E_1} c_1 \\ \vdots \\ \int_{E_\ell} c_1 \end{bmatrix}$$

then the mass of (M,g) is given by

Proposition. Let (M, g, J) be an ALE scalarflat Kähler surface. Let $E_1, \ldots E_\ell$ be a basis for $H_2(M, \mathbb{R})$, and let $Q = [Q_{jk}] = [E_j \cdot E_k]$ be the corresponding intersection matrix. If we define a_1, \ldots, a_ℓ by

$$\begin{bmatrix} a_1 \\ \vdots \\ a_\ell \end{bmatrix} = Q - 1 \begin{vmatrix} \int_{E_1} c_1 \\ \vdots \\ \int_{E_\ell} c_1 \end{vmatrix}$$

then the mass of (M, g) is given by

$$m(\mathbf{M}, g) = -\frac{1}{3\pi} \sum_{j=1}^{\ell} a_j \int_{E_j} [\omega]$$

Proposition. Let (M, g, J) be an ALE scalarflat Kähler surface. Let $E_1, \ldots E_\ell$ be a basis for $H_2(M, \mathbb{R})$, and let $Q = [Q_{jk}] = [E_j \cdot E_k]$ be the corresponding intersection matrix. If we define a_1, \ldots, a_ℓ by

$$\begin{bmatrix} a_1 \\ \vdots \\ a_\ell \end{bmatrix} = Q - 1 \begin{vmatrix} \int_{E_1} c_1 \\ \vdots \\ \int_{E_\ell} c_1 \end{vmatrix}$$

then the mass of (M, g) is given by

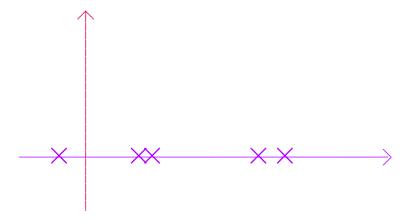
$$m(\mathbf{M}, g) = -\frac{1}{3\pi} \sum_{j=1}^{\ell} a_j \int_{E_j} [\omega]$$

where $[\omega]$ denotes the Kähler class of (M, g, J).

$$m(M,g) = -\frac{1}{3\pi} \langle A(c_1), [\omega] \rangle$$

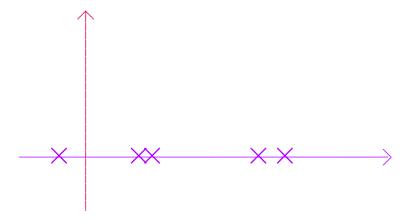
$$m(M,g) = -\frac{1}{3\pi} \langle \mathbf{A}(\mathbf{c}_1), [\omega] \rangle$$

$$m(M,g) = -\frac{1}{3\pi} \langle \clubsuit(c_1), [\omega] \rangle$$



$$m(M,g) = -\frac{1}{3\pi} \langle \clubsuit(c_1), [\omega] \rangle$$

$$m(M,g) = -\frac{1}{3\pi} \langle \clubsuit(c_1), [\omega] \rangle$$



$$m(M,g) = -\frac{1}{3\pi} \langle A(c_1), [\omega] \rangle$$

Proposition. Let (M, g, J) be an ALE scalarflat Kähler surface. Let $E_1, \ldots E_\ell$ be a basis for $H_2(M, \mathbb{R})$, and let $Q = [Q_{jk}] = [E_j \cdot E_k]$ be the corresponding intersection matrix. If we define a_1, \ldots, a_ℓ by

$$\begin{bmatrix} a_1 \\ \vdots \\ a_\ell \end{bmatrix} = Q - 1 \begin{vmatrix} \int_{E_1} c_1 \\ \vdots \\ \int_{E_\ell} c_1 \end{vmatrix}$$

then the mass of (M, g) is given by

$$m(\mathbf{M}, g) = -\frac{1}{3\pi} \sum_{j=1}^{\ell} a_j \int_{E_j} [\omega]$$

where $[\omega]$ denotes the Kähler class of (M, g, J).

$$m(M,g) = -\frac{1}{3\pi} \langle \mathbf{A}(c_1), [\omega] \rangle$$

$$m(M,g) = \frac{1}{3\pi} \sum_{j=1}^{\ell} \int_{E_j} [\omega]$$

$$m(M,g) = -\frac{1}{3\pi} \langle \mathbf{A}(c_1), [\omega] \rangle$$

Example. Blow up \mathbb{C}^2 at k points.

$$m(M,g) = \frac{1}{3\pi} \sum_{j=1}^{\ell} \int_{E_j} [\omega]$$

Always positive!

$$m(M,g) = -\frac{1}{3\pi} \langle \mathbf{A}(c_1), [\omega] \rangle$$

Example. Blow up \mathbb{C}^2 at k points.

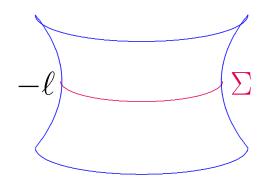
$$m(M,g) = \frac{1}{3\pi} \sum_{j=1}^{\ell} \int_{E_j} [\omega]$$

Always positive! (AE): Positive mass theorem.

$$m(M,g) = -\frac{1}{3\pi} \langle A(c_1), [\omega] \rangle$$

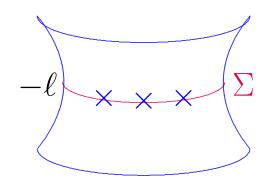
$$m(M,g) = -\frac{1}{3\pi} \langle \mathbf{A}(c_1), [\omega] \rangle$$

Example. Blow up Chern-class $-\ell$ line bundle over \mathbb{CP}_1 at k points on zero section Σ .



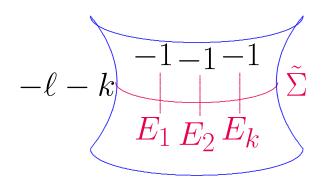
$$m(M,g) = -\frac{1}{3\pi} \langle \mathcal{A}(c_1), [\omega] \rangle$$

Example. Blow up Chern-class $-\ell$ line bundle over \mathbb{CP}_1 at k points on zero section Σ .



$$m(M,g) = -\frac{1}{3\pi} \langle \mathbf{A}(c_1), [\omega] \rangle$$

Example. Blow up Chern-class $-\ell$ line bundle over \mathbb{CP}_1 at k points on zero section Σ .



Proposition. Let (M, g, J) be an ALE scalarflat Kähler surface. Let $E_1, \ldots E_\ell$ be a basis for $H_2(M, \mathbb{R})$, and let $Q = [Q_{jk}] = [E_j \cdot E_k]$ be the corresponding intersection matrix. If we define a_1, \ldots, a_ℓ by

$$\begin{bmatrix} a_1 \\ \vdots \\ a_\ell \end{bmatrix} = Q - 1 \begin{vmatrix} \int_{E_1} c_1 \\ \vdots \\ \int_{E_\ell} c_1 \end{vmatrix}$$

then the mass of (M, g) is given by

$$m(\mathbf{M}, g) = -\frac{1}{3\pi} \sum_{j=1}^{\ell} a_j \int_{E_j} [\omega]$$

where $[\omega]$ denotes the Kähler class of (M, g, J).

$$m(M,g) = -\frac{1}{3\pi} \langle \mathbf{A}(c_1), [\omega] \rangle$$

Example. Blow up Chern-class $-\ell$ line bundle over \mathbb{CP}_1 at k points on zero section Σ .

$$m(M,g) =$$

$$m(M,g) = -\frac{1}{3\pi} \langle \mathbf{A}(c_1), [\omega] \rangle$$

Example. Blow up Chern-class $-\ell$ line bundle over \mathbb{CP}_1 at k points on zero section Σ .

$$m(M,g) = \frac{1}{3\pi\ell} \left[(2-\ell) \int_{\tilde{\Sigma}} \omega \right]$$

$$m(M,g) = -\frac{1}{3\pi} \langle \mathbf{A}(c_1), [\omega] \rangle$$

Example. Blow up Chern-class $-\ell$ line bundle over \mathbb{CP}_1 at k points on zero section Σ .

$$m(M,g) = \frac{1}{3\pi\ell} \left[(2-\ell) \int_{\tilde{\Sigma}} \omega + 2 \sum_{j=1}^{k} \int_{E_j} \omega \right] .$$

Proposition. Let (M, g, J) be an ALE scalarflat Kähler surface. Let $E_1, \ldots E_\ell$ be a basis for $H_2(M, \mathbb{R})$, and let $Q = [Q_{jk}] = [E_j \cdot E_k]$ be the corresponding intersection matrix. If we define a_1, \ldots, a_ℓ by

$$\begin{bmatrix} a_1 \\ \vdots \\ a_\ell \end{bmatrix} = Q - 1 \begin{vmatrix} \int_{E_1} c_1 \\ \vdots \\ \int_{E_\ell} c_1 \end{vmatrix}$$

then the mass of (M, g) is given by

$$m(\mathbf{M}, g) = -\frac{1}{3\pi} \sum_{j=1}^{\ell} a_j \int_{E_j} [\omega]$$

where $[\omega]$ denotes the Kähler class of (M, g, J).

Theorem B. Let (M^4, g, J) be an ALE scalar-flat Kähler surface,

Examples: Hirzebruch-Jung resolution of $\mathbb{C}^2/\mathbb{Z}_{\ell}$.

Examples: Hirzebruch-Jung resolution of $\mathbb{C}^2/\mathbb{Z}_{\ell}$.

$$(z_1, z_2) \mapsto (e^{2\pi i/\ell} z_1, e^{2\pi i k/\ell} z_2)$$

Examples: Hirzebruch-Jung resolution of $\mathbb{C}^2/\mathbb{Z}_{\ell}$.

Calderbank-Singer metrics generalize for $k \neq \pm 1$.

Theorem B. Let (M^4, g, J) be an ALE scalarflat Kähler surface, and suppose that (M, J) is the minimal resolution of a surface singularity. Then $m(M, g) \leq 0$, with = iff g is Ricci-flat. **Proposition.** Let (M, g, J) be an ALE scalarflat Kähler surface. Let $E_1, \ldots E_\ell$ be a basis for $H_2(M, \mathbb{R})$, and let $Q = [Q_{jk}] = [E_j \cdot E_k]$ be the corresponding intersection matrix. If we define a_1, \ldots, a_ℓ by

$$\begin{bmatrix} a_1 \\ \vdots \\ a_\ell \end{bmatrix} = Q - 1 \begin{vmatrix} \int_{E_1} c_1 \\ \vdots \\ \int_{E_\ell} c_1 \end{vmatrix}$$

then the mass of (M, g) is given by

$$m(\mathbf{M}, g) = -\frac{1}{3\pi} \sum_{j=1}^{\ell} a_j \int_{E_j} [\omega]$$

where $[\omega]$ denotes the Kähler class of (M, g, J).

Theorem B. Let (M^4, g, J) be an ALE scalarflat Kähler surface, and suppose that (M, J) is the minimal resolution of a surface singularity. Then $m(M, g) \leq 0$, with = iff g is Ricci-flat.

V. Alexeev: Q^{-1} term-by-term ≤ 0 for these.

Theorem B. Let (M^4, g, J) be an ALE scalarflat Kähler surface, and suppose that (M, J) is the minimal resolution of a surface singularity. Then $m(M, g) \leq 0$, with = iff g is Ricci-flat.

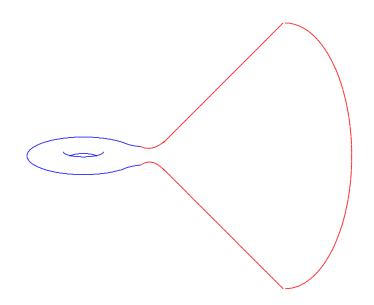
V. Alexeev: Q^{-1} term-by-term ≤ 0 for these.

Brought to our attention by C. Spotti.

$$m(M,g) = -\frac{1}{3\pi} \langle A(c_1), [\omega] \rangle$$

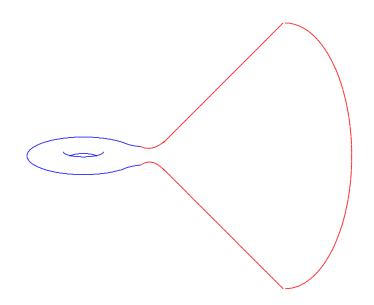
$$m(M,g) = -\frac{\langle \mathbf{A}(c_1), [\omega]^{m-1} \rangle}{(2m-1)\pi^{m-1}} + \frac{(m-1)!}{4(2m-1)\pi^m} \int_M s_g d\mu_g$$

$$m(M,g) = -\frac{\langle \mathbf{A}(\mathbf{c}_1), [\boldsymbol{\omega}]^{m-1} \rangle}{(2m-1)\pi^{m-1}} + \frac{(m-1)!}{4(2m-1)\pi^m} \int_{M} \mathbf{s}_g d\mu_g$$



$$m(M,g) = -\frac{\langle \mathbf{A}(c_1), [\omega]^{m-1} \rangle}{(2m-1)\pi^{m-1}} + \frac{(m-1)!}{4(2m-1)\pi^m} \int_M s_g d\mu_g$$

$$m(M,g) = -\frac{\langle \mathbf{A}(\mathbf{c}_1), [\boldsymbol{\omega}]^{m-1} \rangle}{(2m-1)\pi^{m-1}} + \frac{(m-1)!}{4(2m-1)\pi^m} \int_{M} \mathbf{s}_g d\mu_g$$



End, Part II