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Term ALE coined by Gibbons & Hawking, 1979.

They wrote down various explicit Ricci-flat ALE
4-manifolds they called gravitational instantons.



Data: ¢ points in R,



Data: ¢ points in R, = V with AV =0

V:ZT

j=175



F = xdV curvature § on P — R — {pts}.



O &
2

Data: ¢ points in R, = V with AV =0

g=Vh+V1¢?

F = xdV curvature 6 on P — R — {pts}.



O &
2

Data: ¢ points in R, = V with AV =0

g = V(da® + dy* + dz*) + V162

[ = xdV curvature 6 on P — R — {pts}.



O &
2

Data: ¢ points in R, = V with AV =0

g=Vh+V1¢?

F = xdV curvature 6 on P — R — {pts}.



Oy &
2

Data: ¢ points in R, = V with AV =0

g=Vh+V1¢?

on P. Then take M* = Riemannian completion.



Data: ¢ points in R, = V with AV =0

g=Vh+V1¢?

on P. Then take M* = Riemannian completion.



Data: ¢ points in R, = V with AV =0

g=Vh+V1¢?

on P. Then take M* = Riemannian completion.



Data: ¢ points in R?. = V with AV =0

g=Vh+V1¢?

on P. Then take M* = Riemannian completion.



Data: ¢ points in R, = V with AV =0

g=Vh+V1¢?

on P. Then take M* = Riemannian completion.



Deform retracts to k = £ — 1 copies of 52,



Deform retracts to k = £ — 1 copies of 52,
each with self-intersection —2,



Deform retracts to k = £ — 1 copies of 52,
each with self-intersection —2,
meeting transversely, & forming connected set:



Deform retracts to k = £ — 1 copies of 52,
each with self-intersection —2,
meeting transversely, & forming connected set:

ISEN



Deform retracts to k = £ — 1 copies of 52,
each with self-intersection —2,
meeting transversely, & forming connected set:

ISEN

Configuration dual to Dynkin diagram Aj.:



Deform retracts to k = £ — 1 copies of 52,
each with self-intersection —2,
meeting transversely, & forming connected set:

ISEN

Configuration dual to Dynkin diagram Aj.:




Deform retracts to k = £ — 1 copies of 52,
each with self-intersection —2,
meeting transversely, & forming connected set:

ISEN

Configuration dual to Dynkin diagram Aj.:

Diffeotype:



Deform retracts to k = £ — 1 copies of 52,
each with self-intersection —2,
meeting transversely, & forming connected set:

ISEN

Configuration dual to Dynkin diagram Aj.:

Diffeotype:

Plumb together & copies of 7% S?
according to diagram.
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Term ALE coined by Gibbons & Hawking, 1979.

They wrote down various explicit Ricci-flat ALE
4-manifolds they called gravitational instantons.

Their examples have just one end, with
'=%Z,cSU(2) Cc O@4).

The G-H metrics are hyper-Kahler, and were soon
independently rediscovered by Hitchin.
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<— 4 almost complex-structure .J with V.J = 0
and g(J-,.J-) = g.

— (M 2m ¢) is a complex manifold & 3 J-invariant
closed 2-form w such that g = w(-, J-).

Kahler magic:

If we define the Ricci form by
P = T(‘]°7 )

then ip is curvature of canonical line bundle A™U.
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)

which is a complex 3-manifold.

Complex structure faithfully encodes the metric.

Constructing twistor space suffices for existence.
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H(CPy,0(2)) = C° > RY.

So ¢ points determine Py, ..., Py € HY(CPy, O(2)).

Small resolution Z of Z C O(¢) ® O(f) ® O(2)

vy = (2= P))--- (2 — Py)

is the twistor space of a Gibbons-Hawking metric.
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Term ALE coined by Gibbons & Hawking, 1979.

They wrote down various explicit Ricci-flat ALE
4-manifolds they called gravitational instantons.

Their examples have just one end, with
'=%Z,cSU(2) Cc O@4).

The G-H metrics are hyper-Kahler, and were soon
independently rediscovered by Hitchin.

Hitchin conjectured that similar metrics would exist
for each finite I' C SU(2).

This conjecture was proved by Kronheimer, 1986.
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Given I' C SU(2) finite subgroup,
the orbifold C?/T" can be viewed as
singular complex surface C C3 by

choosing 3 generators of [-invariant polynomials.

I p2mi/m
Example. —2rifm c SU(2)
generates I' = Zy,. Setting
wesEG-),  a =), y-
—5\F1 T2 ) $—22’1+Zz : Y = 2122,

then identifies C?/I" with

w? + 2+ ¢y =0.
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Qo Ly — w? 4+ 22+ y™ =0

M Dihy, — <— w? +y(2? +y™) = 0

P

' T* <o w? + 23+ y* =0
' O* C w? 4+ 23 + 23 =0
. I* —> w? + 23 +° =0
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But for Klein singularities, they are diffeomorphic!

Gorenstein singularities. Crepant Resolutions.
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Term ALE coined by Gibbons & Hawking, 1979.

They wrote down various explicit Ricci-flat ALE
4-manifolds they called gravitational instantons.

Their examples have just one end, with
'=%Z,cSU(2) Cc O@4).

The G-H metrics are hyper-Kahler, and were soon
independently rediscovered by Hitchin.

Hitchin conjectured that similar metrics would exist
for each finite I' C SU(2).

Proved by Kronheimer, who also showed (1989) this
oives complete classification of ALE hyper-Kahlers.
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Any scalar-flat Kéhler surface (M?#, g, J) has a
Penrose Twistor Space (Z°,.J),

which is once again a complex 3-manifold.

Integrability condition for twistor space: Wy = 0.
For Kahler surfaces, integrable <= scalar-flat!

Many simple examples are AE or ALE.
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Data: k points in H° and one point at infinity.
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Some ALE Scalar-Flat Kahler Surfaces:

Data: k + 1 points in H>. = V with AV =0

F' = xdV curvature 6 on P — H? — {pts}.
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Blow up of Chern-class —# line bundle over CIP; at
k points on zero section ..

Riemannian completion is ALE with [' = Z,.
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V:1+€2Q0_1+]Z T



Any scalar-flat Kéhler surface (M?#, g, J) has a
Penrose Twistor Space (7, J),

which is once again a complex 3-manifold.
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Twistor Spaces for These Metrics:

HY(CP; x CPy, O(1,1)) = C' o RS o 343
mOk+¢—-1,1)00(1,k+£—1) — CP;xCIPy,
let Z be the hypersurface

vy =P P - Py

Then twistor space Z obtained from Z by

e removing curve in zero section cut out by Fp,
e adding two rational curves at infinity, and

e making small resolutions of isolated singularities.
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Any scalar-flat Kéhler surface (M?#, g, J) has a
Penrose Twistor Space (7, J),

which is once again a complex 3-manifold.

Lots more ALFE scalar-flat Kahler surfaces now known:

Joyce, Calderbank-Singer, Lock-Viaclovsky. ..

But full classification remains an open problem.



Definition. Complete, non-compact n-manifold
(M™, g) is asymptotically locally Euclidean (ALFE)
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o Y(0) ~ ST is given by |Z| = o;

e v is the outpointing Euclidean unit normal,;
and

e oy is the volume (n — 1)-from induced by the
Fuclidean metric.
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where
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e v is the outpointing Euclidean unit normal,;
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We'll see a new proof of this in the Kahler case.
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In fact, we’ll eventually prove:

Theorem C. Any ALE Kahler manifold (M, g, J)
of complex dimension m has mass given by

(M(c), W™ (m 1)
m(M, g) = = (2m — 1)pm—1 Jr4(2m — 1)x™m /M Sgdilg

where

e s = scalar curvature;

e (/1 = metric volume form;

oc; =c|(M,J)e H*(M) is first Chern class;

o [w] € HX(M) is Kdihler class of (g,J); and

o (. ) is pairing between H2(M) and H*™2(M).

o H2(M) =, H2(M) inverse of natural map.



(d(cr), [ | (m—1)!
mM,g) =~ (le— Dam=1 ' 42m — 1) /M Sgclity



Scalar-flat Kahler case:

(d(cr), [L]™ )

m(M,9) = - (2m — 1)xm—1
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Gravitational instantons?
Ricci flat! = ¢; = 0.
Mass automatically vanishes!

Bartnik: Ricci-flat = mass vanishes!
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Exploit Poincaré duality. ..
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Example. Blow up C? at k points.
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Proposition. Let (M, g,J) be an ALE scalar-
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Example. Blow up C? at k points.
1 /
M o) = —
n(00) =53 f

Always positive!l (AE): Positive mass theorem.
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over CIP at k£ points on zero section ..
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Calderbank-Singer metrics generalize for k£ # +1.
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Proposition. Let (M, g,J) be an ALE scalar-
flat Kahler surface. Let En,...Ep be a basis for
Hy(M,R), and let Q = |Qi| = |E; - Ei] be the
corresponding intersection matrix. If we define
ai,...,ap by

gt

| Ay _ _ng ‘1
then the mass of (M, g) is given by
| 14
m(M, g) = EEL E_[W]
1=1 J

where |w| denotes the Kahler class of (M, q,.J).
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Theorem B. Let (M*,g,J) be an ALE scalar-
flat Kdhler surface, and suppose that (M, .J) is

the minimal resolution of a surface singularity.
Then m(M, g) <0, with = iff g is Ricci-flat.

V. Alexeev: Q7L term-by-term < 0 for these.

Brought to our attention by C. Spotti.



Scalar-flat Kahler surface:
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End, Part 11



