Iosevich, **Alex** (University of Rochester, USA)

Fuglede, Riesz and Gabor: analytic, combinatorial and number theoretic aspects of the existence problems for exponential bases

Abstract: Let Ω be a bounded domain in \mathbb{R}^d . We say that Ω is Fuglede spectral if $L^2(\Omega)$ possesses an orthogonal bases of exponentials $\{e^{2\pi i x \cdot a}\}_{a \in A}$. We say that it is Riesz spectral if $L^2(\Omega)$ possesses a Riesz basis of the same form. Finally, we say that χ_{Ω} is a window function for an orthogonal Gabor system if there exists $S \subset \mathbb{R}^{2d}$ such that $\{e^{2\pi i x \cdot a} \chi_{\Omega}(x-b)\}_{(a,b) \in S}$ is an orthogonal basis of $L^2(\mathbb{R}^d)$.

We are going to discuss the history of these problems and connections between them, with the focus on a variety of techniques from different areas of mathematics that inevitably come up. We will also establish some recently proved results about the existence and non-existence of Gabor bases in a variety of settings. Connections with combinatorial geometry and multidimensional harmonic analysis play a key role.