Lewis, John (University of Kentucky, USA)

Existence and Regularity of a Capacitary Functions in a Minkowski Inspired Geometric Problem

Abstract: In the first part of this talk, given K a compact convex set with nonempty interior and u the A capacitary function of the complement of K, we introduce a measure μ_K (corresponding to u, A) with support in the unit sphere (denoted \mathbf{S}^{n-1}) of Euclidean n space = \mathbf{R}^n . Here $\nabla \cdot A(\nabla u) = 0$ weakly in the complement of K where $A : \mathbf{R}^n \setminus \{0\} \to \mathbf{R}^n$ is homogeneous of degree p - 1 and satisfies p Laplacian type structure conditions for fixed $p, 1 . Second given a finite positive Borel measure <math>\nu$, defined on \mathbf{S}^{n-1} , with the property that (a) the support of ν is not contained in any great circle and (b) the centroid of ν is at the origin, we outline a proof that shows for certain A, there always exists K with $\nu = \mu_K$. Third, if $d\nu = gd\sigma$ where σ is surface area on \mathbf{S}^{n-1} , we discuss what regularity of g implies about regularity of ∂K when $\nu = \mu_K$.