Harmonic measure via blow up methods and monotonicity formulas

Xavier Tolsa

<u>*icrea</u> UAB

May 22, 2018

X. Tolsa (ICREA / UAB)

Harmonic measure

May 22, 2018 1 / 27

Plan of the course

• Some preliminaries.

Plan of the course

- Some preliminaries.
- Geometric characterization of the weak- A_{∞} condition. Proof of the weak local John condition via the ACF formula.

Plan of the course

- Some preliminaries.
- Geometric characterization of the weak- A_{∞} condition. Proof of the weak local John condition via the ACF formula.
- Tsirelson's theorem. Proof by blowup methods.

Harmonic measure

 $\Omega \subset \mathbb{R}^{n+1}$ open. For $p \in \Omega$, ω^p is the harmonic measure in Ω with pole in p.

Harmonic measure

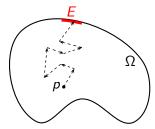
 $\Omega \subset \mathbb{R}^{n+1}$ open. For $p \in \Omega$, ω^p is the harmonic measure in Ω with pole in p. That is, for $f \in C(\partial\Omega)$, $\int f d\omega^p$ is the value at p of the harmonic extension of f to Ω .

Harmonic measure

 $\Omega \subset \mathbb{R}^{n+1}$ open. For $p \in \Omega$, ω^p is the harmonic measure in Ω with pole in p. That is, for $f \in C(\partial \Omega)$, $\int f d\omega^p$ is the value at p of the harmonic extension of f to Ω .

Probabilistic interpretation [Kakutani]:

When Ω is bounded, $\omega^{p}(E)$ is the probability that a particle with a Brownian movement leaving from $p \in \Omega$ escapes from Ω through E.



X. Tolsa (ICREA / UAB)

Rectifiability

We say that $E \subset \mathbb{R}^d$ is rectifiable if it is \mathcal{H}^1 -a.e. contained in a countable union of curves of finite length.

E is *n*-rectifiable if it is \mathcal{H}^n -a.e. contained in a countable union of C^1 (or Lipschitz) *n*-dimensional manifolds.

Rectifiability

We say that $E \subset \mathbb{R}^d$ is rectifiable if it is \mathcal{H}^1 -a.e. contained in a countable union of curves of finite length.

E is *n*-rectifiable if it is \mathcal{H}^n -a.e. contained in a countable union of C^1 (or Lipschitz) *n*-dimensional manifolds.

E is n-AD-regular if

$$\mathcal{H}^n(B(x,r) \cap E) pprox r^n$$
 for all $x \in E$, $0 < r \leq \operatorname{diam}(E)$.

E is uniformly *n*-rectifiable if it is *n*-AD-regular and there are $M, \theta > 0$ such that for all $x \in E$, $0 < r \le \text{diam}(E)$, there exists a Lipschitz map

$$g: \mathbb{R}^n \supset B_n(0,r) \rightarrow \mathbb{R}^d, \qquad \|\nabla g\|_{\infty} \leq M,$$

such that

$$\mathcal{H}^n(E \cap B(x,r) \cap g(B_n(0,r))) \geq \theta r^n.$$

X. Tolsa (ICREA / UAB)

Harmonic measure

Rectifiability

We say that $E \subset \mathbb{R}^d$ is rectifiable if it is \mathcal{H}^1 -a.e. contained in a countable union of curves of finite length.

E is *n*-rectifiable if it is \mathcal{H}^n -a.e. contained in a countable union of C^1 (or Lipschitz) *n*-dimensional manifolds.

E is n-AD-regular if

$$\mathcal{H}^n(B(x,r) \cap E) pprox r^n$$
 for all $x \in E$, $0 < r \leq \operatorname{diam}(E)$.

E is uniformly *n*-rectifiable if it is *n*-AD-regular and there are $M, \theta > 0$ such that for all $x \in E$, $0 < r \le \text{diam}(E)$, there exists a Lipschitz map

$$g: \mathbb{R}^n \supset B_n(0,r) \to \mathbb{R}^d, \qquad \|\nabla g\|_{\infty} \leq M,$$

such that

$$\mathcal{H}^n(E \cap B(x,r) \cap g(B_n(0,r))) \geq \theta r^n.$$

Uniform *n*-rectifiability is a quantitative version of *n*-rectifiability introduced by David and Semmes.

X. Tolsa (ICREA / UAB)

Harmonic measure

Metric properties of harmonic measure

- In the plane if Ω is simply connected and $\mathcal{H}^1(\partial \Omega) < \infty$, then $\mathcal{H}^1 \approx \omega^p$. (F.& M. Riesz)
- Many results in C using complex analysis (Carleson, Makarov, Jones, Bishop, Wolff,...).
- The analogue of Riesz theorem fails in higher dimensions (counterexamples by Wu and Ziemer).
- In higher dimensions, need real analysis techniques.
- A basic result of Dahlberg: If Ω is a Lipschitz domain, then ω ∈ A_∞(ℋⁿ|_{∂Ω}).

- For x, y ∈ Ω, a curve γ ⊂ Ω from x to y is a C-cigar curve with bounded turning if
 - $\min(\mathcal{H}^1(\gamma(x,z)), \mathcal{H}^1(\gamma(y,z))) \leq C \operatorname{dist}(z,\Omega^c)$ for all $z \in \gamma$, and • $\mathcal{H}^1(\gamma) \leq C |x-y|$.

- For $x, y \in \overline{\Omega}$, a curve $\gamma \subset \overline{\Omega}$ from x to y is a C-cigar curve with bounded turning if
 - $\min(\mathcal{H}^1(\gamma(x,z)), \mathcal{H}^1(\gamma(y,z))) \leq C \operatorname{dist}(z, \Omega^c)$ for all $z \in \gamma$, and • $\mathcal{H}^1(\gamma) \leq C |x-y|$.
- Ω is uniform if all x, y ∈ Ω are connected by a C-cigar curve with bounded turning.

- For $x, y \in \overline{\Omega}$, a curve $\gamma \subset \overline{\Omega}$ from x to y is a C-cigar curve with bounded turning if
 - $\min(\mathcal{H}^1(\gamma(x,z)), \mathcal{H}^1(\gamma(y,z))) \leq C \operatorname{dist}(z, \Omega^c)$ for all $z \in \gamma$, and • $\mathcal{H}^1(\gamma) \leq C |x - y|$.
- Ω is uniform if all x, y ∈ Ω are connected by a C-cigar curve with bounded turning.
- Ω is semiuniform if all $x \in \Omega$, $y \in \partial \Omega$ are connected by a *C*-cigar curve with bounded turning.

- For $x, y \in \overline{\Omega}$, a curve $\gamma \subset \overline{\Omega}$ from x to y is a C-cigar curve with bounded turning if
 - $\min(\mathcal{H}^1(\gamma(x,z)), \mathcal{H}^1(\gamma(y,z))) \leq C \operatorname{dist}(z, \Omega^c)$ for all $z \in \gamma$, and • $\mathcal{H}^1(\gamma) \leq C |x - y|$.
- Ω is uniform if all x, y ∈ Ω are connected by a C-cigar curve with bounded turning.
- Ω is semiuniform if all $x \in \Omega$, $y \in \partial \Omega$ are connected by a *C*-cigar curve with bounded turning.
- Ω is NTA if it is uniform and has exterior corkscrews,

- For $x, y \in \overline{\Omega}$, a curve $\gamma \subset \overline{\Omega}$ from x to y is a C-cigar curve with bounded turning if
 - $\min(\mathcal{H}^1(\gamma(x,z)), \mathcal{H}^1(\gamma(y,z))) \leq C \operatorname{dist}(z, \Omega^c)$ for all $z \in \gamma$, and • $\mathcal{H}^1(\gamma) \leq C |x-y|$.
- Ω is uniform if all x, y ∈ Ω are connected by a C-cigar curve with bounded turning.
- Ω is semiuniform if all $x \in \Omega$, $y \in \partial \Omega$ are connected by a *C*-cigar curve with bounded turning.
- Ω is NTA if it is uniform and has exterior corkscrews, i.e. for every ball B centered at ∂Ω there is another ball B' ⊂ B \ Ω with r(B') ≈ r(B).

Let $\Omega \subset \mathbb{R}^{n+1}$ be open.

- For $x, y \in \overline{\Omega}$, a curve $\gamma \subset \overline{\Omega}$ from x to y is a C-cigar curve with bounded turning if
 - $\min(\mathcal{H}^1(\gamma(x,z)), \mathcal{H}^1(\gamma(y,z))) \leq C \operatorname{dist}(z, \Omega^c)$ for all $z \in \gamma$, and • $\mathcal{H}^1(\gamma) \leq C |x-y|$.
- Ω is uniform if all $x, y \in \Omega$ are connected by a *C*-cigar curve with bounded turning.
- Ω is semiuniform if all $x \in \Omega$, $y \in \partial \Omega$ are connected by a *C*-cigar curve with bounded turning.
- Ω is NTA if it is uniform and has exterior corkscrews, i.e. for every ball B centered at ∂Ω there is another ball B' ⊂ B \ Ω with r(B') ≈ r(B).

$$\mathsf{NTA} \ \subsetneq \ \mathsf{uniform} \ \subsetneq \ \mathsf{semiuniform}.$$

X. Tolsa (ICREA / UAB)

Let $\Omega \subset \mathbb{R}^{n+1}$ be open.

- For $x, y \in \overline{\Omega}$, a curve $\gamma \subset \overline{\Omega}$ from x to y is a C-cigar curve with bounded turning if
 - $\min(\mathcal{H}^1(\gamma(x,z)), \mathcal{H}^1(\gamma(y,z))) \leq C \operatorname{dist}(z, \Omega^c)$ for all $z \in \gamma$, and

$$\mathcal{H}^{1}(\gamma) \leq C |x - y|.$$

- Ω is uniform if all x, y ∈ Ω are connected by a C-cigar curve with bounded turning.
- Ω is semiuniform if all $x \in \Omega$, $y \in \partial \Omega$ are connected by a *C*-cigar curve with bounded turning.
- Ω is NTA if it is uniform and has exterior corkscrews, i.e. for every ball B centered at ∂Ω there is another ball B' ⊂ B \ Ω with r(B') ≈ r(B).

A non trivial NTA domain:

X. Tolsa (ICREA / UAB)

Harmonic measure

Let $\Omega \subset \mathbb{R}^{n+1}$ be open.

- For $x, y \in \overline{\Omega}$, a curve $\gamma \subset \overline{\Omega}$ from x to y is a C-cigar curve with bounded turning if
 - $\min(\mathcal{H}^1(\gamma(x,z)), \mathcal{H}^1(\gamma(y,z))) \leq C \operatorname{dist}(z, \Omega^c)$ for all $z \in \gamma$, and

•
$$\mathcal{H}^1(\gamma) \leq C |x-y|.$$

- Ω is uniform if all $x, y \in \Omega$ are connected by a *C*-cigar curve with bounded turning.
- Ω is semiuniform if all $x \in \Omega$, $y \in \partial \Omega$ are connected by a *C*-cigar curve with bounded turning.
- Ω is NTA if it is uniform and has exterior corkscrews, i.e. for every ball B centered at ∂Ω there is another ball B' ⊂ B \ Ω with r(B') ≈ r(B).

Example: The complement of this Cantor set is uniform but not NTA:

X. Tolsa (ICREA / UAB)

Harmonic measure

Harmonic measure in different types of domains

Definition: We say that $\omega \in A_{\infty}$ if, for any ball *B* centered in $\partial\Omega$ and $p \in \Omega \setminus 2B$, $\omega^p \in A_{\infty}(\mathcal{H}^n|_{\partial\Omega \cap B})$ uniformly.

Harmonic measure in different types of domains Definition: We say that $\omega \in A_{\infty}$ if, for any ball *B* centered in $\partial\Omega$ and $p \in \Omega \setminus 2B$, $\omega^p \in A_{\infty}(\mathcal{H}^n|_{\partial\Omega \cap B})$ uniformly.

Theorem (David, Jerison / Semmes)

If Ω is NTA and $\partial \Omega$ is uniformly n-rectifiable, then $\omega \in A_{\infty}$.

Harmonic measure in different types of domains

Definition: We say that $\omega \in A_{\infty}$ if, for any ball *B* centered in $\partial\Omega$ and $p \in \Omega \setminus 2B$, $\omega^p \in A_{\infty}(\mathcal{H}^n|_{\partial\Omega \cap B})$ uniformly.

Theorem (Hofmann, Martell, Uriarte-Tuero) Let $\Omega \subset \mathbb{R}^{n+1}$ be uniform, with $\partial \Omega$ n-AD-regular. TFAE: (a) $\omega \in A_{\infty}$.

Harmonic measure in different types of domains

Definition: We say that $\omega \in A_{\infty}$ if, for any ball *B* centered in $\partial\Omega$ and $p \in \Omega \setminus 2B$, $\omega^p \in A_{\infty}(\mathcal{H}^n|_{\partial\Omega\cap B})$ uniformly.

Theorem (Hofmann, Martell, Uriarte-Tuero) Let $\Omega \subset \mathbb{R}^{n+1}$ be uniform, with $\partial \Omega$ n-AD-regular. TFAE: (a) $\omega \in A_{\infty}$.

(b) $\partial \Omega$ is uniformly n-rectifiable.

Harmonic measure in different types of domains Definition: We say that $\omega \in A_{\infty}$ if, for any ball *B* centered in $\partial\Omega$ and $p \in \Omega \setminus 2B$, $\omega^p \in A_{\infty}(\mathcal{H}^n|_{\partial\Omega \cap B})$ uniformly.

Theorem (Hofmann, Martell, Uriarte-Tuero) Let $\Omega \subset \mathbb{R}^{n+1}$ be uniform, with $\partial \Omega$ n-AD-regular. TFAE: (a) $\omega \in A_{\infty}$.

- (b) $\partial \Omega$ is uniformly n-rectifiable.
 - (b) \Rightarrow (a) by Hofmann and Martell.

Harmonic measure in different types of domains Definition: We say that $\omega \in A_{\infty}$ if, for any ball *B* centered in $\partial\Omega$ and $p \in \Omega \setminus 2B$, $\omega^p \in A_{\infty}(\mathcal{H}^n|_{\partial\Omega \cap B})$ uniformly.

Theorem (Hofmann, Martell, Uriarte-Tuero) Let $\Omega \subset \mathbb{R}^{n+1}$ be uniform, with $\partial \Omega$ n-AD-regular. TFAE: (a) $\omega \in A_{\infty}$.

- (b) $\partial \Omega$ is uniformly n-rectifiable.
 - (b) \Rightarrow (a) by Hofmann and Martell.
 - (a) ⇒ (b) by Hofmann, Martell and Uriarte-Tuero (alternative argument by Azzam, Hofmann, Martell, Nyström and Toro).

Harmonic measure in different types of domains

Definition: We say that $\omega \in A_{\infty}$ if, for any ball *B* centered in $\partial\Omega$ and $p \in \Omega \setminus 2B$, $\omega^p \in A_{\infty}(\mathcal{H}^n|_{\partial\Omega \cap B})$ uniformly.

Theorem (Hofmann, Martell, Uriarte-Tuero) Let $\Omega \subset \mathbb{R}^{n+1}$ be uniform, with $\partial\Omega$ n-AD-regular. TFAE: (a) $\omega \in A_{\infty}$. (b) $\partial\Omega$ is uniformly n-rectifiable.

Theorem (Azzam) Let $\Omega \subset \mathbb{R}^{n+1}$, with $\partial \Omega$ n-AD-regular. TFAE: (a) $\omega \in A_{\infty}$. (b) $\partial \Omega$ is uniformly n-rectifiable and Ω is semiuniform.

X. Tolsa (ICREA / UAB)

Harmonic measure in different types of domains

Definition: We say that $\omega \in A_{\infty}$ if, for any ball *B* centered in $\partial\Omega$ and $p \in \Omega \setminus 2B$, $\omega^p \in A_{\infty}(\mathcal{H}^n|_{\partial\Omega \cap B})$ uniformly.

Theorem (Hofmann, Martell, Uriarte-Tuero) Let $\Omega \subset \mathbb{R}^{n+1}$ be uniform, with $\partial\Omega$ n-AD-regular. TFAE: (a) $\omega \in A_{\infty}$. (b) $\partial\Omega$ is uniformly n-rectifiable.

Theorem (Azzam) Let $\Omega \subset \mathbb{R}^{n+1}$, with $\partial \Omega$ n-AD-regular. TFAE: (a) $\omega \in A_{\infty}$. (b) $\partial \Omega$ is uniformly n-rectifiable and Ω is semiuniform.

• A previous partial result by Aikawa and Hirata.

X. Tolsa (ICREA / UAB)

Harmonic measure

Consider the PDE:

$$\left\{ \begin{array}{l} \Delta u = 0 \quad \text{in } \Omega, \\ u = f \quad \text{in } \partial \Omega. \end{array} \right.$$

Consider the PDE:

$$\begin{cases} \Delta u = 0 \quad \text{in } \Omega, \\ u = f \quad \text{in } \partial \Omega. \end{cases}$$

 $\text{For } x \in \partial \Omega \text{, denote} \quad \textit{Nu}(x) = \sup_{y \in \Gamma(x)} |u(y)|.$

Consider the PDE:

$$\begin{cases} \Delta u = 0 \quad \text{in } \Omega, \\ u = f \quad \text{in } \partial \Omega. \end{cases}$$

For $x \in \partial \Omega$, denote $Nu(x) = \sup_{y \in \Gamma(x)} |u(y)|$.

<

Theorem (Hofmann, Le)

Let $\Omega \subset \mathbb{R}^{n+1}$, with $\partial \Omega$ n-AD-regular, satisfying the interior corkscrew condition. TFAE:

(a) For some
$$p > 1$$
, the Dirichlet problem is L^p -solvable, i.e.
 $\|Nu\|_{L^p(\mathcal{H}^n|_{\partial\Omega})} \le C \|f\|_{L^p(\mathcal{H}^n|_{\partial\Omega})}$ for all $f \in L^p(\mathcal{H}^n|_{\partial\Omega})$.

Consider the PDE:

$$\begin{cases} \Delta u = 0 \quad \text{in } \Omega, \\ u = f \quad \text{in } \partial \Omega. \end{cases}$$

For $x \in \partial \Omega$, denote $Nu(x) = \sup_{y \in \Gamma(x)} |u(y)|$.

<

Theorem (Hofmann, Le)

Let $\Omega \subset \mathbb{R}^{n+1}$, with $\partial \Omega$ n-AD-regular, satisfying the interior corkscrew condition. TFAE:

(a) For some p > 1, the Dirichlet problem is L^p -solvable, i.e. $\|Nu\|_{L^p(\mathcal{H}^n|_{\partial\Omega})} \le C \|f\|_{L^p(\mathcal{H}^n|_{\partial\Omega})}$ for all $f \in L^p(\mathcal{H}^n|_{\partial\Omega})$.

(b) $\omega \in \text{weak} - A_{\infty}$.

• Ω satisfies the interior corkscrew condition if for every ball B centered at $\partial \Omega$ with $r(B) \leq \text{diam}(\Omega)$ there is another ball $B' \subset B \cap \Omega$ with $r(B') \approx r(B)$.

- Ω satisfies the interior corkscrew condition if for every ball B centered at $\partial \Omega$ with $r(B) \leq \text{diam}(\Omega)$ there is another ball $B' \subset B \cap \Omega$ with $r(B') \approx r(B)$.
- We say that ω ∈ weak-A_∞ if for every ε ∈ (0, 1) there exists δ ∈ (0, 1) such that for every ball B centered at ∂Ω, all p ∈ Ω \ 4B, and all E ⊂ B ∩ ∂Ω, the following holds:

 $\text{if} \quad \mathcal{H}^n(E) \leq \delta \, \mathcal{H}^n(B \cap \partial \Omega), \quad \text{ then } \quad \omega^p(E) \leq \varepsilon \, \omega^p(2B).$

- Ω satisfies the interior corkscrew condition if for every ball B centered at $\partial \Omega$ with $r(B) \leq \text{diam}(\Omega)$ there is another ball $B' \subset B \cap \Omega$ with $r(B') \approx r(B)$.
- We say that ω ∈ weak-A_∞ if for every ε ∈ (0, 1) there exists
 δ ∈ (0, 1) such that for every ball B centered at ∂Ω, all p ∈ Ω \ 4B, and all E ⊂ B ∩ ∂Ω, the following holds:

 $\text{if} \quad \mathcal{H}^n(E) \leq \delta \, \mathcal{H}^n(B \cap \partial \Omega), \quad \text{ then } \quad \omega^p(E) \leq \varepsilon \, \omega^p(2B).$

The weak-A_∞ condition implies ω ≪ Hⁿ|_{∂Ω}.
 But, ω may be non-doubling, and we may have Hⁿ|_{∂Ω} ≰ ω.

- Ω satisfies the interior corkscrew condition if for every ball B centered at $\partial \Omega$ with $r(B) \leq \text{diam}(\Omega)$ there is another ball $B' \subset B \cap \Omega$ with $r(B') \approx r(B)$.
- We say that ω ∈ weak-A_∞ if for every ε ∈ (0,1) there exists δ ∈ (0,1) such that for every ball B centered at ∂Ω, all p ∈ Ω \ 4B, and all E ⊂ B ∩ ∂Ω, the following holds:

 $\text{if} \quad \mathcal{H}^n(E) \leq \delta \, \mathcal{H}^n(B \cap \partial \Omega), \quad \text{ then } \quad \omega^p(E) \leq \varepsilon \, \omega^p(2B).$

- The weak-A_∞ condition implies ω ≪ Hⁿ|_{∂Ω}.
 But, ω may be non-doubling, and we may have Hⁿ|_{∂Ω} ≰ ω.
- Problem: Find a geometric characterization of the weak- A_{∞} condition.

X. Tolsa (ICREA / UAB)

Harmonic measure

Geometric characterization of the weak- A_{∞} condition I

 ω ∈ weak−A_∞ + interior corkscrew condition ⇒ ∂Ω is uniformly n-rectifiable [Hofmann, Martell], [Mourgoglou-T.].

Geometric characterization of the weak- A_{∞} condition I

- ω ∈ weak−A_∞ + interior corkscrew condition ⇒ ∂Ω is uniformly n-rectifiable [Hofmann, Martell], [Mourgoglou-T.].
- But $\partial \Omega$ uniformly *n*-rectifiable $\Rightarrow \omega \in \text{weak}-A_{\infty}$ (Bishop, Jones).

Geometric characterization of the weak- A_{∞} condition II

 Given x ∈ Ω, y ∈ ∂Ω, a c-carrot curve from x to y is a curve γ ⊂ Ω ∪ {y} with end-points x and y such that dist(z, ∂Ω) ≥ c H¹(γ(y, z)) for all z ∈ γ, where γ(y, z) is the arc in γ between y and z.

Geometric characterization of the weak- A_{∞} condition II

- Given x ∈ Ω, y ∈ ∂Ω, a c-carrot curve from x to y is a curve γ ⊂ Ω ∪ {y} with end-points x and y such that dist(z, ∂Ω) ≥ c H¹(γ(y, z)) for all z ∈ γ, where γ(y, z) is the arc in γ between y and z.
- We denote $\delta_{\Omega}(x) = \text{dist}(x, \partial \Omega)$.

Geometric characterization of the weak- A_{∞} condition II

 Given x ∈ Ω, y ∈ ∂Ω, a c-carrot curve from x to y is a curve γ ⊂ Ω ∪ {y} with end-points x and y such that dist(z, ∂Ω) ≥ c H¹(γ(y, z)) for all z ∈ γ, where γ(y, z) is the arc in γ between y and z.

• We denote
$$\delta_{\Omega}(x) = \text{dist}(x, \partial \Omega)$$
.

We say that Ω satisfies the weak local John condition if there are
 λ, θ ∈ (0, 1) such that for every x ∈ Ω there is a Borel set
 F ⊂ B(x, 2δ_Ω(x)) ∩ ∂Ω with Hⁿ(F) ≥ θ Hⁿ(B(x, 2δ_Ω(x)) ∩ ∂Ω) such
 that every y ∈ F can be joined to x by a λ-carrot curve.

Theorem (Hofmann, Martell)

Let $\Omega \subset \mathbb{R}^{n+1}$ be an open set with uniformly n-rectifiable boundary satisfying the weak local John condition. Then $\omega \in \text{weak}-A_{\infty}$.

Theorem (Hofmann, Martell)

Let $\Omega \subset \mathbb{R}^{n+1}$ be an open set with uniformly n-rectifiable boundary satisfying the weak local John condition. Then $\omega \in \text{weak}-A_{\infty}$.

Hofmann and Martell conjectured that the converse also holds.

Theorem (Hofmann, Martell)

Let $\Omega \subset \mathbb{R}^{n+1}$ be an open set with uniformly n-rectifiable boundary satisfying the weak local John condition. Then $\omega \in \text{weak}-A_{\infty}$.

Hofmann and Martell conjectured that the converse also holds.

Theorem (Azzam, Mourgoglou, T.) Let $\Omega \subset \mathbb{R}^{n+1}$ be open with n-AD-regular boundary. If $\omega \in \text{weak}-A_{\infty}$, then Ω satisfies the weak local John condition.

Putting all together:

Theorem

Let $\Omega \subset \mathbb{R}^{n+1}$ be open with n-AD-regular boundary, satisfying the interior corkscrew condition. TFAE:

Putting all together:

Theorem

Let $\Omega \subset \mathbb{R}^{n+1}$ be open with n-AD-regular boundary, satisfying the interior corkscrew condition. TFAE:

(a) $\omega \in \text{weak} - A_{\infty}$.

Putting all together:

Theorem

Let $\Omega \subset \mathbb{R}^{n+1}$ be open with n-AD-regular boundary, satisfying the interior corkscrew condition. TFAE:

- (a) $\omega \in \text{weak} A_{\infty}$.
- (b) $\partial \Omega$ is uniformly n-rectifiable and Ω satisfies the weak local John condition.

Putting all together:

Theorem

Let $\Omega \subset \mathbb{R}^{n+1}$ be open with n-AD-regular boundary, satisfying the interior corkscrew condition. TFAE:

- (a) $\omega \in \text{weak} A_{\infty}$.
- (b) $\partial \Omega$ is uniformly n-rectifiable and Ω satisfies the weak local John condition.

Remark

Later Hofmann and Martell have shown that (b) $\Rightarrow \Omega$ has big pieces of chord-arc subdomains (BPCAS).

Putting all together:

Theorem

Let $\Omega \subset \mathbb{R}^{n+1}$ be open with n-AD-regular boundary, satisfying the interior corkscrew condition. TFAE:

(a) $\omega \in \text{weak} - A_{\infty}$.

(b) $\partial \Omega$ is uniformly n-rectifiable and Ω satisfies the weak local John condition.

Remark

Later Hofmann and Martell have shown that (b) $\Rightarrow \Omega$ has big pieces of chord-arc subdomains (BPCAS).

Since $BPCAS \Rightarrow \omega \in weak - A_{\infty}$ (Bennewitz, Lewis), we have

(a)
$$\iff$$
 (b) \iff BPCAS.

Putting all together:

Theorem

Let $\Omega \subset \mathbb{R}^{n+1}$ be open with n-AD-regular boundary, satisfying the interior corkscrew condition. TFAE:

- (a) $\omega \in \text{weak} A_{\infty}$.
- (b) $\partial \Omega$ is uniformly n-rectifiable and Ω satisfies the weak local John condition.
- (c) Ω has BPCAS.

Some ideas for the proof of the weak local John condition

 For p ∈ Ω, we have to build carrot curves that connect a big proportion of the points from B(p, 2δ_Ω(p)) ∩ ∂Ω to p.

Some ideas for the proof of the weak local John condition

- For p ∈ Ω, we have to build carrot curves that connect a big proportion of the points from B(p, 2δ_Ω(p)) ∩ ∂Ω to p.
- We use the Green function to construct the curves.
 A fundamental property:
 For all λ > 0, {x ∈ Ω : g(p, x) > λ} is connected and contains p.

Some ideas for the proof of the weak local John condition

- For p ∈ Ω, we have to build carrot curves that connect a big proportion of the points from B(p, 2δ_Ω(p)) ∩ ∂Ω to p.
- We use the Green function to construct the curves.
 A fundamental property:
 For all λ > 0, {x ∈ Ω : g(p, x) > λ} is connected and contains p.
- Important difficulties:

 ω^{p} may be non doubling. ω^{p_1} and ω^{p_2} may be mutually singular. Otherwise we could argue with different poles $p_1, p_2, ...$

The ACF formula

Theorem (Alt-Caffarelli-Friedman)

Let $B(x, R) \subset \mathbb{R}^{n+1}$, and let $u_1, u_2 \in W^{1,2}(B(x, R)) \cap C(B(x, R))$ be nonnegative subharmonic functions. Suppose that that $u_1(x) = u_2(x) = 0$ and $u_1 \cdot u_2 \equiv 0$. Set

$$J_i(x,r) = \frac{1}{r^2} \int_{B(x,r)} \frac{|\nabla u_i(y)|^2}{|y-x|^{n-1}} dy,$$

and $J(x,r) = J_1(x,r) J_2(x,r)$.

The ACF formula

Theorem (Alt-Caffarelli-Friedman)

Let $B(x, R) \subset \mathbb{R}^{n+1}$, and let $u_1, u_2 \in W^{1,2}(B(x, R)) \cap C(B(x, R))$ be nonnegative subharmonic functions. Suppose that that $u_1(x) = u_2(x) = 0$ and $u_1 \cdot u_2 \equiv 0$. Set

$$J_i(x,r) = \frac{1}{r^2} \int_{B(x,r)} \frac{|\nabla u_i(y)|^2}{|y-x|^{n-1}} dy,$$

and $J(x,r) = J_1(x,r) J_2(x,r)$. Then $J(x, \cdot)$ is non-decreasing in $r \in (0, R]$. Further, $J_i(x,r) \leq \frac{1}{r^2} ||u_i||_{\infty,B(x,2r)}^2$.

The ACF formula

Theorem (Alt-Caffarelli-Friedman)

Let $B(x, R) \subset \mathbb{R}^{n+1}$, and let $u_1, u_2 \in W^{1,2}(B(x, R)) \cap C(B(x, R))$ be nonnegative subharmonic functions. Suppose that that $u_1(x) = u_2(x) = 0$ and $u_1 \cdot u_2 \equiv 0$. Set

$$J_i(x,r) = \frac{1}{r^2} \int_{B(x,r)} \frac{|\nabla u_i(y)|^2}{|y-x|^{n-1}} dy,$$

and $J(x,r) = J_1(x,r) J_2(x,r)$. Then $J(x, \cdot)$ is non-decreasing in $r \in (0, R]$. Further, $J_i(x,r) \leq \frac{1}{r^2} ||u_i||_{\infty,B(x,2r)}^2$.

This formula is a basic tool in free boundary problems.

X. Tolsa (ICREA / UAB)

Harmonic measure

The case of equality in the ACF formula

Theorem

Let B(x, R) and u_1, u_2 be as in the previous theorem. Suppose that $J(x, r_a) = J(x, r_b)$ for some $0 < r_a < r_b < R$. Then either one or the other of the following holds:

(a)
$$u_1 = 0$$
 in $B(x, r_b)$ or $u_2 = 0$ in $B(x, r_b)$;

(b) there exists a unit vector e and constants $k_1, k_2 > 0$ such that

$$u_1(y) = k_1 ((y-x) \cdot e)^+, \qquad u_2(y) = k_2 ((y-x) \cdot e)^-, \qquad \text{in } B(x, r_b).$$

A quantification of the previous result

Theorem

Let B(x, R) and u_1, u_2 be as in the previous theorem, such that each u_i is harmonic in $\{y \in B(x, R) : u_i(y) > 0\}$. Assume also that

$$\|u_i\|_{\infty,\mathcal{B}(x,R)} \leq C_1 R$$
 and $\|u_i\|_{\operatorname{Lip}^{\alpha},\mathcal{B}(x,R)} \leq C_1 R^{1-\alpha}$ for $i=1,2$.

For any $\varepsilon > 0$, there exists some $\delta > 0$ such that if

$$J(x,\frac{1}{2}R) \leq (1+\delta) J(x,\frac{1}{4}R),$$

then either one or the other of the following holds:

(a)
$$\|u_1\|_{\infty,B(x,\frac{1}{2}R)} \le \varepsilon R$$
 or $\|u_2\|_{\infty,B(x,\frac{1}{2}R)} \le \varepsilon R$;
(b) there exists a unit vector e and constants $k_1, k_2 > 0$ such that

$$\|u_i - k_i \left((\cdot - x) \cdot e\right)^+\|_{\infty, B(x, \frac{1}{2}R)} \leq \varepsilon R \quad \text{ for } i = 1, 2.$$

X. Tolsa (ICREA / UAB)

Harmonic measure

Using a corona decomposition we combine the construction of short paths using ACF with geometric arguments.

Using a corona decomposition we combine the construction of short paths using ACF with geometric arguments.

Theorem (David-Semmes)

Let E be n-AD-regular and $\mu = \mathcal{H}^n|_E$. Let \mathcal{D}_μ be a dyadic lattice of cubes associated to μ .

Using a corona decomposition we combine the construction of short paths using ACF with geometric arguments.

Theorem (David-Semmes)

Let E be n-AD-regular and $\mu = \mathcal{H}^n|_E$. Let \mathcal{D}_μ be a dyadic lattice of cubes associated to μ . Then E is uniformly n-rectifiable if and only if there exists a partition of \mathcal{D}_μ into **trees** $\mathcal{T} \in I$ satisfying:

Using a corona decomposition we combine the construction of short paths using ACF with geometric arguments.

Theorem (David-Semmes)

Let E be n-AD-regular and $\mu = \mathcal{H}^n|_E$. Let \mathcal{D}_μ be a dyadic lattice of cubes associated to μ . Then E is uniformly n-rectifiable if and only if there exists a partition of \mathcal{D}_μ into **trees** $\mathcal{T} \in I$ satisfying:

(a) The family of roots of $\mathcal{T} \in I$ fulfils the packing condition

$$\sum_{\mathcal{T} \in I: \operatorname{Root}(\mathcal{T}) \subset S} \mu(\operatorname{Root}(\mathcal{T})) \leq C \, \mu(S) \quad \textit{for all } S \in \mathcal{D}_{\mu}$$

Using a corona decomposition we combine the construction of short paths using ACF with geometric arguments.

Theorem (David-Semmes)

Let E be n-AD-regular and $\mu = \mathcal{H}^n|_E$. Let \mathcal{D}_μ be a dyadic lattice of cubes associated to μ . Then E is uniformly n-rectifiable if and only if there exists a partition of \mathcal{D}_μ into **trees** $\mathcal{T} \in I$ satisfying:

(a) The family of roots of $\mathcal{T} \in I$ fulfils the packing condition

$$\sum_{\mathcal{T}\in I: \operatorname{Root}(\mathcal{T})\subset \mathcal{S}} \mu(\operatorname{Root}(\mathcal{T})) \leq C\,\mu(\mathcal{S}) \quad \textit{for all } \mathcal{S}\in \mathcal{D}_{\mu}$$

 (b) In each T ∈ I, E is "very well approximated" by an n-dimensional Lipschitz graph Γ_T. That is, for all Q ∈ T, dist(Q, Γ_T) ≤ ℓ(Q).

How to build another corona decomposition

Fix $0 < \varepsilon \ll 1$. Define Top₀ = { R_0 }. Assume $G_0 = R_0$ for simplicity.

How to build another corona decomposition

Fix $0 < \varepsilon \ll 1$. Define $\text{Top}_0 = \{R_0\}$. Assume $G_0 = R_0$ for simplicity. Given and $\text{Top}_k \subset \mathcal{D}_\mu(R_0)$, with $\bigcup_{P \in \text{Top}_k} P = R_0$, Top_{k+1} is the maximal subfamily of cubes Q strictly contained in cubes from Top_k such that $b\beta(100Q) > \varepsilon$, where

$$b\beta(100Q) = \inf_{L \text{ n-plane}} \frac{\text{dist}_H(L \cap 100B_Q, \ \partial\Omega \cap 100B_Q)}{r(100B_Q)}$$

٠

How to build another corona decomposition

Fix $0 < \varepsilon \ll 1$. Define $\text{Top}_0 = \{R_0\}$. Assume $G_0 = R_0$ for simplicity.

Given and $\operatorname{Top}_k \subset \mathcal{D}_\mu(R_0)$, with $\bigcup_{P \in \operatorname{Top}_k} P = R_0$, Top_{k+1} is the maximal subfamily of cubes Q strictly contained in cubes from Top_k such that $b\beta(100Q) > \varepsilon$, where

$$b\beta(100Q) = \inf_{L \text{ n-plane}} \frac{\text{dist}_{H}(L \cap 100B_Q, \ \partial\Omega \cap 100B_Q)}{r(100B_Q)}$$

We set $\text{Top} = \bigcup_{k \ge 0} \text{Top}_k$. For $R \in \text{Top}_k$, $\text{Tree}(R) = \{Q \subset R : Q \text{ not contained in any cube from } \text{Top}_{k+1}\}$. R is called *root* of Tree(R).

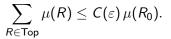
X. Tolsa (ICREA / UAB)

٠

We have:

$$\mathcal{D}_{\mu}(R_0) = igcup_{R\in\mathsf{Top}}\mathsf{Tree}(R)$$

and



We have:

$$\mathcal{D}_{\mu}(R_0) = igcup_{R\in\mathsf{Top}}\mathsf{Tree}(R)$$

and

$$\sum_{R\in\mathsf{Top}}\mu(R)\leq C(\varepsilon)\,\mu(R_0).$$

For $R \in \text{Top}$, we set

$$R\in \mathsf{Top}_s$$
 if $\mathsf{Tree}(R)=\{R\}$ (short tree),

and

$$R \in \operatorname{Top}_{\ell}$$
 if $\#\operatorname{Tree}(R) > 1$ (long tree).

We have:

$$\mathcal{D}_{\mu}(R_0) = igcup_{R\in\mathsf{Top}}\mathsf{Tree}(R)$$

and

$$\sum_{R\in\mathsf{Top}}\mu(R)\leq C(\varepsilon)\,\mu(R_0).$$

For $R \in \text{Top}$, we set

$$R\in \operatorname{\mathsf{Top}}_s$$
 if $\operatorname{\mathsf{Tree}}(R)=\{R\}$ (short tree),

and

$$R \in \operatorname{Top}_{\ell}$$
 if $\#\operatorname{Tree}(R) > 1$ (long tree).
If $R \in \operatorname{Top}_{\ell}$, then $b\beta(50Q) \leq C\varepsilon$ for any $Q \in \operatorname{Tree}(R)$.

We have:

$$\mathcal{D}_{\mu}(R_0) = igcup_{R\in\mathsf{Top}}\mathsf{Tree}(R)$$

and

$$\sum_{R\in\mathsf{Top}}\mu(R)\leq C(\varepsilon)\,\mu(R_0).$$

For $R \in \text{Top}$, we set

$$R\in \operatorname{\mathsf{Top}}_s$$
 if $\operatorname{\mathsf{Tree}}(R)=\{R\}$ (short tree),

and

$$R \in \operatorname{Top}_{\ell}$$
 if $\#\operatorname{Tree}(R) > 1$ (long tree)
If $R \in \operatorname{Top}_{\ell}$, then $b\beta(50Q) \leq C\varepsilon$ for any $Q \in \operatorname{Tree}(R)$.
If $R \in \operatorname{Top}_{s}$, we may have $b\beta(50Q) \gg \varepsilon$.

The Key Lemma

Lemma (Key Lemma) Let $\eta, \lambda > 0$ and $R \in \mathsf{Top}_{\ell}$.

The Key Lemma

Lemma (Key Lemma)

Let $\eta, \lambda > 0$ and $R \in \text{Top}_{\ell}$. Then there exists $\text{Ex}(R) \subset \text{Stop}(R) \cap G$ such that

$$\sum_{P\in\mathsf{Ex}(R)}\mu(P)\leq\eta\,\mu(R)$$

and such that every $Q \in \text{Stop}(R) \cap G \setminus \text{Ex}(R)$ can be joined to a good (λ', τ_0) -good corkscrew x_R by a C-nice curve, with $\lambda' = \lambda'(\eta, \lambda)$, $C = C(\eta, \lambda)$.

The Key Lemma

Lemma (Key Lemma)

Let $\eta, \lambda > 0$ and $R \in \text{Top}_{\ell}$. Then there exists $\text{Ex}(R) \subset \text{Stop}(R) \cap G$ such that

$$\sum_{P\in\mathsf{Ex}(R)}\mu(P)\leq\eta\,\mu(R)$$

and such that every $Q \in \text{Stop}(R) \cap G \setminus \text{Ex}(R)$ can be joined to a good (λ', τ_0) -good corkscrew x_R by a C-nice curve, with $\lambda' = \lambda'(\eta, \lambda)$, $C = C(\eta, \lambda)$.

A key fact: we do not ask ε to depend on λ or η .

X. Tolsa (ICREA / UAB)

Harmonic measure

Strategy for the proof of the Theorem

Given N > 1, set

$$VG_0 = \{x \in G_0 : \sum_{R \in \mathsf{Top}} \chi_R \le N\}.$$

Since $\sum_{R \in \text{Top}} \mu(R) \le C(\varepsilon) \mu(R_0)$ choosing $N = N(\varepsilon)$ big enough, by Chebyshev

$$\mu(VG_0) \geq \frac{1}{2}\,\mu(G) \gtrsim \mu(R_0).$$

Strategy for the proof of the Theorem

Given N > 1, set

$$VG_0 = \{x \in G_0 : \sum_{R \in \mathsf{Top}} \chi_R \le N\}.$$

Since $\sum_{R \in \text{Top}} \mu(R) \le C(\varepsilon) \mu(R_0)$ choosing $N = N(\varepsilon)$ big enough, by Chebyshev

$$\mu(VG_0) \geq \frac{1}{2}\,\mu(G) \gtrsim \mu(R_0).$$

By a suitable algorithm which combines a repeated application of the "short paths" Lemma and the Key Lemma, we will be able to connect a big piece of VG_0 to p by carrot curves, modulo an small exceptional set.

Idea of proof of the Key Lemma (1) Let $R \in \text{Top}_{\ell}$, Γ_R approximating chord surface, and Ω_R^1 , Ω_R^2 approximating chord-arc domains.

Let $R \in \text{Top}_{\ell}$, Γ_R approximating chord surface, and Ω_R^1 , Ω_R^2 approximating chord-arc domains.

Suppose that for each $Q \in \text{Stop}(R)$, there exists a (λ, τ_0) -good corkscrew $x_Q^1 \in \Omega_R^1$.

Let $R \in \text{Top}_{\ell}$, Γ_R approximating chord surface, and Ω_R^1 , Ω_R^2 approximating chord-arc domains.

Suppose that for each $Q \in \text{Stop}(R)$, there exists a (λ, τ_0) -good corkscrew $x_Q^1 \in \Omega_R^1$.

Consider a C^{∞} bump function such that $\chi_{B_R} \leq \varphi \leq \chi_{2B_R}$. Using the identity

$$\begin{split} g(p, x_Q^1) &= g(p, x_Q^1) \varphi(x_Q^1) \\ &= \int_{\Omega_R^1} \nabla(g(p, \cdot) \varphi)(y) \cdot \nabla g_{\Omega_R^1}(q, y) \, dy + \int g(p, y) \, \varphi(y) \, d\omega_{\Omega_R}^{x_Q^1}(y), \end{split}$$

Let $R \in \text{Top}_{\ell}$, Γ_R approximating chord surface, and Ω_R^1 , Ω_R^2 approximating chord-arc domains.

Suppose that for each $Q \in \text{Stop}(R)$, there exists a (λ, τ_0) -good corkscrew $x_Q^1 \in \Omega_R^1$.

Consider a C^{∞} bump function such that $\chi_{B_R} \leq \varphi \leq \chi_{2B_R}$. Using the identity

$$\begin{split} g(p, x_Q^1) &= g(p, x_Q^1) \varphi(x_Q^1) \\ &= \int_{\Omega_R^1} \nabla(g(p, \cdot) \varphi)(y) \cdot \nabla g_{\Omega_R^1}(q, y) \, dy + \int g(p, y) \, \varphi(y) \, d\omega_{\Omega_R}^{x_Q^1}(y), \end{split}$$

we prove

$$\sum_{Q\in \operatorname{Stop}(R)} g(p, x_Q^1) \, \ell(Q)^{n-1} \leq C \, \frac{g(p, x_R^1)}{\ell(R)} \, \mu(R) + \operatorname{Err}_{\mathcal{X}}^{n-1}$$

with

$$\operatorname{Err} \leq C \, \varepsilon^{a} \, rac{\mu(R)}{\ell(R_{0})^{n}}, \qquad a > 0.$$

X. Tolsa (ICREA / UAB)

Harmonic measure

$$\sum_{Q\in \operatorname{Stop}(R)} g(p, x_Q^1) \, \ell(Q)^{n-1} \leq C \, \frac{g(p, x_R^1)}{\ell(R)} \, \mu(R) + \operatorname{Err},$$

with

$$\operatorname{Err} \leq C \varepsilon^{a} rac{\mu(R)}{\ell(R_{0})^{n}}, \qquad a > 0.$$

$$\sum_{Q\in \operatorname{Stop}(R)} g(p, x_Q^1) \, \ell(Q)^{n-1} \leq C \, \frac{g(p, x_R^1)}{\ell(R)} \, \mu(R) + \operatorname{Err},$$

with

$$\operatorname{\mathsf{Err}} \leq C \, arepsilon^a \, rac{\mu(R)}{\ell(R_0)^n}, \qquad a>0.$$

Since $g(p, x_Q^1) \ge \lambda \ell(R) / \ell(R_0)^n$ for each Q, we get

$$\lambda \frac{\mu(R)}{\ell(R_0)^n} \approx \lambda \sum_{Q \in \operatorname{Stop}(R)} \frac{\ell(Q)^n}{\ell(R_0)^n} \leq C \frac{g(p, x_R^1)}{\ell(R)} \mu(R) + C \varepsilon^a \frac{\mu(R)}{\ell(R_0)^n}.$$

$$\sum_{Q\in \operatorname{Stop}(R)} g(p, x_Q^1) \, \ell(Q)^{n-1} \leq C \, \frac{g(p, x_R^1)}{\ell(R)} \, \mu(R) + \operatorname{Err},$$

with

$$\operatorname{\mathsf{Err}} \leq C \, arepsilon^a \, rac{\mu(R)}{\ell(R_0)^n}, \qquad a>0.$$

Since $g(p, x_Q^1) \ge \lambda \ell(R) / \ell(R_0)^n$ for each Q, we get

$$\lambda \frac{\mu(R)}{\ell(R_0)^n} \approx \lambda \sum_{Q \in \operatorname{Stop}(R)} \frac{\ell(Q)^n}{\ell(R_0)^n} \leq C \frac{g(p, x_R^1)}{\ell(R)} \, \mu(R) + C \, \varepsilon^a \, \frac{\mu(R)}{\ell(R_0)^n}.$$

So for $\varepsilon > 0$ small enough,

$$g(p, x_R^1) \gtrsim \lambda \frac{\ell(R)}{\ell(R_0)^n}.$$

X. Tolsa (ICREA / UAB)

Harmonic measure

A big problem: ε cannot depend on λ , because as $\varepsilon \to 0$, $N = N(\varepsilon) \to \infty$ and then λ can be arbitrarily small.

A big problem: ε cannot depend on λ , because as $\varepsilon \to 0$, $N = N(\varepsilon) \to \infty$ and then λ can be arbitrarily small. To solve this, we need to split Tree(R).

A big problem: ε cannot depend on λ , because as $\varepsilon \to 0$, $N = N(\varepsilon) \to \infty$ and then λ can be arbitrarily small. To solve this, we need to split Tree(R).

Given $0 < \kappa \ll \varepsilon \ll 1$ and $Q \in \text{Tree}(R)$, we write $Q \in \text{WSBC}(\kappa)$ if there does not exists any curve Γ joining the "big corkscrews" x_Q^1 and x_Q^2 such that

$$\Gamma \subset \kappa^{-1}B_Q$$
 and ${
m dist}(\Gamma,\partial\Omega) \geq \kappa\,\ell(Q).$

A big problem: ε cannot depend on λ , because as $\varepsilon \to 0$, $N = N(\varepsilon) \to \infty$ and then λ can be arbitrarily small. To solve this, we need to split Tree(R).

Given $0 < \kappa \ll \varepsilon \ll 1$ and $Q \in \text{Tree}(R)$, we write $Q \in \text{WSBC}(\kappa)$ if there does not exists any curve Γ joining the "big corkscrews" x_Q^1 and x_Q^2 such that

$$\Gamma \subset \kappa^{-1}B_Q$$
 and $\operatorname{dist}(\Gamma,\partial\Omega) \geq \kappa\,\ell(Q).$

Let $\operatorname{Stop}_{WSBC}(R)$ be the layer of maximal cubes $Q \in \operatorname{Tree}(R)$ such that $Q \notin \operatorname{WSBC}(\kappa)$, and let $\operatorname{Tree}_{WSBC}(R)$ be the cubes from $\operatorname{Tree}(R)$ above the layer $\operatorname{Stop}_{WSBC}(R)$.

Suppose that for each $Q \in \text{Stop}_{\text{WSBC}}(R)$, there exists a (λ, τ_0) -good corkscrew $x_Q^1 \in \Omega_R^1$.

1.

Suppose that for each $Q \in \text{Stop}_{WSBC}(R)$, there exists a (λ, τ_0) -good corkscrew $x_Q^1 \in \Omega_R^1$.

Arguing as above, we get

$$\sum_{Q \in \text{Stop}_{\text{WSBC}}(R)} g(p, x_Q^1) \,\ell(Q)^{n-1} \leq C \, \frac{g(p, x_R^1)}{\ell(R)} \,\mu(R) + \text{Err},$$

with $\text{Err} \leq C \, \kappa^a \, \frac{\mu(R)}{\ell(R_0)^n}, \quad a > 0.$

Suppose that for each $Q \in \text{Stop}_{WSBC}(R)$, there exists a (λ, τ_0) -good corkscrew $x_Q^1 \in \Omega_R^1$.

Arguing as above, we get

$$\sum_{Q\in \mathsf{Stop}_{\mathsf{WSBC}}(R)} g(p, x_Q^1) \, \ell(Q)^{n-1} \leq C \, \frac{g(p, x_R^1)}{\ell(R)} \, \mu(R) + \mathsf{Err},$$

with
$$\operatorname{Err} \leq C \, \kappa^a \, rac{\mu(R)}{\ell(R_0)^n}, \quad a>0.$$

We deduce, for κ small enough,

$$g(p, x_R^1) \gtrsim \lambda \frac{\ell(Q)}{\ell(R_0)^n}.$$

Suppose that for each $Q \in \text{Stop}_{WSBC}(R)$, there exists a (λ, τ_0) -good corkscrew $x_Q^1 \in \Omega_R^1$.

Arguing as above, we get

$$\sum_{Q\in \mathsf{Stop}_{\mathsf{WSBC}}(R)} g(p, x_Q^1) \ell(Q)^{n-1} \leq C \, \frac{g(p, x_R^1)}{\ell(R)} \, \mu(R) + \mathsf{Err},$$

with
$$\operatorname{Err} \leq C \, \kappa^a \, rac{\mu(R)}{\ell(R_0)^n}, \quad a>0.$$

We deduce, for κ small enough,

$$g(p, x_R^1) \gtrsim \lambda \frac{\ell(Q)}{\ell(R_0)^n}.$$

Further, any $P \in \text{Stop}(R)$ contained in some cube $Q \in \text{Stop}_{\text{WSBC}}(R)$ can be connected to both corkscrews x_Q^1 , x_Q^2 by a "nice" curve, because x_Q^1 and x_Q^2 are joined by a nice curve Γ .

An important difficulty:

We need a delicate geometric argument to approximate Ω by a domains Ω^1_R , Ω^2_R at the level of the cubes $Q \in \text{Stop}_{\text{WSBC}}(R)$, so that $g(p, \cdot)$ is very small near $\partial \Omega^i_R$.

An important difficulty:

We need a delicate geometric argument to approximate Ω by a domains Ω^1_R , Ω^2_R at the level of the cubes $Q \in \text{Stop}_{\text{WSBC}}(R)$, so that $g(p, \cdot)$ is very small near $\partial \Omega^i_R$.

We also need the ACF formula in this construction.